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ABSTRACT

The �-deck of a graph G is the multiset of all induced subgraphs of G

on � vertices. We say that a graph is reconstructible from its �-deck if

no other graph has the same �-deck. In 1957, Kelly showed that every

tree with n ≥ 3 vertices can be reconstructed from its (n − 1)-deck,

and Giles strengthened this in 1976, proving that trees on at least 6

vertices can be reconstructed from their (n − 2)-decks. Our main the-

orem states that trees are reconstructible from their (n − r)-decks for

all r ≤ n/9 + o(n), making substantial progress towards a conjecture

of Nýdl from 1990. In addition, we can recognise the connectedness of a

graph from its �-deck when � ≥ 9n/10, and reconstruct the degree sequence

when � ≥ √
2n log(2n). All of these results are significant improvements

on previous bounds.
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1. Introduction

Throughout this paper, all graphs are finite and undirected with no loops or

multiple edges. Given a graph G on n vertices and any vertex v ∈ V (G), the

card G−v is the subgraph of G obtained by removing the vertex v together with

all edges incident to v. The deck D(G) is then the multiset of all unlabelled

cards of G. A graph G is said to be reconstructible from its deck if any graph

with the same deck is isomorphic to G.

The graph reconstruction conjecture of Kelly and Ulam [18, 19, 37] states

that all graphs on at least three vertices are reconstructible. While this clas-

sical conjecture has been verified for certain classes such as trees (Kelly [19]),

outerplanar graphs (Giles [13]) and maximal planar graphs (Lauri [24]), it re-

mains open even for simple classes such as planar graphs with maximum degree

three. However, various graph parameters, such as the degree sequence and

connectedness, are known to be reconstructible for general graphs in the sense

that they are determined by the deck (i.e., if two graphs have the same deck,

then the parameter takes the same value for both graphs).

There is a significant body of research on the problem of reconstructing graphs

and graph parameters from smaller cards. Instead of taking induced subgraphs

on n−1 vertices, it is natural to consider cards which are the induced subgraphs

on � vertices where � may be much smaller than n−1. The �-deck of G, denoted

by D�(G), is the multiset of the isomorphism classes of all
(
n
�

)
induced subgraphs

of G on � vertices (in this notation D(G) = Dn−1(G)).

Extending the terminology from the classical case, a graph G is recon-

structible from the �-deck if it is uniquely determined up to isomorphism

by its �-deck: that is, if D�(G) = D�(G
′) for a graph G′, then G ∼= G′. A graph

parameter (or property) is reconstructible from the �-deck if the value it

takes for any graph (or whether or not the property holds) is determined by

the �-deck of that graph. If C is a class of graphs, we say that C is recognisable

from the �-deck if the property of belonging to C is reconstructible from the �-

deck. We say that a graph G is reconstructible amongst graphs in C from

its �-deck if any other graph in C with the same �-deck is isomorphic to G.

The class of graphs C is weakly reconstructible from the �-deck if any two

graphs in C with the same �-deck are isomorphic, and if C is also recognisable

from the �-deck, it is said to be reconstructible from the �-deck.
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Intuitively, individual cards that are smaller carry less information. Indeed,

the (�− 1)-deck is determined by the �-deck for each �, since each (�− 1)-vertex

subgraph occurs in exactly n − � + 1 members of the �-deck (see Lemma 8).

Thus, a graph that is reconstructible from its �′-deck is also reconstructible

from its �-deck for all � ≥ �′. The main question is then to determine the

threshold; that is, find the smallest � for which a given class of graphs or a

property is reconstructible from the �-deck.

As far as we are aware, the earliest mention of reconstruction from small cards

is a brief suggestion in the final sentence of Kelly’s paper on reconstructing

trees [19]. The extension of the Reconstruction Problem that follows seems to

have been formulated by Manvel, who called it “Kelly’s Conjecture”.

Conjecture 1 ([27]): For every r ∈ N, there is an integer Nr such that every

graph with at least Nr vertices is reconstructible from its (n− r)-deck.

Kelly and Ulam’s conjecture posits that N1 = 3. In the same paper where

they posed this extension, Manvel [27] showed that several classes of graphs,

such as connected graphs, trees, regular graphs and bipartite graphs, can be

recognised from the (n− 2)-deck where n ≥ 6 is the number of vertices. Since

then, recognition and reconstruction problems of this type have been widely

studied. Recent developments include the reconstructibility of 3-regular n-

vertex graphs from the (n − 2)-deck (Kostochka, Nahvi, West and Zirlin [21]),

and that almost all graphs are reconstructible from the (n − r)-deck

when r ≤ (1/2− o(1))n (Spinoza andWest [33], building on results of Müller [28]

and Bollobás [3]). For further background, we refer to the survey of Kostochka

and West [23].

For general graphs, it is not possible to guarantee reconstructibility from

the (n− r)-deck unless r = o(n), as shown by the following theorem of Nýdl.

Theorem 2 (Nýdl [32]): For any integer n0 and 0 < α < 1, there exists an

integer n > n0 such that there are two non-isomorphic graphs on n vertices

which share the same multiset of subgraphs of order at most αn.

However, Nýdl’s theorem may not hold for specific families of graphs. Indeed,

Nýdl conjectured in 1990 that all trees are weakly reconstructible from their �-

deck when � is slightly larger than n/2.

Conjecture 3 (Nýdl [31]): For any n ≥ 4 and � ≥ �n/2�+1, if two trees on n

vertices have the same �-deck then they are isomorphic.
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The conjectured bound on � would be sharp: Nýdl [31] presented trees for

which � ≥ �n/2�+ 1 is necessary (see [23] for a short proof).

There has been no progress on Nýdl’s conjecture since it was made. Indeed,

the best previous result is an earlier theorem of Giles [14] from 1976, which states

that for n ≥ 5 no two non-isomorphic n-vertex trees have the same (n−2)-deck.

That is, this gives the cases of the conjecture where n ≥ 5 and � ≥ n− 2. Using

the result of Manvel [27] that the class of n-vertex trees is recognisable from

the (n−2)-deck when n ≥ 6, Giles’ result confirms that trees are reconstructible

(not just weakly) from their (n− 2)-deck for any n ≥ 6.

Our main theorem improves very substantially on the result of Giles and takes

a significant step towards Conjecture 3, showing that we can reconstruct trees

from the (n− r)-deck for r with linear size.

Theorem 4: Any n-vertex tree T can be reconstructed from Dn−r(T )

when r < n
9 − 4

9

√
8n+ 5− 1.

In particular, it follows that Nýdl’s theorem (Theorem 2) does not hold when

restricted to the class of trees. We remark that Conjecture 3 is false in the

case n = 13, as demonstrated by the two graphs in Figure 1 which have been

verified to have the same deck by computer. However, our computer search has

also shown that the conjecture is true for all other n in the range 4 ≤ n ≤ 25.

It remains open for large n.

Figure 1. Two non-isomorphic trees on 13 vertices which have

the same 7-deck.

It is worth noting that the class of trees, being one of the first non-trivial

classes shown to be reconstructible in the classical sense, is very prominent in

reconstruction literature. For example, assuming we know a priori that the

graph is a tree (as in weak reconstruction), Harary and Palmer [16] showed how

to reconstruct a tree using only the cards that are subtrees, Bondy [4] showed

that only the cards where peripheral vertices (that is, leaves with maximum ec-

centricity) have been removed are needed, and Manvel [26] subsequently showed

that the set (as opposed to the multiset) of cards that are subtrees suffices except



Vol. TBD, 2025 RECONSTRUCTION FROM SMALLER CARDS 5

in two cases. Lauri [25] also showed that trees with at least three cut-vertices can

be reconstructed (amongst all graphs) from the cards corresponding to removing

a cut-vertex. Indeed, Myrvold [29] proved that only three carefully chosen cards

are needed to reconstruct a tree when n≥ 5. Related problems have also been

investigated extensively for infinite trees (see, for example, [1, 2, 6, 17, 30, 35]),

and it was recently shown by Bowler, Erde, Heinig, Lehner and Pitz that there

are non-reconstructible locally finite trees [10].

Returning to the small cards setting, we have already mentioned Manvel’s

result in [27] that the class of connected graphs is recognisable from the (n−2)-

deck for n ≥ 6. Extending this, Kostochka, Nahvi, West and Zirlin [20] showed

that the connectedness of a graph on n ≥ 7 vertices is determined by Dn−3(G).

As shown by Spinoza and West [33], if we take G1 = Pn (the path on n vertices)

and G2 = C�n/2�+1 	 P�n/2�−1 (the disjoint union of a cycle and a path), we

find that D�(G1) = D�(G2) for all � ≤ �n/2�. However, G1 is connected and G2

is not. In light of this construction, Spinoza and West believe that for n ≥ 6

and � ≥ �n/2� + 1, the connectedness of an n-vertex graph G is determined

by D�(G). This threshold would be sharp.

Spinoza and West proved in [33] that connectedness can be recognised

from D�(G) provided

n− � ≤ (1 + o(1))

√
2 logn

log(log n)
.

We significantly improve this bound to allow a linear gap between n and �.

Theorem 5: The connectedness of an n-vertex graph G can be recognised

from D�(G) provided � ≥ 9n/10.

By Theorem 5 (and the fact that we can reconstruct the number of edges),

we can recognise trees from the �-deck when � ≥ 9n/10. In order to prove

Theorem 4, we need a slightly stronger bound.

Theorem 6: For � ≥ (2n+4)/3, the class of trees on n vertices is recognisable

from the �-deck.

As we were completing this paper, Kostochka, Nahvi, West and Zirlin [22]

independently announced a similar result to Theorem 6. In fact, they proved

that one can recognise if a graph is acyclic from the �-deck when � ≥ �n/2�+1,

which also verifies the believed bound for reconstructing connectedness in the
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special case of forests. This has the particularly nice consequence that trees

can be recognised from their �-deck, and so Conjecture 3 is equivalent to the

reconstruction of trees amongst general graphs. Since our proof of Theorem 6

is short and already (more than) sufficient for our use in reconstructing trees,

we have retained it for completeness.

The proof of Theorem 5 relies on an algebraic result (Lemma 11) which we

also apply to reconstructing degree sequences. The story in the literature here is

similar to that of connectedness. Chernyak [12] showed that the degree sequence

of an n-vertex graph can be reconstructed from its (n− 2)-deck for n ≥ 6, and

this was later extended by Kostochka, Nahvi, West, and Zirlin [20] to the (n−3)-

deck for n ≥ 7. The best known asymptotic result is due to Taylor [34], and

implies that the degree sequence of a graph G on n vertices can be reconstructed

from D�(G) where � ∼ (1 − 1/e)n. Our improved bound is as follows.

Theorem 7: The degree sequence of an n-vertex graph G can be reconstructed

from D�(G) for any � ≥ √
2n log(2n).

In Section 2, we give �-deck versions of both Kelly’s Lemma [19] for count-

ing subgraphs and a result on counting maximal subgraphs by Greenwell and

Hemminger [15], as well as an algebraic result of Borwein and Ingalls [9] bound-

ing the number of moments shared by two distinct sequences. These are used

to deduce Theorem 7 (Section 3) and Theorem 5 (Section 4). Section 5 con-

tains the proof of Theorem 4, our main result on reconstructing trees, including

the tree recognition statement given by Theorem 6. There, we also introduce

a new counting tool for reconstruction that may be of independent interest.

We conclude with some further discussion in Section 6.

2. Preliminaries

This paper makes extensive use of three key results which we give in this section.

2.1. Kelly’s Lemma for small cards. Perhaps the most fundamental tool

in graph reconstruction is Kelly’s Lemma for reconstructing subgraph counts.

The utility of such a result is reflected in the fact that variants of the lemma

exist for many different reconstruction problems (see [5]). To formulate Kelly’s

Lemma, let ñH(G) and nH(G) denote the number of subgraphs and induced

subgraphs of G isomorphic to H , respectively. That is, nH(G) is the number
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of vertex subsets S ⊆ V (G) that induce a subgraph of G isomorphic to H ,

and ñH(G) is the number of edge subsets S ⊆ E(G) that induce a subgraph

of G isomorphic to H . We will refer to an induced subgraph isomorphic to H

as an induced copy of H , and say copy by itself to mean not necessarily

induced. When H is a connected graph, every copy of H in a tree is an induced

copy (and vice versa), but the difference between these notions can be relevant

for some of our results that apply to a wider class of graphs.

In the classical graph reconstruction problem, Kelly’s Lemma states that we

can reconstruct nH(G) and ñH(G) provided |V (H)| < |V (G)|. We will use the

following small cards variant, which is a direct generalisation.

Lemma 8: Let � ∈ N and let H be a graph on at most � vertices. For any

graph G, the multiset of �-vertex induced subgraphs of G determines both the

number of subgraphs of G that are isomorphic to H and the number of induced

subgraphs that are isomorphic to H .

Proof. Suppose we count the number of induced copies of H in each of

the �-cards of G, and take the sum over all cards. Each induced copy of H

in G is counted exactly
(
n−|V (H)|
�−|V (H)|

)
times in this total. Hence, we can recon-

struct the number nH(G) of induced copies of H in G from the �-deck as

nH(G) =

(
n− |V (H)|
�− |V (H)|

)−1 ∑
C∈D�(G)

nH(C).

The same argument applies with copies in place of induced copies.

In particular, Kelly’s Lemma means that D�′(G) can be reconstructed

from D�(G) for all �′ ≤ �. Foreshadowing later usage of this lemma, we re-

mark that in the displayed formula in the proof, we only need to use the subset

of the deck consisting of all cards which contain at least one (possibly induced)

copy of the fixed graph H . Thus, we can still reconstruct these subgraph counts

if we are handed a subset of the deck and told that the subset includes every

card containing a copy of the subgraph.

2.2. Counting maximal F-subgraphs. Given a class of graphs F , a sub-

graph F ′ of some graph G is said to be an F-subgraph if F ′ is isomorphic to

some F ∈ F , and is a maximal F -subgraph if the subgraph F ′ cannot be ex-

tended to a larger F -subgraph, that is, there does not exist an F -subgraph F ′′

of G such that F ′ is a proper subgraph of F ′′.
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Let mF (F,G) denote the number of maximal F -subgraphs in G which are

isomorphic to F . We suppress the subscript when it is clear from the context.

We give a slight variation of a classical “Counting Theorem” due to Bondy

and Hemminger [7] (see also the statement of Greenwell and Hemminger [15])

which reconstructs mF(F,G) from the �-deck. The following proof is essentially

that of Bondy and Hemminger [7], only with a few additional observations used

to accommodate our slight changes to the assumptions.

Lemma 9: Given �, n ∈ N with � < n, let G be a class of n-vertex graphs. Let F
be a class of graphs such that for any G ∈ G and for any F -subgraph F of G,

(i) |V (F )| ≤ �;

(ii) F is contained in a unique maximal F -subgraph of G.

Then for all F ∈ F and G ∈ G, we can reconstruct mF(F,G) from the collection

of cards in the �-deck that contain an F -subgraph.

Proof. Define an (F,G)-chain of length k to be a sequence (X0, . . . , Xk)

of F -subgraphs of G such that

F ∼= X0 � X1 � · · · � Xk � G.

The rank of F in G is the length of a longest (F,G)-chain, and two chains are

called isomorphic if they have the same length and the corresponding terms

are isomorphic. Following Bondy and Hemminger’s argument, we first show

that

(1) mF (F,G) =

rankF∑
k=0

∑
(−1)kñF (X1)ñX1 (X2) · · · ñXk−1

(Xk)ñXk
(G)

where the second summation is over all non-isomorphic (F,G)-chains of length k.

When rankF = 0, we have

mF(F,G) = ñF (G).

Let rankF = r, and suppose that (1) holds for all graphs F ∈ F with rank

less than r. The second assumption states that every copy of F has a unique

maximal extension X , which implies that

ñF (G) =
∑
X

ñF (X)mF(X,G),
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where the sum is over all non-isomorphic F -subgraphs X of G. This gives the

expression

mF(F,G) = ñF (G)−
∑
X 	∼=F

ñF (X)mF (X,G).

In the summation, we can restrict to X for which ñF (X) > 0. Such a graph X

has rank at most r − 1, so we may apply the induction hypothesis to rewrite

each mF(X,G)-term into a double sum. The resulting triple sum can be sim-

plified to obtain (1).

It now suffices to show that the right-hand side of (1) is reconstructible. To

see this, we note that the inner summation is over (F,G)-chains for which Xk

has size at most � (since Xk is an F -subgraph and by condition (i)), and so all

such chains can be seen on cards. The remaining terms can be reconstructed by

Kelly’s Lemma (again using (i)), and this only requires the cards from D�(G)

that contain an F -subgraph.

Later in this paper, we will apply Lemma 9 with both G and F a family of

trees. Since every connected subgraph of a tree is an induced subgraph, the

lemma can be applied to count maximal induced F -subgraphs.

2.3. Shared moments of sequences. We will need a bound on the maximum

number of shared moments that two sequences α, β ∈ {0, . . . , n}m can have.

This result follows from the following theorem on the number of positive real

roots of a polynomial. Here, we use log to mean the natural logarithm.

Theorem 10 ([8, Theorem A]): Suppose that the complex polynomial

p(z) :=

n∑
j=0

ajz
j

has k positive real roots (counted with multiplicity). Then

k2 ≤ 2n log
( |a0|+ |a1|+ · · ·+ |an|√|a0an|

)
.

This theorem is attributed to Schmidt, but the first published proof is due

to Schur and a series of simplifications have followed (see [8]). We shall re-

quire a specific application of the theorem given by Borwein and Ingalls [9,

Proposition 1]. We shall use the following formulation, which is tailored to our

purposes.
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Lemma 11: Let α, β ∈ {0, . . . , n}m be sequences that are not related to each

other by a permutation. If

(2)

(
α1

j

)
+ · · ·+

(
αm

j

)
=

(
β1

j

)
+ · · ·+

(
βm

j

)
for all j ∈ {0, . . . , �},

then �+ 1 ≤ √
2n log(2m).

Proof. Since αi, βj ∈ {0, . . . , n} for all i, j ∈ {1, . . . ,m}, the polynomial pα,β

defined by

(3) pα,β(x) :=

m∑
i=1

xαi −
m∑
i=1

xβi

is of degree at most n. For c ∈ C, let multc(pα,β) denote the multiplicity of the

root at c, or 0 if c is not a root of pα,β . We will show that

�+ 1 ≤ mult1(pα,β) ≤
√

2n log(2m).

Since α and β are not related by a permutation, the polynomial pα,β is non-

zero. We may write (with r = mult0(pα,β))

pα,β(x) = xr

( n′∑
j=0

ajx
j

)
where a0 and an′ are non-zero and n′ ≤ n . The coefficients are all integral,

so
√|a0an′ | ≥ 1. Moreover, from the definition of the polynomial in (3) there

are at most 2m contributions of ±1 to the coefficients, so we have

n′∑
i=0

|ai| ≤ 2m.

By Theorem 10, the number of positive real roots of
∑n′

j=0 ajx
j is at most√

2n′ log
( |a0|+ |a1|+ · · ·+ |an′ |√|a0an′ |

)
≤

√
2n log(2m)

and in particular, mult1(pα,β) ≤ √
2n log(2m). On the other hand, for

all j ∈ {0, . . . , �}, equation (2) shows that∣∣∣∣( d

dxj

[ m∑
i=1

xαi −
m∑
i=1

xβi

])∣∣∣∣
x=1

=

m∑
i=1

j!

(
αi

j

)
−

m∑
i=1

j!

(
βi

j

)
= 0.

Hence, �+ 1 ≤ mult1(pα,β), and �+ 1 ≤ √
2n log(2m) as desired.
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Condition (2) is equivalent to the condition that the first �moments of α and β

agree. To see this, observe that {xi : i ∈ {0, . . . , �}} and {(xi) : i ∈ {0, . . . , �}}
both form a basis for the polynomials of degree at most �. When α, β can be

arbitrary integer sequences (instead of taking values in {0, . . . , n}) this variant is
sometimes called the Prouhet-Tarry-Escott problem, and sequences are known

with the first Ω(
√
m) moments in common (see [9, Proposition 3] for a simple

counting argument).

3. Reconstructing the degree sequence

The tools of the preceding section allow us to prove that the degree sequence

of an n-vertex graph G can be reconstructed from the �-deck of G when-

ever � ≥ √
2n log(2n). The proof is essentially identical to that given by

Taylor [34], except for the use of the stronger bounds provided by Lemma 11.

Theorem 7: The degree sequence of an n-vertex graph G can be reconstructed

from D�(G) for any � ≥ √
2n log(2n).

Proof. Let G be an n-vertex graph with vertices v1, . . . , vn, and

let � ≥ √
2n log(2n) be an integer. By Lemma 8, we can reconstruct the number

of subgraphs of G isomorphic to the star K1,j for all j ∈ {2, . . . , � − 1}. Since

vertex v lies at the centre of
(
d(v)
j

)
copies of K1,j, we can compute the quantity

ñK1,j (G) =
∑

v∈V (G)

(
d(v)

j

)
from the �-deck. We can also reconstruct∑

v∈V (G)

(
d(v)

0

)
= n and

∑
v∈V (G)

(
d(v)

1

)
= 2 · |E(G)|

from the 2-deck. Write αi = d(vi) for i ∈ [n] where we may assume

d(v1) ≤ · · · ≤ d(vn).

Suppose, for a contradiction, that a graph with a different degree sequ-

ence β1 ≤ · · · ≤ βn gives the same counts. Then, for j ∈ {0, . . . , �− 1},
n∑

i=1

(
αi

j

)
=

n∑
i=1

(
βi

j

)
.

Since α, β ∈ {0, . . . , n − 1}n are not permutations of each other, Lemma 11

applies to show � ≤ √
2(n− 1) log(2n) as desired.
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4. Recognising connectedness

In this section, we prove our theorem on reconstructing connectedness from

the �-deck. Recall that throughout this paper, an induced copy H ′ of H in

some graph G refers to an induced subgraph of G that is isomorphic to H .

The main idea of the proof is that a graph G has a connected component

isomorphic to some graphH if and only if it has an induced subgraph isomorphic

to H ‘without any neighbours’. By a similar approach to the previous section,

when |V (H)| is small we can actually compute the entire ‘degree sequence’, that

is, for each k we can find the number of induced copies ofH with k ‘neighbours’.

This will handle the case where G has a small component. If G has no small

components, then either G is connected or only has medium-sized components,

in which case we will recognise that it has no large connected subgraphs.

Theorem 5: The connectedness of an n-vertex graph G can be recognised

from D�(G) provided � ≥ 9n/10.

Proof. Let G be an n-vertex graph and let ε = 1/10, so our assumption is

that � ≥ 9n/10 = (1 − ε)n. We begin by making an additional assumption on

the size of n; it was shown by Kostochka, Nahvi, West and Zirlin [20] that the

connectedness of a graph can be recognised from the (n− 3)-deck for n ≥ 7, so

we can assume that n ≥ 39.

Using Lemma 8 we can compute the number of connected subgraphs of G

on � vertices. If there are no such subgraphs, the graph must be disconnected

and we are done. We may therefore assume that either G is connected, or its

largest component has order at least �. In particular, if G is not connected then

it has a component of order at most n− �.

We will reconstruct all components that have at most n − � vertices using

the �-deck. Let H be a connected graph with h vertices, where 1≤h≤ ε n.

Since h ≤ �, we may compute nH(G) from the �-deck by Lemma 8. Sup-

pose m = nH(G) > 0. Write H1, . . . , Hm for the induced copies of H in G, and

define the neighbourhood of Hi by

Γ(Hi) = {v ∈ V (G) \ V (Hi) : vu ∈ E(G) for some u ∈ Hi}.
Define the degree of Hi to be |Γ(Hi)|, and denote it by αi. Note that G

has a component isomorphic to H if and only if αi = 0 for some i ∈ [m].

Thus, (α1, . . . , αm) ∈ {0, . . . , n − h}m determines the number of components

isomorphic to H .



Vol. TBD, 2025 RECONSTRUCTION FROM SMALLER CARDS 13

We now show that we can reconstruct (α1, . . . , αm) up to permutation.

Since 1 ≤ h ≤ εn and m ≤ (
n
h

) ≤ ( enh )h, we have√
2(n− h) log(2m) ≤

√
2(n− h)h log(en/h) + 2n log 2

≤ n
√
2(1− ε)ε log(e/ε) + 2(log 2)/n,

where we have also used that (n − h)h log(en/h) is increasing in h within the

given range. Hence, by Lemma 11, it suffices to show that we can reconstruct

(4)

m∑
i=1

(
αi

j

)
for all integers 0 ≤ j ≤ N,

where

N = n
√

2(1− ε)ε log(e/ε) + 2(log 2)/n.

For j ≥ 0, let Pj denote the set of pairs of vertex sets (A,B) where

A ⊆ B ⊆ V (G), G[A] ∼= H, |B| = |A| + j and A is dominating in G[B]—

that is, each vertex in B \A is adjacent to some vertex in A. Each (A,B) ∈ Pj

has some i ∈ [m] for which G[A] ∼= Hi and B is contained in the neighbourhood

of Hi, so

|P | =
m∑
i=1

(
αi

j

)
.

For j ≥ 0, let Hj denote the set of (h + j)-vertex graphs that consist of H

along with j additional vertices, all of which are adjacent to at least one vertex in

the induced copy of H (we include each isomorphism type once). If (A,B) ∈ P ,

then B corresponds to some H ′ ∈ Hj . By definition, there are nH′ (G) vertex

sets B ⊆ V (G) with G[B] ∼= H ′. Both Hj and H are known to us, so for

each H ′ ∈ Hj we can calculate the number ndom(H,H ′) of dominating induced

copies of H in H ′. Since∑
H′∈Hj

ndom(H,H ′)nH′ (G) = |P | =
m∑
i=1

(
αi

j

)
,

it only remains to show that we can determine nH′(G) from the �-deck. We may

use Lemma 8 to reconstruct nH′ (G) if |H ′| = h+ j ≤ �. For j ≤ N and n ≥ 39,

we find that

h+ j ≤ εn+N ≤ n− εn ≤ �,

where the middle inequality follows from the fact that, using ε = 1/10, we have√
2(1− ε)ε log(e/ε) + 2(log 2)/39 ≤ 1− 2ε.
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This shows that we can reconstruct (4), and hence the number of components

isomorphic to H . In particular, doing so for every graph H with at most n− �

vertices allows us to determine whether any component of G has at most n− �

vertices, which we saw would hold if and only if G is disconnected.

We remark that the constant 9/10 in the proof above can be improved slightly

provided n is large enough. Indeed, the proof holds for any n and ε such that√
2(1− ε)ε log(e/ε) + 2(log 2)/n ≤ 1− 2ε,

and, for large enough n, we can take ε ≈ 0.1069.

5. Reconstructing trees

We now work toward proving our main theorem on reconstructing trees, which

we recall below.

Theorem 4: Any n-vertex tree T can be reconstructed from Dn−r(T )

when r < n
9 − 4

9

√
8n+ 5− 1.

The proof of Theorem 4 is spread across the following four subsections. First,

we introduce a general technique for counting balls around a subgraph, which

may be of independent interest. This strategy allows us to keep track of copies

of fixed graphs in T that have a specified distinguished subgraph, which is a

crucial ingredient of our proofs. This is done in Section 5.1.

In Section 5.2, we prove Theorem 6 which shows that the family of n-vertex

trees is recognisable from the �-deck when � is in the assumed range. This allows

us to proceed with the assumption that we have already recognised that every

reconstruction from the deck is a tree.

The remaining parts contain the proof of reconstruction, which is split into

two cases depending on whether or not the tree T contains a path that is long rel-

ative to the order of the graph n and the number � of vertices on each card. Let

the length of a path P be the number of edges in P , or equivalently |V (P )| − 1.

The diameter of a graphG is the maximum distance between two vertices in G,

and for a tree T this is the same as the length of a longest path. When the

diameter is less than about � − 2n/3, we can apply an argument based on re-

constructing branches off the centre. For trees with diameter higher than this

(in fact there is some overlap between the two cases), we will split the tree into

two parts by removing a central edge, and then reconstruct these parts together

with the information of how they glue together.
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Having recognised that every reconstruction from the deck is a tree, the high

diameter case is handled by the following lemma, which we prove in Section 5.3.

Lemma 12: Let �, k ∈ {1, . . . , n} with k > 4
√
� + 2(n− �). If T is an n-vertex

tree with diameter k−1, then T can be reconstructed amongst connected graphs

from its �-deck provided � ≥ 2n
3 + 4

9

√
6n+ 7 + 11

9 .

If T has low diameter, then we instead use the next lemma, which we prove

in Section 5.4.

Lemma 13: Let �, k ∈ {1, . . . , n} with k < � − 2n+1
3 . If T is an n-vertex tree

with diameter k − 1, then T is reconstructible amongst trees from its �-deck.

The proof of Theorem 4 then amounts to verifying that the condition on � is

sufficient to apply our result for recognising trees, and that our definitions of

high and low diameter together cover the full range. The latter calculation is

the source of the threshold on card size in the statement of Theorem 4.

Proof of Theorem 4.The conditions on � and n imply that �≥2n
3 + 4

9

√
6n+7+ 11

9 .

This bound on � suffices to apply Theorem 6 in order to recognise that T is a tree.

Let k be the number of vertices in the longest path in T . When

k > 4
√
�+ 2(n− �), T is reconstructible by Lemma 12 (amongst all connected

graphs, without needing to know k).

So now suppose that k≤ 4
√
�+2(n− �). We will show that k<�−2n+1

3 as re-

quired to apply Lemma 13, and we note that in this case we can deduce the value

of k from the �-deck. After rearranging, it suffices to verify that n−�< n−3k−1
3 .

Our assumed condition that

� >
8n

9
+

4

9

√
8n+ 5 + 1

is equivalent to the condition

n− � <
n− 12

√
�− 6(n− �)− 1

3
.

Finally, note that

n− 12
√
�− 6(n− �)− 1

3
≤ n− 3k − 1

3

for all k ≤ 4
√
� + 2(n − �). Thus, we can apply Lemma 13 in this case to

reconstruct T .
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5.1. Counting extensions. Given a graph H , we define an H-extension

to be a pair Hext = (H+, A) where H+ is a graph and A ⊆ V (H+) is a

subset of vertices with H+[A] ∼= H . The idea is that H+ may contain multiple

induced copies of H , so we are picking out one in particular. One could think of

an H-extension as a triple (H+, A,H), but we suppress H since H ∼= H+[A].

The order of Hext = (H+, A) is

|Hext| = |V (H+)|.

We will usually work with H-extensions in a setting where H is an in-

duced subgraph of an ambient graph G, and in this case a natural family

of H-extensions can be obtained by considering neighbourhoods. Specifically,

for d ∈ N, the (closed) d-ball of an induced subgraph H of a graph G is

defined by

Bd(H,G) = G[{v ∈ V (G) : dG(v,H) ≤ d}].

That is, Bd(H,G) is the subgraph induced by the set of vertices of distance at

most d from H , including the vertices of H itself. It is useful to view the d-ball

of H as the H-extension (Bd(H,G), V (H)).

Two H-extensions (G1, A1) and (G2, A2) are isomorphic if there is a graph

isomorphism ϕ : G1 → G2 with ϕ(A1) = A2. In addition, we say that

an H-extension (H+, A) is a sub-H-extension of (H++, B) if H+ is an in-

duced subgraph of H++ and A = B.

Let md(Hext, G) be the number of induced copies of H in G whose d-ball is

isomorphic (as an H-extension) to Hext. The purpose of the notation above

is to be able to formalise this notion, which intuitively boils down to counting

how often H appears with a particular neighbourhood.

Our key counting result for extensions states that it is possible to recon-

struct md(Hext, G) from the �-deck provided the d-balls of all induced copies

of H are small enough to appear on the cards as proper subgraphs.

Lemma 14: Let �, d ∈ N and let G be a graph on at least �+1 vertices. LetH be

a graph on at most �−1 vertices. From the �-deck of G, it is possible to recognise

whether the d-ball of every induced copy of H in G has fewer than � vertices.

If this is the case, then for every H-extension Hext the quantity md(Hext, G) is

determined by the �-deck.
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Proof. We first define the set of ‘potential d-balls around H ’. Let H denote

the set of graphs H+ such that |V (H+)| ≤ � and there is an induced copy H ′

of H in H+ such that all the vertices of H+ are at distance (in H+) at most d

from H ′. These represent all possible d-balls of H with at most � vertices, and

the ones that appear in G will be a subset of these. Note that in order for H+

to belong to H, it is not necessary (nor guaranteed) that all induced copies of H

in H+ satisfy the above distance condition, rather only that there is at least

one such induced copy.

For anyH+ ∈ H, we can reconstruct nH+(G) from the �-deck using Lemma 8.

The d-balls of every induced copy of H have fewer than � vertices if and only

if nH+(G) = 0 for every H+ ∈ H with |H+| = �, and we can tell if this is the

case. Suppose that the d-balls around every induced copy of H do indeed have

fewer than � vertices and set

k = max{|V (H+)| : H+ ∈ H, nH+(G) > 0}.

For a fixed H+ ∈ H with |V (H+)| = k, we observe that every induced copy H ′

of H for which Bd(H
′, H+) ∼= H+ also satisfies Bd(H

′, G) ∼= H+ by the maxi-

mality of k and the definition of H.

Let Hext denote the set of isomorphism classes of H-extensions (H+, A)

with H+ ∈ H. By the preceding observation, if Hext = (H+, A) ∈ Hext

with |H+| = k, then the number of induced copies of H in G whose d-balls

are isomorphic to Hext is the number of induced copies of H+ in G multiplied

by the number of induced copies of H in H+ whose d-ball in H+ is isomorphic

to Hext (as an H-extension). That is,

(5) md(Hext, G) = nH+(G)md(Hext, H
+).

Both of these quantities are reconstructible from the �-deck, so we are done in

this case.

If |V (H+)| < k, then the d-ball in G of a copy of H may be strictly larger

than H+ and formula (5) does not apply. This can be corrected by subtracting

the number of induced copies of H in H+ for which H+ is not

the d-neighbourhood of that induced copy of H in G. To count these, we select

in turn each ‘maximal’ d-neighbourhood of size at least |H+|+1, and subtract 1

from the relevant count for each H+ that it contains. Any leftover H+ that

have not been accounted for must then be maximal.
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Explicitly, for H ′
ext ∈ Hext distinct from Hext, let n(Hext, H

′
ext) give the

number of sub-H-extensions of H ′
ext isomorphic to Hext. We claim that

md(Hext, G) = nH+(G)md(Hext, H
+)−

∑
H′

ext∈Hext

|H′
ext|>|Hext|

n(Hext, H
′
ext)md(H

′
ext, G).

When |Hext| = k, this formula agrees with (5). The terms md(Hext, H
+),

n(Hext, H
′
ext) and the domain of the summation are already known to us, and

we can reconstruct nH+(G) for all H+ ∈ H using Kelly’s Lemma. Moreover, we

may assume that we have reconstructed the termsmd(H
′
ext, G) for |H ′

ext|> |Hext|
by induction with base case |Hext| = k, so verifying the formula will complete

the proof.

The term nH+(G)md(Hext, H
+) at the start of the formula counts the number

of pairs (A,B) ⊆ V (G)× V (G) such that

• G[B] is an induced copy of H+,

• A ⊆ B and G[A] is an induced copy of H (that is, (G[B], A) is an H-

extension),

• B is a subset of the d-ball around A (i.e., B ⊆ Bd(G[A], G)).

Informally, each fixed B has exactly md(Hext, H
+) sets A with which it is in a

pair, and there are nH+(G) sets B to count.

Compared to md(Hext, G), the term nH+(G)md(Hext, H
+) overcounts by 1

for each pair (A,B) with B � Bd(G[A], G). Thus, it just remains to verify that

the number of pairs with B 
= Bd(G[A], G) is given by∑
|H′

ext|>|Hext|
n(Hext, H

′
ext)md(H

′
ext, G).

To see that this is true, note that by definition the correction term counts

triples (A,B,C) with A ⊆ B � C ⊆ V (G) such that

• G[A] is an induced copy of H ,

• G[B] is an induced copy of H+,

• G[C] ∼= Bd(G[A], G).

Each pair (A,B) with B 
= Bd(G[A], G) is in a unique such triple, namely

with C = V (Bd(G[A], G)); if B = Bd(G[A], G), then no suitable C with B � C

can be found.
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As an aside, we mention that by setting d = 1 and considering

the H-extension (H,V (H)) in Lemma 14, one can count the number of compo-

nents isomorphic to H .

Corollary 15: Let H and G be graphs with |V (H)| ≤ �− 1 and n = |V (G)|.
If there is no induced copy of H in G for which |B1(H,G)| ≥ �, then we can

reconstruct the number of components of G isomorphic to H from D�(G).

5.2. Recognising trees. This section contains the proof of Theorem 6, which

is an application of the extension-counting result established of Section 5.1.

Theorem 6: For � ≥ (2n+4)/3, the class of trees on n vertices is recognisable

from the �-deck.

Proof. Let G be a graph and suppose we are given D�(G). By Kelly’s Lemma

(Lemma 8), we can reconstruct the number m of edges provided � ≥ 2. Hence,

we may suppose that m = n − 1, otherwise we can already conclude that G

is not a tree. It suffices to show that we can determine whether G contains a

cycle, or equivalently to determine whether G is connected.

If G has a cycle of length at most �, then the entire cycle will appear on a card

and we can conclude that G is not a tree. We may therefore assume that every

cycle in G has length greater than �. If the graph does not contain a connected

card, then the graph cannot be a tree, and so we may assume that there is a

connected card and the largest components in G have at least � vertices each.

Since � ≥ (2n+4)/3, there is only one component A with at least � vertices and

the other components have at most �− 1 vertices.

Let d = �� − n/2 − 1�. For a vertex x ∈ V (G), denote the d-ball around x

in G by Bd(x). Using Lemma 14 with H being the graph consisting of a single

vertex, we find that either there is an x ∈ V (G) with d-ball of order at least �

or we can reconstruct the collection of d-balls (with ‘distinguished’ centres).

Suppose firstly that there exists x ∈ V (G) such that |Bd(x)| ≥ �. We claim

that then G is a tree. Assume towards a contradiction that there is a cycle in G.

Since this must have more than � vertices, any cycle in G must be contained

in the largest component A (the smaller components have order at most �− 1).

Let C be a shortest cycle in A. Similarly, note that x ∈ A since otherwise

the d-ball around x cannot have � vertices. If |Bd(x) ∩ V (C)| ≤ 2d+ 1, then

|Bd(x)| ≤ n− |V (C) \Bd(x)| ≤ n− (�+ 1) + (2d+ 1) ≤ �− 1
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by our choice of d. Thus, Bd(x)∩V (C) contains at least 2d+2 vertices. Choose

two vertices c1, c2 ∈ Bd(x)∩V (C) joined by a subpath C ′ of C (possibly C′ is a
single edge) such that C′ does not contain any other vertex of Bd(x). Let C

′′ be
the other path from c1 to c2 in C. This must contain at least 2d other vertices

of Bd(x) ∩ C, so C ′′ is a path of length at least 2d+ 1. However, there is also

a path P from c1 to c2 in the d-ball around x of length at most 2d, and this

intersects C′ only at the endpoints c1 and c2. Replacing the path C ′′ with the

path P forms a cycle which is strictly shorter than C, giving a contradiction.

Hence, G cannot have any cycles and must be a tree.

We may now assume that we can reconstruct the collection of d-balls and

will show how to recognise whether the graph is connected in this case. In any

component of order at most n − �, there must be some vertex x such that the

distance from x to any vertex in the same component is at most (n− �)/2. By

our choice of � and d,

n− �

2
≤ �− n

2
− 2 ≤ d− 1.

Thus, if there is a component of order at most n − � (which happens if and

only if G is not a tree), then there must be a d-ball with radius at most d− 1.

Conversely, if we discover such a d-ball, then we know that the graph is dis-

connected since the d-ball must form a component due to its radius, yet has at

most � − 1 vertices. Hence, G is a tree if and only if all d-balls have radius d.

This shows that we can recognise connectedness and completes the proof.

5.3. High diameter. The main result in this section is Lemma 12, which

states that trees containing sufficiently long paths are reconstructible amongst

connected graphs from their �-decks. Our approach is based on the key prop-

erty that trees with high diameter have small 1-balls around induced copies of

subgraphs obtained by deleting a well-chosen edge. This is made precise within

the conditions of Lemma 16, which essentially gives a reconstruction algorithm

for graphs (not just trees) when this property is assumed.

Let us first develop the intuition behind our strategy using trees. Removing

an edge from a tree T splits T into two components, and our goal will be to

recognise a pair of graphs (R,Rc) which are the components left after remov-

ing an edge from T . However, it is not enough to know that T is formed by

connecting R and Rc with an edge: we also need to know which vertices the
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edge is connected to, and we will actually look for pairs for which we can also

deduce this.

We are specifically interested in induced subgraphs that are connected to the

rest of the graph by a single edge, which leads us to consider induced copies

of R (and Rc) with this property. For a graph H , let a leaf H-extension be a

pair Hext = (H+, A) where

• H+ is obtained by adding a single vertex connected by a single edge to

a vertex of H , and

• A ⊂ V (H+) is such that H+[A] ∼= H .

This is a special case of the extensions defined in Section 5.1. We will refer to the

additional edge added to H to form H+ as the extending edge. Note that if R

is a component of T − e, then the 1-ball of T [V (R)] in T is a leaf R-extension,

but there may be multiple (non-isomorphic) leaf R-extensions in T .

The extra edge in a leaf extension indicates where to glue, so we would be done

if we could identify two leaf extensions Cext = (C+, VC) and Dext = (D+, VD)

for which the vertex set ofG is the disjoint union of VC and VD. We demonstrate

in Lemma 16 a case where this can be done from D�(G) using the counts of the

relevant leaf extensions obtained by Lemma 14. Lemma 16 is not specialised to

trees (we still require connectedness but the R and Rc that we are looking for

do not need to be acyclic), so the final step to proving Lemma 12 is to show

that trees with high diameter satisfy the conditions of Lemma 16.

We say an edge e in a connected graph G is a bridge if the graph G − e

obtained from G by removing the edge e is disconnected.

Lemma 16: Let G be a connected graph with a bridge e, and let R and Rc be

the components of G−e. If G has no induced subgraphH isomorphic to R or Rc

with |V (B1(H,G))| ≥ �, then G is the only connected graph up to isomorphism

with the deck D�(G).

Proof. We prove the lemma by describing an algorithm that takes in the

deck D�(G) of a connected graph G, and either returns a connected graph

or a failure. We will show that if the algorithm returns a graph G′, then G′

must be isomorphic to G. The condition in the hypothesis that G has a suitable

bridge e and corresponding R and Rc (which are all initially unknown) is only

used to show that the algorithm will definitely output a graph.
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The idea of the procedure is to create a finite list of candidate graphs guaran-

teed to contain both components of G−e, and then test all pairs of such graphs

glued together in every way that could feasibly reconstruct G. This latter step

is refined by using leaf extensions to indicate how these gluings occur. The

key point is to show that we can identify when such a construction actually

produces G and then terminate.

Given any connected graph H on at most � − 1 vertices and a deck D�(G),

we can check directly from the cards whether there is an induced copy H ′ of H
in G for which |V (B1(H

′, G))| ≥ �. Say that a graph H is confined if no

such copy of it exists. For every confined connected graph H and every leaf H-

extensionHext ofH , we can apply Lemma 14 to reconstructm1(Hext, G). Recall

that this is the number of induced copies ofH in G whose 1-ball in G is obtained

by adding a pendant vertex connected at a specified vertex, so a positive value

would signal an extension that might correspond to a component of G − e

(with the extending edge corresponding to the bridge). To form our collection

of candidates, let Hext denote the set of isomorphism classes of all leaf H-

extensionsHext for whichm1(Hext, G) > 0 andH is a confined connected graph.

We now consider all pairs (Cext, Dext) of elements from Hext for which

|Cext|+ |Dext| = n+ 2 and |Cext| ≤ |Dext|.

Let

Cext=(C+, VC) and Dext = (D+, VD),

where C = C+[VC ] and D = D+[VD] denote the corresponding labelled sub-

graphs. Let N(Cext, Dext) be the number of induced copies of C in D whose 1-

ball in D+ is an induced copy of C+. That is, we count the induced copies of C+

in D+ where the extending edge of D+ is either unused or is the extending edge

of C+. If m1(Cext, G) > N(Cext, Dext), then the algorithm terminates and out-

puts the graphG′ formed by taking disjoint copies of C+ andD+ and identifying

their extending edges as given by the extensions. Ifm1(Cext, G)≤N(Cext, Dext),

we continue on to the next pair of elements of Hext. If we have checked every

suitable pair of elements from Hext without outputting a graph, then we termi-

nate with a failure.

Let us first verify that if the algorithm returns a graph, it must be isomorphic

to G. We will later use our assumptions on G to argue that the algorithm does

output a graph when the input is D�(G), which shows that G is reconstructible.
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It is useful to highlight that every leaf extension Dext = (D+, VD) with

m1(Dext, G) > 0 has a unique partner that we will denote by Dext, which is the

leaf extension that produces a graph isomorphic to G when joined with Dext as

described above: the condition m1(Dext, G) > 0 together with the connected-

ness of G imply that D is a component of the graph obtained by deleting the

extending edge eD, and its partner comes from extending the other component

(with vertex set V (G)\VD) by the same edge eD. Note that |Dext|+|Dext|=n+2,

where the vertices of eD are counted twice.

Suppose that algorithm outputs the graph G′ and that we terminated

with (Cext, Dext), so this is a pair which produces G′. We know

that m1(Dext, G) > 0 because Dext ∈ Hext, so Dext has a unique partner Dext

(unknown to us) and it suffices to show that Dext
∼= Cext as leaf extensions. We

first claim that if an induced copy of C contributes to m1(Cext, G) (by definition

of m1, this means that its 1-ball in G is isomorphic as a C-extension to Cext),

then it cannot contain the extending edge eD of Dext. Note that |Cext| ≤ |Dext|
by assumption in our algorithm, and |Cext| + |Dext| = n + 2 = |Dext| + |Dext|
which implies that |Cext| = |Dext|. Thus, an induced copy of C (which has

size |Cext| − 1) that contains eD cannot fully contain either VD or V (G) \ VD.

Since G is connected, the 1-ball of such an induced copy must then add at

least one vertex from each of VD and V (G) \ VD, so it does not contribute

to m1(Cext, G), as claimed. It follows that

(6) m1(Cext, G) = N(Cext, Dext) +N(Cext, Dext).

In order for the algorithm to have terminated with (Cext, Dext) we must

have m1(Cext, G) > N(Cext, Dext), so from (6) we see that N(Cext,Dext) ≥ 1.

This, together with the fact that |Cext| = |Dext|, implies that Cext
∼= Dext as

leaf extensions.

Finally, let us argue that the algorithm does terminate when the input is

the �-deck of a graph G satisfying the assumptions of the lemma. Let e be a

bridge as in the hypothesis of the lemma, and let the components of G− e be R

and Rc. From (6) we see that m1(Rext, G) = N(Rext, Rext)+1, where Rext, Rext

are the (unique) leaf-extensions of R and Rc. By the assumption that G

has no induced subgraph H isomorphic to R or Rc with |V (B1(H,G))| ≥ �,

both Rext and Rext are in Hext. We are therefore guaranteed to be able to find

at least one pair, namely (Rext, Rext), amongst our candidates that will lead to

termination.
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We remark that the only place where we used the existence of an edge e that

splits G into “nice” components R and Rc was to ensure that the algorithm

output a graph. One can try to use the algorithm to reconstruct graphs when-

ever the deck is known to correspond to a connected graph, and the algorithm

will either output the graph, or a failure (in which case one needs a different

approach).

With the preceding lemma in hand, the proof of Lemma 12 boils down to

showing that any tree with large enough diameter (depending on both n and �)

does have a bridge which splits the tree into “nice” components, and so satisfies

the conditions of Lemma 16.

Lemma 12: Let �, k ∈ {1, . . . , n} with k > 4
√
� + 2(n− �). If T is an n-vertex

tree with diameter k−1, then T can be reconstructed amongst connected graphs

from its �-deck provided � ≥ 2n
3 + 4

9

√
6n+ 7 + 11

9 .

Proof. Fix k, � ∈ [n] with k > 4
√
� + 2(n − �) and � ≥ 2n

3 + 4
9

√
6n+ 7 + 11

9 .

Let T be a tree and suppose that a longest path in T contains exactly k vertices.

We wish to show that T has a suitable bridge that satisfies the assumptions of

Lemma 16 so that we can conclude it is reconstructible amongst connected

graphs from its �-deck.

Fix a longest path in T with k vertices. Let R and S be the rooted subtrees

obtained from T by removing the central edge of the path if k is even, or one of

the two central edges if k is odd (and rooting the subtrees at the vertex which

had an incident edge removed). This S plays the role of Rc in Lemma 16, and

since T is unknown, both R and S are also initially unknown. By Lemma 16, if T

has no induced subgraph H isomorphic to R or S with |V (B1(H,T ))| ≥ �, then

we can recognise that this is the case and reconstruct T amongst connected

graphs from D�(T ). We assume, in order to derive a contradiction, that T

contains an induced copy S′ of S with |V (B1(S
′, T ))| ≥ �. Note that, since R

contains at least n− �+2
√
�− 1 vertices, S contains at most �− 2 vertices and

the 1-ball of S contains at most �− 1 vertices.

Set r = n − � and fix an isomorphism ϕ : S → S′. Let P0 be a path in R

containing at least (k−1)/2 vertices and starting at the root of R, so k≤2|P0|+1.

We will proceed by iteratively building a sequence (Pi)
j
i=1 of vertex-disjoint

paths in S to obtain a lower bound on |S|. Since |R|+ |S| = n and |P0| ≤ |R|,
this leads to an upper bound on |P0| and hence on k that will contradict our

initial assumption that k > 4
√
�+ 2(n− �).
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To build the first path in the sequence, consider the intersection of S′ with
the path P0. Since V (S′) 
= V (S), this intersection must be non-empty, and it

must be connected since both T and S are trees, so S′ and P0 intersect on a

subpath Q0. We are assuming that B1(S
′, T ) has at least � vertices (that is, T

has at most r vertices outside B1(S
′, T )), and B1(S

′, T ) has at most 2 vertices

on P0 outside Q0, so altogether |V (Q0)| ≥ |V (P0)| − r − 2.

Now let P1 be the path ϕ−1(V (Q0)) in S and note that P1 is vertex-disjoint

from P0, since P0 is contained in R. Define Q1 to be the intersection of S′

with P1, which is again a path. As before, T has at most r vertices outside

of B1(S
′, T ), and B1(S

′, T ) has at most two vertices on Pi but outside Qi for

each i = 1, 2. Thus, we have |V (Q0)| + |V (Q1)| ≥ |V (P0)| + |V (P1)| − r − 4.

Since |V (Q0)| = |V (P1)|, we conclude that |V (Q1)| ≥ |V (P0)| − r − 4.

We continue to iteratively build our sequence of paths Pi, together with

the sequence of subpaths Qi restricted to S′, as follows: given Pi and Qi,

let Pi+1 := ϕ−1(V (Qi)) and set Qi+1 = Pi+1 ∩ S′ (see Figure 2). We first

note that Pi+1 is disjoint from P0, . . . , Pi. Indeed, since P0 is contained in R,

it is clear that Pi+1 cannot intersect P0. If Pi+1 intersects an earlier path Pj

with j ≥ 1, then a vertex in Pi+1 ∩ Pj would be mapped by ϕ into Qi ∩Qj−1,

which is contained in Pi ∩Pj−1. Hence, the paths are disjoint by induction. By

the finiteness of T , we must eventually reach a j such that

|V (Qj−1)| = |V (Pj)| = 0.

At this point, we have disjoint paths P1, . . . , Pj in S that satisfy

|V (Pi)| = |V (Qi−1)| ≥ |V (P0)| − r − 2i for all i = 1, . . . , j.

In particular, setting i = j to use the fact that |V (Pj)| = 0 shows that

j ≥ (|V (P0)| − r)/2. We may then calculate

|V (S)| ≥ |V (P1)|+ · · ·+ |V (Pj)|

≥
�(|V (P0)|−r)/2�∑

i=1

(|V (P0)| − r − 2i)

=
⌊ |V (P0)| − r

2

⌋⌈ |V (P0)| − r − 2

2

⌉
≥ (|V (P0)| − r)(||V (P0)| − r − 2)

4
.
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Since |V (S)| ≤ n− |V (P0)|, we must have |V (P0)| ≤
√
4n− 4r + 1+ r − 1 and

k ≤ 2|V (P0)|+ 1 ≤ 2
√
4n− 4r + 1 + 2r − 1.

Finally, note that 2
√
x+ 1 − 1 ≤ 2

√
x for all x ≥ 1 to find k ≤ 4

√
� + 2r, a

contradiction.

e

R S

...

Q0

P0
Q1

P1

Q2

P2

Figure 2. The start of a sequence of paths formed by the iter-

ative process in the proof of Lemma 12.

The same argument shows that T has no induced copy R′ of R for which

|V (B1(R
′, T ))| ≥ �. Hence, by Lemma 16 we can reconstruct T from D�(T ).

5.4. Low diameter. The purpose of this section is to prove Lemma 13. Since

this section only considers trees, the ‘number of copies’ is always the same as

the ‘number of induced copies’. For readability, we will count copies instead

of induced copies, but the reader can insert the word ‘induced’ everywhere if

desired.

We will show that any tree T with diameter k− 1 can be reconstructed from

its �-deck for any � ∈ [n] such that

n− � <
n− 3k + 1

3
if k is odd

or

n− � <
n− 3k − 1

3
if k is even,

which together imply the statement directly. These conditions are equivalent

to k < �− 2n−1
3 when k is odd and k < �− 2n+1

3 when k is even. The reason for

the dependence on the parity is that, broadly, our strategy for reconstruction

is to separately reconstruct branches of the tree emanating from its centre: if k

is odd, the centre of T is the vertex in the middle of each longest path, and

if k is even, the centre consists of the two middle vertices. The former case is

easier to work with so when k is even, we subdivide the central edge and reuse
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the argument from when k is odd, making the even case slightly weaker. This

reduction is explained in the final proof of this section.

Our motivation for using the centre of a tree is that it is unique and it does not

depend on the choice of longest path. When the diameter of T is small enough

to identify whether individual cards contain a longest path, we can pinpoint the

centre of T on each of these cards and use this as an anchor for reconstruction.

Let us assume for the majority of this section that T is a tree with n vertices,

the number k of vertices in a longest path in T is odd, and k < �− 2n−1
3 . This

means that k + 1 ≤ � so we can reconstruct k from the �-deck, which we shall

use freely, and that T has a unique central vertex.

Given a vertex u ∈ T with neighbours v1, v2, . . . , va, let the branches at u

be the rooted subtrees B1, B2, . . . , Ba where Bi is the component of T − u

that contains vi, rooted at vi. An end-rooted path is a path rooted at an

endvertex of the path. In this section, all longest paths Pk will be rooted at the

central vertex c, and are hence not end-rooted, whilst all of the shorter paths

mentioned will be end-rooted. Given two rooted trees T1 and T2 with roots u

and v respectively, let T1 � T2 denote the (unrooted) tree given by adding an

edge between u and v (see Figure 3).

Figure 3. An example of the operation T1 � T2 .

By restricting our attention to the cards that have diameter k − 1, we may

assume that we can always identify the centre of the graph. Our basic strategy is

to reconstruct the branches at the centre separately, knowing that we can later

join them together using the centre as a common point of reference. This can be

done via a counting argument when all branches at the centre have at most �−k

vertices, but when one branch is ‘heavy’ and contains many (at least � − k) of

the vertices, a slightly more finicky version of the argument is required. This

is because such a branch cannot be seen on a single card containing a longest

path that is disjoint to it. It is possible to recognise these cases from the �-deck.
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We first address the simpler situation without heavy branches to illustrate the

method.

Lemma 17: If T is a tree with even diameter k − 1 for which every branch

at the centre has fewer than � − k vertices, then T is reconstructible from the

subset of the �-deck consisting only of cards which contain a copy of Pk.

Proof. Let c be the central vertex of T , and let B = {B1, . . . , Ba} be the

branches at c that we wish to reconstruct. If one of the branches at c has

at least � − k vertices, then there must be a card containing a longest path

with a branch of at least � − k vertices (the branch and the path need not be

disjoint, but their union contains at most � vertices). Thus we can recognise

from the �-deck that all branches in B have fewer than �− k vertices.

We first reconstruct all branches that are not end-rooted paths. For any

fixed B (of size at most � − k) which is a rooted tree but not an end-rooted

path, we will use Lemma 9 to count each branch at c isomorphic to B once for

every Pk in T . Dividing this number, denoted NB, by the number nPk
(T ) of

copies of Pk in T then tells us the multiplicity of B in T (which may be zero).

Note that nPk
(T ) can be determined using the proof of Kelly’s Lemma, the fact

that k < � and the observation that nH(C) = 0 whenever C does not contain a

copy of Pk.

Our main goal now is to reconstruct NB. We will determine NB in two parts.

Let πB be the number of pairs consisting of one copy B′ of B that is a branch

at c, and one copy P ′
k (rooted at its centre as usual) of a longest path that is

disjoint from B′. Similarly, let τB count pairs (B′, P ′
k) where the copy P ′

k of Pk

intersects B′. It is clear that NB = πB + τB.

We begin with πB. Let G be the family of all n-vertex trees with diameter k−1

and where all branches from the centre have fewer than �−k vertices. Let F be

the family of graphs of the form Pk � S, where S is a non-empty rooted tree

with less than �−k vertices that is not an end-rooted path and Pk is rooted at its

central vertex (see Figure 4). Fix G ∈ G and consider some F ∈ F . If P ′
k � S′

is a copy of F in G, then it is contained in a unique maximal F -subgraph,

namely P ′
k together with the unique branch B′ containing S′. Note that this

would not be true if end-rooted paths were allowed since P ′
k � S′ might then

also be contained in a different maximal F -subgraph P ′′
k � B′′, where S′ is

contained in P ′′
k and B′′ is a branch that contains half of the original P ′

k. Also,

since B′ has fewer than �−k vertices, these maximal elements have fewer than �
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vertices and are therefore in F . Note also that our deck contains all cards which

contain an F -subgraph, since each F -subgraph contains a copy of Pk. Thus, by

Lemma 9, we can reconstruct the number of F -maximal copies of F in G for

each F ∈ F . This is non-zero for F = Pk � S if and only if πS 
= 0.

c

S

Pk

∈ F c

S

P k−1
2 +1

∈ F ′

Figure 4. Elements of F and F ′.

In fact, the number of F -maximal copies of F = Pk � B is exactly πB. To

see this, consider a particular copy B′ of B that occurs as a branch and observe

that F occurs as a maximal F -subgraph with this B′ as the copy of B once for

every longest path in the tree which avoids B′.
There is a similar argument to determine τB . Keeping G as before, let F ′ be

the family of graphs of the form P(k+1)/2 � S where S is a rooted tree that

contains an end-rooted P(k−1)/2 but is not itself an end-rooted path. Again,

an element F = P(k+1)/2 � S is F ′-maximal when S is an entire branch, and

for any G ∈ G and F ∈ F ′, we can reconstruct the number of F ′-maximal

copies of F in G by Lemma 9. This time there is at least one F ′-maximal copy

of F = P(k+1)/2 � S if and only if G has a branch isomorphic to S (although

we do not need to use both directions explicitly).

Let mF ′ be the number of F ′-maximal copies of F ′ formed as P(k+1)/2 � B

in T , which we can reconstruct as argued above. A particular copy B′ of B
that occurs as a branch contributes 1 to mF ′ for each copy of P(k+1)/2 that

starts at the central vertex c and is disjoint from B′. Thus, letting nP•(B) be

the number of end-rooted copies of P(k+1)/2 in B′ with root at the root of B

(this is the same for any copy of B and does not depend on the deck), one can

construct all of the copies of longest paths that intersect B′ by gluing together

one P(k+1)/2 from inside B′ and one that is disjoint from it. Doing so for every

copy of B shows that we can reconstruct τB = mF ′ · nP•(B). The number of
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copies of B that occur as a branch at c can then be reconstructed as

NB

nPk
(T )

=
πB + τB
nPk

(T )
.

It remains to determine the number of branches isomorphic to an end-rooted

path Pj , which we will do using the fact that we know all of the other branches

not of this form. Initially, let T̃ be the tree obtained by gluing all of the branches

that we have found so far at a single vertex c. In case T̃ does not yet have a copy

of Pk, update T̃ by attaching up to two end-rooted paths of length (k − 1)/2

at c (add the smallest number necessary for T̃ to have at least one Pk). We will

identify and glue in the remaining path branches in T that are missing from T̃

in decreasing order of length, so start by setting j to be (k−1)/2: the maximum

possible length of a path branch. Let Sj denote the graph obtained from Pk by

adding a path of length j to its central vertex.

We can count the number of copies of Sj in T using the proof of Kelly’s

Lemma, as they only appear on cards that contain a longest path. We can also

count the number of copies of Sj in T̃ directly as, although T̃ is growing and

can have more than � vertices, we have really constructed T̃ and do not need to

refer to the cards to look at it. If there are more copies of Sj in T than in the

current T̃ , then there must be at least one more end-rooted Pj as a branch. We

then update T̃ by gluing in this new path branch at c, and repeat this step with

the same j. If the counts match, then reduce j by 1 and continue iteratively. By

handling the different path lengths in decreasing order, we avoid overcounting

shorter paths that are contained in unknown longer paths. Once j = 0, we

terminate and output T̃ . At this point, we have reconstructed all branches and

the final T̃ is exactly T .

c

B′

P k−1
2 +1

Figure 5. A tree containing three longest paths that avoid B′

(so πB = 3), and three longest paths that use B′ consisting of

a P(k+1)/2 outside B′ and a P(k−1)/2 inside (so τB = 3).
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We now consider the case where one of the branches at the centre of T has

at least � − k vertices. This is so many that we can find a card showing all

the other branches at the centre in their entirety, which then reduces the prob-

lem to reconstructing the large branch. In order to do this, we will move the

“centre” one step inside the branch and continue doing this until no branch at

the new centre is too big. This collection of branches can be reconstructed by

essentially applying the proof of the previous lemma with minor modifications.

Importantly, the condition that T has small diameter ensures that we do not

have to take too many steps away from the true centre.

The following lemma sets up for this process. We shall call a branch i-heavy

if it contains at least � − k − i vertices (a heavy branch is 0-heavy), and say

it is outward if it does not contain the centre of the tree. When we wish to

talk about a branch at a vertex within a specific card, we will call it a partial

branch to emphasise that it need not be a branch of T . Recall that r := n− �.

Lemma 18: Let T be a tree with even diameter k − 1 (where k < � − 2n−1
3 )

and central vertex c, and suppose we are given exactly the cards in D�(T ) that

contain a copy of Pk. For any 0 ≤ i ≤ (k − 1)/2,

(i) each vertex can have at most one i-heavy branch;

(ii) there is at most one vertex ci at distance i from c with an i-heavy

outward branch;

(iii) we can recognise whether there is a vertex ci at distance i from c with

an i-heavy outward branch;

(iv) if there is such a ci, then we can find a card among those we are given

on which we can identify ci and the root of its i-heavy branch, and all

smaller branches at ci are present in their entirety. In particular, we

can completely determine the isomorphism classes of all of these smaller

branches.

Proof. Since i ≤ k−1
2 and k < �− 2n−1

3 by assumption, we first deduce that

�− k − i ≥ �− 3k − 1

2
> �− 3(�− (2n−1)

3 )− 1

2
=

2n− �

2
>

n

2
.

This proves (i), as the branches at a vertex are pairwise disjoint. Similarly,

if two distinct vertices ci and c′i are both at distance i from c, then the only

branch at ci that can share a vertex with a branch at c′i is that containing c.

Thus, the previous calculation also proves (ii). For (iii), suppose that T does
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have a vertex ci at distance i from c with an i-heavy branch B not containing c.

The subtree formed by taking a copy of Pk together with the path of length i

from c to ci and any (� − k − i)-vertex subtree of B containing the root has

at most k + i + (� − k − i) = � vertices. Note that there may be some overlap

between the vertices in the copy of Pk, the vertices in the path from c to c′, and
the vertices in the subtree of B, and this subgraph may have less than � vertices.

However, there will still be a card C with � vertices which has a subtree of this

form. It follows that T has a vertex ci at distance i from c with an i-heavy

branch if and only if it has a card containing a subtree of the aforementioned

form.

Assuming that there exist ci and B as above, we claim that the desired card

in (iv) can be found as follows: from among the cards we have (all with a copy

of Pk so we can identify c), take a connected card C in which the maximum

number of vertices in any partial outward branch at any vertex with distance i

from c is as small as possible. There are only r + k + i vertices not in B, so C

must still see at least �− r−k− i vertices of B. On the other hand, every other

partial branch at ci has at most r+k+ i vertices, which is less than �−k− i− r

since

r + k + i ≤ n− �+ k +
k − 1

2
<

2n− 2�+ 3(�− 2n−1
3 )− 1

2
=

�

2
.

This means that we can identify the vertex ci as the unique (by (i) and (ii))

vertex at the correct distance from c with a partial outward branch of size at

least �− k− i− r, and the root of this partial branch is the root of the i-heavy

branch in T . Moreover, by the minimality of the count used to select C, all

other partial branches at ci must actually be present in their entirety; that is,

they are isomorphic to the non-i-heavy branches at ci in T .

Lemma 19: If T is a tree with even diameter k − 1 (where k < � − 2n−1
3 )

for which the centre c has a branch containing at least � − k vertices, then T

is reconstructible from the subset of the �-deck consisting only of cards which

contain a copy of Pk.

Proof. With i = 0 in Lemma 18, we can recognise whether there is a branch

at c with at least �− k vertices, and there is at most one such branch.

Starting with c0 = c, we construct a sequence c0, c1, c2, . . . of vertices to act

as new “centres” until we reach a vertex cj whose branches are all small enough

for us to apply Lemma 9.
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For the first step, let c1 be the root of the 0-heavy branch, which is adjacent

to c. Applying Lemma 18 with i = 1, we can recognise whether any neighbour

of c has a 1-heavy outward branch. If not, then the branches at c1 all have less

than � − k − 1 vertices and we terminate with j = 1. Else if there is such a

1-heavy outward branch, then it follows from statement (ii) of the lemma that

it must be at c1. In addition, statement (iv) allows us to determine all but the

1-heavy branch at c1.

Now set c2 to be the vertex in the 1-heavy branch that is adjacent to c1 and

iterate as follows. In the ith step we check if there is a vertex at distance i

from c with an i-heavy outward branch. If there is not, then all the outward

branches at ci have less than � − k − i vertices and we terminate with j = i.

Otherwise, there is only one such vertex and this must be ci. Set ci+1 to be

the root of the unique i-heavy outward branch at ci and completely determine

all of the smaller branches at ci. The fact that we can do this is guaranteed

by Lemma 18 provided i ≤ (k − 1)/2. To see that this condition holds, we

note that our procedure builds a path in T with one endvertex at c. Since each

step increases the length of this path by 1 and the longest path in T contains k

vertices, we can take at most (k − 1)/2 steps before terminating.

Suppose the process terminates at the jth step, where j ≤ (k − 1)/2. The

remainder of the argument closely follows the proof of Lemma 17. Let G be the

family of n-vertex trees with diameter k − 1.

Let B be a rooted tree which is a potential branch for cj (so of size at

most � − k − j). We wish to determine the number of outward branches at cj

isomorphic to B, which will reconstruct T . We first consider the case in which B

is not a path.

Again, we start by computing “branches hanging off a central path”. To be

precise, πB is the number of pairs (S, P ) where S ⊆ V (T ) induces an outward

branch isomorphic to B at a vertex at distance j from c, P ⊆ V (T ) induces a

path of length k and P ∩ S = ∅.
Let F be the family of graphs that can be constructed as follows.

Let i ∈ {0, . . . , j − 1}, let v1, . . . , vk be the vertices in a copy of Pk and

let u1, . . . , uj−i be the vertices in a (disjoint) copy of Pj−i. A graph in F
is formed by adding an edge from u1 to v k+1

2 +i, and then attaching a rooted

tree S which is not an end-rooted path to the vertex uj−i. The condition that

the attached tree is not a path ensures that it is easy to distinguish the copy
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of Pk and the added tree in any F -graph. Two examples are given in Figure 6.

S

...

Pk

c c1 c2

c3

cj

S

...

Pk

c

c1

cj

Figure 6. Potential elements of F along with their ‘moving centres’.

Each F -subgraph of G ∈ G is contained in a unique maximal F -subgraph,

given by extending the tree attachment to the whole of the relevant branch

at uj−i. Applying Lemma 9 allows us to determine the number of occurrences

of each maximal F -subgraph, as we did in the proof of Lemma 17. Here we use

the fact that there is no vertex at distance j from c with a j-heavy outward

branch, and so indeed all sought-after subgraphs fit on the cards. Note that

indeed we count each branch once per longest path which is disjoint from it.

Next, we count “each branch once per longest path intersecting it”. To be

precise, let σB denote the number of pairs (S, P ) where S ⊆ V (T ) is the vertex

set of an outward branch isomorphic to B at a vertex at distance j from c,

and P is the vertex set of a copy of Pk with P ∩ S 
= ∅.
Let F ′ be the family of graphs of the form P(k−1)/2+j+1 � S where S is

a rooted tree that contains an end-rooted P(k−1)/2−j but is not itself an end

rooted path. An element F = P(k−1)/2+j+1 � S is F ′-maximal when S is

the entire outward branch, and we can reconstruct the number of F ′-maximal

copies of each F in G using Lemma 9 as in Lemma 17. We obtain τ(B) by

multiplying the number of F ′-maximal graphs (for S = B) by the number of

end-rooted paths contained in B.

The number nPk
(T ) of Pk in T can again be obtained using the proof of Kelly’s

Lemma. The total number of outward branches from vertices at distance j

from c isomorphic to B is given by πB+τB
nPk

(T ) . This includes all the outward

branches at cj , but also outward branches at other vertices. However, we have

already reconstructed all of the tree except for the outward branches at cj , so
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we can subtract the counts for all the outward branches not at cj from the total:

the remainder must be attached at cj .

Finally, we reconstruct the end-rooted paths attached at cj using a similar

argument to that at the end of the proof of Lemma 17. Build the subtree T̃

of T (rooted at cj) that includes all of the branches reconstructed thus far:

the only parts of T missing from T̃ are the outward branches of cj that are

end-rooted paths. We will add end-rooted paths of length i to cj in T̃ , starting

with i = k−1
2 − j: the maximum possible path length of an outward branch

at cj as the tree has diameter k − 1.

Let H0 be the smallest subgraph of T̃ that contains cj and a path of length k.

Then let Hi be the graph obtained from H0 by adding an edge between a path

on i vertices and the vertex cj in H0. We compute the number of subgraphs

isomorphic to Hi in T using the proof of Kelly’s lemma, and in T̃ by inspection.

If the count in T is the same as the count in T̃ , then we decrease i by 1,

terminating once i = 0 with the current T̃ . If the counts are not the same, we

add a path of length i to the root vertex cj in T̃ . Our procedure adds path

branches from the longest possible length to the shortest so that our counts are

not inflated by subpaths of longer paths, meaning the discrepancy in counts can

only arise from path branches of cj in T that are missing in T̃ . At the end of

this procedure, we have reconstructed T as T̃ .

Lemma 13: Let �, k ∈ {1, . . . , n} with k < � − 2n+1
3 . If T is an n-vertex tree

with diameter k − 1, then T is reconstructible amongst trees from its �-deck.

Proof. If k is odd, then by Lemma 19 we can reconstruct T from its �-deck

provided k < � − 2n−1
3 , which is slightly better than the bound claimed in the

statement.

Suppose that k is even. This means that there is a central edge instead of a

central vertex, but this is only a minor inconvenience. Indeed, let T ′ be formed

from T by subdividing the central edge, and consider a new partial deck D′

formed by subdividing the central edge in every card in D�(T ) which contains a

longest path, and discarding cards which do not contain a longest path. Then D′

is the subdeck of the (�+1)-deck of the tree T ′ consisting of the cards containing
a longest path in T ′. Note that the tree T ′ has k + 1 vertices in a longest path

and that k + 1 < �+ 1− 2(n+1)−1
3 by our choice of k and �.

If a branch at the centre c of T ′ has size at least �−k (which we can recognise),

then we are done by Lemma 19. If not, then we are done by Lemma 17.
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6. Conclusion

The example in Figure 1 shows that Nýdl’s lower bound of � ≥ �n/2� + 1 for

the � such that no two non-isomorphic trees have the same �-deck is not sharp

for n = 13. However, it is still the best known lower bound for all other values

of n. It may well be the case that Conjecture 3 is asymptotically true, or even

true exactly for large enough n.

Problem 1: Is there a function �(n) = (1/2+ o(1))n such that all n-vertex trees

can be reconstructed from their �(n)-deck?

For the problem of reconstructing the degree sequence, let � = �(n)

be the smallest integer such that the degree sequence of every n-vertex graph can

be reconstructed from the �-deck. We have shown in Theorem 7

that �(n) ≤ √
2n log(2n) + 1. It is easy to obtain a lower bound of the

form �(n) = Ω(
√
logn): indeed, each �-vertex graph appears at most

(
n
�

)
times

in the �-deck, so there are at most (n�)2
�2

possible �-decks. There are Ω(4n/n)

possible degree sequences as determined by Burns [11], and hence we need

2log2(n)�2
�2 ≥ 22n−log2(n), which implies the bound. By considering restricted

graph classes, this can be improved slightly, but it would be interesting to see

whether the lower bound can be improved to nε for some ε > 0.

In a different direction, it would be interesting to determine how large �

needs to be in order to recognise the k-colourability of a graph on n vertices

from its �-deck. A special case of a result of Tutte [36] from 1979 states that

the chromatic number of a graph is reconstructible when � = n−1, but nothing

more is known in the direction of taking smaller cards. An interesting starting

point would be to pinpoint the threshold for recognising whether a graph is

bipartite (2-colourable). In this case, a lower bound of �n/2� follows from the

example of Spinoza and West [33] mentioned in the introduction (consider a

path and the disjoint union of an odd cycle and a path). Manvel [27] proved

that the (n − 2)-deck suffices, but it seems likely that it should be possible to

determine bipartiteness when a linear number of vertices are removed. More

generally, for fixed k, it may even be true that k-colourability is recognisable

from the cn-deck for some c = c(k) < 1.
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