
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Generating Editors for Embedded
Languages

Lennart Kats, Karl Trygve Kalleberg, Eelco Visser

Report TUD-SERG-2008-006

SERG



TUD-SERG-2008-006

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.



Generating Editors for Embedded Languages

Integrating SGLR into IMP

Lennart Kats1, Karl Trygve Kalleberg2 and Eelco Visser3

1,3Delft University of Technology, The Netherlands 1L.C.L.Kats@tudelft.nl, 3visser@acm.org
2University of Bergen, Norway 2karltk@ii.uib.no

Abstract

Integrated Development Environments (IDEs) increase productivity by providing a rich user interface and
rapid feedback for a specific language. Creating an editor for a specific language is not a trivial undertaking,
and is a cumbersome task even when working with an extensible framework such as Eclipse. A new IBM-
guided effort, the IMP framework, relieves the IDE developer from a significant portion of the required work
by providing various abstractions for this. For embedded languages, such as embedded regular expressions,
SQL queries, or code generation templates, its LALR parser generator falls short, however. Scannerless
parsing with SGLR enables concise, modular definition of such languages. In this paper, we present an
integration of SGLR into IMP, demonstrating that a scannerless parser can be successfully integrated into
an IDE. Given an SDF syntax definition, the sdf2imp tool automatically generates an editor plugin based
on the IMP API, complete with syntax checking, syntax highlighting, outline view, and code folding. Using
declarative domain-specific languages, these services can be customized, and using the IMP metatooling
framework it can be extended with other features.

1 Language-Specific Editors

Integrated Development Environments (IDEs) increase developer productivity by
providing a rich user interface and rapid feedback for a specific language. Editors
increase code readability by applying code folding (hiding details and boilerplate
code), or by use of syntax highlighting [1]. In-place reporting of errors and warnings,
as well as different views of a program further help understandability. Many IDEs
provide various ways of navigation through the structure of a program by providing
cross-referencing support or an outline view. Modern IDEs are also used as front-
ends for program refactorings and analyses.

Software projects are typically developed in multiple languages, ranging from
mainstream languages, such as Java and C#, to custom languages, such as embed-
ded and domain-specific languages (DSLs). As programmers grow accustomed to
IDEs for mainstream languages, they come to expect the same level of IDE support
for custom languages. Thus, providing a good IDE becomes a significant factor in
the success of a language. Building a custom, state-of-the-art IDE, however, is a

Preprint submitted to Electronic Notes in Theoretical Computer Science 18 February 2008

SERG Generating Editors for Embedded Languages

TUD-SERG-2008-006 1



time-consuming and difficult undertaking. Other infrastructure, such as compilers,
usually takes precedence over editors. As DSLs evolve rapidly, accommodating new
domain insights and adapting to circumstances, extra effort is required to keep the
editor up-to-date. For these reasons, editor construction is often neglected.

Extensible development platforms, such as the Java-based Eclipse platform, are
a solid base for editor developers. Eclipse offers a single IDE interface for editing
multiple file types. It provides various facilities that form a basis for full-functional
IDEs for custom languages, such as integrated build and version management sys-
tems. However, creating an Eclipse editor plugin is currently a rather cumbersome
task, because the Eclipse API is relatively low-level and changes slightly between
releases as Eclipse continues to evolve. The IMP project (formerly known as SA-
FARI [3]) aims at providing abstractions for creating Eclipse IDE editor plugins.
Currently in an alpha stage, it provides basic, modular editor services (i.e., features)
in the form of Java classes that can be generated using wizards.

Despite extensible development platforms, a particular class of custom languages
that often lacks IDE support, is that of embedded languages. Examples include
database query languages embedded into a general-purpose language, where the em-
bedding increases the expressivity of the host language and enables static checking
of queries. For code generation, embedded object language quotations are applied
in meta languages such as Stratego [8]. IMP currently employs the LALR parser
generator LPG, formerly known as JikesPG [3]. LALR is not closed under compo-
sition and requires building embedded languages using a specially crafted scanner
for the embedding. In contrast, the scannerless generalized LR parsing algorithm
(SGLR) does support the full class of context-free grammars, which is closed under
composition [2]. SGLR has been used in language definitions and tools for Java, C,
PHP, as well as embeddings based on these languages [8].

In this paper, we present sdf2imp, a generator for Eclipse editor plugins that
integrates SGLR into the IMP framework. Given an SDF syntax definition of a
language, it automatically creates the complete source of an editor plugin. Using
declarative languages to define editor service descriptors, the generation process
may be further customized. At this point, the generated editor includes in-line
reporting of parse errors, syntax highlighting, code folding, and an outline view.
By building upon the IMP framework, the editor can be extended with IMP-based
editor services that may be generated with the wizards provided by IMP.

Our implementation gives insight into using a custom grammar formalism within
IMP. While IMP aims at eventually providing support for custom parsers, the cur-
rent (alpha) implementation makes several assumptions about the parser implemen-
tation. It defines a number of low-level interfaces for the parser components, such
as the parser itself, the lexer, lexer stream and the token stream. These do not
always match with a given parser implementation, of which SGLR, not employing a
lexer, is a good example. IMP also uses a number of concrete LPG classes for some
of the vital components, further hindering the compatibility with other parsers.
Ideally, it would instead define a more high-level interface that exposes minimal
implementation details.

2

Generating Editors for Embedded Languages SERG

2 TUD-SERG-2008-006



Fig. 1. Screenshot of an editor for Stratego with embedded (quoted) Java code

2 Generating Editors

Given a syntax definition, sdf2imp generates strongly typed abstract syntax tree
(AST) classes, as well as an associated visitor and factory implementation. These
classes are used by IMP as a basis for all editor services. By defining standard
interfaces for these common editor components, IMP lifts the editor implementation
to a higher level of abstraction than possible with the regular Eclipse API. Using
heuristics, sdf2imp further generates a number of IMP-based editor services from
the grammar. These can be customized using high-level editor service descriptor
languages, but offers sane defaults for many languages.

In addition to the generator, sdf2imp also includes a runtime component, which
makes use of JSGLR, a Java implementation of SGLR. When parsing a file, SGLR
produces a parse tree containing all input characters, as well as the applicable
parsing productions required to produce an AST. As SGLR does not employ a
separate scanner, tokens must be subsequently extracted from this tree to produce
a token stream. This is handled by the sdf2imp runtime compatibility layer, which
traverses the parse tree to extract tokens and AST nodes. The strongly typed AST
nodes are created using the generated AST factory, and include a reference to the
tokens they are associated with.

We have applied sdf2imp to a number of languages, including WebDSL (a
domain-specific language that embeds HQL), AspectJ (which has a notoriously
difficult lexical syntax), and a number of embedded languages based on PHP, Java,
and Stratego [8]. Figure 1 shows the editor in action.

As JSGLR is based on Java, it integrates well into Eclipse and is platform
independent. Any parse errors encountered are thrown as exceptions, and are
directly reported in-line in the editor, providing the user with rapid feedback.

Syntax highlighting in IMP is based on mapping fonts and colors to tokens, de-
pending on their token kind. The kind of a token is defined in the scanner definition.
Since no such notion exists in Scannerless GLR, we have taken a somewhat different

3

SERG Generating Editors for Embedded Languages

TUD-SERG-2008-006 3



approach. Based on the production rules of a grammar, we automatically assign
generic token kinds to different tokens. For example, lexical production tokens may
be categorized as Strings, numbers, or identifiers, based on the parsing pattern.
A unique token kind is also reserved for meta variables, which exist as first class
citizens in SDF2 syntax definitions. By default, syntax highlighting operates purely
on the basis of generic token kinds, which is demonstrated in Figure 1. It may
be customized using an editor service descriptor that allows different colors to be
assigned to keywords (actually, production literals), sorts, and generic token kinds.

The outline view provides a structural view of a program and allows for quick
navigation. Similarly, code folding operates on the structure of a program to selec-
tively hide code fragments for readability. In particular, this also works in embedded
code, such as a list of imports in a Java code fragment. Both services are based on
the AST and internally use visitors to select applicable AST nodes. Using heuris-
tics, we create default implementations for these services. For example, we include
parse productions that have at least one subterm with an identifier generic sort
and one list subterm. The editor service descriptors may indicate the production
sorts to be included in the services. Names of outlined items can be indicated using
pattern matching on the AST nodes.

Designed with modular, embedded language definitions in mind, the editor ser-
vice descriptors provide a module system for reuse of descriptors. This would not
be feasible without the abstraction from the visitor-based Java implementation.

3 Discussion

We have previously presented Spoofax [4], an editor for Stratego and SDF2, based
directly on the Eclipse API. Its hand-written syntax analyzer makes use of context-
sensitive, rule-based pattern matching rather than parsing. This ensures correct
syntax highlighting for most cases of grammatically incorrect code. Two significant
drawbacks, however, are the lack of interactive parser errors and incorrectly high-
lighted keywords of embedded languages. It is anticipated that the parser-based
approach presented here will be integrated into Spoofax.

The Meta-Environment [7] is an extensible toolset for program analysis and
transformation based around SDF that comes with its own extensible IDE frame-
work written in Java. It provides a generic syntax highlighting facility based on
SGLR. Our approach combines the advantages of SGLR with the robustness of
Eclipse and the extensibility of IMP.

The MontiCore DSL development framework [5] is based on an extended gram-
mar formalism which is used to specify both the concrete and abstract syntaxes
of a language, as well as associations between AST nodes. Language extensibility
is handled mainly through inheritance of grammar rules. The underlying parsing
technology is predicated LL(k). The current prototype generates editor plugins for
Eclipse that provide syntax highlighting, syntax (and some forms of semantic) error
reporting and code outlining. In comparison, annotations in SDF grammars are
used to automatically derive ASTs, and, thanks to IMP wizards, additional editor

4

Generating Editors for Embedded Languages SERG

4 TUD-SERG-2008-006



services are easy to add with our approach.
JSGLR cannot currently be considered mature. In particular, it performs poorly,

and, ideally, would support incremental parsing. However, as it runs in a back-
ground thread, this has very little impact on the user experience. A more problem-
atic drawback is its lack of error recovery support: in addition to reporting parsing
errors, the parser should also try to parse the remainder of the file to ensure at
least partial functionality of any editor services. The IMP basis partly provides
for this by ensuring that syntax highlighting and other services are maintained in
unedited regions after an error occurs. This is an area that has not yet received
much attention, but [6] shows promising results.

The use of strongly typed AST and visitor classes in IMP currently hampers
run-time composition of embedded languages, e.g., enabling a Stratego editor for
arbitrary object languages. It is possible to forgo generation of these classes and
generate editor services that do not make use of them, but this would limit our
compatibility with other IMP services. To maintain compatibility, architectural
changes to IMP itself would be required.

In this paper, we presented language-specific editor features that can be derived
from a grammar. Possible future extensions include grammar-aware brace matching
and text selection, automatic commenting of regions, and extraction of metadata
from comments. Code formatting tools that are already available for SDF could be
integrated into the IDE. Another area of future work is that of integrated semantic
analysis and refactoring, for which IMP already provides a basis. Specifically, it
could benefit from the use of a specialized language such as Stratego for this.

References

[1] Baecker, R., Enhancing program readability and comprehensibility with tools for program visualization,
in: ICSE ’88: Proceedings of the 10th international conference on Software engineering (1988), pp.
356–366.

[2] Bravenboer, M. and E. Visser, Concrete syntax for objects. Domain-specific language embedding and
assimilation without restrictions, in: D. C. Schmidt, editor, Proceedings of the 19th ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA’04)
(2004), pp. 365–383.

[3] Charles, P., J. Dolby, R. M. Fuhrer, J. Stanley M. Sutton and M. Vaziri, Safari: a meta-tooling framework
for generating language-specific IDE’s, in: OOPSLA ’06: Companion to the 21st ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications (2006), pp. 722–723.

[4] Kalleberg, K. T. and E. Visser, Spoofax: An interactive development environment for program
transformation with Stratego/XT, in: A. Sloane and A. Johnstone, editors, Seventh Workshop on
Language Descriptions, Tools, and Applications (LDTA’07), Braga, Portugal, 2007, pp. 47–50.

[5] Krahn, H., B. Rumpe and S. Völkel, Efficient editor generation for compositional DSLs in Eclipse, in:
Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling, 2007.

[6] Valkering, R., “Syntax Error Handling in Scannerless Generalized LR Parsers,” Master’s thesis,
University of Amsterdam (2007).

[7] van den Brand, M. G. J., M. Bruntink, G. R. Economopoulos, H. A. de Jong, P. Klint, T. Kooiker,
T. van der Storm and J. J. Vinju, Using the Meta-Environment for maintenance and renovation, in:
CSMR ’07: Proceedings of the 11th European Conference on Software Maintenance and Reengineering
(2007), pp. 331–332.

[8] Visser, E., Meta-programming with concrete object syntax, in: D. Batory, C. Consel and W. Taha, editors,
Generative Programming and Component Engineering (GPCE’02), Lecture Notes in Computer Science
2487 (2002), pp. 299–315.

5

SERG Generating Editors for Embedded Languages

TUD-SERG-2008-006 5



Generating Editors for Embedded Languages SERG

6 TUD-SERG-2008-006





TUD-SERG-2008-006
ISSN 1872-5392 SERG


