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Abstract
We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore
pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow,
elastic deformation, and contact mechanics at fault surfaces on a fully unstructured mesh. The cell-centered
collocated scheme leads to convenient integration of the different physical equations, as the unknowns share
the same discrete locations on the mesh. Additionally, a multi-point flux approximation is formulated in a
general procedure to treat heterogeneity, anisotropy, and cross-derivative terms for both flow and mechanics
equations. The resulting system, though flexible and accurate, can lead to excessive computational costs for
field-relevant applications. To resolve this limitation, a scalable parallel solution algorithm is developed and
presented. Several proof-of-concept numerical tests, including benchmark studies with analytical solutions,
are investigated. It is found that the presented method is indeed accurate, stable and efficient; and as such
promising for accurate and efficient simulation of induced seismicity.

Introduction
Mechanical deformation of subsurface reservoirs plays a key role in safe and optimal operation of many
geoenergy applications. Hydraulic fracturing is a direct application in which rock mechanics is at the
core of the operation design. Gas production, as another example, often causes subsidence which in turn
can initiate induced seismicity and serious damages to surface infrastructures. Moreover, in geothermal
operations, the re-injection of cooler fluid causes stress changes which results in thermo-hydro-mechanical
deformations and can activate faults (Buijze et al., 2019). Successful exploitation of these geo-energy
resources depends highly on development of robust and efficient computational simulators for coupled
hydro-thermo-mechanical processes.

Galerkin finite element methods have been employed by many researchers to investigate induced
seismicity (Jha and Juanes, 2014; Garipov et al., 2016; Garipov and Hui, 2019). Mixed finite elements
methods were also extensively developed to allow for more accurate geomechanics simulations (Arbogast
et al., 1997; Phillips and Wheeler, 2007). To enhance convergence properties of the linear systems, weakly-
imposed symmetry of the stress tensor in mixed finite element methods was also developed in Arnold et al.
(2007) and then used in combination with multi-point stress approximation in Ambartsumyan et al. (2020).
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2 SPE-203903-MS

Alternatively, the Finite Volume Method (FVM) has recently gained high interests to be employed
for geomechanics and poromechanics simulations. The FVM has become an essential tool for flow and
transport simulation due to its local conservation property. For mechanical deformation, however, the
conservation property does not have the same importance. Nonetheless, the FVM is still an attractive choice
beacuse it represents conservation laws (in integral form) more naturally. The FVM has been employed
for mechanical problems in a staggered configuration (Deb and Jenny, 2017a; Sokolova et al., 2019) and
collocated (Nordbotten, 2014; Berge et al., 2020; Terekhov and Tchelepi, 2020; Terekhov, 2020a). The
resulting systems are non-symmetric, but can be made weakly symmetric as proposed in Keilegavlen and
Nordbotten (2017).

Some authors (Deb and Jenny, 2017b; Garipov et al., 2018) use fixed-stress splitting algorithms (Settari
and Mourits, 1998; Kim et al., 2011) to decouple mechanics and flow equations. These are a form of
sequential implicit (SI) solution schemes and often lead to more efficient simulations than fully implicit
(FI) simulation. However, sequential schemes introduce certain restrictions on time step sizes. On the other
hand, FI schemes (Sokolova et al., 2019; Garipov et al., 2016, 2018; Garipov and Hui, 2019; Berge et al.,
2020) provide unconditionally convergent solutions and are more robust and convenient approaches for
investigation of complex multiphysical problems. FI and SI approaches were compared in the context of
coupled thermo-compositional-mechanics simulation in Garipov et al. (2018).

Although the FI approach does not imply any restriction on time step size, it requires an efficient linear-
equation solution strategy for high resolution models. One such strategy is to construct a preconditioner
based on the idea of the SI approach. In White et al. (2016), the authors employ a fixed-stress
splitting concept in a sparse approximation of the Schur complement in order to obtain a block-
preconditioned solution strategy. Later this approach was combined with a constrained pressure residual
(CPR) preconditioner to construct a robust and effective solution strategy for coupled multiphase flow and
mechanics (Klevtsov et al., 2016).

In the current study, we develop a collocated FI multi-point FVM scheme for poromechanics simulation
of faulted reservoirs, following the work of Terekhov and Tchelepi (2020); Terekhov (2020a). The scheme
can be used to solve poromechanics problems on unstructured polyhedral grids with a minimum of degrees
of freedom per cell. It is also capable to take into account material heterogeneity while preserving mass and
momentum balances. We extend this scheme to take into account discontinuities in displacements at faults.
Stick-slip behavior is governed by additional constraints at the contact embedded in the discretization.

The developed algorithms have been embedded into the open-source Delft Advanced Research Terra
Simulator (DARTS). DARTS is a general purpose simulation platform for energy transition applications. It
was successfully applied for modeling of advanced petroleum (Khait and Voskov, 2018a; Lyu et al., 2021a),
geothermal (Khait and Voskov, 2018b; Wang et al., 2020) and CO2 sequestration (Kala and Voskov, 2020;
Lyu et al., 2021b) applications. This facilitates further extension of the proposed geomechanics model for
modern energy-related industrial applications.

The paper is organized as follows. First, we present the governing equations for coupled flow and
geomechanics. Then we develop the discrete system of equations, the coupled multi-point approximation,
and the strategy to solve this system. Next, we perform validation against analytical and numerical
approaches for pure elastic deformation. Thereafter, we study slip and stress profiles over a fault in different
configurations. Through these proof-of-concept test cases, we assess the performance and applicability of
the proposed simulation approach.

Governing Equations
Single-phase flow in deformable porous media is governed by a coupled system of momentum balance and
fluid mass balance equations, i.e.,
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(1)

subject to the closure relations as defined in Coussy (2003):

(2)

(3)

(4)

(5)

(6)

where σ is the rank-two total stress tensor, f is a vector of volumetric forces, φ is porosity, ρ is fluid density,
v is Darcy's velocity, f is a source (sink) of fluid mass, ℂ is a rank-four stiffness tensor, B is a diagonal
rank-two tensor of Biot coefficients b, p is pore pressure, u is a vector of displacements, Ks is the bulk
modulus of the solid phase, ε is the rank-two strain tensor, εV = tr(ε) is the volumetric strain, K is the rank-
two permeability tensor, µ is fluid viscosity, and g is acceleration of gravity. Furthermore, a superscript ’0’
denotes the reference state of a variable, i.e., σ0 = σ(u0, p0), φ0 = φ(u0, p0), ε0 = ε(u0, p0). Equations (2) and (3)
represent stress and porosity changes, equation (4) describes infinitesimal strains, and equation (5) is Darcy's
equation. The fluid properties density and viscosity are functions of pressure, as stated in equation (6). All
variables have been listed in the Nomenclature section at the end of the paper. Note that Biot's coefficient
b is restricted to the interval φ0 < b ≤ 1 and that b = 1 represents the incompressible solid rock limit.

We denote vectors with bold font, and tensors of rank higher than two with script font. Scalars and rank-
two tensors are denoted with Roman letters. We also use the following definitions for the total traction
vector F, fluid flux q and displacement flux  over an interface with unit normal n:

(7)

(8)

(9)

Boundary conditions for the system of equations (1) can be written as

(10)

where Fb and pb are traction and pore pressure at the boundary, respectively. In addition, an,bn,at, bt, ap,bp

are coefficients that determine the magnitude of their corresponding boundary conditions, rn,rt, rp are
the corresponding condition values. Expressions (10) can describe a broad range of possible boundary
conditions including Dirichlet (an = at = 1, bn = bt = 0), distributed force loading (an = at = 0, bn = bt = 1),
free boundary (an = at = rn = 0, bn = bt = 1, rt = 0), and roller conditions (an = bt = 1, bn = rn = at = 0, rt = 0)
for mechanics; and Dirichlet (ap = 1, bp = 0) and Neumann (ap = 0, bp = 1) conditions for flow.

At the fault interfaces we consider a gap vector g that is equal to the jump of displacements over the
contact g = u+ − u−, where +/− denote a particular side of the fault. The conditions that are applied to the
contact read
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(11)

where the magnitude of the normal projection and the tangential projection of the effective traction vector F'
= −nT ℂ: (ε − ε0) at the contact surface are, respectively,  and . Here, η is the friction
coefficient, while the Coulomb function  is used as a slip criterion. The vector  represents
the time derivative of gap vector. The first condition in (11) represents a non-penetration condition which
prohibits opening. This implies that the gap vector only allows for tangential displacements and therefore
becomes a slip vector. The second condition governs relaxation of tangential traction once slip occurs, and
the third one sets the change of tangential gap (i.e. the slip) to zero if the slip criterion is not satisfied.

Numerical Scheme
In this section, we briefly describe the discretization scheme for the continuum domain first, and then
introduce fracture/fault discontinuities.

Finite Volume Method
According to the FVM, the momentum balance and fluid mass balance (1) in integral form for the i-th cell
can be stated as

(12)

where superscripts n, and n + 1 denote the variables taken from the current and next time step, respectively.
Also, subscript j enumerates the interfaces of the i-th cell, Δt is the time step size, Vi is the volume of ith
cell, δj denotes the area of the jth interface, F, q,  are defined in equations (7), (8), and (9), respectively.
Moreover,  holds.

Continuous Local Problem
Equation (12) requires consistent discrete formulation for the tractions and fluid mass fluxes at interfaces.

Let us introduce the vector of unknowns w = {u, p}. By imposing the continuity of the unknowns and
continuity of fluxes, i.e., tractions and fluid mass fluxes between 1st and 2nd neighbouring cells (Terekhov,
2020a), one obtains

(13)

(14)

(15)

where w1 and w2 are unknowns at the cell centers, x1 and x2 are the positions of the cell centers, xδ denotes
the center of the interface, ⊗ stands for the Kronecker product, I ⊗ (xδ − x1)T, I ⊗ (xδ − x2)T represent 4
× 12 matrices, ∇⊗ w1, ∇ ⊗ w2 and ∇ ⊗u1, ∇ ⊗u2 are 12 × 1 and 9 × 1 vectors respectively, ,

 are 9 × 9 matrices where C denotes a 6 × 6 symmetric stiffness matrix in Voigt notation and
where
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Below we will use the following decomposition

(16)

(17)

(18)

(19)

where subscripts i = 1,2 refer to the cells neighboring an interface, r1 and r2 are distances between the
cell centers and the interface, y1, y2 are projections of the cell centers on the interface, T1 and T2 are 3 ×
3 matrices, Γ1 and Γ2 are 3 × 9 matrices, while scalars λ1 and λ2 and vectors γ1 and γ2 provide co-normal
decompositions of K1 and K2. The 4 × 1 vectors G1 and G2, and the 12 × 1 vectors Gτ1 and Gτ2 represent
normal and tangential projections respectively of the gradients of the unknowns.

Using the introduced notation, the continuity of fluxes, represented in equations (14) and (15), can be
written in the following coupled form

(20)

where

(21)

(22)

and where Ai and Qi are 4 × 4 matrices, Θi is a 4 × 12 matrix and Ri is a 4 × 1 vector.
According to equation (13) the tangential projections of the gradients are Gτ1 = Gτ2 = Gτ. Deriving G2

from equation (13) and substituting the result into equation (20) we obtain the following expression for G1

(23)

Substituting equation (23) into the left-hand side of equation (20), one obtains the following multi-point
approximation for the traction F, as given in equation (7), and the total fluid flux :

(24)

The coupled multi-point approximation (24) was presented in Terekhov (2020a). Approximation of
boundary conditions (10) requires a specific treatment and we refer to Terekhov (2020a) for the details.
The approximation (24) involves fluid properties which may depend on pore pressure or composition in the
case of multicomponent flow. In such cases equation (24) can not be applied directly and further steps are
required, as will be discussed below.
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6 SPE-203903-MS

Gradient Reconstruction
The approximation (24) requires the the tangential projection of the gradients of the unknowns to be
reconstructed. One can derive G2 from equation (20) and substitute it into equation (13) to obtain the
following interpolation equation

(25)

It is necessary to consider at least 3 interfaces (in 3D) of the first cell to enclose the system with respect
to the 12 components of ∇ ⊗w1.

Bringing together the results of equation (25) for N considered interfaces of the ith cell, we build up
the system

(26)

where Mi is a 4N × 12 matrix and Di a 4N ×4(N +1) matrix of unit matrices {I, − I} in front of the
corresponding unknowns at the right-hand side of equation (25), while Ui is a 4(N + 1) × 1 vector of N +
1 displacements (or boundary conditions). The solution of equation (26) can be obtained in a least-squares
sense according to

(27)

For the approximation of Gτ in equation (24) the following combination of gradients is used in Terekhov
(2020a)

(28)

A set of cells that contribute to the approximation (28) for each interface of some cell i is illustrated in
Fig. 1.

Figure 1—Cells that contribute to the approximation of fluxes over the interfaces of cell i. Index j denotes the the
close neighbours of cell i. Index k denotes further neighbours that contribute to the gradients reconstructed in cells j.

Introducing Discontinuity
Displacements can be discontinuous at faults. In that case equation (13) does not hold anymore and the
tangential gradients of the displacements may be different at different sides of the fault. We introduce an
additional degree of freedom (d.o.f.) per faulted interface, namely-gap vector  which
is equal to the jump of displacements over the interface and remains zero for the jump of pressure. The
following continuity condition will be used instead of equation (13)

D
ow

nloaded from
 http://onepetro.org/spersc/proceedings-pdf/21R

SC
/1-21R

SC
/D

011S011R
003/2508187/spe-203903-m

s.pdf/1 by Bibliotheek TU
 D

elft user on 17 January 2023



SPE-203903-MS 7

(29)

where "±" is positive when the first and second cells are located at negative and positive sides of the fault
respectively. The continuity of fluxes, as given in equation (20), can be rewritten as

(30)

expression (23) changes to

(31)

equation (24) becomes

(32)

Also, the following expression can be used for gradient reconstruction instead of equation (25)

(33)

where gap gradients are reconstructed by simply using

(34)

The approximation of the traction, as given in equation (32), remains correct while nTg = 0. When ±nTg
> 0 the traction should be set to zero, F = 0, which corresponds to a free boundary condition.

We use a Discrete Fracture Model (DFM) approach for the flow which implies having discrete equations
for fracture segments of non-zero volume. We assume continuous pressure in equation (13), and we have
two matrix-fracture connections per fracture segment in the fluid mass balance for that segment. For the
fluid fluxes between fracture segments we use a two-point flux approximation (TPFA).

Reconstruction of Stresses
Solving the system of discrete equations (12) provides the vector of unknowns in the cell centers. To
reconstruct effective stresses at the same locations we use the algorithm described in Terekhov (2020a).

For the jth interface of the cell let us construct the following matrices:

(35)

where nx, ny and nz are components of the unit normal to the jth interface; xj, yj and zj are components of the
jth interface center position; and xV, yV and zV are components of the cell center position.

Collecting these matrices for N interfaces of the cell we will obtain the following 3N × 6 and 3N ×6
matrices, and 3N × 1 vector
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8 SPE-203903-MS

(36)

where vector b represents the tensor of Biot's coefficients B in Voigt notation: b = {b,b,b,0,0,0}T . The
stresses at the cell center can then be reconstructed using the least squares solution

(37)

where the effective stress tensor  is written in Voigt notation.

Solution Strategy

Discretization
In real-world subsurface applications the fluid is usually represented as a mixture composed of multiple
chemical components and phases. In the case of multiphase multicomponent fluid flow its quantities like
density, viscosity and others depend on mole fractions, pressure and temperature. Equations (32) and (33)
involve fluid viscosity and density (in the gravity term) which means that they may depend at least on
pressure. These approximations become non-resolved with respect to pressures. It is therefore required to
repeat the gradient reconstruction and the approximations each nonlinear iteration.

Assuming that the tensor of Biot coefficients remains constant, the terms that include Biot coefficients can
be omitted in the local problem for poromechanics. This allows fluid density and viscosity to be excluded
from these expressions and approximations (32) to be calculated once before iterations over time. Density
and viscosity can be taken into account having the equations for fluid flow (8) and flux of displacement
(9) already approximated.

This requires separate assembly of Darcy, Biot and gravity terms in equation (8). The Biot term does not
affect the reconstruction of the gradients beacuse the tensor of Biot coefficients is constant over the domain
whereas the gradients are linear with respect to the gravity contribution. In turn, approximations of tractions
and the terms in the fluid flow expression are linear with respect to gradients and gravity. This operation can
be performed by omitting all left-bottom terms in matrices (21) and (22) and the Biot terms in vectors R1

and R2 and setting Δt = 1 in the other terms. This technique, as introduced in Terekhov (2020a), allows us to
retrieve the approximation of the Darcy flux q separately from the Biot contribution , and to
decouple fluid properties from approximation of fluxes. It also allows us to calculate the coefficients of the
approximations at the pre-processing stage. The flux of displacement  can then be calculated as follows:

(38)

where  is equal to

(39)

At the boundaries this flux can be calculated separately as well; see Terekhov (2020a).
The first stage of discretization consists of the reconstruction of gradients according to equations (25),

(33) and (34). We note that the least squares approach used in equation (27) can results in negative-valued
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SPE-203903-MS 9

coefficients in front of the terms w2 − w1 and w1 − w2 in the first and second cells respectively. This may lead
to monotonicity issues and oscillating solutions which are common problems in multi-point approximations.

Once the gradients are reconstructed they can be used to approximate fluxes according to equations (24),
(32) and (38). For non-faulted interfaces the averaged gradient as defined in equation (28) is used.

Linear Solvers
In order to improve the efficiency of the solution of the system of equations (1), an advanced linear solver
strategy is required. In White et al. (2016), a fixed-stress split concept is used to construct a block-partitioned
preconditioner for poromechanics, which was extended for coupled multiphase flow and mechanics in
Klevtsov et al. (2016). Here we employ the first stage of this approach to construct a preconditioner.

The idea of the method is to consider the following block-partitioned linear system:

(40)

where J, ru and rp are the Jacobian and the residuals for momentum and mass balance equations produced
by the numerical scheme, δu and δp are unknown increments of the vector of displacements and pressure,
Juu,Jup,Jpu,Jpp are contributions to momentum balance and mass balance equations from displacement and
pressure unknowns, L is the lower-triangular term in an LDU decomposition of the Jacobian, and Spp = Jpp

−  represents the Schur complement of block Juu in the Jacobian.
The concept of fixed-stress splitting is used here to provide the following sparse approximation of Spp

(41)

where e =[1, 1,. .,1]T is a probing vector, and  is a preconditioner used for the elasticity system.
This preconditioner is applied as follows. At the begining of every nonlinear (Newton) iteration,  is

evaluated. A single V-cycle of an algebraic multi-grid (AMG) solver is typically used for . Next, the
solution of upper triangular system (40) is approximated every iteration of the linear solver and provided
to it as an initial guess. The system for the pressure unknowns is preconditioned using a single V-cycle as
well. The generalized minimal residual (GMRES) method is used as an outer solver.

Elasticity Test Cases

Convergence Study
We made comparison with analytical solution proposed in Terekhov and Tchelepi (2020) to check the order
of approximation on different grids. We consider a 3D unit cubic domain Ω =[0,1]3 and assume that the
following reference solution holds in the domain

As a stiffness matrix we consider the following matrix

(42)

To satisfy the momentum balance in equation (1) we have to put f = −∇ · σ = 2{c11 + c26 + c35,c16 + c22

+ c34,c15 + c24 + c33} at the right side inside the domain and apply Dirichlet boundary conditions according
to the reference solution.
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10 SPE-203903-MS

To assess the convergence of the numerical solutions we calculate the discrete L2 norm of their deviation
from the reference solution. Results are presented in Table 1 for calculations performed using a structured
cubic mesh, an unstructured mesh of wedges and an unstructured hexahedral mesh. The last two meshes
are extruded along the z-axis and are truly unstructured only in the x-y plane. The solution obtained on the
structured cubic mesh demonstrates 2nd-order of convergence with respect to displacements and more than
1st-order convergence with respect to stresses. On the unstructured wedge mesh the solution also shows 2nd-
order convergence with respect to displacements and nearly 1st-order convergence with respect to stresses.

Table 1—L2 norms of errors computed on structured cubic, unstructured
extruded wedge and unstructured extruded hexahedral meshes.

cubic mesh wedge mesh hexahedral mesh

N. of cells ||u - uh||L2 ||σ - σh||L2 N. of cells ||u - uh||L2 ||σ - σh||L2 N. of cells ||u - uh||L2 ||σ - σh||L2

27 1.89E-2 1.93E-1 168 6.58E-3 1.56E-1 84 1.08E-2 1.41E-1

125 7.1E-3 9.11E-2 340 4.18E-3 1.16E-1 225 5.98E-3 8.42E-2

1000 1.86E-3 3.08E-2 2440 1.17E-3 5.24E-2 1190 1.94E-3 3.72E-2

2744 9.62E-4 1.81E-2 18920 3.04E-4 2.34E-2 9280 5E-4 1.44E-2

8000 4.76E-4 1.02E-2 - - - - - -

order 1.975 1.6 order 1.943 1.16 order 1.957 1.37

Displaced Fault
Faulted reservoirs can undergo different mechanical conditions over their geological history. Nearly always
this results in an offset such that stratigraphic layers become displaced.

An analytical investigation of stresses initiated around a displaced fault in a depleted reservoir was carried
out in Jansen et al. (2019). Here we compare the solution we obtained numerically with the analytical one.
The model domain is illustrated in Fig. 2a. It consists of three regions which are treated as elastic bodies
with shear modulus G = 6.5 GPa and Poisson's coefficient ν = 0.15. Only the reservoir (in the middle) admits
a non-zero pore pressure with Biot's coefficient α = 0.9.

Figure 2—The domain with a vertical displaced fault and boundary conditions (a). Only inside
the reservoir, the pore pressure was subtracted from the stress tensor. Tangential stress

profile over the vertical centerline calculated using analytics and numerical simulation (b).

Comparisons of the numerical solutions with the analytical is displayed in Fig. 2b. A build-up of pore
pressure by Δp = 20 MPa inside the reservoir (width 800 m, height 300 m and offset 100 m) perturbs the
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SPE-203903-MS 11

system. The calculated profile of the shear component of the stress tensor over the vertical centerline of
the domain is compared against the analytical result. There is a small discrepancy between the numerical
and analytical solution which can be explained by the influence of boundary conditions in numerical
calculations: the numerical simulation is made for a finite-width reservoir, whereas the analytical solution
assumes an infinite width.

Contact Problem
The next case concerns a fault with Coulomb friction in the center of a square domain of size a; see Fig. 3.
The right boundary is fixed, the top and bottom boundaries are free of any forces, while displacements uleft =
{0.001,0.01} are prescribed at the left. A plane strain setup is considered. The stiffness matrix is determined
by Lam´e coefficients λ = G = 1. A fault of length L = 0.4a with friction coefficient η = 0.85 is allowed
to slip once the Coulomb criterion (11) is exceeded and the fault is prohibited from opening. A structured
quadrilateral grid is used in in the calculation. The resulting displacement and stress fields for the verical
fault are shown in Figs. 4 and 5. One can notice the small jump in horizontal displacements at the fault.

Figure 3—The domain with an inclined fault and boundary conditions.

Figure 4—Horizontal (left) and vertical (right) displacements for the case of
a vertical fault (φ = 90o). Note the jump in vertical displacements at the fault.
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12 SPE-203903-MS

Figure 5—Normal horizontal (left), vertical (middle) and shear stresses (right) for the case of a vertical fault (φ = 90o).

The results are compared with other ones, obtained by the PorePy simulation tool (Keilegavlen et al.,
2021), for different orientations of the fault determined by a dip angle φ. The comparison is displayed in
Fig. 6. Tangential tractions over the fault calculated by DARTS and PorePy match quite well. For higher
dip angles (nearly vertical orientation) the resulting slip also fits quite well. However, for lower dip angles
the slip is decreasing and in the case of φ = 72o it becomes located at the tips of the fault whereas the center
of the fault displays higher normal tractions and smaller slip values. With decreasing dip angles, the slip
magnitude decreases as well and a tiny mismatch in tangential traction results in a higher mismatch in slip
(for φ = 72o). Below some threshold angle no slip over the fault is observed.

Figure 6—Comparison of slip and tangential traction along the fault for different dip angles.

Oscillations
The figures displayed in the previous subsection were calculated using structured rectangular grid which
provided stable solution. However, attempt to calculate contact problem using unstructured wedge grid
resulted in noisy slip curve along the fault. The reason is oscillated (normal and tangential) tractions provided
by the scheme even for completely continuous displacements (zero slip).

Traction over the fault for the setup described in the previous paragraph but with η = 3.2 is illustrated in
Fig. 7 where it is presented by the magnitude of harmonic
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Figure 7—Traction along the fault represented by the magnitude of harmonic Fh and transversal Fti terms for the
setup from the previous paragraph with φ = 90o calculated using different grids: a structured rectangular grid and
an unstructured wedge-type grid (extruded along the z-axis). Fh – harmonic term, Fti – transversal terms. Note the
oscillatory tangential and normal traction along the contact. Mesh refinement does not decrease the magnitude of
oscillations whereas a grid composed of wedges of the same size as the rectangles results in less noisy profiles.

(43)

and transversal

(44)

terms where T = T1(r1T2 + r2T1)−1T2. These terms represent contributions to the total traction in (24), where
the harmonic one is proportional to w2 − w1 in the first term in (24) and the transversal one is proportional
to Gτ taken from all terms in (24). The gap vector at the contact is zero. This value of friction coefficient
is chosen to consider more challenging case when only the part of the fault exhibits slip whereas another
part remains stuck. Cases using a rectangular grid, a wedge-type sparse grid with increased resolution h =
0.01 near the fault, a wedge-type sparse grid with equal element size h = 0.01 and a fine wedge-type grid
with h = 0.001 are considered. See Fig. 8 in which the corresponding slip profiles and the magnitudes of
the tangential traction FT have been displayed.

Figure 8—Slip (solid lines) and effective tangential traction FT (dashed lines) along the fault calculated
using a rectangular grid (blue), a wedge-type sparse grid with h = 0.01 (red), a wedge-type sparse grid
of equally sized elements with h = 0.01 (green), and a wedge-type fine grid with h = 0.001 (magenta).
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14 SPE-203903-MS

The solution obtained using a rectangular grid demonstrates smooth profiles of slip and traction along
the fault and is therefore considered to be the correct one. Although the solution obtained using the wedge-
type grid with the same element size h = 0.01 exhibits oscillations, the resulting profiles of slip and traction
provide a good match with the correct solution. The profiles calculated using wedge-type grids with different
resolutions (both the coarse grid with h = 0.01 and the fine one with h = 0.001 have element size h = 0.1
near the boundary of the domain) exhibit oscillations which remain the same or even increase in magnitude
for grids with higher resolutions. As a result, slip profiles obtained with these grids are of a significantly
lower quality than the correct one.

The unstable solution associated with oscillations in the slip and traction profiles results from the use of
a multi-point stress approximation (MPSA) and can be caused by the violation of the coercivity condition
(Keilegavlen and Nordbotten, 2017). The authors proposed a modified MPSA that weakly imposes the
symmetry of the stress tensor -a concept originally used to obtain hybrid mixed finite element formulations
(Arnold et al., 2007).

Poromechanics test cases

Linearity Preservation
Consider a cubic domain Ω =[0,1]3 of a poroelastic body with the following constant stiffness matrix, Biot
and permeability tensors (Terekhov, 2020a):

(45)

with the following linear reference solution:

(46)

which satisfies the system equations (1). Note that in this example we employ a full Biot matrix B. Although
such a matrix is of no physical significance for practical applications it serves to test computational aspects
of the algorithm. We assume density and viscosity in (6) remain constant and porosity is equal to

(47)

where M is Biot's modulus, p,0 u0 are fluid pressure and displacement vector at reference state. Substituting
equations (46), (45) and (47) into equation (1) we can derive the right-hand side terms. Using these, while
specifying initial and boundary (Dirichlet) conditions according to equation (46), we expect to observe this
reference solution inside the cube. The parameteres that make sense for calculation are listed in Tab. 2.

Table 2—Parameters used for calculations in linearity preservation test case.

µ, cP g, bar·m2/kg 1/M, bar−1 ρf, kg/m3

9.81E-2 0 1.45E-06 978

The results are summarized in Table 3. The calculations were performed using structured grids composed
of cubes and wedges, and an unstructured tetrahedral grid up to time T = 1. The linear solution was observed
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for every time step and for each type of grid. Absolute errors at t = T with respect to the reference solution
(46) are almost at the level of machine double floating-point precision.

Table 3—Absolute errors of solutions calculated on different mesh types for Test Case 1.

Cell geometry Nr. of cells ||u − uh||L2 ||p − ph||L2,

Cubic 64 3.0E-12 7.99E-11

Cubic 8000 3.38E-12 7.29E-10

Wedge 16000 7.14E-14 2.53E-11

Tetrahedron 16030 1.82E-11 4.55E-12

Convergence
For the same Ω =[0,1]3 cubic domain consider the following constant stiffness matrix, and Biot and
permeability tensors:

(48)

and the following reference solution (Terekhov, 2020a):

(49)

The source terms f and f are calculated by substituting equation (48), (47) and (49) into equation (1)
using automatic differentiation. Dirichlet boundary and initial conditions are applied according to equation
(49). We assume density and viscosity in (6) remain constant and porosity is calculated according (47). All
relevant parameters used in the calculations are listed in Table 4.

Table 4—Parameters used for calculations in convergence test case.

µ, cP g, bar·m2/kg 1/M, bar−1 ρf, kg/m3

9.81E-2 -9.81E-2 1.45E-06 978

Table 5—Absolute errors of solutions calculated on a cubic mesh for convergence test case.

Cell geometry Nr. of cells Δt ||u − uh||L2 ||p − ph||L2,

Cubic 64 0.1 1.16E-2 4.9E-2

Cubic 512 0.5 3E-3 1.13E-2

Cubic 4096 0.25 9.15E-4 5.14E-3

Cubic 32768 0.125 3E-4 2.48E-3

convergence order 1.6 1.05

Mandel Problem
Consider a rectangular domain illustrated in Fig. 9. Roller boundary conditions are applied to the left and
bottom boundaries of the domain. The right boundary is free of both normal and tangential forces whiles
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16 SPE-203903-MS

a normal load is applied from the top. No-flow conditions are specified for all boundaries except for the
right one where a Dirichlet condition p = p0 is applied. This set-up is the so-called Mandel problem which
is often used as an example to demonstrate specific aspects of poroelasticity (Coussy, 2003).

Figure 9—The domain and boundary conditions for Mandel problem.

We consider a porous homogeneous domain characterized by Young's modulus E = 1GPa, Poisson's ratio
ν = 0.25, a diagonal permeability tensor kx = ky = kz = 1mD, saturated with a single-phase fluid with viscosity
µ = 0.0981cP, and with a Biot modulus M = 5.44·10−61/bar and a tensor of Biot coefficients equal to the
identity matrix B = I. The load F = 10 MPa is applied to the initially undeformed domain with p0 = 0.

Fig. 10 depicts a comparison of pressures for the numerical and analytical solutions. Time is expressed in

dimensionless form as , where k = kx is the scalar permeability, L is the horizontal

extent of the domain, Kd is the drained bulk modulus, G is the drained shear modulus, b = 1 is the scalar
Biot coefficient, M is the Biot modulus, and µ is fluid viscosity. Pressure is normalized with respect to half
the applied load. The calculated pressure distribution over the entire domain is depicted in Fig. 11.

Figure 10—Comparison of calculated pressure (DARTS) with analytical solution. Normalized pressure at the left
bottom cell over time (left) and normalized pressure along horizontal centerline at different moments of time.
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Figure 11—Pressure over domain in bars at different moments of time.

The efficiency of fixed-stress block-partitioned preconditioning strategy is tested in the Mandel problem.
The results are presented in Table 6.

Table 6—Speed up obtained using fixed-stress preconditioning compared with an ILU0
preconditioner for the full system. TS – time steps, NI – non-linear iterations, LI – linear iterations.

Nr. of cells Preconditioner Nr. of TS Nr. of NI Nr. of LI Solver time, s.

5400 ILU0 20 20 8547 28.73

5400 fixed-stress 20 20 328 11.1

SPE 10 Mechanical Extension
In this test case we use data from the SPE10 benchmark for flow supplemented by mechanical parameters,
in particular a spatial distribution of Young's modulus that depends linearly on the porosity (Garipov et
al., 2018). The original dataset represents a reservoir characterized by a channelized permeability and by
a permeability field that has a Gaussian spatial covariance; see Fig. 12. The dataset was coarsened using a
volume-averaging approach (Garipov et al., 2018). Although the original SPE10 benchmark was designed
as a two-phase flow problem, here we consider single-phase flow. The reservoir is produced by a single
doublet of an injector and a producer. No-flow boundary conditions are prescribed for all the boundaries.
Normal displacements and tangential tractions are set to zero at all boundaries except for the top boundary
where a uniform distributed load of 900 bar is applied. Poisson's coefficient is taken as constant ν = 0.2,
and the Young's modulus and lateral permeability fields are depicted in Fig. 12.
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18 SPE-203903-MS

Figure 12—Young modulus (in GPa) and lateral permeability (in mDa) fields shown from the top (top row) and
from the bottom (bottom row) of reservoir. Young modulus is calculated as a linear function of porosity. Top
24 layers represent channelized structure whereas bottom 16 layers correspond to Gaussian distribution.

The calculations are made using three rectangular grids of different resolutions: 20 × 40 × 20, 40 × 80 ×
20, 40 × 80 × 40. Constant bottom hole pressures are kept at producer pprod = p0 − 100bar and injector pinj =
p0 − 100bar wells for tmax = 2 years. The results are summarized in Fig. 13. They demonstrate applicability
of block-partitioned preconditioning for the solution of discrete system produced by coupled FVM multi-
point scheme.

Figure 13—Cumulative number of non-linear iterations, linear iterations and computational time
taken by linear solver to calculate 20 time steps for the model of three different resolutions.

LBB-Instability
In the the original test case reported by Terekhov (2020a), the FV approximation showed a divergent solution
for very small time steps. In our implementation we observed unstable behavior for small time steps as well.
In Fig. 14 the evolution of the discrepancy between true and computed solutions is depicted. The setup was
taken from Test Case 1 and was calculated using an 8 × 8 × 8 cubic grid for a time period t ∊ [0,0.01] days.
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Figure 14—L2 norm of the difference between computed and true solutions over time. The setup
is the taken from Test Case 1. Calculations were made with different time steps with magnitude
Δt = 0.01, 0.001, 0.0001 and 0.00001 d. Below a certain time step size the error increases sharply.

For calculations made with Δt = 0.01 and Δt = 0.001 the discrepancy remains at the level of machine
precision whereas for smaller time steps it rises drastically.

Such behavior is explained by the violation of inf-sup stability condition which is also known as
Ladyzhenskaya–Babuska–Brezzi (LBB) condition which is a sufficient condition for a saddle point problem
to have a unique solution (Shinbrot, 1971). The saddle point appears in our numerical scheme because
matrices Ai and Aj defined in equation (21) have eigenvalues of different signs. The occurrence of the saddle
point can be avoided by introducing a stabilization term into the matrices (Terekhov, 2020b).

Conclusion
We have developed a collocated Finite Volume Method with a multi-point approximation of fluxes for
geomechanics and poromechanics. The method can cope with discontinuities in displacements, as occur
in faults, on the level of discretization. Building on earlier work by Terekhov and Tchelepi (2020) and
Terekhov (2020a,b), we introduced gap degrees of freedom over the fault which significantly simplified
the formulation of contact conditions. We validated the method against several analytical and numerical
solutions in a number of different test cases.

The multi-point stress discretization behaves robustly on structured corner-point grids but can exhibit
oscillations on unstructured simplex and hexahedral grids. This issue can be resolved by the extension of
the stencil used for gradient reconstruction by using the concept of homogenezation functions (Terekhov et
al., 2017) or with a dual grid formulation (Keilegavlen and Nordbotten, 2017). We aim to address this issue
in future work. Moreover we foresee an extension of our methodology for compositional flow in poroelastic
media.

Nomenclature

Physical Variables
p – pore pressure,
φ – porosity,

 =
ρ – fluid density,
µ – fluid viscosity,
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20 SPE-203903-MS

v – Darcy's velocity of fluid,
f – sources (or sinks) of fluid mass,

K – rank-two tensor of permeability,
kx,ky,kz – diagonal components of permeability tensor,

g – gravity constant,
z – depth,
σ – total stress tensor,
f – volumetric forces applied to the medium,

ℂ – rank-four stiffness tensor of skeleton,
C – 6 × 6 symmetric matrix of stiffness coefficients,
ε – strain tensor,

εV = tr(ε) – volumetric strain,
B – 2nd rank tensor of Biot's coefficients,
b = 1 − Kd/Ks – Biot's coefficient,

: ℂ: I
–

bulk modulus of the drained skeleton,

Ks – bulk modulus of the solid phase,
M – Biot's modulus,
n – unit normal vector,
u – vector of displacement,

u−, u− – displacements at the particular side of the fault,
g – 3 × 1 vector of gap in displacements or 4 × 1 vector {g,0},

gN,gT – normal and tangential projections of gap vector,
F – traction vector,

FN,FT – normal and tangential projections of traction vector,
F' – effective traction vector,

 – normal and tangential projections of effective traction vector,
q – fluid flux,
 – flux of displacement,

qt =  – total fluid flux, i.e. taking into account structure movement,
ν – Poisson's ratio,
η – friction coefficients,

Φ =  – Coulomb function
E – Young's modulus,
t – time,
I – identity matrix

Numerical Variables
w = {u, p} – vector of unknowns,
xi – ith cell center,
xδ – center of the interface
yi – projection of the ith cell center on interface,
ri – distance between ith cell center and interface,
δj – area of jth interface,
Vi – volume of ith cell,
Δt – time step size,
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Y – 9 × 6 matrix,
Si – 9 × 9 matrix,

Gi,Gτi – 4 × 1 and 12 × 1 vectors of normal and tangential projections of the gradients of
unknowns in ith cell,

Ti,Γi – 3 × 3 and 3 × 9 matrices,
λi,γi – normal and tangential projections of co-normal permeability vector,

Ai,Qi – 4 × 4 matrices,
Θi – 4 × 12 matrix,
Ri – 4 × 1 vector,
J – jacobian matrix,

Juu,Jup,Jpu,Jpp – blocks of globally-partitioned Jacobian matrix,
Spp – Schur's complement of of Juu in Jacobian matrix,

 – preconditioners used for displacement and pressure blocks of Jacobian matrix
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