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Abstract

5G networks will support different industry verticals with very diverse service require-
ments. These diverse services in a likely scenario are handled in isolation from each
other on virtually separate networks (called network slices). While the concept of net-
work slicing is valid for an end-to-end network, we focus on Radio Access Network
(RAN) Slicing. Slicing requires (dynamic) reservation of resources for each slice in ad-
vance. The reservation of resources for each slice from a common pool of resources
requires prediction of their resource demand for a future time interval which depends
on the timescale of resource re-allocation. Moreover, the resource allocation problem
in a sliced RAN is an optimisation problem that has been motivated to be addressed by
artificial intelligence techniques.

In this thesis, we design and assess a multi-slice resource allocation framework that
is based on machine learning techniques (subset of artificial intelligence techniques).
The proposed framework employs two machine learning techniques namely, artificial
neural networks and reinforcement learning for resource management in sliced RAN.
Alternative multi-slice resource allocation methods that involve only artificial neural net-
works but not reinforcement learning are also defined.

A scenario-based analysis is used to evaluate the proposed framework. We consider
the specific use case of an ambulance that represents an emergency scenario. The
use case involves so-called priority applications that need network assistance for their
operation. The examples of such applications include road-traffic coordination to enable
quick transportation of an ambulance to and from the place of incidence and remote
connection of the ambulance with the specialists at a hospital. The applications are
mapped to two so-called priority slices, namely medical and transport. The resource
allocation problem is then defined for the above-mentioned priority slices and a third
so-called background slice.

For the evaluation of the proposed framework, a system-level simulator is developed
incorporating realistic characteristics of the considered scenarios, suitable propagation
aspects and traffic models. The proposed framework is compared with the alternative
methods. Moreover, a non-slicing-based resource management method known as pri-
ority scheduling is evaluated as a baseline. For the purpose of performance evaluation,
various performance metrics are defined which capture both performance (w.r.t. QoS
satisfaction of the priority applications) and the cost of resource reservation/assignment.

Based on the simulation assessment of the considered resource management meth-
ods, it is found that the proposed framework which uses both artificial neural network
and reinforcement learning performs the best in all the considered scenarios in terms
of the bottom-line metric, namely the weighted average utility of the priority classes.
In essence, the proposed framework which employs reinforcement learning makes the

v
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resource allocation decisions robust against errors introduced by various sources such
as inaccuracy in demand predictions, change in the policies of the slice owners and/or
network operator or variation in the load and traffic characteristics.
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1
Introduction

The 5th generation of mobile networks (5G) will facilitate very diverse services from dif-
ferent industry verticals such as healthcare, smart-automotive, smart city and entertain-
ment, each having very diverse and often conflicting requirements from a telecom net-
work. These services can be classified into three broad categories, namely enhanced
mobile broadband (eMBB), massive machine-type communication (mMTC) and ultra-
reliable low-latency communication (URLLC). The present telecommunication network
is largely a “one-size-fits-all” type of network, where the traffic of all applications follow
the same pipeline. In a diverse service environment, deployment of a separate network
infrastructure for each service class appears as a more attractive option because of
its potential benefits in service performance isolation and data security [59]. However,
deploying separate infrastructure is infeasible due to huge capital investments. To aid
resource sharing in a diverse service environment, network slicing has been proposed
as a key technology for future mobile networks [59]. Network slicing allows the mobile
network infrastructure to be logically separated into various virtual networks called net-
work slices. A network slice is an end-to-end (including radio access network (RAN),
transport and core network) logically self-contained network over the infrastructure of
a telecommunication network [54]. Each network slice may be customized to support
specific services and contains a set of network functions and resources abstracted from
a common pool of physical network resources. Network slicing enables efficient infras-
tructure and spectrum sharing among entities demanding very diverse requirements
from the network. These entities called tenants or slice owners own a slice. Tenants
can be virtual mobile network operators (vMNOs) or over-the-top service providers or
users in vertical industries such as smart-automotive, healthcare, e-agriculture, smart-
city and entertainment.

Network slicing can be seen as infrastructure as a service and involves the creation
and provision of fully functional virtual networks to tenants. These virtual networks share
the physical computing, storage and networking resources. The concept of network
slicing could be envisioned due to the development in the fields of software-defined
networking (SDN) and network function virtualization (NFV) [59]. SDN and NFV are
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in fact considered as the key technology enablers for network slicing in 5G networks.
SDN is a technology that enables dynamic and programmable network configuration
to improve network performance and monitoring. In SDNs, the network intelligence is
centralised in a control plane which is in charge of traffic routing decisions. The control
plane is separated from the underlying data plane, that controls the traffic forwarding
process. NFV is the softwarization of network functions such as traffic analysis (quality
of experience (QoE) measurements), switching and security functions (firewalls, spam
detection). In NFV, virtual network functions are created that can run on general-purpose
hardware or clouds. Both SDN and NFV have provided flexibility in network deployment
and customization and enabled automation of network resource allocation.

1.1. Motivation

End-to-end network slicing includes slicing of the core network, transport network and
the radio access network. In this thesis, we focus on RAN slicing. Two major objectives
have been identified for a RAN slicing solution [16]. First, to achieve slice independence
by ensuring performance isolation. Performance isolation means that the performance
of the services in a slice is unaffected by traffic dynamics in other slices. The second
objective is to allow adaptive sharing of RAN resources among slices, to enable multi-
plexing gains [16]. It is noted that RAN resources include radio processing hardware,
power, antennas and the wireless frequency spectrum. However, the frequency spec-
trum is considered as the most important RAN resource due to its high cost and scarcity
in nature. In this study, like most related studies, we focus only on the frequency spec-
trum as a shared resource.

Many recent works have focused on RAN slicing architecture development, imple-
mentation [16] and resource allocation schemes [57]. However, in these studies, the
authors have assumed that the slice resource requirement is known at each resource
allocation interval based on a pre-defined traffic model. This assumption is not always
valid in real-world and time-variant wireless networks [57]. In order to enable adap-
tive spectrum sharing in a sliced RAN such that service performance is guaranteed
and system resource utilization is maximised, it is essential to forecast the resource
demand of the slices dynamically. In this thesis, we focus on the research question of
slice resource demand prediction and multi-slice resource allocation in RAN slicing. The
resource demand prediction methods, proposed in related works address the scenario
where network slices have network traffic that is virtually active at all times. Conse-
quently, these methods are not suitable for slices which are only occasionally active in
a cell and additionally for short duration. An example would be a slice dedicated to an
ambulance provider, handling mobile traffic generated by the ambulances during their
journey. We address such a use case in this study. Chapter 5 details the use case.
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1.2. Contributions

The slice resource demand forecasting is an essential element for a practical RAN slic-
ing framework [57]. Use of artificial intelligence (AI) has been motivated in literature to
address the slice resource allocation problem based on slice resource demand forecast-
ing. The AI-based methods can be divided into two classes based on their respective
approaches to solve the slice resource allocation problem. The first class employs time
series forecasting using, for example statistical methods like autoregressive integrated
moving average (ARIMA) [63], or more sophisticated machine learning methods like
long short-term memory (LSTM) [11] to get slice resource demand and an allocation
based on the demand. The second class of methods is based on reinforcement learn-
ing (RL) techniques that adaptively estimate the resource requirement for each slice and
tune or learn the resource allocation strategy online based on observed system perfor-
mance. Both classes use substantial amount of relevant slice historical data to make
decisions on resource allocation. Furthermore, reinforcement learning techniques pro-
posed in the literature have the drawback of slow convergence to an optimal policy due
to complex and large state/action spaces (details in Section 4.2). Hence, the proposed
methods are not suitable for many practical scenarios (e.g. emergency ambulance net-
work slice), where the availability of slice historical data is limited and hence optimal
decision rules cannot be learnt.

In this thesis, we overcome the above-mentioned limitations of the state of the art
methods by proposing a novel AI-based RAN slicing resource allocation framework.
More specifically, the major contributions of this thesis include:

1. We develop a neural network-based architecture for the prediction of resource
demand of the slices. The proposed architecture uses the available mobile traffic
statistics to learn to predict the resource demand for a user equipment (UE) call
with given quality of service (QoS) requirements (details in Chapter 8). The sum
over the predicted resource demands of the UE calls in a specific slice gives the
slice resource demand. It is noted that in general, the resource demand prediction
for aggregate slice traffic (as proposed in the literature) is amore accurate estimate
for the actual slice resource demand than the sum over the resource demand
predictions for the calls in a slice. However, the resource demand prediction for
the aggregate slice traffic is based on the historical data of the aggregate resource
usage in a slice. Therefore, it is not suitable in the case when enough historical
data is not available. Information about the expected resource demand of a UE
call with given QoS requirements may be obtained from various network factors
(details in Chapter 8), independently from historical resource usage information.
Therefore, in the proposed method we make use of resource demand predictions
on a per call basis. This overcomes the limitation of lack of historical data per
network slice.

2. Related to the neural network-based resource demand prediction, we develop
a methodology to enhance the training data for optimal neural network learning
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(details in Chapter 8). The enhancement includes, for example making the training
data more diverse covering aspects of scenarios where the model may be applied.
The proposedmethodology is not limited to RAN slicing and can be applied in other
applications employing neural networks or supervised learning AI techniques for
resource management or dimensioning in mobile networks.

3. Furthermore, we propose a closed-loop architecture that includes the above-described
neural network architecture in cascade with a reinforcement learning block. The
RL block acts as an additional intelligent layer (in addition to the neural network
architecture for resource demand prediction) and is responsible for resource allo-
cation decision-making among all active slices. The resource allocation is done by
adding a suitably learned resource margin for each slice to the demand prediction
of the corresponding slice to compensate for the uncertainty of the demand predic-
tion (details in Chapter 8). The RL block makes the resource allocation adaptive
to the dynamic wireless and cellular system environment. The complete archi-
tecture behaves as a closed-loop system, since the RL block tunes its behaviour
online based on observed system performance (including all active slices). The
proposed RL block is fast in convergence and hence practical thanks to a simpli-
fied definition of state and action space.

4. We carry out an extensive quantitative scenario-based assessment of the pro-
posed AI-based multi-slice resource allocation method, via simulations.

1.3. Thesis outline

In Chapter 2, we firstly present some background information on RAN slicing and multi-
slice resource allocation. A brief discussion on artificial intelligence techniques, in partic-
ular neural networks and reinforcement learning techniques is also provided. In Chapter
3, we clearly define the scope of this study. In Chapter 4, we discuss the related state-of-
the-art works in resource allocation for RAN slicing, presenting their methodologies, key
contributions and drawbacks. We conclude the chapter by highlighting the limitations of
the discussed state-of-the-art methods. In Chapter 5, we describe in detail the use case
considered in this thesis to address the research problem of resource demand predic-
tion and multi-slice resource allocation. Chapter 6 presents the details of the modelling
aspects considered in this study. In Chapter 7, we define the evaluation and key perfor-
mance metrics used for the assessment of the proposed method. Chapter 8 describes
the proposed architecture and methodology to address the resource allocation problem
in RAN slicing. In Chapter 9, we outline the considered scenarios for the evaluation of
the proposed method and analyse the simulation results for each scenario. The perfor-
mance of the proposed method is compared with a baseline and also other alternative
methods for multi-slice resource allocation to illustrate the performance improvement
achieved by our proposed method. In Chapter 10, we conclude our study and propose
directions for further research.
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Background

This chapter is organized as follows. Section 2.1 provides some background informa-
tion of RAN slicing with a focus on the RAN sharing concept, slice requirements and
isolation principles. Section 2.2 describes the radio resource management problem in
a sliced RAN Some background information on AI-techniques, more specifically super-
vised machine learning and reinforcement learning is presented in Sections 2.3 and 2.4,
respectively. In Section 2.4.1, a framework for reinforcement learning called contextual
bandits or contextual multi-armed bandits is also discussed.

2.1. Radio access network slicing

A radio access network is the part of a telecommunications system that provides access
to user devices to other parts of the system via wireless or radio connections. RAN slic-
ing involves sharing of RAN resources among multiple RAN slices. Often, the wireless
frequency spectrum is considered as the most important RAN resource. From the re-
source allocation and scheduling perspective, the time-frequency resources are divided
into time slots and physical resource blocks (PRBs). A PRB is the smallest resource
unit in the frequency domain that can be allocated to a user device for wireless data
transmission. In an orthogonal frequency division multiple access (OFDMA) system,
the frequency spectrum is divided into subcarrier units and a PRB has 12 subcarriers.
Time is divided into slots. In 5G new radio (NR), a slot is the duration to transmit four-
teen OFDMA symbols. It is the smallest unit in the time domain for scheduling the PRB
allocation. In the fourth generation mobile communication standard (long term evolution
(LTE)), the smallest unit in the time domain consisting of 14 OFDMA symbols is called
a transmission time interval (TTI). In LTE, the spacing between the subcarriers i.e. the
subcarrier spacing (SCS) is fixed and is equal to 15 kHz and a TTI is equal to 1 ms.
In 5G NR, there are different variants of SCS viz. 15 kHz, 30 kHz, 60 kHz, 120 kHz,
240 kHz and 480 kHz and the corresponding slot duration viz. 1 ms, 0.5 ms, 0.25 ms,
0.125 ms, 0.0625 ms and 0.03125 ms. This is called the 5G NR numerology. A shorter
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slot (or a larger SCS) allows for faster scheduling decisions required for low-latency and
high-reliability services. The downside of using a larger SCS is higher phase noise and
consequently decreased robustness and less frequency diversity in scheduling. For the
sub 6 GHz band, 15, 30, 60 kHz SCS are allowed and 60, 120, 240 and 480 kHz can be
used for mmWaves [1]. In this thesis, in the context of RAN slicing, we focus on sharing
of resource blocks.

RAN slicing enables service-specific customization of the resources allocated to a
slice to support diverse service characteristics. An example for resource customization
is the use of different sub carrier spacings and correspondingly different slot lengths. 5G
NR provides support for very low latency applications such as ultra-reliable low-latency
communications. A larger subcarrier spacing or a lower transmission interval allow for
flexible and fast scheduling required for URLLC-type communications. Furthermore, 5G
NR supports the so-called mini-slots. A mini slot is defined as the duration to transmit
two, four or seven OFDMA symbols. The support for mini-slots further increases the
flexibility in scheduling PRB allocation.

Slice customization is closely related to the level of isolation between slices and
is affected by how the common physical resources are shared among the slices [55].
Different levels of isolation that can be achieved between slices are discussed in Section
2.1.2

Slicing in the RAN has evolved from the well-known principles of RAN sharing. How-
ever, the objective is not to expand capacity but to enable wider business opportunities
via customization. RAN sharing can be considered as a precursor for RAN Slicing. RAN
sharing is widely adopted by mobile networks and involves sharing of RAN hardware
elements, e.g. antennas and radio heads as well as radio spectrum among different
operators.

2.1.1. RAN slicing requirements

RAN slicing enables handling of spectrum from capacity sharing perspective and also
from customization perspective to meet diverse service requirements in future mobile
networks (5G and beyond). Customization in RAN slices is facilitated by the enhance-
ments in radio resource management to support isolation of resources and flexibility in
resource allocation. Future mobile networks are envisioned to possess the following
high-level characteristics to support RAN slicing:

• Application-specific intra-slice resource allocation policies: intra-slice resource
allocation polices should be re-configurable, enabling the slice owners to allocate
resources according to the service characteristics and requirements in the slice.
For instance, resource scheduling policy in an eMBB slice should allocate radio
resources to the users providing high data rate and/or fairness among users, while
in an URLLC slice, scheduling policy must guarantee the required low latency and
high reliability.

• Multi-slice radio resource management: multi-slice radio resource manage-
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ment policies must allow operators to concurrently maintain various RAN slices
with the required level of radio resource isolation, customization and quality of
service requirements. For instance, URLLC services have stringent latency and
reliability requirements, that often can be satisfied only with static multi-slice radio
resource allocation or hard spectrum slicing. This comes at the cost of effec-
tively lower spectrum efficiency and hence a waste of scarce resources. On the
other hand, for services with relaxed performance requirements dynamic spectrum
sharing or soft slicing may prove to be cost-efficient. Hence, the choice of the type
of slicing depends on the trade-off between more deterministic QoS provisioning
through isolation and a higher resource efficiency through sharing.

2.1.2. Slice resource isolation

The choice of a slicing model depends on the trade-off between the desired level of
isolation between the slices and the efficiency of the utilisation of the underlying physical
resources. The key aspect which controls this trade-off is the timescale of resource
sharing among multiple slices. This can vary from infinite which corresponds to static
resource sharing to extremely dynamic, i.e. no slicing and just scheduling. Anything
in between would be slicing with dynamic assignments with two hierarchical allocation
layers: allocation of resources to slices and intra-slice scheduling.

• RAN slicing model with static resource sharing

Static resource sharing between RAN slices is achieved by allocating a dedicated
portion of spectrum to each slice for the lifetime of the slice. This approach pro-
vides functional isolation among RAN slices. Functional isolation means that a
slice can be independently customized for functionality in terms of radio access
technology, radio frame structure and medium access control (MAC) scheduling
policies [55]. However, static resource sharing model results in inefficient use of
the radio resources (when the resource of one slice is not fully utilized, it cannot
be used by other slices) and offers no statistical multiplexing gains.

• RAN slicing model based on dynamic resource sharing

In this model all slices employ the same radio access technology, have common
physical layer, RAN protocols, control plane and share the same radio hardware
and spectrum [55].

In this model, an infrastructure provider controls the operations of all slices, such
as radio resource allocation through a common scheduler. As can be concluded,
this model enables statistical multiplexing of physical resources but lacks the sup-
port of strict QoS guarantees and functional isolation [55].
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2.2. Resource management problem in RAN slicing

The primary objective of radio resource management in RAN slicing is to efficiently al-
locate RAN resources to various slices while meeting the user QoS requirements [57].
Prior works in efficient resource management in sliced networks have addressed two
distinct problems: slice admission control and multi-slice resource allocation. Slice ad-
mission control refers to the mechanism adopted by an infrastructure provider to ac-
cept slice creation requests by tenants such that the resource efficiency is maximised
and slice service level agreements (SLAs) are guaranteed. In contrast, multi-slice re-
source allocation includes approaches to efficiently share network resources among ac-
tive slices dynamically to maximize resource efficiency and revenue for both infrastruc-
ture provider and slice owners or tenants. This is achieved by minimizing the consumed
resources while guaranteeing the traffic SLAs within a network slice [56].

The existing approaches of resource allocation in RAN slicing can be broadly classi-
fied into two categories, namely model-based methods and artificial intelligence-based
methods. The model-based methods define the resource allocation problem as a con-
strained optimization problem with the objective of maximizing a predefined overall net-
work utility, while satisfying the QoS constraints of admitted slices [57]. The optimal
solution for such problems is identified to be NP-hard [24]. Sub-optimal solutions have
been proposed in prior works for these problems which use heuristics or iterative opti-
mization algorithms.

The use of artificial intelligence techniques has gained recent attention for radio re-
source management (RRM) in mobile networks, especially in network slicing. This is
because AI-based RRM methods offer reduced computational complexity as compared
to the model-based methods [24]. Moreover, AI-based methods can provide accurate
service- or slice-specific traffic predictions [57]. Only with an accurate prediction of slice
traffic or slice resource requirement, effective and efficient resource allocation can be
done to accommodate slice demands for future time periods [57].

AI techniques such as reinforcement learning (RL) and supervised machine learning
provide opportunities to solve the RRM problem in sliced RAN. In the following sections
we present some background on supervised machine learning and reinforcement learn-
ing.

2.3. Supervised machine learning

Supervised machine learning refers to the set of algorithms that learn a function that
maps a set of input variables to an output value based on example input-output pairs.
The example input-output pairs form a labelled training data. The supervisedML infers a
mapping function from the input variables to an output by finding patterns in the training
data and is expected to generalise to unseen situations. Supervised ML is used in
two problem domains namely, classification and regression. In classification, the input
vectors are mapped or categorised into a set of classes. Classifying a picture as that
of a dog or a cat is an example of the classification ML problem. On the other hand, in
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regression the algorithms maps a set of inputs variables to continuous-valued output.
An example for regression ML problem is the prediction of temperature based on input
variables such as region, date, humidity and wind speed.

Various algorithms exist under the class of supervised machine learning. We dis-
cuss three such algorithms in the following sections. These are namely, multiple linear
regression (MLR), random forests (RF) and supervised deep learning or artificial neural
networks (ANN).

2.3.1. Multiple linear regression

Multiple linear regression (MLR) is a supervised ML technique in which a linear relation-
ship is determined between the (multiple) input variables and the output of the defined
ML model in an underlying physical system. A multiple linear regression is expressed
by the following:

𝑦 = 𝑏ኺ + 𝑏ኻ𝑖። + 𝑏ኼ𝑖ኼ + 𝑏ኽ𝑖ኽ + ... + 𝑏፧𝑖፧ (2.1)

where 𝑦 is the output variable, 𝑖ኻ, 𝑖ኼ, ...𝑖፧ are the input variables with 𝑏ኻ, 𝑏ኼ, ...𝑏፧ as their
respective coefficients.

MLR commonly utilises the ordinary least-squares error regression that minimises
the sum of squared errors between the predictions of the output variable and its true
values to find the values of the coefficients that define the linear relationship. However
when the objective is to minimize relative errors between the predictions and true val-
ues, least-squares relative errors which minimizes the sum of squared relative error is
relevant.

2.3.2. Random forests

Random forests is another supervised machine learning algorithm that can be used for
both classification and regression problems. RF is based on the concept of ensemble
learning. In ensemble learning, multiple learning algorithms are combined to solve a
particular problem. Random forests algorithm constructs multiple so-called decision
trees. The training data-set is divided into various subsets. Each subset is assigned to
a decision tree that predicts the output for each subset. The mean of the outputs by the
different trees is the prediction output for the RF. This technique is known as bootstrap
aggregation or bagging.

As decision tree is a predictive model that uses so-called decision making based on
the values of the different inputs in the training data set to make conclusions about the
output. A decision tree consists of so-called nodes at which decisions are taken to move
in a particular direction. The so-called leaf nodes of the tree give the the final output.
In the case of regression, the leaf node represents numeric values and in the case of
classification represent the different classes. A decision tree with five nodes and three
leaf nodes is illustrated in Figure 2.1. When the value of the output is to be predicted
given a single input , the following steps are taken: at each non-leaf node, a decision is
made based on the value of the input until a leaf node is reached which gives the final
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output. For instance, if the value of the input is less than 3, then the output is 10. If it
lies between 3 and 15, then the output is 20 and if the value of the feature is greater
than 15, then the output is 30.

Figure 2.1: An example of a decision tree with five tree nodes.

2.3.3. Supervised deep learning (or artificial neural networks)

Supervised deep learning or deep learning (DL) has emerged as a popular machine
learning technique. It enables to make predictions, classifications, decisions based on
raw data, without explicit feature definition and programming by domain experts [71].

DL allows to approximate complex mathematical functions through a composition of
sum and product operations via units called neurons. The mathematical functions rep-
resent the functioning of real-world systems and are learnt from the data generated by
these systems. DL is employed to perform tasks like classification into multiple classes,
linear and non-linear regression for prediction. A deep learning architecture consists
of layers of neurons. A set of input data travels through these layers to output some
information depending on the model. Hence, there is an input layer, an output layer
and more than one hidden layers, for the architecture to be deep. In a fully-connected
architecture, each neuron of a layer is connected to every other neuron of the adjacent
layer. A deep and fully-connected neural network architecture is illustrated in Figure
2.3. The architecture has two hidden layers, four inputs and is used for classification
into two classes as given by two neurons in the output layer. The connection between
two neurons or equivalently input connection to a neuron has a weight. As data passes
through a neuron, it undergoes some operations as illustrated in Figure 2.2.
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Figure 2.2: Basic artificial neuron structure.

Figure 2.3: Architecture of a deep and fully-connected neural network with two hidden layers.

𝑤። is the weight of the 𝑖፭፡ connection and 𝜎 is the activation function of a hidden layer.
Activation functions allow to learn non-linear relations between inputs and the model
output. Popular activation functions are the sigmoid given by: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = ኻ

ኻዄ፞Ꮍᑩ and
Rectified Linear Unit (ReLU) defined as 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(𝑥, 0). The output of a neuron
𝑛 with 𝑀 inputs is given by :

ℎ፧ = 𝜎(∑
።ፌ
።ኻ 𝑤።𝑥። + 𝑏፧) (2.2)

𝑏፧ is the bias term of a neuron and 𝑥። is the 𝑖፭፡ input.

Forward and backward propagation

The process of function approximation using DL is actually learning the correct weights
of the neural connections. The biases of the neurons remain constant during the learn-
ing process. The weights are learned based on a set of training data. The learning
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and inference processes in a deep neural network are illustrated in Figure 2.4 [71]. In
forward propagation, the input moves through the hidden layers to the output layer. The
input data is processed at each neuron according to Equation 2.2. At the core of the
learning process is the loss function ℒ(w). w is the vector of 𝑤።s i.e. the weights of the
neural connections. It measures the error between the output of the network and the
true output. The objective of learning or training is to find the best weightsw, which min-
imize the loss function ℒ(w). This is achieved by the back propagation through gradient
descent [71].

Figure 2.4: Learning and inference in deep learning [71].

In gradient descent, the weights are updated using the gradient of the loss function
ℒ(w). The update equation is given as:

w = w− 𝜃∇wℒ(w) (2.3)

Here 𝜃 is the learning rate, which controls the step size of moving in the direction indi-
cated by the gradient. In stochastic gradient descent (SGD), the above update is made
for each training data sample. The process is repeated until the algorithm converges.

Three architectures exist under the class of supervised deep learning or ANNs: mul-
tilayer perceptron (MLP), convolutional neural network (CNN) and recurrent neural net-
work (RNN).

Multilayer perceptron (MLP)

DeepMLP is a basic ANNwith at least two hidden layers and a fully-connected structure.
The structure of a deep MLP is shown in Figure 2.3.

The MLP design is easy and straightforward and performs well in feature extraction
problems. Hence, MLPs can be used in models built to solve specific problems in mobile
network applications [71]. In this thesis, we propose a MLP architecture to aid resource
allocation in RAN slicing (details in section 8).
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Convolutional neural network (CNN)

Unlike MLP, CNNs do not have fully-connected layers. Instead they use a set of lo-
cally connected filters to capture correlations between different data regions [71]. This
decreases the number of model parameters to be learnt. CNNs are good in finding
spatial-patterns and hence are commonly used in image processing/recognition appli-
cations.

Recurrent neural network (RNN)

While CNNs are good in finding spatial correlations in data, RNNs can model sequential
data well, where sequential or temporal correlations exist between samples. In a RNN,
the output of a layer not only depends on the input vector but also on the internal state
(memory) of the network. The internal state is updated with every new input. It is a
function of the current input and the previous state. Hence, in this way, a RNN takes
into account the prior inputs to generate an output. Standard RNNs suffer from issues
of gradient vanishing and exploding. As discussed in section 2.3.3, in gradient-based
learning methods (e.g. SGD) and backpropagation, weights of a neural network are
updated in proportion to the partial derivative of the loss function with respect to the
current weight at each iteration of training. In some cases, the gradient might become
very small, preventing the weight from changing its value and possibly stopping the
neural network training. This is called the gradient vanishing problem. On the other
hand, in the exploding gradient problem, large error gradients are encountered with
some activation functions whose derivatives can take large values. This results in very
large updates to the neural network’s weights which prevents the model from learning.
These problems makes it difficult to train RNNs. A variant of RNNs, called long short
term memory mitigates these issues [20]. LSTM RNNs have been proved to perform
well in applications like speech recognition, weather prediction and text categorization.
For more details, readers are referred to [71].

Over-fitting and Under-fitting

A trained neural network model is required to adequately learn the rules of the under-
lying system from the training data and also to generalise well from the training data
to new and unseen sets of input variables (i.e. the sets of input variables that are not
in the training data set). A model that doesn’t meet the above requirements is said to
either over-fit or under-fit the training data. An over-fit model is one that models the
training data so well that it learns the detail and noise in the training data resulting in
less accurate predictions for new data as compared to the training data. On the other
hand, an under-fit model is unable to adequately capture the underlying structure of the
training data and hence it neither models well the training data nor generalises well to
the unseen data. Under-fitting is easily addressed by increasing the model capacity i.e.
using more layers and neurons in the model structure. However, preventing over-fitting
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is a challenging problem. The primary reason for over-fitting is that the model has higher
capacity than required. This means that the information contained in the training set is
not enough to train all the neurons so that the model can actually memorize the training
data. The reason for limited information and hence over-fitting can also be a biased
data set. With proper choice of the hyper-parameters and the training data, over-fitting
can be prevented.

Early stopping and Drop-out method

Early stopping and drop-out are techniques to prevent over-fitting in neural networks.
Dropout involves leaving out some nodes in the neural network during training. Early
stopping prevents the model to assume the weights learnt during the last epoch which
might not be the best weights and might lead to higher errors. Instead, it stops the
training earlier than finishing all the epochs. This is done based on a patience value.
For example, a patience value of 50 means that if during training the errors do not
decrease for consecutive 50 epochs, then the training is stopped and the weights thus
obtained are used.

2.4. Reinforcement learning

Reinforcement learning is the area of machine learning where an agent learns the opti-
mal actions to be taken in various states of an environment with the objective of maxi-
mizing some notion of a cumulative reward or return. It learns the optimal state-action
policy through repetitious trial and error.

On interaction with the environment, the agent receives a reward 𝑟 ∈ 𝑅. The reward
directs the agent towards optimal actions in each environment state 𝑠 ∈ 𝑆. The policy of
an agent is determined by the maximization of total reward over time called return. The
return is computed as ∑𝛾t𝑟፭. 𝛾 is the discount factor that is used to reduce the weight
of future rewards, compared to immediate ones when calculating the return. 𝑡 is the
time instant at which a reward is obtained. The reward function definition determines
the performance of a RL method. Hence, domain knowledge is important to define the
goal of the agent, capturing all relevant aspects of the problem.

In RL, the agent has to take actions given an environment state that maximizes the
total reward. A RL problem is commonly modeled as a decision process that obeys
the Markov property. The Markov property states that the conditional transition prob-
ability (conditional on present and past states) from a state 𝑠፭ to a future state 𝑠፭ዄኻ
depends only upon the present state 𝑠፭, not on the sequence of events that preceded
it [18]. A process with this property is called a Markov decision process. An MDP is
characterised by a known Markovian state transition model. However in RL, the un-
derlying state transition model is unknown in advance but instead is learnt on-line via
agent-environment interactions. The RL problem in an MDP framework is defined us-
ing the tuple: (𝑆, 𝐴, 𝑃, 𝑟, 𝛾), where 𝑆 and 𝐴 are the state and action spaces respectively,
𝑃(𝑠፭ዄኻ|𝑠፭ , 𝑎፭) defines the transition probability from a state 𝑠፭ to state 𝑠፭ዄኻ after taking an
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action 𝑎፭, 𝑟 is the reward function and 𝛾 is the discount factor. The transition probability
distribution (or transition model) and the reward function are often collectively called the
‘model’ of the environment.

The objective of RL is to learn an optimal policy 𝜋∗(𝑠) → 𝑎 ∀𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 that
maximizes the return (expected discounted reward over time). That is,

𝜋∗ = argmax


𝔼 [ ∑፭ፓ፭ኺ 𝑟፭ | 𝜋 ] (2.4)

There are two classes of RL algorithms, namely model-based and model-free. In
model-based RL, the agent learns the transition probability distribution and the reward
function associated with the Markov decision process to learn the policy. In contrast,
model-free RL algorithms do not use the model of the environment to learn an optimal
policy, hence the name ‘model-free’.

Three fundamental challenges exist in solving RL problems. Policy learning in RL
is based on reward observations for various state-action pairs. However, in an MDP
setting, the reward obtained at any time-step is the contribution of a sequence of actions
taken at previous time-steps. Hence, it is challenging to assign an appropriate credit for
the reward to a state-action pair. This is the credit assignment problem in RL.

Second challenge is to address the exploration vs. exploitation trade-off. Choos-
ing actions known to provide maximum reward in a state based on what the agent has
learnt so far is called exploitation. On the other hand, randomly choosing actions is
known as exploration. Exploration allows to expand the agent’s knowledge about its
environment and often leads to a higher return [61]. Various methods like the 𝜖-greedy
algorithm [18] and Thompson sampling [13] are used to handle the exploration problem
in RL. However, exploring all possible state-actions is computationally demanding, es-
pecially in complex environments. Moreover, in real world learning settings, exploration
may lead to drastic outcomes. As an example, consider the case of autonomous driving
where an RL agent has to learn to drive a car. During exploration in the real world, the
agent may take actions leading to outcomes such as crashing into a tree or hitting a
pedestrian. Although the agent will eventually learn not take such actions, these are
drastic outcomes that absolutely cannot occur.

The third challenge is to learn an optimal policy in a reasonable amount of time.
Often RL problems have large state-action space. As the number of states and/or the
number of action increase, the time required to converge to an optimal policy increases
substantially.

Readers are referred to [61] and [18] for a detailed introduction to RL methods.
An important breakthrough in RL was the development of an off-policy temporal dif-

ference (TD) RL algorithm called Q-learning. Q-learning falls under the class of model-
free RL algorithms. Central to Q-learning is a Bellman equation as a value iteration
update [18]. The equation can be viewed as the weighted average of the old value and
some new information obtained after taking an action. Hence, one-step Q-learning is
defined as:
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𝑄(𝑠፭ , 𝑎፭) ⟵ 𝑄(𝑠፭ , 𝑎፭) + 𝜃 × [(𝑟፭ዄኻ + 𝛾 × argmax
ፚ

𝑄(𝑠፭ዄኻ, 𝑎)) − 𝑄(𝑠፭ , 𝑎፭)] (2.5)

where 𝜃 is the learning rate and 𝑄(𝑠, 𝑎) is the Q-value of a state-action pair.

Q-values or the Q-function 𝑄(𝑠, 𝑎) reflect the importance of taking an action 𝑎 in a
given state 𝑠 and thereafter following an optimal policy in terms of the expected return.
Q-learning is called a TD algorithm because the Q-values of a state-action pair can
be updated after every time step or after taking an action. Q-learning is an off-policy
algorithm because the Q-values updates are done using the Q-value of the next state
𝑠፭ዄኻ and the greedy action 𝑎∗፭ዄኻ. Moreover, Q-learning is an iterative algorithm.

Q-learning can identify an optimal action-selection policy for an MDP if infinite ex-
ploration time and a partly-random policy is used [18]. Hence, it needs a lot of iterations
or experience for convergence. In the simplest form, Q-learning involves storing the
Q-values in tables. This approach cannot be used in problems with a huge state/action
space or a continuous state/action space. This is because, in case of a huge state/action
space, the probability that the agent visits a particular state and performs a particular
action gets increasingly small [18]. Q-learning can be combined with function approxi-
mation (FA) to solve problems with huge state/action space [25]. One way to apply FA is
to use an artificial neural network. ANNs are great function approximators [25]. They can
speed up learning by generalizing the agent’s earlier experiences to previously unseen
states. This is called deep Q-learning (DQL) or deep reinforcement learning (DRL). In
DQL, a neural network is trained such that it approximates, given a state, the Q-values
for each possible state-action pair. For training, the neural network weights, given by
weight vector w are updated to minimize a loss function at each step 𝑘. The loss func-
tion in DQL is described as follows:

𝐿፤(w፤) = 𝔼፬,ፚ,፫,፬ᖤ (.) [(𝑦፤ − 𝑄(𝑠, 𝑎;w፤))ኼ] (2.6)

where 𝑦፤ is called the TD (temporal difference) target, and 𝑦፤ − 𝑄 is the TD error. 𝜌 is
the distribution over transitions (𝑠, 𝑎, 𝑟, 𝑠ᖣ) collected from the environment. The target,
𝑦፤ is given by the following equation:

𝑦፤ = 𝑟(𝑠, 𝑎, 𝑠ᖣ) + 𝛾 × argmax
ፚᖤ

𝑄(𝑠ᖣ, 𝑎ᖣ;w፤ዅኻ) (2.7)

The weight update can be done via stochastic gradient descent. Hence, the weight up-
date rule is given by:

w፤ዄኻ = w፤ − 𝜃 × ∇wᑜ𝐿፤(w፤) (2.8)

where 𝜃 is the learning rate that determines the step size of the weight update. ∇wᑜ𝐿፤(w፤)
is the gradient of the loss function computed at step 𝑘.
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It is important to note that, in target equation 2.7, the term (𝛾×argmax
ፚᖤ

𝑄(𝑠ᖣ, 𝑎ᖣ;w፤ዅኻ))
is variable as a result of the learning process itself. Hence, the target in a DQL problem
is variable unlike typical deep learning problems with a stationary target. The problem
of a variable target is addressed by having two neural networks- a primary network and
a target network. Both have the same architecture. The weights of the primary network
are adjusted according to equation 2.8, while the target network has frozen weights.
The target network is used to compute the target. After some iterations in the primary
network, the weights are copied to the target network.

2.4.1. Contextual bandits

We have discussed RL in an MDP setting or framework in Section 2.4. Here, an-
other framework of RL called contextual multi-armed bandits (CMABs) is discussed.
In CMABs, a set of contexts or states are specified and the expected reward of an ac-
tion depends on the state and action, 𝑟(𝑠, 𝑎) [70]. However, unlike MDPs, the next state
is independent of the current state and the action. In fact, CMABs are a simplification
of MDPs [70].

The MDP-RL problems face many challenges such as credit assignment, learning
in real environments from limited samples and no convergence guarantees. These
challenges hinder the practical applications of MDP-RL in many problems. Alternately,
CMAB is a simplified reinforcement learning paradigm. CMABs allow to create algo-
rithms of a reinforcing nature with convergence guarantees [35]. They require explo-
ration but unlike MDP-RL do not require dealing with credit assignment [35]. Moreover,
CMABs perform better than MDPs in terms of computational complexity and statistical
efficiency [70].

As discussed above, CMAB-RL is a simplification of MDP-RL. The difference be-
tween the two is illustrated in figure 2.5. In CMAB, the agent observes a context/state,
makes a decision of selecting an action from a number of alternative actions, and ob-
serves the reward for the outcome of its decision. The objective is to learn an optimal
decision-making policy that maximizes the expected reward at each state.

From figure 2.5, it can be observed that in CMAB, the RL problem is a one-step learning
process, where the reward at time 𝑡 depends only on the state-action pair at time 𝑡.
However, in MDP RL, the reward at time 𝑡 additionally depends on the prior state-action
pairs or prior decisions of the agent.

CMABs are widely employed in recommendation systems and user-aware online
advertising [67]. Existing algorithms for CMABs can be classified into two categories-
online linear bandits such as contextual Thompson sampling [6], LinUCB [39] and online
non-linear bandits such as Neural Bandit [52] and Banditron [34]. In the linear bandits,
the expected reward, 𝔼 [𝑟፭|𝑠፭ , 𝑎፭] is modelled as a linear function of the state 𝑠፭ and
action 𝑎፭. The non-linear bandits show superior performance than the linear bandits,
especially when the underlying system is non-linear [10].
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Figure 2.5: CMAB-RL vs MDP-RL [33]

In this algorithm, 𝐾 MLP neural networks, one for each action 𝑘 ∈ [𝐾] are used to
predict the probability that the action results in reward 1 (binary rewards case), given
a state 𝑠፭ at time 𝑡. The 𝜖-greedy algorithm is used as the exploration strategy. The
probability of exploring or playing a random action is 𝜖. Based on the prediction of the
best action (action with the highest predicted probability) and the exploration strategy,
an action 𝑘፭ is taken at 𝑡 and the reward 𝑦፬ᑥ ,፤ᑥ ∈ {0, 1} is obtained. Backpropagation
with gradient descent is used to update the weights of the neural networks. Note that
a similar process is done in DQL, where a neural network, given a state, predicts the
Q-values of all actions. However, in DQL the target is not stationary (refer to equation
2.7). This is because in DQL, the Q-value of a state depends on the Q-value of the next
state. This adds the complexity of having a separate target neural network in DQL.



3
Scope of the Study

In this thesis, we focus on multi-slice resource allocation in radio access networks.
Specifically, we focus on sharing of physical resource blocks amongmultiple RAN slices.

The limitations of the model-based optimization methods for resource management
in a sliced RAN motivate the use of artificial intelligence techniques for resource alloca-
tion problems. Hence, we focus on two such techniques, namely supervised machine
learning and reinforcement learning.

We propose a novel supervised ML based architecture for resource demand predic-
tion, that is independent of historical resource usage data (details in Chapter 8).

In addition to the resource demand prediction using supervised ML, we evaluate the
use of reinforcement learning to aid resource allocation in a sliced RAN. The proposed
model has a simplified state and action definition (details in Chapter 8), which allows
for faster policy convergence even with limited agent experience. To achieve this we
formulate the RL problem for multi-slice resource allocation in a CMAB setting (details
in Chapter 8) which is a simplified RL paradigm.
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4
Related Work

In this chapter, we discuss the related works done in the field of resource management
in RAN slicing. As already discussed in Chapter 2, the existing approaches of resource
allocation in RAN slicing are broadly classified into two categories, namely the model-
based methods and the artificial intelligence-based methods. In Section 4.1, we discuss
prior works in model-based methods for RAN slicing and point out their limitations. Then
we shift our focus to AI-based methods in Section 4.2. Some conclusions are presented
in Section 4.3

4.1. Model-based multi-slice resource allocation

Recall that the model-based methods define the resource allocation problem as a con-
strained optimization problem. The optimal solution for such problems is identified to
be NP-hard. In most studies, sub-optimal solutions for these problems are found by
heuristics or iterative optimization algorithms. These are discussed as follows.

The architectural aspects of RAN slicing based on resource abstraction are dis-
cussed in [37]. The authors propose a two-level MAC scheduler. First a slice-specific
scheduler assigns virtual resources to the UEs in a slice based on a slice-specific schedul-
ing policy. Then, amulti-slice scheduler maps the virtual resources to physical resources
based on business requirements of the slice and accounting for slice resource limits.
The authors remark that such a scheduling process is defined by a multi-objective func-
tion where the optimal solution is usually NP-hard.

Network virtualization substrate (NVS) [36] is one of the earliest works in virtualiza-
tion of wireless resources in cellular networks. The NVS design includes a two-level
scheduler, decoupling the flow scheduling from the slice scheduling. The notion of util-
ity functions is used to reflect the business models between MNOs and slice owners. A
utility-optimization problem is formulated and an optimal resource allocation algorithm
is proposed.

Caballero et al. [12] propose a weighted proportionally fair algorithm for dynamic re-
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source allocation between slices. In a dynamic and time-varying setting, the solution for
multi-slice resource allocation problem is identified to be NP-hard. Hence, the authors
design a distributed semi-online algorithm for near-optimal allocations.

In [38], a dynamic network slicing approach for multi tenant heterogeneous cloud
radio access networks (H-CRANs) is presented. Network resources are shared be-
tween users associated with different tenants, taking into account tenants’ priorities,
system resources, quality of service (QoS) requirements and interference. The objec-
tive is to maximize the weighted network throughput of the multi tenant system, subject
to capacity and QoS constraints. The capacity allocation problem is solved by linear
programming.

Shrivastava et al. [58] propose a policy-based dynamic slicing algorithm for time
division duplex (TDD) systems. The proposed scheme takes into account the hetero-
geneity in terms of the required UL/DL ratios in a frame per slice. Initial resource al-
location and UL/DL configuration are based on the traffic demand of the slice. A soft
resource allocation algorithm is then used to allow borrowing of resources from other
slices to accommodate sudden traffic peaks.

Some works in the literature have proposed solutions for RAN/spectrum sharing.
However, the proposed solutions are applicable in multi-slice resource allocation prob-
lem with some necessary changes. Hence, we discuss them briefly in this sub-section.

A spectrum sharing framework is proposed in [69] to share radio resources among
heterogeneous base stations. To obtain an optimal bandwidth sharing solution, a net-
work utility maximization problem is formulated. The method accounts for traffic statis-
tics, user spatial distribution, multi-cell interference, cell load and QoS requirements of
services. The problem is defined as a biconcave maximization problem and an alter-
native concave search algorithm is used to obtain partial optimal solutions. A similar
approach is taken in [50] for dynamic spectrum sharing in autonomous vehicular net-
works.

In [26], the authors present an application-oriented framework for RAN sharing among
mobile (virtual) network operators called ’AppRAN’. It computes application level re-
source allocation for each base station at a central controller based on traffic demands
and average channel condition. The resource allocation problem is formulated as an
optimization problem and a heuristic algorithm is proposed to solve it.

The above discussed model-based multi-slice resource allocation methods have the
following limitations:

• The requirement for a mobile traffic resource demand model: the discussed meth-
ods assume that a mobile traffic resource demand model is known in advance.
This however is not a practical assumption given highly time-varying wireless net-
works.

• The policy-basedmulti-slice resource allocationmethods are integer programming
problems, where the amount of resources allocated to a slice are positive integers.
These problems are known to be NP-hard, requiring high computational effort to
optimize the policy through exhaustive search [24].
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The above discussed limitations undermine the practicality of the model-based opti-
mization methods and motivate the use of artificial intelligence techniques for resource
allocation problems.

4.2. Artificial intelligence-basedmulti-slice resource allocation

Artificial neural networks (ANNs) are highly efficient in modeling non-linear systems.
Hence, they are commonly used in model estimation and prediction of complex non-
linear processes [24]. Mobile environments are characterised as highly complex, het-
erogeneous and dynamic, making various network management tasks extremely diffi-
cult to model via conventional methods [71]. For this reason, many recent works have
explored the use of ANNs in areas like network state prediction, traffic classification,
user mobility analysis, mobile data analysis and network resource management [71].

The RAN slicing approaches that employ neural networks or supervised deep learn-
ing can be categorised into two classes. One class focuses on mobile traffic prediction
while the other focuses directly on resource demand or capacity forecast to aid resource
allocation.

Furthermore, a RAN slicing method must flexibly allocate radio resources according
to the slice status and the wireless mobile environment. Deep reinforcement learning
(see Chapter 2) has been proposed in the literature as a control mechanism to achieve
optimal resource allocation.

RAN slicing based on mobile traffic prediction

Mobile traffic prediction, employing both AI and non-AI methods, has been explored in
mobile networks not just for RAN slicing but also for other network management appli-
cations such resource management, load balancing and energy savings. The proposed
methods are inspired by the observations from real networks that traffic arrival rates and
aggregate traffic possess strong temporal and spatial correlations [68]. The aggregate
traffic at a BS fluctuates during a day. However, the fluctuations show a repetitive pat-
tern over a day and do so everyday, indicating strong correlation over time [68]. Hence,
most studies on mobile traffic or resource usage prediction employ time-series predic-
tion.

Recent studies have proposed the use of deep neural network (DNN) and long short-
term memory (LSTM) to forecast slice traffic load. For instance, in [68], a DNN is em-
ployed to predict traffic arrival rates. The proposed method exploits the historical infor-
mation of the traffic arrival rate data to predict the traffic arrivals at all BSs at each time
slot with a DNN.

In [41], the entropy theory is utilised to predict the mobile traffic based on temporal,
spatial and multi-service relationships over time and across cells. The authors analyse
the role of traffic prediction for efficient resource management in cellular radio access
networks empowered by SDN.

The authors in [56] propose a model that performs an aggregate traffic forecast for
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a slice per cell utilizing the Holt-Winters theory. The traffic forecast is coupled with the
forecast of the slice users’ spatial distribution in the network to make slice admission
control decisions and slice resource allocation decisions at cell level. A heuristic algo-
rithm is proposed to solve a minimization problem with the aim to minimize consumed
resources by a slice while guaranteeing the SLAs within a slice. Here a key assump-
tion is that the slice traffic follows a periodic pattern. The Holt-Winters theory is only
applicable when the underlying system is periodic [56].

A slice capacity broker model is proposed in [63] that takes resource allocation de-
cisions on a coarse time scale based on slice traffic volume forecast. The authors ex-
amine four short-term time series forecasting methods, namely ARIMA, compressive
sensing-based method, Kalman filter and Holt-Winters. Holt-Winters and Kalman Filter
are shown to perform the best due to their ability to capture seasonality patterns in the
input traffic data [63].

Forecast of slice traffic volumes facilitates the prediction of cell load for different
network slices. This aids in proactive and accurate dimensioning of network slices and
hence allows to maximize the overall system resource utilisation. The existing studies
illustrate the benefits of AI-based prediction methods to accurately capture mobile traffic
patterns [57].

RAN slicing based on resource demand prediction

The second category of neural network-based prediction methods steps away from mo-
bile traffic prediction and focus on predicting the resource demand/usage/capacity of a
slice. For instance, in [9], the authors identify that conventional mobile traffic prediction
based resource allocation methods have limitations. For example, in these methods,
slice resource overdimensioning to minimize SLA violations is not taken into account.
Hence, thesemodels lead to frequent capacity violations. To overcome these limitations,
they propose a deep learning architecture for capacity forecast. The model consists of
an encoder, followed by a decoder. The encoder is a three layered three-dimensional
convolutional neural network (3D-CNN) and the decoder is a multi-layer perceptron. A
data driven model acts as a slice orchestrator and makes slice admission control and
multi-slice resource allocation decisions. The proposedmodel overcomes the limitations
of conventional traffic predictors by explicitly providing a capacity forecast that mitigates
the effect of underprovisioning. To this aim, they propose a loss function which drives the
system towards an optimal trade-off between slice overprovisioning and SLA violations.

In [11], the authors propose a modified LSTM neural network (X-LSTM) architecture
for average slice resource demand prediction. To this aid, they define a new metric
called REVA which captures resource usage of a slice. The X-LSTM model uses his-
torical values of REVA to predict slice resource usage for multiple time steps in future.

Both traffic and capacity prediction models use historical observations to predict
future traffic volumes/capacity i.e. they utilize time series prediction. Hence, the un-
derlying key-assumption in these models is that slice traffic volumes/resource usage
follow a periodic pattern, which is needed to apply time-series forecasting algorithms
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[56]. Therefore, these models cannot be applied for slice capacity initialization, in cases
where limited or even no historical data is available and when underlying system/input
data is not periodic.

RAN slicing using reinforcement learning

Applications of RL, specifically DRL have been studied in mobile networks, specifically
for resource allocation problems. Prior works have defined the concerned RL problem
in a MDP setting (see Chapter 2). Below we discuss some of the prior works and point
out their limitations.

In [42], the author proposed a resource allocation method using so-called deep Q-
networks (DQN). They use the number of active slices and a vector of demands for
each slice as the state. The action is a bandwidth sharing solution i.e. a vector of band-
width allocated to each slice and the reward is calculated using spectral efficiency and
a service quality of experience satisfaction ratio. The authors showed that the proposed
DQNmethod implicitly incorporates the relationship between demand and resource allo-
cation. However, the proposed definition of the DQN model makes the state and action
space infinite and consequently makes the model convergence slow. Furthermore, the
model assumes that the demand for each slice is known at every resource allocation in-
terval. This assumption is not practical since the future resource demands of the slices
are not known beforehand. Finally, the number of slices is fixed when learning the DQN
model, thus if the number of slices changes, model re-training is needed.

In [60], the authors propose a DQN model that is independent of the number of
slices. However, the state space is still continuous, requiring a large number of tri-
als/experience to converge. Another interesting observation is that the state definition
and reward definition both include slice QoS utility value and resource utilization, making
these two variables in the state definition redundant. The proposed method first makes
an initial reservation based on initial slice requirements and applies DQN thereafter to
adjust the slice resources based on the QoS utility and resource utilization feedback.
This way, the slices occupy only the required fraction of the system resources. How-
ever, a limitation of the method is the slow adaptation of slice resources in case new
user flows start in the slice. This is because the DQN agent does not know the resource
requirement of the new user flows directly.

In [4] also, the authors propose a DRL-based radio resource allocation method, that
is independent of the number of slices. The state is defined using three variables- the
traffic volume, bandwidth allocation and the user satisfaction of each slice. The resource
allocation decision is taken separately for each slice based on the user satisfaction of
the slice. Hence, the problem is defined as a multi-agent RL problem, where one agent
is assigned to each slice. However, learning in a multi-agent setting is complex due to
issues like multi-agent credit assignment and global exploration in a joint action environ-
ment [30]. Furthermore, the resource reservation of slices must account for the future
traffic volumes, while the proposed method with traffic volume in the state definition con-
siders only the current traffic volume. In [5] the authors also propose a multi-agent DRL
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method to make the multi-slice resource allocation method independent of the number
of slices. However, the method suffers from the same limitations.

Hap-SliceR [7] utilizes deep Q-learning to make multi-slice resource allocation de-
cisions. It is a network-wide radio resource slicing framework, especially designed to
support haptics applications over 5G networks. Haptics applications require ultra-low
latency communications. The proposed model accounts for slice dynamics in terms of
resource utilization and resource allocation as well as the QoS performance in the state
definition, similar to [60]. Again, the defined state space and action space are huge,
making policy convergence slow.

Learning in RL problems is predominantly online, that means, real-world interactions
are required to learn optimal actions. Because of this, RL needsmultiple trials to produce
an effective model. This is feasible in situations when the task is simple and states and
actions are discrete. If the state/action space is too large, it will take “infinite” trials to
learn an effective model. The above discussed RL-based resource allocation methods
suffer from a common limitation of a huge state/action space. This limits the practicality
of these solutions.

4.3. Conclusion

A multi-slice resource allocation mechanism should meet two major objectives: first,
minimize slice SLA violations. This is related to the slice performance and functional
isolation. Second, maximize the system resource utilization efficiency. In the above
discussion we point out that in order to achieve these objectives, prediction or estimation
of slice resource requirement is needed to reserve the resources beforehand. To this aid,
the use of AI has beenmotivated in the literature. The state-of-the-art AI-based resource
allocation methods fall into two groups, viz. time series prediction based models using
ANNs and reinforcement learning based models.

The discussed prior works proposing resource or traffic prediction methods employ
time-series prediction based on historical data. Hence, the implicit assumption in these
models is that traffic or capacity prediction problem involves time dependency. The
dependence of the aggregate amount of traffic in a network on time has been shown in
[68]. It is observed that networks typically exhibit time patterns due to seasonal, weekly,
daily, and hourly traffic variations. However, in sliced networks, forecasts must occur
at the slice level, for specific mobile services in isolation. While time series forecasting
can be employed for slices that are active for long enough duration, so as to generate
sufficient and relevant resource usage data, it fails otherwise. Moreover, time series
can also not be used for slice capacity initialization, when no historical data is present.

The discussed prior works proposing reinforcement learning-based resource alloca-
tion, motivate the use of deep Q-learning in a MDP setting. All the proposed models
have continuous state-action space. In such formulation of the RL problem, a lot of
experience in terms of states visits and actions in each state is required in order to con-
verge to an optimal policy. The convergence time or the required amount of experience
for convergence increases with the increase in the number of states and actions. This
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hinders the practical applications of the proposed models in the literature. But at the
same time, this motivates the use of CMAB which is a much simpler paradigm of RL
as compared to RL in an MDP setting (see Chapter 2). To the best of our knowledge,
no prior work has employed the CMAB-RL framework to address resource allocation in
mobile network (or sliced RANs).





5
5G-HEART Ambulance Use Case

This study is done under the umbrella of the European 5G-HEART project. As intro-
duced in Chapter 1, a 5G network is envisioned to support multiple vertical industries
on a common infrastructure, leveraging the concept of network slicing. 5G-HEART ad-
dresses three vertical industries namely, healthcare, aquaculture and transport to sup-
port the applications for each on a common 5G infrastructure. The use case considered
in this study addresses two vertical industries, namely healthcare/medical and transport.
In this chapter, we describe the use case.

5.1. Overview

The use case considered in this study is that of an ambulance. Whenever an incident
occurs that requires medical attention, an ambulance is sent to the place of incidence.
The paramedic de-boards the ambulance and looks for the patient. The patient is then
brought to the hospital. The journey of the ambulance as described can be divided into
three phases. Phase 1 is when the ambulance is sent to the place of incidence, Phase
2 is when the paramedic finds the patient and provides any possible immediate care
and Phase 3 is when the patient is brought to the hospital. The use case represents
an emergency scenario, where the ambulance needs to reach the place of incidence
and to the hospital as quickly as possible. This is done via so-called road traffic coor-
dination, which is explained in Section 5.2. Furthermore, in situations when the patient
needs immediate help, remote support from the doctors/specialists must be provided via
the on-spot paramedic. In the considered use case, the ambulance supports various
applications to fulfil the above-mentioned requirements, which are discussed in more
detail in the following sections. These applications require support from a communica-
tions network for their operation and hence generate network traffic. The applications
involved in road traffic coordination are classified as belonging to the transport vertical
industry and are referred to as transport applications. The applications involved in pro-
viding remote medical assistance to the on-spot paramedic are classified as belonging
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to the medical vertical industry and are referred to as medical applications. The net-
work traffic generated by the transport and medical applications is classified into distinct
priority classes namely, transport class and medical class respectively. The network
traffic from the two priority classes is handled on separate RAN slices namely, transport
slice and medical slice. These slices are configured as so-called priority slices. The
remaining network traffic is handled on another RAN slice called the background slice.
The background slice is configured as so-called best-effort slice. The priority slices are
guaranteed some minimum resource availability, while a best-effort slice gets no such
guarantees from the network. This will be compared with a single-slice alternative, us-
ing priority-based scheduling. In this study, the transport class is considered to have
a higher priority than the medical class. This choice is made because the transport
class involves road safety applications that must achieve high performance levels or
otherwise may pose threat to life and property. On the other hand, the medical class
involves video and haptics applications. Reduction in the performance levels of these
applications may be handled by the on-spot paramedic and hence is not harmful to life
or property.

In the following sections, we describe the applications supported by the ambulance
from both the application and network point of view. The applications are categorised as
belonging to three different phases in the ambulance’s journey. We describe the data
exchanged between the UEs and the network for each application. The application
characteristics and the QoS requirements of the applications are discussed in Chapter
6 along with other modelling aspects of the study.

5.2. Phase 1: Drive to the site of incidence

In this phase, the ambulance moves from the ambulance centre to the site of incidence.
The objective in this phase is to minimize the time of arrival of the ambulance at the
place of incidence. This is achieved via road traffic coordination. Road traffic coordina-
tion includes clearing the route for the ambulance, avoiding collisions and navigational
directives to the ambulance and providing green signal priority to the ambulance. The
applications involved in Phase 1 belong to the transport vertical and hence are handled
by the transport slice.

5.2.1. Application description

Collision avoidance includes coordination among vehicles to ensure safe and efficient
navigation through intersections, lane changing, overtaking and entering/exiting high-
ways. This is achieved by providing the drivers, an overall view of the scene. This in
contrast to the current situation where in order to navigate, the drivers rely only on the
behaviour of other vehicles, brake lights and traffic light signals. These only provide a
partial view of the scene which might make it impossible to anticipate risky situations.
With only a partial view, the source of a potential collision or lane blockage may not
be known to the driver. For instance, the ambulance may be at a blind crossing or the
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source of lane blockages may be hidden by other vehicles.
Collision avoidance as described above is realised with the assistance of a 5G cel-

lular network. All vehicles near an intersection or on a highway send the information of
their local view (gathered from their on-board sensors) to the network. This information,
complemented by the information from static sensors on the road and traffic light status
information is aggregated by so-called transportation controller placed in a cloud to cre-
ate an overall view of the scene. Thus, the transportation controller is aware of the entire
traffic situation near an intersection or on a highway, that is, the position of the vehicles,
pedestrians, cyclists, status of traffic lights, presence of emergency vehicles such as
ambulance, fire brigades and police cars. This information is stored in the form of so-
called global map and transmitted to the vehicles. The global map shows the overall
occupancy of the scene. In addition, vehicles on a highway or at an intersection may up-
load a real-time video of the scene in front of them in the case an ambulance is present
on that highway/intersection. The transportation controller aggregates the information
from the videos uploaded by the vehicles to create so-called ‘beyond-vision video’ of the
scene. The beyond-vision video is transmitted to the ambulance for increased vigilance.

5.2.2. Radio communications aspects

The uplink and downlink data exchanged between the network (gNodeBs) and the UEs
(vehicles, static road sensors, ambulance and intersection controller) is as follows:

• gNodeBs:
The gNodeBs (gNBs) receive the road status information from various UEs (ve-
hicles, static road sensors and intersection controller) in the uplink and transmits
the ‘global map’ message to the vehicles and the ambulance in the downlink.

• UEs installed in regular vehicles:
The vehicles are equipped with sensors like radar, accelerometer, GPS and a
camera. Through these sensors the speed, location, lane intention, heading and
obstacles in view of the vehicles can be detected. This information is aggregated
in the form so-called local map by the vehicles themselves. A 5G-enabled UE
is installed in the vehicles that communicates with the gNBs. The vehicles send
uplink ‘local map’ message to the gNB. In addition, the vehicles may send in uplink,
a real-time video of the scene in front of them in case an ambulance is present on
the highway or intersection.

• UEs installed in an ambulance:
The ambulance, in addition to sending the local mapmessage in the uplink, can re-
quest green signal priority for the intersections if needed through a ‘signal request’
message. In response to the signal request message, the ambulance receives a
downlink ‘priority status’ message which tells the ambulance whether it can pass
through an intersection or needs to slow down in case priority could not be granted.
In addition, the ambulance receives in the downlink beyond vision-video described
in Section 5.2.1.
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• UE connected to the static road sensors:
Road radars, underground induction loops1 and cameras are placed at the inter-
sections and highways. These sensors are connected to a 5G-enabled UE that
locally aggregates the sensormeasurements in a ‘road status’ message and sends
the message to the serving gNodeB.

• UE installed at the intersection controller:

An intersection controller (IC) is placed at each intersection that is equipped with
traffic lights. The IC knows the status of all traffic lights at the intersection and can
control them. A 5G-enabled UE is installed at the IC. An ambulance approaching
an intersection sends the signal request message to the gNB to request green
light priority. This triggers the transportation controller in the cloud to assess the
scene based on the global map and decide the new status of the traffic lights at
the intersection. The status information is packed in a ‘traffic light’ message and
transmitted by the gNB in the downlink to the IC. The IC responds to this message
by updating the traffic lights and sending an acknowledgement in an uplink ‘light
status’ message to the gNB. The gNB then transmits a downlink ‘priority status
message’ to the ambulance, informing it about the updated status of the traffic
lights.

Figure 5.1 illustrates an example of road traffic coordination at an intersection during
Phase 1 based on [27]. Table 5.1 summarizes the data exchanged between the UEs
and the gNBs in Phase 1.

1The induction loops are commonly found in The Netherlands, laid underground near traffic lights and
on highways. They are used to sense metallic objects such as cars, bikes passing over them. The
measurement from the induction loops can be used to estimate traffic density and speed of the vehicles.
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Figure 5.1: . Road traffic coordination at an intersection assisted by a 5G network.

Table 5.1: Data exchanged between the UEs and the gNB in Phase 1.

UE Data Direc-
tion

Traffic
Class

UE installed
in regular
vehicles

Global map message Downlink Transport
Local map message Uplink Transport
Real-time video Uplink Transport

UE installed
in ambulance

Global map message Downlink Transport
Local map message Uplink Transport

Signal request
message Uplink Transport

Priority status
message Downlink Transport

Beyond-vision video Downlink Transport
UE connected to the static Road

Sensors Road status message Uplink Transport

UE installed
at the IC

Traffic light message Downlink Transport
Light status message Uplink Transport

In Phase 1, the network traffic generated by the ambulance and other ‘transport’ UEs
(IC, regular vehicles and static road sensors) is present only in the transport slice. The
medical slice does not carry any network traffic in Phase 1.
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5.3. Phase 2: Paramedic de-boards the ambulance to attend
to the patient

Phase 2 is when the ambulance has reached the place of incidence and the paramedic
de-boards the ambulance to attend to the patient. The ambulance-specific applications
involved in Phase 2 belong to the medical vertical and hence are handled by the medical
slice.

5.3.1. Application description

In many cases, the status of a patient is not critical and can be easily handled by an on-
site paramedic, possibly remotely guided by one or more specialists. This savesmedical
resources needed when a patient has to be brought to the hospital. On the other hand,
in some life-critical cases, immediate action may be needed. In such cases, remote
and precise monitoring of the patient by the specialists is required so that appropriate
actions can be taken timely. This is achieved by multiple applications:

• Streaming a high resolution (8K or 4K) video of the patient to the special-
ists at the hospital: the video is recorded using a 360-degree camera mounted
on the head or body of the paramedic. 360-degree2 video streaming refers to
the transmission of multi-angle video streams through the network. Using a 360-
degree video, the specialists at the hospital can select the point of interest (camera
angle) to be watched. This facilitates precise diagnosis of the patient and quick
directions to the on-site paramedic.

• Streaming ultrasound images and electrocardiogram (ECG) data: ultrasound
images and ECG data provide information of vital body functions of the patient for
proper analysis of the patient’s health by the specialist.

• Using haptics for a proper ultrasound of the patient’s body: using the ultra-
sound machine for a proper body scan requires a specialist. The paramedic wears
a haptic glove which is remotely controlled by the specialist. The specialist sees
the ultrasound images. He adjusts his hand positions according to the feedback
received from the ultrasound images. The hand movements of the specialist are
communicated to the glove worn by the paramedic via ’glove position’ messages.
These messages trigger the generation of corresponding electric signals in the
glove which makes the paramedic replicate (with high accuracy) the hand move-
ments of the specialist.

• Audio-video connection with the remote specialist: the on-spot paramedic
may need consultation from the remote specialist as he attends to the patient.

2a 360-degree video camera is equipped with multiple cameras pointing to different directions from a single
ball-shaped device and therefore forming 360-degree coverage from the operation environment.
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5.3.2. Radio communication aspects

The 360-degree video camera, the portable ultrasound and ECG machine and the hap-
tic glove are assumed to be connected to 5G-enabled UEs. The UEs communicate
the respective information of the devices to the network (gNB) and vice versa. In ad-
dition, the paramedic consults the specialist via an audio/video connection (e.g. video
calling). Figure 5.2 illustrates an example of communication between the UEs at the
patient side (controlled by the on-spot paramedic) and UEs at the remote specialist side
based on [28]. The data exchanged between the UEs and the network (gNB) in Phase
2 is described in Table 5.2.

Figure 5.2: . Communication between UEs at the patient side and UEs at the remote specialist side for
remote medical assistance.
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Table 5.2: Data exchanged between the UEs and the gNB in Phase 2.

UE Data Direc-
tion

Traffic
Class

UE connected to 360-degree video
camera 360-degree video stream Uplink Medical

UE connected to ultrasound and
ECG machines

Ultrasound and ECG data
streams Uplink Medical

UE connected to haptic glove Haptic glove position
messages

Down-
link Medical

Mobile phone
Paramedic’s audio/video

stream Uplink Medical

Specialist’s audio/audio
stream

Down-
link Medical

In Phase 2, the network traffic generated by the ambulance is present only in the
medical slice. However, the transport slice carries the network traffic generated by the
regular vehicles and static road sensors.

5.4. Phase 3: Drive back to the hospital with the patient

In Phase 3, the ambulance carrying the patient needs to reach the hospital as quickly
as possible. The ambulance is equipped with a patient monitoring panel. The patient
is monitored by the paramedic with the remote guidance of the specialist on the way to
the hospital.

5.4.1. Application description

The patient monitoring panel in the ambulance contains a 360-degree video camera,
an ultrasound machine, a haptics glove for the paramedic, an ECG machine and a
audio/video device (e.g screen with speakers). Similar to Phase 2, as described in
Section 5.3, the paramedic controls the 360-degree video camera, the ultrasound and
ECG machine to send real-time updates of the patient’s health status to the specialist at
the hospital. The specialist remotely controls the haptics glove worn by the paramedic
for a proper ultrasound. Furthermore, the paramedic in the ambulance consults the
specialist via an audio-video connection.

Also, same as in Phase 1, road traffic coordination is required in Phase 3 to minimize
the time of arrival of the ambulance at the hospital. Therefore, all the applications in
Phase 1 are also active in Phase 3.

5.4.2. Radio communication aspects

The radio communication aspects of both Phase 1 (Section 5.2.2) and Phase 2 (Section
5.3.2) are applicable for Phase 3.
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In Phase 3, the ambulance generates the maximum network traffic. Unlike in Phase
1 and Phase 2 where the ambulance generates network traffic either in the transport
slice or in the medical slice respectively, in Phase 3 the ambulance generates network
traffic in both the medical slice and transport slice.

Furthermore, it is noted that all the aspects of Phase 1 are covered by Phase 3
completely. As compared to Phase 1, Phase 3 additionally involves network traffic from
the applications in the medical priority class. There is a higher demand for resources in
Phase 3 from both the medical and transport priority classes as compared to Phase 1
where resource demand only comes from the transport priority class. Therefore, Phase
1 is not considered for the scenario-based assessment.

5.5. Background slice

The background slice, in this study represents themobile traffic that is commonly present
in real-world mobile networks. The applications that generate network traffic in the back-
ground slice include video streaming, web applications (social networking, browsing,
navigation), audio streaming, messaging, emails and file downloads. It is assumed that
some network traffic is always present in the background slice.





6
Simulation Set-up and Modelling

We have developed a system-level simulator using SimPy based on the Python pro-
gramming language [51] to evaluate the performance of the proposed AI-based multi-
slice resource allocation model. In this chapter we detail the simulation set-up, the
modelling aspects and configuration parameters.

6.1. Network layout

The network layout is a hexagonal grid, with a wrap-around configuration of four sites,
each configured with three sectors/cells. Users are distributed uniformly over the whole
considered area. Figure 6.1 illustrates the network layout used for the simulations for
both the urban environment and the rural environment. Different inter-site distances
(ISDs) are used for different environments (see Section 6.3.1 and Section 6.3.2). The
cell range, cell radius and the ISD are also indicated in Figure 6.1. The cell radius,

𝑅 = 𝐼𝑆𝐷
3 .

39
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Figure 6.1: Hexagonal grid network layout used in simulations for both the urban environment and the
rural environment. Different cell radii are applied for different environments.

6.2. Antenna characteristics

The antenna characteristics, namely antenna patterns and gains, of the base station
(BS) and the user equipment (UE) that are applied in the simulations are described
below. In the urban environment, the antennas of the base stations are at a height of 25
metres and in the rural environment the BS antennas are at a height of 35 meters. The
UE antennas are at a height of 1.5 metres in both urban and rural environments. The
base stations have four antennas and the UEs have two antennas.

6.2.1. Base station antenna

BS antenna pattern
The BS antenna pattern (horizontal and vertical directional characteristics) is taken from
[23]. The horizontal antenna pattern used for each cell is given by (in dB):

𝐺፡(𝜃) = −𝑚𝑖𝑛[12(
𝜃
𝜃ኽ፝ፁ

)ኼ, 𝐹𝐵𝑅፡] + 𝐺፦ (6.1)

where 𝐺፡(𝜃) is the horizontal antenna gain (dB) in the direction 𝜃 (−180∘ ≤ 𝜃 ≤ 180∘),
that is the horizontal angle relative to themain beamdirection. 𝜃ኽ፝ፁ is the 3𝑑𝐵 beamwidth
or Horizontal Half Power Beamwidth. The Half Power Beamwidth (HPBW) is the angu-
lar separation in which the magnitude of the antenna radiation pattern decrease by 50%
(or -3 dB) from the peak of the main beam. 𝐹𝐵𝑅፡ is the Front Back Ratio and 𝐺፦ is the
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maximum gain. In our simulations we set 𝜃ኽ፝ፁ = 65∘, 𝐹𝐵𝑅፡ = 30𝑑𝐵 and 𝐺፦ = 18𝑑𝐵𝑖
[23]. Figure 6.2 shows the horizontal antenna pattern.

Figure 6.2: Horizontal antenna pattern for BS

The antenna pattern used for elevation in simulations is given by (in dB):

𝐺፯(𝜙) = 𝑚𝑎𝑥(−12(
𝜙 − 𝜙፞፭።፥፭
𝜙ኽ፝ፁ

)ኼ, 𝑆𝐿𝐿፯) (6.2)

where 𝐺፯(𝜙) is the vertical antenna gain (dB) in the direction 𝜙 (-90∘ ≤ 𝜙 ≤ 90∘), that
is the negative elevation angle relative to the horizontal plane at the antenna height
(i.e. 𝜙 = −90∘ is upwards, 𝜙 = 0∘ is along the horizontal plane, and 𝜙 = 90∘ is
downwards). 𝜙ኽ፝ፁ is the Vertical Half Power Beamwidth, 𝑆𝐿𝐿፯ is the side lobe level
relative to the maximum gain of the main beam and 𝜙፞፭።፥፭ is the electrical downtilt angle.
In our simulations we set 𝜙ኽ፝ፁ = 6.2∘, 𝜙፞፭።፥፭ = 8∘ for the urban environment and 𝜙፞፭።፥፭ =
4∘ for the rural environment (as suggested in [53]) and 𝑆𝐿𝐿፯ = −18𝑑𝐵. Figure 6.3 shows
the BS vertical antenna pattern with 𝜙፞፭።፥፭ = 8∘.
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Figure 6.3: Vertical antenna pattern for BS with Ꭻᑖᑥᑚᑝᑥ  ዂ∘

The combined antenna pattern or antenna gain at angles (𝜃, 𝜙) is computed as:

𝐺(𝜃, 𝜙) = 𝐺፡(𝜃) + 𝐺፯(𝜙) (6.3)

6.2.2. UE antenna

The UE antenna is taken to be omni-directional [62] with an antanna gain of 0 dBi.

6.2.3. Antenna configurations

As mentioned above, the base station is considered to have four antennas and the
UE two antennas. Multiple antennas at the base station and UE allow the use MIMO
(multiple-input and multiple-output) antenna configurations in both the uplink and down-
link. In this study, in the downlink we consider single user 4x2MIMO. 4x2MIMO antenna
configuration allows to make use of spatial multiplexing and diversity coding (trans-
mit/receive diversity) techniques to increase the capacity of a radio link by exploiting
multipath propagation. In spatial multiplexing, a high-rate signal is divided into two or
more lower-rate data streams. Each stream is transmitted from a different transmit an-
tenna in the same frequency channel [45]. In transmit diversity, a single data stream is
transmitted from each of the transmit antennas with orthogonal coding. The indepen-
dent fading in the multiple antenna links enhances signal diversity. In receive diversity
the independent fading paths associated with multiple receive antennas are combined
to obtain a resultant signal. In order to optimize the link capacity, there is a switching
between the multiplexing and diversity modes of transmission based on the channel
conditions. In the uplink, we consider 1x4 MIMO antenna configuration which allows to
make use of only receiver diversity. For simplicity, in this study we model the transmis-
sions with 4x2 MIMO antenna configuration and 1x4 MIMO antenna configuration using



6.3. Test environments and channel models 43

the modified and truncated Shannon formula discussed in Section 6.5.3.

6.3. Test environments and channel models

In the context of the 5G-Heart project as described in Chapter 5, we consider two dif-
ferent cellular network deployment scenarios, namely the urban-macro environment
and the rural-macro environment. The urban-macro environment is used for modelling
Phase 2 of the use case and the rural-macro environment is used to model Phase 1 and
Phase 3 of the use case. The simulation configuration parameters for each environment
are summarised in Table 6.1.

In this study, we consider time division duplex (TDD) mode of transmission. In TDD,
the uplink and downlink traffic is time multiplexed in the same frequency band. Recall
(see Section 2.1) that time is divided into frames of 10 ms, sub-frames of 1 ms and
time slots whose duration depend on the numerology or sub-carrier spacing. In this
study we consider 20 MHz BW in the 3.5 GHz band and 60 KHz sub-carrier-spacing.
Hence, in each time slot 25 PRBs are available to be assigned to the UEs. Each time
slot is 0.25 ms long in duration and contains 14 OFDM symbols. 60 kHz SCS or 0.25
ms time slot is considered to support low-latency requirements for some of the services
modelled in this study. A sub-frame consists of a fixed pattern of UL and DL time slots.
Different flavours of UL/DL pattern exist to choose from depending on the expected
mobile traffic. We consider a slot configuration of DSUU where D stands for downlink
time slot, consisting of only downlink symbols, U stands for uplink time slot, consisting of
only uplink symbols and S stands for special time slot that can contain amix of uplink and
downlink symbols. In addition, the special time slot contains guard symbols or Guard
Period (GP) between downlink and uplink transmission. The purpose of the GP is to
avoid interference within a cell by compensating for propagation delays [22]. The GP is
not required between the uplink and downlink slots, as there is less chance of collision
because of the base station timing advance feature [22]. The special slot “S” format
used in the SCS 60 kHz and DSUU frame configuration is configured as 11D+3G+0U
that stands for eleven downlink symbols, followed by a guard period for the duration of
three symbols and no uplink symbols.

Network slicing allows to have different slot configurations and SCSs for different
slices, however, in this thesis we assume that a common slot configuration and a com-
mon SCS are used in all the slices for simplicity.

For the purpose of our study, we take the following radio wave propagation effects
into account: path loss, shadow fading, vehicle and car penetration loss. Multipath fad-
ing effect of radio wave propagation is not considered for the sake of simplification. In
the following sub-sections, we describe the modelling of each of the considered envi-
ronments.
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6.3.1. Urban-macro propagation environment

The urban-macro propagation environment is taken to evaluate Phase 2 of the ambu-
lance use case (see Chapter 5). Propagation is usually non-line of sight (NLOS). The
channel model for the urban-macro propagation environment is called ‘UMa’ [2]. The
following equations describe the UMa channel model taken from [2].

The UMa channel model defines the probability of having line of sight (LOS) com-
munication, the LOS path loss and the NLOS path loss as follows:

• Line of sight probability

𝑃ፋፎፒ = 𝑚𝑖𝑛(
18
𝑑 , 1)(1–𝑒𝑥𝑝(–

𝑑
63)) + 𝑒𝑥𝑝(–

𝑑
63) (6.4)

• LOS path loss (dB)

𝑃𝐿 = 22𝑙𝑜𝑔ኻኺ(𝑑) + 28 + 20𝑙𝑜𝑔ኻኺ(𝑓) ; 10𝑚 < 𝑑 < 𝑑ፁፏ (6.5)

𝑃𝐿 = 40𝑙𝑜𝑔ኻኺ(𝑑)+7.8–18𝑙𝑜𝑔ኻኺ(ℎᖣፁፒ)–18𝑙𝑜𝑔ኻኺ(ℎᖣፔፓ)+2𝑙𝑜𝑔ኻኺ(𝑓) ; 𝑑ፁፏ < 𝑑 < 5000𝑚
(6.6)

• NLOS path loss (dB)

𝑃𝐿 = 161.04–7.1𝑙𝑜𝑔ኻኺ(𝑊) + 7.5𝑙𝑜𝑔ኻኺ(ℎ)–(24.37–3.7(
ℎ
ℎፁፒ

)ኼ)𝑙𝑜𝑔ኻኺ(ℎፁፒ) (6.7)

+(43.42–3.1𝑙𝑜𝑔ኻኺ(ℎፁፒ))(𝑙𝑜𝑔ኻኺ(𝑑) − 3)

+20𝑙𝑜𝑔ኻኺ(𝑓)–(3.2(𝑙𝑜𝑔ኻኺ(11.75ℎፔፓ))ኼ − 4.97) ; 10𝑚 < 𝑑 < 5000𝑚

where 𝑃ፋፎፒ is the probability of having a line of sight communication, 𝑑 is the 3-D distance
between the BS and the UE in meters, 𝑃𝐿 is path loss in dB, 𝑓 is the centre frequency
in GHz. 𝑑ፁፏ is the break point distance. For the urban-macro propagation environment,
𝑑ፁፏ = 560 m. Readers are referred to [2] for details. ℎፔፓ is the height of the UE. ℎፁፒ is
the height of the BS. For the urban-macro propagation environment, ℎፁፒ = 25 m, 𝑊 is
the street width, taken as 20 m. ℎ is the average building height. In this study, ℎ = 20
m [2] is considered for the urban-macro propagation environment.



6.3. Test environments and channel models 45

Table 6.1: General configuration parameters for the rural-macro and urban-macro propagation
environments

Parameters
Urban-macro
propagation
environment

Rural-macro
propagation
environment

Layout Hexagonal grid, 4 sites, 3 sectorized sites,
wrap around

Numerology 60 kHz SCS, 0.25 ms slot
Carrier frequency 3.5 GHz

Bandwidth 20 MHz per cell (25 PRBs per slot)
BS antenna height 25 m 35 m
No. of BS antennas 4
UE antenna height 1.5 m
No. of UE antennas 2

BS total transmit power 46 dBm
UE maximum transmit power 23 dBm

Inter-site distance 500 m 1732 m
Channel model (path loss, correlated
shadowing, car penetration loss)

3GPP urban-macro
(UMa) [2]

3GPP rural-macro
(RMa) [2]

BS noise figure 5 dB
UE noise figure 7 dB
BS antenna gain 8 dBi
UE antenna gain 0 dBi

Thermal noise level -174 dBm/Hz

6.3.2. Rural-macro propagation environment

The rural-macro propagation environment is used to evaluate Phase 1 and Phase 3 of
the ambulance use case (see Chapter 5). The propagation environment for the rural-
macro scenario is represented by large areas with low building density. The base station
is fixed and the height of the base station is in the range 20 m to 70 m, much higher than
average building height [32]. As a result, the line of sight propagation conditions exist
in the most of the coverage area. The UE speed is in the range from 0 to 350 kmph
[32]. Hence, the rural-macro scenario is also used for highway test environments. The
channel model for the rural-macro propagation environment is called ‘RMa’ [2]. The
following equations describe the RMa channel model taken from [2].

The RMa channel model defines the probability of having line of sight communica-
tion, the LOS path loss and the NLOS path loss as follows:

• Line of sight probability

𝑃ፋፎፒ = 𝑒𝑥𝑝(−
𝑑 − 10
1000 ) ; 𝑑 > 10𝑚 (6.8)
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• LOS path loss (dB)

𝑃𝐿ኻ = 20𝑙𝑜𝑔ኻኺ(
40𝜋𝑑𝑓
3 ) + 𝑚𝑖𝑛(0.03ℎ, 10)𝑙𝑜𝑔ኻኺ(𝑑)–𝑚𝑖𝑛(0.044ℎ, 14.77) (6.9)

+0.002𝑙𝑜𝑔ኻኺ(ℎ)𝑑 ; 10𝑚 < 𝑑 < 𝑑ፁፏ

𝑃𝐿ኼ = 𝑃𝐿ኻ(𝑑ፁፏ) + 40𝑙𝑜𝑔ኻኺ(
𝑑
𝑑ፁፏ

) ; 𝑑ፁፏ < 𝑑 < 10, 000𝑚 (6.10)

• NLOS path loss (dB)

𝑃𝐿 = 161.04–7.1𝑙𝑜𝑔ኻኺ(𝑊) + 7.5𝑙𝑜𝑔ኻኺ(ℎ)–24.37 (6.11)

–3.7( ℎℎፁፒ
)ኼ)𝑙𝑜𝑔ኻኺ(ℎፁፒ) + (43.42–3.1𝑙𝑜𝑔ኻኺ(ℎፁፒ))(𝑙𝑜𝑔ኻኺ(𝑑) − 3)

+20𝑙𝑜𝑔ኻኺ(𝑓)–(3.2(𝑙𝑜𝑔ኻኺ(11.75ℎፔፓ))ኼ − 4.97) ; 10𝑚 < 𝑑 < 5000𝑚

The symbols defined for the UMa model also hold for the RMa model. For the RMa
model, 𝑑ፁፏ = 3847.6 m, ℎፁፒ = 35 m and ℎ = 5 m is considered.

6.3.3. Shadow fading

Shadow fading observed in cellular networks is approximated using a normal distribu-
tion (in the dB scale) with zero mean and an environment-specific standard deviation
[46]. Furthermore, shadowing exhibits spatial autocorrelation, where shadowing com-
ponents between a transmitter and receivers in neighbouring positions are correlated.
Another aspect is the shadowing cross correlation (SCC), where the shadowing com-
ponents from two transmitters at a common receiver position are correlated. In our
simulator we consider both the spatial autocorrelation and SCC to model shadow fad-
ing in both the urban-macro propagation environment and the rural-macro propagation
environment. For implementation, a shadowing map of the considered network area is
created for each BS site. One set of the shadowing maps containing one map per BS
site constitutes one specific realisation of the propagation environment. In our simula-
tions, we consider one realisation of each of the propagation environments (rural-macro
and urban-macro). A resolution of 1 meter x 1 meter for the urban-macro propagation
environment and 2.5 meters x 2.5 meters for the rural-macro propagation environment
is used. Each pixel of 1 meter x 1 meter (urban-macro) or 2.5 meters x 2.5 meters
(rural-macro) in the shadowing map gives the value of shadow fading (in dB) at the
corresponding receiver position. The same generated shadowing maps are applied for
both uplink and downlink. The standard deviation for shadow fading 𝜎 is taken as 6 dB
for the urban-macro propagation environment and 8 dB for the rural-macro propagation
environment [2]. The cross-correlation coefficient is kept fixed and equal to 0.5, among
all transmitters, as proposed in [17]. The decorrelation distance for computing spatial
autocorrelation is assumed to be 20 m, as proposed in [46]. The implementation of the
shadowing maps is taken from [17]. Figure 6.4 and Figure 6.5 show the shadowing
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maps of all four sites for the urban-macro and rural-macro propagation environment re-
spectively. The horizontal and the vertical axes represent the x and y coordinates (in
meters) respectively of a receiver in the considered network area. The colour represent
the magnitude of shadow fading (in dB) at a receiver position in the network area.

Figure 6.4: Spatially correlated shadowing maps of four sites for the urban-macro propagation
environment.
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Figure 6.5: Spatially correlated shadowing maps of four sites for the rural-macro propagation
environment.

6.3.4. Best server area (BSA)

The BSA plot illustrates the coverage of various cells in the network. As also mentioned
above, the considered network area comprises of pixels. For a UE in the centre of each
pixel, the total coupling loss is determined between the UE and the BS of each cell.
The coupling loss includes the antenna gain, shadowing and distance-based path loss.
The cell having the minimum coupling loss towards the UE is referred to as the ‘best
server’. Figure 6.6(a) shows the BSA plot for the urban-macro propagation environment
and 6.6(b) shows the BSA plot for the rural-macro propagation environments. The hor-
izontal and the vertical axes represent the x and y coordinates (in meters) respectively
of the center of a pixel in the considered network area. Each colour in the BSA plots
corresponds to a unique cell in the network and represents the cell’s coverage.
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Figure 6.6: (a) BSA plot for the urban-macro propagation environment. (b) BSA plot for the rural-macro
propagation environment

6.3.5. Car penetration loss

The simulation model also considers UEs inside vehicles. An additional penetration
loss is experienced in case of an outdoor BS and a vehicle UE. This outdoor to in-car
penetration loss is modelled to be normally distributed (in the dB scale or log normally
distributed in the linear scale) with a mean of 9 dB and a standard deviation of 5 dB, as
suggested in [32].

6.4. Network traffic modelling

In this section, we describe the different aspects related to the network traffic in the
medical, transport and background classes, e.g. user deployment in a cell, applica-
tion characteristics, call arrival, call duration and traffic mix (type and direction(UL/DL)).
Two different traffic models are used in the simulator to model the traffic of the different
considered applications in all the classes. These are, as follows:

1. Traffic Model 1: finite buffer traffic model
The so-called finite buffer traffic model is used to model, e.g. non-real time video
and file transfers. In this model, the data to be transmitted during a call is available
in the data buffer of the call at the start of the call. The buffer of the call is at the
UE in the case of an uplink call and at the BS in the case of a downlink call. The
data is commonly referred to as a ‘file’. The file size is sampled from a lognormal
distribution for each type of files (e.g. video or file).
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2. Traffic Model 2: real-time traffic model
The so-called real-time traffic model is used to model, e.g. real-time video call
and voice over Internet Protocol (VoIP) calls. In this model, it is assumed that
packets arrive in the data buffer of a call, with a constant packet size and a constant
packet inter-arrival time (IAT). The packet size and the packet inter-arrival time are
determined based on the type of the application.

.

6.4.1. Background class traffic

The background class UEs are uniformly distributed in the network, where some UEs
are outdoors and others are in vehicles. Different user deployments (outdoor vs in-
vehicles) are considered for urban-macro and rural-macro propagation environments,
as described in Table 6.2.

The call arrival process in a cell is modelled as a Poisson arrival process with three
different settings of mean arrival rate (𝜆), corresponding to high load, medium load and
low load scenarios, respectively. For high load, 𝜆 = 20 calls per second is used which
corresponds to a cell resource utilisation of 70% on average, for medium load, 𝜆 = 12
calls per second is used which corresponds to a cell resource utilisation of 40% on
average and 𝜆 = 6 calls per second is used for low load scenarios, which corresponds
to a cell resource utilisation of 20% on average. It is noted that the above-mentioned
cell resource utilisation values correspond to the scenarios with only background class
traffic (and no medical and transport class traffic).

Each background UE moves with a constant speed which is determined at the start
of the simulation and in a direction which is randomly and uniformly selected from the
range 0 to 360-degrees. Different values of UE speeds are considered for urban-macro
and rural-macro propagation environments, as described in Table 6.2.

80% of the total background traffic is modelled to be downlink, while the remaining
20% is uplink [48]. The traffic is expressed in terms of number of bits per second.
In the simulations, 40% of the total background traffic is due to non-real time video
streaming (e.g. YouTube) (35% video downloads and 5% video uploads), 40% is due
to file transfers (35% file downloads and 5% file uploads) and the remaining 20% is
modelled to be real-time video traffic (e.g. Skype) and VoIP (10% real-time video and
10% VoIP). The traffic mix is inspired by [48].

Traffic Model 1 is used to model the traffic generated by non-real time video and file
transfers. If a user makes a video file request, a file size is sampled from a lognormal
distribution with an average file size of 29 MB and median file size of 5.6 MB [21]. In the
case of file transfers, the average file size of 1.3 MB and the median file size of 136 kB
is used [21].

Traffic Model 2 is used to model the traffic generated by Skype and VoIP. For a Skype
call, with a sending bitrate of 600 kbps and a packet size of 800 B [66], the IAT is taken
as 10.7 ms. For a VoIP call the packet size is taken as 150 B and the IAT is taken to as
40 ms [31].
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Since, in this study, the background application are considered to be best-effort, the
QoS requirements for these application are not relevant in this study.

Table 6.2: Network traffic aspects related to the background users.

Traffic
aspects
of back-
ground
UEs

Urban-macro propagation
environment

Rural-macro propagation
environment

UE
mobility
model

Fixed speed per UE, randomly and uniformly distributed direction

UE
speeds of
interest

3 kmph for pedestrians, 30 kmph for
outdoor vehicles

Speed randomly selected from a
uniform distribution in range of

90 to 120 kmph

Device de-
ployment

80% users outdoors in vehicles,
20% outdoor pedestrians, randomly
and uniformly distributed over the

considered network area.

100% users outdoors in high
speed vehicles, randomly and
uniformly distributed over the
considered network area.

Call arrival Poisson process per cell
Call

duration
Sampled from log-normal distribution with mean = 84 seconds and

standard deviation = 124 seconds for real-time calls

6.4.2. Medical class traffic

In Chapter 5 we discussed the different medical applications considered in this study
and their respective radio communication aspects (data exchanged between the UEs
and network). In this section we discuss the application characteristics of the medical
applications. Aspects related to the UE deployment and the UE speeds are described
in Chapter 9 along with the evaluation of the different scenarios.

Recall that the medical application considered in this study include 360-degree video
streaming, audio/video calling, ultrasound and ECG data streaming and the messages
conveying the haptic glove positions. All these applications are modelled using the
above-described Traffic Model 2. Table 6.3 summarizes the parameters, namely the
packet size and the packet inter-arrival time, selected for modelling the traffic generated
by the medical applications. Table 6.5 shows the maximum allowed packet drop rate
(PDR), packet latency budget and bit rate considered for the different medical class
applications. The values are selected based on recommendations in [27], [49].
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Table 6.3: Mobile traffic parameters (packet size and IAT) for medical applications [27].

Application Packet size Packet inter-arrival time
360-degree video 1500 5 ms

Ultrasound and ECG data 1000 B 10 ms
Haptic glove position messages 64 B 5 ms

Audio/video call 800 B 11 ms

6.4.3. Transport slice traffic

As detailed in Chapter 5, the transport network slice handles the mobile traffic generated
by vehicles, intersection controller (IC), road sensors and the ambulance’s transport unit.
These UEs and their respective radio communication aspects are defined in Chapter 5.
In this section, we describe the application characteristics of the transport applications.
The aspects related to the UE deployment and the UE speeds are described in Chapter
9 along with the evaluation the different scenarios.

The real-time video traffic generated by the regular vehicles and for the ambulance’s
transport unit (beyond-vision) is modelled using Traffic Model 2, described in Section
6.4.1. A packet size of 500 B and IAT of 10 ms is considered. The traffic signal priority
messages (URLLC-type traffic) of the IC and the ambulance’s transport unit is modelled
as a deterministic event-triggered traffic. The event is triggered in the simulations when
the ambulance is 50 meters away from the IC. A message is sent from the ambulance to
the BS asking for traffic green signal priority. The BS sends in the downlink, a message
to the IC asking the same. The IC then responds in the uplink, to the BS regarding the
status of the request (accept or reject). The BS then sends a message in the downlink to
the ambulance’s transport unit informing about the status. All the messages are taken
to be of equal size and equal to 150 B. In addition, the road sensors and the vehicles
generate small messages at a fixed frequency. This is also modelled using Traffic Model
2, described in Section 6.4.1.Table 6.4 summarizes the considered packet sizes and
packet inter-arrival times for the transport applications modelled using Traffic Model 2.
Table 6.5 shows the maximum allowed packet drop rate, packet latency budget and bit
rate considered for the different transport class applications. The values are selected
based on recommendations in [27], [49].

Table 6.4: Mobile traffic parameters (packet size and IAT) for transport applications [27].

Application Packet size Packet inter-arrival time
Global map and local map messages 600 B 50 ms

Beyond-vision video 500 B 10 ms
Road sensor messages 300 B 50 ms
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Table 6.5: Considered values of maximum allowed PDR, packet latency budget and bit rate for the
different priority applications [27], [49].

Priority applications Maximum
allowed PDR

Packet latency
budget Bit rate

360-degree video streaming 1% 100 ms 2400 kbps
Ultrasound and ECG data

streaming 1% 100 ms 800 kbps

Haptic glove position message
transmission 0.1% 1 ms 102. 4

kbps

Audio/video calling (bi-directional) 1% 130 ms 581.82
kbps

Global map and local map
message transmissions 0.1% 10 ms 96 kbps

Beyond-vision video 1% 100 ms 400 kbps
Road sensor messages 0.1% 10 ms 48 kbps
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6.5. Radio resource management mechanisms

Radio resource management (RRM) involves strategies and algorithms for controlling
parameters such as transmit power, resource allocation to users, data rates and mod-
ulation and coding schemes. The objective of RRM mechanism is to utilize the limited
radio-frequency spectrum resources and radio network infrastructure as efficiently as
possible. In the following sections we discuss the RRM techniques considered in this
study.

6.5.1. Scheduling policy

A scheduling policy dictates in which order the UEs get access to the resources and
the number of PRBs each UE is assigned for data transmission. We use a delay-based
priority scheduling policy for selecting the UEs that get access to the resources in each
time slot and deciding how many PRBs each UE gets in each time slot. The same
scheduling policy is used for both uplink and downlink. In each time slot, the sched-
uler calculates the priority for each active UE, based on the head-of-the-line packet
delay and the corresponding latency budget. The calls modelled in the simulator can
be categorised into two classes, viz. delay-sensitive (DS) calls and delay-tolerant
(DT) calls. The delay-sensitive calls are characterised by a finite packet-latency bud-
get. This means, if a packet is not completely transmitted within the latency budget, it
is dropped. Alternately, the delay-tolerant calls have no such requirement. Hence, the
packet-latency budget can be considered to be infinite for the delay-tolerant calls. The
scheduling priority (𝒫) calculation is done as follows:
If 𝐵 < 𝑊, the packet is dropped, otherwise the scheduling priority is calculated as:

𝒫 = {
ፖ
ፁዅፖ , for delay-sensitive calls
0, for delay-tolerant calls

(6.12)

where𝑊 is the packet wait time in the call buffer, 𝐵 is the packet-latency budget. Hence
𝐵 − 𝑊 is the time left until the packet’s deadline. In the case when 𝑊 exceeds 𝐵, the
packet is dropped. It is noted that in the case of downlink, the call buffer is at the BS
and hence, the wait time of the HOL packet for each active DL call is known to the BS-
based scheduler. However, in the case of uplink, since the call buffers are at the UE, this
information is not directly available to the scheduler. In this study, we assume that the
HOL packet wait times for each active UL call is made available at the BS via means of
uplink control signals. The PRBs are allocated to the calls in the order of priority, starting
from the highest priority. In case there are multiple calls that have the same priority, e.g.
if only multiple delay-tolerant calls are active in a time slot, all having the same priority
equal to zero, Round Robin scheme is used where one PRB is given to a call at a time.
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6.5.2. Uplink power control

Uplink power control is a mechanism to control the transmission power of the UEs. It
is used to provide adequate transmit power to the UEs for attaining the required signal-
to-interference-plus-noise (SINR) and meanwhile minimizing the interference caused to
other users in the neighbouring cells. Like LTE, the 5G-NR uplink power control mech-
anism is based on the combination of open-loop power control (OLPC) and closed-loop
power control (CLPC). In OLPC, the UE sets its transmit power based on an estimated
uplink path loss (estimated by the UE based on downlink measurements), a target re-
ceived power and a path loss compensation factor. While, in the case of closed-loop
power control, the UE adjusts its transmit power based on the feedback from the BS
(transmission power control (TPC) commands in the downlink) [64]. OLPC has been
shown (in LTE) to work just as well as or even better than CLPC [47]. Hence, in this
study, we only consider OLPC. The basic idea of OLPC in uplink is to compensate for
(generally a fraction of) the path loss between the BS and the UE by controlling the
transmit power of the UE. This is called fractional path loss compensation. Fractional
path loss compensationmakes cell-edge users with a higher path loss operate at a lower
SINR as compared to other users in the cell so that less interference is caused to the
neighbouring cells [40]. The UE’s transmit power per assigned PRB (dBm) with OLPC
with fractional path loss compensation is given by:

𝑃ፏፑፁ = 𝑃ኺ + 𝜌𝑃𝐿 (6.13)

where 𝑃ኺ is the target received power per assigned PRB at the UE’s serving cell (dBm),
𝜌 is the path loss compensation factor for fractional path loss compensation. PL is the
downlink path loss (dB) estimated by the UE based on the downlink reference symbols
measurements in the serving cell. 𝜌 is taken as 0.6 and 𝑃ኺ as -56 dBm based on the
recommendation of [64].

The UE’s total transmit power cannot exceed the maximum allowed UE transmit
power 𝑃፦ፚ፱. Therefore, the maximum number of PRBs that can be assigned to an
uplink call is given by:

𝑀፦ፚ፱ =
𝑃፦ፚ፱
𝑃ፏፑፁ

(6.14)

where symbols have the meaning as mentioned above. 𝑃፦ፚ፱ and 𝑃ፏፑፁ are in mW.
An uplink call may get PRBs that are less than or equal to 𝑀፦ፚ፱ depending on the

cell load and the scheduling policy. That is,

𝑀 ≤ 𝑀፦ፚ፱ (6.15)

where M is the number of assigned PRBs to the UE.
The UE’s total transmit power (in dBm) with OLPC with fractional path loss compen-

sation is given by:

𝑃 = 𝑚𝑖𝑛 { 𝑃፦ፚ፱ , 𝑃ኺ + 10𝑙𝑜𝑔ኻኺ𝑀 + 𝜌𝑃𝐿 } (6.16)

where symbols have the meaning as mentioned above.
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6.5.3. Link adaptation

The capacity of a radio link depends on the SINR at the receiver. Link capacity is mea-
sured using spectral efficiency (SE), expressed in bits/sec/Hz. The maximum SE in a
single-input-single-output (SISO) system on an additive white Gaussian noise (AWGN)
channel is derived from the Shannon capacity formula given by Equation 6.17. The
Shannon capacity formula gives the theoretical limit for the achievable SE for a given
signal-to-noise ratio (SNR).

𝑆𝐸 = 𝑙𝑜𝑔ኼ(1 + 𝑆𝑁𝑅) (6.17)
where 𝑆𝑁𝑅 is the signal-to-noise ratio.

Link adaptation (LA) is the process of dynamically changing the modulation and
coding scheme (MCS) used for radio transmission based on the radio link conditions
between the UE and the BS. LA is done by the BS. LA for downlink is done based on
feedback from the UE. The UE estimates the downlink channel quality based on the
experienced SINR of the downlink reference signals and reports it to the BS using a
channel quality indicator (CQI) report. The BS uses the CQI report to determine the
MCS to be used for downlink transmissions so that the block error rate (BLER) does
not exceed a threshold value. In good radio link conditions, a high CQI is reported
and the BS selects a high MCS value (more bits per symbol and less redundancy),
resulting in a higher SE. On the hand, in bad radio link conditions, a low CQI is reported,
and a low MCS value is used (less bits per symbol and more redundancy) to achieve
robust wireless transmissions, resulting in lower SE. Hence, LA is a way to approach
the theoretical bound on SE as given by the Shannon formula. LA for uplink is based on
a sounding reference signal (SRS) transmitted by the UEs. UL channel measurements
are done at the BS based on the experienced SINR and accordingly the BS determines
the MCS to be used for the uplink. The process of LA is better illustrated in Figure 6.7.

It can be observed from the figure that as the SNR improves, higher MCS can be used
resulting in increased spectral efficiency. By selecting higher-order MCS with improving
SNR, the bound given by the Shannon formula can be approached.

The SE in practical systems is below the theoretical limit and is better approximated
by the truncated Shannon bound (TSB) formula [3]:

𝑆𝐸(𝑆𝐼𝑁𝑅) = {
0, if 𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅፦።፧
𝜅𝑙𝑜𝑔ኼ(1 + 𝑆𝐼𝑁𝑅), if 𝑆𝐼𝑁𝑅፦።፧ ≤ 𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅፦ፚ፱
𝑆𝐸፦ፚ፱ , if 𝑆𝐼𝑁𝑅 > 𝑆𝐼𝑁𝑅፦ፚ፱

(6.18)

where 𝑆𝐼𝑁𝑅 is the SINR of the link, 𝑆𝐼𝑁𝑅፦።፧ is the lower limit on the SINR below which
the SE is zero. 𝑆𝐼𝑁𝑅፦።፧ is set based on the required SINR for the lowest MCS. 𝑆𝐼𝑁𝑅፦ፚ፱
is the upper limit on the SINR. 𝑆𝐼𝑁𝑅፦ፚ፱ is the SINR at which the highest implemented
MCS is used, resulting in the maximum SE i.e. 𝑆𝐸፦ፚ፱. The approximation of the Shan-
non curve thus obtained is truncated at points 𝑆𝐼𝑁𝑅፦።፧ and 𝑆𝐼𝑁𝑅፦ፚ፱. 𝜅 is the attenu-
ation factor that accounts for implementation losses and system overhead. The values
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Figure 6.7: SE of a set of modulation and coding combinations for AWGN channels [3]

of 𝜅, 𝑆𝐼𝑁𝑅፦።፧ and 𝑆𝐸፦ፚ፱ can be chosen to represent different modem implementations
and link conditions [3]. The TSB formula for a baseline case has been proposed in [3].
Table 6.6 describes the parameters for the TSB formula proposed for the baseline case.
The baseline assumes 1x2 antenna configuration (receive diversity), typical urban fast
fading channel model. UE speed of 10 kmph is considered in the case of DL and 3 kmph
in the case of UL. In addition, link adaptation, channel prediction and an error-control
plus error correction method called hybrid automatic repeat request (HARQ) [19] are
also considered in the baseline.

Table 6.6: Parameters describing the link-level performance for the baseline scenario [3]

Parameter DL UL Comments
𝜅, attenuation 0.6 0.4 Represents implementation losses
𝑆𝐼𝑁𝑅፦።፧ (dB) -10 -10 Based on QPSK, 1/8 rate (DL) and 1/5 rate (UL)
𝑆𝐸፦ፚ፱ (bps/Hz) 4.4 2.2 Based on 64QAM 4/5 (DL) and 16QAM 3/4 (UL)

In addition to the SINR, multipath propagation also impacts the achievable SE. Multi-
path propagation leads to frequency selective fading across the wideband radio channel.
UE movement causes variation in the fading levels over time. As mentioned earlier,
the network uses the channel estimates in the form of CQI reports to compensate and
exploit the variations through LA. However, high UE speeds cause rapid variations in the
channel, reducing the effectiveness of channel estimation and consequently adversely
affecting the link capacity. The impact of UE speed on link capacity is illustrated in Figure
6.8. It can be observed from the figure that for a given SNR, achievable throughput
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decreases with an increase in the UE speed.

Figure 6.8: Impact of UE speed on link capacity [3]

Moreover, in general, the link capacity also increases with increase in the number of
MIMO streams [65]. Hence, for instance, the SE for a given SINR and UE speed would
be higher for 4x4 MIMO than for 1x2 receive diversity.

In this study, we derive modified forms of the baseline TSB formula separately for UL
and DL to obtain an approximation of SE for a given SINR. The modified TSB is used
to model the LA mechanism in the simulations. Using the modified TSB, the average
SE that is achievable for a call, given the SINR and the UE speed is derived. The SE
estimate is used for packet scheduling and also for the calculation of actual throughput
achieved for the call, given the number of PRBs allocated to the UE.

The modification to the baseline TSB formula is required because in this study, we
consider 4x2 MIMO in DL and 1x4 receive diversity in UL unlike 1x2 receive diversity for
both UL and DL in the baseline and a high UE speeds (see Table 6.2). Hence, we apply
two correction factors to the TSB formula for the baseline case, one for the change in
antenna configuration and another for high UE speeds. The correction factor for 1x2
to 4x2 antenna configuration conversion is noted as 𝑐ፃፋ and for 1x2 to 1x4 antenna
configuration conversion is noted as 𝑐ፔፋ. The values of 𝑐ፃፋ and 𝑐ፔፋ are set based on
the recommendations of [65].

𝑐ፃፋ = 1.636 and 𝑐ፔፋ = 1.205 (6.19)

𝑐፬፩፞፞፝ is the correction factor to account for ineffective channel estimation due to UE
speed. It is the same for both UL and DL TSB formulas. The values of 𝑐፬፩፞፞፝ are set
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based on the findings in [65].

𝑐፬፩፞፞፝ = {
1, if 𝑣 < 30𝑘𝑚𝑝ℎ
0.875, if 30 ≥ 𝑣 < 120𝑘𝑚𝑝ℎ
0.75, if 𝑣 ≥ 120𝑘𝑚𝑝ℎ

(6.20)

For 5G NR, the maximum modulation order is 256 QAM and the maximum code rate is
948/1024. However, for simplicity we keep the same codeset as used in the baseline
case. Hence, the modified TSB formula used in this study is given by Equation 6.21.

𝑆𝐸(𝑆𝐼𝑁𝑅) = {
0, if 𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅፦።፧
𝜅ᖣ𝑙𝑜𝑔ኼ(1 + 𝑆𝐼𝑁𝑅), if 𝑆𝐼𝑁𝑅፦።፧ ≤ 𝑆𝐼𝑁𝑅 < 𝑆𝐼𝑁𝑅፦ፚ፱
𝑆𝐸ᖣ፦ፚ፱ , if 𝑆𝐼𝑁𝑅 > 𝑆𝐼𝑁𝑅፦ፚ፱

(6.21)

where 𝜅ᖣ = 𝜅𝑐ፃፋ𝑐፬፩፞፞፝ and 𝑆𝐸ᖣ፦ፚ፱ = 𝑆𝐸፦ፚ፱𝑐ፃፋ𝑐፬፩፞፞፝ for DL. For UL, 𝜅ᖣ = 𝜅𝑐ፔፋ𝑐፬፩፞፞፝
and 𝑆𝐸ᖣ፦ፚ፱ = 𝑆𝐸፦ፚ፱𝑐ፔፋ𝑐፬፩፞፞፝.





7
Key Performance Indicators

7.1. Performance metrics

The main focus of this study is to design and assess a resource management method
for sliced radio access networks that is able to efficiently distribute the limited amount
of resources among multiple slices in a cell such that the QoS requirements of the ap-
plications in the priority classes are satisfied and the highest attainable performance is
achieved for the best-effort applications in the background class. In a sliced RAN, re-
sources are reserved for the priority classes that incurs cost for the slice owners. An
efficient resource management method would provide high performance to the appli-
cations in the priority classes while minimizing the amount of reserved resources and
hence the cost of resources for the slice owners. Furthermore, in the situations of re-
source scarcity, the resource management method must be able to efficiently balance
the performance of multiple priority classes, in accordance with the relative priorities of
the slices. Another indicator for the performance of a resource management method is
cell resource utilisation. In general, for a given performance level, the resource man-
agement method that leads to a lower cell resource utilisation is said to have a better
performance. But, at the same time, for a given cell load, a higher cell resource utili-
sation means that a lower number of packets were dropped which indicates towards a
more efficient multi-slice resource allocation.

Therefore, the considered key performance indicators (KPIs) must capture the per-
formance level of the priority applications, the performance level of the background ap-
plications, the cost of resources incurred by the slice owners and the cell resource utili-
sation. In the following sections we define the KPIs that quantify the above mentioned
aspects.
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Slice utility function, average performance and average cost of resource reservation

We define three different KPIs to capture three things, namely the performance level of
the priority applications, the average cost of resources incurred by the slice owners and
the balance between the cost and performance. These are respectively, the average
performance of the applications in a priority class, the average cost of resource reser-
vation for the priority class and the slice utility of the slice to which the priority class is
mapped.

The performance of a call is quantified by a service utility function. The service
utility function for delay-sensitive services is given by Equation 7.1 and for delay-tolerant
services is given by Equation 7.2.

𝑈ፃፒ = {
𝛼ፃፒ, if 𝑟ፃፒ ≤ 1
exp(−𝛽ፃፒ × 𝑟ፃፒ) − 𝛼ፃፒ, if 𝑟ፃፒ > 1

(7.1)

where 𝑈ፃፒ is the utility for a delay-sensitive call computed over a time interval equal to
the lifetime of the call or 𝑇ኺ (whichever is less). 𝑟ፃፒ =

𝑃𝐷𝑅፨፬
𝑃𝐷𝑅፦ፚ፱

. 𝑃𝐷𝑅፨፬ is the packet
drop-rate of the call measured in the same interval and 𝑃𝐷𝑅፦ፚ፱ is the maximum allowed
PDR for the call. 𝑟ፃፒ > 1 means that the observed PDR exceeds the maximum allowed
PDR and hence the PDR requirement of the call is not satisfied.

𝑈ፃፓ = {
𝛼ፃፓ , if 𝑟ፃፓ ≤ 1
exp(−𝛽ፃፓ × 𝑟ፃፓ) − 𝛼ፃፓ , if 𝑟ፃፓ > 1

(7.2)

where 𝑈ፃፓ is the utility for a delay-tolerant call computed over a time interval equal to

the lifetime of the call or evaluation period 𝑇ኺ (whichever is less). 𝑟ፃፓ =
𝑇ℎ፫፞፪
𝑇ℎ፨፬

. 𝑇ℎ፨፬
is the throughput of the call measured in the same interval and 𝑇ℎ፫፞፪ is the minimum
required throughput by the call. 𝑟ፃፓ > 1means that the observed throughput is less than
the minimum required throughput and hence the throughput requirement of the call is
not satisfied.

Figure 7.1 shows the service utility function for delay-sensitive (and delay-tolerant)
services with shape-parameters (𝛼, 𝛽). In the case of delay-sensitive services, 𝛼 = 𝛼ፃፒ,
𝛽 = 𝛽ፃፒ and in the case of delay-tolerant services, 𝛼 = 𝛼ፃፓ, 𝛽 = 𝛽ፃፓ. It can be observed
from the figure that in the case of DS services, if the PDR requirement is not satisfied
(i.e. 𝑟ፃፒ>1), the value of the service utility function falls exponentially with the increase
in the value of 𝑟ፃፒ. Similarly, in the case of DT services, if the throughput requirement is
not satisfied (i.e. 𝑟ፃፓ > 1), the value of the service utility function falls exponentially with
the increase in the value of 𝑟ፃፓ. This means, worse the performance (in terms of PDR
or throughput), higher is the penalty. As long the performance requirement is satisfied,
the service utility is positive and equal to 𝛼. The value of 𝛽 controls the steepness of
the exponential curve. This means, higher the value of 𝛽, the service utility drops to the
worst possible value (given by −𝛼) for a smaller drop in the performance level below
the required performance level. Hence, the choice of the values of 𝛼 and 𝛽 determine



7.1. Performance metrics 63

the stringency imposed by a slice owner in meeting the required performance levels for
the services on the slice. Higher values of 𝛼 and 𝛽 mean more stringent requirement
for meeting a certain level of performance. It is noted that the relative importance of
meeting certain performance levels for DS and DT services in a slice is controlled via
the choice of 𝛼ፃፒ, 𝛼ፃፓ, 𝛽ፃፒ and 𝛽ፃፓ.

Figure 7.1: Service utility function for delay-sensitive and delay-tolerant services with shape parameters
(ᎎ,ᎏ)

The average performance of the priority applications in a class (including both DS
and DT applications) is given as follows:

∑፧ፍᐻᑊ፧ኻ 𝑈ፃፒ
𝑁ፃፒ

+
∑፦ፍᐻᑋ፦ኻ 𝑈ፃፓ

𝑁ፃፓ
(7.3)

where 𝑁ፃፒ and 𝑁ፃፓ are respectively the total number of delay-sensitive calls and delay-
tolerant calls activated in the slice in the interval 𝑇ኺ. 𝑈ፃፒ and 𝑈ፃፓ are respectively the
service utility values for the delay-sensitive calls and delay-tolerant calls. The relative
importance of DS services and DT services in the average performance of priority ap-
plications is implicitly determined by the values of the parameters: 𝛼ፃፒ, 𝛼ፃፓ, 𝛽ፃፒ and
𝛽ፃፓ used in calculating the service utility.

The average cost of resource reservation for a slice is given as follows:

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = 𝛾𝐹፬፥።፞ (7.4)

where 𝛾 is a unit-less quantity and 𝐹፬፥።፞ is the fraction of the total PRBs allocated to the
slice for the interval 𝑇ኺ. It is noted that the slice owner pays for the number of PRBs
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reserved for the slice and not for the fraction of the total PRBs. However, in the slice
utility function we use the fraction of the total PRBs allocated to the slice to represent
the average cost of reserved resources. In this way, 𝛾 can be expressed as a unit-less
quantity that is independent of the total available PRBs in the interval 𝑇ኺ.

As mentioned above, the slice utility function quantifies the balance achieved by a
resource management method, between the cost of resources and the performance of
applications in a slice in a cell. The slice utility over a certain time interval 𝑇ኺ takes into
account the average cost of resources allocated to the slice and the average perfor-
mance of the calls activated in the slice in the same time interval 𝑇ኺ. The slice utility
function includes the average performance of the delay-sensitive services and delay-
tolerant services activated in a slice and the average cost of the PRBs allocated to the
slice in the interval 𝑇ኺ. The slice utility function is given by:

𝑈፬፥።፞ =
∑፧ፍᐻᑊ፧ኻ 𝑈ፃፒ

𝑁ፃፒ
+
∑፦ፍᐻᑋ፦ኻ 𝑈ፃፓ

𝑁ፃፓ
− 𝛾𝐹፬፥።፞ (7.5)

where 𝑈፬፥።፞ is the slice utility.
𝛼ፃፒ,𝛼ፃፓ,𝛽ፃፒ,𝛽ፃፓ and 𝛾 are configurable parameters that can be selected by the net-

work operator to reflect its policies with different slice owners. For instance, if the oper-
ator wants to charge highly for the reserved resources for a slice, it can choose a high
value of 𝛾.

In addition to determining the level of stringency imposed by a slice owner for meet-
ing the required application performance levels (see above), the choice of 𝛼 (𝛼ፃፒ or
𝛼ፃፓ) also determines the relative importance of service satisfaction w.r.t the resource
reservation cost for the slice owner. This means, for example, if the ratio ᎎ

᎐ is taken to
be higher, the slice utility value is affected more by the performance of the services and
less by the cost of reserved PRBs.

In this study we analyse the performance of the proposed AI-based multi-slice re-
source allocation framework considering different settings of the above-discussed con-
figurable parameters. Details are in Chapter 9.

Weighted average utility of the priority slices

As the name suggests, the weighted average utility of the priority slices for a time interval
𝑇ኺ is the (weighted) average of the slice utility values of the priority slices calculated over
the interval 𝑇ኺ.

Thus, it is defined as follows:

𝑈ፚ፯፠ = 𝑤፦፞፝𝑈፦፞፝።ፚ፥ +𝑤፭፫ፚ፧𝑈፭፫ፚ፧፬፩፨፫፭ (7.6)
The choice of 𝑤፦፞፝ and 𝑤፭፫ፚ፧ also reflect the operator’s policy for favouring one slice
over the other. Recall that in this study, the transport slice is considered to have a higher
priority than the medical slice. The values of 𝑤፦፞፝ and 𝑤፭፫ፚ፧ considered in this study
are specified in Chapter 9. This KPI is considered as the bottom-line KPI for the priority
classes.
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Average cell resource utilisation

The average cell resource utilisation indicates the amount of resources used to yield cer-
tain performance levels for the different classes. It is defined as the ratio of the number of
PRBs used in a cell in a certain time interval 𝑇ኺ and the total available number of PRBs in
the cell in the same interval. As mentioned above, for a given performance level a lower
resource utilisation is better. At the same time, for a given traffic load in all the classes,
a higher resource utilisation indicates towards a more efficient resource allocations in
all the classes. This is because, for a certain traffic load, an efficient resource allocation
results in a lower number of packet drops in the priority classes. Consequently, more
traffic (in total) can be handled by the cell leading to a higher resource utilisation.

10፭፡ throughput percentile of the background class applications

This KPI is considered as the bottom-line KPI for the background class. The background
class is taken as the best-effort class, which only gets the resources which are left-
over after allocation to the priority classes. Hence, the other KPIs, namely, the average
performance of applications, the slice utility (and hence, the weighted average), average
cost of resource reservation are not relevant for this class.





8
AI Model

In this chapter we discuss the details of the artificial intelligence model designed for
resource management in a sliced RAN. The proposed framework has two modules,
namely resource prediction module and resource allocation module. The proposed
framework takes the resource management decisions at the cell-level. In the follow-
ing sections we elaborate the design and functioning of each module and discuss how
these modules work together for the purpose of resource management in a sliced RAN.

8.1. Overview

According to the use case considered in this study, there are three slices that can be
active in a cell, namely medical slice, transport slice and background slice (see Chapter
5 for details). As mentioned in Chapter 5, the transport slice and the medical slice are
priority slices, while the background slice is a best-effort slice. As discussed in Chapter
5, in this study, we assume the transport slice has a higher priority than the medical
slice.

For resource allocation among the slices in a cell, first the resource predictionmodule
predicts the resource demand for the priority slices in the cell. The collective resource
demand is represented by the tuple {𝒟ኻ, 𝒟ኻ}. This resource demand tuple is then input
to the resource allocation module that takes the final resource allocation decision for all
the slices in the cell. The resource management (resource demand prediction followed
by resource allocation) is done periodically and additionally may be triggered when a
new call connection is established in the cell or when a slice changes its status from
inactive to active and vice-versa. The time interval at which the resource management
decisions are taken periodically is referred to as the re-allocation interval. The above is
illustrated in Figure 8.1. For all the active calls in the medical and transport classes, the
resource demand prediction module predicts the resource demand based on various
call specific statistics, e.g. throughput requirement, RSRP of the UE (see Section 8.2.1
for the considered call specific statistics). The resource demand for each call in a class
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Figure 8.1: Overview of the complete AI-model for multi-slice resource allocation.

is aggregated to get the resource demand of the slice to which the class is mapped
(denoted in the figure by𝐷፦፞፝ and𝐷፭፫ፚ፧). The resource demands of the priority classes,
viz. medical and transport as predicted by the resource prediction module are input to
the resource allocation module which then based on the collective demand, allocates
certain amount of resources to each priority class (denoted in the figure by 𝐴፦፞፝ for the
medical class, 𝐴፭፫ፚ፧ for the transport class and 𝐴፠ for the background class). It is noted
that the resource allocation module only gives the number of PRBs to be allocated to a
slice and not which PRBs. Recall (see Chapter 6) that in this study, we do not explicitly
model frequency-selective fading. Hence, all the PRBs are identical. The background
class gets whatever is remaining after allocation to the priority classes.

8.2. Resource prediction module

The task of the resource prediction module is to predict the resource demand for the
slices in a cell for an upcoming re-allocation interval. The resource demand for all the
slices as predicted by the resource prediction module is then used by the resource
allocation module to obtain the final resource allocation for all the slices in the cell for
the upcoming interval (see Section 4.2 for details on the resource allocation module).
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The resource prediction module predicts the expected resource demand for each active
call in a slice in the cell and sums the predicted demands over all active calls in the slice
to get an estimate of the expected demand of the slice. It is noted that the calls that
will be active in a slice during the upcoming interval may vary and cannot be known
in advance. To tackle this issue, the resource demand prediction module, in addition
to predicting the resource demand periodically, updates resource demand prediction
for a slice whenever a new call is established in the slice or when a slice changes its
status from inactive to active and vice-versa. A new resource demand prediction in turn
triggers the resource allocation module to update the resource allocation among the
different slices. This, however, also depends on the length of the re-allocation interval.
In general, if the re-allocation time-interval is small (e.g. 100 ms), the number of active
calls in a slice during the interval can be taken constant and equal to the number of
active calls in the slice at the start of the re-allocation interval.

The design of the resource predictionmodel is such that it takes some inputs that rep-
resent some call-specific statistics (discussed in Section 8.2.1) and based on the values
of the inputs, outputs the expected resource demand for a call as a single continuous-
valued variable. For this purpose, the resource prediction module employs a supervised
machine learning model in the regression setting (refer to Chapter 2). Figure 8.2 illus-
trates the overview of such a machine learning model. The inputs are the considered
call-specific statics that are discussed in detail in Section 8.2.1.

Figure 8.2: Overview of the machine learning model used in the resource demand prediction module.

The aim of supervised machine learning in the regression setting is to estimate so-
called true relationship between the inputs and the output of a defined model in an
underlying physical system. The physical system in this study is a cell in a cellular
wireless system with active calls in the defined three slices, viz. medical, transport and
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background slices. The performance of a ML model depends on the application domain
that is represented by the training data. In this study we analyse the performance of
three machine learning models for the resource prediction problem, namely multiple
linear regression, random forests regression and artificial neural networks (also see
Chapter 2). Multiple linear regression is the simplest ML model for regression problems
with two or more model inputs and one model output. We use MLR to find whether a
linear relationship between the inputs and the output exists. However, in many cases the
inputs are non-linearly related to the output and therefore, MLR cannot be used to find
the true relation. In such cases, non-linear ML models are used to get more accurate
estimate of the true relation between the inputs and the output. Most commonly used
supervised machine learning models for non-linear regression are RF and ANN. In this
study, we analyse and compare the performance of MLR, RF and ANN for the defined
resource prediction problem. The training data and the testing data is taken to be the
same for the three ML models. The ML model that minimizes the defined loss function
(see Section 8.2.10) is considered to achieve the most accurate estimation of the true
relation between the defined inputs and the output and hence is selected for the resource
prediction module.

In the following sections, we describe the inputs and the output for the machine
learning models and the process of creating the training data. We then discuss the
design of each of the machine learning models and analyse their performance.

8.2.1. Machine learning model inputs and output

A supervised machine learning model essentially approximates an unknown function
called the target function that represents the true relationship between the model inputs
and output. In this study, the ML model takes some inputs and outputs the average
resource demand of a call. We define the resource demand of a call as the number
of PRBs per time slot that would be required by the call to satisfy its throughput
and/or packet latency requirements. In a cellular wireless environment the demand
as defined above depends on a number of factors. Hence, the inputs of the ML model
must be selected carefully such that all such factors are taken into account. We identified
that the following factors affect the resource demand of a call. Hence, we select these
factors as the inputs for the ML model. Below we briefly argue our choice for the inputs.

• Throughput requirement
If the throughput requirement for a call is higher, a given number of packets of
the call must be transmitted in a smaller time interval, consuming or requiring
more PRBs per time slot on average, compared to the case of a lower throughput
requirement.

• Packet latency requirement
A packet must be given the required amount of resources for transmission within
the latency budget. If the packet latency budget of a call is smaller, the required
amount of resources must be given in a smaller interval, consuming or requiring
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more PRBs per time slot on average, compared to the case of a higher packet
latency budget.

• Reference signal received power (RSRP)
The RSRP is the average reference signal power received at the UE, averaged
over the resource elements carrying the reference signal in a cell. The RSRP is
computed at the UE and reported back to the BS and indicates the strength of the
received wireless signal. Moreover, the RSRP indicates the proximity of the UE to
the serving cell BS and hence is positively correlated with the experienced SINR
and hence the modulation and coding scheme (MCS). The MCS used determines
the number of bits transmitted successfully per spectrum unit and time unit, i.e.
the spectrum efficiency. A higher RSRP and accordingly a higher MCS result in
a higher spectrum efficiency or equivalently result in a lower PRB requirement to
transmit a given number of bits.

• Average neighbouring cells PRB utilisation
The cell PRB utilisation is defined as the ratio of the number of PRBs allocated to
users in a cell per time slot and the total number of PRBs available in a cell per
time slot. The average of the PRB utilisation values (as defined above) of the cells
that neighbour the serving cell is defined as the average neighbouring cells PRB
utilisation. The PRB utilisation values of the neighbouring cells give an indication
of the mobile traffic load in the neighbouring cells. The load in the neighbouring
cells affects the inter-cell interference level at the serving cell. Hence, average
neighbouring cells PRB utilisation can be used to indicate the average inter-cell
interference level at a receiver in the serving cell. A higher inter-cell interference
at a receiver decreases the SINR at the receiver that in turn adversely affects
the achievable bit rate. Hence, the number of PRBs required to transmit a given
number of bits also depends on the average PRB utilisation of the neighbouring
cells.

• UE speed
The UE speed determines how fast the wireless channel conditions for a UE are
varying. We discussed in Section 6.5.3 how higher UE speedsmay result in reduc-
ing the effectiveness of channel estimation and consequently adversely affecting
the link capacity. To achieve a certain throughput (or to satisfy a given packet la-
tency budget), while taking into account the effect of higher UE speed on the link
capacity, more PRBs are required per time unit.

• Call direction, i.e. uplink (UL) or downlink (DL)
If more PRBs are assigned to a call, bit rate increases in general on account of
more available resources. However, unlike in DL, the relationship between the
number of PRBs and the bit rate is not linear in UL. In UL, an increase in the
number of assigned PRBs to a UE means that the limited UE power is distributed
over a high number of PRBs. This results in a decrease in the per-PRB SINR and
hence the attainableMCS and consequently the bit rate. Therefore, the increase in
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the number of PRBs leads to two opposing effects in UL, which makes the bit rate
generally increases much less with an increase in the number of PRBs in UL as
compared to DL. Therefore, in general, UL transmissions have a lower spectrum
efficiency than DL transmissions and hence the PRB requirement to transmit a
given number of bits is higher for UL than DL.

8.2.2. Mutual information and correlation betweenmodel inputs and output

Figure 8.3 shows the mutual information between each of the above-described model
inputs and the model output. The model inputs and output are random variables. Mutual
information (MI) of two random variables quantifies the mutual dependence between the
two variables. In other words, MI is a measure of the ‘amount of information’ obtained
about one variable by observing the other. For two discrete variables 𝑋 and 𝑌 whose
joint probability distribution is 𝑃ፗፘ(𝑥, 𝑦), the mutual information between them, denoted
𝐼(𝑋; 𝑌) is given by:

𝐼(𝑋 ∶ 𝑌) =∑
፱,፲
𝑃ፗፘ(𝑥, 𝑦) log

𝑃ፗፘ(𝑥, 𝑦)
𝑃ፗ(𝑥)𝑃ፘ(𝑦)

(8.1)

where 𝑃ፗ(𝑥) and 𝑃ፘ(𝑦) are the marginal probability distributions of 𝑋 and 𝑌 respectively.
MI is also linked to the entropy of a random variable. Entropy is a measure of the
uncertainty in the outcome of a random variable [8]. In fact, MI is the reduction of the
uncertainty of a variable after observing the other variable. Readers are referred to [8]
for more details.

Mutual Information is commonly used in machine learning problems for selection of
model inputs. Mutual information between a model input and the output gives informa-
tion about how important the model input is for predicting the output. Input selection is
an important step in creating a ML model that achieves high prediction accuracy. The
inputs that have high inter-dependence with the output, indicated by high MI (above a
certain threshold) are selected. In fact, the inputs exhibiting low inter-dependence with
the output, indicated by low MI may add noise to the data and hence result in a decrease
in the model prediction accuracy.
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Figure 8.3: Mutual information between the model inputs and output

It can be observed from the figure that the MI between the output, i.e. the average
number of PRBs required by a call and the RSRP is the highest. This indicates that the
model predictions are highly dependant on the UE RSRP. The MI between the output
and the call direction is the lowest, indicating that themodel predictions are least affected
by the call direction.

MI is a reliable measure to find the mutual dependence between a model input and
the output. However, MI does not give any information about the direction of association
of between a model input and the output. That is, MI cannot tell whether an increase
in the value of an input leads to an increase or decrease in the corresponding value of
the output. Hence, to analyse the direction of association between the different model
inputs and output, we use Spearman’s rank correlation coefficient. Spearman’s correla-
tion coefficient assesses whether the two variables being compared are monotonically
related. The sign of the Spearman correlation indicates the direction of association be-
tween a model input and the output. If the output value tends to increase when the input
value increases, the Spearman correlation coefficient is positive. If the output value
tends to decrease when the input value increases, the Spearman correlation coefficient
is negative. Readers are referred to [14] for more information on Spearman correlation.

Table 8.1 shows the values of the Spearman correlation for the different model inputs
and the output. It can be observed that for the inputs, namely the throughput require-
ment, the average neighbouring cells PRB utilisation and the UE speed, the Spearman
correlation coefficient is positive, indicating that as the values of these inputs increase,
the output, i.e. the average number of PRBs required by a call per time slot increases.
This is as expected based on the arguments given in Section 8.2.1. On the other hand,
the Spearman correlation coefficient is negative for the input namely, packet latency
requirement, indicating that as the packet latency requirement increases, the PRB re-
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Table 8.1: The Spearman correlation between the different model inputs and the output.

Model input Spearman correlation coefficient
Throughput 0.714

Packet latency -0.342
RSRP -0.136

Avg. neighboring cells PRB utilisation 0.021
UE Speed 0.058

quirement decreases, as expected.

8.2.3. Training data

A training data set consists of tuples of the input variables and the output called data
samples. A training data sample in this study is given by the tuple {ℐኻ, ℐኼ...ℐዀ, 𝒪}, where
ℐኻ to ℐዀ are the input variables and 𝒪 is the output label described in Section 8.2.1. The
training data must represent the relation between the input variables and the output in a
given underlying system. As mentioned above, in this study the underlying system is a
cell in a cellular wireless system with active calls in the different slices. More specifically,
the system comprises of a combination of the wireless channel conditions, behaviour of
the scheduler, network layout, available system bandwidth, BS antenna settings, TDD
frame structure and numerology. The training data samples are collected using network
measurements for various active calls in the network. For this study, network simulations
(see Chapter 6) are used to collect the training data samples. In the following text we
discuss how the required network measurements are taken and which calls are used in
this study for collecting the training data samples.

As mentioned, the machine learning model predicts the average number of PRBs
required by a call per time slot in order to meet its throughput and packet latency require-
ments. Since the output is an average number per time slot, the input variables are also
represented as averages per time slot to create a training data sample. As mentioned
in Section 6.5.1, all the services in a cell are categorised into two classes, viz. delay-
sensitive services and delay-tolerant services. The network measurements are taken
in different ways for the DS and DT calls. For a DS call, the network measurements
for the input variables are taken in every time slot for the duration of the transmission
of a packet and are averaged over the same duration to obtain the respective aver-
age values per time slot. Not all packets are used for this purpose, instead every 𝑁፭፡
successfully transmitted packet of the call is used. This is to avoid taking similar mea-
surements due to similar radio conditions experienced in transmission of consecutive
packets. 𝑁 may be selected per call based on the speed of the UE. For example, for a
UE moving at a high speed, measurements may be taken for every other packet, since
the radio conditions for the UE vary rapidly, while for a stationary UE, a high value of
𝑁 should be used since the radio conditions around such a UE change slowly. It is
noted that the choice of 𝑁 also depends on the packet inter-arrival time of the call and
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the prorogation environment. For simplicity, we keep 𝑁 = 40 for all calls in the urban
environment (with stationary UEs or UEs moving at low speeds) and 𝑁 = 10 for calls
in the rural environment (with UEs moving at high speeds). On the other hand, for DT
calls, the necessary measurements are taken in every time slot for the duration of the
call and then averaged over the call duration to obtain the respective average values
per time slot. As mentioned in Chapter 6, in the case of DT calls, the call duration is the
time required to transmit all the data of the call from the transmitter to the receiver.

Out of the six input variables described above, the call direction needs no network
measurement. The UE speed is assumed to be either reported by the UE to the BS
or estimated by the BS based on e.g. the channel measurement reports of the UE.
The UE speed is assumed to be constant for the whole call duration. The RSRP and
average neighbouring cells utilisation are recorded in the manner described above for
DS and DT calls. Throughput and packet latency requirements are QoS requirements
that are specified by the customers of the services. While creating the training data
set, instead of recording the throughput and packet latency requirements of the call,
the measured values of throughput and packet latency are recorded. Also, the average
number of PRBs used by the call per time slot that resulted in the measured throughput
and packet latency is recorded. The throughput and packet latency experienced by a
call depend on the PRBs assigned to the call. Therefore, by using the experienced
throughput and packet latency and the corresponding average number of used PRBs
in the training data samples, the relationship between these variables is captured and
later will be used to predict the PRBs required by a call to result in a certain throughput
and packet latency.

It is noted that unlike a DS call, a DT call does not have a maximum packet latency
requirement and hence the experienced packet latency values for DT calls are irrelevant
for the training data. Thus, for a DT call, the network measurements are taken on a call
level as described above and not the packet level as in the case of DS calls. For this
reason, in the case of DT calls, the call duration is recorded instead of packet latency.

This way of defining the training data samples captures the behaviour of the underly-
ing system that is required in a supervised machine learning problem. More specifically,
the training data captures the following:

Given the channel quality between the UE and the BS as represented by the RSRP,
the inter-cell interference levels as represented by the average neighbouring cells PRB
utilisation, the effectiveness of channel estimation for LA as represented by the UE
speed and the call direction, how many PRBs were used on average per time slot to
result in the observed throughput and packet latency.
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8.2.4. Test data

A test data sample is a tuple of the above described inputs variables and output label,
i.e. {ℐኻ, ℐኼ...ℐዀ, 𝒪}, defined for the call for which the resource prediction is needed. 𝒪 is
so-called true value of the output for the given input variables. However, unlike a training
data sample, a test data sample includes the throughput and packet latency require-
ment for the considered call and not their experienced values. At the time of prediction,
a test data sample is input in the MLmodel which predicts the average PRB requirement
per time slot for the considered call. More specifically, the following is answered by the
ML-model:

Given the channel quality between the UE and the BS as represented by the RSRP,
the inter-cell interference levels as represented by the average neighbouring cells PRB
utilisation, the effectiveness of channel estimation for LA as represented by the UE
speed and the call direction, how many PRBs will be required on an average per time
slot, to achieve the required throughput and packet latency.

8.2.5. Training data quality

The training data dictates to a great extent how accurately the model is able to predict.
In general, the training data must be abundant and well representative of the scenar-
ios or applications for which the model is expected to make predictions. A poor train-
ing data set is characterised by small size (insufficient training samples for the given
model/problem complexity), bias in data or non-representative data. Insufficient data
leads to overfitting. An overfit model learns the training data perfectly but may not work
on new unseen data. Biased training data, on the other hand, does not cover the com-
plete input range expected at the time of model implementation. This leads to poor
generalization to unseen data and hence prediction errors.

In this study, the resource prediction module is required to predict the resource de-
mand of active calls in the medical and the transport slices. Hence, for the training
data to be representative of the target applications, the necessary measurements must
come from active calls in these slices. However, it is noted that in the considered use
case the medical slice is only temporarily active (i.e. having one or more active calls)
in a cell. This prevents from obtaining adequate data samples required for training in
a reasonable time duration. On the other hand, the background slice is always active
and hence can provide abundant data samples. Hence, to meet the requirement of
having sufficient training data, we propose to use the background services for training
data creation. The challenge in this case is, of course to ensure that the training data is
still well-representative of the target sample distribution. The background slice may or
may not have calls that resemble the calls (in the sense of the QoS requirements and
traffic characteristics) in the medical and transport slices for which the predictions have
to be made. This may lead to a bias in the training data towards the background ser-
vices, resulting in poor model generalisation to unseen data. This means, while such a
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model will perform well when used for predicting resource demand for background slice
services, it will give poor predictions when applied for medical and/or transport slice
services. We propose a novel solution to overcome the bias in the training data. The
solution is discussed in detail in Section 8.2.6.

8.2.6. Removing the bias in the training data

As reasoned in Section 8.2.5, the training data samples are created using network mea-
surements of the active calls in the background slice. As also mentioned in Chapter
5, the background slice, in this study represents the mobile traffic that is commonly
present in real-world mobile networks. An example of the traffic mix in the real-world
mobile networks includes video streaming (63%), web applications (social networking,
browsing, navigation), audio streaming, messaging, emails and file downloads (around
22%). These services belong to the class of delay-tolerant services. Only a minority of
the background traffic is composed of the delay-sensitive calls (including VoIP, video-
conferencing/video-chats and online gaming) [15]. The training data developed using
the background traffic does not contain enough training samples from DS services e.g.
services in medical and transport classes. As a result the training data contains a bias
towards the delay-tolerant traffic and is non-representative of the scenario where the
model is expected to make predictions (i.e for the medical and the transport slice traffic
that consists of only delay-sensitive services). Therefore, the model learnt using the
background traffic will not generalise well to the medical and transport traffic, resulting
in poor prediction performance.

To address the problem of bias in the training data created using the background
slice traffic, it needs to be ensured that the training data set includes sufficient data
samples for services which may not be present or present only in a small minority in the
background slice mobile traffic. These are the services for which the resource prediction
may be required at the time of model implementation. To achieve this, we propose a
method to handle the traffic from services that make the majority of the background
slice mobile traffic, e.g. delay-tolerant traffic as if it were generated by the services
for which the data samples are needed for the training purpose, e.g. delay-sensitive
services in the medical and transport classes. This differentiated handling of so-called
‘majority traffic’ is proposed to be done at the base station at the scheduler level. In
this study we use a delay-based (QoS aware) scheduler. This scheduler makes the
resource assignment schedule based on the packet latency budget of the active services
(refer to Section 6.5.1). In the proposed method of differentiated handling, the network
selects some of the delay-tolerant services and overrides their latency requirement with
the latency requirement of the delay-sensitive services. A packet latency budget is
(artificially) associated with the packets of the delay-tolerant calls for a certain duration.
The delay-based (QoS aware) scheduler creates the resource assignment schedule
based on the updated latency budgets for the active calls. The schedule based on the
artificially enforced packet latency budgets is used for actual data packet transmissions,
resulting in measurements and hence desired training data samples corresponding to
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the delay-sensitive calls. An entity in or outside the network may decide when and
for which delay-sensitive service this differentiated handling is necessary based on the
prediction model requirements, the traffic characteristics and/or the observed service
traffic mix in the cell and which delay-tolerant service is to be differently treated, e.g.
based on which of the candidate services have the most similar characteristics and/or
QoS requirements.

The training data set created using the above-described method of differentiated
handling is referred to as ‘modified’ training data set and the training data set that has
not been modified via means of differentiated handling is referred to as the ‘original’
training data set in the context below.

8.2.7. Evaluation of supervised machine learning models

We analyse the performance of three supervised ML models, namely multiple linear
regression, random forests regression and artificial neural networks based on their pre-
diction performance on common training and test data sets. The training data set and
the test data set that are considered for the evaluation are obtained from the rural-macro
propagation environment (see Section 8.2.3). The medical and transport services (de-
scribed in detail in Section 6.4) are used to create the test data samples.

For each supervised ML algorithm, two training data sets, namely the modified train-
ing data set and the original training data set are used to train themodels. The two cases
are compared to analyse the improvement in prediction performance achieved by us-
ing the modified training data set (see Section 8.2.6) as opposed to the original training
data set. The prediction by the model for the average PRB requirement per time slot
for a call is compared with the observed average PRB usage per time slot by the call
to compute an error metric. Commonly used error metrics include absolute error and
squared error. However, we identify absolute relative error (ARE) as a more suitable
error metric for the case of resource demand prediction as defined in this study. This
is because, an absolute error of one PRB per time slot when the actual demand is for
example two PRBs per time slot is worse than the case with the same absolute error but
a higher actual demand of, for example, twenty-two PRBs per time slot. This difference
is adequately captured by ARE. The ARE is defined as:

𝐴𝑅𝐸(𝑦፩፫፞፝ , 𝑦፭፫፮፞) = |1 − (
𝑦፩፫፞፝
𝑦፭፫፮፞

)| (8.2)

where 𝑦፩፫፞፝ is the predicted value of the required output by a supervised ML model,
given an input tuple and 𝑦፭፫፮፞ is the true value of the output given the same input tuple.
The ARE is computed for all test data samples. It is noted that average-based error
metrics are commonly used in the evaluation of ML models as opposed to variance-
based metrics. Hence, we select mean absolute relative error (MARE) as the metric to
select the best performing ML model. The model that minimizes the MARE computed
over all test data samples is selected for the resource prediction module.
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8.2.8. Multiple linear regression

Themultiple linear regression (MLR)model tries to find a linear relation betweenmultiple
input variables and the output using the training data. Unlike most MLR problems that
use ordinary least squares (OLS) approach to fit the model (see chapter 2), in this study,
the model is fit using the least square relative error approach where the sum of squared
relative prediction errors of the training-data are minimized (see Chapter 2). We use the
modified and original training data sets to learn the linear mapping between the inputs,
{ℐኻ, ℐኼ...ℐዀ} and the output, 𝒪. MLR outcome visulaisation The MARE on the test data
set for the model fit using the modified training data set was found to be equal to 2.073
and for the model fit using the original training data set to be equal to 7.039.

The MARE in both the cases of modified and original training data sets is very high.
The poor prediction performance of MLR as reflected by a very high MARE value is
because the definedmodel inputs and the output may have a non-linear relation. Hence,
we expect more complex non-linear models such as random forests and artificial neural
networks to show better prediction performance.

8.2.9. Random forests regression

The configurable parameter in a random forests model is the number of so-called trees
or number of estimators (see Chapter 2). To select the suitable number of trees, we
calculate the MARE on the test data using models with different number of trees. Table
8.2 shows the number of trees along with the MARE on test data using the respective
models. A model with a particular number of trees is trained on two different training
data sets namely, modified and original. Figure 8.4 illustrates the same. As can be
observed from the table and figure, the minimum MARE on test data is obtained with 64
trees with the model trained on the modified training data which is equal to 0.876. This is
a decrease of 95.77% (2.073 to 0.876) in the MARE as compared to the multiple linear
regression model. The drastic improvement in prediction performance as expressed
by the MARE on using a non-linear regression model such as RF, as opposed to MLR
shows that the relationship between the defined model inputs and output is more ac-
curately expressed as non-linear than linear. It is observed that the MARE on the test
data using the model trained on the modified training data is always lower as compared
to when using the model trained on the original data. This shows, the the model trained
on the modified training data is able to generalise better to the unseen test data.

Furthermore, the MARE on the test data gets worse for the model trained on the
original training data on increasing the number of tress. This shows that the model
starts to overfit (see Section 2.3.3) even with a fewer number of trees. Where as, in the
case of the model trained on the modified training data, the MARE decreases up to 64
tress and then starts to increase from there on. This shows, that the performance of the
model improves on adding more trees, as expected. However, with too many trees (e.g.
128 or 256), the model trained on the modified training data starts to overfit as well
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Table 8.2: MARE for different number of tress in the RF regression model.

No. of trees MARE for modified training data MARE for original training data
2 1.092 1.402
4 0.937 1.405
8 0.903 1.443
16 0.894 1.473
32 0.89 1.461
64 0.876 1.465
128 0.898 1.478
256 0.901 1.481

Figure 8.4: Mean absolute relative error for different number of trees in the RF regression model. Blue
bars represent the MARE for the model that is trained using the ‘modified’ training data. Orange bars

represent the MARE for the model trained using the ‘original’ training data. The model with 64 trees has
the minimum MARE.

8.2.10. Artificial neural network

A feed-forward and fully-connected ANN (also called MLP (refer to Chapter 2) is used
for the resource prediction problem. The ANN is used in the regression setting (see
Chapter 2). The architecture of a ANN includes an input layer, one or more hidden
layers and an output layer. The number of neurons in the input layer is equal to the
number of inputs. For regression, the output layer has a single neuron. The choice of
the number of hidden layers and the number of neurons per hidden layer depends on
the problem complexity. The number of hidden layers and neurons are so-called ANN
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hyper-parameters. In addition, the ANN hyper-parameters also include the loss function,
the activation function, the optimizer and the learning rate. The hyper-parameters play
an important role in the prediction performance of a ANN.We discuss in detail the choice
of the various hyper-parameters in the following text.

Loss Function

A ANN approximates the target function between the model inputs and output by min-
imizing a pre-defined loss function calculated for the training data samples during the
training phase (refer to Chapter 2). The loss function dictates how the weights of the
connections between the neurons in the ANN are adjusted or equivalently how the target
function is approximated. Hence, the loss function must be defined in a way that best
represents the (prediction) goal of the ANN. The most commonly defined goal for ANN
models is to get an outcome that is as close as possible to the desired value. Hence,
MAE and root mean squared error are used as loss functions in these models. How-
ever, as discussed in Section 8.2.7, MARE is more relevant for the resource demand
prediction problem as defined in this study. Hence, in this study, MARE is selected as
the loss function.

ANN Size

The size of a ANN is defined by the number of hidden layers and their respective num-
ber of neurons. The choice of the size depends on the complexity of the prediction task.
Highly complex problems such as computer vision tasks require a large number of hid-
den layers and more neurons per layer as opposed to simpler problems that work well
with two or fewer layers and fewer neurons per layer [29]. To determine the best size, dif-
ferent size options must be evaluated based on the prediction error that is derived from
a pre-defined metric (MARE in this study). The size that minimizes the prediction error
calculated on a test dataset is selected. This is done using a trial and error approach.
We start with two hidden layers with three neurons each based on the recommendation
in [29] and subsequently change the size by either adding layers and/or neurons. Figure
8.5 shows the MARE for the different sizes of the ANN model. A model with a particular
size is trained on both the modified and original training data. As can be observed from
the figure, the MARE on the test data is lower for all the sizes when using the modified
training data as compared to when using the original training data. This shows that the
ANN model trained using the modified training data generalises better to the unseen
test data, as expected. The minimum MARE on test data is obtained for the model with
two hidden layers, with twelve neurons in the first hidden layer and four neurons in the
next. The MARE in this case is 0.546. This is a decrease of 37.67% (0.876 to 0.546) as
compared to the MARE obtained for the best performing RF regression model. Recall
that since the model has two hidden layers, it is a deep ANN model.

Furthermore, it is observed that with very high model capacity, e.g. in the case of
four hidden layers with twelve neurons each, the MARE on test data increases for both
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the cases of modified and original data. This indicates overfitting (see Section 2.3.3) of
the training data which prevents in generalising to new data and hence results in higher
prediction errors.

Figure 8.5: Mean absolute relative error for different sizes of the ANN model (number of hidden layers
and neurons).
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Other Hyper-parameters

In addition to the loss function, the number of hidden layers and their respective number
of neurons, hyper-parameters for a ANNmodel also include the drop-out rate in the case
the drop-out method is enabled, patience value in the case early-stopping is used, the
number of epochs, the batch size, the optimizer, the learning rate and the activation
function. These are introduced in Chapter 2. Here we mention the assumed settings for
each. Dropout method is enabled with a drop-out rate of 20%. Early-stopping is used
with a patience value of 10. The number of epochs is set to 500 and the batch size is
taken as 64. Root-Mean-Square propagation (RMSprop) is selected as the optimiser
with the learning rate set to 0.001. The values of these parameters were selected from
a trial and error experiment and based on the minimum MARE on test data. ReLU is
selected as the activation function for the input and the hidden layers. Rectified linear
unit (ReLU) is the most preferred activation function since it allows for learning non-
linear functions and is computationally efficient [44]. Table 8.3 summarizes the choice
of hyper-parameters used for the final evaluation of the ANN model.

Table 8.3: The hyper-parameters selected for the ANN model.

Hyper-parameter Choice
No. of hidden layers 2
No. of hidden neurons per layer 12 (first hidden layer), 4 (second hidden layer)
Optimizer RMSprop
Learning rate 0.001
Activation function ReLU
Loss function MARE
Early stopping Yes
Patience value 10
No. of epochs 500
Batch size 64
Restore best weights Yes
Dropout rate 20%

8.2.11. Comparison of the different supervised machine learning models

It is observed from the above analysis that the minimum MARE on the test data is ob-
tained for the ANN model with two hidden layers and twelve and four neurons that is
trained using the modified training data set. In this section, we further do a comparative
analysis of the best performing models of each of the above-discussed supervised ma-
chine learning algorithms. This means, for the ANN, we select a model with two hidden
layers, with twelve and four neurons and for RF, we select the model with 64 trees. For
all three, the models trained with the modified training data are used.

Figure 8.6 shows the distribution of the true values of the number PRBs in a test data
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set and the distribution of the predicted values of the number of PRBs by the different
supervised learning models. It can be observed from the figure that in the case of RF
regression, the distribution of true and predicted values of PRBs is the most similar.
However, this does not mean that the predictions are most accurate in the case of RF.
This is also observed from the fact that MARE in the case of RF is actually larger than
that in NN. However, it is evident from the figure that the predictions in the case of MLR
are way off than the true values. This further strengthens the claim made earlier based
on the MARE for MLR that the relationship between the defined model inputs and model
output is not linear.

Figure 8.6: Comparison of the distribution of the predicted number of PRBs and the actual (true) number
of PRBs for the considered supervised learning algorithms.

Figure 8.7 illustrates the distribution of the relative error for ANN, RF and MLR. It
can be observed from the figure that for ANN, the relative error distribution has the least
variance and a peak at the relative error around 0.5. The distribution of relative error for
the RF model has the peak at a smaller relative error value (equal to 0.3) than ANN, but
has a higher variance, resulting in a higher MARE as compared to ANN. The distribution
of the relative errors in the case of MLR also has a higher variance with the least number
of samples having relative errors closer to zero. As a result, the mean of relative errors
is the highest for MLR.



8.2. Resource prediction module 85

Figure 8.7: Comparison of the distribution of the relative error for the considered supervised learning
algorithms.

Figure 8.8 shows the MARE for the best performing models for the three supervised
machine learning algorithms. As also observed from the above analysis, MARE is the
least for ANN.

Figure 8.8: Comparison of the MARE computed on the test data set for the best performing models for
the three supervised machine learning algorithms.
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8.2.12. Conclusion

We observe from the above analysis that both the random forests regression model
and the artificial neural network model outperform the multiple linear regression model
in terms of prediction performance. This shows that the model inputs and output have
a non-linear relation. The ANN model performs better than the RF regression model in
terms of MARE on the test data. In fact, in general ANN models are able to generalise
better to new data than RF models. This is because of the way learning algorithm works
in each. The ANN allows to explicitly define the training objective as the minimization
of MARE via the choice of loss function. Where as, the RF regression involves building
the so-called decision trees based on the training data points (see Chapter 2). Since
the goal of the resource demand prediction as defined in this study is to minimize the
MARE, we select the ANN model for the resource demand prediction module.

8.2.13. Prediction performance of the ANN model

From the above analysis, it is concluded that the ANN is used for the resource demand
prediction module of the proposed multi-slice resource allocation framework. Hence,
in this section we analyse in greater detail, the predictions made by the defined ANN
model. We discussed in Section 8.2.2, the correlation between the different model inputs
and output. The correlation between the model output and the different model inputs is
also observed by using the trained ANN to predict the model output, i.e. the average
number of PRBs required by a call per time slot for different values of a particular input
and fixed values of all other inputs. For instance, Figure 8.9 shows the predicted values
of the average number of PRBs for different values of RSRP, keeping the values of all
other inputs fixed. It is observed that as the RSRP increases, the predicted value of
the average number of PRBs required by a call per time slot decreases. This shows a
negative correlation between the predicted values of the average number of PRBs and
the RSRP, as expected.

Figure 8.9: The average number of PRBs predicted by the trained ANN for different values of RSRP.
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Recall that a so-called good fit ANN model is able to extrapolate the training data sam-
ples to achieve good prediction performance for unseen data samples. This is referred
to as model generalisation. In order to illustrate the generalisation capacity of the trained
ANN, in the above-described correlation analysis per model input, we consider values
of the model inputs that lie outside the respective ranges of values of the inputs covered
by the training data. For these values, the predicted outputs are shown in red. The pre-
dicted outputs for the values of the inputs that lie in the ranges of the respective inputs
covered in the training data are shown in blue.

Figure 8.10 (a) shows the predicted values of the average number of PRBs for dif-
ferent values of latency, keeping all other inputs fixed. It is observed that as the latency
(requirement) increases, the predicted value of the average number of PRBs required
by a call per time slot decreases. This shows a negative correlation between the av-
erage number of PRBs and latency, as expected. Similarly, Figure 8.10 (b), 8.10 (c)
and 8.10 (d) show a positive correlation between the predicted values of the average
number of PRBs and the average neighbouring cells utilisation, the UE speed and the
throughput (requirement), respectively.

For the above-described correlation analysis per model input, we use the ANN that
is trained using the modified training data collected from the rural-macro propagation
environment. Table 8.4 shows the fixed values used for the different inputs and the
considered range for each input when that input is varied.

Table 8.4: Fixed values, considered range of values and range of values in the training data of the
different model inputs.

Model input Considered
fixed value

Considered range
for analysis

Range covered in the
training data

RSRP -73.2546 dBm -120 to -40 dBm -115 to -47.5 dBm
Latency

(requirement) 13 ms 0 to 150 ms 0.5 to 135 ms

Avg. neighbouring
cells utilisation 0.75 0 to 1 0.2 to 0.75

UE speed 100 kmph 80 to 160 kmph 90 to 120 kmph
Throughput
(requirement) 5.187 Mbps 0 to 40 Mbps 0.45 to 24 Mbps

Call direction DL - -

8.3. Resource allocation module

The resource allocation module takes as inputs, the resource demand of the priority
slices as predicted by the resource demand prediction module. Based on the (collec-
tive) demand of the priority slices, it computes a margin (positive or negative) over the
predicted demand for each slice to obtain the final resource allocation. The resource
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Figure 8.10: (a) The average number of PRBs predicted by the trained ANN for the different values of the
latency (requirement). (b) The average number of PRBs predicted by the trained ANN for the different
values of the average neighbouring cells utilisation. (c) The average number of PRBs predicted by the
trained ANN for the different values of the UE speed. (d) The average number of PRBs predicted by the

trained ANN for the different values of the throughput (requirement)



8.3. Resource allocation module 89

allocation module may be designed in multiple ways, e.g. using heuristics or using arti-
ficial intelligence, e.g. via reinforcement learning. The deign of the resource allocation
module employing artificial intelligence (reinforcement learning) is discussed in Section
8.3.1, while other, non-intelligent options for the design of the resource allocation mod-
ule are discussed in Section 8.3.2. Furthermore, we also describe a non-slicing option
of resource scheduling, namely priority scheduling in Section 8.3.3. Priority scheduling
is used as the baseline when evaluating the proposed multi-slice resource allocation
framework (see Chapter 9).

8.3.1. Resource allocation module based on reinforcement learning

In this study, the resource allocation problem in sliced RAN is defined as a reinforce-
ment learning problem in a contextual multi-armed bandit setting (refer to Section 2.4.1).
Consequently, the resource allocation module is a CMAB agent specific for a cell. As
a recap of Section 2.4.1, a CMAB agent receives a state from the environment and
based on the state and previously gathered experiences takes an action. Upon tak-
ing the action it receives a reward from the environment. The goal of the agent is to
learn the relationship between state, actions and reward so that it can predict the best
action for a given state. In the following section, we define state, actions, reward and
agent-learning.

State, Actions and Reward

State

A state is defined by the tuple {𝒟ኻ, 𝒟ኼ} where 𝒟ኻ and 𝒟ኼ are integers in the range [0, 𝑁].
𝑁 is the total number of available PRBs in a cell per time slot. 𝒟ኻ and 𝒟ኼ describe the
average resource demands of the medical slice and the transport slice per time slot in
a cell respectively. 𝒟ኻ and 𝒟ኼ are expressed as the number of PRBs. These resource
demands come from the resource prediction module discussed in Section 8.2.

Actions

An action of the agent is defined by the tuple {Δኻ, Δኼ}, where Δኻ and Δኼ are integers in
the range [−𝑁,𝑁]. Δኻ > 0 and Δኻ < 0 represent the increase and decrease respectively
in the number of PRBs, 𝒟ኻ, describing the predicted average resource demand for the
medical slice. Similarly, Δኼ > 0 and Δኼ < 0 represent the increase and decrease respec-
tively in the number of PRBs, 𝒟ኼ, describing the predicted average resource demand
for the transport slice. Given a state {𝒟ኻ, 𝒟ኼ}, an action {Δኻ, Δኼ} of the agent results in
resource allocation for the medical slice and the transport slice in a cell, described by the
tuple {𝒜ኻ, 𝒜ኼ} that is equal to {𝒟ኻ+Δኻ, 𝒟ኼ+Δኼ}. 𝒜ኻ is the number of PRBs allocated to
the medical slice in a cell and𝒜ኼ is the number of PRBs allocated to the transport slice
in a cell. The remaining PRBs i.e. 𝑁−(𝒜ኻ+𝒜ኼ) are allocated to the background slice.
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In this way an action of the agent results in a resource allocation for all the slices in a
cell. However, it is noted that, there may be actions that should not be permissible in a
state. In the defined problem of resource allocation, the actions that lead to a negative
or zero resource allocation for an active slice and the actions that lead to the sum of the
allocated PRBs to both the slices, i.e. 𝒜ኻ +𝒜ኼ to exceed the total number of available
PRBs are not permissible. Consider for an example, a state {1,18}. With 𝑁 = 25, the
actions with values of Δኻ in the range {−25,−24.., −1} and actions with values of Δኼ in
the range {−25,−24.., −18} should not be permissible as they result in PRB allocations
of less than or equal to zero. Ideally, given an appropriate reward function and enough
exploration (also refer to Section 4.2), the agent itself learns which actions need not be
taken in a given state. However, practical systems may be limited by the time available
for exploration. Moreover, in case of reinforcement learning in real-world environments,
risky actions or the actions resulting in adverse consequences during the exploration
phase may not be acceptable. In these cases, state-action exploration by an agent
must be guided to speed-up exploration and avoid risky actions. Guided-exploration is
applicable in problems that have the so-called state-action permissibility (SAP) property
[43]. An RL problem is said to have SAP, if the agent can decide whether an action is
permissible in a state or not. An action is not permissible in a state if the action can
never lead to an optimal solution and hence should not be explored at all [43]. The
resource allocation problem defined in this study has the SAP property since, given a
state {𝒟ኻ, 𝒟ኼ}, it can be inferred which actions should not be taken at all, for example
the actions resulting in a negative PRB allocation for a slice. Hence, we make use of
the guided-exploration. Details are discussed in Section 8.3.1.

The slice resource allocation resulting from an action of the agent gives the number
of PRBs available to each slice per time slot. A particular resource allocation is used in
the cell before a next action is taken by the agent. Recall that, the re-allocation is done
periodically at a re-allocation interval 𝑇 (refer to Section 8.1) and additionally may be
triggered when a new call is established in a slice or whe a slice changes its status from
inactive to active and vice-versa. A slice is active if at least one call is associated with
it.

The actions of the agent determine a positive or negative margin over the predicted
resource demand of the slices (given by the state {𝒟ኻ, 𝒟ኼ}). The idea behind such a
definition of the actions is to correct for any errors in the resource demand prediction by
the resource prediction module and be prepared for unpredictable changes in the traffic,
load and channel conditions in the time until the next decision moment. 𝑚 and 𝑛 can
take integer values from −𝑁 to 𝑁, where 𝑁 is the total number of available PRBs in a
cell per time slot. In this study, 𝑁 = 25, hence the size of the action-space is equal to
(2𝑁 + 1)ኼ = 2601.

Reward

The reward function quantifies the performance of an agent’s actions in an environment.
Recall that in this study, the environment is a cell in a cellular wireless system with
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active calls in the defined three slices, viz. medical, transport and background slices.
The agent’s actions result in a PRB allocation decision for the slices in the cell. The
objective of the agent is to find an optimal resource allocation for the slices in a given
environment state such that the QoS requirements of the services in the priority slices
(medical and transport) are satisfied and the highest attainable performance is provided
to the services in the background (best-effort) slice. As discussed in Section 8.3.1, the
agent’s actions give resource allocation for the priority slices (the remaining resources
go to the background slice). Hence, we define the reward for the agent’s actions in the
environment as the weighted average of the rewards for the individual priority slices. The
reward for a priority slice is expressed via means of the slice utility function described in
Chapter 7. Hence, the reward for an agent’s action is given by the same function as the
KPI: weighted average utility of the priority classes described in Chapter 7. The reward
for an action of the agent is obtained after duration 𝑇 (the resource re-allocation interval)
of taking an action.

Agent-learning

The goal of the agent is to learn to take optimal actions in each environment state. The
state-to-action mapping governing the actions taken by the agent in different states is
called a policy and denoted as 𝜋(𝑎|𝑠) (refer to Section 4.2). The agent learns an optimal
policy through experiences of interacting with the environment. In a CMAB problem,
the experiences are described by the tuple {state, action, reward}. Here, 𝑠 is a state
provided by the environment, 𝑎 is the action taken by the agent based on its policy,
given the state 𝑠, and 𝑟 is the reward obtained from the environment upon taking the
action 𝑎. An optimal agent policy in CMAB-RL is the one that maximises the reward at
each state. The reward may be presented immediately after the agent’s action or after a
certain duration, as is the case for the resource allocation problem defined in this study
(refer to Section 8.3.1).

Q-learning for CMAB-RL

Recall (refer to Section 4.2) that for an MDP-RL problem, Q-value of a state-action pair
𝑄(𝑠, 𝑎) gives the expected long-term reward of taking the action 𝑎 in the state 𝑠 and
thereafter following the optimal policy 𝜋∗. Hence, in MDP-RL, 𝑄(𝑠, 𝑎) for a state-action
pair {𝑠, 𝑎} includes the expected (discounted) rewards of subsequent state-actions until
a final state. This is unlike the case of CMAB-RL. CMAB-RL is a one-step learning
process where the expected reward of an action in a given state does not depend on
the future steps of the agent (refer to Section 2.4.1). Hence, for a CMAB-RL problem,
𝑄(𝑠, 𝑎) gives the expected reward of taking the action 𝑎 in the state 𝑠.

An agent uses an iterative process of exploration and exploitation to collect experi-
ences denoted as the tuple {state, action, reward} in the environment. Given sufficient
exploration time, the agent learns the optimal Q-values, 𝑄∗(𝑠, 𝑎), for all state-action pairs
in the environment. The optimal policy of the agent is to take the actions that maximise
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the Q-values for each state.
In this study, we use the 𝜖-greedy exploration strategy for the CMAB-RL agent. Re-

call (refer to Chapter 2) that in the 𝜖-greedy strategy, the agent explores the environment
by taking random actions with a probability 𝜖 and exploits by following the optimal policy
learnt so far with probability 1 − 𝜖. After each experience {state, action, reward}, the
agent updates the Q-value of the state-action pair (𝑠, 𝑎) using the rule given by (also
see Section 4.2)

𝑄(𝑠, 𝑎) ⟵ 𝑄(𝑠, 𝑎) + 𝜃 × 𝑟 (8.3)

where 𝜃 is the learning rate, taken to be equal to 0.01.

After sufficient exploration of a state-action pair (𝑠, 𝑎) by the agent, 𝑄(𝑠, 𝑎) for the state-
action pair converges to its true value 𝑄∗(𝑠, 𝑎). The Q-values of all the state-action pairs
need to be stored and updated after every state-action visit by the agent. This can be
done in aQ-table. The size of the Q-table is equal to the number of possible state-action
pairs, i.e. 𝑁፬፭ፚ፭፞፬ × 𝑁ፚ፭።፨፧፬. Here, 𝑁፬፭ፚ፭፞፬ is the total number of states in the defined
environment and 𝑁ፚ፭።፨፧፬ is the total number of possible actions in each state. In the
case of resource allocation reinforcement learning (in the CMAB setting) problem as
defined in this study, 𝑁፬፭ፚ፭፞፬ = 26ኼ = 676 and 𝑁ፚ፭።፨፧፬ = 51ኼ = 2601 (including non-
permissible actions). Hence, the size of the Q-table becomes huge (here it is equal to
1.76 million values). Moreover, if the agent has to visit each state-action pair for exam-
ple, at least five times to get accurate estimates of Q-values for all state-action pairs, it
will take around a total of nine million state-action visits to derive the optimal policy. As
can be seen from the numbers, using a Q-table poses two main challenges. First, the
memory required to save a Q-table increases as the number of states and/or actions
increases. Second, the amount of time required to explore all state-action pairs in order
to create an optimal Q-table is unrealistic.

To overcome these challenges, deep Q-learning (refer to Section 4.2) is used. In
deep Q-learning, the agent’s experiences are used to learn a function rather than a ta-
ble. Given a state, the function approximates the Q-values of all possible actions in that
state. The function may be approximated using a neural network, known as a deep-
Q network (DQN). With DQN, the agent may not have to visit each and every state
because DQN allows generalising to unseen states or seen states with unexplored ac-
tions to predict the Q-values of actions in these states. However, it still requires a lot of
experience to learn an effective function. To further reduce the exploration time, guided
exploration (introduced in Section 8.3.1) is used. Guided exploration involves constrain-
ing the exploration-space by using the domain knowledge of the underlying task. This
means, the agent is prevented from randomly/blindly trying all possibilities but instead is
made to choose only permissible actions [43]. In this study, we use guided exploration
by prohibiting the agent from taking actions that lead to a negative or zero resource
allocation for a slice and the actions that lead to the sum of the allocated PRBs to both
the slices to exceed the total number of available PRBs.
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Generally, in RL problems employing the 𝜖-greedy exploration strategy, the agent
starts with 𝜖 = 1. This means at the start of the training, the agent is only exploring the
environment. The value of 𝜖 is gradually decreased to a very small value, e.g. 0.01.
By this point, the agent is assumed to have sufficiently learnt about the environment
and hence can exploit its knowledge 99% of the time and explore very little. Another
way is to divide the exploration and the exploitation phases. In this case, the agent first
only explores (𝜖 = 1) and once sufficient experiences have been obtained, the agent
only exploits (𝜖 = 0). We use the latter strategy. The experiences obtained during the
exploration phase are used to update the DQN. The learnt model is then used during
the exploitation phase to get optimal actions for the environment-states.

Re-training the agent

It is noted that in general, a reinforcement learning problem is defined for a given sce-
nario. Hence, the agent learns optimal actions that are optimal for that scenario. A
scenario is different from another if the network layout/setting differs (Phase 2 vs Phase
1 and Phase 3) or the the definition of the reward function changes (e.g. via the choice
of 𝛽, 𝛾, 𝑤፦፞፝ and 𝑤፭፫ፚ፧). Therefore, in these cases the CMAB agent needs to be re-
trained.

8.3.2. Non-intelligent design options for the resource allocation module

Demand-only (no margin-estimation)

In this method, the resource allocation for the slices is based on the resource demand
prediction only, that is, no margin is added to cope with e.g. demand prediction errors or
unexpected variations in e.g. traffic load or channel conditions. The resource demand
prediction module (refer to Section 8.2) predicts the number of PRBs that is required by
the priority slices (medical and transport) per time slot, that is {𝒟ኻ, 𝒟ኼ}. 𝒟ኻ and 𝒟ኼ num-
ber of PRBs are reserved for the respective slices for an interval 𝑇 (called re-allocation
interval). The remaining PRBs are allocated to the background slice. In case the total
demand of the medical slice and the transport slice exceeds the total number of avail-
able PRBs, a weighted proportional distribution of the total number of PRBs between
the medical slice and the transport slice is used, as described by the following:
Given the following:

𝒟ኻ +𝒟2 > 𝑁 (8.4)

The allocations𝒜ኻ and𝒜ኼ for the medical slice and the transport slice respectively are
given by Equations 8.5 and 8.6.

𝒜ኻ = 𝑁(1 −
1

1 + 𝑤ኻ𝑤ኼ
𝒟ኻ
𝒟ኼ

) (8.5)
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𝒜ኼ =
𝑁

1 + 𝑤ኻ𝑤ኼ
𝒟ኻ
𝒟ኼ

(8.6)

where 𝑤ኻ, 𝑤ኼ are the weights for the medical slice and the transport slice respectively.
If a higher share is required for a slice than its proportional share, the corresponding
weight is kept higher than the weight for the other slice. 𝑁 is the total number of PRBs.

Demand-plus-margin

In this method, a fixed margin is used with the predicted resource demands of the priority
slices, e.g. +/- 10% of the slice resource demand to get a resource allocation for the
slices. This means, the allocation is given by {𝒜ኻ, 𝒜ኼ} = {𝒟ኻ +ℳኻ, 𝒟ኼ +ℳኼ}. Here,
ℳኻ,ℳኼ are the respective margins for the medical slice and the transport slice. If 𝒟ኻ +
ℳኻ +𝒟ኼ +ℳኼ > 𝑁, a weighted proportional distribution of the total number of PRBs is
used to get the allocations as described in Equations 8.5 and 8.6 except 𝒟ኻ is replaced
by 𝒟ኻ +ℳኻ and 𝒟ኼ is replaced by 𝒟ኼ +ℳኼ. The choice of margins considered in the
evaluation are described in Chapter 9.

8.3.3. Priority-based scheduling

We choose a single-slice priority-based scheduling algorithm as a baseline method. In
the context of RAN, it is a conventional (non-slicing) spectrum sharing method based on
the priorities of the active services. In this method, the different classes of services are
identified with their respective fixed priorities. For instance, in this study, the transport
service class is given the highest priority (priority one), followed by the medical service
class with priority two and lastly the background (best-effort) service class with priority
three. A higher priority indicates a higher preference in the scheduler for PRB allocation.
This means as long as there is data to be transmitted by an active call in a higher priority
service class e.g. service class with priority one, a call in a lower priority service class,
i.e. service class with priority two is not allocated resources. Within a certain service
class, the scheduling priority for a particular call is computed based on the delay-based
rule as discussed in Section 6.5.1.

8.3.4. Resource spill-over

Recall that the number of PRBs allocated to the background slice is simply what is left
after allocating PRBs to the priority slices. But the unused resources in the medical slice
and the transport slice in each time slot can be also made available to the background
slice. We refer to this as spill-over of resources. Resource spill-over leads to a higher
PRB utilization and an improved performance for the services in the background class.
But at the same time allowing the calls in the background slice to use the resources
reserved for the priority slices may result in a higher inter-cell interference caused to
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the priority UEs in the neighbouring cells. In this study we consider that the spill-over of
resources is allowed.





9
Experiments and Results

In this chapter we describe the scenario-based comparative assessment that was done
to analyse the performance of the proposed AI-based multi-slice resource allocation
method. In each considered scenario, the proposed method is compared with alterna-
tive resource management methods described in Chapter 8. Priority scheduling, also
described in Chapter 8 is used as a baseline in the comparative assessment. In the
following sections, we describe in detail, various aspects (simulation settings and pa-
rameters) related to the experiments.

9.1. Aspects related to multi-slice resource allocation meth-
ods

As described in detail in Chapter 8, the proposed multi-slice resource allocation method
uses two modules, namely the resource demand prediction module and the resource
allocation module to take resource allocation decisions in a cell. The resource demand
prediction module employs an ANN to predict the average resource demand of the
considered medical and transport classes. The resource allocation module employs
a so-called CMAB agent that takes intelligent resource allocation decisions based on
resource demand prediction of the medical and transport classes. We also discussed
two alternatives for the resource allocation module in order to define alternative multi-
slice resource allocation methods, namely the ‘demand-only’ method and the ‘demand-
plus-margin’ method (see Chapter 8). In the demand-only method, the resource allo-
cation module applies the resource demand prediction for the medical and transport
classes and simply assigns the predicted number of PRBs to the respective slices. In
the demand-plus-margin method, the resource allocation module uses pre-defined per-
centual margins (or mark-ups) with the predicted resource demands of the medical and
transport classes and assigns the number of PRBs obtained after correction to the re-
spective slices. Unlike in the case of CMAB-based resource allocation, the allocation
obtained by the demand-only method and the demand-plus-margin method may have

97
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the sum of the PRBs allocated to the medical and transport classes exceeding the to-
tal available PRBs. In such cases, the resource allocation module uses the so-called
weighted proportional distribution method (see Chapter 8) to obtain the final allocation.

For the demand-plus-margin method, three different pairs of correction factors are
used in the comparative study. Each pair of correction factors give the corrections used
for the medical and transport classes. The considered pairs are (1.1, 0.9), (1.2,0.8) and
(1.3,0.7), where 1.1, 1.2, 1.3 are the correction factors used for the medical class and
indicate that the predicted resource demand for the medical class must be increased
by 10%, 20% and 30% respectively. Similarly, 0.9, 0.8 and 0.7 are the correction fac-
tors used for the transport class and indicate that the predicted resource demand for
the transport class must be decreased by 10%, 20% and 30% respectively to obtain
the resource allocation. The choice of positive correction factors for the medical class
and negative correction factors for the transport class is based on the observation from
the scenario-based analysis. It was observed that the amount of resource demand pre-
diction for the transport class was always more than the required amount of resources
(over-provisioning) and lower for the medical class (under-provisioning).

The proposed multi-slice resource allocation method (with CMAB-based resource
allocation module) is referred to as ‘agent’. The demand-only method is referred to as
‘demand’. The demand-plus-margin method with (1.1, 0.9) correction factors is referred
to as ‘+/-10%margin’, with (1.2, 0.8) correction factors as ‘+/-20%margin’ and (1.3,0.7)
correction factors as ‘+/-30%margin’. The baseline, i.e. priority scheduling is referred
to as ‘priority’.

9.2. Aspects related to the use case

The comparative assessment of the proposed multi-slice resource allocation method
with the above described alternative methods and the baseline is carried for Phase 2
and Phase 3 of the considered use case (see Chapter 5). As discussed in Chapter 5,
Phase 3 covers all aspects of Phase 1, and even more beyond that. Consequently,
Phase 1 does not impose any additional challenges beyond those of Phase 3, and is
therefore not considered for the scenario-based assessment.

9.2.1. Phase 2

In Phase 2, the ambulance is considered to have arrived at the site of the incidence and
is stationary. The paramedic attends to the patient and establishes remote contact with
the specialist. Phase 2 is modelled in the urban-macro propagation environment (see
Chapter 6).

Medical class

The paramedic uses so-calledmedical class applications that includes 360-degree video
streaming, remote ultrasound and ECG monitoring, haptics communication and au-
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dio/video telephony with the specialist. The radio communication aspects of these ap-
plications are listed in Table 5.2. The application modelling aspects are described in
Chapter 6. As said above, the medical UEs are stationary in Phase 2.

Cell 9 in the considered network (see Chapter 6) is selected for the evaluation
of the different multi-slice resource allocation methods. Therefore, the the incident
is modelled to have occurred at a randomly selected position in the region marked
as Cell 9 in the network layout, as shown in Figure 9.1. The position of the ambu-
lance/paramedic/medical UEs is taken to be the same as the selected position of the
incident.

Transport class

The transport class applications that are active in Phase 2 include the transmission of
the global maps and the local maps to and from the regular vehicles, respectively and
the transmission of the road sensor data. The applications of the intersection controller
and the transport applications of the ambulance are not active in Phase 2, since the
ambulance is at the site of the incidence (see Chapter 5). The radio communication
aspects of the transport applications are listed in Table 5.1. The application modelling
aspects are described in Chapter 6.

A straight road segment stretching from one edge of the region marked as Cell 9 to
the other is considered as illustrated in Figure 9.1. The vehicles (using the considered
transport applications) start from the left edge of the road and move in the right direction
in a straight line with speeds randomly selected from a uniform distribution in the range
of 30 to 60 kmph. The speed of a vehicle is constant during the simulation time. The
intersection controller is placed randomly along the road at the start of the simulation
and the road sensors are placed around the IC in a radius of 20 meters.

Figure 9.1: Illustration of the considered road and cell for the evaluation of various multi-slice resource
allocation methods in Phase 2. The Thick blue line in cell 9 represents the considered road.
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Load settings for the medical and transport classes

For the evaluation in Phase 2, we carry out a sensitivity analysis of the considered multi-
slice re-allocationmethods with varying traffic loads in themedical and transport classes.
Nine different load settings are considered and expressed in terms of the qualitative level
(low (L), medium (M), high (H)) of the load in the medical and transport classes. These
are (L,L), (L,M), (L,H), (M,L), (M,M), (M,H), (H,L), (H,M) and (H,H), where the first index
is the level of medical class load and the second index is the level of transport class load.
A low medical class load corresponds to an offered traffic load of 4.466 Mbps and that
in the transport class corresponds to an offered traffic load of 0.432 Mbps. A medium
medical class load corresponds to an offered traffic load of 8.932 Mbps and that in the
transport class corresponds to an offered traffic load of 1.008 Mbps. A high medical
class load corresponds to an offered load of 13.398 Mbps and that in the transport class
corresponds to 1.968 Mbps.

A low medical class load corresponds to the traffic load offered by one ambulance,
medium load corresponds to the traffic load offered by two ambulances and high load
corresponds to the traffic load offered by three ambulances. Each ambulance involves
four calls in the medical class, viz. one 360-degree video streaming in the uplink, one
ultrasound and ECG data streaming in the uplink, one haptics control data streaming
in the downlink and one bi-directional audio/video streaming. In each load level in the
transport class, the traffic offered by the road sensors is fixed. In order to change the
load level in the transport class, the total traffic offered by the regular vehicles is varied
by varying the number of regular vehicles. Low load corresponds to the traffic load
offered by two regular vehicles, medium load corresponds to the traffic load offered by
five regular vehicles and high load corresponds to the traffic load offered by ten regular
vehicles. Each regular vehicle involves two calls in the transport class, viz. transmission
of the global maps in the downlink and transmission of the local maps in the uplink.

9.2.2. Phase 3

In Phase 3, the ambulance carrying the patient drives towards the hospital. Phase 3 is
modelled in the rural-macro propagation environment (see Chapter 6).

Medical class

In Phase 3, the paramedic uses the same medical class applications as in Phase 2 but
now from an ambulance that is moving at a constant speed of 160 kmph. Hence, the
medical UEs are moving at 160 kmph.
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Transport class

In addition to the transport class applications active in Phase 2, as mentioned above, the
applications of the intersection controller and the transport applications of the ambulance
are also active in Phase 3. Furthermore, the regular vehicles also start transmitting real-
time videos (see Chapter 5).

Same as in Phase 2, in Phase 3 cell 9 in the considered network is again selected
for the assessment of the different multi-slice resource allocation methods. Therefore, a
straight road segment stretching from one edge of the cell to the other is considered as
illustrated in Figure 9.2. It is noted that the road segment is taken to be representative
for the full trajectory of the ambulance. Figure 9.2 looks similar to Figure 9.1, but with the
difference in the inter-site distance. The ambulance and the regular vehicles start from
the left edge of the road segment and move in the right direction along a straight line.
The vehicles move with different speeds randomly selected from a uniform distribution
in the range of 90 to 120 kmph. The IC is placed randomly along the road at the start of
the simulation and the road sensors are placed around the IC in a radius of 20 meters.

Figure 9.2: Illustration of the considered road and cell for the evaluation of various multi-slice resource
allocation methods in Phase 3. The blue rectangle in cell 9 represents the considered road. This figure

looks similar to Figure 9.1, but with the difference in the inter-site distance

Load settings for the medical and transport classes

Same as Phase 2, a sensitivity analysis of the considered multi-slice re-allocation meth-
ods with varying traffic loads in the medical and transport classes is carried for Phase
3. Again, nine different load settings, viz. (L,L), (L,M), (L,H), (M,L), (M,M), (M,H), (H,L),
(H,M) and (H,H) are considered. The offered traffic loads corresponding to the different
load levels (L, M, H) in the medical class in Phase 3 are the same as in Phase 2. How-
ever, the offered traffic loads corresponding to the different load levels in the transport
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class in Phase 3 differs from that in Phase 2. This is because as discussed above, in
Phase 3 additional transport applications are active, viz. the transport applications of
the ambulance, intersection controller and real-time videos by regular vehicles.

A low transport class load corresponds to the traffic load offered by two regular ve-
hicles and the transport applications of one ambulance, medium load corresponds to
the traffic load offered by five regular vehicles and the transport applications of two am-
bulances and high load corresponds to the traffic load offered by ten regular vehicles
and the transport applications of three ambulances. In each load level in the transport
class, the traffic offered by the intersection controller and the road sensors is fixed. In
order to change the load level in the transport class, the total traffic offered by the reg-
ular vehicles and the transport applications of the ambulance is varied by varying the
number of regular vehicles and the number of ambulances, respectively. Each regu-
lar vehicle involves three calls in the transport class, viz. transmission of the global
maps in the downlink, transmission of the local maps in the uplink and real-time video
streaming in the uplink. Each ambulance involves five calls in the transport class, viz.
transmission of the global maps in the downlink, transmission of the local maps in the
uplink, beyond-vision video (see Chapter 5) in the downlink, signal request messaging
in the uplink and priority status messaging in the downlink. In Phase 3, a low transport
class load corresponds to an offered traffic load of 1.234 Mbps, medium transport class
load corresponds to an offered traffic load of 2.81 Mbps and high transport class load
corresponds to an offered load of 5.17 Mbps.

9.2.3. Background class

The spatial distribution of the background UEs in the network and the characteristics
of the applications of the background UEs are common in both Phase 2 and Phase 3.
These are described in Chapter 6. The considered speeds of the background UEs in
Phase 2 and Phase 3 are described in Table 6.2. The load setting for the background
class is kept constant for all cells in the considered network and throughout the simu-
lation time. The load setting is common in both Phase 2 and Phase 3. As described
in Chapter 6, the calls in the background class are generated according to a Poisson
process. For the evaluation, we consider a mean arrival rate of 20 calls per second per
cell which corresponds to a high load in the background class.

9.3. Evaluation-related aspects

The key performance indicators (KPIs) used in this study are described in detail in Chap-
ter 7. The considered KPIs include the so-called medical class utility, the transport
class utility, the average medical class performance and transport class performance,
the average cost associated with reservation of resources for medical class and trans-
port class, the weighted average utility of priority classes, i.e the medical and transport
classes, the 10፭፡ throughput percentile of background class applications and the cell
resource utilisation.
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As described in Chapter 7, the definition of the KPIs involve various parameters.
These parameters are summarized in Table 9.1. The parameters can take different
values which affect the values of the KPIs involving these parameters. The choice of
the parameters depends on the policies of a certain slice as defined by slice owner
and/or network operator. In addition, the re-allocation interval 𝑇 is another parameter
that can be tuned based on slice requirements and traffic characteristics. In this study
we choose 𝑇 = 100𝑚𝑠 (see Chapter 8).

Table 9.1: The considered values for the different evaluation parameters

Param-
eter

Val-
ues Description

𝛼 1

Determines the penalty for service performance below the
required level and indicates relative importance of satisfying the
required QoS as compared to the average cost associated with

resources.

𝛽 0.01,
1

Determines the penalty for service performance degradation. A
higher value means higher penalty for a given performance below

the required level.

𝛾 0.025,
9

Determines the average cost associated with resource
reservation.

Medical
class
weight
(𝑤፦፞፝)

0.2,
0.5

Determines the relative importance of the medical class as
compared to the transport class in the weighted average utility
calculation. A higher weight also indicates a higher priority

for resource allocation in the case of priority scheduling and the
agent methods.

Trans-
port
class
weight
(𝑤፭፫ፚ፧)

0.8,
0.5

Determines the relative importance of the transport class as
compared to the medical class in the weighted average utility

calculation. A higher weight indicates a higher priority
for resource allocation in the case of priority scheduling and the

agent method.
Re-

allocation
interval

100
ms

Determines the periodicity of slice resource re-allocation in case
of agent, demand, +/-10% margin, +/-20% margin and +/-30%

margin methods.

9.4. Experiments

The key purpose the experiments performed in this study is to compare the different
multi-slice resource allocation methods. We carry out two sets of sensitivity analyses
for the considered multi-slice resource allocation methods. The first set with different
loads in the priority classes and the second set with different values of various evaluation
parameters discussed above. In the following sections, we describe each experiment
and present and analyse their corresponding results.

We calculate the values of the different KPIs described in Chapter 7 for the different
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Table 9.2: The parameters and their corresponding values considered for the sensitivity analysis w.r.t
loads in the medical and transport classes.

Parameter Considered values
𝛼 1
𝛽 1
𝛾 0.025

Medical class weight (𝑤፦፞፝) 0.2
Transport class weight (𝑤፭፫ፚ፧) 0.8

Medical class load Low Medium High
Transport class load Low Medium High

Multi-slice resource allocation method Agent demand +/- 10% margin +/- 20% margin +/- 30% margin priority
Re-allocation interval 𝑇 100 ms

analyses. In order to indicate the degree of statistical confidence in the calculated KPIs,
the calculation of confidence intervals (CI) is needed. In this study, we chose a confi-
dence level of 95% for all the considered KPIs. We illustrate the confidence intervals
for the bottom-line metric for the priority classes, namely weighted average utility of the
priority classes and the bottom-line metric for the background class, namely the 10፭፡
throughput percentile of the background applications (and not elsewhere to keep the
figures somewhat cleaner).

9.4.1. Sensitivity analysis with different loads in the medical and transport
classes

The aim of the experiment is to demonstrate that the proposed multi-slice resource al-
location method with the intelligent CMAB-based resource allocation module is able to
adapt to variations in loads in the priority classes in order to achieve high performance
of applications in the priority classes while minimizing the average cost associated with
resource reservation. The above is demonstrated by comparing the proposed method
with the alternative allocation methods and the baseline. In this experiment, different
loads in the medical and transport classes are considered as described in Section 9.2.1
and Section 9.2.2. The values of the so-called evaluation parameters are fixed. The
experiment is performed for both Phase 2 and Phase 3. The parameters and their
corresponding values for this experiment are listed in Table 9.2. The values of all the
considered KPIs are calculated and illustrated.

As mentioned in the table, unequal weights are chosen for the medical and transport
classes with a higher weight given to the transport class. This is to aid a fair comparison
with the baseline i.e priority scheduling which is configured to give the highest priority
to the transport class, followed by the medical class.
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Phase 2

The average performance of applications and the average cost associated with resource
reservation for the medical and transport classes

Figure 9.3 illustrates the average performance of the medical class applications for the
different resource-allocation methods and for different loads in the priority classes in
Phase 2. It can be observed from the figure that for a given medical class load, the
average performance of the medical applications decreases with increase in the trans-
port class load in the case of priority and agent. In general, the degradation in the
medical class performance is more in the case of priority as compared to that of agent
because unlike priority, agent does not give strict priority to the transport class but tries
to efficiently (in accordance with the priorities set by the slice weights) balance the per-
formance in both classes in such a way that it maximizes the weighted average utility.

Agent adapts to the change in the transport class load and in case of a higher trans-
port class load reserves more resources for the transport class by taking away some
resources from the medical class. This can be observed from Figure 9.4. Figure 9.4
shows the average cost of resource reservation in the medical class for the different
resource-allocation methods and for different loads in the priority classes in Phase 2.
It is observed that with an increase in the transport class load, the average cost asso-
ciated with resource reservation for the medical class decreases for a given medical
class load. The reduction in the reserved resources in the medical class causes a per-
formance drop. It is noted that agent favours taking resources away from the medical
class to satisfy the transport class demand because the transport class is configured
to have a higher weight in the calculation of the weighted average utility. This further
shows that agent behaves according to the objectives set by the slice owner and/or
network operator using the relative class weights.

On the other hand, in the case of demand, +/-10% margin, +/-20% margin and +/-
30% margin methods, for a given medical class load, the average medical class perfor-
mance is constant. In these methods, a higher amount of resources are allocated to the
transport class with increase in the transport class load but not at the cost of a reduction
of the amount of resources allocated to the medical class. This is because according to
the allocation decisions made by these methods, there is no shortage of resources even
as the transport load increases. Hence, the resources allocated to the medical class is
constant with transport class loads and consequently the average medical class perfor-
mance is also constant. The fact that the amount of resources reserved for the medical
class for a given medical class load by these methods is constant can be observed from
Figure 9.4 where the average cost associated with resource reservation in the medical
class is constant for a given medical class load.

In the case of agent, however, a higher amount of resources are allocated to the
medical class as compared to demand, +/-10% margin, +/-20% margin and +/-30%
margin methods. Hence, for agent, there is a scarcity of resources and hence agent
takes some resources from the medical class to satisfy the increased resource demand
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of the transport class.

Figure 9.3: Average performance of applications in the medical class in Phase 2 for different load
settings in the medical and transport classes.

Figure 9.4: Average cost associated with resource allocation in the medical class in Phase 2 for different
load settings in the medical and transport classes.
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Figure 9.5 shows the average performance of the transport class applications for
the different resource-allocation methods and for different loads in the priority classes in
Phase 2. It is observed from the figure that the highest average transport class perfor-
mance is achieved in the case of priority for all load scenarios. This is because it gives
strict priority to the transport class. However as observed above, this comes at the cost
of a reduced medical class performance. The fact that the highest priority is given to
the transport class in the case of priority means that 100% of the available resources
are made available to the transport class. This means that the cost associated with
resource reservation for the transport class in the case of priority is equal to 𝛾 as also
illustrated in Figure 9.6. Figure 9.6 shows the average cost of resource reservation in
the transport class for the different resource-allocation methods and for different loads
in the priority classes in Phase 2. Recall that since the medical class has the second
highest priority, the resources that are left after allocating the required resources to the
transport class are made available to the medical class.

Priority always performs better than any other method in terms of the average trans-
port class performance because it gives strict priority to the transport class. However, it
is observed that agent has either equal or slightly lower average transport class perfor-
mance than priority. Also, recall that the average medical class performance is always
higher in the case of agent than that of priority. This is because unlike priority, the agent
reserves resources beforehand for both classes based on the collective resource de-
mand such that high performance for both classes is achieved with minimum resources.

It is also observed from Figure 9.4 and Figure 9.6 that the cost associated with re-
source reservation for both medical and transport classes in the case of priority is very
high. This is because in the case priority all the resources are made available to the
transport class which is muchmore than what is required. Similarly for themedical class.
Furthermore, it is observed that the cost of resource reservation in the case of agent is
much lower than that in the case of priority for almost the same average performance
for the transport class applications and even better performance for the medical class
applications. This shows that agent is able to find an efficient resource allocation for the
medical and transport classes. The cost associated with resource reservation for the
medical class is the least in the case of demand for all the load settings because not
enough resources are reserved by demand for the medical class. The effect of under-
provisioning of the resources can be observed from the worst average medical class
performance in the case of demand. The cost associated with resource reservation and
hence the average medical class performance increases for +/-10% margin, +/-20%
margin and +/-30% margin due to reservation of additional resources (10%, 20% and
30% respectively).
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Figure 9.5: Average performance of applications in the transport class in Phase 2 for different load
settings in the medical and transport classes.

Figure 9.6: Average cost associated with resource allocation in the transport class in Phase 2 for
different load settings in the medical and transport classes.
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Utility of the medical and transport classes and the weighted average utility of the med-
ical and transport classes

As defined in Chapter 7, the utility of a priority class includes both the average appli-
cation performance level and the average resource reservation cost for the class. A
priority class is said to have a high utility if the trade-off between a high average per-
formance of the applications in the class and a low resource reservation for the class
is satisfied according to the policy defined by the slice owner and/or network opera-
tor via means of , 𝛽 (penalty for performance degradation) and 𝛾 (cost associated with
resource reservation). Figure 9.7 and 9.8 illustrate the utility of the medical and trans-
port classes, respectively for the different resource-allocation methods and for different
loads in the priority classes in Phase 2. It is observed from Figure 9.7 and Figure 9.8
that in each load scenario, agent always has the highest utility among all methods for
either one or both of the priority classes. This is only true for agent. Additionally, when
one of the utilities is not the highest for the case of agent, it is only slightly less than the
highest. In the case of high/medium load in the transport class, priority achieves a high
utility for the transport class but at the cost of a very low utility for the medical class. The
above is observed from the bottom-line evaluation metric for the priority classes, namely
the weighted average utility of the two priority classes. Figure 9.9 shows the weighted
average utility of the two priority classes for the different resource allocation methods
and for different loads in the priority classes in Phase 2. It can be observed from the
figure that in each load scenario and for the given settings of 𝛽,𝛾 and the medical and
transport class utility weights, the highest weighted average utility is obtained for the
case of agent. This shows that the agent is able to balance the resource requirements
of two priority classes and decide on an efficient resource allocation that is based on
the collective resource demand of the priority classes. This is in contrast with other
methods, viz. demand, +/-10% margin, +/-20% margin and +/-30% margin that take
resource allocation decisions only based on the demands of the individual classes and
do not consider the overall picture of demands of both classes. The weighted average
utility for the case of priority is lower than that of agent because priority gives all the
resources to one single priority class, i.e. the transport class, with strict priority causing
severe degradation for the utility of the medical class in the cases of high/medium trans-
port class loads. The above conclusions are drawn with sufficient statistical relevance
because the CI for the weighted average utility in the case of agent is narrow and in
most cases non-overlapping with the CIs for other methods.
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Figure 9.7: Utility of the medical class in Phase 2 for different load settings in the medical and transport
classes.

Figure 9.8: Utility of the transport class in Phase 2 for different load settings in the medical and transport
classes.



9.4. Experiments 111

Figure 9.9: The weighted average utility of the medical and transport classes in Phase 2 for different load
settings in the medical and transport classes.

10፭፡ throughput percentile of applications in the background class

The performance of the background class is evaluated based on the 10፭፡ throughput
percentile of the applications in the background class. Figure 9.10 shows the 10፭፡
throughput percentile of the background applications for various resource allocation
methods and for different loads in the medical and transport classes. A trend can easily
be observed that as the load in the priority classes increases (from (1,2) to (3,10)), the
10፭፡ throughput percentile decreases under of all resource allocation methods. This
is because with higher load and hence higher resource demand in the priority classes,
fewer resources are available for the background class.

As mentioned in Chapter 8, in each time slot the resources that are reserved for
the priority classes and were unused by the applications in these classes are made
available to the background class. Therefore, the amount of resources that are relatively
available to the background class is higher when fewer resources are reserved for the
priority classes. It can be observed from the above analysis that this is potentially the
case for demand, +/-10% margin, +/-20% margin and +/-30% margin methods. Hence,
a relatively high 10፭፡ throughput percentile is observed for these methods which comes
at the cost of degradation in performance of the priority classes. Relatively low 10፭፡
throughput percentile is observed for the agent and priority methods. This is because
in thesemethods relatively high amount of resources are reserved for the priority classes
and only the remaining (relatively few) resources are available for the background class.

It is observed from the figure that the confidence intervals for most resource allo-
cation methods (in all load scenarios) are overlapping. Hence, no conclusions can be
drawn (with sufficient statistical relevance) regarding the differences in the KPI across
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Figure 9.10: ኻኺᑥᑙ throughput percentile for background applications in Phase 2 for different load settings
in the medical and transport classes.

different resource allocation methods. The results do hint at some conclusions as dis-
cussed above but due to closeness of the results (for a given load) and the width of
the confidence intervals such conclusions cannot be made firm. Essentially, from the
perspective of the background class, the performance difference between the different
methods is not very significant.

Cell resource utilisation As discussed in Chapter 7, the cell resource utilisation indicates
how many resources were used to yield the performance levels for the different classes
shown above. For a certain network traffic in a cell, in general, the cell resource utilisa-
tion is lower for a higher number of packet drops. This is because for a certain offered
traffic, if some amount of the traffic is dropped, the number of PRBs that will be used will
drop. Therefore, for a certain load in the priority and background classes, cell resource
utilisation would be the maximum for the most efficient resource distribution among all
the classes. Figure 9.11 illustrates the cell resource utilisation for various resource al-
location methods and for different loads in the medical and transport classes. A trend
can easily be observed that as the load in the priority classes increases (from (1,2) to
(3,10)), the cell resource utilisation increases for the cases of all resource allocation
methods for a fixed load in the background class. This is because with a higher load
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more traffic is handled by the cell. The cell resource utilisation is the highest in the
case of agent or priority and least in the case of demand for all load scenarios. This
is because in the cases of priority and agent, the resource allocation is most efficient,
so that more traffic (in total) can be handled by the cell. This can be observed case of
demand, not enough resources are allocated to the priority classes as also indicated by
the relatively low average performance of applications in these classes. As a result of
such under-provisioning, an undesirably high number of packets corresponding to these
applications are dropped, effectively leading to a decrease in the traffic that is handled
by the cell and hence a lower cell resource utilisation. On the other hand, in the cases
of priority and agent, enough resources are allocated to the priority classes such that
the number of packet drops is minimised for the applications in these classes. Hence,
for a given load (approximately) the same high cell resource utilisation is obtained.

Figure 9.11: Cell resource utilisation in Phase 2 for different load settings in medical and transport
classes.

Phase 3

The average performance of applications and average cost associated with resource
reservation for medical and transport classes

Figure 9.12 illustrates the average performance of applications in the medical class for
Phase 3. It can be observed from the figure that similar to Phase 2, for a given medical
class load, the average performance of the medical applications falls with an increase
in the transport class load in the case of priority. In the case of agent, however, the
same phenomenon is observed only for medium and high medical class loads. For the
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low medical class load, the average performance is the highest among the considered
resource allocation methods and does not change with an increase in the transport class
load. The reason is found in the average cost associated with resource reservation as
illustrated in Figure 9.13. This figure shows the average cost of resource reservation
for the medical class for the different resource allocation methods and different loads
in the priority classes in Phase 3. It is observed that the amount of resources given to
the medical class does not change with the increase in the transport class load. This
is because for the case of low medical class load and according to agent’s resource
allocations decisions there are enough resources available to give more to the transport
class as the transport class load increases without taking any resources away from the
medical class. However, for higher medical class loads, there is a scarcity of resources.
Hence, as the transport class load increases, agent takes away some resources from
the medical class to satisfy the increased demand of the transport class. Therefore,
the cost of resource reservation for the medical class and the average medical class
performance decreases. This behaviour of agent can be explained better by observing
the average transport class performance for different load scenarios. This is illustrated
in Figure 9.14. It can be seen from the figure that in the case of agent, the average
transport class performance still remains high for all load scenarios, although lower than
other methods. But it is important to note that in the case of all other methods, the
average medical class performance is worse than that in the case of agent. Hence,
agent balances the average performance of the applications in both the priority classes
in order to achieve the highest weighted average utility of priority classes in all load
scenarios. This is illustrated in Figure 9.18. Figure 9.18 illustrates the weighted average
utility of priority classes for the different resource allocation methods and for different
loads in the priority classes in Phase 3.

The average medical class performance is the worst in the case of demand. This
is even worse than the average performance obtained in the case of demand in Phase
2. This shows that in Phase 3, the prediction of resource demand of the medical class
by the resource demand prediction module is highly inaccurate and substantially lower
than the actual demand. As a consequence of very inaccurate resource demand pre-
dictions, the methods that rely on heuristics such as using correction factors with the
predicted resource demand (+/-10% margin, +/-20% margin and +/-30% margin meth-
ods) also result in poor average performance. However, agent despite the fact that it is
also fed with these inaccurate resource predictions, benefits from the additional CMAB
layer that is trained to to some degree to deal with such poor predictions and hence is
able to achieve high average performance both in Phase 2 and Phase 3. Hence, the
performance of agent is less significantly affected by poor performance of the resource
demand prediction module.

On the other hand, the average performance of applications in the transport class
is good in the cases of demand, +/-10% margin, +/-20% margin and +/-30% margin.
This is illustrated in Figure 9.14. This is unlike in Phase 2 where the average transport
class performance is very low for these methods. The reason is because in Phase 3,
the resource demand predicted for the transport class by the resource demand predic-
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tion module is higher than required. Since +/-10% margin, +/-20% margin and +/-30%
margin use correction factors smaller than one with the predicted demands, they lead
to slight under-provisioning of the resources in the transport class and hence slightly
worse performance as compared to demand.

Recall that for demand,+/-10% margin, +/-20% margin and +/-30% marginmethods,
the cost of resource reservation or, equivalently, the amount of reserved resources for a
priority class is constant if the load in the same priority class is constant. However, it is
observed in Figure 9.15, showing the average cost associated with resource reservation
for the transport class, that for the above-mentioned methods, in the case of high load in
the transport class, the cost of resource reservation or the amount of reserved resources
decreases with decrease in the medical class load. This is because in these cases,
the sum total of the resources allocated to the medical and transport classes exceeds
the total available resources. Hence, the weighted proportional distribution (mentioned
above) is used to obtain the final allocation which causes a decrease in the share of the
transport class.

Figure 9.12: The average performance of applications in the medical class in Phase 3 for different load
settings in medical and transport classes.
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Figure 9.13: Average cost associated with resource allocation in medical class in Phase 3 for different
load settings in medical and transport classes.

Figure 9.14: The average performance of applications in the transport class in Phase 3 for different load
settings in medical and transport classes.
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Figure 9.15: Average cost associated with resource allocation in transport class in Phase 3 for different
load settings in medical and transport classes.
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Utility of medical and transport classes andweighted average utility of medical and trans-
port classes

Figure 9.16 and Figure 9.17 illustrate the utility of medical and transport classes re-
spectively for the different resource allocation methods and different loads in the priority
classes in Phase 3. It can be observed that agent outperforms all other methods in
terms of medical class utility for all load scenarios. Also, agent performs either the
best or very close to the best method in terms of transport class utility. As a result, the
weighted average utility of priority classes is the maximum in the case of agent for all
load scenarios as illustrated in Figure 9.18. It is observed from the figure that the con-
fidence intervals for the weighted average utility are narrow for all resource allocation
methods (for all load scenarios) and in almost all the cases non-overlapping. Hence,
the above conclusions are drawn with sufficient statistical relevance.

Figure 9.16: Utility of medical class in Phase 3 for different load settings in medical and transport classes.
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Figure 9.17: Utility of transport class in Phase 3 for different load settings in medical and transport
classes.

Figure 9.18: Weighted average utility of medical and transport classes in Phase 3 for different load
settings in medical and transport classes.

10፭፡ throughput percentile of applications in the background class

Figure 9.19 illustrates the 10፭፡ throughput percentile of applications in the background
class for different loads in the medical and transport classes. Same as in Phase 2, it is
observed for Phase 3 as well that the confidence intervals for most resource allocation
methods (in all load scenarios) are overlapping. Hence, no conclusions can be drawn
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(with sufficient statistical relevance) regarding the differences in the KPI across different
resource allocation methods. The results do hint at some conclusions as discussed
below but cannot be made firm.

Same as Phase 2, the 10፭፡ throughput percentile is the highest in the case of de-
mand, with +/-10% margin, +/-20% margin and +/-30% margin following closely for all
load scenarios. It is lower for priority and agent. The average performance of the appli-
cations in the priority classes shows the opposite relation, i.e it is high for agent and prior-
ity and lower for demand, +/-10% margin, +/-20% margin and +/-30% margin. Hence, a
trade-off exists between the performance of the background applications and the perfor-
mance of the priority applications. Since agent is designed to maximize the performance
of the priority classes via the reward function (see Chapter 8), it achieves the maximum
weighted average utility of priority classes because it ensures that all the offered priority
class traffic is transmitted (no dropping) which maximises the resources utilised by the
priority classes, thus minimising the resources available for the background class.

Figure 9.19: ኻኺᑥᑙ throughput percentile for background applications in Phase 3 for different load settings
in medical and transport classes.

Cell resource utilisation

Figure 9.20 shows the cell resource utilisation for different resource allocation methods
and different loads in themedical and transport classes. Same as in Phase 2, the highest
resource utilisation is obtained for priority or agent for all load scenarios, indicating that
minimum packet drops occur for these allocation methods and henc
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Figure 9.20: Cell resource utilisation in Phase 3 for different load settings in medical and transport
classes.

9.4.2. Sensitivity analysis with the different evaluation parameters

The aim of this experiment is to demonstrate that the proposed multi-slice resource
allocation method with intelligent CMAB-based resource allocation module is able to
adapt to the objectives set by the slice owner and/or network operator in terms of the
cost of resource reservation, relative class weights and performance penalty. This is
done by comparing it with the alternative slice-oriented resource allocation methods
and the baseline of priority scheduling in a common (or single) slice. In this experiment,
the load in the medical and transport classes is kept fixed and set to (M,M), i.e. medium
load in both medical and transport classes. A sensitivity analysis is done w.r.t the so-
called evaluation parameters (𝛽,𝛾, 𝑤፦፞፝ and 𝑤፭፫ፚ፧). The experiment is performed for
both Phase 2 and Phase 3. The fixed and variable parameters for this experiment are
listed in Table 9.3. The value of the bottom-line KPI, i.e. the weighted average utility of
priority classes is calculated and shown in a separate chart for each phase..

Table 9.3: The parameters and their corresponding values for sensitivity analysis with the different
evaluation parameters.

Parameter Considered values
𝛼 1
𝛽 0.01 1
𝛾 0.025 9

Medical class weight (𝑤፦፞፝) 0.2 0.5
Transport class weight (𝑤፭፫ፚ፧) 0.8 0.5

Medical class load Medium
Transport class load Medium

Multi-slice resource allocation method Agent demand +/- 10% margin +/- 20% margin +/- 30% margin priority
Re-allocation interval 𝑇 100 ms
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Phase 2 and Phase 3

Weighted average utility of priority classes

Figure 9.21 shows the values of the weighted average utility of priority classes for a fixed
setting of load in the priority classes and different settings of the evaluation parameters,
viz. 𝛽, 𝛾, 𝑤፦፞፝ and 𝑤፭፫ፚ፧ for Phase 2. Figure 9.22 illustrates the same for Phase
3. The horizontal axis in the figures shows the different sets values of the evaluation
parameters, i.e. (𝛽, 𝛾, 𝑤፦፞፝ and 𝑤፭፫ፚ፧). It is observed for both the phases that for
all settings, the highest weighted average utility is obtained by agent. This shows that
agent adapts to different objectives of multi-slice resource allocation defined by slice
owners and/or network operator. Furthermore, in the case of low cost (𝛾 = 0.025), the
performance of priority closely follows that of agent. However, for high cost associated
with resource reservation, i.e 𝛾 = 9, priority performs the worst. This is because it
reserves all the available resources for the priority classes and is consequently imposed
a high cost, unlike in the case of agent, demand, +/-10% margin, +/-20% margin and
+/-30% margin which only reserves a portion of the resources for the priority classes.
Moreover, the performance of priority as indicated by the weighted average utility of the
priority classes varies with different settings of weights of the priority classes. Since
priority gives a higher priority for resource allocation to the transport class as compared
to the medical class, if a higher weight is selected for the transport class as compared
to the medical class, its allocation decisions align with the priority choice imposed by
the network operator. However in the case of equal weights, that is not the case. As a
result, for a positive utility of the transport class, the weighted average utility increases
and for a negative utility of the transport class, the weighted average utility decreases if
a higher weight is selected for the transport class as compared to if equal weights are
selected. However, agent aligns allocation decisions with the priority choice imposed
by the network operator via the class weights. Hence, in the case of agent, the variation
in weights of the priority classes has (virtually) no effect on the weighted average utility
of the priority classes. It is observed from the figures that the confidence intervals for
the weighted average utility are narrow and non-overlapping for all resource allocation
methods (for all load scenarios). Hence, the above conclusions are drawn with sufficient
statistical relevance.

10፭፡ throughput percentile of applications in the background class

Figure 9.23 shows the 10፭፡ throughput percentile of the background class applications
for a fixed setting of load in the priority classes and different settings of the evaluation
parameters for Phase 2. Figure 9.24 illustrates the same for Phase 3. In both the
phases, common observations are made. It is observed that in the case of agent, the
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Figure 9.21: Weighted average utility of medical and transport classes in Phase 2 for different settings of
evaluation parameters.

Figure 9.22: Weighted average utility of medical and transport classes in Phase 3 for different settings of
evaluation parameters.



124 9. Experiments and Results

10፭፡ throughput percentile of the background class applications is the highest for the
case of 𝛾 = 9 and 𝛽 = 0.01. This is because this evaluation setting corresponds to a
higher cost of resource reservation and a lower penalty for performance degradation in
the priority classes. Therefore, in this setting, agent reserves fewer resources for the
priority classes in order to maximise the bottom-line metric, i.e the weighted average
utility (which defines the reward for the CMAB agent) and hence leaves more resources
for the background class.

Similarly, the 10፭፡ throughput percentile of the background class applications is the
minimum for 𝛾 = 0.025 and 𝛽 = 1 because this setting for evaluation corresponds to a
lower cost for resource reservation and a higher penalty for performance degradation
in the priority classes. Therefore, in this setting, agent reserves a higher amount of
resources for the priority classes and hence leaves fewer resources for the background
class

It is observed for the considered load in the priority classes (medium, medium) in this
experiment that on varying the slice weights with a fixed evaluation setting and load in all
the classes, the 10፭፡ throughput percentile of the background class applications does
not change. This is because slice weights dictate how the resources are distributed
among the priority classes. Hence, with a change in slice weights, there may not be a
change in the amount of resources allocated to the background class and consequently,
no change in the 10፭፡ throughput percentile.

For all the other multi-slice resource allocation methods, no change in the 10፭፡
throughput percentile of the background class applications is observed due to a change
in the evaluation setting. This is because, the resource allocation decisions made by
these methods only depend on the load in the priority classes (which is kept fixed in
this experiment). On the other hand, as discussed above agent adapts to the variation
in the evaluation parameters. Recall that the evaluation parameters define the busi-
ness policies and objectives of slice owners and/or network operator. Hence, agent
also considers the business policies of the slice owners and.or network operator when
taking resource allocation decisions.
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Figure 9.23: ኻኺᑥᑙ throughput percentile of background class applications in Phase 2 for different settings
of evaluation parameters.

Figure 9.24: ኻኺᑥᑙ throughput percentile of background class applications in Phase 3 for different settings
of evaluation parameters.





10
Conclusions and Future Work

In this chapter, we summarize the work done in this thesis and highlight the key findings.
We further give recommendations for future research.

10.1. Conclusion

In this thesis we have addressed the problem of radio resource management in sliced
radio access networks. More specifically, we have looked into the case of resource
allocation among multiple priority slices. We have identified that the multi-slice resource
allocation in RAN consists of two separate problem areas, namely prediction of resource
demand of all the slices and efficient resource allocation based on the collective resource
demand prediction. Hence, we have designed and proposed a framework for multi-slice
resource allocation with two modules, namely the resource demand prediction module
and the resource allocation module.

We have identified two different artificial intelligence techniques, namely supervised
machine learning and contextual multi-armed bandit reinforcement learning as suitable
candidates for solving the consecutive subproblems of multi-slice resource allocation
as stated above. The problems of resource demand prediction and efficient resource
allocation to achieve multi-slice resource management have been addressed separately
in detail.

We have designed a novel model for predicting the resource demand of the dif-
ferent slices based on supervised machine learning. The proposed resource demand
prediction model has been argued to work for the slices which have scarcity of infor-
mation about their historical resource usage. Three different supervised ML algorithms,
namely multiple linear regression, random forests regression and an artificial neural net-
work have been studied for this purpose. Based on the prediction performance defined
by the mean absolute relative error metric, the artificial neural network has been found
to be the best among the three considered algorithms and hence has been used in the
resource demand prediction module.
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Supervised machine learning models, in order to make accurate predictions, must
be trained on a training data set that is abundant, unbiased and well-representative
of the scenarios where the model is expected to be used. In order to address this in
the context of resource demand prediction, we have proposed a novel methodology to
create a training data set for optimal machine learning particularly in scenarios where no
or limited training data is available. We have proposed so-called differentiated handling
of network traffic to ‘enhance’ the training data by making it more diverse and unbiased.
The proposed methodology of differentiated handling of network traffic is not limited to
RAN slicing and can be applied in other applications employing supervised learning AI
techniques for resource management or dimensioning in mobile networks. It has been
shown for the considered supervised ML techniques that the models learnt using the
enhanced training data had better prediction performance as indicated by the mean
absolute relative error (MARE) for the test data as opposed to the models learnt using
the original training data.

The lowest MARE has been found to be equal to 0.546 in the case of ANN trained
using the above-mentioned methodology of enhancing the training data. However, a
MARE equal to 0.546 is still very high, indicting that the resource predictions are not
very reliable. This further motivated the use of a second intelligent layer in the multi-
slice resource allocation framework. For the design of the resource allocation module
of the multi-slice resource allocation, we have employed another ML technique referred
to as CMAB (reinforcement learning).

Based on the extensive scenario-based simulation analysis done in this thesis it has
been shown that the proposed framework performed the best in terms of the bottom-line
metric for the priority slices, namely the weighted average utility of the priority classes
in all the considered scenarios as compared to both the other slice-oriented considered
resource allocation methods and the priority scheduling scheme, which is a non-sliced
resource allocation method.

The other slice-oriented resource allocation methods lacked the second layer of in-
telligence (CMAB) and hence were not able to compensate for the various sources of
errors such as inaccurate slice resource demand prediction or changes in the policies
of the network operator. On the other hand, the performance of priority scheduling as
reflected by the bottom-line metric varied from very good to the worst when the cost of
resource allocation was varied from a lower value to a higher value, since it reserved
all the available resources for the highest priority class resulting in a very high cost and
consequently a very low value of the bottom-line metric for the priority class. Hence,
although priority scheduling is not affected by the inaccuracy of resource demand pre-
diction, it also cannot adapt to the policies of the network operator and/or slice owners.
In contrast, the proposed framework with two intelligent layers has been shown to adapt
to the different load settings and different evaluation parameter settings to always give
the highest performance.

Based on the simulation-based comparative analysis done in this thesis, it can be
concluded that for shared resources such as the PRBs and in the case of multiple priority
classes, efficient reservation of resources for all the classes is needed beforehand which
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is the essence of network slicing in order to guarantee some level of performance in each
irrespective of variation in the traffic load, traffic characteristics in the other classes.

AI techniques, specifically artificial neural networks and CMABwere found to be very
promising in achieving efficient resource allocation among multiple priority slices.

10.2. Recommendation for further research

In this study, the problem of multi-slice resource allocation was shown to be efficiently
solved by AI techniques. For the evaluation of the proposed methods, we made some
simplifying modelling choices in relation to a.o. network layout, propagation aspects
(e.g. neglecting the impact of multi-path fading) and technology modeling upon which
improvements are possible to make the scenario analyses somewhat more realistic. A
simplification made in the technology modelling was the use a common SCS and TDD
frame structure across all the considered slices. However, one of the key features of
RAN slicing is to be able to customise the resources (in terms of, e.g. SCS and TDD
frame structure) of a slice based on, e.g. the QoS requirements and traffic characteris-
tics of the traffic in the slice. Hence, it is recommended to evaluate the performance of
the proposed method with different slices having different configurations of TDD frame
structure and/or SCS.

It was found that the mean absolute relative error in the case of resource demand
predictions was quite high even for the best performing model. Hence, there are still
some improvements needed to deal with the high MARE. Moreover, it was found that
the use CMAB along with resource demand prediction improved resource allocation
performance as compared to the case when only resource demand prediction was used.
Hence, it is also recommended to explore the application of only CMAB or reinforcement
learning for the resource-allocation problem with necessary modification in the model.

In this study we carried out two sets of sensitivity analyses, viz. w.r.t. the load
in the priority classes and w.r.t the different evaluation parameters. Another parame-
ter to be considered is the time scale at which the resource allocation decisions are
made. Smaller re-allocation intervals allow for more dynamic updates in the resource
allocation with changing load and traffic characteristics of the users in a slice resulting in
increased efficiency of resource allocation. On the other hand, longer re-allocation inter-
vals are easier to control and handle, especially when resource customization is used.
It is recommended to analyse the effect of the length of resource allocation interval on
the efficiency of the proposed multi-slice resource allocation method

In this study we considered only two priority slices. With more priority slices and with
similar priorities for each slice, the resource allocation problem becomes more challeng-
ing as it poses the challenge of resource scarcity. It is recommended to evaluate the
performance of the proposed method with more priority slices and in the case when the
total amount of the resource is not sufficient to serve all the slices.
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