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ABSTRACT
The ¢-deck of a graph G is the multiset of all induced subgraphs of G
on £ vertices. We say that a graph is reconstructible from its ¢-deck if
no other graph has the same ¢-deck. In 1957, Kelly showed that every
tree with n > 3 vertices can be reconstructed from its (n — 1)-deck,
and Giles strengthened this in 1976, proving that trees on at least 6
vertices can be reconstructed from their (n — 2)-decks. Our main the-
orem states that trees are reconstructible from their (n — r)-decks for
all » < n/9 + o(n), making substantial progress towards a conjecture
of Nydl from 1990. In addition, we can recognise the connectedness of a
graph from its ¢-deck when £ > 9n /10, and reconstruct the degree sequence
when ¢ > \/211 log(2n). All of these results are significant improvements

on previous bounds.
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1. Introduction

Throughout this paper, all graphs are finite and undirected with no loops or
multiple edges. Given a graph G on n vertices and any vertex v € V(G), the
card G—w is the subgraph of G obtained by removing the vertex v together with
all edges incident to v. The deck D(G) is then the multiset of all unlabelled
cards of G. A graph G is said to be reconstructible from its deck if any graph
with the same deck is isomorphic to G.

The graph reconstruction conjecture of Kelly and Ulam [18, 19, 37] states
that all graphs on at least three vertices are reconstructible. While this clas-
sical conjecture has been verified for certain classes such as trees (Kelly [19]),
outerplanar graphs (Giles [13]) and maximal planar graphs (Lauri [24]), it re-
mains open even for simple classes such as planar graphs with maximum degree
three. However, various graph parameters, such as the degree sequence and
connectedness, are known to be reconstructible for general graphs in the sense
that they are determined by the deck (i.e., if two graphs have the same deck,
then the parameter takes the same value for both graphs).

There is a significant body of research on the problem of reconstructing graphs
and graph parameters from smaller cards. Instead of taking induced subgraphs
on n— 1 vertices, it is natural to consider cards which are the induced subgraphs
on £ vertices where £ may be much smaller than n—1. The /-deck of G, denoted
by D¢(G), is the multiset of the isomorphism classes of all (;}) induced subgraphs
of G on ¢ vertices (in this notation D(G) = D,,_1(G)).

Extending the terminology from the classical case, a graph G is recon-
structible from the /¢-deck if it is uniquely determined up to isomorphism
by its {-deck: that is, if Dy(G) = De(G’) for a graph G’, then G = G’. A graph
parameter (or property) is reconstructible from the ¢-deck if the value it
takes for any graph (or whether or not the property holds) is determined by
the ¢-deck of that graph. If C is a class of graphs, we say that C is recognisable
from the ¢-deck if the property of belonging to C is reconstructible from the ¢-
deck. We say that a graph G is reconstructible amongst graphs in C from
its (-deck if any other graph in C with the same /-deck is isomorphic to G.
The class of graphs C is weakly reconstructible from the /-deck if any two
graphs in C with the same ¢-deck are isomorphic, and if C is also recognisable
from the ¢-deck, it is said to be reconstructible from the /-deck.
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Intuitively, individual cards that are smaller carry less information. Indeed,
the (£ — 1)-deck is determined by the ¢-deck for each ¢, since each (¢ — 1)-vertex
subgraph occurs in exactly n — ¢ + 1 members of the ¢-deck (see Lemma 8).
Thus, a graph that is reconstructible from its ¢’-deck is also reconstructible
from its ¢-deck for all £ > ¢/. The main question is then to determine the
threshold; that is, find the smallest ¢ for which a given class of graphs or a
property is reconstructible from the ¢-deck.

As far as we are aware, the earliest mention of reconstruction from small cards
is a brief suggestion in the final sentence of Kelly’s paper on reconstructing
trees [19]. The extension of the Reconstruction Problem that follows seems to
have been formulated by Manvel, who called it “Kelly’s Conjecture”.

CONJECTURE 1 ([27]): For every r € N, there is an integer N, such that every
graph with at least N, vertices is reconstructible from its (n — r)-deck.

Kelly and Ulam’s conjecture posits that Ny = 3. In the same paper where
they posed this extension, Manvel [27] showed that several classes of graphs,
such as connected graphs, trees, regular graphs and bipartite graphs, can be
recognised from the (n — 2)-deck where n > 6 is the number of vertices. Since
then, recognition and reconstruction problems of this type have been widely
studied. Recent developments include the reconstructibility of 3-regular n-
vertex graphs from the (n — 2)-deck (Kostochka, Nahvi, West and Zirlin [21]),
and that almost all graphs are reconstructible from the (n — r)-deck
when r < (1/2 — o(1))n (Spinoza and West [33], building on results of Miiller [28]
and Bollobés [3]). For further background, we refer to the survey of Kostochka
and West [23].

For general graphs, it is not possible to guarantee reconstructibility from
the (n — r)-deck unless r = o(n), as shown by the following theorem of Nydl.

THEOREM 2 (Nydl [32]): For any integer ng and 0 < a < 1, there exists an
integer n > ng such that there are two non-isomorphic graphs on n vertices
which share the same multiset of subgraphs of order at most an.

However, Nydl’s theorem may not hold for specific families of graphs. Indeed,
Nydl conjectured in 1990 that all trees are weakly reconstructible from their ¢-
deck when ¢ is slightly larger than n/2.

CONJECTURE 3 (Nydl [31]): For anyn >4 and £ > |n/2]| + 1, if two trees on n
vertices have the same (-deck then they are isomorphic.
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The conjectured bound on ¢ would be sharp: Nydl [31] presented trees for
which ¢ > [n/2] + 1 is necessary (see [23] for a short proof).

There has been no progress on Nydl’s conjecture since it was made. Indeed,
the best previous result is an earlier theorem of Giles [14] from 1976, which states
that for n > 5 no two non-isomorphic n-vertex trees have the same (n —2)-deck.
That is, this gives the cases of the conjecture where n > 5 and £ > n — 2. Using
the result of Manvel [27] that the class of n-vertex trees is recognisable from
the (n—2)-deck when n > 6, Giles’ result confirms that trees are reconstructible
(not just weakly) from their (n — 2)-deck for any n > 6.

Our main theorem improves very substantially on the result of Giles and takes
a significant step towards Conjecture 3, showing that we can reconstruct trees
from the (n — r)-deck for r with linear size.

THEOREM 4: Any n-vertex tree T can be reconstructed from D,_,(T)
when r < § — 3\/8n+5— 1.

In particular, it follows that Nydl’s theorem (Theorem 2) does not hold when
restricted to the class of trees. We remark that Conjecture 3 is false in the
case n = 13, as demonstrated by the two graphs in Figure 1 which have been
verified to have the same deck by computer. However, our computer search has
also shown that the conjecture is true for all other n in the range 4 < n < 25.
It remains open for large n.

Figure 1. Two non-isomorphic trees on 13 vertices which have
the same 7-deck.

It is worth noting that the class of trees, being one of the first non-trivial
classes shown to be reconstructible in the classical sense, is very prominent in
reconstruction literature. For example, assuming we know a priori that the
graph is a tree (as in weak reconstruction), Harary and Palmer [16] showed how
to reconstruct a tree using only the cards that are subtrees, Bondy [4] showed
that only the cards where peripheral vertices (that is, leaves with maximum ec-
centricity) have been removed are needed, and Manvel [26] subsequently showed
that the set (as opposed to the multiset) of cards that are subtrees suffices except
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in two cases. Lauri [25] also showed that trees with at least three cut-vertices can
be reconstructed (amongst all graphs) from the cards corresponding to removing
a cut-vertex. Indeed, Myrvold [29] proved that only three carefully chosen cards
are needed to reconstruct a tree when n >5. Related problems have also been
investigated extensively for infinite trees (see, for example, [1, 2, 6, 17, 30, 35]),
and it was recently shown by Bowler, Erde, Heinig, Lehner and Pitz that there
are non-reconstructible locally finite trees [10].

Returning to the small cards setting, we have already mentioned Manvel’s
result in [27] that the class of connected graphs is recognisable from the (n —2)-
deck for n > 6. Extending this, Kostochka, Nahvi, West and Zirlin [20] showed
that the connectedness of a graph on n > 7 vertices is determined by D,,_3(G).
As shown by Spinoza and West [33], if we take G1 = P,, (the path on n vertices)
and Go = Cpp/2141 U Plnj2)—1 (the disjoint union of a cycle and a path), we
find that Dy(G1) = D¢(G2) for all £ < [n/2]. However, Gy is connected and G
is not. In light of this construction, Spinoza and West believe that for n > 6
and £ > |n/2] 4+ 1, the connectedness of an n-vertex graph G is determined
by D¢(G). This threshold would be sharp.

Spinoza and West proved in [33] that connectedness can be recognised
from D;(G) provided

2logn

n-fs(+ 0(1))\/10g(10g n)

We significantly improve this bound to allow a linear gap between n and /.

THEOREM 5: The connectedness of an n-vertex graph G can be recognised
from D,(G) provided ¢ > 9n/10.

By Theorem 5 (and the fact that we can reconstruct the number of edges),
we can recognise trees from the ¢-deck when ¢ > 9n/10. In order to prove
Theorem 4, we need a slightly stronger bound.

THEOREM 6: For ¢ > (2n+4)/3, the class of trees on n vertices is recognisable
from the (-deck.

As we were completing this paper, Kostochka, Nahvi, West and Zirlin [22]
independently announced a similar result to Theorem 6. In fact, they proved
that one can recognise if a graph is acyclic from the ¢-deck when ¢ > |n/2| +1,
which also verifies the believed bound for reconstructing connectedness in the
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special case of forests. This has the particularly nice consequence that trees
can be recognised from their ¢-deck, and so Conjecture 3 is equivalent to the
reconstruction of trees amongst general graphs. Since our proof of Theorem 6
is short and already (more than) sufficient for our use in reconstructing trees,
we have retained it for completeness.

The proof of Theorem 5 relies on an algebraic result (Lemma 11) which we
also apply to reconstructing degree sequences. The story in the literature here is
similar to that of connectedness. Chernyak [12] showed that the degree sequence
of an n-vertex graph can be reconstructed from its (n — 2)-deck for n > 6, and
this was later extended by Kostochka, Nahvi, West, and Zirlin [20] to the (n—3)-
deck for n > 7. The best known asymptotic result is due to Taylor [34], and
implies that the degree sequence of a graph GG on n vertices can be reconstructed
from D¢(G) where £ ~ (1 — 1/e)n. Our improved bound is as follows.

THEOREM 7: The degree sequence of an n-vertex graph G can be reconstructed
from Dy(G) for any £ > \/2nlog(2n).

In Section 2, we give ¢-deck versions of both Kelly’s Lemma [19] for count-
ing subgraphs and a result on counting maximal subgraphs by Greenwell and
Hemminger [15], as well as an algebraic result of Borwein and Ingalls [9] bound-
ing the number of moments shared by two distinct sequences. These are used
to deduce Theorem 7 (Section 3) and Theorem 5 (Section 4). Section 5 con-
tains the proof of Theorem 4, our main result on reconstructing trees, including
the tree recognition statement given by Theorem 6. There, we also introduce
a new counting tool for reconstruction that may be of independent interest.
We conclude with some further discussion in Section 6.

2. Preliminaries

This paper makes extensive use of three key results which we give in this section.

2.1. KELLY’S LEMMA FOR SMALL CARDS. Perhaps the most fundamental tool
in graph reconstruction is Kelly’s Lemma for reconstructing subgraph counts.
The utility of such a result is reflected in the fact that variants of the lemma
exist for many different reconstruction problems (see [5]). To formulate Kelly’s
Lemma, let ng(G) and ny(G) denote the number of subgraphs and induced
subgraphs of G isomorphic to H, respectively. That is, ng(G) is the number
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of vertex subsets S C V(@) that induce a subgraph of G isomorphic to H,
and 1y (G) is the number of edge subsets S C E(G) that induce a subgraph
of GG isomorphic to H. We will refer to an induced subgraph isomorphic to H
as an induced copy of H, and say copy by itself to mean not necessarily
induced. When H is a connected graph, every copy of H in a tree is an induced
copy (and vice versa), but the difference between these notions can be relevant
for some of our results that apply to a wider class of graphs.

In the classical graph reconstruction problem, Kelly’s Lemma states that we
can reconstruct ny (G) and nyg(G) provided |V (H)| < |[V(G)|. We will use the
following small cards variant, which is a direct generalisation.

LEMMA 8: Let £ € N and let H be a graph on at most { vertices. For any
graph G, the multiset of {-vertex induced subgraphs of G determines both the
number of subgraphs of G that are isomorphic to H and the number of induced
subgraphs that are isomorphic to H.

Proof. Suppose we count the number of induced copies of H in each of

the (-cards of GG, and take the sum over all cards. Each induced copy of H
n—|V(H)]
=|V(H)|
struct the number ny(G) of induced copies of H in G from the ¢-deck as

n—|VH)\
@ =} ) X i)

CED@(G)

in G is counted exactly ( ) times in this total. Hence, we can recon-

The same argument applies with copies in place of induced copies.

In particular, Kelly’s Lemma means that Dy (G) can be reconstructed
from D,(G) for all ¢ < ¢. Foreshadowing later usage of this lemma, we re-
mark that in the displayed formula in the proof, we only need to use the subset
of the deck consisting of all cards which contain at least one (possibly induced)
copy of the fixed graph H. Thus, we can still reconstruct these subgraph counts
if we are handed a subset of the deck and told that the subset includes every
card containing a copy of the subgraph.

2.2. COUNTING MAXIMAL JF-SUBGRAPHS. Given a class of graphs F, a sub-
graph F’ of some graph G is said to be an F-subgraph if F” is isomorphic to
some F € F, and is a maximal F-subgraph if the subgraph F’ cannot be ex-
tended to a larger F-subgraph, that is, there does not exist an F-subgraph F"
of G such that F’ is a proper subgraph of F"”.
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Let mz(F,G) denote the number of maximal F-subgraphs in G which are
isomorphic to F'. We suppress the subscript when it is clear from the context.

We give a slight variation of a classical “Counting Theorem” due to Bondy
and Hemminger [7] (see also the statement of Greenwell and Hemminger [15])
which reconstructs mz(F, G) from the ¢-deck. The following proof is essentially
that of Bondy and Hemminger [7], only with a few additional observations used
to accommodate our slight changes to the assumptions.

LEMMA 9: Given {,n € N with ¢ < n, let G be a class of n-vertex graphs. Let F
be a class of graphs such that for any G € G and for any F-subgraph F' of G,
(i) V(F) <&
(ii) F is contained in a unique maximal F-subgraph of G.

Then for all F € F and G € G, we can reconstruct mx(F, G) from the collection
of cards in the ¢-deck that contain an F-subgraph.

Proof. Define an (F,G)-chain of length k& to be a sequence (Xo,...,Xx)
of F-subgraphs of G such that

F2XoCX1C - CXp CG.

The rank of F in G is the length of a longest (F, G)-chain, and two chains are
called isomorphic if they have the same length and the corresponding terms
are isomorphic. Following Bondy and Hemminger’s argument, we first show
that

rank F'

(1) Z D (—D)Mp(X)ix, (X2) -+ i, (Xe)iix, (G)

where the second summation is over all non-isomorphic (F, G)-chains of length k.
When rank F' = 0, we have

Let rank F' = r, and suppose that (1) holds for all graphs F € F with rank
less than r. The second assumption states that every copy of F' has a unique
maximal extension X, which implies that

ZTLF m]:X G)
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where the sum is over all non-isomorphic F-subgraphs X of G. This gives the

expression

mr(F,G) =7p(G) = Y np(X)mr(X,G).
X%F
In the summation, we can restrict to X for which nz(X) > 0. Such a graph X
has rank at most 7 — 1, so we may apply the induction hypothesis to rewrite
each mr (X, G)-term into a double sum. The resulting triple sum can be sim-
plified to obtain (1).

It now suffices to show that the right-hand side of (1) is reconstructible. To
see this, we note that the inner summation is over (F, G)-chains for which X}
has size at most ¢ (since X}, is an F-subgraph and by condition (i)), and so all
such chains can be seen on cards. The remaining terms can be reconstructed by
Kelly’s Lemma (again using (i)), and this only requires the cards from D;(G)
that contain an F-subgraph.

Later in this paper, we will apply Lemma 9 with both G and F a family of
trees. Since every connected subgraph of a tree is an induced subgraph, the
lemma can be applied to count maximal induced F-subgraphs.

2.3. SHARED MOMENTS OF SEQUENCES. We will need a bound on the maximum
number of shared moments that two sequences «, 8 € {0,...,n}™ can have.
This result follows from the following theorem on the number of positive real
roots of a polynomial. Here, we use log to mean the natural logarithm.

THEOREM 10 ([8, Theorem A]): Suppose that the complex polynomial

n
p(z) = Z a;z’
3=0

has k positive real roots (counted with multiplicity). Then
laol + lar| +--- + |an|)
\/laoan|

This theorem is attributed to Schmidt, but the first published proof is due
to Schur and a series of simplifications have followed (see [8]). We shall re-

k< 2n10g(

quire a specific application of the theorem given by Borwein and Ingalls [9,
Proposition 1]. We shall use the following formulation, which is tailored to our
purposes.
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LEMMA 11: Let a, 8 € {0,...,n}™ be sequences that are not related to each
other by a permutation. If

@) <C;1) T (O‘Jﬂ%) _ <ﬂjl> NI <Bjm> for all j € {0,...,¢},
then £ + 1 < \/2nlog(2m).

Proof. Since «;, B; € {0,...,n} for all 4,5 € {1,...,m}, the polynomial p, g
defined by

(3) Pa,plx) = Zxo‘i - Z:I:'Bi
i=1 i=1

is of degree at most n. For ¢ € C, let mult.(pq,g) denote the multiplicity of the
root at ¢, or 0 if ¢ is not a root of py, 5. We will show that

{+1 < multy (pa.g) < /2nlog(2m).

Since o and (3 are not related by a permutation, the polynomial p, g is non-
zero. We may write (with r = multg(pa,g))

n/
st =50 ($0)
§=0

where ag and a, are non-zero and n’ < n . The coefficients are all integral,
so v/|agan| > 1. Moreover, from the definition of the polynomial in (3) there
are at most 2m contributions of +1 to the coefficients, so we have

n/
Z la;| < 2m.
=0

By Theorem 10, the number of positive real roots of Z?:o ajz’ is at most

2n/ log ('aOl + |a1| + -+ |an’|> < \/2n10g(2m)
\/laoan’l

and in particular, mult;(pss) < +/2nlog(2m). On the other hand, for
all j € {0,...,¢}, equation (2) shows that

S () S o
z=1 =1 J i=1 J

Hence, £+ 1 < multy(pa,g), and £+ 1 < \/2nlog(2m) as desired.

m

[ -2

i=1
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Condition (2) is equivalent to the condition that the first £ moments of & and S
agree. To see this, observe that {z' : i € {0,...,¢}} and {(%) : i € {0,...,¢}}
both form a basis for the polynomials of degree at most ¢. When «, 3 can be
arbitrary integer sequences (instead of taking values in {0, ...,n}) this variant is
sometimes called the Prouhet-Tarry-Escott problem, and sequences are known
with the first Q(y/m) moments in common (see [9, Proposition 3] for a simple

counting argument).

3. Reconstructing the degree sequence

The tools of the preceding section allow us to prove that the degree sequence
of an n-vertex graph G can be reconstructed from the ¢-deck of G when-
ever { > \/ 2nlog(2n). The proof is essentially identical to that given by
Taylor [34], except for the use of the stronger bounds provided by Lemma 11.

THEOREM 7: The degree sequence of an n-vertex graph G can be reconstructed
from Dy(G) for any £ > \/2nlog(2n).

Proof. Let G be an n-vertex graph with vertices wvp,...,v,, and
let ¢ > \/271 log(2n) be an integer. By Lemma 8, we can reconstruct the number
of subgraphs of G isomorphic to the star K; ; for all j € {2,...,¢—1}. Since
vertex v lies at the centre of (d(jv)) copies of K j, we can compute the quantity

i, (@) = <d@>

vevic) N 7
from the ¢-deck. We can also reconstruct
3 <d(”>) =n and Y <d(”>) =2 |E(G)]
veV(G) 0 veV(G) 1

from the 2-deck. Write a; = d(v;) for i € [n] where we may assume
d(vy) < -+ <d(vy).

Suppose, for a contradiction, that a graph with a different degree sequ-
ence 8 < --- < f3,, gives the same counts. Then, for j € {0,...,¢ — 1},

(7))

i—1 \J i1 \J
Since a, f € {0,...,n — 1}™ are not permutations of each other, Lemma 11
applies to show ¢ < 1/2(n — 1) log(2n) as desired.
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4. Recognising connectedness

In this section, we prove our theorem on reconstructing connectedness from
the ¢-deck. Recall that throughout this paper, an induced copy H’ of H in
some graph G refers to an induced subgraph of G that is isomorphic to H.

The main idea of the proof is that a graph G has a connected component
isomorphic to some graph H if and only if it has an induced subgraph isomorphic
to H ‘without any neighbours’. By a similar approach to the previous section,
when |V (H)| is small we can actually compute the entire ‘degree sequence’, that
is, for each k we can find the number of induced copies of H with k ‘neighbours’.
This will handle the case where G has a small component. If G has no small
components, then either G is connected or only has medium-sized components,
in which case we will recognise that it has no large connected subgraphs.

THEOREM 5: The connectedness of an n-vertex graph G can be recognised
from D(G) provided ¢ > 9n/10.

Proof. Let G be an n-vertex graph and let ¢ = 1/10, so our assumption is
that £ > 9n/10 = (1 — e)n. We begin by making an additional assumption on
the size of n; it was shown by Kostochka, Nahvi, West and Zirlin [20] that the
connectedness of a graph can be recognised from the (n — 3)-deck for n > 7, so
we can assume that n > 39.

Using Lemma 8 we can compute the number of connected subgraphs of G
on ¢ vertices. If there are no such subgraphs, the graph must be disconnected
and we are done. We may therefore assume that either G is connected, or its
largest component has order at least ¢. In particular, if G is not connected then
it has a component of order at most n — £.

We will reconstruct all components that have at most n — ¢ vertices using
the /-deck. Let H be a connected graph with h vertices, where 1 <h <en.
Since h < ¢, we may compute ng(G) from the ¢-deck by Lemma 8. Sup-
pose m = ng(G) > 0. Write Hy, ..., H,, for the induced copies of H in G, and
define the neighbourhood of H; by

I'H;) ={v e V(G)\V(H;) : vu € E(G) for some u € H;}.
Define the degree of H; to be |I'(H;)|, and denote it by «;. Note that G
has a component isomorphic to H if and only if a; = 0 for some i € [m].

Thus, (a1,...,am) € {0,...,n — h}™ determines the number of components
isomorphic to H.
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We now show that we can reconstruct (aq,...,q,) up to permutation.
Since 1 < h <en and m < (") < (ely)h we have

V2(n — h)log(2m) < v/2(n — h)hlog(en/h) + 2nlog?2
< ny/2(1 — e)elog(e/e) + 2(log 2) /n,

where we have also used that (n — h)hlog(en/h) is increasing in h within the
given range. Hence, by Lemma 11, it suffices to show that we can reconstruct

(4) E <az> for all integers 0 < j < N,
- J
=1

where
N =n+/2(1 — e)elog(e/e) + 2(log 2) /n.

For j > 0, let P; denote the set of pairs of vertex sets (A,B) where
ACBCV(G), GIA] & H, |B|] = |A] +j and A is dominating in G[B]—
that is, each vertex in B\ A is adjacent to some vertex in A. Each (4, B) € P;
has some ¢ € [m] for which G[A] = H; and B is contained in the neighbourhood

of H;, so
m o
=2 (5)

i=1

For j > 0, let H; denote the set of (h + j)-vertex graphs that consist of H
along with j additional vertices, all of which are adjacent to at least one vertex in
the induced copy of H (we include each isomorphism type once). If (A4, B) € P,
then B corresponds to some H' € H;. By definition, there are ng/ (G) vertex
sets B C V(G) with G[B] = H'. Both #H; and H are known to us, so for
each H' € H; we can calculate the number ngom (H, H') of dominating induced
copies of H in H’. Since

m o
3" ntom(H, H' g (G) = [P| =Y ( j )
H'eH; i=1 J
it only remains to show that we can determine ny (G) from the ¢-deck. We may

use Lemma 8 to reconstruct ny: (G) if |H'| = h+j < {. For j < N and n > 39,
we find that

h+j<en+N<n-—en</{,
where the middle inequality follows from the fact that, using e = 1/10, we have

V2(1 — e)elog(e/e) 4 2(log 2)/39 < 1 — 2e.
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This shows that we can reconstruct (4), and hence the number of components
isomorphic to H. In particular, doing so for every graph H with at most n — ¢
vertices allows us to determine whether any component of G has at most n — ¢
vertices, which we saw would hold if and only if G is disconnected.

We remark that the constant 9/10 in the proof above can be improved slightly
provided n is large enough. Indeed, the proof holds for any n and e such that

V2(1 —e)elog(e/e) + 2(log2)/n < 1 — 2¢,

and, for large enough n, we can take ¢ ~ 0.1069.

5. Reconstructing trees

We now work toward proving our main theorem on reconstructing trees, which

we recall below.

THEOREM 4: Any n-vertex tree T can be reconstructed from D,_,.(T)
when r < § — 3\/8714—5— 1.

The proof of Theorem 4 is spread across the following four subsections. First,
we introduce a general technique for counting balls around a subgraph, which
may be of independent interest. This strategy allows us to keep track of copies
of fixed graphs in 7' that have a specified distinguished subgraph, which is a
crucial ingredient of our proofs. This is done in Section 5.1.

In Section 5.2, we prove Theorem 6 which shows that the family of n-vertex
trees is recognisable from the ¢-deck when £ is in the assumed range. This allows
us to proceed with the assumption that we have already recognised that every
reconstruction from the deck is a tree.

The remaining parts contain the proof of reconstruction, which is split into
two cases depending on whether or not the tree T contains a path that is long rel-
ative to the order of the graph n and the number ¢ of vertices on each card. Let
the length of a path P be the number of edges in P, or equivalently |V (P)| — 1.
The diameter of a graph G is the maximum distance between two vertices in G,
and for a tree 7' this is the same as the length of a longest path. When the
diameter is less than about ¢ — 2n/3, we can apply an argument based on re-
constructing branches off the centre. For trees with diameter higher than this
(in fact there is some overlap between the two cases), we will split the tree into
two parts by removing a central edge, and then reconstruct these parts together
with the information of how they glue together.
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Having recognised that every reconstruction from the deck is a tree, the high
diameter case is handled by the following lemma, which we prove in Section 5.3.

LEMMA 12: Let £,k € {1,...,n} with k > 4v¢ +2(n — ). If T is an n-vertex
tree with diameter k—1, then T" can be reconstructed amongst connected graphs
from its (-deck provided £ > %' + 5/6n+ 7+ .

If T has low diameter, then we instead use the next lemma, which we prove
in Section 5.4.

LEMMA 13: Let ¢,k € {1,...,n} with k < £ — 2"3“. If T is an n-vertex tree
with diameter k — 1, then T is reconstructible amongst trees from its {-deck.

The proof of Theorem 4 then amounts to verifying that the condition on ¢ is
sufficient to apply our result for recognising trees, and that our definitions of
high and low diameter together cover the full range. The latter calculation is
the source of the threshold on card size in the statement of Theorem 4.

Proof of Theorem 4. The conditions on £ and n imply that ¢ > 2; + 3 Von+T7+ 191 .
This bound on ¢ suffices to apply Theorem 6 in order to recognise that T is a tree.
Let k be the number of vertices in the longest path in 7. When
k> 4Vl +2(n — {), T is reconstructible by Lemma 12 (amongst all connected
graphs, without needing to know k).
So now suppose that k <4v/¢+2(n — {). We will show that k< (—2"%"! as re-

quired to apply Lemma 13, and we note that in this case we can deduce the value
n—3k—1

of k from the (-deck. After rearranging, it suffices to verify that n—£<""7

Our assumed condition that
8n

4
¢ 8n+5+1
>y FgV8nts+

is equivalent to the condition

ol < n712\/676(n76)71'
3
Finally, note that
n— 12V —6(n—0) —1 _n—3k-1
3 - 3
for all k& < 4v/¢ + 2(n — £). Thus, we can apply Lemma 13 in this case to
reconstruct 7'.
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5.1. COUNTING EXTENSIONS. Given a graph H, we define an H-extension

to be a pair Hexy = (H',A) where H' is a graph and A C V(H') is a

subset of vertices with H*[A] & H. The idea is that H* may contain multiple

induced copies of H, so we are picking out one in particular. One could think of

an H-extension as a triple (H", A, H), but we suppress H since H = H¥[A].
The order of Hey = (HT, A) is

|Hext| = |V(H+)|

We will usually work with H-extensions in a setting where H is an in-
duced subgraph of an ambient graph G, and in this case a natural family
of H-extensions can be obtained by considering neighbourhoods. Specifically,
for d € N, the (closed) d-ball of an induced subgraph H of a graph G is
defined by

Bu(H,G) = G[{v € V(G) : dg(v, H) < d})].

That is, B4(H, G) is the subgraph induced by the set of vertices of distance at
most d from H, including the vertices of H itself. It is useful to view the d-ball
of H as the H-extension (Bq(H,G),V(H)).

Two H-extensions (G1, A1) and (Ga, A2) are isomorphic if there is a graph
isomorphism ¢ : G7 — G2 with (A1) = As. In addition, we say that
an H-extension (H™, A) is a sub-H-extension of (H*+ B) if HT is an in-
duced subgraph of HtT and A = B.

Let mg(Hext, G) be the number of induced copies of H in G whose d-ball is
isomorphic (as an H-extension) to Hex. The purpose of the notation above
is to be able to formalise this notion, which intuitively boils down to counting
how often H appears with a particular neighbourhood.

Our key counting result for extensions states that it is possible to recon-
struct mgy(Hext, G) from the ¢-deck provided the d-balls of all induced copies
of H are small enough to appear on the cards as proper subgraphs.

LEMMA 14: Let ¢, d € N and let G be a graph on at least /+1 vertices. Let H be
a graph on at most £—1 vertices. From the ¢-deck of G, it is possible to recognise
whether the d-ball of every induced copy of H in G has fewer than { vertices.
If this is the case, then for every H-extension Hy: the quantity mg(Hext, G) is
determined by the ¢-deck.
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Proof. We first define the set of ‘potential d-balls around H’. Let H denote
the set of graphs HT such that |V (H™1)| < ¢ and there is an induced copy H’
of H in H™ such that all the vertices of HT are at distance (in HT) at most d
from H'. These represent all possible d-balls of H with at most £ vertices, and
the ones that appear in G will be a subset of these. Note that in order for HT
to belong to H, it is not necessary (nor guaranteed) that all induced copies of H
in H™ satisfy the above distance condition, rather only that there is at least
one such induced copy.

For any H* € H, we can reconstruct ng+ (G) from the ¢-deck using Lemma 8.
The d-balls of every induced copy of H have fewer than ¢ vertices if and only
if ng+(G) =0 for every Ht € H with |[HT| = ¢, and we can tell if this is the
case. Suppose that the d-balls around every induced copy of H do indeed have
fewer than ¢ vertices and set

k=max{|V(HT)|: H" € H, nyg+(G) > 0}.

For a fixed HT € H with |V(H™)| = k, we observe that every induced copy H’
of H for which By(H', H') & H™* also satisfies B4(H',G) & H™' by the maxi-
mality of k£ and the definition of H.

Let Hexty denote the set of isomorphism classes of H-extensions (H™T, A)
with HT € H. By the preceding observation, if Heyy = (HT,A) € Hoxs
with |[HT| = k, then the number of induced copies of H in G whose d-balls
are isomorphic to Hey; is the number of induced copies of H' in G multiplied
by the number of induced copies of H in H' whose d-ball in H™ is isomorphic
to Hext (as an H-extension). That is,

(5) mg(Hoxt, G) = np+ (G)mag(Hexe, HT).

Both of these quantities are reconstructible from the ¢-deck, so we are done in
this case.

If [V(H")| < k, then the d-ball in G of a copy of H may be strictly larger
than H* and formula (5) does not apply. This can be corrected by subtracting
the number of induced copies of H in HT for which HT is not
the d-neighbourhood of that induced copy of H in G. To count these, we select
in turn each ‘maximal’ d-neighbourhood of size at least | H ™|+ 1, and subtract 1
from the relevant count for each H™' that it contains. Any leftover Ht that
have not been accounted for must then be maximal.
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Explicitly, for H.! , € Hext distinct from Heyxt, let n(Hexs, H.

ext

) give the
number of sub- H-extensions of H., isomorphic to Heyxi. We claim that

md(cht;G) =N+ (G)md(cht;HJr) - Z n(chtaHéxt)md(HéxtaG)'

Hoy €Hext
[Hexe > Hext |

When |Hexi| = k, this formula agrees with (5). The terms mg(Hexs, HT),
n(chtaH/

) and the domain of the summation are already known to us, and

we can reconstruct ng+ (G) for all HT € H using Kelly’s Lemma. Moreover, we
G) for |H. | > | Hoxt|
by induction with base case |Hext| = k, so verifying the formula will complete

may assume that we have reconstructed the terms mg4(H.,

ext’ xt

the proof.
The term ng+ (G)ma(Hext, HT) at the start of the formula counts the number
of pairs (A, B) C V(G) x V(G) such that

e ([B] is an induced copy of H*,
e A C B and G[A4] is an induced copy of H (that is, (G[B], A) is an H-
extension),

e B is a subset of the d-ball around A (i.e., B C B4(G[4], Q)).

Informally, each fixed B has exactly mg(Hext, HT) sets A with which it is in a
pair, and there are ny+(G) sets B to count.

Compared to mg(Hext, G), the term ng+(G)mg(Hext, HT) overcounts by 1
for each pair (A, B) with B C B4(G[A],G). Thus, it just remains to verify that
the number of pairs with B # By(G[A], G) is given by

Z n(chthéxt)md(Héxth)'
[H e > Hex |

To see that this is true, note that by definition the correction term counts
triples (A4, B,C) with A C B C C C V(G) such that

e G[A4] is an induced copy of H,

e G[B] is an induced copy of H™,

e G[C] = Bq4(G[A], G).
Each pair (A, B) with B # By(G[4],G) is in a unique such triple, namely
with C = V(B4(G[A], G)); if B = B4(G[A], G), then no suitable C with B C C
can be found.
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As an aside, we mention that by setting d = 1 and considering
the H-extension (H,V(H)) in Lemma 14, one can count the number of compo-
nents isomorphic to H.

COROLLARY 15: Let H and G be graphs with |V(H)| < {—1 and n = |V(G)|.
If there is no induced copy of H in G for which |B1(H,G)| > ¢, then we can
reconstruct the number of components of G isomorphic to H from Dy(G).

5.2. RECOGNISING TREES. This section contains the proof of Theorem 6, which
is an application of the extension-counting result established of Section 5.1.

THEOREM 6: For ¢ > (2n+4)/3, the class of trees on n vertices is recognisable
from the (-deck.

Proof. Let G be a graph and suppose we are given D;(G). By Kelly’s Lemma
(Lemma 8), we can reconstruct the number m of edges provided ¢ > 2. Hence,
we may suppose that m = n — 1, otherwise we can already conclude that G
is not a tree. It suffices to show that we can determine whether G contains a
cycle, or equivalently to determine whether G is connected.

If G has a cycle of length at most £, then the entire cycle will appear on a card
and we can conclude that G is not a tree. We may therefore assume that every
cycle in G has length greater than ¢. If the graph does not contain a connected
card, then the graph cannot be a tree, and so we may assume that there is a
connected card and the largest components in G have at least ¢ vertices each.
Since ¢ > (2n+4)/3, there is only one component A with at least ¢ vertices and
the other components have at most ¢ — 1 vertices.

Let d = [¢ —n/2 — 1]. For a vertex z € V(G), denote the d-ball around x
in G by By(z). Using Lemma 14 with H being the graph consisting of a single
vertex, we find that either there is an 2 € V(G) with d-ball of order at least ¢
or we can reconstruct the collection of d-balls (with ‘distinguished’ centres).

Suppose firstly that there exists © € V(G) such that |Bg(z)| > £. We claim
that then G is a tree. Assume towards a contradiction that there is a cycle in G.
Since this must have more than ¢ vertices, any cycle in G must be contained
in the largest component A (the smaller components have order at most £ —1).
Let C be a shortest cycle in A. Similarly, note that x € A since otherwise
the d-ball around z cannot have ¢ vertices. If |By(z) N V(C)| < 2d + 1, then

|Ba(z)| <n —[V(C)\ Ba(z)| <n—(L+1)+(2d+1) <l—1
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by our choice of d. Thus, Bg(x)NV (C) contains at least 2d+ 2 vertices. Choose
two vertices ¢1, ca € Bg(x) NV (C) joined by a subpath C’ of C' (possibly C’ is a
single edge) such that C’ does not contain any other vertex of By(x). Let C” be
the other path from ¢; to ¢y in C'. This must contain at least 2d other vertices
of By(x) NC, so C" is a path of length at least 2d + 1. However, there is also
a path P from ¢ to ¢o in the d-ball around z of length at most 2d, and this
intersects C’ only at the endpoints c; and cs. Replacing the path C” with the
path P forms a cycle which is strictly shorter than C', giving a contradiction.
Hence, G cannot have any cycles and must be a tree.

We may now assume that we can reconstruct the collection of d-balls and
will show how to recognise whether the graph is connected in this case. In any
component of order at most n — £, there must be some vertex x such that the
distance from z to any vertex in the same component is at most (n — £)/2. By
our choice of ¢ and d,

n—4~¢

n
</l{-— _ —-2<d-1.
2 - 2 B

Thus, if there is a component of order at most n — ¢ (which happens if and
only if G is not a tree), then there must be a d-ball with radius at most d — 1.
Conversely, if we discover such a d-ball, then we know that the graph is dis-
connected since the d-ball must form a component due to its radius, yet has at
most £ — 1 vertices. Hence, G is a tree if and only if all d-balls have radius d.

This shows that we can recognise connectedness and completes the proof.

5.3. HiIGH DIAMETER. The main result in this section is Lemma 12, which
states that trees containing sufficiently long paths are reconstructible amongst
connected graphs from their /-decks. Our approach is based on the key prop-
erty that trees with high diameter have small 1-balls around induced copies of
subgraphs obtained by deleting a well-chosen edge. This is made precise within
the conditions of Lemma 16, which essentially gives a reconstruction algorithm
for graphs (not just trees) when this property is assumed.

Let us first develop the intuition behind our strategy using trees. Removing
an edge from a tree T splits T into two components, and our goal will be to
recognise a pair of graphs (R, R) which are the components left after remov-
ing an edge from T. However, it is not enough to know that 7' is formed by
connecting R and R® with an edge: we also need to know which vertices the
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edge is connected to, and we will actually look for pairs for which we can also
deduce this.

We are specifically interested in induced subgraphs that are connected to the
rest of the graph by a single edge, which leads us to consider induced copies
of R (and R¢) with this property. For a graph H, let a leaf H-extension be a
pair Hexy = (H', A) where

e H is obtained by adding a single vertex connected by a single edge to
a vertex of H, and
e ACV(H?) is such that HT[A] = H.

This is a special case of the extensions defined in Section 5.1. We will refer to the
additional edge added to H to form HT as the extending edge. Note that if R
is a component of T'— e, then the 1-ball of T[V(R)] in T is a leaf R-extension,
but there may be multiple (non-isomorphic) leaf R-extensions in 7T

The extra edge in a leaf extension indicates where to glue, so we would be done
if we could identify two leaf extensions Cext = (CT, Vi) and Deyy = (DT, VD)
for which the vertex set of G is the disjoint union of Vo and Vp. We demonstrate
in Lemma 16 a case where this can be done from Dy (G) using the counts of the
relevant leaf extensions obtained by Lemma 14. Lemma 16 is not specialised to
trees (we still require connectedness but the R and R that we are looking for
do not need to be acyclic), so the final step to proving Lemma 12 is to show
that trees with high diameter satisfy the conditions of Lemma 16.

We say an edge e in a connected graph G is a bridge if the graph G — e
obtained from G by removing the edge e is disconnected.

LEMMA 16: Let G be a connected graph with a bridge e, and let R and R¢ be
the components of G—e. If G has no induced subgraph H isomorphic to R or R¢
with |V (B1(H,G))| > ¢, then G is the only connected graph up to isomorphism
with the deck Dy(G).

Proof. We prove the lemma by describing an algorithm that takes in the
deck Dy(G) of a connected graph G, and either returns a connected graph
or a failure. We will show that if the algorithm returns a graph G’, then G’
must be isomorphic to G. The condition in the hypothesis that G has a suitable
bridge e and corresponding R and R° (which are all initially unknown) is only
used to show that the algorithm will definitely output a graph.
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The idea of the procedure is to create a finite list of candidate graphs guaran-
teed to contain both components of G — e, and then test all pairs of such graphs
glued together in every way that could feasibly reconstruct G. This latter step
is refined by using leaf extensions to indicate how these gluings occur. The
key point is to show that we can identify when such a construction actually
produces G and then terminate.

Given any connected graph H on at most £ — 1 vertices and a deck Dy(G),
we can check directly from the cards whether there is an induced copy H' of H
in G for which |V(B1(H',G))| > ¢. Say that a graph H is confined if no
such copy of it exists. For every confined connected graph H and every leaf H-
extension Hext of H, we can apply Lemma 14 to reconstruct mi (Hext, G). Recall
that this is the number of induced copies of H in G whose 1-ball in G is obtained
by adding a pendant vertex connected at a specified vertex, so a positive value
would signal an extension that might correspond to a component of G — e
(with the extending edge corresponding to the bridge). To form our collection
of candidates, let Hext denote the set of isomorphism classes of all leaf H-
extensions Heyt for which mq(Hext, G) > 0 and H is a confined connected graph.

We now consider all pairs (Cext, Dext) of elements from Heyt for which

|Cext| + |Dext| =n-+2 and |Cext| < |Dext|-

Let
Cext:(c+;VC) a'nd Dext = (D+3VD)7

where C = CT[V¢] and D = DT [Vp] denote the corresponding labelled sub-
graphs. Let N(Cext, Dext) be the number of induced copies of C' in D whose 1-
ball in D7 is an induced copy of C*. That is, we count the induced copies of CT
in D' where the extending edge of DT is either unused or is the extending edge
of CF. If mq(Coxt, G) > N(Coxs, Dext), then the algorithm terminates and out-
puts the graph G’ formed by taking disjoint copies of CT and DT and identifying
their extending edges as given by the extensions. If mj(Cext, G) < N(Cext, Dext),
we continue on to the next pair of elements of Heyt. If we have checked every
suitable pair of elements from Heyy without outputting a graph, then we termi-
nate with a failure.

Let us first verify that if the algorithm returns a graph, it must be isomorphic
to G. We will later use our assumptions on G to argue that the algorithm does
output a graph when the input is Dy(G), which shows that G is reconstructible.
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It is useful to highlight that every leaf extension Dey = (DT, Vp) with
m1 (Dext, G) > 0 has a unique partner that we will denote by Dext, which is the
leaf extension that produces a graph isomorphic to G when joined with Dyt as
described above: the condition m(Dext, G) > 0 together with the connected-
ness of G imply that D is a component of the graph obtained by deleting the
extending edge ep, and its partner comes from extending the other component
(with vertex set V(G)\Vp) by the same edge ep. Note that | Dext [+ Dext| =142,
where the vertices of ep are counted twice.

Suppose that algorithm outputs the graph G’ and that we terminated
with (Cext, Dext), so this is a pair which produces G'. We know
that mq(Dext, G) > 0 because Dext € Hext, S0 Dext has a unique partner Doyt
(unknown to us) and it suffices to show that Deyx; = Coxt as leaf extensions. We
first claim that if an induced copy of C' contributes to m1(Ceoxt, G) (by definition
of my, this means that its 1-ball in G is isomorphic as a C-extension to Cext),
then it cannot contain the extending edge ep of Deyt. Note that |Cext| < |Dext|
by assumption in our algorithm, and |Cext| 4+ [Dext| = 7 + 2 = |Dext| + | Dext|
which implies that |Cext| = |Dext|. Thus, an induced copy of C (which has
size |Coxt| — 1) that contains ep cannot fully contain either Vp or V(G) \ Vp.
Since G is connected, the 1-ball of such an induced copy must then add at
least one vertex from each of Vp and V(G) \ Vp, so it does not contribute
to m1(Cext, G), as claimed. It follows that

(6) ml(ccxh G) = N(cht; Dcxt) + N(cht; Dcxt)-

In order for the algorithm to have terminated with (Coxt, Dext) we must
have m (Cext, G) > N(Coext, Dext), s0 from (6) we see that N(Cext, Dext) > 1.
This, together with the fact that |Coxt| = |Dext|, implies that Cext & Dext as
leaf extensions.

Finally, let us argue that the algorithm does terminate when the input is
the ¢-deck of a graph G satisfying the assumptions of the lemma. Let e be a
bridge as in the hypothesis of the lemma, and let the components of G —e be R
and R¢. From (6) we see that mi(Rext, G) = N(Rext, Rext)+1, where Rext, Rext
are the (unique) leaf-extensions of R and R°®. By the assumption that G
has no induced subgraph H isomorphic to R or R with |V(B1(H,Q))| > ¢,
both Rext and Rext are in Heyt. We are therefore guaranteed to be able to find
at least one pair, namely (Rext, Rext), amongst our candidates that will lead to
termination.
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We remark that the only place where we used the existence of an edge e that
splits G into “nice” components R and R¢ was to ensure that the algorithm
output a graph. One can try to use the algorithm to reconstruct graphs when-
ever the deck is known to correspond to a connected graph, and the algorithm
will either output the graph, or a failure (in which case one needs a different
approach).

With the preceding lemma in hand, the proof of Lemma 12 boils down to
showing that any tree with large enough diameter (depending on both n and /)
does have a bridge which splits the tree into “nice” components, and so satisfies
the conditions of Lemma 16.

LEMMA 12: Let £,k € {1,...,n} with k > 4v¢ +2(n — ). If T is an n-vertex
tree with diameter k—1, then T" can be reconstructed amongst connected graphs
from its (-deck provided £ > %' + 5/6n+ 7+ .

Proof. Fix k,¢ € [n] with k > 4V +2(n—¢) and £ > 2" + 3/6n+7+ ).
Let T be a tree and suppose that a longest path in 7' contains exactly k vertices.
We wish to show that T has a suitable bridge that satisfies the assumptions of
Lemma 16 so that we can conclude it is reconstructible amongst connected
graphs from its /-deck.

Fix a longest path in T" with k£ vertices. Let R and S be the rooted subtrees
obtained from 7" by removing the central edge of the path if k is even, or one of
the two central edges if k is odd (and rooting the subtrees at the vertex which
had an incident edge removed). This S plays the role of R® in Lemma 16, and
since T' is unknown, both R and S are also initially unknown. By Lemma 16, if T’
has no induced subgraph H isomorphic to R or S with |V(By(H,T))| > ¢, then
we can recognise that this is the case and reconstruct T amongst connected
graphs from Dy(T). We assume, in order to derive a contradiction, that T'
contains an induced copy S” of S with |V (B1(S’,T))| > ¢. Note that, since R
contains at least n — £ + 2v/£ — 1 vertices, S contains at most £ — 2 vertices and
the 1-ball of S contains at most ¢ — 1 vertices.

Set r = n — £ and fix an isomorphism ¢ : S — S’. Let Py be a path in R
containing at least (k—1)/2 vertices and starting at the root of R, so k<2|Py|+1.
We will proceed by iteratively building a sequence (Pi)gzl of vertex-disjoint
paths in S to obtain a lower bound on |S|. Since |R|+ |S| = n and |Py| < |R],
this leads to an upper bound on |Py| and hence on k that will contradict our
initial assumption that k > 4v/¢ + 2(n — £).
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To build the first path in the sequence, consider the intersection of S’ with
the path Py. Since V(S’) # V(S), this intersection must be non-empty, and it
must be connected since both T and S are trees, so S’ and Py intersect on a
subpath Qp. We are assuming that B;(S’,T) has at least £ vertices (that is, T
has at most r vertices outside B;(S’,T)), and B;(S’,T) has at most 2 vertices
on Py outside Qq, so altogether |V (Qo)| > |V (Py)| —r — 2.

Now let P; be the path ¢~ 1(V(Qp)) in S and note that P; is vertex-disjoint
from Py, since P, is contained in R. Define ()1 to be the intersection of S’
with P;, which is again a path. As before, T has at most r vertices outside
of B1(S’,T), and B1(S’,T) has at most two vertices on P; but outside @Q; for
each ¢ = 1,2. Thus, we have [V(Qo)| + |V(Q1)| > |V(P)| + |V(P1)| —r — 4.
Since |V (Qo)| = |V (P1)], we conclude that |V(Q1)| > |V (Po)| —r — 4.

We continue to iteratively build our sequence of paths P;, together with
the sequence of subpaths Q; restricted to S’, as follows: given P; and Q;,
let Pry1 = o 1(V(Q;)) and set Q41 = Py NS’ (see Figure 2). We first
note that P;; is disjoint from Py, ..., P;. Indeed, since Py is contained in R,
it is clear that P;;; cannot intersect Fy. If P;y; intersects an earlier path P;
with j > 1, then a vertex in P;; N P; would be mapped by ¢ into Q; N Q;_1,
which is contained in P; N P;_;. Hence, the paths are disjoint by induction. By
the finiteness of T', we must eventually reach a j such that

V(Qj-1) = [V(F;)] = 0.
At this point, we have disjoint paths Pi,..., P; in S that satisfy
|V(Pl)| == |V(Ql_1)| Z |V(P0)| —r—2¢ foralli= 1, . ,j.

In particular, setting ¢ = j to use the fact that |V(P;)] = 0 shows that
Jj > ([V(Py)| —r)/2. We may then calculate

VS = V(P) + -+ V(B

LUV (Po)|—7)/2]
> Y (VR -2
VR = | VR~ 72
R IR
(V) =)V (R = ~2)
- 4
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Since |V (S)| < n — |V(Py)|, we must have |V (Py)| < v4n —4r +1+r — 1 and
kE<2IV(P)|+1<2Vdn —4r +1+2r — 1.

Finally, note that 2y/z +1 — 1 < 2/ for all # > 1 to find k < 4Vl + 21, a
contradiction.

Figure 2. The start of a sequence of paths formed by the iter-
ative process in the proof of Lemma 12.

The same argument shows that 7' has no induced copy R’ of R for which
|[V(B1(R',T))| > £. Hence, by Lemma 16 we can reconstruct T from Dy (7).

5.4. Low DIAMETER. The purpose of this section is to prove Lemma 13. Since
this section only considers trees, the ‘number of copies’ is always the same as
the ‘number of induced copies’. For readability, we will count copies instead
of induced copies, but the reader can insert the word ‘induced’ everywhere if
desired.

We will show that any tree T" with diameter k£ — 1 can be reconstructed from
its ¢-deck for any ¢ € [n] such that

—3k+1
n—€<n 33+ if k£ is odd
or N
n7€<n—?;)—1 if k£ is even,

which together imply the statement directly. These conditions are equivalent
tok < l— 2"3’1 when £ is odd and k& < £ — 2”3“ when k is even. The reason for
the dependence on the parity is that, broadly, our strategy for reconstruction
is to separately reconstruct branches of the tree emanating from its centre: if k
is odd, the centre of T is the vertex in the middle of each longest path, and
if k£ is even, the centre consists of the two middle vertices. The former case is

easier to work with so when k is even, we subdivide the central edge and reuse
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the argument from when £ is odd, making the even case slightly weaker. This
reduction is explained in the final proof of this section.

Our motivation for using the centre of a tree is that it is unique and it does not
depend on the choice of longest path. When the diameter of 7" is small enough
to identify whether individual cards contain a longest path, we can pinpoint the
centre of T on each of these cards and use this as an anchor for reconstruction.

Let us assume for the majority of this section that T is a tree with n vertices,
the number £ of vertices in a longest path in T is odd, and k < ¢ — 2”?: L. This
means that k£ 4+ 1 < ¢ so we can reconstruct k from the /-deck, which we shall
use freely, and that 7" has a unique central vertex.

Given a vertex u € T with neighbours vy, vs,...,v,, let the branches at u
be the rooted subtrees Bi, Bs,..., B, where B; is the component of T — u
that contains v;, rooted at v;. An end-rooted path is a path rooted at an
endvertex of the path. In this section, all longest paths Py will be rooted at the
central vertex ¢, and are hence not end-rooted, whilst all of the shorter paths
mentioned will be end-rooted. Given two rooted trees 77 and 75 with roots u
and v respectively, let Ty —~ T, denote the (unrooted) tree given by adding an
edge between u and v (see Figure 3).

T T T ~Ty

Figure 3. An example of the operation Ty — T5 .

By restricting our attention to the cards that have diameter £ — 1, we may
assume that we can always identify the centre of the graph. Our basic strategy is
to reconstruct the branches at the centre separately, knowing that we can later
join them together using the centre as a common point of reference. This can be
done via a counting argument when all branches at the centre have at most £ —k
vertices, but when one branch is ‘heavy’ and contains many (at least £ — k) of
the vertices, a slightly more finicky version of the argument is required. This
is because such a branch cannot be seen on a single card containing a longest
path that is disjoint to it. It is possible to recognise these cases from the ¢-deck.
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We first address the simpler situation without heavy branches to illustrate the
method.

LEMMA 17: If T is a tree with even diameter k — 1 for which every branch
at the centre has fewer than ¢ — k vertices, then T is reconstructible from the
subset of the ¢-deck consisting only of cards which contain a copy of Pj.

Proof. Let ¢ be the central vertex of T, and let B = {Bj,...,B,} be the
branches at ¢ that we wish to reconstruct. If one of the branches at ¢ has
at least ¢ — k vertices, then there must be a card containing a longest path
with a branch of at least £ — k vertices (the branch and the path need not be
disjoint, but their union contains at most ¢ vertices). Thus we can recognise
from the /-deck that all branches in B have fewer than ¢ — k vertices.

We first reconstruct all branches that are not end-rooted paths. For any
fixed B (of size at most ¢ — k) which is a rooted tree but not an end-rooted
path, we will use Lemma 9 to count each branch at ¢ isomorphic to B once for
every P, in T. Dividing this number, denoted Ng, by the number np, (T') of
copies of Py, in T then tells us the multiplicity of B in T' (which may be zero).
Note that np, (T") can be determined using the proof of Kelly’s Lemma, the fact
that k& < £ and the observation that ny(C) = 0 whenever C' does not contain a
copy of P.

Our main goal now is to reconstruct Ng. We will determine Np in two parts.
Let wp be the number of pairs consisting of one copy B’ of B that is a branch
at ¢, and one copy P] (rooted at its centre as usual) of a longest path that is
disjoint from B’. Similarly, let 75 count pairs (B’, P}) where the copy P}, of P
intersects B’. It is clear that Ng = np + 75.

We begin with 7. Let G be the family of all n-vertex trees with diameter k—1
and where all branches from the centre have fewer than ¢ — k vertices. Let F be
the family of graphs of the form P, —~ S, where S is a non-empty rooted tree
with less than £—k vertices that is not an end-rooted path and Py is rooted at its
central vertex (see Figure 4). Fix G € G and consider some F € F. If P, ~ 5’
is a copy of F' in G, then it is contained in a unique maximal F-subgraph,
namely P} together with the unique branch B’ containing S’. Note that this
would not be true if end-rooted paths were allowed since P, —~ S’ might then
also be contained in a different maximal F-subgraph P}’ —~ B”, where S’ is
contained in P}’ and B” is a branch that contains half of the original P;. Also,
since B’ has fewer than £ — k vertices, these maximal elements have fewer than ¢
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vertices and are therefore in F. Note also that our deck contains all cards which
contain an F-subgraph, since each F-subgraph contains a copy of Py. Thus, by
Lemma 9, we can reconstruct the number of F-maximal copies of F' in G for
each F' € F. This is non-zero for F' = P, —~ S if and only if mg # 0.

& cF @06}"
[

Pr-a
p)

Py +1

Figure 4. Elements of F and F'.

In fact, the number of F-maximal copies of F' = P, —~ B is exactly mg. To
see this, consider a particular copy B’ of B that occurs as a branch and observe
that F' occurs as a maximal F-subgraph with this B’ as the copy of B once for
every longest path in the tree which avoids B'.

There is a similar argument to determine 75. Keeping G as before, let 7’ be
the family of graphs of the form Py y1)/2 — S where S is a rooted tree that
contains an end-rooted P(_1)/2 but is not itself an end-rooted path. Again,
an element F' = P4 1)/2 — S is F'-maximal when S is an entire branch, and
for any G € G and F € F’', we can reconstruct the number of F’-maximal
copies of F' in G by Lemma 9. This time there is at least one F’-maximal copy
of F'= P41y/2 — S if and only if G has a branch isomorphic to S (although
we do not need to use both directions explicitly).

Let mps be the number of F'-maximal copies of F’ formed as P(y41y2 ~ B
in T, which we can reconstruct as argued above. A particular copy B’ of B
that occurs as a branch contributes 1 to mg for each copy of Py 1)/o that
starts at the central vertex ¢ and is disjoint from B’. Thus, letting npe(B) be
the number of end-rooted copies of P;11)/2 in B’ with root at the root of B
(this is the same for any copy of B and does not depend on the deck), one can
construct all of the copies of longest paths that intersect B’ by gluing together
one Pj41)/2 from inside B’ and one that is disjoint from it. Doing so for every
copy of B shows that we can reconstruct 75 = mpgs - nps(B). The number of
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copies of B that occur as a branch at ¢ can then be reconstructed as
Np _ 7B + 7B
np, (T) B np, (T> -

It remains to determine the number of branches isomorphic to an end-rooted
path P;, which we will do using the fact that we know all of the other branches
not of this form. Initially, let T be the tree obtained by gluing all of the branches
that we have found so far at a single vertex c. In case T does not yet have a copy
of Py, update T by attaching up to two end-rooted paths of length (k —1)/2
at ¢ (add the smallest number necessary for T to have at least one Py). We will
identify and glue in the remaining path branches in T that are missing from T
in decreasing order of length, so start by setting j to be (k—1)/2: the maximum
possible length of a path branch. Let S; denote the graph obtained from P by
adding a path of length j to its central vertex.

We can count the number of copies of S; in T' using the proof of Kelly’s
Lemma, as they only appear on cards that contain a longest path. We can also
count the number of copies of S; in T directly as, although T is growing and
can have more than ¢ vertices, we have really constructed T and do not need to
refer to the cards to look at it. If there are more copies of S; in T" than in the
current T', then there must be at least one more end-rooted P; as a branch. We
then update T by gluing in this new path branch at ¢, and repeat this step with
the same j. If the counts match, then reduce j by 1 and continue iteratively. By
handling the different path lengths in decreasing order, we avoid overcounting
shorter paths that are contained in unknown longer paths. Once j = 0, we
terminate and output T. At this point, we have reconstructed all branches and
the final 7T is exactly T'.

c
—_

Figure 5. A tree containing three longest paths that avoid B’
(so mp = 3), and three longest paths that use B’ consisting of
a P(j41)/2 outside B" and a P;_1)/, inside (so 75 = 3).
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We now consider the case where one of the branches at the centre of T" has
at least ¢ — k vertices. This is so many that we can find a card showing all
the other branches at the centre in their entirety, which then reduces the prob-
lem to reconstructing the large branch. In order to do this, we will move the
“centre” one step inside the branch and continue doing this until no branch at
the new centre is too big. This collection of branches can be reconstructed by
essentially applying the proof of the previous lemma with minor modifications.
Importantly, the condition that 7" has small diameter ensures that we do not
have to take too many steps away from the true centre.

The following lemma sets up for this process. We shall call a branch i-heavy
if it contains at least ¢ — k — i vertices (a heavy branch is 0-heavy), and say
it is outward if it does not contain the centre of the tree. When we wish to
talk about a branch at a vertex within a specific card, we will call it a partial
branch to emphasise that it need not be a branch of T'. Recall that r :=n — /.

LEMMA 18: Let T be a tree with even diameter k — 1 (where k < ¢ — *";1)
and central vertex ¢, and suppose we are given exactly the cards in Dy(T) that
contain a copy of Py. For any 0 < i< (k—1)/2,

(i) each vertex can have at most one i-heavy branch;

(ii) there is at most one vertex c¢; at distance i from ¢ with an i-heavy
outward branch;

(iii) we can recognise whether there is a vertex ¢; at distance i from ¢ with
an i-heavy outward branch;

(iv) if there is such a ¢;, then we can find a card among those we are given
on which we can identify c¢; and the root of its i-heavy branch, and all
smaller branches at c; are present in their entirety. In particular, we
can completely determine the isomorphism classes of all of these smaller
branches.

Proof. Since i < kgl and k < £ — 2"3_ ! by assumption, we first deduce that

3k—1 30— 1 oam—y¢ g
—_k—71>/— — 3 = .
(—k—i>/ , >t ; s >

This proves (i), as the branches at a vertex are pairwise disjoint. Similarly,
if two distinct vertices ¢; and ¢} are both at distance ¢ from ¢, then the only
branch at ¢; that can share a vertex with a branch at ¢ is that containing c.
Thus, the previous calculation also proves (ii). For (iii), suppose that T' does
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have a vertex ¢; at distance ¢ from ¢ with an i-heavy branch B not containing c.
The subtree formed by taking a copy of Py together with the path of length ¢
from ¢ to ¢; and any (£ — k — i)-vertex subtree of B containing the root has
at most k +1i + ({ — k — i) = £ vertices. Note that there may be some overlap
between the vertices in the copy of Py, the vertices in the path from ¢ to ¢/, and
the vertices in the subtree of B, and this subgraph may have less than £ vertices.
However, there will still be a card C' with ¢ vertices which has a subtree of this
form. It follows that T has a vertex ¢; at distance i from ¢ with an i-heavy
branch if and only if it has a card containing a subtree of the aforementioned
form.

Assuming that there exist ¢; and B as above, we claim that the desired card
in (iv) can be found as follows: from among the cards we have (all with a copy
of P, so we can identify c), take a connected card C in which the maximum
number of vertices in any partial outward branch at any vertex with distance ¢
from c is as small as possible. There are only r + k + ¢ vertices not in B, so C
must still see at least £ —r — k — ¢ vertices of B. On the other hand, every other
partial branch at ¢; has at most r+ k + 14 vertices, which is less than / —k —i—7
since

rbhdisn—t4hy Pl AT RIS Te-l_f
2 2 2
This means that we can identify the vertex ¢; as the unique (by (i) and (ii))
vertex at the correct distance from ¢ with a partial outward branch of size at
least £ — k — i — r, and the root of this partial branch is the root of the i-heavy
branch in 7. Moreover, by the minimality of the count used to select C, all
other partial branches at ¢; must actually be present in their entirety; that is,
they are isomorphic to the non-i-heavy branches at ¢; in T

LEMMA 19: If T is a tree with even diameter k — 1 (where k < ¢ — *";'!)
for which the centre ¢ has a branch containing at least ¢ — k vertices, then T
is reconstructible from the subset of the ¢-deck consisting only of cards which
contain a copy of Pj,.

Proof. With ¢ = 0 in Lemma 18, we can recognise whether there is a branch

at ¢ with at least ¢ — k vertices, and there is at most one such branch.
Starting with ¢y = ¢, we construct a sequence cg, c1, ca, ... of vertices to act

as new “centres” until we reach a vertex ¢; whose branches are all small enough

for us to apply Lemma 9.
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For the first step, let ¢; be the root of the 0-heavy branch, which is adjacent
to c. Applying Lemma 18 with i = 1, we can recognise whether any neighbour
of ¢ has a 1-heavy outward branch. If not, then the branches at c; all have less
than ¢ — k — 1 vertices and we terminate with j = 1. Else if there is such a
1-heavy outward branch, then it follows from statement (ii) of the lemma that
it must be at ¢;. In addition, statement (iv) allows us to determine all but the
1-heavy branch at c;.

Now set co to be the vertex in the 1-heavy branch that is adjacent to ¢; and
iterate as follows. In the ith step we check if there is a vertex at distance 4
from ¢ with an i-heavy outward branch. If there is not, then all the outward
branches at ¢; have less than ¢ — k — ¢ vertices and we terminate with j = q.
Otherwise, there is only one such vertex and this must be ¢;. Set ¢;1 to be
the root of the unique i-heavy outward branch at ¢; and completely determine
all of the smaller branches at ¢;. The fact that we can do this is guaranteed
by Lemma 18 provided ¢ < (k — 1)/2. To see that this condition holds, we
note that our procedure builds a path in T" with one endvertex at ¢. Since each
step increases the length of this path by 1 and the longest path in 7" contains k
vertices, we can take at most (k — 1)/2 steps before terminating.

Suppose the process terminates at the jth step, where j < (k — 1)/2. The
remainder of the argument closely follows the proof of Lemma 17. Let G be the
family of n-vertex trees with diameter k£ — 1.

Let B be a rooted tree which is a potential branch for ¢; (so of size at
most £ — k — j). We wish to determine the number of outward branches at ¢;
isomorphic to B, which will reconstruct T'. We first consider the case in which B
is not a path.

Again, we start by computing “branches hanging off a central path”. To be
precise, mp is the number of pairs (S, P) where S C V(T') induces an outward
branch isomorphic to B at a vertex at distance j from ¢, P C V(T') induces a
path of length k and PN S = 0.

Let F be the family of graphs that can be constructed as follows.
Let ¢ € {0,...,5 — 1}, let v1,...,vr be the vertices in a copy of P and
let uq,...,u;—; be the vertices in a (disjoint) copy of Pj_;. A graph in F

is formed by adding an edge from wy to ves1 and then attaching a rooted
2

+i0
tree S which is not an end-rooted path to the vertex u;_;. The condition that
the attached tree is not a path ensures that it is easy to distinguish the copy
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of Py and the added tree in any F-graph. Two examples are given in Figure 6.

Cj Cj %
(6] t
c

Py Py

Figure 6. Potential elements of F along with their ‘moving centres’.

Each F-subgraph of G € G is contained in a unique maximal F-subgraph,
given by extending the tree attachment to the whole of the relevant branch
at u;j—;. Applying Lemma 9 allows us to determine the number of occurrences
of each maximal F-subgraph, as we did in the proof of Lemma 17. Here we use
the fact that there is no vertex at distance j from ¢ with a j-heavy outward
branch, and so indeed all sought-after subgraphs fit on the cards. Note that
indeed we count each branch once per longest path which is disjoint from it.

Next, we count “each branch once per longest path intersecting it”. To be
precise, let op denote the number of pairs (S, P) where S C V(T) is the vertex
set of an outward branch isomorphic to B at a vertex at distance j from c,
and P is the vertex set of a copy of P, with PN.S # (.

Let 7' be the family of graphs of the form Py_1)/21 ;11 —~ S where S is
a rooted tree that contains an end-rooted P(;_1)/2—; but is not itself an end
rooted path. An element F' = Pj_1)/24;41 — S is F'-maximal when S is
the entire outward branch, and we can reconstruct the number of F’'-maximal
copies of each F' in G using Lemma 9 as in Lemma 17. We obtain 7(B) by
multiplying the number of F’-maximal graphs (for S = B) by the number of
end-rooted paths contained in B.

The number np, (T') of P in T can again be obtained using the proof of Kelly’s
Lemma. The total number of outward branches from vertices at distance j
from ¢ isomorphic to B is given by Zﬁ:(?) This includes all the outward
branches at ¢;, but also outward branches at other vertices. However, we have
already reconstructed all of the tree except for the outward branches at c¢;, so
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we can subtract the counts for all the outward branches not at ¢; from the total:
the remainder must be attached at c;.

Finally, we reconstruct the end-rooted paths attached at c; using a similar
argument to that at the end of the proof of Lemma 17. Build the subtree T
of T' (rooted at ¢;) that includes all of the branches reconstructed thus far:
the only parts of T" missing from T are the outward branches of ¢j that are
end-rooted paths. We will add end-rooted paths of length 7 to ¢; in TV, starting
with ¢ = kgl — j: the maximum possible path length of an outward branch
at ¢; as the tree has diameter k£ — 1.

Let Hy be the smallest subgraph of T that contains c¢; and a path of length k.
Then let H; be the graph obtained from Hy by adding an edge between a path
on ¢ vertices and the vertex c¢; in Hy. We compute the number of subgraphs
isomorphic to H; in T using the proof of Kelly’s lemma, and in T by inspection.
If the count in T is the same as the count in f, then we decrease i by 1,
terminating once ¢ = 0 with the current T. If the counts are not the same, we
add a path of length ¢ to the root vertex c; in T. Our procedure adds path
branches from the longest possible length to the shortest so that our counts are
not inflated by subpaths of longer paths, meaning the discrepancy in counts can
only arise from path branches of ¢; in T' that are missing in T. At the end of
this procedure, we have reconstructed T as T.

LEMMA 13: Let £,k € {1,...,n} with k < £ — *"'. If T is an n-vertex tree
with diameter k — 1, then T is reconstructible amongst trees from its ¢-deck.

Proof. If k is odd, then by Lemma 19 we can reconstruct T from its ¢-deck
provided k < ¢ — 2"; ! which is slightly better than the bound claimed in the
statement.

Suppose that k is even. This means that there is a central edge instead of a
central vertex, but this is only a minor inconvenience. Indeed, let 77 be formed
from T by subdividing the central edge, and consider a new partial deck D’
formed by subdividing the central edge in every card in D;(T") which contains a
longest path, and discarding cards which do not contain a longest path. Then D’
is the subdeck of the (¢+1)-deck of the tree T consisting of the cards containing
a longest path in 7. Note that the tree T’ has k + 1 vertices in a longest path
and that k+1 </ +1— 2("+31)_1 by our choice of k and #.

If a branch at the centre c of 7" has size at least £—k (which we can recognise),
then we are done by Lemma 19. If not, then we are done by Lemma 17.
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6. Conclusion

The example in Figure 1 shows that Nydl’s lower bound of ¢ > |n/2]| + 1 for
the ¢ such that no two non-isomorphic trees have the same ¢-deck is not sharp
for n = 13. However, it is still the best known lower bound for all other values
of n. It may well be the case that Conjecture 3 is asymptotically true, or even
true exactly for large enough n.

Problem 1: Is there a function ¢(n) = (1/2+4 o(1))n such that all n-vertex trees
can be reconstructed from their ¢(n)-deck?

For the problem of reconstructing the degree sequence, let ¢ = £(n)
be the smallest integer such that the degree sequence of every n-vertex graph can
be reconstructed from the /¢-deck. We have shown in Theorem 7
that £(n) < /2nlog(2n)+ 1. It is easy to obtain a lower bound of the
form ¢(n) = Q(y/logn): indeed, each (-vertex graph appears at most () times

in the ¢-deck, so there are at most (712)2[2 possible ¢-decks. There are (4" /n)
possible degree sequences as determined by Burns [11], and hence we need
210g2(")22£2 > 922n—10g:(n) ' which implies the bound. By considering restricted
graph classes, this can be improved slightly, but it would be interesting to see
whether the lower bound can be improved to n® for some & > 0.

In a different direction, it would be interesting to determine how large ¢
needs to be in order to recognise the k-colourability of a graph on n vertices
from its ¢-deck. A special case of a result of Tutte [36] from 1979 states that
the chromatic number of a graph is reconstructible when ¢ = n — 1, but nothing
more is known in the direction of taking smaller cards. An interesting starting
point would be to pinpoint the threshold for recognising whether a graph is
bipartite (2-colourable). In this case, a lower bound of [n/2] follows from the
example of Spinoza and West [33] mentioned in the introduction (consider a
path and the disjoint union of an odd cycle and a path). Manvel [27] proved
that the (n — 2)-deck suffices, but it seems likely that it should be possible to
determine bipartiteness when a linear number of vertices are removed. More
generally, for fixed k, it may even be true that k-colourability is recognisable
from the en-deck for some ¢ = ¢(k) < 1.
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