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Abstract
UrbanBuilding EnergyModels (UBEMs) are emerging as a powerful tool for cities and regions seeking
tomake decisions on the best pathways for increasing the energy efficiency of their buildings. As
model results are used to inform critical policy decisions, it is essential to understand and
communicate the limits of inference ofmodel results and how sensitive they are to changes in inputs.
In the absence of standard datasets and protocols formodel validation, Uncertainty Analysis and
Sensitivity Analysis (UASA) procedures offer vital insights. However, there is no consensus on how
UASA should be applied to bottom-up building physics-basedUBEMs, nor on howdifferent use cases
might influence the choice ofUASA approach. This study uses a systematic review of the literature
(2009–2023) to explore the procedures which are applied and assess their appropriateness.Wefind a
need for amore holistic view of uncertainty to be taken, and present a decision framework for selecting
themost appropriate formof quantitative sensitivity analysis, based onmodel form, data provenance
and use case.We also propose a number of approaches to improve the application of sensitivity
analysis inUBEMstudies, including the importance of undertaking a complementary assessment of
information quality.

1. Introduction

Global greenhouse gas (GHG) emissions frombuildings were in 2019 at 12GtCO2-eq, equivalent to 21%of
global GHGemissions that year. 57%of this total were indirect emissions fromoffsite generation of electricity
and heat, 24%were direct emissions produced onsite and 18%were embodied emissions from the use of cement
and steel (Cabeza et al 2022). In light of the climate emergency, there is an urgent need to transition cities tomore
sustainable environments, e.g. by improving building energy efficiency. AsHong et al (2020) highlight: urban
energy analysis is a complex,multi-scale,multi-sector challengewhich demands a new breed of tools to support
the rapid pace of decision-making. UrbanBuilding EnergyModels (UBEMs) are numerical simulations of the
performance of groups of buildings, usually geographically co-located. UBEMs aim to assess the aggregated
dynamics of the group of buildings and, to differing extents, to take account of the effects each building has on its
surroundings (Langevin et al 2020). Thesemodels have awide range of applications, including:

• Prioritisation and optimisation (size and scale) of retrofits to address inefficient and carbon-intensive building
types (for example Liddiard et al 2021).

• Evaluating the potential for renewables and demand-side response strategies (Aduda et al 2016).
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• Assessment of policy impacts on specific communities, an important consideration in addressing fuel poverty
(Bienvenido-Huertas et al 2021) and avoiding unintended consequences.

• Assessment of the impacts of urbanmorphology on energy consumption of newdevelopments (Godoy-
Shimizu et al 2021).

• Modelling of indoor and outdoor air pollution (Schwartz et al 2021)

• Parametric design or optimisation of urbanmorphology (Wang et al 2021)

The range of applications continues to expand asUBEMs are increasingly coupledwith othermodels, for
example in urbanmetabolism and life cycle analysis as envisaged byGonzález-García et al (2021) or integrated
with digital twins of infrastructure systems and networks (Gürdür Broo et al 2021). Langevin et al (2020)
highlight the increasing complexity of thefield and propose a new taxonomy ofmodels. The focus of this article
is on bottom-up building physics-basedmodels.

As an emerging field, existing reviews ofUBEMs have focused on defining thefield and understanding the
tools used, for example Ferrando et al (2020), who provide a detailed analysis of a selection ofmodels. Other
reviews have focussed on howUBEMs account for specific inputs, for exampleDabirian et al’s (2022) review of
approaches tomodelling occupant presence at the urban scale. However, although the need to account for
uncertainties inUBEMs in the interests of transparencywas highlighted byKavcic (2010) over a decade ago, the
topic has received only limited attention in the literature aswewill show in this contribution.

Although standardmethods have existed for some time for assessing the outputs of individual Building
EnergyModels (BEMs) based on inter-model comparison (Judkoff andNeymark 1995), no such standard exists
formodels ofmultiple buildings.While work is ongoing to develop equivalentmethods for district-scalemodels
(Johra et al 2022), methods for urban scalemodels remain to be developed. The scale of this task should not be
under estimated since it presents two important challenges: Firstly, establishment of a validation dataset requires
either overcoming the privacy challenges inherent in collecting highly granular information on real buildings
and their energy consumption or the creation of an agreed test data set, the specification of which requires
careful design. Secondly, development of a set of agreed tests requires the co-operation of research teams across
many countries with no single source of funding.

The scarcity and lack of accessibility of detailed and comprehensive historical energy consumption data
means that where validation has been attempted of aUBEM, it is generally limited to comparisonwith
aggregated annual consumption. Davila, Carlos (2017) reported errors in the range 1%–19% for aggregate
annual energy consumption but up to 99% for individual building energy consumption. The increasing range of
applications ofUBEMs,many of which focus on highly granular outputs, (e.g. buildings to grid integration)
means that this level of validation is far from sufficient and there is a pressing need for quality assurance of the
outputs of thesemodels. In the absence of validation data or established inter-model comparison procedures,
Uncertainty Analysis (UA), which explores the distribution of possible output values for amodel, and Sensitivity
Analysis (SA), which examines the influence that individualmodel inputs have on the output (Saltelli et al 2019),
are important tools. BothUA and SA are concernedwith understanding the full range ofmodel outputs.

Tian (2013) provides an in-depth review ofUncertainty Analysis and Sensitivity Analysis (UASA) in the
context of individual building performance analysis, outlining severalmethods and their applicability to various
problems.However, while BEMs are based on detailed data for the individual building case, incomplete data is
the norm forUBEMswhere a key part of theworkflow involves addressing unstructured and incomplete data for
individual buildings. UBEMsmay also use data on stock turnover, renovation rates and population trends which
are not present in BEMs. In addition, the relative sensitivity of individual building parameters within a stockwill
be affected by the distribution and combination of inputs, including how they interact with geometry and
location.

Consequently, whileUA and SAof individual BEMs give detailed insights for those specific cases, they do not
capture the stock-level sensitivity. Naber et al (2017), reviewed 19models fromdistrict to national scale. They
highlighted the potential for sensitivity analysis to be used to focus data collection efforts on themost influential
inputs but note that this is impeded by a lack of transparencywhichmeans that only selected uncertainties are
reported. Lim andZhai (2017) undertook a detailed review of the application of stochasticmethods to bottom-
up engineeringmodels of building stocks and identified six key challenges, also establishing a framework that we
follow in this paper: computational time, input data scarcity for representative buildings, incorporating
occupant-related uncertainties, availability of energy data for calibration and validation, calibration processes
and results and approaches to aggregating from individual buildings to stocks. A sampling reviewwas
undertaken by Fennell et al (2019)who concluded thatUASA are not commonpractice in urban building energy
modelling andmade recommendations for the future of the field.
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Although the above-mentioned studies provide valuable insights on varying key aspects of the use ofUASA
in BEMs, there is no consensus on how thesemethods can be applied toUBEMs, or towhat extent they are
applied. These last two studies are focused on a small number of works, and their findings require validation.

The aimof our study is to comprehensivelymap the current applications ofUASAprocedures toUBEMs,
and ultimately interpret the findings in terms of utilisation for strategic decisions towards energy and climate
targets. To this end, we use a systematic reviewmethodology, set out in section 2. Section 3 presents the results of
the study, including an analysis of the types and sources of uncertainty, descriptions of theUA and SAmethods
which are applied and a critical assessment of their appropriateness and the influence ofmodel form. The
discussion in section 4 focuses on the challenges that remain in applyingUA and SA toUBEMs andhow these
could be addressed, to facilitate communication of the results for decision-making.

2.Methods

The review followed a systematic approach, based on the PRISMAmethod, (Page et al 2021) that consists of
identification, screening, synthesis and presentation of the results, was conducted using the Scopus database to
exploreUASA approaches employed to date inUBEMs. Given the relatively recent emergence ofUBEMs, the
period of reviewwas limited to publications from2009 to 2023, and titles in English. The use of additional
databases could result in retrieving quite a different number of studies (Cabeza et al 2020, Konno and
Pullin 2020), a limitation that is consideredwhen discussing the studies identified and their implications.

A title, keyword and abstract searchwas undertaken in the Scopus database for the following terms: (energy
ANDbuilding ANDmodel)AND (uncertaintyOR sensitivityORprobabilistic OR stochastic)AND (cityOR
building stock). A variety of search termswere assessed, and results were screened to ensure that previously
identified publications on the subject were found, prior to the selection of the final search string. Journal articles,
conference papers and book chapters were included in the search. A total of 2168 publications were identified,
and these recordswere subjected to a sequential screening process (Fennell 2024). Details of the screening
process can be found in appendix.

3. Current approaches to treating uncertainty

3.1. Types of uncertainty
A range of different schemas have been developed to classify sources of uncertainty (Oberkampf et al 2000,
Walker et al 2003, Booth et al 2012, Coakley et al 2014). In principle, a formal framework for uncertainty
classificationwould facilitate systematic approaches to the identification and assessment of uncertainty.While
there has been little consensus on the detail of classification or terminology (Refsgaard et al 2007), Langevin et al
(2020) suggest that categorising the source of uncertainty according to the point in themodelling chain inwhich
it occurs provides a high-level classificationwhich fits well with a range of different schema. In this
categorisation, themodel is broadly defined as themapping process between input and output and the different
types of uncertainty are related to either inputs,model, or outputs:

• Input-related

o Aleatory (or stochastic) uncertainty: Uncertainty due to inherent or natural variation of the system
under investigation.

o Epistemic uncertainty: Uncertainty resulting from imperfect knowledge; can be partially quantified and
in principle reduced.

• Model-related

o Model structural uncertainty: Epistemic uncertainty that arises from a lack of sufficient understanding
of the system (past, present or future) that is the subject of the analysis, including the behaviour of the
system and the interrelationships among its elements.

o Model technical uncertainty: The uncertainty generated by software or hardware errors.

• Output-related

o Model outcomeuncertainty: The quantified uncertainty on themodel simulation (so endogenous rather
than exogenous as the other categories).
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o Linguistic uncertainty: Uncertainty arising from language issues when communicating the findings; can
be quantified and reduced.

3.2. Sources of uncertainty
The sources of uncertainty listed in each of the retained studies were recorded and categorised. In total, 9 broad
sources of uncertainty were found as shown infigure 1: 8 different sources of input uncertainty, plusmodel
technical uncertainty.

The dominant sources of input uncertainty are closely linked to themodel use case:

• Prioritisation and optimisation of retrofits requiresmodels which can represent the aggregate energy
consumption of the stock. Thesemodels require an accurate geometric representation of the building stock
and focus on uncertainties in thermophysical properties.

• Evaluating the potential for renewables and demand-side response strategies requires greater temporal
resolution than prioritisation of retrofitmeasures, consequently, occupant related uncertainties are
particularly important in thesemodels. Somemodelsmay also consider uptake over time, introducing a
significant additional source of uncertainty.

• Assessment of policy impacts on specific communities, thesemodels have similar demands to those
examining retrofit performance butmay also requiremore detailedmodelling of occupant behaviours and
consideration of the impacts of futureweather conditions.

• Assessment of the impacts of urbanmorphology on energy consumption of newdevelopments, while the
underlying geometry of the building stock is not treated as uncertain inmodels which focus on the existing
stock, geometry is a source of uncertainty in thesemodels.

• Modelling of indoor and outdoor air pollution requires high temporal resolution and introduces additional
data requirements for pollutant sources.

Figure 1.Number of studies exploring different sources of uncertainty.

4

Environ. Res. Commun. 7 (2025) 022002 P J Fennell et al



Themost studied sources of input uncertainty are building fabric, occupant-related, geometry and building
services. In particular, 43%of the studies (n= 92) included building fabric parameters in the uncertainty
analysis, i.e., the characteristics of the building envelope in terms ofmaterials or thermal properties such as last
renovation, infiltration rate, thermal transmittance, emissivity, solar absorption, heat capacity, thickness and
density of fabric layers, solar heat gain coefficient of windows, shading and frame coefficient of windows. 37%of
the studies (n= 79) considered occupant-related uncertainties, such as occupancy schedules and presence in
different rooms, use of lighting and appliances, window operation andHeatingVentilation andAir
Conditioning (HVAC) control preferences,metabolic rate, as well as household composition in terms of
occupational status and age. These are studied in different units, e.g., per household, squaremetre or person,
depending on how they are represented in themodel. Themodelmethodology and related data-simplification
strategies had a significant impact on the uncertainties considered, for examplewhile some studies treated
parameters such as floor area or height as uncertain parameters, these weremeasured parameters in other
studies. In total, uncertainty in terms of geometrical building parameters was quantified in 36%of the studies
(n= 76). Examples of such parameters include the form ratio, window towall ratio; gross and heated floor area,
footprint, height, number offloors, and areas of external façade, roof andwindows.Orientationwas also
included in this category.More recent studies show increasing interest inmorphological study of districts
exploring optimal arrangements for new districts or cities, typically in China, for example (Wang et al 2021).

30%of the studies (n= 64) investigated uncertainty parameters related tomechanical and engineering
services, such as the number of installedHVAC systems, their efficiency, and ventilation supply rates.

23%of the studies (n= 49) assessed uncertainty under different regional and/or global climate forecasting
models. Finally, the least-studied sources of uncertainty included replacement and renewal of the building stock,
time of replacement of building components, economic factors and othermodel-related issues.More
specifically, 8%of studies (n= 18) explore economic factors, for example,Mohammadi andMousavi’s
investigation of the feasibility of net zero energy residential buildings in Iran (2022). 7%of the studies (n= 16)
look at replacement and renewal of the building stock (Burillo et al 2019, Glotin et al 2019,Martins et al 2019,
and another 5%of the studies (n= 10) focus on the time of replacement of building components (Nemeth and
Lindauer 2012, Schiefelbein et al 2019).

Before 2019, only two studies were found to addressmodel-related uncertainty: air infiltrationmodelling
approaches (Happle et al 2017) and estimating uncertainties in a sub-model (Lu et al 2013). Comparison of
different types ofmodelling approach or sub-model has been seenmore frequently in themore recent literature
with a further 29 cases, for example, Li and colleagues (2023) compare two approaches to demand side response
- a stochasticmodel andDistributionally RobustOptimisationmodel using a generative adversarial network
based on theWasserstein distance; while Liu et al (2021) explore the importance of includingmodels of shading
effects. In total 14% (n= 31) of studies includemodel-related uncertainties. These studies all considermodel
technical uncertainties—exploring how choices in sub-model impact on results. However, in all the studies
considered, themodel systemswere assumed to be fully understood. Although the underlying building physics
models are well tested, lack of knowledge about factors such as the activity undertaken in a building (is it a shop,
office, dwelling or does it contain several of these activities?) can have a significant effect onmodel inputs but is
seldom considered.

3.2.1. Covariance of uncertain parameters
UBEM input parameters are expected to show significant correlation, for example, thermal transmittance
coefficients of different elements of the building envelope are likely to be dependent on age of construction and
refurbishment statusmeaning that therewill be some correlation between values for different elements of the
building envelope. De Jaeger et al (2021) explored the performance of different samplingmethods for
reconstructing a data set based on Flemish EPCs and showed an eight-fold decrease in themean-maximum
discrepancy of parameter distributions comparedwith treating the parameters as uncorrelated.

Ignoring the covariance structure of the input data will impact the results of sensitivity analysis by producing
biasedfigures.However, only one of the studies reviewed explicitly addressed the correlation structure between
uncertain parameters, fromwhichwe infer that in all other studies, uncertain parameters were treated as
independent and uncorrelated. The exception is the study byOliveira Panāo, Penas (2022), who apply the
Gaussian copulamethod based on thework byDe Jaeger et al (2021). Their evaluation usesmulti-correlation
among sevenmain parameters: opaque-to-floor area ratio, window-to-floor area, u-values (ofwindow, external
wall, and roof), glazing and shading g-values with the co-variance structure derived from analysis of the energy
performance certificate database. Li et al (2023) use ridge correlation to accommodate the anticipated
collinearity between parameters in their study.
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3.3. UA and SAmethods in use in the literature
While Sensitivity andUncertainty Analyses are distinct approaches with separate objectives as set out in
section 1, the two are closely linked and SA is frequently undertaken to identify sensitive parameters for
inclusion in a subsequentUA. The opposite approach can also be adopted: the level of uncertainty isfirstly
quantified in aUA, and then apportioned onto input parameters and assumptions via SA. During the data
extraction phase, themethods used forUA and SAwere recorded. The combinations found are presented
graphically infigure 2.

3.4. Uncertainty analysismethods
214 articles were included in the retained records for data extraction. 64 (30%) of these articles includedUA. SA
were also conducted in a third of these studies. The complexity ofUBEMsmeans that stochastic propagation
methods are typically employed to investigate the uncertainties with one example (Lu et al 2013)using

Figure 2.Methods found in the literature.
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arithmetic propagationmethods to analyse the uncertainties and one example using fuzzy sets (Sharma et al
2018).

3.4.1.Monte Carlomethods
MonteCarlomethods dominate the literature.Monte Carlo processes typically involve random sampling froma
defined input distribution before carrying out a deterministic calculation using the generated inputs and
aggregating the results to establish a distribution of outputs.Monte Carlomethodswere used to estimate the
impact of uncertainties of input parameters on the uncertainties of outputs in 12%of the studies (n= 25). Jones
et al (2015) conducted aMonte Carlo analysis to estimate the distributions of heating season infiltration and heat
loss for apartment buildings in England. Kavgic et al (2015)used a simpleMonte Carlomodel to examine and
calculate the uncertainties in predicting the energy consumption of the housing stock in Belgrade. Similarly, Lin
et al (2017) followed the same approach tomodel 4000 typical layouts of residential dwellings in Taiwan.
Benchmark values of EUIwere calculated based on the simulation and uncertainty analysis.

Latin hypercube sampling (LHS) is a subset ofMonte-Carlomethods using a stratified sampling approach.
In thismethod, samples are drawn from areas of equal probabilityHelton andDavis (2002). This avoids the
possibility of clustering of samples in one region of the input space which can occurwith random sampling and
as a result offers better coverage of the input space for a smaller number of samples, an important consideration
for high dimensionalmodels. Ascione et al (2016) used thismethod to generate the approximate probability
distributions of different parameters including the geometry, building envelopes andHVAC system efficiencies
and types of the building stock in Italy. Escandón et al (2019) followed the same approach to predict the thermal
comfort for social housingmulti-family buildings in southern Spain.

3.4.2.Monte Carlomarkov chain (MCMC) processes
In contrast toMonte Carlo processes inwhich each draw is independent, inMCMCprocesses the next sample
drawn is dependent on the current sample. Thismakes themmore appropriate for creating time series of inputs,
for example, formodelling occupant behaviour. An et al (2017) usedMarkovChain to simulate the stochastic
nature of occupant behaviours. The stochasticmovement process of occupants is simulated using a large-scale
residential survey in Chinawith 1426 responses.

3.4.3. Bayesian inference
Bayesian inference improves the outcomes of theMonte Carlo andMCMC simulations by calculating a global
probability distribution for all the relevant values, observing, and updating the values, and recalculating the
conditional distribution of the remaining values given the observations (Brooks et al 2011). Choudhary (2012)
applied Bayesian inference usingGibbs sampling to evaluate the influence of district features on energy
consumption in non-residential buildings inGreater London. In this study, Bayesian inference is applied to
define the prior estimates of the national EnergyUse Intensity (EUI) per primary type of non-domestic building
EUI is estimated for 11 categories of buildings. Heo et al (2012) andZhao et al (2016) followed a similar approach
to generate energy consumption data and derive energy-saving opportunities for office buildings in theUK and
Chicago, respectively.

3.4.4. Bayesian networks
ABayesianNetwork (BN) is a graphicalmodel that consists of nodes and arrows showing causal relations
between the nodes. BN explains probabilistic relationships among the variables of interest and, automatically
overcomes the problems ofmissing data by indicating dependencies between variables. Sokol et al (2017)
developed an urban building energymodel considering incomplete information about the buildings. The
authors used BN andBayesian calibration approach tomodel six highly uncertain parameters of infiltration,
thermostat set points (heating and cooling), occupant density, plug load and lighting power density, and the
domestic hotwater flow rate. Uniformdistributionswere assigned to characterise these parameters in the
model. Dotzler et al (2018) report using a BayesianNetwork to improve the accessibility of results for a retrofit
planning tool for estatemanagers.

Evaluation of the differentmethods here.

3.5. Sensitivity analysismethods
Saltelli et al (2004) identify four distinct types of insight which are of value toUBEMs:

• Parameter ranking—identification of the parameter(s)which have the greatest effect on variance in themodel
output. Combinedwith knowledge of the confidence in the parameter ranges this enables the degree of
confidence inmodel outputs to be assessed.Quantitative and semi-quantitativemethods can be used.
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• Parameter screening—identifying non-influential parameters allows them to befixed, reducing the number
ofmodel evaluations required for uncertainty analysis in futurework.Quantitativemethods can be used.

• Variance reduction—if amodel is to be used for decision-making itmay be desirable to reduce the uncertainty
in its outputs to a specified level by identifying parameters for whichmore data can be collected.

• Parametermapping—SA can be used to identify combinations of parameters which result in extreme values,
this can be useful for assessing resilience to extremeweather for example.

Although Saltelli et al (2004) highlight the importance of identifying the type of insight which is sought
before choosing an SAmethod, this step is generally not discussed in the literature. In total, 137 articles in the
final set (64%) included some formof sensitivity analysis. Sensitivity analyses were classified as either local (One-
at-a-Time,OAT) analyses which consider the sensitivity of themodel to perturbations of one parameter at a time
away from its base-case value or global analyses (GSA)which consider variation across thewhole input space of
themodel. 76 of the 137 (55%) included anOATwhile 62 (45%) contained a global sensitivity analysis, two
studies included both.

3.5.1. Local sensitivity analysis
OATmethods or differential sensitivitymethods investigate local sensitivity about the base values. The number
of simulations required is 1+2kwhere k is the number of uncertain parameters,meaning that the computational
cost of the analysis is low. Five studies useOAT analysis as a preliminary step to identify influential parameters
before undertaking further analysis. CerezoDavila et al (2015, 2017) usedOAT to identify influential parameters
for inclusion in a Bayesian calibration technique for archetype parameters. Yamaguchi et al (2013) also used
OAT to identify parameters for inclusion in a Bayesian calibration of amodel for supermarket buildings’ energy
consumption inHyogo prefecture, Japan. Kavgic et al (2015) usedOAT analysis to investigate which segments of
the Belgrade housing stock had the greatest impact on city-level consumption. Zheng et al (2017) usedOAT to
identify influential parameters for inclusion in an optimisation study of a Chinese industrial park. In seven
studies, OATwas employed as part of a process ofmodel testing and development, typically, proof of concept
(Choudhary 2012,Marique andReiter 2012, Arababadi et al 2015, Samuelson et al 2015,Happle et al 2017,
Nouvel et al 2017,Müller et al 2019). 15 studies usedOAT analysis to identifymost influential parameters to
guide policy development (Cheng and Steemers 2011,Nouvel et al 2013, Biere et al 2014, Zhao et al 2015,
Dineen et al 2015, Osterbring et al 2016, Azar, Al Ansari 2017, Soufiane and Ewa 2017,Oregi et al 2018a,
Oregi et al 2018b,Martins et al 2019, Popovski et al 2019, Rouleau et al 2019).

Two studies combined bothOAT andGSAmethods: Neves et al (2019) comparedOAT,Morris andMonte
Carlomethods for a sample of buildings in Sao Paulo, Brazil, their results highlight the inability ofOATmethods
to capture interactions between parameters, for example, although increasingwindow towall ratio increased
solar gains, it also resulted in increased opening areas which resulted in greater ventilation rates, when combined
with increased shadingwhich reduced solar gains, the net effect was a reduction in cooling demand. Arababadi
et al (2015) compared the performance ofOAT and stepwise regressionmethods and found similar results for
bothwith independent and uncorrelated parameters.

It is clear from the broader literature that the principal failure ofOAT analyses is the lack of coverage of the
whole input space as demonstrated by Saltelli andAnnoni (2010). This is a concern for Building EnergyModels
which typically result in nonlinear,multi-modal, discontinuous outputs (Nguyen andReiter 2015). The
limitations ofOAT analysis for aUBEMwere explored byCheng and Steemers (2011)whodemonstrated that
the results were only valid locally. As a result, the sensitivity analysis was of limited predictive value since it did
not apply to the full range of likely or valid values for each input parameter. This raises concerns about relying on
the results ofOAT for policy recommendations as applied in the large body of work identified here.

3.5.2. Global sensitivity analysis (GSA)
The key difference betweenGSAmethods andOATmethods is that other parameters are not held constant
while the influence of the parameter of interest is assessed. Consequently, thesemethods can accommodate non-
linear and sometimes non-monotonicmodel outputs. The number ofmodel evaluations required to allow the
effects of variation of a single parameter to be assessed ismuch higher and a key challengewith thesemethods is
access to sufficient computational power to undertake analysis ofmore than a handful of parameters.

3.5.2.1. Graphicalmethods
Scatterplots ofmodel outputs are plotted againstmodel inputs allow relationships between inputs and outputs
to be visualised. Although graphicalmethods are not a quantitativemethod, if all inputs are varied
simultaneously theymeet the definition of a global sensitivity analysismethod.However, the use of scatterplots
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withmore than a handful of variables quickly becomes unviable. Lu et al (2009) utilised scatter plots to explore
the relationship between different temperature series and heating and cooling loads for cities in theUSA and
Canada. Jones et al (2015) used a similar approach to examine the relationship between 8 inputs and outputs for
theDOMVENTmodel for theUKhousing stock.

3.5.2.2. Regressionmethods
Regressionmethods use a sampling approach such as LHS to generate a large number of sets of inputs which are
then simulated, and regression analysis is then used to uncover the relationship between inputs and outputs.
Regression is often combinedwith graphicalmethods. However, linear regression analysis is only able to explain
linear relationships between inputs and outputs. Jones et al (2015) used both linear regression and rank
regressionwhich does not require a linearmodel, while Tian andChoudhary (2011, 2012) used SRC andMulti-
Adaptive Regression Splines (MARS)which also does not assume a linearmodel. Both groups found very similar
orders of sensitivity for the parameters in both approaches.

3.5.2.3.Morrismethod
TheMorrismethod (Morris 1991) uses a design of experiments approach tomaximise the coverage of the input
space at as small a computational cost as possible. The approach is very similar to anOATdesignwhich is
repeated at different points in the input space and averages the results from each point. Campolongo et al (2007)
introduced an improvement to the calculation of themean of the elementary effects in theMorrismethod by
using the absolute value of the output differences to ensure that positive and negative variations do not cancel
each other out as in the originalMorrisMethod. Campolongo et al also introduced a revised sampling strategy
based on radial sampling about the original point; this approach (Elementary Effects—Radial or EER) offers
better coverage of the input space. The number ofmodel evaluations required depends on the desired number of
estimates for each parameter; between 10 and 20 estimates are common, and each estimate requires k+1model
evaluations (one for the starting point and one for each of the k variable parameters). TheMorrismethod has
been commonly applied as afirst step to reduce the number of input parameters for uncertainty analysis or
global sensitivity analysis. For example,Mastrucci et al (2017) used theMorrisMethod (elementary effects) to
assess themost influential parameters beforeUA and development of a simplifiedmodel for the housing stock of
Esch-sur-Alzette in Luxembourg.

3.5.2.4. Sobolmethod
Variance-based analysis or Sobol’smethod (Sobol 2001) is based on decomposing the variance in themodel
output into the fractionswhich can be attributed to the different input parameters. First-order effects are those
attributable to variance in each input on its own.Higher-order effects are attributable to interactions between
inputs. Total effects encompass first-order effects and all the interaction terms. Sobol is relatively
computationally expensive, requiringN(k+2) evaluations for amodel with k uncertain parameters whereN
may be in the hundreds or thousands.Mastrucci et al (2017) applied the Sobolmethod to identify key
parameters following an initial step inwhich theMorrismethodwas used to screen out insensitive parameters.
Multiple Linear Regressionwas then used to generate simplifiedmodels based on the key parameters identified
in the Sobol analysis. The simplifiedmodels were then combined to create amodel of thewhole stock. Saltelli
et al (2010) highlighted that Campolongo et al (2007) extension of theMorrisMethod resulted in quantitative
indices of a similar form to Sobol and proposed an alternative implementation of the Sobolmethod based on
this approach. Stone et al (2014) used this implementation to explore themost sensitive parameters in amodel of
the EnglishHousing Stock. This is themethod implemented in the SALib Python library (Herman and
Usher 2017) used byMosteiro-Romero et al (2017) to identify themost influential parameters in amodel of 284
buildings in Zurich using theCity Energy Analystmodel (Fonseca et al 2016). AlongwithOAT andMorris
Method, thesemethods can be classed asDesign of Experiments approaches since they depend on careful
structuring of inputs to increase the computational efficiency of themethod. Although the efficiency of these
designs is very important, it comeswith the downside that only the base case(s) is(are) independently selected
and therefore can be reused, for example in an uncertainty analysis.

3.5.2.5. Feature Selection
RandomForests (Breiman 2001) are a non-parametric statisticalmethod dealingwith classification and
regression problems. Themethod resorts to the construction of amultitude of decision trees at training time.
The variable importancemeasure describes how important a feature is for the predictive performance of the
model and is thus a formof SA. The resulting indices do not assume independence of the underlying variables
(Antoniadis et al 2021). This leads to sensitivity indices whether the data are dependent or not since RF do not
assume any kind of independence. Jin et al (2022) used feature importance analysis to select a reduced set of
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labels for an urban data set forNewYorkCity. Zhang et al (2021)we compared the feature importance scores
fromvariousmachine-learning algorithms finding that decision tree scoreswere closest to the expected results.

3.5.2.6. Other global sensitivity analysis methods
Froemelt andHellweg (2017) took a different approach to the design of experimentsmethods, using
Borgonovo’smoment independent δwhich can be used to derive global sensitivity indices from given data.
Moment-independentmethods define sensitivitymeasures by considering the entire output distribution rather
than focussing on just onemoment, variance. Ifmodel outputs are normally distributed, then the parameter
influencing variancemost likely will also be the onewhich influences thewhole distributionmost. If the output
distribution exhibits significant skewness or kurtosis this will not necessarily be the case (Razavi et al 2020).
Martins et al (2019) used a fractional factorial analysis to understand the sensitivity ofmulti-scale urban design
parameters for three districts in Toulouse, France. In a factorial design, each input factor (parameter) is sampled
at predefined intervals from its probability distribution. A full factorial design includes all combinations of the
input samples, a fractional design, and a set proportion of the input samples, whichwas 50% inMartins et al
(2019) case. The underlying search grid is relatively coarse (8 samples per factor) so this approach results in a
relatively small number ofmodel evaluations, spread across the input space.

The spatial component of UBEM input data is typically only considered as part of the geometricmodel
whichmight be used to calculate shading etc.However, asNyangon andByrne (2021) highlight, spatial
sensitivitymay be an important factor in explaining the relationships between different building characteristics
andmerits further exploration.

3.5.2.7. Choosing themost appropriate SAmethod
The choice of SAmethods in the studies assessed here has often been governed by a combination of
computational burden and ease of application (typically through the application of open-source packages such
as SALib in python). However,more fundamental factors should also drive the choice ofmethod:

• Formof themodel—OAT and linear regressionmethods assume linearity which is unlikely to be the case for
bottom-up physics-basedmodels.

• The formof insight sought—not all SAmethods can provide all four types of insight or setting identified by
Saltelli et al (2004). In particular,methodswhich do not account for interactions between parameters cannot
be used for parametermapping andmethodswhich do not provide a singlemeasure of parameter influence
cannot be used for variance reduction.

• Underlying sampling approach -methodswhich use structuredDesign-of-Experiments approaches to create
input samples do not result in an input sample which can be readily extended by adding additional samples,
nor can the full set of samples be reused, for example for an uncertainty analysis. This alsomeans that they
cannot be usedwith given datawhichmay have been the result of previous experiments.

Figure 3 below shows a proposed decision structure to assist in choosing themost appropriatemethod.

4. Recommendations for improvingUASApractices

4.1.Dealingwith computational burden
While the number of studies employing global sensitivity analysis approaches is increasing and fewer of themore
recent studies are usingOATmethods, the inclusion of relatively small numbers of variable parameters suggests
that one of the key challenges highlighted by Lim andZhai (2017) continues to impede robust analysis - the curse
of dimensionality is intrinsically linked to the issue of computational burden.High performance computing and
cloud computing offer access tomuch greater computational power. However, these comewith afinancial and
energy cost andmay require researchers to develop new skills toworkwith such resources. Reductions in
computation time can also be achieved through the use ofmeta-models for sensitivity analysis, a well-
established approach in the literature (Sudret 2008). However, although these solutions have been available for
some time (Sudret 2008) they do not yet appear to have resulted in significantly greater uptake ofmethods. The
popularity of the open source SA-Lib python toolbox and the R package ‘sensitivity’, as a resource for SAmight
provide a template formakingmeta-modelling approachesmore accessible to the research community.

Relatedwork in the field of Life Cycle Analysis by Lo Piano andBenini (2021) proposes a possible solution by
breaking the assumption that all variable parameters are uncorrelated, allowing the dimensionality of the
problem to be reduced. They highlight the techniques developed byKucherenko et al (2012) and Iooss, Prieur
(2019) for dealingwith correlated variables. Using thesemethods requires an assessment of the correlation
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structure of variable parameters.While this additional information requirement is perhaps a key reasonwhy the
studies reported here have treated variable parameters as completely independent, this is a significant
shortcoming in the reported studies.

4.2. Understanding the approach to aggregation
The challenge of conducting a sensitivity analysis of a whole building stock is closely linked to how that stock is
modelled, in particular, the degree towhich individual units in the stock aremodelled independently. The use of
data archetypes is a common approach to this; individual buildings are assigned to a class or archetype typically
based on use and age/construction periodwith a common set of inputs for each archetype. Archetypes can be
complete (containing all details for individuals within the set) inwhich case they are simply scaled according to
their representation in the stock or partial, inwhich case individuals are simulated individually but with
common values for used particular inputs (e.g., constructionmaterials and properties based on building age).
Whilemodels vary in the degree of independence, all stockmodels contain some degree of data aggregation to
render them computationally feasible. In archetype-basedmodels, this ismost apparent (Mauro et al 2015, for
example), where all examples of a particular class are assumed to be represented by a single unique value for each
parameter. In partial archetype approaches some input parameters for each example are derived from the
archetype (typically building fabric) and some (typically geometric parameters) are specified independently. In
thesemodels, parameters are often assumed to vary independently (Ghiassi, Tahmasebi, andMahdavi 2017, for
example). Booth et al (2012)propose an alternative approach inwhich the heterogeneity of themembers of a
class is explicitly considered. None of the studies reviewed in this work discussed the impact of this aspect of
model structure on uncertainty.

Figure 3.Decision framework for SAmethod selection.
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4.3. Applying sensitivity analysis to thewholemodel
When archetypes are used, SAmay be applied to the archetype itself (SA of an individual reference building) or to
thewholemodel output. Detailed analysis of the included studies revealedmany cases inwhich SAwas applied at
the archetype level i.e., for individual buildings, rather than at thewhole stockmodel level. Application at the
archetype level is analogous to the SA of an individual building and strictly does notmeet the definition for
inclusion in this study.More recent approaches to archetypemodels which establish data-driven archetypes
whichmay be implemented stochastically (for example, Borges et al 2022) represent an attempt to bridge this
gap.Of the 62 studies which includedGSAmethods, 43 applied it at themodel output level, mostly inmachine
learning basedmodelling approaches reflecting the challenge of computational time highlighted by Lim and
Zhai (2017). This result is particularly striking taken in tandemwith thefindings discussed earlier about the
unsuitability ofOATmethods for these types ofModels: of 137 studies which applied sensitivity analysis to a
large-scale UBEMs, only 43 (31%) could be classed as robust, global analysis covering the full input space.Of
these 43 studies, 27 involve less computationally intensivemethods, eithermachine learning, or reduced order
methods (Quasi-steady state: for example, (Froemelt andHellweg 2017), for example, Resistor-Capacitor:
(Martins et al 2019), with 11 applyingGSA to various types of dynamic simulations (Protopapadaki and
Saelens 2017,Neves et al 2019, Xu et al 2020, Fennell et al 2021).

4.4. Incorporating qualitative assessment alongside quantitative
Notably, the studies reviewed in this work take a predominantly quantitative approach to SA of a relatively small
number of parameters, inmany cases selected for convenience rather than because of the degree of influence
theymight be expected to have onmodel outputs. This is often driven by the data availability challenge identified
by Lim andZhai (2017). Consequently, there is a strong likelihood that the results of the SAwill be of limited use
unless they include a broader assessment of uncertainty. The approach to themanagement and communication
of uncertainty proposed by Funtowicz andRavetz (1990) and implemented by Pye et al (2018) provides a
structured framework for assessing the confidence in inputs which can be combinedwith the influence of the
parameter on themodel output in diagnostic diagrams to assess of the importance of the stochastic and
epistemic uncertainty in the parameter values. For local and national decision-makers seeking vital insights from
UBEMs for urgently needed decarbonisation policies, the lack of uncertainty and sensitivity analysis is a key risk.
The parameters identified as sources of uncertainty inmost of the studies (figure 1) are related to key policy
interventions or structural dynamics of the transformation of the urban built environment. For instance,
building fabric and geometry determine energy use through their thermal properties and form factor, and are
typically a key target of building energy codes; occupant related issues relate to behaviour, comfort, and
interventions for active and passivemanagement and operation that have since long been the object of energy
saving programs, and,more recently, the core of so-called lowdemand scenarios; assumptions on replacement
and renewal of components are essential to determine building renovations rates, when renovating existing
buildings to low energy and carbon standards is the actionwithmost climatemitigation potential in developed
countries. Understanding the relationship between policy interventions andmost significantmodel drivers, as
the above exemplified, could contribute to the identification of trade-offs, prioritisation and targeting of local
and national building stock decarbonisation policies that accelerate the achievement of climate, social and
economic goals.

4.5. Communicating uncertainty
Effective communication of uncertainty is critical if it is to be embeddedwithin decision-making. However, for
non-experts, traditional approaches to communicating uncertainty such as error bars and violin plots are
difficult to interpret (Wilke 2019). An alternative approach, proposed byHullman et al (2015) is to use dynamic
representations of possible outcomes, termedHypothetical OutcomePlots. The authors report higher levels of
accuracy in interpreting results for non-expert users.While this approach has not previously been applied to
UBEMoutputs, previous work by Ehlschlaeger et al (1997) has suggested that animation is helpful in
communicating spatial uncertainty.

5. Conclusions

In this study, a comprehensive and systematic reviewwas undertaken ofUBEMs to examine the application of
uncertainty and sensitivity analysismethods. From a total set of 2,168 records identifiedwith a targeted search
query in Scopus, 259UBEM studies were identified after full-text screening. Although all contained some
discussion ofUncertainty or Sensitivity Analysis, formal analysis was only included in 179, with the remainder
either including a general discussion or scenario analysis.
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Detailed analysis of the full-text records highlighted a focus on input uncertainties rather thanmodel
uncertainties. Building fabric-related uncertainties were considered in almost all studies with a slightly smaller
number considering occupant-related factors. 85% (n= 179) of the studies considered 3 or fewer sources of
uncertainty 54% (n= 115) of the studies performed a standalone Sensitivity Analysis, 10% (n= 22) undertook
Sensitivity Analysis as a precursor to anUncertainty Analysis while 20% (n= 42) undertook a standalone
Uncertainty Analysis, sometimes as part of a Bayesian calibration exercise. One-variable-at-a-time sensitivity
analysis (OAT) remains themost common formof Sensitivity Analysis despite clear warnings in the literature
about its inadequacies. Regressionmethods are themost popular formofGSAmethod. Although uptake ofGSA
methods seems to be increasing over time, closer review revealed this to be driven in large part by the application
ofGSAmethods to individual building archetypes rather thanmodel outputs at stock level suggesting that
computational limitations remain a considerable barrier. Thisfinding also highlights the need for explicit
consideration of the implied correlation structures within a stockmodel. Even though researchwithin theGSA
field generally has increasingly turned to the challenge of dealingwith correlated inputs, only one studywas
found using amoment-independentmethod capable of dealingwith correlations between inputs. The use of
methods for dealingwith correlated inputs would also reduce the dimensionality of the problem and the
computational burden.

For local and national decision-makers seeking vital insights fromUBEMs for urgently needed policies to
achieve energy and climate targets, the lack of UASApresents a risk formisunderstanding and under-
exploitation of themodelling results.We recommend thatUncertainty and Sensitivity Analyses are integrated
from the very conceptualisation of the experimental design inUBEMs andwithin the reporting process as a
cornerstone ofmodel quality assurance. Quantitativemodel analysis should be undertaken in tandemwith an
assessment of information pedigree to allow key knowledge gaps and uncertainties to be highlighted and their
impact on any policy recommendations carefully considered. Understanding themost significant drivers of
model uncertainty will enable the identification of trade-offs, prioritisation and targeting of local and national
building stock decarbonisation policies.

Data availability statement

The data that support thefindings of this study are openly available at the followingURL/DOI: https://public.
tableau.com/views/UASAdashboard/Dashboard1?:language=en-GB&:sid=&:redirect=auth&:display_
count=n&:origin=viz_share_link.

Appendix. Screening process

The screening process was undertakenmanually using the EPPI reviewer tool (Brunton et al 2010) to assign
records between the reviewing team andmanage themoderation process. A sequential screening process was
undertaken as illustrated infigure A.1which also includes details of the exclusion criteria. Records were
allocated randomly between the first three authors for the abstract screening step and between the full author
group for the full text screening and data extraction. Spotmoderationwas undertaken at each screening step to
verify consistent application of the screening criteria by the reviewing team.

Amanual data extraction exercise was undertaken on each of the retained records. In this processmodel
form (type of energy calculation), purpose, locationwere recorded, as well as the type ofUA and SA,where
available.
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