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inant cues in the frequencies f ≥ 1.5 kHz. Based on these facts, in
this thesis we try to preserve only the ILD cues of the noise compo-
nents at frequencies above 1.5 kHz, while keeping the target signal
undistorted. We investigate whether doing so saves the DoF that can
be used to improve the noise reduction performance, in contrast to
preserving both the cues. The thesis proposes two methods to pre-
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the ILD cues perfectly, while the second method achieves a relaxed
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in anechoic and reverberant environments, and show that the noise
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Abstract

For people with hearing impairment, it is important to have good speech intelligibility,
while also being able to localise the sound sources. Many beam-forming algorithms for
hearing aids have been proposed, that minimise the noise, in combination with spatial
scene preservation of the target and the interferers. By constraining the spatial cues, the
limited DoF available for the design of the filter are expended, and this, to some extent
degrades the noise reduction performance. Most of these methods try to preserve both
the ITD and the ILD cues of the noise components over the entire frequency spectrum.
However not all frequencies rely on both the ITDs and ILDs for the localisation of
sound. More specifically, the ITDs are dominant cues in the frequencies f < 1.5 kHz
and the ILDs are dominant cues in the frequencies f ≥ 1.5 kHz. Based on these facts, in
this thesis we try to preserve only the ILD cues of the noise components at frequencies
above 1.5 kHz, while keeping the target signal undistorted. We investigate whether
doing so saves the DoF that can be used to improve the noise reduction performance,
in contrast to preserving both the cues. The thesis proposes two methods to preserve
only the ILD cues of the interferers. The first method preserves the ILD cues perfectly,
while the second method achieves a relaxed preservation of the ILD cues. Both methods
show similar performance in anechoic and reverberant environments, and show that the
noise reduction performance improves only mildly, when only the ILD cues of the noise
components in the higher frequencies are preserved.
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Introduction 1
The speech intelligibility of a listener gets degraded in the presence of background
noise. This is true for those with healthy hearing as well as those suffering from hearing
impairment. Since speech signals are redundant in nature, those with normal hearing
may comprehend speech, despite the background noise. For the hearing impaired,
however, it is sometimes already hard to understand the signal in a quiet scenario.
This can be partly compensated by the use of hearing assistive devices (HADs) such as
hearing aids (HAs), which use signal processing to reliably reduce noise and improve
speech intelligibility [1].

Over the years, several single and multiple microphone strategies for noise reduction
have been developed for HAs. These algorithms have grown to consider the attributes
of the listener’s auditory system, and the characteristics of the desired sound while
enhancing the signals reaching the ears [2]. With the increased complexity of the
auditory environment being processed, multi-microphone algorithms that exploit the
spatial, in addition to the spectral and the temporal information, are preferred over
the single channel strategies [3].

Commonly, modern HAs come in pairs, with multiple microphones in each HA unit.
The signals from these microphones are combined, by properly delaying and summing
the signals, to enhance the desired signal. This is commonly known as beam-forming.
By applying complex weights to the signals in each microphone, and combining them,
the signal from a desired direction can be enhanced [4].

Due to wireless communication, it has become possible to use the microphone
signal measurements from both HA units. When each HA unit works independently to
estimate the desired signal at each ear, the system is called bilateral HAs system. These
HAs provide good noise reduction performance. They however generate monoaural
outputs, that do not allow the user to localise sound, which would naturally occur,
from the use of the signals at the two ears [5].

When the microphone signal measurements from both the HAs are used jointly,
to estimate the filter weights that enhance the desired signal, it is called a binaural
HAs system. With binaural hearing, comes the potential advantage of the improved
ability to hear speech in noise, due to sound source localisation [6]. The importance of
binaural hearing can be understood by the ability of a normal hearing person to localise
and separate sound sources, which improves speech intelligibility due to spatial release
from masking (SRM) [7]. SRM enables the listener to hear the desired sound better,
as the noise and the target sources are spatially separated due to localisation. Using
binaural beam-forming, thus helps to improve speech intelligibility by aiding the user
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with sound localisation, in co-operation with noise reduction.

1.1 Background

There are several factors that affect how sound is perceived. The source location of a
sound can be determined by the acoustic cues that are generated due to the difference
in the path taken by the signals to reach the two ears, and from the interaction of
sound with the head, torso and pinnae. These acoustic cues can be broadly categorised
as monoaural and binaural cues. The interaural time difference (ITD), the interaural
level difference (ILD), and the interaural coherence (IC) cues, are determined by the
difference in the signals reaching the left and the right ear, hence called binaural cues.
While spectral cues, that are direction dependent and result in peaks and notches in
the signal due to the pinnae effects at each ear, are called monoaural cues [8]. The
ITD spatial cues are rendered by the difference in the time taken for a signal to reach
either ear from its source location. The ILD cues are due to the ‘head shadowing
effect’, that is caused due to the reflections of the signal by the head, causing a drop
in the energy of the signal reaching the ear away from the source [9]. Apart from
these two cues that are based on the difference between signals, the IC cue compares
the similarity between the signals that reach the two ears. Both the monoaural and
the binaural cues help with sound localisation. Psycho-physical experiments done
in [10], however, suggest that the ILD and the ITD cues play a major role with
sound localisation in the horizontal plane. Hence in this thesis, only the binaural cues,
the ILD and the ITD, that help with localisation in the horizontal plane are considered.

According to the Duplex Theory of sound localisation, the ILD and the ITD
cues operate in complementary frequency spectrum, for pure tone stimuli. The
ITD cues are used in the lower frequencies below 1.5 kHz, while ILD cues are more
pronounced in the higher frequencies for localisation [11]. This is because, in the
higher frequencies, the wavelength of sound is shorter than the width of the head,
causing the signal to reflect and lose energy as it reaches the ear away from the
source. While in the lower frequencies, the wavelength of sound is comparable to
the width of the head, making it bend around the head as it reaches the ear away
from the source. On the contrary, the ITD cues are not reliable at higher frequen-
cies, as the period of the sinusoids are shorter than the maximum interaural delay
and hence, result in ambiguous phase leads and lags that make the ITD cues unreliable.

Furthermore, experiments in [10], [12], discuss about the weighting of these cues
in the entire audible frequency spectrum. In [10], the dominance of the ITD cues
over the ILD cues, in the lower frequencies less than 1.5 kHz, for sound localisation
was experimentally proved. Psycho-physical experiments showed how listeners, when
provided with contradicting cues of broadband stimuli, localised based on the ITD
cues. Moreover in [12], experiments with low pass, high pass and wide band stimuli
were conducted, to analyse the weight given to the binaural cues by the auditory
brain for sound localisation. The results agreed with [10], while also establishing the
dominance of the ILD cues over the contradicting ITD cues, at higher frequencies.
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In their daily lives, it is important for the HA users to localise the sound reaching
their ears, for example, in traffic. Most of the multi-channel noise reduction algorithms
used in HAs, however, distort the spatial cues of sources. Currently there are two
classifications of algorithms that preserve spatial cues in hearing aids [13]. The first
category, consists of algorithms that apply an identical, real valued gain to the reference
signals at both the ears, in order to maintain the interaural cues. These algorithms may
not perform the best in terms of noise reduction, as they effectively work like single
channel algorithms, that do not use the spatial characteristics of the environment. The
second category of algorithms, follow the approach of optimising a cost function, that
uses the spectro-temporal and the spatial characteristics. These algorithms can be
further divided into spatio-temporal filtering algorithms and spatial filtering algorithms.

Spatio-temporal beam-forming, allows for distortions in the target signal after
processing [14]. The binaural multi-channel Wiener filter (MWF) is a spatio-temporal
beam-forming algorithm. Here, the minimum mean square error (MMSE) estimate
of the reference microphone signals are generated at the output [15]. In [16], it has
been proved that using binaural MWF, for a single speech source, the ILD and the
ITD cues are preserved, while the spatial cues of the noise components are distorted.
To allow the spatial cue preservation of the noise components, additional ITF or ITD
or/and ILD terms are added to the cost function [17], [18], [19]. These algorithms,
however, do not completely preserve the cues of the noise components, but offer a
trade-off between noise reduction and spatial cue preservation.

With spatial beam-forming, the target signal is maintained reliably [20]. The
binaural minimum variance distortionless response (BMVDR) beam-former is one
such spatial filtering algorithm. It is a binaural extension of the minimum variance
distortionless response (MVDR) beam-former, that achieves optimum noise reduction
in the presence of background noise and interfering sources. Since the target is
constrained to be undistorted, after processing, the spatial cues of the target signal
are preserved. The interfering sources, however, after processing are co-located with
the target, i.e., they take the spatial cues of the target [21]. By introducing additional
constraints on the interferers, the binaural linearly constrained minimum variance
(BLCMV) beam-former can preserve the spatial cues of a limited number of interferers
[22].

The BLCMV formulation was further simplified in [23], which allowed for the spatial
cue preservation of more interferers. Since the interferers may not be audible after
beam-forming, in [24], the authors proposed a method where the cue preservation is
applied only in those time-frequency tiles where the interfering sources are perceptually
audible. Furthermore, in [25], a method to select the interfering sources, whose cues
are to be preserved in algorithms that limit the number of interferers, was proposed.
This is done by preserving the cues of those interferers that are perceptually audible
at the output of the beam-former.
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Nevertheless, the spatial cue preservation of the noise components were still
heavily constrained by the equality constraints in the problem formulation of the joint
binaural linearly constrained minimum variance (JBLCMV) beam-former [23]. In [26],
a relaxation to the ITF cue preservation is introduced. As the inequality constraints
replace the equality constraints of the JBLCMV formulation, more degrees of freedom
(DoF) are available for the spatial cue preservation of more interferers. Moreover, for a
fixed number of interferers, the noise reduction performance also improves, due to the
increased DoF. By choosing a suitable allowable error in the ITF cues, a good trade-off
between noise reduction and spatial cue preservation of the interferers was achieved.

In this thesis, we focus on spatial beam-forming, that preserves the target signal,
in combination with spatial cue preservation of the interferers.

1.2 Research Question

The motivation of this thesis stems from two interesting observations, that

1. by relaxing the spatial cue preservation, for a given number of interferers, the
noise reduction performance is better than JBLCMV [26].

2. binaural cues are frequency selective [10].

The methods discussed in section 1.1 preserve the spatial location of the noise
components, by collectively preserving both, the ILD and the ITD cues. However, the
ITD cues are dominant in the lower frequencies f < 1.5 kHz, and the ILD cues are
dominant in the higher frequencies f > 1.5 kHz. This principle forms the foundation
to this thesis, that intends to answer the following question.

• Will beam-forming with only the dominant binaural cue preservation of the noise
components, help to improve the noise reduction performance, as opposed to the
preservation of both the interaural time difference (ITD) and the interaural level
difference (ILD) cues?

In this thesis, a first step is taken to answer the above question, by preserving only
the ILD cues in the higher frequencies.

1.3 Outline

To address the above research question and to investigate a solution, the thesis is or-
ganised as follows. Chapter 2 introduces the signal model used, and follows up with
a discussion on the binaural beam-forming algorithms available. Chapter 3 introduces
the problem formulation, that is proposed to analyse the ILD cue preservation binau-
ral beam-forming in the higher frequencies. Chapter 4, analyses the results from the
simulations using the methods proposed, and compares the performance against the
reference methods discussed in Chapter 2. Finally, Chapter 5 discusses a scope for
further development of the work proposed, and concludes the work of this thesis.

4



Previous Work 2
This chapter describes the signal model used in the rest of the thesis. It discusses
the methods that have been proposed previously to preserve the spatial cues in bin-
aural beam-forming. The methods discussed here are later compared against the work
proposed in this thesis.

2.1 Signal Model

Consider a binaural hearing aid configuration, having one HA on the left ear and one
on the right ear, each with a microphone array containing M

2
microphones. The signals

from the left HA are assumed to be transmitted wirelessly to the right HA, and vice
versa, leading to a total of M signal measurements.

The signal measured in each microphone can be given as

ym(t) = xm(t) + nm(t) + vm(t) m = 1, 2 . . .M, (2.1)

with
ym as the noisy signal received by the mth microphone,
xm as the target source signal received by the mth microphone,
nm as the interfering source signal received by the mth microphone, and
vm as the background noise signal received by the mth microphone.

It is assumed that there is one target signal with ‘r’ additive, mutually uncorrelated
interfering signals, and uncorrelated noise.

For the ease of analysis, the signals are transformed to the frequency domain by the
short-time Fourier transform (STFT).

ym(l, k) = xm(l, k) + nm(l, k) + vm(l, k), m = 1, 2 . . .M, (2.2)

where
l is the time frame index, and
k is the frequency bin index.

As the processing is done independently per time frame, the time index ‘l’ is omitted
for convenience. Altogether we have

ym(k) = xm(k) + nm(k) + vm(k), m = 1, 2 . . .M

= am(k)s(k) +
r∑
i=1

bi,m(k)ui(k) + vm(k),
(2.3)
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where
r is the number of interfering sources assumed,
am is the acoustic transfer function (ATF) of the target signal to themth microphone,
bi,m is ATF of the ith interferer to the mth microphone,
s is the target signal at the target location, and
ui is the interference signal of the ith interferer at its location.

Since the processing is done per frequency bin, the frequency bin index ‘k’ is omitted
in the rest of the work for convenience. Taking the first m = 1 and the last m =
M microphone as the left and the right reference microphones respectively, all the
measured signals can be combined into a single vector and can be represented as

y =
[
y1 y2 · · · yM

]T ∈ CM×1

= as+
r∑
i=1

biui + v

= x + Bu + v,

(2.4)

where
a is the ATF vector of the target signal

(
CM×1),

bi is the ATF vector of ith interferer
(
CM×1),

x is the target signal vector
(
CM×1),

u is the interference signal vector (Cr×1),
v is the noise signal vector

(
CM×1), and

B =
[

b1 b2 · · · br
]
∈ CM×r.

The spatial filtering algorithms that will be discussed, estimate the complex filtering

coefficients of the binaural filter w =
[

wL
H wR

H
]H ∈ C2M×1 such that, the output

at the left and the right hearing aid can be given as

x1 = wH
L y, xM = wH

R y. (2.5)

2.2 Definitions

2.2.1 Cross power spectral density (CPSD)

As the target, interferers and the noise are mutually uncorrelated, the CPSD of the
measured signal can be written as

Py = Px +
r∑
i=1

Pui + Pv︸ ︷︷ ︸
P

,
(2.6)

where
Py = E

{
yyH

}
is the CPSD matrix of the noisy signal

(
CM×M),
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Px = E
{
xxH

}
is the CPSD matrix of the target signal

(
CM×M),

Pui = E
{
uibib

H
i u
∗
i

}
is the CPSD matrix of the ith interfering signal

(
CM×M),

Pv = E
{
vvH

}
is the CPSD matrix of the background noise signal

(
CM×M), and

P is the CPSD matrix of the noise
(
CM×M).

2.2.2 Binaural Cues

To localise sound in the horizontal plane, the binaural cues, more specifically, the
ILDs and the ITDs need to be preserved [10], [12]. In the frequency domain, the ITD
corresponds to interaural phase difference (IPD). These cues can be obtained from the
interaural transfer function (ITF). Let the ITF of the target before and after processing,
i.e., at the input and the output of the filter, be defined as

ITFx
in =

a1
aM

, ITFx
out =

wH
L a

wH
Ra

.
(2.7)

Similarly, we can define the input and the output ITF of the ith interfering source as

ITFui
in =

bi,1
bi,M

, ITFui
out =

wH
L bi

wH
Rbi

.
(2.8)

From the ITF, we can also obtain the ILDs of the target and the interfering sources,
before and after processing as

ILDx
in = |ITFx

in|2, ILDx
out = |ITFx

out|2,

ILDui
in = |ITFui

in|2, ILDui
out = |ITFui

out|2,
(2.9)

as well as, the IPDs

IPDx
in = ∠ITFx

in, IPDx
out = ∠ITFx

out,

IPDui
in = ∠ITFui

in, IPDui
out = ∠ITFui

out.

(2.10)

In order to preserve the binaural cues, the ILDs and the ITDs at the input and
the output must be the same. The ITF error for the target and the interferers can be
expressed as

γx = |ITFx
in − ITFx

out|,

γui = |ITFui
in − ITFui

out|.
(2.11)
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While the ILD errors can be gives as

εx = |ILDx
in − ILDx

out|,

εui = |ILDui
in − ILDui

out|,
(2.12)

and the ITD errors can be given as

τx =
|IPDx

in − IPDx
out|

π
,

τui =
|IPDui

in − IPDui
out|

π
.

(2.13)

In this work, only spatial filtering algorithms are considered, i.e., the target estimate
is constrained to be undistorted. Hence, the ILD and the ITD cues of the target are
always preserved [21].

2.2.3 Degrees of freedom (DoF)

The degrees of freedom (DoF) are the maximum number of independent variables
available in the model, that must be specified to determine the feasible solution of the
problem. In the algorithms discussed in Section 2.3, the DoF determine their noise
reduction ability.

The maximum available degrees is 2M for an unconstrained noise power minimi-
sation problem. This reduces by one, with every equality constraint introduced. The
DoF available for noise reduction in the algorithms discussed, are mentioned in their
corresponding sections.

2.3 Previous Work

2.3.1 Binaural minimum variance distortionless response (BMVDR)

The MVDR maximises the signal-to-noise ratio (SNR) in the target direction, while
maintaining the target signal undistorted [4]. The BMVDR is a binaural extension of
the MVDR beamforming algorithm.

The BMVDR consists of two spatial filters, say, wL and wR, that are estimated by
minimising the output interference and background noise power, while constraining the
target to be undistorted. The optimisation problem can written as done in [21],

wBMVDR,L = arg min
wL∈CM×1

wH
L PwL

subject to wH
L a = a1,

wBMVDR,R = arg min
wR∈CM×1

wH
RPwR

subject to wH
Ra = aM .

(2.14)
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The closed form solutions can be given by

wBMVDR,L =
P−1aa∗1
aHP−1a

, wBMVDR,R =
P−1aa∗M
aHP−1a

. (2.15)

The two constrained problems in Eq. (2.14) can also be combined, and jointly
written as

minimise
w∈C2M×1

wH

[
P 0M×M

0M×M P

]
︸ ︷︷ ︸

P̃∈C2M×2M

w

subject to wH

[
a 0
0 a

]
︸ ︷︷ ︸
ΛA∈C2M×2

=
[
a1 aM

]︸ ︷︷ ︸
fHA ∈C1×2

.

(2.16)

The closed form solution to Eq. (2.16) is

wBMVDR = P̃−1ΛA

(
ΛH
A P̃−1ΛA

)−1
fA, (2.17)

where wBMVDR =
[

wH
BMVDR,L wH

BMVDR,R

]H ∈ C2M×1.

Since the target signal is undistorted due to the distortionless constraints, the spatial
cues of the target are preserved. However, the spatial cues of the interferers become
identical to those of the target [21]. Hence the interferers appear to be co-located with
the target after processing. This can be shown by calculating the output ITF of the
target and the interfering sources, which become identical to the ITF of the target at
the input of the beam-former. The ITF of the target at the output can be written as

ITFx
out =

wH
BMVDR,La

wH
BMVDR,Ra

=
a1
aM

= ITFx
in, (2.18)

while for the interferers

ITFni

out =
wH

BMVDR,Lbi

wH
BMVDR,Rbi

=
a1
aM

= ITFx
in. (2.19)

With the BMVDR, there are only two constraints. Hence the DoF available for
noise reduction are D = 2M − 2. This allows for maximum noise reduction, and hence
maximum SNR, in comparison to the remaining methods discussed.

Although the SNR is maximised, the spatial impression of the interferers and the
background noise are not maintained with the BMVDR algorithm. Hence additional
constraints, that preserve the spatial cues of the interferers, can be used as explained
in the following algorithms.
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2.3.2 Binaural linearly constrained minimum variance (BLCMV)

Since the BMVDR fails to preserve the spatial cues of the interferers, in [22] additional
linear constraints were introduced to help to preserve the spatial cues of the interferers.
In the proposed BLCMV, the spatial cues of the interferers are preserved by suppressing
the interferers using a pre-determined rejection parameter. This is done by introducing
the following constraints to the BMVDR problem in Eq. (2.14).

wH
L bi = ηLbi,1, wH

Rbi = ηRbi,M , i = 1, 2, . . . r, (2.20)

where ηL and ηR ∈ R are the rejection parameters at the left and right ears respectively.
The BLCMV joint optimisation problem with the constraints in Eq. (2.20) can be

written as

minimise
w∈C2M×1

wH

[
P 0M×M

0M×M P

]
︸ ︷︷ ︸

P̃∈C2M×2M

w

subject to wH
[

ΛA ΛB

]︸ ︷︷ ︸
Λ∈C2M×2r+2

=
[

fHA fHB
]︸ ︷︷ ︸

fH∈C1×2r+2

where ΛA =

[
a 0
0 a

]
∈ C2M×2,

ΛB =

[
b1 0 . . . br 0
0 b1 . . . 0 br

]
∈ C2M×2r,

fHA =
[
a1 aM

]
∈ C1×2,

fHB =
[
ηLb1,1 ηRb1,M . . . ηLbr,1 ηRbr,M

]
∈ C1×2r.

(2.21)

The closed form solution to Eq. (2.21) is given by

wBLCMV = P̃−1Λ
(
ΛHP̃−1Λ

)−1
f , for r ≤ rmax. (2.22)

Here, the ITF of the target and the interferers at the output are given by

ITFx
out =

wH
BLCMV,La

wH
BLCMV,Ra

=
a1
aM

= ITFx
in,

ITFui
out =

wH
BLCMV,Lbi

wH
BLCMV,Rbi

=
ηLbi,1
ηRbi,M

=
ηL
ηR

ITFui
in.

(2.23)

By taking ηL = ηR = η, the ITF of the interferers can be preserved. An optimum
choice of η is proposed in [27].

With the BLCMV, there are two additional constraints per interferer introduced, in
addition to the two target distortionless constraints, as used with the BMVDR. Hence,
for ‘r’ interferers, the DoF available for noise reduction are D = 2M − 2r − 2. It is
required that at least one DoF is available for noise reduction, if not, the objective of
the problem cannot be optimised. Therefore, the BLCMV can preserve the spatial cues
of maximum rmax = M − 2 interferers.
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2.3.3 Joint binaural linearly constrained minimum variance (JBLCMV)

With the BLCMV, two constraints were per interferer were introduced to preserve their
ILDs and ITDs. However, the maximum number of interferers rmax is limited by the
number of microphones used in the hearing aids. Commonly, HAs use up to M

2
= 3

microphones per unit, that limits rmax to 4 interferers. In order to tackle this drawback,
a modified constraint can be introduced as proposed in [23].

Here, the principle of ITF preservation, as mentioned in Eq. (2.8), is used to derive
a linear constraint per interferer, that is

ITFui
out =

wH
L bi

wH
Rbi

=
bi,1
bi,M

= ITFui
in, i = 1, . . . r, (2.24)

which can be re-written as,

wH
L bibi,M −wH

Rbibi,1 = 0 i = 1, . . . r. (2.25)

Using the linear constraints in Eq. (2.25) for each interferer, in combination with the
BMVDR formulation, gives the following joint optimisation problem.

minimise
w∈C2M×1

wHP̃w

subject to wH
[

ΛA ΛC

]︸ ︷︷ ︸
Λ

=
[

fHA fHC
]︸ ︷︷ ︸

fH

,

where ΛC =

[
b1b1,M . . . brbr,M
−b1b1,1 . . . −brbr,1

]
∈ C2M×r,

fHC =
[

0 . . . 0
]
∈ C1×r.

(2.26)

The closed form solution to Eq. (2.26) is given by

wJBLCMV = P̃−1Λ
(
ΛHP̃−1Λ

)−1
f , for r ≤ rmax. (2.27)

With the JBLCMV, there is one additional constraint introduced per interferer, in
addition to the two target distortionless constraints of the BMVDR. Hence for ‘r’
interferers, the DoF available for noise reduction are D = 2M − r − 2. The maximum
interferers for which the spatial cues can be preserved is rmax = 2M − 3. Hence,
more interferers can be considered with the JBLCMV in comparison to the BLCMV.
Moreover, the noise reduction is better with the JBLCMV than the BLCMV for the
same number of interferers.

2.3.4 Relaxed binaural linearly constrained minimum variance (RBLCMV)

With the BLCMV and the JBLCMV, the ITF cues are preserved perfectly, however,
they are limited by the number of interferers that can be constrained. In [26], the
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authors proposed a binaural beam-former that allows for a bounded ITF error of the
interferers, that is,

minimise
w∈C2M×1

wHP̃w

subject to wHΛA = fHA∣∣∣∣wH
L bi

wH
Rbi
− bi,1
bi,M

∣∣∣∣︸ ︷︷ ︸
γui

≤ ei, i = 1, · · · , r,

where ei = ci

∣∣∣∣ a1aM − bi,1
bi,M

∣∣∣∣︸ ︷︷ ︸
γBMVDR
ui

,

and 0 ≤ ci ≤ 1.

(2.28)

Here, the ITF errors of the interferers are upper bound by a factor of the ITF
errors observed with the BMVDR. Since Eq. (2.28) is not a convex formulation, no
closed form expression can be derived. The problem was solved approximately, using
successive convex optimisation. By replacing the equality constraints in Eq. (2.26) with
inequality constraints, the feasibility set widens, and allows the spatial cue preservation
for more interferers. Moreover, for a given number of interferers, the DoF increases,
improving the noise reduction performance.

Since the problem has inequality constraints, the DoF can not be calculated in this
case.

With the RBLCMV beam-former, the noise reduction performance improves due
to bounded errors in the binaural cues. Drawing motivation from it, and using the
principle of the Duplex Theory, Chapter 3 aims to formulate an optimisation problem,
that preserves the ILD cues of the noise component, while not controlling the ITD cues
of the noise component.
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Methods Proposed 3
This chapter presents the two methods proposed to perform binaural beamforming with
interaural level difference (ILD) cue preservation. The problem formulation and the
convexity of the two methods are discussed. Additionally, the steps taken to find a
convex relaxation that solves the problem in polynomial time are discussed.

3.1 Interaural Level Difference Preservation Methods

In the following sections, the cue preservation methods use constraints, in addition
to the original formulation of the binaural minimum variance distortionless response
(BMVDR) beam-former, that preserve only the ILD cues after processing.

3.1.1 Perfect interaural level difference cue preservation (P-ILD)

In this formulation of the optimisation problem, the aim is to perfectly preserve the ILD
cues of the interferers. In addition to the target distortionless constraints, one constraint
per interferer is introduced to preserve the ILD cues. The problem formulation is given
by

minimise
wL,wR∈CM×1

wH
L PwL + wH

RPwR

subject to wH
L a = a1 wH

Ra = aM∣∣∣∣wH
L bi

wH
Rbi

∣∣∣∣2︸ ︷︷ ︸
ILDui

out

−
∣∣∣∣ bi,1bi,M

∣∣∣∣2︸ ︷︷ ︸
ILDui

in

= 0, i = 1, . . . , r ≤ rmax.
(3.1)

In Eq. (3.1), the objective function and the first two equality constraints follow the
principle of the BMVDR, i.e., the objective function minimises the output noise power,
while the two equality constraints keep the target signal undistorted in both ears. The
additional equality constraints keep the ILDui

out, the output ILD of the ith interferer,
equal to the ILDui

in, the input ILD of the ith interferer.
By expanding the ILD equality constraints, the problem can be jointly optimised

with respect to wL and wR.
That is, starting from

wH
L bibi

HwL

wH
Rbibi

HwR

− |bi,1|
2

|bi,M |2
= 0, i = 1, . . . , r ≤ rmax,

and by cross multiplying, the constraint can be re-written as

wH
L bibi

HwL|bi,M |2 −wH
Rbibi

HwR|bi,1|2 = 0.
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The ILD constraint can now be written into a matrix equation as

[
wH
L wH

R

]︸ ︷︷ ︸
wH

[
bibi

H |bi,M |2 0M×M
0M×M −bibi

H |bi,1|2
]

︸ ︷︷ ︸
Mi∈C2M×2M

[
wL

wR

]
︸ ︷︷ ︸

w

= 0.
(3.2)

Using Eq. (3.2) to replace the ILD constraints in Eq. (3.1), the problem can be
re-written as

(P1) minimise
w∈C2M×1

wH

[
P 0M×M

0M×M P

]
︸ ︷︷ ︸

P̃∈C2M×2M

w

subject to wH

[
a 0
0 a

]
︸ ︷︷ ︸
ΛA∈C2M×2

=
[
a1 aM

]︸ ︷︷ ︸
fHA ∈C1×2

wH

[
bibi

H |bi,M |2 0M×M
0M×M −bibi

H |bi,1|2
]

︸ ︷︷ ︸
Mi∈C2M×2M

w = 0, i = 1, . . . , r ≤ rmax.

(3.3)

Throughout this chapter, let p∗1 denote the optimal value of the objective function in
Eq. (3.3), and let w∗1 refer to the optimal point, i.e., the point at which the optimal
value p∗1 is attained.

Eq. (3.3) is a quadratically constrained quadratic program (QCQP) problem, since
the objective function is quadratic in w, with linear and quadratic equality constraints.
The objective function is convex since P̃ is positive semi-definite (PSD) (A.2). The
problem, however, is a non-convex optimisation problem due to the quadratic equality
constraints on the interferers.

Non-convexity of the Eq. (3.3):

• Objective : Quadratic in ‘w’

• Target Equality Constraint : Linear in ‘w’

• Interferer Equality Constraints : Quadratic in ‘w’

In general, QCQPs are known to be NP-hard [28], except for certain special cases which
show hidden convexity [29],[30],[31]. Here, Eq. (3.3) is a non-convex QCQP and it is
hard to compute a global optimal solution due to its NP-hardness.

Such non-convex QCQP problems, are commonly overcome by implementing ef-
ficient approximation techniques using semi-definite relaxations as explained in the
following section [32].
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3.1.1.1 Convex Relaxation

Consider a matrix W = wwH . To linearise the quadratic equality constraint, the
problem in Eq. (3.3) can be re-written in terms of W (A.1).

minimise
w∈C2M×1,W∈C2M×2M

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMi) = 0, i = 1, . . . , r ≤ rmax,

W = wwH .

(3.4)

In Eq. (3.4), the non-convex quadratic equality constraint of Eq. (3.3) is linearised.
The problem, however, remains non-convex due to the newly introduced quadratic
equality constraint, W = wwH .

Commonly, the prevailing method used to overcome this is by relaxing the equiva-
lence constraint W = wwH to W � wwH . By relaxing the constraint, the problem is
now convex as shown in Eq. (3.5).

minimise
w∈C2M×1,W∈C2M×2M

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMi) = 0, i = 1, . . . , r ≤ rmax,

W � wwH .

(3.5)

Since W � wwH can be written as a linear matrix inequality W − wwH � 0,
the problem can be re-written as a semi-definite program (SDP). Since the non-convex
problem in Eq. (3.4) can be relaxed into a convex SDP, it is referred to as a semi-definite
relaxation (SDR). That is,

(SDR1) minimise
w∈C2M×1,W∈C2M×2M

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMi) = 0, i = 1, . . . , r ≤ rmax,[

W w
wH 1

]
� 0.

(3.6)

By replacing the original set of constraints in Eq. (3.4), with the new set of con-
straints in Eq. (3.6), the feasibility set is broadened. Having a broader feasibility
region, the optimal value p∗SDR1

, of Eq. (3.6) may be lower or equal to the optimal
value p∗ of the original problem in Eq. (3.4). That is, p∗SDR1

gives a lower bound to the
optimal value p∗1 of the original problem [33]. Moreover, it can be proved that p∗SDR1

will also be the optimal value to the dual of P1 (A.3), hence providing a non-trivial
lower bound [34], that is

p1
∗ ≥ p∗SDR1

(3.7)
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Let us consider (W∗
SDR1

,w∗SDR1
) to be the optimal points of Eq. (3.6). The

relaxed problem SDR1, will be equivalent to the original problem P1, only when
W∗

SDR1
= w∗SDR1

w∗HSDR1
. If this happens, the optimal solution of the problem SDR1,

is the global optimal solution of the non-convex QCQP in Eq. (3.3). However if this
equivalence is not met, then the optimal point (W∗

SDR1
,w∗SDR) is not a feasible point

to the problem in Eq. (3.4).

Nevertheless, as mentioned earlier, the optimal value p∗SDR1
is non-trivial. It provides

an over-estimation of the noise reduction ability, which can be used to analyse the
performance of the method proposed, as done in Chapter 4. Furthermore, this lower
bound can be tightened by using additional redundant constraints that satisfy the
problem P1. One way to perform this, is using the reformulation-linearisation technique
(RLT) proposed in [35]. Here, the product of the linear constraints in Eq. (3.1) are
linearised as follows.
Pre-multiplying w with the target distortionless constraint we get

wwHΛA = wfHA ,

and by linearising with W
WΛA −wfHA = 0. (3.8)

Multiplying the target distortionless constraint with itself we get(
wHΛA − fHA

) (
wHΛA − fHA

)H
= 0,

on expanding which

wH
(
ΛAΛH

A

)
w −wHΛAfA − fHA ΛH

Aw + fHA fA = 0,

and by linearising with W

Tr
(
WΛAΛH

A

)
−wHΛAfA − (ΛAfA)H w + fHA fA = 0. (3.9)

The constraints in Eq. (3.8) and Eq. (3.9) are redundant, as they are formulated from
the original distortionless target constraint. By introducing these constraints, the lower
bound of the problem P1, provided by the optimal value p∗SDR1

of SDR1, is tightened
further and the approximation is improved.

(SDR-RLT1) minimise
W∈C2M×2M ,

w∈C2M×1

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMi) = 0, i = 1, . . . , r ≤ rmax,

WΛA −wfHA = 0

Tr
(
WΛAΛH

A

)
−wHΛAfA − (ΛAfA)H w + fHA fA = 0[

W w
wH 1

]
� 0.

(3.10)

Taking the optimal value of the problem SDR−RLT1 as p∗SDR−RLT1
, the relationship

between the optimal solutions among the relaxations can be given as

p1
∗ ≥ p∗SDR−RLT1

≥ p∗SDR1
. (3.11)
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3.1.1.2 Degrees of freedom (DoF)

In problem P1, there is one constraint per interferer introduced, in addition to the
two target distortionless constraints of the BMVDR. Hence for ‘r’ interferers the DoF
available for noise reduction are D = 2M − r − 2. Assuming that there is one DoF for
noise reduction, the maximum number of interferers rmax can be 2M − 3.

However since the problem SDR−RLT1 is used to find an approximate solution
to the non-convex problem P1, the performance is expected to deviate. With every
interferer cue preservation constraint, the ILD errors are expected to get worse. This
is because, the optimality gap between P1 and SDR−RLT1 increases and thereby
worsening the constraint violations by the solution w∗SDR−RLT1

.

3.1.2 Relaxed interaural level difference cue preservation (R-ILD)

In this formulation, instead of preserving the ILD cues perfectly, the cue errors are
upper bound by a suitable factor.

minimise
wL,wR∈CM×1

wH
L PwL + wH

RPwR

subject to wH
L a = a1 wH

Ra = aM∣∣∣∣∣
∣∣∣∣wH

L bi

wH
Rbi

∣∣∣∣2 − ∣∣∣∣ bi,1bi,M

∣∣∣∣2
∣∣∣∣∣ ≤ Ei, i = 1, . . . , r ≤ rmax.

(3.12)

The parameter Ei can be chosen suitably based on the acceptable ILD error. Here, Ei
is chosen in a way that the ILD cue errors are lower than that found with the BMVDR
algorithm, that is,

Ei =ci

∣∣∣∣∣
∣∣∣∣ a1aM

∣∣∣∣2 − ∣∣∣∣ bi,1bi,M

∣∣∣∣2
∣∣∣∣∣︸ ︷︷ ︸

εBMVDR
ui

,

with 0 ≤ ci ≤ 1.

(3.13)

The choice of ‘ci’ is made based on the best trade-off between ILD cue preservation
and noise reduction achieved.

The ILD inequality constraint can be expanded as follows,

|wH
L bi|2

|wH
Rbi|2

− |bi,1|
2

|bi,M |2
≤ Ei, i = 1, . . . , r ≤ rmax,

and

−
(
|wH

L bi|2

|wH
Rbi|2

− |bi,1|
2

|bi,M |2

)
≤ Ei, i = 1, . . . , r ≤ rmax.

(3.14)
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This can expanded as

wH
L bibi

HwL|bi,M |2 −wH
Rbibi

HwR

(
|bi,1|2 + Ei|bi,M |2

)
≤ 0,

and,

−wH
L bibi

HwL|bi,M |2 + wH
Rbibi

HwR

(
|bi,1|2 − Ei|bi,M |2

)
≤ 0.

(3.15)

By using the constraints in Eq. (3.15) to replace the ILD inequality constraints in Eq.
(3.12) and jointly optimising with respect to wL and wR, it is once again a non-convex
QCQP, similar to the previous method P-ILD.

(P2) minimise
w∈C2M×1

wP̃w

subject to wHΛA = fA
H

wH

[
bibi

H |bi,M |2 0M×M
0M×M −bibi

H (|bi,1|2 + Ei|bi,M |2)

]
︸ ︷︷ ︸

MA,i∈C2M×2M

w ≤ 0, i = 1, . . . , r ≤ rmax,

wH

[
−bibi

H |bi,M |2 0M×M
0M×M bibi

H (|bi,1|2 − Ei|bi,M |2)

]
︸ ︷︷ ︸

MB,i∈C2M×2M

w ≤ 0, i = 1, . . . , r ≤ rmax.

(3.16)

Once again, the problem P2 is a non-convex QCQP. Similar to problem P1, an approx-
imate solution can be found using a SDR with RLT.

Non-convexity of the Eq. (3.14):

• Objective : Quadratic in ‘w’

• Target Equality Constraint : Linear in ‘w’

• Interferer In-equality Constraints : Non-convex quadratic functions in
‘w’ since MA,i & MB,i are not PSD

3.1.2.1 Convex Relaxation

The convex relaxation of the problem P2, using linear matrix inequalities and RLT, as
done with P1 can be given as

(SDR-RLT2) minimise
W∈C2M×2M ,

w∈C2M×1

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMA,i) ≤ 0, i = 1, . . . , r ≤ rmax,

Tr (WMB,i) ≤ 0, i = 1, . . . , r ≤ rmax,

WΛA −wfHA = 0

Tr
(
WΛAΛH

A

)
−wHΛAfA − (ΛAfA)H w + fHA fA = 0[

W w
wH 1

]
� 0.

(3.17)
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3.1.2.2 Degrees of freedom (DoF)

In problem P2, the feasible set is larger than in problem P1 and a limit in terms of
rmax cannot be predicted.

Similar to problem SDR−RLT1, by using the approximate solution of the prob-
lem SDR−RLT2 to problem P2, the constraint violations of the solution w∗SDR−RLT2

with respect to the ILD preservation gets worse with increasing ‘r’.

As mentioned previously, problems P1, P2 are both non-convex QCQPs. There-
fore only approximate solutions are found for both methods proposed and they are not
globally optimal for the original problem. However on running simulations it is found
that the approximation nearly meets the feasibility constraints of P1, P2, implying
that it is a good approximation. In Chapter 4, the optimisation problems discussed
here are solved in polynomial time, using the CVX toolbox in Matlab [36].
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Results & Analysis 4
In this chapter, the methods proposed in Chapter 3 are experimentally evaluated.
Section 4.1 describes the acoustic setup and the synthesis of the signals prior to running
simulations. The metrics used to evaluate the performance of the methods proposed,
are explained in Section 4.2. In Section 4.3, the simulation results are reported, and the
performance of sound source localisation against noise reduction is analysed. Lastly,
the result of the informal listening test conducted is discussed in Section 4.4.

4.1 Experimental Setup

To analyse the performance of the ILD cue preservation and noise reduction, the sim-
ulations compare the following methods
Reference Methods:

1. Binaural minimum variance distortionless response (BMVDR) beam-former

2. Joint binaural linearly constrained minimum variance (JBLCMV) beam-former

Proposed Methods:

1. Method 1: JBLCMV (f < 1.5 kHz) + proposed P-ILD (f ≥ 1.5 kHz)

2. Method 2: JBLCMV (f < 1.5 kHz) + proposed R-ILD (f ≥ 1.5 kHz)

4.1.1 Acoustic Environment

To simulate a noisy environment with a single desired speaker, a target speech signal s
and ‘i’ point interfering speech signals ui are taken as shown in Figure 4.1. The sources
are placed at (h, θ, 0◦), i.e., at a distance of h , θ azimuthal angle, and 0◦ elevation from
the listener at (0, 0◦, 0◦). The position of each source is reported in Table 4.1. In the
experiments, the interfering signals are considered incrementally, i.e., for 1 interfering
source, u1 is considered, for 2 interfering sources u1 and u2 are considered and so on.

To spatialise the point sources reaching the microphones of the hearing aids worn by
the listener, the head related impulse responses (HRIRs) from a multi-channel, behind-
the-ear (BTE) database are used. For each HA, M

2
= 2 microphones (the middle and

the rear from the database) are considered and the signals are simulated using the BTE
HRIR from [37].

The experiments are performed for

1. an anechoic environment with h = 0.80 m , and

2. a reverberant office environment with h = 1 m.

21



Table 4.1: Position of the Sources.

Source Azimuth angle

s −0◦

u1 −90◦

u2 −90◦

u3 −15◦

u4 −15◦

u5 −45◦

u6 −45◦

u7 −75◦

Figure 4.1: Acoustic Environmental Setup.

4.1.2 Signal Synthesis

The speech signal for the target and the interferers are taken from the TIMIT database
[38], which is a collection of speech signals in English. The signals are made to be
uniformly 30 seconds of duration. The signals are sampled at fs = 16 kHz.

To simulate the setup described in Section 4.1.1, the source signals are convolved
with the truncated BTE HRIRs from [37]. For the anechoic scene, the truncated HRIR
duration is 50 ms and a duration of 10 ms is used for the office scene. Additionally, to
simulate the microphone self noise, white gaussian noise (WGN) at an SNR = 50 dB
with respect to the target signal is added to each microphone. Each interfering source
is scaled to be 0 dB with respect to the target signal. The signal model in Eq. (2.1)
can be be written in the discrete time domain as

ym[n] = s[n] ∗ hs,m[n] +
r∑
i=1

ui[n] ∗ hi,m[n] + vm[n], m = 1, . . . , 4, (4.1)

where
hs,m is the impulse response of the target signal from its location to the mth micro-
phone, and
hi,m is the impulse response of the ith interfering signal from its location to the mth

microphone.
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To perform beam-forming, the signals are transformed to the frequency domain.
A short-time Fourier transform (STFT) is applied, taking a window length of 30 ms,
applying a square-root Hann window with 50% overlap and 1024 frequency bins. The
filtering is done in each frequency bin, per time frame. After filtering, the signals in time
domain are synthesised by applying the inverse short-time Fourier transform (ISTFT),
followed by applying a square-root Hann window and performing overlap-add synthesis
with 50% overlap.

To avoid additional sources of error, such as steering vector mismatch errors, the
methods use true ATFs. They are computed by applying the fast Fourier transform
(FFT) to the impulse response (IR) with 1024 frequency bins.

4.2 Performance Measures

In this section, the instrumental performance measures that are used to evaluate the
methods proposed are described. Section 4.2.1 and Section 4.2.2 present the measures
used to assess the behaviour in terms of noise reduction and speech intelligibility, re-
spectively. While in Section 4.2.3, the measures used to assess the preservation of the
binaural cues are presented.

4.2.1 Noise Reduction Measures

4.2.1.1 Global segmental signal-to-noise ratio (gsSNR)

Signal-to-noise ratio (SNR) is a primary performance measure, commonly used to as-
sess the quality of speech processing algorithms. It measures the noise reduction per-
formance, by evaluating the ratio of the power of the desired source to the power of the
total interfering and noise sources. Here, we use binaural global segmental signal-to-
noise ratio (gsSNR), where the entire signal is split into blocks and the binaural SNR
is evaluated per block and finally, averaged over the blocks [21],[39].

In the spectro-temporal domain, the binaural SNR in each time-frame ‘l’ (block)
can be given as

SNRin(l) =

∑N
k=1 eT P̃x(l, k)e∑N
k=1 eT P̃(l, k)e

, (4.2)

SNRout (l) =

∑N
k=1 wH(l, k)P̃x(l, k)w(l, k)∑N
k=1 wH(l, k)P̃(l, k)w(l, k)

, (4.3)

where
N is the total number of frequency bins k,

e =
[

1 0T2M−2 1
]T

is the reference microphone selection vector,

w is the filter weight vector of the beam-forming algorithm,
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P̃ =

[
P 0M×M

0M×M P

]
is the block diagonal joint CPSD matrix of CPSD P, of

the interferers and the background noise, and

P̃x is the block-diagonal joint CPSD matrix of the CPSD Px, of the desired source,
defined similar as P̃.

For the methods proposed, the output noise power can be measured as Tr
(
WP̃

)
.

Hence the SNRout in Eq. (4.3) can be re-written as

SNRout (l) =

∑N
k=1 Tr

(
W(l, k)P̃x(l, k)

)
∑N

k=1 Tr
(
W(l, k)P̃(l, k)

) . (4.4)

The gsSNR can found by averaging the SNR across time-frames as

gs SNRin =
1

T

T∑
l=1

10 log10

(
SNRin(l)

)
dB,

gsSNRout =
1

T

T∑
l=1

10 log10

(
SNRout(l)

)
dB,

(4.5)

where T is the total number of time frames ‘l’.

The gain in the gsSNR, which measures the improvement in the quality of desired
signal after processing, can be defined by

gsSNRgain = gsSNRout − gsSNRin dB. (4.6)

4.2.1.2 Frequency weighted segmental signal-to-noise ratio (fwSegSNR)

As an extension to the global segmental signal-to-noise ratio (gsSNR), by weighting the
frequency bands based on their perceptual importance, frequency weighted segmental
signal-to-noise ratio (fwSegSNR) can be computed. Here, the fwSegSNR for the left
ear, at the input and the output of the beam-former is evaluated using the principle
followed in [40] as

fwsegSNR in
L =

10

T

T∑
l=1

∑K
j=1 g(l, j) log10

(∑
k∈CBj

SNRin
L (l, k)

)
∑K

j=1 g(l, j)
, (4.7)

fwsegSNR out
L =

10

T

T∑
l=1

∑K
j=1 g(l, j) log10

(∑
k∈CBj

SNRout
L (l, k)

)
∑K

j=1 g(l, j)
, (4.8)

where
K is the total number of critical bands,
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CBj is the set of frequency bins ‘k’, in the jth critical band,

SNRin
L is the monoaural input SNR at the left reference microphone,

SNRout
L is the monoaural output SNR at the left HA, and

g(l, j) is the weight placed on the jth frequency band, and the lth time frame.

The critical band SNRs are obtained by dividing the spectrum into 13 critical fre-
quency bands and summing up the SNRs in the frequency bins of each critical band as
done in [41].The weights are chosen based on the spectrum of the clean, desired signal
[42].

Similar to Eq. (4.6), the gain in fwSegSNR can given as

fwsegSNRgain
L = fwsegSNRout

L − fwsegSNRin
L dB. (4.9)

The fwSegSNR for the right ear can also be found similarly.

4.2.2 Intelligibility Measures

Speech intelligibility refers to the amount of words correctly identified by a listener.
Reliable objective intelligibility metrics, with a monotonic relation to the intelligibility
of the noise reduction algorithms, help to analyse the performance before executing
comprehensive subjective listening tests. In this section, STOI and SIIB are described,
which are used to assess the performance of the methods proposed.

4.2.2.1 Short-term objective intelligibility (STOI)

The short-term objective intelligibility (STOI) metric, is a simple, intrusive objective
measure, that is suitable to assess the intelligibility of time-frequency weighted speech
processing algorithms. STOI generates a scalar value, that is based on the correlation
coefficient between the short-time segments of the clean and processed speech [43].

To compute the STOI metric, the temporal envelopes of the clean and processed
signal are segmented into time frames of length 386 ms. Then, the correlation co-
efficient between the clean and the degraded signal is computed per time-segment and
frequency bin, and averaged. The Matlab implementation made publicly available by
the authors of [43], is used to evaluate the metric at each ear.

4.2.2.2 Speech intelligibility in bits (SIIB)

The speech intelligibility in bits (SIIB) metric, is an information theory based intrusive
intelligibility metric, that measures the mutual information between the clean and
processed signal in bits per second. It is based on the principle that, intelligibility
is related to the amount of information that is common between the clean and the
processed signal.

In [44], the SIIB metric was shown to generalise better than the STOI metric,
especially for speech degraded with modulated point noise sources and reverberation.
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Moreover, due to the removal of statistical dependence between the spectro-temporal
regions during computation, the intelligibility predicted by the SIIB is more accurate
than STOI [45]. Here, the Matlab implementation made publicly available by the
authors of [44], is used to evaluate the metric for each ear.

4.2.3 Localisation Measures

4.2.3.1 ILD, ITD, ITF Measures

As mentioned previously, binaural cues, specifically the ILD and the ITD enable the
auditory brain to localise sound along the horizontal plane. To analyse the preservation
of these acoustic cues in the methods proposed, the total errors in the ILD, the ITD
and the ITF are evaluated.

As given in Eq. (2.9), Eq. (2.10) and Eq. (2.11), let γui(l, k), τui(l, k) and εui(l, k)
be the ITF, the ITD and the ILD errors of the interfering sources at the kth bin and
the lth time frame, respectively. In the following evaluations, the assumption that the
ILD cues are dominant for f ≥ 1.5 kHz while the ITD cues are dominant for f < 1.5
kHz is held, and errors are measured only in the corresponding frequency ranges [10].
As done in [46], the measures can be evaluated as

Total ErrorILD =
r∑
i=1

(
1

N − kILD + 1

N∑
k=kILD

(
1

T

T∑
l=1

εui
(l, k)

))
, (4.10)

Total ErrorITD =
r∑
i=1

(
1

kILD − 1

kILD−1∑
k=1

(
1

T

T∑
l=1

τui
(l, k)

))
, (4.11)

Total ErrorITF =
r∑
i=1

(
1

N

N∑
k=1

(
1

T

T∑
l=1

γui
(l, k)

))
, (4.12)

where
r is the total number of interferers considered,
N is the total number of frequency bins k,
T is the total number of time frames l, and
kILD is the first frequency bin corresponding to f ≥ 1.5 kHz.

The error for the target source x can be computed similarly.

4.3 Simulation Results

In this section, the results of the two methods proposed are compared with the reference
methods. The BMVDR algorithm preserves the binaural cues of the target, while it
distorts the cues of the interferers. The JBLCMV algorithm preserves the binaural cues
of the target and up to rmax interfering sources. Since M = 4, with the JBLCMV, the
spatial cues of up to rmax = 2M − 3 = 5 interferers can be preserved. To analyse the
performance of the proposed methods, up to r = 7 interfering sources are used.

26

https://stevenvankuyk.com/matlab_code/


For the R-ILD method, the choice of the parameter ci is made by comparing the
localisation performance against the noise reduction performance for ci ∈ [0, 1], in
the corresponding environments. As the performance of the two proposed methods
are similar in both the anechoic and the reverberant environment, they are discussed
together in the next section.

4.3.1 Performance Analysis

For both the anechoic and the office environment, the R-ILD method uses ci = c = 0.2
for all the interferers, as this provides a good trade-off between the ILD cue preservation
and the noise reduction, as seen in Figures 4.6a and 4.6b.
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Figure 4.2: Anechoic Environment: Comparing the target source localisation performance of
the competing methods in terms of ILD, ITD and ITF.
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Figure 4.3: Office Environment: Comparing the target source localisation performance of
competing methods in terms of ILD, ITD and ITF.

Figures 4.2, 4.3, 4.4 and 4.5 compare the Total ErrorILD, Total ErrorITD and
Total ErrorITF of the methods proposed with the reference methods for the binaural
cue preservation of the target and the interferers, for both the anechoic and the office
environment.

In Figures 4.2 and 4.3, it can be seen that both the ILD and the ITD, and thereby
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the ITF, of the target signal are perfectly preserved for all the four methods. This is
because, the target is maintained undistorted by all the four methods.

Figures 4.4 and 4.5 compare the performance of the interfering sources. In Section
4.2.3, the ILD and ITD cue errors were defined in the frequencies where they are consid-
ered dominant. To assess the cue preservation performance by the proposed methods
in detail, the binaural cue errors are evaluated in the complementary frequencies as
well. That is, the ILD cue errors are also evaluated for f < 1.5 kHz and the ITD cue
errors are also evaluated for f ≥ 1.5 kHz.
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(a) ITD errors for f < 1.5 kHz
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Figure 4.4: Anechoic Environment: Comparing the localisation performance of the interfering
sources amongst the competing methods in terms of ILD, ITD and ITF.

For frequencies f < 1.5 kHz :
As mentioned in Section 4.1, the JBLCMV algorithm is used by the proposed methods,
for f < 1.5 kHz. Hence, the Total ErrorITD and the Total ErrorILD emulate that of the
JBLCMV method as seen in Figures 4.4a, 4.4d and Figures 4.5a, 4.5d.

For frequencies f ≥ 1.5 kHz :
As seen in Figures 4.4b and 4.5b, the Total ErrorITD for the P-ILD method and the
R-ILD method, are comparable to the errors with the BMVDR algorithm. This is as
expected, as both the P-ILD method and the R-ILD method only control the ILD cues,
while the ITD cues are unconstrained.

In Figures 4.4e and 4.5e, it can be seen that the Total ErrorILD by the P-ILD
method, is as low as observed with the JBLCMV algorithm for r ≤ 4, and begins to
deviate gradually from r > 4. With the R-ILD method, although the Total ErrorILD
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(a) ITD errors for f < 1.5 kHz
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Figure 4.5: Office Environment: Comparing the localisation performance of the interfering
sources amongst the competing methods in terms of ILD, ITD and ITF.

error is not perfectly preserved, it can be seen that the error is within Total Ei, the up-
per bound specified by Eq. (3.13) for r ≤ 4, and begins to violate the bound from r > 4.

The P-ILD and the R-ILD methods are approximate solutions of the original
QCQP problem, as explained in Chapter 3. By increasing the number of interfering
sources ‘r’ whose ILD cues are to be preserved, the ILD cue constraint violations
begin to worsen, as shown in Table 4.2 for the anechoic environment. With the P-ILD
method, it can be seen that for r ≤ 3, the ILD error in every frequency bin is nearly
preserved. While, for r > 3, the ILD cue error shoots up in certain frequencies. This
can be correspondingly observed with the R-ILD method. Thus the Total ErrorILD

for both the P-ILD method and the R-ILD method increases with ‘r’, violating the
original ILD cue constraints.

However an interesting behaviour can be noticed for r > 5 in Figures 4.4e and 4.5e,
where the P-ILD and the R-ILD methods result in lower Total ErrorILD than with the
JBLCMV. This is because, with the JBLCMV algorithm, the spatial cues for r > 5
are completely distorted for every frequency bin, leading to a higher error. Whereas
the P-ILD and the R-ILD methods, due to their relaxed problem formulation that uses
additional inequality constraints on the ILDs of the interferers, bounds the ILD errors
in certain frequency bins as seen in Table 4.2.
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Table 4.2: Anechoic Environment: Total Error in ILD over frequency bins.
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Figure 4.6: Comparing the noise reduction performance against the total ILD error over
varying c (a) Anechoic, (b) Office.

In order to choose a suitable ‘c’ for the R-ILD method, the effect of ‘c’ on noise
reduction performance against Total ErrorILD was observed as shown in Figures 4.6a and
4.6b. The figures show the performance curves for a different number of simultaneously
present sources ‘r’ along the curve. It can be seen that the gsSNRgain over different
values of ‘c’ is nearly the same for a given ‘r’. This re-establishes the previous inference,
that the level of ILD cue errors does not affect the noise reduction performance of the
algorithm, but the number of interfering sources do (due to the increase in constraints).
Hence, choosing a lower ‘c’ would result in a lower ILD error, up to r < 4, and hence,
‘c’ is taken to be 0.2 for both, the anechoic and the office environment.

In Figure 4.4c, the Total ErrorITF is not preserved with both the P-ILD method
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and the R-ILD method. This is because, both methods aim to tackle only the ILD
cue errors, while the ITD cues are unconstrained. However, the Total ErrorITF is lower
than the error with the BMVDR algorithm, due to the lower ILD errors.
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Figure 4.7: Anechoic Environment: Comparing the noise reduction performance of the com-
peting methods in terms of gsSNR and fwSegSNR.
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Figure 4.8: Office Environment: Comparing the noise reduction performance of the competing
methods in terms of gsSNR and fwSegSNR.

Figures 4.7 and 4.8 compare the noise reduction performance between the proposed
methods and the reference methods in terms of the gain in gsSNR and fwSegSNR. It
can be seen that the noise reduction with the P-ILD method and the R-ILD method
are quite comparable to the noise reduction with the JBLCMV, and lower than that
with the BMVDR algorithm. With the P-ILD method, for r ≤ 3, where the ILD
cues are nearly preserved, the noise reduction performance is similar to that with the
JBLCMV. Similarly with the R-ILD method, where the ILD errors are bounded, the
noise reduction is similar to the JBLCMV. For r ≥ 4, an improvement of less than 0.5
dB is observed for gsSNRgain and fwSegSNRgain over the JBLCMV. Here, the modified
gsSNR in Eq. (4.4) is used with the P-ILD method and the R-ILD method, which mea-
sures the gsSNRgain by the approximate methods proposed. As mentioned in Chapter
4, the approximation provides a lower bound, i.e., the noise reduction performance will
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be equal to or better than the noise reduction achieved by the original problem. Hence
the gain in SNR may be lower than 0.5 dB, when the ILD cues are perfectly preserved.
This implies that, preserving the ILD cues or bounding them singularly, instead of
preserving both the binaural cues, may provide a very mild gain in SNR, less than 0.5
dB.
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Figure 4.9: Anechoic Environment: Comparing the intelligibility performance of the compet-
ing methods in terms of STOI and SIIB.

Figures 4.9 and 4.10 compare the performance in terms of the STOI and the SIIB
intelligibility metrics. On observing the measures for r ≤ 3, where the the P-ILD
method nearly preserves the ILD cues, it can be seen that the performance is similar
to that with the JBLCMV. Although the R-ILD method does not perfectly preserve
the ILD cues even for r ≤ 3, its intelligibility performance is similar to that observed
with the JBLCMV. With increasing r > 3, the intelligibility improves mildly with both
the P-ILD method and the R-ILD method in comparison to the JBLCMV. With the
JBLCMV, the intelligibility is strongly affected by the number of interferers present,
and thereby the number of constraints used. While the same applies to the P-ILD
method and the R-ILD method, the approximate solution (where the feasibility region
is larger) provides a sub-optimal solution, higher in noise power reduction than the
true optimal solution, and a small improvement in intelligibility is observed for r > 3.
Hence by constraining only the ILD cues, the intelligibility improves mildly over a
method that preserves both the ILD and the ITD cues perfectly, such as the JBLCMV,
when higher number of interferers are present.

Finally, Figure 4.11 compares the localisation performance in terms of
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Figure 4.10: Office Environment: Comparing the intelligibility performance of the competing
methods in terms of STOI and SIIB.
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Figure 4.11: Comparing the noise reduction performance against the ILD localisation for the
competing methods (a) Anechoic, (b) Office.

Total ErrorILD, against the noise reduction performance in terms of gsSNRgain, amongst
the competing methods. The figure plots the performance curves for a different number
of simultaneously present sources ‘r’ along the curve. With the P-ILD method and the
R-ILD method, specifically for r ≤ 3, the noise reduction performance is close to that
with the JBLCMV beam-former. For r > 3, an improvement in gsSNRgain of about
0.5 dB is observed. Since the gain in noise reduction is a an over-estimation, the true
gain in noise reduction may be even lower. The Total ErrorILD with the P-ILD and the
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R-ILD methods are however significantly lower than with the BMVDR. The localisa-
tion performance of the P-ILD method is even very similar to that of the JBLCMV for
interfering sources r ≤ 4.

Therefore when the number of interfering source ‘r’ is low, the methods proposed
preserve the ILD cues without any constraint violations, and there is no gain in noise
reduction in comparison to when both the binaural cues are preserved, as done with
the JBLCMV method. The improvement in noise reduction is only observed with
increasing number of interferers, which also cause errors in localisation performance.
This gain in noise reduction is still an over-estimation and hence trying to preserve
only the ILD cues, independent of the ITD may only contribute to a small extent, to
increasing the DoF available for noise reduction.

4.4 Informal Listening Test

An informal listening test was conducted to analyse the localisation performance, to
supplement the simulations performed on the methods proposed. Section 4.4.1 describes
the synthesis of the signals and the setup used for the test. The results of the listening
test are presented in Section 4.4.2.

4.4.1 Test Setup

To assess the localisation performance of the methods proposed in this thesis against
the reference methods, an informal listening test was conducted.

Table 4.3: Listening Test Scenario.

Scene Target Interferer 1 Interferer 2 Interferer 3
Microphone

Noise
Environment

Signals
Female
Speech

Male Speech Music HF Signal WGN

A 0◦ 90◦ −60◦ 30◦ Yes Anechoic

B 0◦ −75◦ −15◦ 45◦ Yes Office

For the listening tests, the noisy environment contained one desired speech signal,
with three interfering point sources and microphone self noise. The tests were per-
formed for anechoic and reverberant office environments, using the BTE HRIRs from
[37]. The type of signals used, and the position of the sources are reported in Table
4.3. The target signal is a female speech signal, and Interefer 1 is a male speech signal,
taken from the TIMIT database [38]. Interferer 2 is a music signal, while Interferer 3
is a high pass filtered cellphone vibration signal with a cut-off frequency 2 kHz. The
signals are uniformly 4 seconds in duration and they are sampled at fs = 16 kHz. The
microphone self noise is simulated by additive WGN, such that the target is at a SNR
of 50 dB with respect to the WGN. The overall SNR of each scenario is made to be 5
dB. The synthesis of the signals before applying the beam-forming algorithms is done
similar to Section 4.1.2.
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The subjects were presented with four filtered signals from each of the five algo-
rithms, i.e., BMVDR, JBLCMV, P-ILD, R-ILD(c = 0.1) and R-ILD(c = 0.3). Addi-
tionally, the subjects were also presented with the clean, unprocessed sources indepen-
dently, that are taken as the reference position of the sources. This helps to eliminate
any bias introduced due to the use of ATF from [37], that are determined using a head
and torso simulator (HATS), and are not tailored to the ATF of the individual subject.
The test was taken by 20 subjects, with self reported normal hearing. The subjects
were in the age group of 23-27 years.

The signals and the scenes were presented in a random order to each subject, with
two repetitions. The repetitions of the unprocessed signals are averaged and are taken
to be the reference positions. The localisation errors of the subjects are found relative
to this reference position and are averaged over their repetitions.

Since the tests could not be conducted in a formal, quiet environment, the tests
were taken online by the subjects, and were instructed to emulate a formal setup as
much as possible.

4.4.2 Results

Among the results from the 20 subjects who participated in the testing, 2 subjects
showed a higher variance in the localisation performance than the rest. Therefore only
the results from 18 subjects were considered for the performance analysis.

To assess the localisation performance between the different methods and the
sources, a two-way analysis of variance (ANOVA) test is performed, by taking the
processing algorithm and the source as the two independent variables. A two-way
ANOVA test compares the mean of the localisation errors and indicates if

1. at least two groups have significantly different mean localisation errors with re-
spect to the algorithm used,

2. at least two groups have significantly different mean localisation errors with re-
spect to the source used,

3. there is any interaction between the algorithm used and the source used.

Table 4.4: Two-way ANOVA test for Scene A.

Source of variation
Sum
of

Squares
DoF

Mean
of

Squares
Fvalue p value Fcritical

Algorithm 1102.1 3 367.35 0.88 0.45 2.6489

Source 61648 2 30823.99 74.23 0 3.0402

Interaction 1831.5 6 305.25 0.74 0.6219 2.1432

Error 84713.8 204 415.26

Total 149295.4 215
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Table 4.5: Two-way ANOVA for Scene B.

Source of variation
Sum
of

Squares
DoF

Mean
of

Squares
Fvalue p value Fcritical

Algorithm 762.7 3 254.2 0.89 0.4449 2.6489

Source 34575.1 2 17287.6 60.82 0 3.0402

Interaction 403.1 6 67.2 0.24 0.9642 2.1432

Error 57984.3 204 284.2

Total 93725.2 215

Tables 4.4 and 4.5 show the results of a two-way ANOVA test conducted for the
JBLCMV, P-ILD, R-ILD(c = 0.1) and R-ILD(c = 0.3), for the four sources at a
0.95 confidence level. Across the algorithms, it can be seen that the Fvalue < Fcritical,
thereby indicating that the mean values of the localisation errors are equal across
the algorithms considered. Across the sources used, the Fvalue > Fcritical, indicating
that at least two sources have a different mean localisation error. Finally, it can
also be observed that, there is no significant interaction between the source used and
the algorithm applied. This implies that the algorithms behave similarly in terms of
localisation, independent of the source used.

Table 4.6: T-test p-values for Scene A.

Algorithm BMVDR JBLCMV P-ILD R-ILD(c = 0.1) R-ILD(c = 0.3)

P-ILD 2.1950e-14 0.1876 1 0.4654 0.0622

R-ILD(c = 0.1) 5.5470e-14 0.0872 0.4654 1 0.1808

R-ILD(c = 0.3) 1.2763e-12 0.0025 0.0622 0.1808 1

Table 4.7: T-test p-values for Scene B.

Algorithm BMVDR JBLCMV P-ILD R-ILD(c = 0.1) R-ILD(c = 0.3)

P-ILD 1.4368e-13 0.7691 1 0.3088 0.0924

R-ILD(c = 0.1) 1.5553e-14 0.1682 0.3088 1 0.3288

R-ILD(c = 0.3) 6.9744e-14 0.0591 0.0924 0.3288 1

To compare the algorithms proposed with the reference methods individually, paired
T-tests at 0.95 confidence level were also performed for each scene. The ‘p-values’ of
the T-tests are shown in Tables 4.6 and 4.7. In both Scene A and Scene B, the methods
proposed localise significantly better than with the BMVDR method. It can be seen
that in Scene A, the P-ILD and the R-ILD(c = 0.1) methods are not significantly
different in localisation performance, to the JBLCMV method. In Scene B, the P-ILD
localisation performance is very similar to the JBLCMV and the R-ILD(c = 0.1) and
the R-ILD(c = 0.3) are not significantly different from the JBLCMV. On comparing
amongst the methods proposed, it can be seen that the P-ILD method performs better
or similar to the R-ILD(c = 0.1) method in most cases, and as expected, the R-
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ILD(c = 0.3) method performs poorer by comparison.
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Figure 4.12: Anechoic Environment: Localisation error for each source.
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Figure 4.13: Office Environemnt: Localisation error for each source.

Since the localisation performance was found to vary among the sources, the statis-
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tics of the localisation error for each source is calculated, as shown in Figures 4.12 and
4.13. The figures show the 0.25, 0.75 quartiles, the mean and median of the localisation
errors for each algorithm and source.

As expected, the target female speech signal shows the least localisation error for
all the five algorithms, as the target is constrained to be distortionless. Moreover, the
interfering signals show the maximum localisation error with the BMVDR algorithm.
For the interfering sources, it can be seen that the localisation errors by the methods
proposed is not significantly different from the errors observed with the JBLCMV
method. Comparing the performance of the three interfering sources, in Scene A it
can be seen that the 0.75 quartile of the localisation errors for the male speech signal
is higher than that observed for the other two sources. Since both music and the male
speech signal cover the entire frequency spectrum, the anomaly in the male speech
source can be attributed to the non-uniform testing conditions among the subjects.

Overall, the listening tests showed that there is no significant difference in the locali-
sation performance between the JBLCMV method and the P-ILD and R-ILD methods,
for the three interfering sources. This implies that the localisation performance of the
interferers, when only the ILD cues are preserved for the higher frequencies, matches the
performance when both the ILD and the ITD cues are preserved. Moreover, although
the ILD cues are not perfectly preserved with the R-ILD method, as seen in Figures
4.4e and 4.5e, the mild ILD cue distortions do not perceptually affect the localisation
performance with smaller values of ‘c’.
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Conclusion 5
The objective of the thesis was to answer the question:‘Will beam-forming with only
the dominant binaural cue preservation of the noise components, help to improve the
noise reduction performance, as opposed to the preservation of both the interaural
time difference (ITD) and the interaural level difference (ILD) cues?’. In a quest to
answer the question, a first step was taken in this thesis by considering only the ILD
cues, the cue dominant in the higher frequencies.

To preserve only the ILD cues, firstly, the noise reduction optimisation problem was
re-formulated. In addition to the constraints that keep the target signal undistorted,
new constraints to preserve only the ILD cues of the noise components were introduced.
In Chapter 3, two methods of constraining the ILD cues were proposed. The first
method preserves the ILD cues perfectly, while the second method bounds the ILD cue
errors within a suitable limit. Since both the methods had non-convex formulations,
a convex relaxation of the problem as a semi-definite program (SDP) was proposed,
that provided approximate solutions to the original non-convex formulation.

Secondly, the formulations were experimentally tested, to understand the effect of
the ILD cue preservation on the noise reduction performance. Chapter 4 described the
results obtained through simulations, and compared the two methods proposed, with
the JBLCMV and the BMVDR as the reference methods. The simulations were per-
formed for an anechoic environment and a reverberant environment, and the results for
the both were found to be similar. Additionally, informal listening tests were conducted
to analyse the localisation performance of the methods proposed.

5.1 Discussion

5.1.1 Method 1: P-ILD

In the first method proposed, the problem was formulated such that, the ILD cues of
the noise components were to be preserved perfectly. This introduced one quadratic
equality constraint per interferer, making it a non-convex quadratically constrained
quadratic program (QCQP) formulation. A convex relaxation of the problem was then
formulated, that approximates the original non-convex QCQP well. On performing
experiments as done in Chapter 4, it was found that the relaxed convex SDP, resulted
in a good approximation when the number of interferers are lower. By increasing the
number of interfering sources considered, the violations of the ILD cue preservation
constraints increased, and led to a poor approximation. Nevertheless, the optimal
solution of the relaxed SDP, provides a non-trivial lower bound to the optimal solution
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of the original QCQP. This helped to shed light on the noise reduction ability of this
formulation, against the JBLCMV and the BMVDR beam-former.

5.1.2 Method 2: R-ILD

In the second method, a problem formulation that enforced an upper bound to the
ILD cue errors of the noise components, using inequality constraints was introduced.
The upper bound was selected to be a fraction ‘c’, of the ILD error found with the
BMVDR beam-former. This formulation was inspired by the work done in [26]. The
factor ‘c’ was chosen by comparing the noise reduction performance against the ILD
cue preservation. This method introduces two non-convex inequality constraints per
interfering source. Such a formulation also resulted in a non-convex QCQP. Hence the
approximate SDP formulation, as done with the P-ILD was used here. Once again,
it was found to be a good approximation when the number of interferers are low,
while the constraint violations worsened on increasing the number of interfering sources.

The noise reduction performance of the methods proposed here were compared
against the JBLCMV and the BMVDR beam-formers, using simulations. For the
simulations, the ILD cues of the interferers were constrained for the higher frequencies
using the P-ILD and the R-ILD methods, while the JBLCMV beam-former was used
for the lower frequencies. On performing the experiments, in Chapter 4, it was shown
that the noise reduction ability of the newly proposed methods, improves by less
than 0.5 dB in SNR, over that with the JBLCMV beam-former, where both the
ITD and the ILD are controlled. Moreover, on increasing the number of interfering
sources, the intelligibility was also seen to be mildly better than with the JBLCMV
beam-former. This improvement in the noise reduction and intelligibility was observed
for r > 4, where violations in the ILD cue preservation occurred. Hence the optimal
noise reduction by the original problem may be equal to or lower than that observed
with the approximate QCQP. Nevertheless, the approximations were able to provide
a non-trivial inference. Moreover, the informal listening tests conducted in Chapter
4, validated the ILD cue preservation performance of the methods proposed and also
showed that the localisation performance was good even with bounded errors in the
ILD preservation.

In conclusion, by constraining only the ILD spatial cues of the interferers in the
higher frequencies, for a small number of interferers, the methods proposed in this thesis
show a good localisation performance and a mild improvement in the noise reduction
performance. The DoF available for the noise reduction are however, more significantly
affected by the number of interfering sources present in the environment.

5.2 Recommendations

A few ideas, that can prove to be useful extensions to the work proposed in this thesis
are recommended here.
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• Preserving perceptually audible interferers
In the methods proposed in this thesis, it was seen that the approximation works
well when the number of interfering sources considered are fewer in number. In
[25], a method to only constrain perceptually audible interferers for binaural cue
preservation is proposed. Perhaps, by constraining only those interferers that
are perceptually audible after processing, and thereby reducing the number of
interferers constrained, may allow a reliable ILD cue preservation of the interferers
that are audible.

• Preservation of the ILD cues based on the position of the source
It was seen that by increasing the number of interferers, the ILD cue errors be-
gan to shoot up in certain frequency bins. It has been proven in [47], that the
sensitivity to the ILD change, reduces as the position of the source moves away
from the mid-line (in the horizontal plane) of the listener, in the higher frequen-
cies. It would be interesting to observe, through listening experiments, if allowing
larger ILD cue errors in positions away from the mid-line would enable the listener
maintain their localisation ability.

• Preservation of the ITD cues in the lower frequencies
In this thesis, the focus was on preserving the ILD cues for the higher frequencies,
where the ILD cues are dominant. However, for the lower frequencies, the ITD
cues dominate over the ILD cues. Hence, to faithfully answer the original research
question, similar to preserving the ILD cues alone for the higher frequencies, the
ITD cues for the lower frequencies alone must be preserved. Hence, to check if the
inference corroborates well when only the ITD cues are preserved for the lower
frequencies, a formulation for the preservation of the ITD cues was attempted and
can be given by

minimise
wL,wR,η>0

[
wH
L wH

R

]
P̃

[
wL

wR

]
subject to wH

L a = a1, wH
Ra = aM ,

wH
L bibi,M − ηiwH

Rbibi,1 = 0, i = 1, . . . , r ≤ rmax,

wL,wR ∈ CM×1, ηi ∈ R++.

(5.1)

The idea behind Eq. (5.1), is to let the IPD cues be preserved, by letting the
output ILD cues vary due to the real valued variable ηi. Using this formulation
for the lower frequencies, and using the methods proposed in this thesis for the
higher frequencies, the idea of preserving only the dominant cues can be achieved.

• Estimation of the ATF vectors
Throughout the thesis, the simulations were conducted using true ATF vectors,
to avoid steering vector mismatches. Another approach that could be tested with,
would be to estimate the ATF vectors, and observe the performance with respect
to localisation due to the steering vector mismatch.
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Mathematical Properties A
A.1 Linear Algebra

wHP̃w = Tr
(
wHP̃w

)
= Tr

(
wwHP̃

)
(A.1)

A.2 Schur’s Complement & Positive Definiteness

Consider a matrix X ∈ Sn partitioned as

X =

[
A B
BH C

]
,

where A ∈ Sk, If det A 6= 0, the matrix

S = C −BHA−1B,

is the Schur’s complement of A in X [31]. The definiteness of X can found as

• X � 0 if and only if A � 0 and S � 0

• If A � 0, then X � 0 if and only if S � 0

For a more generalised case, where A is singular

S = C −BHA†B

X � 0 ⇐⇒ A � 0,
(
I − AA†

)
B = 0, S � 0. (A.2)

A.3 Lower bound of SDR

The non-convex QCQP is

(P) minimise
w∈C2M×1

wHP̃w

subject to wHΛA = fHA

wHMiw = 0, i = 1, . . . , r ≤ rmax.

(A.3)

The dual of Eq.(A.3) can be written as

(D) maximise
ν,µ

− γ

subject to

[ (
P̃ + Σr

i=1µiMi

)
ΛA

Hν

νHΛA νHfA + γ

]
� 0, (A.4)

45



where ν, µ are the Lagrangian multipliers of the equality constraints of primal problem
P.

The dual of the dual in Eq.(A.4) is

(SDR) minimise
w,W

Tr(WP̃)

subject to wHΛA = fHA
Tr (WMi) = 0, i = 1, . . . , r ≤ rmax[

W w
wH 1

]
� 0.

(A.5)

Since the D is the dual of P, it is a convex problem despite the non-convexity of
problem P. Moreover, strong duality holds between the problem D and its dual SDR
(Slater’s constraint qualifications are satisfied) [31]. Hence the optimal solution of the
problem SDR is a lower bound to the optimal solution of the problem P.
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