
....

Anonymous Internet
Anonymizing peer-to-peer traffic using applied

cryptography.

R.S. Plak

.

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

..

Anonymous Internet
Anonymizing peer-to-peer traffic using

applied cryptography.

by

Rutger Plak

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Monday July 7, 2014 at 1:30 PM.

Student number: 1358375
Supervisor: Prof. dr. ir. J. A. Pouwelse

Thesis committee: Prof. dr. ir. H. J. Sips, Delft University of Technology
Prof. dr. ir. J. A. Pouwelse, Delft University of Technology
dr. ir. Z. Erkin Delft University of Technology

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Throughout the years the Internet became of indispensable value to social, eco-
nomic and political life. Despite this, the Internet in all its forms and protocols has
proven to be extremely sensitive to manipulation by forces in control of the infras-
tructure of the Internet. Along with the growth of The Internet came the growth
of censorship and filtering by governments. Governmental forces across the world
have filtered, blocked and eavesdropped network traffic for both economic and
political reasons.

This thesis focuses on the question of how filtering techniques and data cen-
sorship introduced by overseeing (governmental) forces can be circumvented. The
challenge is to offer a fully autonomous and anonymized network of interconnected
users with high-quality experience.

Along with this research, software has been implemented which enables the
buildup of a file sharing network, where data is hard to trace and downloaders are
indistinguishable from other users of the network. It forms the basis for a future
anonymous network. This thesis and the developed software are a proof-of-concept
which can and will be further developed by the Tribler team at the Delft University
of Technology. This thesis introduces the ‘p2p onion router’, an anonymized net-
work where high bandwidth can be achieved. This makes it more attractive than
alternatives such as TOR for multimedia streaming. A new cryptographic approach
based on the existing counter mode is introduced. This enables packet loss and
packet reordering in stream ciphers, in order to utilize the benefits of BitTorrent
traffic in onion routing.

iii

Contents

List of Figures vii

1 Introduction 3
1.1 The illusion of privacy . 3
1.2 The goal of this work. 10

2 Privacy enhancing technologies 11
2.1 TOR. 11
2.2 OneSwarm. 13
2.3 Tarzan . 14
2.4 Flash proxy . 15
2.5 I2P . 16

3 Problem description 19
3.1 Cryptography requirements. 19
3.2 Usability requirements . 20
3.3 Attacks . 23
3.4 Adversaries . 25

4 Design of p2p onion routing 29
4.1 General outline . 29
4.2 Packet specification . 31
4.3 Packet encryption . 34
4.4 Block cipher mode of operation 35
4.5 Opportunistic decryption . 37

5 Implementation and experiments 43
5.1 Synthetic experiments . 44
5.2 Profiling . 52
5.3 Tribler integration . 52

6 Future work 57
6.1 Anonymous seeding . 57
6.2 Resilience to attacks . 59
6.3 Circumventing infrastructure . 60

7 Conclusion 63

Glossary 65

Acronyms 69

References 71

v

List of Figures

1.1 HTTP communication of Alice’s request to Bob 4
1.2 Knowledge after HTTP request / response 4
1.3 HTTPS communication of Alice’s request to Bob 5
1.4 Knowledge after HTTPS request / response 5
1.5 Schematic overview of BitTorrent traffic 7
1.6 Map of underwater cables . 8
1.7 Sniffing fiber optic cables . 9
1.8 Speed in TOR . 10

2.1 Onion Routing . 12
2.2 OneSwarm anonymity . 13
2.3 Tarzan cover traffic . 15
2.4 A flash proxy . 15
2.5 Configuration of I2P . 16

3.1 Illegal services in TOR . 21
3.2 Child pornography in TOR . 22
3.3 NSA’s CottonMouth . 25
3.4 NSA’s PRISM and its competences 27

4.1 The CREATE packet . 32
4.2 The CREATED packet . 32
4.3 The candidate list . 32
4.4 The EXTEND packet . 33
4.5 The EXTENDED packet . 33
4.6 The DATA packet . 33
4.7 The PING packet . 34
4.8 The PONG packet . 34
4.9 Flow diagram for creating a circuit 35
4.10 Flow diagram for transmitting data through a circuit 35
4.11 Comparison of block cipher modes of operation 36
4.12 ECB encryption . 36
4.13 CBC encryption . 37
4.14 CTR encryption . 37
4.15 Simplified diagrams of encryption of UDP packets 39
4.16 Simplified diagrams of decryption of UDP packets 40
4.17 Flow chart of the AES encryption per UDP packet 41
4.18 Flow chart of the AES decryption per UDP packet 41

vii

viii List of Figures

5.1 The layered model for the p2p onion router 43
5.2 Performance without cryptography 44
5.3 Performance with cryptography . 45
5.4 The CPU usage with different circuit lengths 46
5.5 Latency test with three circuit lengths 47
5.6 CPU usage in opportunistic crypto 48
5.7 Opportunistic cryptography performance with 0% packet loss 49
5.8 Opportunistic cryptography performance with 0.1% packet loss . . . 50
5.9 Opportunistic cryptography performance with 1% packet loss 50
5.10 Opportunistic cryptography performance with 5% packet loss 50
5.11 Aggregated packet loss in onion routing (in percentage) 51
5.12 Aggregated packet loss tested directly against LibTorrent 51
5.13 Triblers built-in profiler . 52
5.14 Anonymous downloading in Tribler 53
5.16 The pull request . 53
5.17 Test download in Tribler . 54
5.15 Screenshot of Tribler running the p2p onion router 55
5.18 Schematic view of anonymous download in Tribler 56

6.1 The working of hidden services . 58
6.2 Anonymous uploading in Tribler . 59
6.3 Carrier NAT. Users of one provider share the same external IP. 60

Preface

After the Snowden releases with information leaked from the NSA online privacy
awareness has been a hot topic. It has been a shock to a lot of people that mass
surveillance exists online even more than on the streets. But does the apparent ex-
istence of electronic mass surveillance harm the innocent? If innocent behaviour is
to be defined as morally accepted behaviour then yes seems a plausible answer and
Internet regulation seems for the greater good. But what if this morally accepted
behaviour is defined by governments? And what if it is defined by governments
whose ideology radically differs from common sense and human rights?

Internet monitoring and content filtering is an easy and effective way to regulate
the Internet. Bypassing these monitors and content filtering techniques has proven
to be a difficult task in which many have failed and none have truly succeeded. The
complexity of the problem and the great amount of challenges that this task brings
inspired me to do my thesis about anonymous Internet.

I would like to thank dr. ir. Johan Pouwelse for his continuous support and
help. Furthermore I would like to thank Niels Zeilemaker whose experience with
peer to peer networking and Tribler in particular has helped me enormously while
implementing. I would also like to thank Zekeriya Erkin for his knowledge on cryp-
tography. In particular I would like to thank Chris Tanaskoski with whom I’ve spend
a lot of time with during the entire process and who has provided a base for im-
plemented software. Last but not least I would like to thank my friends, family and
my girlfriend for their support.

Rutger Plak,
Delft, June 2014

1

1
Introduction

In the developed world, over 77% of the population has access to the Internet.
In the Netherlands and the United States of America this even reaches to 93%
and 81% respectively1. People use the Internet as communication medium, news
source, entertainment source and as business assistant. In daily social and eco-
nomic life, the Internet plays an increasingly large role. The immense advantages
that the Internet offers brings some obscure disadvantages that users are often
not aware of. The recent Snowden leaks have given food for thought for a lot of
Internet users. The NSA was long known to have collected records of over 1.9 tril-
lion telephone calls with MAINWAY2, and Edward Snowden has revealed that this
is nothing compared to the mass surveilling methods that are currently deployed.
The NSA data center in Utah is even speculated to have yottabytes of storage3.
This term is unfamiliar even for computer scientists, as it is so rarely used. One
yottabyte equals 10 or 1.000.000.000.000.000.000.000.000 bytes. This is more
than enough to have a high definition video and audio monitor of every person on
the planet for 24/7 for over a year. The complete model, infrastructure and proto-
cols used in the current Internet make mass surveillance possible on each layer of
the system. This chapter will give an introduction on the problems in the current
Internet.

1.1. The illusion of privacy
A visit to a website on the Internet exists of data going from the client to a server
(the request), and data coming back from the server (the response). The most

1Source International Telecommunications Union: http://www.itu.int/en/ITU-D/Statistic
s/Documents/statistics/2013/Individuals_Internet_2000-2012.xls

2More on MAINWAY here: http://www.democracynow.org/2006/5/12/three_major_teleco
m_companies_help_us

3More information on the Utah data center: http://siliconangle.com/blog/2013/07/29/th
e-mind-boggling-capacity-of-the-nsas-utah-facility/

3

http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/Individuals_Internet_2000-2012.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/Individuals_Internet_2000-2012.xls
http://www.democracynow.org/2006/5/12/three_major_telecom_companies_help_us
http://www.democracynow.org/2006/5/12/three_major_telecom_companies_help_us
http://siliconangle.com/blog/2013/07/29/the-mind-boggling-capacity-of-the-nsas-utah-facility/
http://siliconangle.com/blog/2013/07/29/the-mind-boggling-capacity-of-the-nsas-utah-facility/

..

1

4 1. Introduction

used form of the Internet is HyperText Transfer Protocol, abbreviated to http, stan-
dardised in 1996 [1]. A minimized and generalized explanation of the most used
function of the http protocol is used to explain the basic working of the Internet.

HTTP
Suppose Alicewants to make a connection to http://tribler.org/index.html,
a packet of bits asking for http://tribler.org/index.html flows through
cables to the server which we call Bob. Bob sends a response to Alice, consisting
of bits in the form of packets. These bits represent the webpage, which Alice can
interpret. Table 1.1 shows the simplified working of HTTP.

From Packet To
Alice REQ, http://tribler.org/index.html Server (Bob)
Server (Bob) RES, <html><head><script src=”scri Alice

Figure 1.1: HTTP communication of Alice’s request to Bob

The infrastructure that is used in this communication, the cables, are most cer-
tainly not Alice’s, and they’re also not Bob’s. Say Chuck is in control of the cables.
Now Chuck can, if he wants, monitor, alter, filter or block the flow of data from
Alice to Bob. Moreover, Eve may have been messing with Chuck’s cables and may
have placed a device on the cable that can monitor, alter, filter and block the flow
of bits from Alice to Bob, without Chuck knowing.

The problem of HTTP is therefore that everybody that can reach the infras-
tructure can monitor, alter, filter and block bits flowing through the infrastructure.
This type of attack is called the Man in the middle attack, in which a malicious
node between two communicating nodes tries to get access to the data that is sent
across the infrastructure. In order to circumvent this, HTTPS was introduced in
1994 and formalized in 2000[2]. Figure 1.2 shows who knows what after a HTTP
request-response:

Entity Knowledge
Alice Alice requested a web page from Bob, Bob answered and gave the web page.
Bob Alice requested a web page from Bob, Bob answered and gave the web page.
Eve Alice requested a web page from Bob, Bob answered and gave the web page.

Figure 1.2: The knowledge of Alice, Bob and Eve after an HTTP request / response.

HTTPS
HyperText Transfer Protocol Secure combines normal HTTP with secure SSL certifi-
cates. Instead of sending the bits directly over the cables, all bits are encrypted
before they are sent. The bits are encrypted using the given SSL certificate, which
is given by the webserver and validated by the client using trusted entities. The
request that Alice makes does not consist of ”Give me http://tribler.org/index.html
please” anymore, but exists of the hostname and encrypted data, which looks ran-
dom to anybody without the certificate. Bob does have the certificate and can

1.1. The illusion of privacy ..

1

5

decrypt the request. Bob encrypts the response with the certificate of Alice, so no-
body except Alice can read the response. Figure 1.3 shows the simplified working
of HTTP.

From Packet To
Alice tribler.org098f6bcd4621d373cade4e832627b4f6b Server (Bob)
Server (Bob) fa350a2ad4cb6b89db3230b7a04c77ec13bd1146bc8a Alice

Figure 1.3: HTTPS communication of Alice’s request to Bob

This solution makes sure that a man in the middle can no longer monitor the
data. He can no longer read what Alice and Bob are doing, and can therefore not
easily filter the data based on content. Still however, a man in the middle knows
that Alice and Bob are communicating. Therefore he can still block content and
alter content (making it undecryptable and thus invalid).

The design of HTTPS lets clients trust a number of certificate authorities for val-
idating the certificates that are given by webservers. This directly forms a problem
as these certificate authorities are not immune to hacks and can not be trusted with
absolute certainty. A famous example of such case is Diginotar, a Dutch certificate
authority that was hacked and issued malicious certificates for Google, Facebook
and many more4.

Furthermore, malicious entities can still log all encrypted data. When at a certain
point in the future Alice is hacked and her private key is compromised, the malicious
entity can decrypt all previous traffic between Alice and Bob. There is no built-
in form of Perfect Forward Secrecy, in which certificate theft does not give away
previous session keys. Figure 1.4 shows who knows what after a HTTP request-
response:

Entity Knowledge
Alice Alice requested a web page from Bob, Bob answered and gave the web page.
Bob Alice requested a web page from Bob, Bob answered and gave the web page.
Eve Alice and Bob have communicated and I know the encrypted data.

Figure 1.4: The knowledge of Alice, Bob and Eve after an HTTPS request / response.

Both HTTP and HTTPS lack anonymity and are easy victims for a mass surveilling
entity. HTTPS adds certificates to hide the transferred data, introducing end-to-
end cryptography. This end-to-end cryptography relies on trust in several5 root
certificates signed by companies of which over 50% are from the United States
of America6. One could argue that this trust is not based on anything. The re-
4More on Diginotar in http://www.rijksoverheid.nl/documenten-en-publicaties/rappo
rten/2012/08/13/black-tulip-update.html

5Both a clean Firefox installation and a clean Google Chrome installation trust all certificates issued
by 94 authorities by default. For Firefox: Settings → Advanced → Certificates → View Certificates →
Authorities. For Chrome: Settings → Manage Certificates → Authorities.

6Certificate statistics: http://w3techs.com/technologies/overview/ssl_certificate/a
ll

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update.html
http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update.html
http://w3techs.com/technologies/overview/ssl_certificate/all
http://w3techs.com/technologies/overview/ssl_certificate/all

..

1

6 1. Introduction

cent appearance of the Heartbleed bug introduces a fatal flaw in an often used
implementation of the HTTPS trust model.

Heartbleed
Due to the bug ‘Heartbleed’, HTTPS was not secure for a very long time. The com-
plete foundation on which HTTPS is built was compromised, making the S for secure
in HTTPS vanish in thin air. HTTPS relies on SSL certificates. These SSL certificates
can and are mostly handled by a framework called OpenSSL. This framework has
proven to be vulnerable to a buffer-over-read attack, in which 64 KB of active server
memory can be confiscated per attack. The attack leaves no trace and can be done
as often as needed in order to read the entire memory. This means that all active
certificates, keys, passwords etc. are insecure7. Experts call the bug ‘catastrophic’8,
in which over 600.000 websites are vulnerable, including Wikipedia, Twitter, Yahoo,
Dropbox and many more. As of the day of this writing, there are still over 300.000
unpatched websites9. The underlying technology for HTTPS is easily compromised
with the bug. This completely defaces the power of HTTPS and even worse, it gave
users trust where no trust was due.

Not only the technical aspects of HTTPS are broken with Heartbleed. There are
even speculations that the National Security Agency knew about the Heartbleed bug
for over two years10 before the bug was announced in April 1st 2014. It is clear that
even HTTPS encrypted traffic can be monitor, altered, filtered and blocked based
on content by governmental forces such as the NSA, as all private keys can be read
from server memory. There is and has been no privacy with both HTTP and HTTPS
web browsing.

BitTorrent
BitTorrent is an approach to the Internet which removes the servers. A so called
torrent file holds information about the download of single file or multiple files.
The torrent file also contains information about trackers, which keep track (hence
the name) of who is downloading the file. Instead of downloading information
from a server, the information is downloaded from other users of the same torrent
file. When you are connected to ten people which have parts of the file, you can
download the parts that they already have in parallel. In return you give them parts
that they don’t have and you do. This mechanism is however not anonymous at all.
It is even extremely easy to identify users that are downloading a certain file, just
by asking the tracker. Figure 1.5 gives a schematic overview of BitTorrent network
connectivity.

7A simple but very accurate explanation about Heartbleed here http://xkcd.com/1354/
8Bruce Schneier, https://www.schneier.com/blog/archives/2014/04/heartbleed.html
9Security scan: http://blog.erratasec.com/2014/06/300k-vulnerable-to-heartblee
d-two.html

10Bloomberg article: http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-u
sed-heartbleed-bug-exposing-consumers.html

http://xkcd.com/1354/
https://www.schneier.com/blog/archives/2014/04/heartbleed.html
http://blog.erratasec.com/2014/06/300k-vulnerable-to-heartbleed-two.html
http://blog.erratasec.com/2014/06/300k-vulnerable-to-heartbleed-two.html
http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-used-heartbleed-bug-exposing-consumers.html
http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-used-heartbleed-bug-exposing-consumers.html

1.1. The illusion of privacy ..

1

7

Figure 1.5: Schematic overview of BitTorrent traffic. Every node in the swarm shares its content of the
torrent file. The you node is downloading the file by asking other people in the BitTorrent swarm for
peaces of the file in parallel. This increases download speed but downloaders of the files are easily

traceable. (Image by Myra Vreede.)

Compromising the infrastructure
It is clear that once the infrastructure is compromised by an adversary, the complete
internet traffic is compromised even if it’s encrypted. And the infrastructure is
indeed compromised. Internet traffic flows through hundreds of thousands of miles
of underwater cables (see figure 1.6), connecting the world. These cables handle
all (encrypted) Internet traffic and are therefore of extreme importance to an entity
that wants to monitor the system. Glimmerglass is a government contractor of the
United States of America which develops wiretapping equipment that can tap all
information that flow through the cables, independent of the data rate, protocol
and format (see figure 1.7).

The tools developed by Glimmerglass still need to be attached to the under-
sea cables. During the cold war, the NSA tapped undersea cables that handled
all communication traffic between Soviet army bases in Operation Ivy Bells. The
sea where the cables were placed were a no-go zone which was protected by the
Soviet army. The NSA solved this by placing undersea wiretapping devices using
submarines. The same trick might just be repeated nearly 50 years later, with the
submarine USS Jimmy Carter. This submarine is capable of wiretapping undersea
cables with sophisticated devices (such as the ones developed by Glimmerglass).
It isn’t very likely that the USS Jimmy Carter is monitoring the Facebook status of
a random citizen anywhere in the world, but if the NSA wanted to, they could11.

11More on the USS Jimmy Carter here http://blogs.reuters.com/great-debate/2013/07/
18/the-navys-underwater-eavesdropper. More on Operation Ivy Bells here http://www.
military.com/Content/MoreContent1/?file=cw_f_ivybell

http://blogs.reuters.com/great-debate/2013/07/18/the-navys-underwater-eavesdropper
http://blogs.reuters.com/great-debate/2013/07/18/the-navys-underwater-eavesdropper
http://www.military.com/Content/MoreContent1/?file=cw_f_ivybell
http://www.military.com/Content/MoreContent1/?file=cw_f_ivybell

..

1

8 1. Introduction

Figure 1.6: Underwater cables in Europe. There are hundreds of thousands of miles of cables
throughout the oceans in the world. These cables together connect the entire world in the Internet.
An interactive version of this map is available here http://www.submarinecablemap.com/

TOR
So far there have been several attempts to circumvent governmental monitoring.
TOR is the most widely used anonymous Internet. With over 1.000.000 daily users12

no other system comes even close to this usage level. The Onion Router[3] tries
to circumvent mass surveillance using ‘onion routing’. The Onion Routing paradigm
ensures that no entity knows who is communicating with who, nobody can intercept
sent data and nobody can alter the data without anybody noticing it. The concept
of onion routing is straight forward and relies on asymmetric cryptography. Sup-
pose 𝐴, 𝐵, 𝐶 and 𝐷 are mathematical functions which are reversible by 𝐴 , 𝐵 , 𝐶
and 𝐷 respectively. Alice created functions 𝐴 and 𝐴 and gives 𝐴 away whilst
keeping 𝐴 private. Anybody that wants to send a message to Alice sends 𝐴(ℎ𝑒𝑙𝑙𝑜)
instead of ℎ𝑒𝑙𝑙𝑜. This way only Alice can decrypt the message. Instead of send-
ing a request directly through a server, the request travels multiple hops. Alice
sends 𝐵(𝐶(𝐷(ℎ𝑒𝑙𝑙𝑜))) to Bob, which peels his ‘onion layer’ with 𝐵 and forwards
𝐶(𝐷(ℎ𝑒𝑙𝑙𝑜)) to Charlie. Charlie peels his onion layer and forwards it to Dave. Now
Dave has no idea about who did the request, and all other nodes don’t know the
content of the request. This paradigm has been utilized in multiple anonymous

12See https://metrics.torproject.org/users.html for accurate user statistics. Peaks of this
month at about 2.000.000 users.

http://www.submarinecablemap.com/
https://metrics.torproject.org/users.html

1.1. The illusion of privacy ..

1

9

Figure 1.7: Glimmerglass develops tools which can tap all fiber optic cables. This is a slide from the
presentation of Glimmerglass. Source : ”The Atlantic”,

http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-s
tanding-practice-of-undersea-cable-tapping/277855/

systems, including the design and software developed in this thesis. TOR offers
anonymous downloading and anonymous content sharing. The problem with TOR
is that it is very slow. TOR allows between five and ten seconds per megabyte
(figure 1.8), which translates to 100-200 KBps. This is by far not fast enough for
an acceptable user experience. More on onion routing and TOR in section 2.1.

http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/

..

1

10 1. Introduction

Figure 1.8: Speed in TOR. The graph shows that a 1MB downloads takes more than 5 seconds.
(Source: https://metrics.torproject.org/performance.html)

1.2. The goal of this work
The problem with the current Internet is that it is not anonymous nor does it protect
privacy. One of the major advantages of the current Internet is the high bandwidth
that can be utilized. This is the number one problem with the privacy enhancing
technology TOR, it is unacceptably slow. The 100-200 KBps is far too slow for any
form of multimedia whatsoever. The goal of this work is to introduce the first step
in a new anonymous Internet, which respects the privacy of the user and unlike
TOR utilizes as much bandwidth as needed for a good user experience. In the
current multimedial era this means that it should be easily possible to stream a
High Definition movie of 1280x720 pixels with high definition audio, translating in
roughly 10Mb/s (1.25MB/s). The research done in this thesis is deemed to provide
the first step in a high bandwidth, anonymous Internet. Chapter 2 will cover past
attempts in creating an anonymized Internet. Chapter 3 will state the problems
that arise when developing such a system. An approach of deploying onion routing
in peer-to-peer (p2p) traffic is introduced in chapter 4. The implemented version of
this protocol is tested in chapter 5. Chapter 6 will cover future work and this thesis
concludes in chapter 7.

https://metrics.torproject.org/performance.html

2
Privacy enhancing

technologies

Recent research has shown that 86% of the people have taken some sort of mea-
sures to erase their digital footprint1. 68% of the people think current laws don’t en-
force online privacy enough and 50% of the people is concerned about the amount
of data that is available online about them. The lack of understanding of the under-
lying technologies makes it hard for people to understand to what extend privacy
can and will be preserved. Furthermore non-transparency of large companies con-
tribute to the fear of Internet users to lose their privacy completely. This makes
the Internet a more and more conservative medium, in which there is feared to be
no privacy, let alone anonymity, whatsoever.

Over the years several attempts have been made to enhance privacy within the
Internet. These attempts all either lack usability, or their technical design makes
them unfeasible for real world usage. This chapter will cover the five attempts
which have or had the highest potential of breaking through.

2.1. TOR
TOR (The Onion Router) is a protocol that allows anonymous connections to be
setup and used. It was developed in 2002 and has been under development since.
The goal of TOR is to offer an anonymous platform in which users are untrack-
able and censorship is impossible. The system relies on the voluntary bandwidth
donation of users. Content is not directly fetched after a request, but circuits con-
sisting of multiple users are built over which data is transferred. Leaked NSA files
describe TOR as ”The king of high secure, low latency Internet Anonymity”, with

1Research: http://www.pewinternet.org/2013/09/05/anonymity-privacy-and-secur
ity-online/

11

http://www.pewinternet.org/2013/09/05/anonymity-privacy-and-security-online/
http://www.pewinternet.org/2013/09/05/anonymity-privacy-and-security-online/

..

2

12 2. Privacy enhancing technologies

”No contenders in the waiting”2. The cryptographic design of TOR makes it (nearly)
impossible to identify users and filter content. Hidden services allow untrackable
websites to exist and offer content without being identifiable or filterable.

Working of TOR
TOR nodes create circuits of multiple hops in a fashion that each hop only knows
its neighbors and no more, and the originator has shared a secret with each hop.
When the originator wants to do a data request it wraps the request in layers using
the shared secrets that it has with the hops. These are the Onion layers, hence
the name Onion Routing. Each hop peels its layer and forwards the message. The
exit node can read the message, does the data request and sends the data back
with its own layer around it. Each hop adds its own layer and the originator of the
request can peel all layers as he has the shared blue secrets3.

..A. B. C. D. X.
1

.
2

.
3

.
4

.

8

.

7

.

6

.

5

Figure 2.1: Onion Routing

Cryptography in TOR
TOR uses a RSA 1024 PKI with 0AEP-MGF1 padding and SHA-1 as digest[4–6].
Furthermore it uses the ed25519 elliptic curve for handshakes[7]. Data streams
are encrypted with AES 128 bit in counter mode with initialisation vector of pure
zeros[8]. Shared key generation is done with Diffie Hellman and the 1024 bit prime
defined in RFC2409[9, 10].

Problems of TOR
TOR only handles TCP streams. It is therefore unusable for any application not
using TCP. Furthermore TOR lacks speed. TOR only offers between 100 and 200
KBps, which is insufficient for even YouTube streaming. There are several design
issues that lead to this disadvantage. See [11] for more information.

1. There are a limited number of exit nodes, which handle all TOR traffic.
2Source: http://www.theguardian.com/world/interactive/2013/oct/04/tor-high-s
ecure-internet-anonymity

3More crypto at https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f
=tor-spec.txt

http://www.theguardian.com/world/interactive/2013/oct/04/tor-high-secure-internet-anonymity
http://www.theguardian.com/world/interactive/2013/oct/04/tor-high-secure-internet-anonymity
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt

2.2. OneSwarm ..

2

13

2. There are a limited number of entry nodes, which handle all TOR traffic.

3. TCP congestion control in TOR overloads circuits. When two nodes share
multiple circuits, all circuits take the same TCP stream. This leads to the
advantage that the circuits are indistinguishable by an observer, but when
one of the circuits sends too many bytes the congestion control slows down
the entire TCP connection. This causes all other circuits between the nodes
to slow down, even though this is not necessary.

4. There is unequal load balancing. A small number of users use a large amount
of data. This slows down the network for the users that use less bandwidth.
There is no bandwidth donation or tit-for-tat implementation in TOR.

2.2. OneSwarm
OneSwarm is a file sharing tool which enables sharing files with friends only. One-
Swarm has a small but dedicated user community in Sweden and France as indicated
by their support forum4. It is an open source software package that aims to make
p2p traffic anonymous. It is developed at the University of Washington to be more
anonymous than BitTorrent and at the same time to be faster than TOR. OneSwarm
allows user to share data with certain people whilst remaining anonymous for other
people. The social aspect in OneSwarm makes it possible for both the sender and
the receiver of data to remain anonymous or not. When anonymous, messages
and requests are forwarded with a certain probability, and a response will be sent
only after a delay, see figure 2.2. This way when somebody tries to query you or
fetch data from a node, that node has a plausible deniability that the answer of the
request wasn’t actually his.

Figure 2.2: The basic idea of OneSwarm’s anonymity model. A search query is forwarded with a
certain probability. Node A can’t tell whether the answer comes from T or from another node. Images

source: original paper[12]

Cryptography in OneSwarm
OneSwarm is backwards compatible with BitTorrent and data can be transfered in
plain sight. When users share files privately, OneSwarm uses RSA for asymmetric
4See the forums at http://forum.oneswarm.org/

http://forum.oneswarm.org/

..

2

14 2. Privacy enhancing technologies

encryption and AES 256 bit for symmetric encryption[4, 8]. Hashing is done using
SHA-1 digests[6].

Problems of OneSwarm
OneSwarm has been shown [13] to be vulnerable for a lot of attacks just by looking
at the plain data. Furthermore, when searching unpopular items on OneSwarm, the
search propagates through a lot of nodes. Because nobody can return results for
the query, it has to be sent to a large number of nodes. This increases the traffic that
is caused by each search query. Downloads are faster when the number of hops
are smaller. Therefore when a OneSwarm node tries to optimize its performance it
will become friends with more people. This directly counters the social aspect as
trust is off the borders.

2.3. Tarzan
Tarzan[14] is an abandoned research prototype of a peer-to-peer system developed
by the New York University and Massachusetts Institute of Technology in 2002. It
has zero usage. It is built as an application independent IP system and uses layered
cryptography just like TOR. Every user must know the entire system and all have to
be connectible. Initiators choose their paths by themselves using pseudo-random
node selection. Tarzan uses cover traffic against eavesdroppers, and only uses
paths for ‘real’ data transmission when cover traffic also flows across the path.
The last node in the path does the request to the outside world using his Network
Address Translation and relays the data back to the originator.

Cryptography in Tarzan
Packets are encrypted using Blowfish in CBC mode with an 8 byte random initial-
ization vector per packet[15]. Sha-1 is used for hashing and Rabin is used for
asymmetric cryptography[6, 16].

Problems in Tarzan
Every node in the system has to know all other nodes in the system. This implies
that when the userbase grows the knowledge per node grows equally. This makes
Tarzan inscaleable when it comes to millions of users. On top of that, the network is
enduring excessive load due to the large amounts of cover traffic that flow through
the system. This is undesirable, especially when users use mobile devices such
as smartphones or tablets which have limited data capacity. Figure 2.3 shows the
cover traffic of Tarzan. The software built along with the research is extremely
outdated and isn’t maintained.

2.4. Flash proxy ..

2

15

Figure 2.3: The cover traffic in Tarzan. The ‘useful’ data is shown in thick black lines. The thin lines are
cover traffic, which increases the load of the network. Image source original paper[14]

2.4. Flash proxy
Flash proxy[17] is a prototype which expands TOR by adding entry nodes, devel-
oped at Stanford University in Stanford. As with Tarzan it has very little to no usage5.
It is created to circumvent filtering mechanisms in countries where governmental
forces block content on the Internet. In TOR (see section 2.1) a limited number of
entry nodes is available. They are easily blocked by governmental forces, making
TOR unusable. A flash proxy is a proxy that operates as a small badge on a web
page, see figure 2.4. When somebody visits the page he is automatically an en-
trynode for TOR, allowing other users to enter TOR using the badge as entrance.
The client that runs the badge forwards all the traffic for them. The fact that the
IP addresses of the people that visit the webpage is dynamic, governmental forces
cannot block them easily.

Figure 2.4: The badge as shown on a webpage when the proxy is active. Dark blue is idle, light blue is
active (somebody is using your proxy). Source of the badge:

http://crypto.stanford.edu/flashproxy/

Problems of Flash proxy
The person that is running the flash proxy (the badge) has to be in an area where
TOR is reachable. If the server of the web page is in an area where TOR entry
5See up-to-date measurements at https://metrics.torproject.org/users.html?graph=us
erstats-bridge-transport&transport=websocket#userstats-bridge-transport

http://crypto.stanford.edu/flashproxy/
https://metrics.torproject.org/users.html?graph=userstats-bridge-transport&transport=websocket#userstats-bridge-transport
https://metrics.torproject.org/users.html?graph=userstats-bridge-transport&transport=websocket#userstats-bridge-transport

..

2

16 2. Privacy enhancing technologies

nodes are also blocked, there is still no entry in TOR. Furthermore flash proxy does
not hide the person using the badge as an entry for tor. Any entity can start a
browser badge and see that person 𝑥 is connecting to him, wanting to make use
of TOR. A big design issue is that the default browser badge is implemented as
an iFrame that links to http://crypto.stanford.edu/flashproxy/embed
.html. Blocking *.staford.edu is enough for a government to shutdown flash
proxy. Even if the browser badge is embedded from another domain, it is still easy
to block all websites that contain browser badges.

Figure 2.5: Configuration of I2P. Images source:
http://filesharefreak.com/2007/12/16/darknets-private-internet-file-sharing

2.5. I2P
I2P, short for Invisible Internet Protocol is a network architecture that provides
anonymous and secure network traffic. When two nodes are communicating, they
send their traffic over their outbound tunnels towards inbound tunnels of the recip-
ient. The origin and destination are never more than an anonymous cryptographic
key. I2P can be used as a network layer for existing applications such as BitTor-
rent, IRC and email. It includes websites accessible only through I2P, so called
eepsites. These eepsites are servers setup locally with inbound tunnels pointing
towards them.

Cryptography in I2P
I2P uses Elgamal as asymmetric encryption method and AES 256 bit in CBC mode
for symmetric message encryption[8, 18]. Session keys are negotiated using 2048
bit Diffie Hellman[9]. 1024 bit DSA is used for signatures and SHA256 is used as

http://crypto.stanford.edu/flashproxy/embed.html
http://crypto.stanford.edu/flashproxy/embed.html
http://filesharefreak.com/2007/12/16/darknets-private-internet-file-sharing

2.5. I2P ..

2

17

hashing function for generating encryption keys[19, 20].

Problems in I2P
I2P tries to be a replacement for the IP protocol. This immense goal introduces
a configurational nightmare. It is near impossible to configure I2P for people not
completely familiar with terminology that only people with a masters degree in
computer science understand. This complete lack of usability constructs a big gap
between the great potential of I2P and the small userbase. See figure 2.5 for a
small portion of configuration settings in I2P.

3
Problem description

The Internet is under attack. In its current form the Internet does not comply
to any privacy enhancing standards and it does not offer anonymity. In order to
increase privacy and anonymity in an online setting, the ability of organisations to
eavesdrop traffic, alter traffic and filter content must be reduced to a minimum
and eliminated completely if possible. The Internet Engineering Task Force has
recently published rfc7258[21], in which their concern about mass surveillance is
discussed. They state that ”Pervasive monitoring is a technical attack that should be
mitigated in the design of IETF protocols, where possible”. The goal of this thesis
is to introduce the first step of a content sharing tool alternative to the ‘Open’
Internet, that utilises the existing infrastructures of the Internet, but is immune to
organisational surveillance.

The problem that is inherit to data sharing and the transportation of bits is the
vulnerability of the data. All bits that move from A to B can be monitored, altered,
filtered or communications can be blocked completely. This chapter covers the
problem that have to be solved and the problems that appear when introducing
solutions for the former problems.

3.1. Cryptography requirements
The main privacy problems that are pointed out in the Introduction that need to
be solved using cryptography in an anonymous Internet are listed and described in
arbitrary order.

Monitoring A malicious entity should not be able to obtain any information about
the content that is transfered between two arbitrary entities.

Altering A malicious entity should not be able to alter any information that is
transfered between two arbitrary entities without them noticing it.

Filtering A malicious entity should not be able to filter any transferred information
based on its content.

19

..

3

20 3. Problem description

Traceability A malicious entity should not be able to obtain sustainable informa-
tion to prove that data is being sent from entity A to entity B.

Perfect Forward Secrecy Once an entity is compromised and its private key is
compromised, any data that has been logged overtime should not be decrypt-
able.

3.2. Usability requirements
Often privacy enhancing technologies fail to become popular outside the core user
community that compiles their own kernel and that uses PGP1. Seamless operation
and auto configuration is essential for large-scale uptake. An anonymous Inter-
net needs not only to comply to the cryptographic requirements, the system should
focus on usability. TOR, OneSwarm, I2P and Tarzan all comply to (most of) the cryp-
tographic requirements. TOR however lacks speed, OneSwarm, I2P and Tarzan are
a nightmare to understand and configure. We address the usability requirements
of an anonymous Internet and discuss the problems that are to be encountered in
alphabetical ordering.

Bandwidth utilization and network load
The major disadvantage of TOR is its speed. Speeds of about 200 KBps (see figure
1.8) are insufficient for a user friendly anonymous Internet. When dealing with
any kind of onion routing, nodes have to relay traffic and for every byte that is
requested, this byte also travels through the proxies. This means that users will
have to donate bandwidth in order to let other people download. In BitTorrent this
is fixed using the ‘tit-for-tat’ mechanism, which prevents users from leeching by
giving higher bandwidth to users that upload a lot[22]. An incentive system with
voluntary relaying / uploading should be introduced to prevent a lack of network
capacity.

Distributed nature
In order to avoid a single point of failure or a single point of trust, an anonymous
Internet should be decentralized. This removes the ability of governmental forces
to disable the single point of failure (or multiple, if applicable). Sometimes this
is nearly impossible. During the Egyptian revolution, the Internet was completely
shut down by the government simply by eliminating the Internet service providers2.
Such a shutdown is impossible to prevent. For the sake of security, web browsers
trust multiple root certificates by default, see section 1.1. When an issuer of such
root certificate is compromised, the entire system is not to be trusted. Single points
of failure and trust should be avoided where possible.

1Lots of real technical questions on the TOR, OneSwarm and I2P forums. More on http://tor.stac
kexchange.com/, http://forum.oneswarm.org and the eepsite http://forum.i2p/ (only
accessible through I2P)

2”Live” feed of the disconnection of the Internet: http://www.huffingtonpost.com/2011/01/
27/egypt-internet-goes-down-_n_815156.html

http://tor.stackexchange.com/
http://tor.stackexchange.com/
http://forum.oneswarm.org
http://forum.i2p/
http://www.huffingtonpost.com/2011/01/27/egypt-internet-goes-down-_n_815156.html
http://www.huffingtonpost.com/2011/01/27/egypt-internet-goes-down-_n_815156.html

3.2. Usability requirements ..

3

21

Migration path
It is infeasible to solve all problems at once with one system. Quality mechanisms
and concepts should be utilized and where possible the software should be kept
backwards compatible. Keeping backwards compatibility with BitTorrent will for
example give the free advantage of available content. The modularity of a network
protocol for anonymous Internet can be of great value to other applications.

Moral high ground
Unfortunately privacy enhancing technologies are not only used as a force of good.
One of the main purposes of monitoring, content filtering, content blocking and
the mass surveillance by governmental forces is ‘catching criminals’. Terrorist net-
works, drugs and armory distributing networks such as Silk Road [23] and child
pornography networks are a disgrace to the Internet and are in no way desirable.
Still mass surveillance on a person should arguably be the exception instead of the
rule. Furthermore, ‘criminals’ is defined by the governmental forces itself. What if
having a sexual orientation that is illegal in a country? Should governments be able
to log all traffic in order to find out a persons sexual orientation? The extend to
with the mass surveillance is possible in the Internet in its current form raises a lot
of these questions.

[EDIT] Commercial Services
Buying and selling stuff, auction houses, sales forums, gaming.
See also: The seperate Drugs and Erotica sections for those specific services.
⋅ Contract Killer - Kill your problem (snitch, paparazzo, rich husband, cop, judge, competition, etc).
⋅ Bit Poker v1.93 - Poker (Bitcoin).
⋅ Buttery Bootlegging - Get any expensive item from major stores for a fraction of the price!
⋅ Stat ID’s - Selling fake ID’s.
⋅ Bitcoin - Like Ebay. We increase the gross national product.
⋅ Video Poker - A casino that features ‘Jacks or better’ video poker.
⋅ Cheap SWATTING Service - Calls in raids as pranks.
⋅ Data-Bay - Buy and sell files using digital currency.
⋅ The Last Box - Assassination Market (Bitcoin).
⋅ Pirax Web DDos - Take out your enemies in seconds.
⋅ Hacking Services - Hacks IM and Social Nets, does DDos, sells bank/credit/paypal accounts. Se
habla Espanol.
⋅ Email Hacker - Hack emails (Bitcoin).
⋅ CC4ALL - Selling valid Credit-Cards. Most from Germany.

Figure 3.1: Services offered on TOR, page easily found using the ‘Hidden Wiki’. (Source:
http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layer

s-of-the-onion-router-networks/

In constructing a system where mass surveillance is impossible there are a lot
of moral issues that have to be addressed. How are these ‘criminals’ defined? How
do you prevent assassins, terrorists and pedophiles from misusing such a network?
The characteristics of such system are theoretically an ideal base for such malicious

http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layers-of-the-onion-router-networks/
http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layers-of-the-onion-router-networks/

..

3

22 3. Problem description

users to switch to such a system. TOR for example is misused by cyber criminals
in many ways3. Figure 3.1 shows just a grasp of services offered on TOR and show
the cruel activities that are offered on TOR.

Almost all of these offered services are illegal. One could argue that these
services are offered and used anyway and TOR is just another medium for these
services. But what about child pornography? Figure 3.2 shows how easy it is to
find child pornography on TOR.

Some internal organ of an anonymous Internet should be responsible for rec-
ognizing such content and its users. This however raises a censoring aspect to the
system, which is exactly one of the problems in the current Internet, as censoring
aspects of such a network can easily be abused by governmental forces. One could
also argue that even if the criminals use the system and are theoretically untrack-
able, they will reveal themselves by human error. An officer tracing investigating
child pornography in TOR says that they have been able to arrest 25 people by
looking at traces they leave: ”There’s not a magic way to trace people [through
Tor], so we typically capitalize on human error, looking for whatever clues people
leave in their wake,” ... ”that has so far resulted in 25 arrests and the identification
of more than 250 victims, all children.”4.

PROJECTS
⋅ History of CP - An attempt to make an encyclopedia of Child Pornography, Child Models, MySpace
girls and the like.
⋅ Centralization Project - For now it is just discussion about creating a distributed wiki-like database
complete with image samples and file hashes.
⋅ To do - List of suggestions to reconcile the society with child lovers.
⋅ Your Own Pedo Site - A tutorial on making a pedo site of your own, and reducing the attendant
anonymity/security risks.
⋅ Pedo tag - Discussion on how to identify the pedo-community.
⋅ Back to Normal - Blueprint for a new child love movement.
⋅ Pedophilen-Gemaeinschafts-Bund - German interest and self help group.
⋅ The Upload Guide - Project to setup a guide for cleanet uploads, includes host list.
⋅ The Child Nudity Wiki - An indexing of all instances of child nudity.

Figure 3.2: Screenshot of TOR hidden wiki, the ease of finding child pornography. (Source:
http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layer

s-of-the-onion-router-networks/

NAT compatibility
Users that use an anonymous Internet should be able to make use of a firewall or
Network Address Translator (NAT) without having to make themselves connectible.
This enables the disadvantage that ports can be closed and people cannot connect

3A lot of examples here: http://www.securelist.com/en/blog/8187/Tor_hidden_service
s_a_safe_haven_for_cybercriminals

4Wall Street Journal article: http://online.wsj.com/news/articles/S
B10001424052702303949704579461641349857358?mod=WSJ_TechWSJD_NeedToKnow

http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layers-of-the-onion-router-networks/
http://krypt3ia.wordpress.com/2011/09/04/the-hidden-wiki-between-the-layers-of-the-onion-router-networks/
http://www.securelist.com/en/blog/8187/Tor_hidden_services_a_safe_haven_for_cybercriminals
http://www.securelist.com/en/blog/8187/Tor_hidden_services_a_safe_haven_for_cybercriminals
http://online.wsj.com/news/articles/SB10001424052702303949704579461641349857358?mod=WSJ_TechWSJD_NeedToKnow
http://online.wsj.com/news/articles/SB10001424052702303949704579461641349857358?mod=WSJ_TechWSJD_NeedToKnow

3.3. Attacks ..

3

23

to each other. When A can communicate with both B and C, this does not necessarily
mean that B and C can communicate. This can be solved using NAT puncturing[24],
but this could reveal identities. An anonymous Internet should either respect the
NAT problem and circumvent it or it should apply NAT puncturing in a fashion that
does not reveal identities.

Open Source
Making an anonymous Internet open source will bring a lot of free advantages.
Developers across the world will have access to the code and will be able to alter
the code. This brings the advantage that bugs will be found faster, they will be fixed
faster, users will be able to increase the performance and add their knowledge to
the software. Furthermore it is much easier to trust transparent software. This way
the users can see the complete working of the software themselves, increasing trust
in the software.

Scalability
An anonymous Internet should perform better or just as good when the number
of users grows. The system should be designed to handle the millions of potential
users and should easily cope with these extreme numbers. This seems trivial how-
ever existing systems often can’t handle these numbers by design. Tarzan requires
all users to have knowledge of all other users, which is not practically scalable[13].
TOR only uses a fixed amount of entry nodes and exit nodes[3], which cap the
bandwidth enormously when the userbase grows. The systems design should be
scalable and performance should not decline with more users.

3.3. Attacks
An anonymous Internet should be in some extend resilient to several kinds of at-
tacks. Attacks differ in size, approach, severity and danger. There are passive
attacks, where observing is key, and active attacks in which the attacker actively
participates. This section covers the main types of attacks.

Passive attacks
Timing attack It should be impossible for a malicious node to gather any informa-

tion about where information is coming from and where information is going
by timing the request and response times. This attack is very hard to conquer
and many systems such as OneSwarm have proven to be vulnerable to timing
attacks[13] (also see section 2.2).

Eavesdropping Malicious nodes should not be able to gather information when
eavesdropping the infrastructure. In an eavesdropping attack the adversary
will try to follow requests from nodes to exit nodes with statistical analysis of
the traffic flow. Data flowing through the circuits should always be encrypted
and undistinguishable. It should always be plausible that bits flowing from A
to B are relay traffic instead of request/response traffic.

..

3

24 3. Problem description

Active attacks
Masquerading It should not be possible for an entity to pretend to be another

node. Each node should have private information with which he can sign
messages in order to ensure that he is the origin of the message. A forged
identity can be disastrous for any distributed system.

Replay attack In replay attacks, information is stored by an adversary and used
later on (replaying the message). This can be done in badly implemented
challenge response authentication but also for timing attacks or sybil attacks.

Sybil attack Distributed systems that use a reputation system or voting system of
some sort are vulnerable to the Sybil Attack. In this attack great amounts of
identities are formed and these identities work together. The more identities
are collaborating the more influence the whole gains in order of determining
the reputation or rating of content and / or users. The Sybil Attack is hard
to counter. Making it expensive (in terms of computing power) to enter the
distributed system and gain an identity could prevent creating large amounts
of identities at once, but this solution is not waterproof. With the budget that
organisations such as the NSA have, such attack is easily deployed.

Eclipse attack In the Eclipse attack an adversary tries to exclude a node from
the network. Often the adversary gives a node false information. When a
node requests the state of a system, the malicious node introduces a faulty
state which enables him to influence the behavior of the victim node. This
can be used to introduce faulty nodes to the victim node, or let the victim
node drop connections with ‘good’ nodes. Once a node is eclipsed, the node
is compromised.

Heartbleed-like attacks
You can build a theoretically unhackable and completely safe algorithm, but as
soon as the foundation of the algorithm is hacked, the algorithm itself is useless.
HTTPS has been compromised completely due to a bug in the OpenSSL software,
see section 1.1. These attacks are difficult to perform and difficult to conquer.
Another example of such an attack is cracking a random number generator. The
cryptographically secure RSA keys have been compromised by ‘listening’ to the
computer while it generated the keys[25]. In constructing an anonymous Internet
it should not be forgotten that if the system relies on something, it should not be
assumed that it is unhackable.

End-device hacking
Whatever protocol is used to display something on the monitor, your privacy is
completely gone when somebody sitting next to you can see what you’re doing.
The same goes if somebody can see what you’re doing when he’s not even around.
End-device hacking can be of great value to an attacker as it is hard to see and nearly
impossible to counter. The National Security Agency has successfully implemented

3.4. Adversaries ..

3

25

the Cottonmouth series, see figure 3.3. In these Universal Serial Bus (USB) hacks
the end-users computers is compromised without him even knowing it.

Figure 3.3: One of the NSA’s devices from the ANT Catalogue. Image source: http://www.spiege
l.de/static/happ/netzwelt/2014/na/v1/pub/img/USB/S3223_COTTONMOUTH-I.jpg

3.4. Adversaries
Theoretical attacks on deployed systems only work when the capacity is there to
carry out the attack. Attacks often costs a great deal of computational power, money
or time. Not everybody has these assets. Adversaries can roughly be divided into
three categories; script kiddies, service providers and global adversaries.

‘Script kiddie’
Script kiddies is a term sobriquet for single man attackers. These highly vary in
intelligence and capability, but can do great harm to systems. A lot of hacks are
done by the so called script kiddies. In order to be resilient against script kiddies the
distributed network should identify a single entity that is trying to abuse the system.
Whenever a single entity tries to forge an identity, to alter messages or block content
he should be eliminated from further contact and the network should behave as
expected directly afterwards. The problem herein is the immediate recognition of
a single malicious entity.

Internet service providers
Internet service providers can be summoned to hand information about Internet
traffic to law enforcement agencies. Vodafone has recently admitted having wire-
taps directly in their infrastructure in some of the countries they are active in5.
5Guardian news item: http://www.theguardian.com/business/2014/jun/06/vodafone-r
eveals-secret-wires-allowing-state-surveillance?CMP=twt_gu

http://www.spiegel.de/static/happ/netzwelt/2014/na/v1/pub/img/USB/S3223_COTTONMOUTH-I.jpg
http://www.spiegel.de/static/happ/netzwelt/2014/na/v1/pub/img/USB/S3223_COTTONMOUTH-I.jpg
http://www.theguardian.com/business/2014/jun/06/vodafone-reveals-secret-wires-allowing-state-surveillance?CMP=twt_gu
http://www.theguardian.com/business/2014/jun/06/vodafone-reveals-secret-wires-allowing-state-surveillance?CMP=twt_gu

..

3

26 3. Problem description

Furthermore Internet service providers be forced to filter data as what happens
in Turkey in April 2014 with Twitter6. Internet service providers can have control
over multiple entities within a distributed network, as multiple users of the network
might have the same Internet service providers. These Internet service providers
can therefore have more information about data flowing through their infrastruc-
ture than a script kiddie. End to end cryptography becomes more and more of
a concern when the infrastructure is in control of a ‘malicious’ party. ISPs are in
some way capable of doing collaborative attacks on the system, but will mainly
focus on surveillance and content filtering as they can be obliged to do so by law
enforcement agencies.

Global adversary
The most powerful adversaries are the intelligence agencies. The NSA is estimated
to have a 10.8 billion dollar budget7. Annually, that is. This enables the NSA to
deploy the most complicated attacks and develop the most complicated hardware.
As the Snowden files indicate it has enabled them to deploy mass surveillance to
not only US citizens but citizens worldwide. NSA’s SIGAD, also known as PRISM/US-
984XN collected data of the biggest Internet websites worldwide, see figure 3.4.
Along with PRISM there are multiple other tools developed and used by the NSA,
such as XKeyScore. Edward Snowden says its possibilities are endless: ”You could
read anyone’s email in the world, anybody you’ve got an email address for. Any
website: You can watch traffic to and from it. Any computer that an individual sits
at: You can watch it. Any laptop that you’re tracking: you can follow it as it moves
from place to place throughout the world. It’s a one-stop-shop for access to the
NSA’s information.”8. The NSA has access to endless amounts of data by wiretap-
ping underseas Internet cables9. Furthermore they have hacked end-devices such
as routers and Universal Serial Bus systems (see figure 3.3). It is clear that if an
adversary like the NSA wants to exploit or attack a system, they can. It is out of the
scope of this thesis to even try to make an anonymous Internet that is ‘NSA-proof’.

6BBC news item: http://www.bbc.com/news/world-europe-26677134
7From the ”black budget”: http://www.washingtonpost.com/wp-srv/special/national/bl
ack-budget/

8From a German interview with Edward Snowden on NDR. Full transcript available here http://www.
commondreams.org/headline/2014/01/27-1

9The Guardian news article: http://www.theguardian.com/uk/2013/jun/21/gchq-cable
s-secret-world-communications-nsa

http://www.bbc.com/news/world-europe-26677134
http://www.washingtonpost.com/wp-srv/special/national/black-budget/
http://www.washingtonpost.com/wp-srv/special/national/black-budget/
http://www.commondreams.org/headline/2014/01/27-1
http://www.commondreams.org/headline/2014/01/27-1
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa

3.4. Adversaries ..

3

27

Figure 3.4: One of the leaked top secret slides of the PRISM presentation, full slides available here
http://www.lemonde.fr/technologies/article/2013/10/21/espionnage-de-la-nsa

-tous-les-documents-publies-par-le-monde_3499986_651865.html

http://www.lemonde.fr/technologies/article/2013/10/21/espionnage-de-la-nsa-tous-les-documents-publies-par-le-monde_3499986_651865.html
http://www.lemonde.fr/technologies/article/2013/10/21/espionnage-de-la-nsa-tous-les-documents-publies-par-le-monde_3499986_651865.html

4
Design of p2p onion routing

We utilize the basic idea of TOR, optimized for peer to peer traffic and stripped of all
central servers. TOR is for web browsing, the p2p onion router can be used for all
kinds of UDP traffic. Circuits are built using the same general method as in TOR. For
maximizing throughput AES onion routing is used communicating from originator
to exit node. Each participating node in the p2p onion router is a voluntary active
relay and possible exit node.

4.1. General outline
A node that wants to download a torrent anonymously creates multiple multi-path
circuits incrementally in such a way that each node only knows the next hop in the
circuit and the previous node in the circuit, but no more. Each node in the circuit
proposes a set of next hops, the candidate list. The originator of the circuit decides
one. When these circuits are built, data requests are sent through the circuits. The
last node in the circuits does the data request and propagates the data back over
the circuit.

Cryptography in the p2p onion router
The p2p onion router uses Elliptic Curve Elgamal for asymmetric encryption[18, 26],
Diffie Hellman for session key negotiation[9]. Packet encryption is done with sym-
metric encryption with 128bit AES . This is implemented in both ECB mode and
‘opportunistic cryptography’ mode (see session 4.5)[8]. The use of these crypto-
graphic functions is described in 4.3.

Building circuits
Each process running the p2p onion router protocol has an IP-address, a port and
public key (see 4.3). The public key is assumed to be globally accessible through
the existing distributed network Dispersy[27]. Every data request used in the p2p
protocol is done over several hops instead of directly. These so called circuits

29

..

4

30 4. Design of p2p onion routing

are constructed incrementally using CREATE , CREATED , EXTEND and EXTENDED
packets, just as in TOR. Each circuit is built as follows:

1. The initiator Alice sends a CREATE packet to an arbitrary node Bob which she
can communicate with. The payload of this CREATE packet is the first part
of the Diffie Hellman handshake, encrypted with the public key of Bob. This
complete packet is also encrypted with the public key of Bob. Section 4.2
contains detailed information about the packets.

2. Upon receiving a CREATE packet, Bob calculates the shared Diffie Hellman
secret and derives a ‘session key’ from it. Bob responds with a CREATED
packet. This packet contains the second part of the Diffie Hellman handshake
and a list of nodes which he can communicate with, the candidate list. The list
is encrypted with the calculated session key and the entire CREATED package
is encrypted with the public key of Alice.

3. When Alice cannot decrypt the candidate list using the session key (calculated
the same way as Bob calculates it), the circuit is immediately dropped as the
identity of Bob can not be guaranteed. When Alice can decrypt the candidate
list, Alice and Bob share a secret which they can use for encrypting packets.

4. Alice picks a next hop Charlie from the candidate list and sends an EXTEND
packet to Bob. This packet contains the identifier of Charlie and the first part
of the Diffie Hellman handshake that Alice wants to do with Charlie. The Diffie
Hellman handshake part is encrypted with the public key of Charlie and the
entire packet is encrypted using AES and the secret that Alice and Bob share.

5. Upon receiving the EXTEND packet, Bob sends a CREATE packet to Charlie
just as Alice sent a CREATE packet to Bob, but with the Ðhandshake part from
Alice.

6. Bob receives a CREATED packet from Charlie but can’t read the candidate list
as it’s encrypted with the secret that Alice and Charlie share. It sends an EX-
TENDED packet with the exact same payload of the CREATED cell, encrypted
with the session key between Alice and Bob.

7. When Alice receives the EXTENDED packet she checks if she can decrypt the
candidate list. If not the circuit is terminated.

8. When Alice wants to extend the circuit further it wraps the EXTEND circuit in
layers using AES with as key the session key of the hops, up to the current
endpoint of the system, so only that node can read the EXTEND packet and
other nodes will just forward it as a normal DATA packet (see below). The
EXTENDED packet is only readable by the Alice, so is forwarded by all other
nodes.

4.2. Packet specification ..

4

31

Data transmission
Once a circuit is created data can be transmitted over the circuits using DATA pack-
ets. Each hop knows the direction of the circuit (towards the initiator of the circuit
or towards the endpoint of the circuit). During the creation of the circuits each node
obtained a session key between itself and the initiator of the circuit, not knowing
who the initiator is. When a node receives a DATA packet it looks up the direction
of the packet. If it’s heading towards the endpoint it decrypts using AES with the
session key that the node has with the circuit. If the packet is heading towards
the initiator, the node encrypts the data using AES with the session key that the
node has with the circuit and forwards the packet. This way only the endpoint of
the circuit can read a data request from the originator, which wraps the packet in
AES layers using the session keys it has with the nodes in reversed order. Only the
originator can read the data that the endpoint sends back through the system by
decrypting all layers of AES with the session keys in the order of the hop number
of the nodes.

1. Alice wants to request 𝑥 over circuit Bob - Charlie - Dave. She wraps the
request in AES layers and sends END(END(ENC(𝑥)))) to Bob.

2. Bob peels its AES layer and sends the message ENC(ENC(𝑥))to Charlie.

3. Charlie peels its AES layer and sends the message ENC(𝑥) to Dave.

4. Dave requests 𝑥 to the server and sends the response encrypted with his AES
layer ENC(response) to Charlie.

5. Charlie adds his AES layer and sends the message ENC(ENC(response)) to
Bob.

6. Bob adds his AES layer and sends the message ENC(ENC(ENC(response))) to
Alice.

7. Alice peels each AES layer and reads the response.

4.2. Packet specification
There are seven different kind of packets.

CREATE Used for adding single nodes to an existing or new circuit.

CREATED Acknowledgement for CREATE message.

EXTEND Used to tell the last node in the current circuit to add a node.

EXTENDED Acknowledgement for EXTEND message.

DATA Data transfer.

PING For keeping circuits alive as UDP is connectionless.

PONG Response to PING message.

..

4

32 4. Design of p2p onion routing

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

First part of Diffie Hellman 256

Figure 4.1: The CREATE packet

The CREATE packet consist of a packet header (circuit identifier) and packet
content. The packet content consist of the packet type and the first part of the
Diffie Hellman handshake 𝑔 mod 𝐺.

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Encrypted second part of Diffie
Hellman 256

Candidate list variable

Figure 4.2: The CREATED packet

The CREATED packet consist of a packet header (circuit identifier) and packet
content. The packet content consist of the packet type and the second part of
the Diffie Hellman handshake 𝑔 mod 𝐺 and a candidate list. The candidate list is
specified as follows:

Description Size in bytes
Number of candidates 1
Public key 256 (per candidate)

Figure 4.3: The candidate list

The candidate list in a CREATED packet is by default encrypted with AES and the
session key that the author of the candidate list and the originator of the network
share.

4.2. Packet specification ..

4

33

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Extend with 8
Encrypted first part of Diffie Hell-
man 256

Figure 4.4: The EXTEND packet

The EXTEND packet consist of a packet header (circuit identifier) and packet
content. The only possible recipient of an EXTEND packet is the last node in the
circuit. The packet content consist of the packet type, the node which the circuit is
to be extended and the first part of the Diffie Hellman handshake 𝑔 mod 𝐺. The
first part of the Diffie Hellman handshake is encrypted with the public key of the
node to be added to the circuit, so only that node can read it.

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Encrypted second part of Diffie
Hellman 256

Candidate list variable

Figure 4.5: The EXTENDED packet

The EXTENDED packet consist of a packet header (circuit identifier) and packet
content. The only possible recipient of an EXTENDED packet is the owner (initiator)
of the circuit. The packet content consist of the packet type, the second part of
the Diffie Hellman handshake 𝑔 mod 𝐺 and a candidate list. The candidate list is
encrypted and specified above.

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Address 8
Data 1024

Figure 4.6: The DATA packet

The DATA packet consist of a packet header (circuit identifier) and packet con-
tent. The only possible recipient of a DATA packet is the owner (initiator) of the

..

4

34 4. Design of p2p onion routing

circuit and the last node of the circuit. The packet content consist of the packet
type, the address that the exit node should do a request to, and the data. The data
field consist of LibTorrent data when a DATA packet is heading to the endpoint and
the requested data when the packet is heading to the originator of the circuit.

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Figure 4.7: The PING packet

UDP is a connectionless protocol. In order to know which nodes are still active
circuits will have to be kept alive. This is done using PING messages. At a set
interval a PINGmessage is sent over the circuit. It is relayed by intermediate nodes
and only the last node in the circuit can decrypt the PING message. It replies with
a PONG message to let the originator of the circuit know that the circuit is still alive
and well.

Description Size in bytes
Packet Header Circuit ID 4
Packet Content Packet type 1

Figure 4.8: The PONG packet

4.3. Packet encryption
Received packets are always partially encrypted. The packet header is unencrypted
and consist only of the circuit identifier. The packet content is always encrypted.
The way the recipient of a packet decrypts the packet content depends on what
the recipient knows about the circuit on which the packet was received. Public key
encryption is done using Elliptic Curve Elgamal encryption. Diffie Hellman data 𝑔
mod 𝐺 and 𝑔 mod 𝐺 are calculated randomly per hop per circuit with 𝑔 = 2 and
𝐺 = the 2048 bit prime defined in RFC3526[28]. AES encryption and decryption is
done with the first 128 bits of the SHA-1 hash of the shared Diffie Hellman secret.

Diagrams
Figure 4.9 shows the packet flow when creating a circuit and transmitting data
through the circuit. Details about the packets is described in 4.2. In this diagram,
Bob(x) means 𝑥 encrypted with Bob’s public key. DH-DATA is the Diffie Hellman
data described in 4.2. ENC(x)means 𝑥 encrypted with AES with the keys described
in 4.3. Figure 4.10 shows the transmission of data over a circuit. In this diagram
the same syntax is used.

4.4. Block cipher mode of operation ..

4

35

From To Packet
Alice Bob circ1, Bob(CREATE, Bob(DH-data))
Bob Alice circ1, Alice(CREATED, DH-data, ENC({candidates}))
Alice Bob circ1, ENC(EXTEND, Charlie, Charlie(DH-data))
Bob Charlie circ2, Charlie(CREATE, Charlie(DH-data))
Charlie Bob circ2, Bob(CREATED, DH-data, ENC({candidates}))
Bob Alice circ1, ENC(EXTENDED, DH-data, ENC({candidates}))
Alice Bob circ1, ENC(ENC(EXTEND, Dave, Dave(DH-data)))
Bob Charlie circ2, ENC(EXTEND, Dave, Dave(DH-data))
Charlie Dave circ3, Dave(CREATE, Dave(DH-data))
Dave Charlie circ3, Charlie(CREATED, DH-data, ENC({candidates}))
Charlie Bob circ2, ENC(EXTENDED, DH-data, ENC({candidates}))
Bob Alice circ1, ENC(ENC(EXTENDED, DH-data, ENC({candidates})))

Figure 4.9: Flow diagram for creating a circuit

From Packet To
Alice Bob circ1, ENC(ENC(ENC(address, LibTorrent-data)))
Bob Charlie circ2, ENC(ENC(address, LibTorrent-data))
Charlie Dave circ3, ENC(address, LibTorrent-data)
Dave address Normal data request
address Dave Normal data response
Dave Charlie circ3, ENC(address, DATA)
Charlie Bob circ2, ENC(ENC(address, DATA))
Bob Alice circ1, ENC(ENC(ENC(address, DATA)))

Figure 4.10: Flow diagram for transmitting data through a circuit

4.4. Block cipher mode of operation
When encrypting data with AES , blocks of 128 bits are encrypted using the session
key. Identical parts in the plaintext result in identical parts in the ciphertext. In
order to prevent certain structures or repetitions in data to be visible to an eaves-
dropper encryptions can be made dependant on (all) previous encryptions in the
data stream. Figure 4.111 gives a clear explanation why electronic codebook mode,
in which there is no dependency on the previous data, should be avoided.

There are different modes of encrypting a datastream. Electronic Code Book
(ECB) mode is the simplest form in which encrypting a block does not rely on the
encryption of any other blocks. The three most common used are:

• Electronic Code Book (ECB)
There is no relation between the blocks and all blocks can be decrypted with-

1This image is derived from File:Tux.jpg, and therefore requires attribution. All uses are permitted
provided that Larry Ewing, the owner of the original image, who requires that you mention him, his
email address, lewing@isc.tamu.edu, and The GIMP, according to http://www.isc.tamu.edu/~l
ewing/linux/.

http://www.isc.tamu.edu/~lewing/linux/.
http://www.isc.tamu.edu/~lewing/linux/.

..

4

36 4. Design of p2p onion routing

(a) Original image (b) Encrypted with ECB mode (c) Encrypted with other mode

Figure 4.11: Comparison of encryption methods for encrypting the Linux Mascot, Tux

out any knowledge about order. This should be avoided as visible in figure
4.11.

Figure 4.12: ECB encryption

• Cipher Block Chaining (CBC)
Block 𝑥 that is to be encrypted is XOR-ed with encrypted block 𝑥−1. Must be
encrypted in order but can be decrypted out of order as it can be XOR’ed later
on. Relies on an initialization vector which must be the same in encrypting and
decrypting. CBC cannot be used with packet loss as 𝑥 − 1 is not guaranteed
to be available when decrypting packet 𝑥.

4.5. Opportunistic decryption ..

4

37

Figure 4.13: CBC encryption

• Counter (CTR)
Block 𝑥 and 𝑥+1 are encrypted with an extra input; a counter. This counter is
usually increased with 1 with each block. Decryption does not rely on previous
nodes, but on the counter. Requires either the order to be correct or order
number guessing. CTR cannot directly be used with packet loss. It can be
used when the counter is guessed. UDP packet size is dynamic, so guessing
the counter can be quite cumbersome.

Figure 4.14: CTR encryption

4.5. Opportunistic decryption
We use the basic idea of CTR mode and altered it, keeping a counter per UDP
packet instead of AES block, in order to allow packet loss and packet reordering.
This way we counter pattern leakage with ECB mode but still allow packet loss. The
model is called opportunistic cryptography or more accurate opportunistic decryp-
tion. In opportunistic decryption the receiver of a packet guesses a key with which

..

4

38 4. Design of p2p onion routing

to decrypt the packet.

The underlying technology in p2p onion routing is LibTorrent (see chapter 5).
This framework does not ensure packages arriving in order but does handle retrans-
mission of missing UDP packets. These packets can be up to 65.535 bytes and thus
consist of multiple AES blocks.

We encrypt these packets independently with CBC. Identical unencrypted pack-
ets result in different encrypted packets as we use a counter that increases per
packet which defines the key and we use CBC mode within the packets. This way
no pattern leakage is present. Figure 4.17 shows the flow diagram of the encryp-
tion of a UDP packet. Figure 4.15 shows the simplified encryption of a UDP packet.
Figure 4.18 shows the flow diagram of the decryption of a UDP packet. Figure 4.16
shows the simplified decryption of a UDP packet.

In order for this model to work, both parties must agree on the nonce, which
function as offset and an initialization vector. The nonce will be the first 128 bits of
the SHA-1 hash of the shared Diffie Hellman secret. The initialization vector can be
any value, 128 bits representing zero suffices. The key used to generate the inner
key is the shared Diffie Hellman secret.

Sending UDP packet 𝑥

1. A key for this packet 𝑘 is generated by encrypting the nonce incremented
with the counter 𝑥. It is encrypted using AES 128 bit, with the session key as
key.

2. The UDP packet is split in parts of 128 bits.

3. Nonce + 𝑥 is appended to the packet.

4. The UDP packet parts and the nonce part are encrypted using the generated
key for this packet 𝑘 and the initialization vector using AES 128 bit in Cipher
Block Chaining mode.

5. The encrypted UDP packet parts are merged into one big encrypted packet.

6. The encrypted UDP packet is given to the transport layer.

4.5. Opportunistic decryption ..

4

39

Figure 4.15: Simplified diagram of encrypting the inner onion layer of packet 1234. Notice the Cipher
Block Chaining in the second AES block.

Receiving UDP packet while expecting packet 𝑥

1. A key for this packet 𝑘 is generated by encrypting the nonce incremented
with the expected counter 𝑥. It is encrypted using AES 128 bit, with the
session key as key.

2. The encrypted UDP packet is split in parts of 128 bits.

3. The encrypted UDP packet parts are decrypted using the generated key for
this packet 𝑘 and the initialization vector using AES 128 bit in Cipher Block
Chaining mode.

4. The unencrypted UDP packet parts are merged into one big unencrypted
packet.

5. If the last part of the unencrypted packet does not match the used nonce + the
counter 𝑥, there is a retry with 𝑥+1, 𝑥+2 ... 𝑥+9 or 𝑥 ∈ {𝑢𝑛𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑝𝑎𝑐𝑘𝑒𝑡𝑠}.

6. if the unencrypted UDP packet number 𝑥 is higher than the previously received
packet, missing packets are added to {𝑢𝑛𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑝𝑎𝑐𝑘𝑒𝑡𝑠}.

7. The unencrypted UDP packet is given to LibTorrent.

..

4

40 4. Design of p2p onion routing

Figure 4.16: Simplified diagram of decrypting the inner onion layer of packet expected to be number
1234. Notice the Cipher Block Chaining in the second AES block.

This model of AES encryption is only necessary in one onion layer, namely the
inner one. If the inner onion layer is encrypted in this fashion, the other onion layers
can be encrypted with Electronic Code Book mode, as there supportive layer already
handles pseudo-randomness. Packet loss will result in a counter mismatch which is
followed by counter guessing. The following few packets will be matched against
the missing counter as order of messages may vary. If this window becomes too
big, the packet is assumed to be missing. These missing packets result in missing
parts for LibTorrent, which will redo the request for the part.

In order to check at the receivers side if the counter used to encrypt is as
expected, the counter is added to the plain UDP packet before encryption. After
decryption with a certain key, the used counter can be checked. If the counter is
identical, the packet is decrypted with the right key. If not, the counter must be
found.

4.5. Opportunistic decryption ..

4

41

Fi
gu

re
4.
17

:
Fl
ow

ch
ar
t
of

th
e
AE

S
en

cr
yp

tio
n
pe

r
U
D
P
pa

ck
et
.
Th

is
is
th
e
en

cr
yp

tio
n
of

pa
ck
et

12
34

.

Fi
gu

re
4.
18

:
Fl
ow

ch
ar
t
of

th
e
AE

S
de

cr
yp

tio
n
pe

r
U
D
P
pa

ck
et
.
Th

is
is
th
e
ex
pe

ct
ed

to
be

pa
ck
et

nu
m
be

r
12

34
.

5
Implementation and

experiments

The protocol is implemented on the application layer, in Python 2.7. The implemen-
tation was a collaborative effort with Chris Tanaskoski[29], with overlapping main
responsibilities. Chris Tanaskoski provided a base for circuit creation which is used.
Along with the addition of cryptography the underlying base radically changed as
well. Development has largely overlapped as our code merged together. It is im-
plemented alongside the peer 2 peer file sharing program Tribler[30], developed at
the University of Technology, Delft. An extension to this program is implemented,
creating an ”Anonymity” community in which users create the circuits and utilize
each other. The layered model for the complete implementation is shown in figure
5.1.

..Tribler.

LibTorrent

.

AnonTunnel

.

UDP

.

IP

. Tribler.

LibTorrent

.

AnonTunnel

.

UDP

.

IP

. Tribler.

LibTorrent

.

AnonTunnel

.

UDP

.

IP

. Tribler.

LibTorrent

.

AnonTunnel

.

UDP

.

IP

... Torrent client.

TorrentLib

.

Session

.

UDP

.

IP

.

Tribler user

.

Relay

.

Relay

.

Exit node

.

Seeder

Figure 5.1: The layered model for the p2p onion router as implemented. The arrows show a request
over a tunnel of three hops. The machine not in the p2p onion router (the seeder) can have any server
such as Socks5, any torrent library such as LibTorrent or LibSwift and any torrent client such as Tribler

or torrent. In the response all arrows will be mirrored.

43

..

5

44 5. Implementation and experiments

B
ui

ld
in

g
ci

rc
ui

ts

en
d−

do
w

nl
oa

d−
0h

op

en
d−

do
w

nl
oa

d−
1h

op

en
d−

do
w

nl
oa

d−
2h

op

en
d−

do
w

nl
oa

d−
3h

op

st
ar

t−
0−

ho
p

st
ar

t−
do

w
nl

oa
d−

0h
op

st
ar

t−
do

w
nl

oa
d−

1h
op

st
ar

t−
do

w
nl

oa
d−

2h
op

st
ar

t−
do

w
nl

oa
d−

3h
op

st
ar

t−
ex

pe
rim

en
t

Tr
ib

le
r

S
es

si
on

 s
ta

rt
ed

0.0

2.5

5.0

7.5

10.0

0 100 200 300

Time into experiment [s]

S
pe

ed
 [M

B
/s

]

variable speed−1_hop speed−0_hop speed−3_hop speed−2_hop

Figure 5.2: The download speed without cryptography without circuits, with 1, 2 and 3 hop circuits
deployed on Gumby. Speed decreases with increasing circuit size.

5.1. Synthetic experiments
Gumby is an experimental framework developed at Delft University of Technology
at the department of Parallel and Distributed Systems. The p2p onion router is
implemented in Python and tested on Gumby. The Gumby framework can be ex-
ecuted on the Distributed ASCII Supercomputers 4 (DAS4). The p2p onion router
is deployed on 74 dual core 2.4GHz 24GB RAM nodes, at the Vrije Universiteit in
Amsterdam.1. On this supercomputer scenarios are deployed in which nodes start
building circuits and download a test file. Analysis of outcome of these experiments
during the implementation and design of the protocol gave essential information on
bottlenecks and design issues. The generated data gives insight on the working of
the protocol, the possibilities of the protocol and the downsides of the protocol.

When one hop is added to the circuit, every packet flowing through the circuit
has to be encrypted one time extra by the originator and the reply has to be de-
crypted one time extra. In a CPU limited environment adding hops can cap the
performance of the system. It is important to know how much influence the hop
size has on the speed of the test download. The following scenario is tested on
Gumby.

1. 1000 nodes are started

2. One node creates a one node circuit

3. One node creates a two node circuit

4. One node creates a three node circuit
1more info: http://www.cs.vu.nl/das4/clusters.shtml

http://www.cs.vu.nl/das4/clusters.shtml

5.1. Synthetic experiments ..

5

45

5. A latency test is done

6. 250 MB is downloaded over the one hop circuit

7. 250 MB is downloaded over the two hop circuit

8. 250 MB is downloaded over the three hop circuit

A graph of the established speed of the test download with different circuit
lengths is shown in figure 5.3. Dispersy need to be initialized, which is why the
circuits are built after 130 seconds. In this experiment there was no packet loss.
Furthermore, the ECB cryptographic module was enabled.

Figure 5.3: The download speed with cryptography with 1, 2 and 3 hop circuits deployed on Gumby.
Speed decreases with increasing circuit size.

Figure 5.2 shows the download speeds without cryptography. A download with
direct connection to the swarm leads to over 10MB/s. A one hop download without
cryptography reaches about 6MB/s, two hops about 5.2MB/s and three hops about
4.8MB/s.

With cryptography enabled, the download with one hop reaches a maximum of
about 5MB/s. The two hop download speed decreases to roughly 4.5MB/s and the
three hop (anonymous) download speed reaches 4MB/s. This is due to the CPU
usage of the downloading node. When the circuit length increases so does the
number of cryptographic operations that have to be calculated. Figure 5.4 shows
that with the one hop download the CPU of the downloading node is running at full
capacity. There is no more room for extra cryptography, so a performance drop is
inevitable when the circuit length increases.

Added cryptography leads to a decrease in download speed of about 20%. This
is due to the extra load on the CPU when cryptography is enabled. Instead of

..

5

46 5. Implementation and experiments

simply interpreting or forwarding the data, the data has to be encrypted and de-
crypted. This drop in performance still leads to download speeds usable for HD
video streaming.

Figure 5.4: The CPU usage of the download deployed on Gumby. Lower graph clearly shows full CPU
usage on the node downloading the test file.

The round trip time of a packet is shown in figure 5.5. This latency test is
conducted by sending 100 packets over each circuit and measuring the difference
in time between the request and the response. The mean round trip time for a
one hop circuit is 1.88ms. For a two hop circuit this is 2.38ms and for a three hop
circuit 3.25ms. Some packets take exceptionally longer where most packets arrive
before the average time. The 50th percentile is 0.95ms with a one hop circuit, 1.53
with a two hop circuit and 2.08ms with a three hop circuit. With a longer circuit
the latency is less predictable as the slope of the graph gets flatter with increasing
circuit length.

Packet loss in onion routing
Optimally packets that are somehow lost are retransmitted by the sender when
no acknowledgement is sent. Packets can get lost by faulty network architecture,
congestion on the network, bugs in network drivers or routing failures. Normally
there is no packet loss, or packet loss is handled by the network layer. In stream
encryption this however forms a problem as stated in section 4.5. When using
onion routing, the packet loss gets worse.

Consider a packet loss of 0.1%. In the following examples we consider a uniform
distribution of lost packets. This should not be any problem when A and B are
communicating; only one out of a thousand packets are dropped. Consider the
circuit A-B-C-D-Endpoint. Every data packet now has to be sent from A to B, from B
to C, from C to D, from D to the Endpoint and all the way back. With a packet loss
of 0.1% this aggregates to 1 − (0.999) = 0.8% packet loss. With a packet loss of

5.1. Synthetic experiments ..

5

47

Figure 5.5: Latency test with three circuit lengths.

1%, which is high enough for most UDP applications to fail[31]2, this aggregates
to 1 − (0.990) = 7.7% packet loss.

With building circuits this is disastrous as no retransmission is implemented.
Consider building a three hop circuit. Without retransmission, a circuit is built us-
ing three CREATE messages, three consecutive CREATED messages, two EXTEND
messages, two EXTENDED messages and two DATA forwards. With twelve packets
traveling the network, packet loss becomes a serious problem. When there is 0.1%
change of packet loss, this aggregates to 1 − (0.999) = 1.1% packet loss. This
means that 1.1% of the circuit creations fail. Consider a 1% packet loss when cre-
ating a circuit. This aggregates to 1 − (0.990) = 11.4% packet loss. This means
that 11.4% of the circuit creations fail.

Furthermore, when circuits are created, they will have to be kept alive. Because
UDP is connectionless, the circuits will have to be pinged overtime when they are
idle. A PING message travels from the originator to the exit node and a PONG
message travels back. This means that a one hop circuit ping with 0.1% packet
loss has a chance of 1 − (0.999) = 0.2% chance of failing. With a three hop
circuit and a 1% packet loss this increases to 1 − (0.99) = 5.85%. In order to
allow a certain amount of packet loss the ping timeout for circuits is chosen to be
greater than three times the ping interval in order to allow two consecutive ping
attempts to fail, resulting in 1−0.0585 100% ping success on a 1% packet loss in a
three hop circuit. Figure 5.11 shows the aggregated packet loss in creating circuits,
pinging circuits and doing data request over those circuits. It is clearly visible that
increasing circuit length enormously increases the packet loss as messages will have
to a longer path and have a greater chance of getting dropped somewhere along
the circuit.
2Informal but informatic article on packet loss and the effects of packet loss in http://www.pacifi
cwireless.com.au/packet-loss-and-latency.html

http://www.pacificwireless.com.au/packet-loss-and-latency.html
http://www.pacificwireless.com.au/packet-loss-and-latency.html

..

5

48 5. Implementation and experiments

Figure 5.6: CPU usage in opportunistic crypto

Different encryption techniques
The default AES encryption technique (ECB) as described in 4.3 makes packet loss
possible as decrypting packet 𝑥 does not rely on 𝑥 − 1. In opportunistic decryption
as described in 4.5, decrypting packet 𝑥 does rely on packet 𝑥 − 1 in the form of
a counter. This model is tested by changing the packet loss in different scenar-
ios. This forces counter mismatches in which the nodes have to re-decrypt with a
guessed counter. Lost packets will have to be re-requested by LibTorrent. Figure
5.7 shows the download speeds with one hop, two hops and three hops with no
packet loss, with the opportunistic cryptography module enabled. Figure 5.8 shows
the download speeds with one hop, two hops and three hops, with 0.1% packet
loss using opportunistic cryptography. Figure 5.9 shows the download speed with
one hop, two hops and three hops with 1% packet loss with opportunistic cryptog-
raphy. Figure 5.10 shows the download speed with one hop, two hops and three
hops with 5% packet loss and opportunistic cryptography.

Without packet loss and opportunistic cryptography enabled the speed reaches
4MB/s with a one hop circuit, about 3.5MB/s with a two hop circuit and around
3MB/s with a three hop circuit. Due to key encryption per packet in opportunistic
cryptography extra cryptographic computations have to be made, figure 5.6 clearly
shows that the CPU is saturated. For one hop the CPU of both the originator and the
exit node are saturated. During the two and three hops download the CPU of the
relays are also heavily loaded. Figure 5.8 shows that with 0.1% packet loss the one
hop download reaches about 3.5MB/s, which is slightly lower than without packet
loss. The speed decreases to slightly more than 3MB/s with a two hop circuit and
slightly under 3MB/s with a three hop circuit. This bandwidth is still high enough
to stream HD videos. With a 1% packet loss the speed dramatically decreases due
to the aggregated packet loss of 3.94% with one hop, 5.85% with two hops and
7.73% with three hops. Figure 5.9 shows that the speed with one hop still peaks

5.1. Synthetic experiments ..

5

49

Figure 5.7: Opportunistic cryptography performance with 0% packet loss

at around 3MB/s, but with two hops the download gets only 2MB/s. The three hop
circuit peaks at around 1.3MB/s, but fails to get a stable download. It is clear from
figure 5.10 that with 5% packet loss onion routing with opportunistic cryptography
will fail. The one hop circuit still reaches 1MB/s as peak, but the speed of the
two hop download is unstable and peaks at around 150KB/s. The random uniform
packet loss is implemented in the endpoint of Tribler, which does not include packet
loss from the seeder towards the exit node of the circuits. This exponential decrease
of speed with an increasing packet loss is due to LibTorrent. The library notices the
packet loss and decreases the speed as a solution in order to decrease the packet
loss. Figure 5.12 shows the download speed without circuits but with the same
packet loss as aggregated in onion routing. Test downloads are started with 0.8%
packet loss, 7.73% packet loss and 33.66% packet loss. This corresponds to the
aggregated packet loss of a three hop circuit download with 0.1%, 1% and 5%
respectively. The obtained decrease in speed matches the decrease in speeds in
figures 5.8, 5.9 and 5.10. There is no cryptography involved so with 0.1% and 7.7%
packet loss the speed is higher than in figure 5.8 and 5.9. With 33.7% packet loss
the download is completely broken which corresponds with 5% packet loss with
three hops in figure 5.10.

..

5

50 5. Implementation and experiments

Figure 5.8: Opportunistic cryptography performance with 0.1% packet loss

Figure 5.9: Opportunistic cryptography performance with 1% packet loss

Figure 5.10: Opportunistic cryptography performance with 5% packet loss

5.1. Synthetic experiments ..

5

51

Packet loss 0.10 0.50 1.00 2.00 5.00
Creating a 1 hop circuit 0.20 1.00 2.00 3.96 9.75
Creating a 2 hop circuit 0.60 2.96 5.85 11.42 26.49
Creating a 3 hop circuit 1.12 5.84 11.36 21.53 45.96
Pinging a 1 hop circuit 0.20 1.00 2.00 3.96 9.75
Pinging a 2 hop circuit 0.40 1.99 3.94 7.76 18.55
Pinging a 2 hop circuit 0.60 2.96 5.85 11.42 26.49
Data request without hops 0.20 1.00 2.00 3.96 9.75
Data request over 1 hop 0.40 1.99 3.94 7.76 18.55
Data request over 2 hop 0.60 2.96 5.85 11.42 26.49
Data request over 3 hop 0.80 3.93 7.73 14.92 33.66

Figure 5.11: Aggregated packet loss in onion routing (in percentage)

Figure 5.12: Aggregated packet loss tested directly against LibTorrent

..

5

52 5. Implementation and experiments

5.2. Profiling
The protocol is cryptographically intensive and the code must be optimized in order
to minimize overhead. This is done by profiling the Python code that is executed.
The cryptographic calculations are done using OpenSSL (with the M2Crypto3 python
library) which is written in C++. Profiling led to enormous performance increase
with several fixes and it identified the bottlenecks of the system.

Profiling not only showed the performance bottlenecks in number of times meth-
ods were executed, but also shows the total time spent within functions. One ex-
ample of a fix that resulted from profiling is the replacement of the built-in python
𝑝𝑜𝑤 method with the superior gmpy package 𝑝𝑜𝑤 function. Although on some
machines the built-in 𝑝𝑜𝑤 function of python sufficed for the calculations, on some
machines circuits couldn’t be created.

Figure 5.13: Triblers built-in profiler. Only methods with
@attach_runtime_statistics(u”{0.__class__.__name__}.{function_name}”) are

indexed in the profiler

5.3. Tribler integration
The p2p onion router is integrated in the p2p file sharing software Tribler. Tribler
is developed at the University of Technology in Delft and has evolved through the
years from an exploratory project to a smart decentralized peer-to-peer file sharing
system. Tribler is chosen as test platform because of the ideology of the Tribler
development team and the great collaboration with the team members of Tribler
during the development of the protocol.

11kloc pull request with 702 commits
Our TOR like enhancement of Tribler is merged with the Tribler software in one
GitHub pull request, which consisted of over 11kloc changes in over 700 commits.
3More info: https://pypi.python.org/pypi/M2Crypto

https://pypi.python.org/pypi/M2Crypto

5.3. Tribler integration ..

5

53

Figure 5.14: Anonymous downloading in Tribler. Image by Myra Vreede

The addition of an anonymity community to Tribler was developed during an in-
tensive code refactoring in the core. This led to great discrepancy between the
Anonymity community and Tribler. The software merge was initiated in April 2014
and completed in May 2014.

Figure 5.16: The pull request

50 MB test
When users launch Tribler four circuits are automatically created using the other
‘candidates’ in the ProxyCommunity swarm in Dispersy. These circuits are idle (and
pinged) until the test download starts after five minutes. This is done in order to
handle the vast amount of data that would overload the circuits when everybody
would start downloading on startup. This way, the first five minutes are purely

..

5

54 5. Implementation and experiments

based on seeding the test downloads with circuits that are built by other users.
After five minutes a 50 MB test download is automatically started over the cir-
cuits. There are four static seeders which are queried over the circuits. The 50 MB
test download is hosted at four locations within the power of the Tribler software
development team to guarantee a high throughput upload. Statistics about the
speed of the download are gathered in order to gather global real life statistics of
anonymous downloading using the circuits. Users automatically participate in this
test download and usage statistics are completely anonymized. Figure 5.14 shows
a schematic overview of a test download. Figure 5.15 shows a screenshot of the
anonymity panel in a running Tribler instance whilst downloading the test file. When
the download is finished users are notified with a pop-up shown in figure 5.17. A
screenshot of the way an anonymous downloader is connected to the seeders is
shown in figure 5.18.

Figure 5.17: When the test download finishes users are informed about the speed of the download.

5.3. Tribler integration ..

5

55

Fi
gu

re
5.
15

:
W
he

n
Tr
ib
le
r
st
ar
ts
,c

irc
ui
ts

ar
e
au

to
m
at
ic
al
ly
cr
ea

te
d

..

5

56 5. Implementation and experiments

Figure 5.18: A screenshot of the anonymity section in Tribler. Instead of a direct connection from
downloader (dot on the left) to the swarm (cloud), the circuits are used to connect to seeders.

6
Future work

The current implementation of the p2p onion router provides anonymity when
downloading content. There are still a lot of things to do. It is currently only tested
on Linux and Microsoft Windows. As of June 2014 proxies can be deployed on
Android devices and anonymous downloading is enabled on Android devices. Full
.torrent should be implemented after the real world test is deployed. Anony-
mous video streaming should be implemented and anonymous uploading should be
enabled. In the current implementation, downloading is anonymous but seeding
is still old-fashioned. This clearly keeps non acceptable content out of the system,
as uploaders of illegal content would easily be traceable. For now this is good, but
future versions of the software should be able to offer anonymous seeding. This
should be thoroughly thought through and is out of the scope of this thesis. There
are some easy and well known design principles for anonymous content sharing us-
ing onion routing, but there are also some shortcomings of current implementation
and system environment that need to be overcome.

6.1. Anonymous seeding
The approach TOR uses makes use of introduction points and rendezvous points.
Somebody that wants to offer content creates circuits in the same way as circuits
are ‘normally’ created. The endpoints of these circuits will function as introduction
points, to which a user can do a request. The locations of these introduction points
are uploaded to the distributed hash table which contains the hidden services, in the
form of XYZ.onion where XYZ is a 16 character string generated from the services
public key1.

A client connects to the introduction point and gives it an address to which the
hidden service can connect. This process is done in several steps:

1. The hidden service creates circuits to introduction points and makes them
available in the distributed hash table (DHT).

1More on TOR hidden services: https://tor.eff.org/docs/hidden-services.html.en

57

https://tor.eff.org/docs/hidden-services.html.en

..

6

58 6. Future work

Figure 6.1: The working of hidden services

2. The client creates a circuit to a random rendezvous point.

3. The client connects to the introduction point with information about the ren-
dezvous point, the introduction point forwards it to the hidden service.

4. The hidden service creates a circuit to the rendezvous point, which sends a
message to the client that the connection is successful.

5. The client and the hidden service can communicate through the rendezvous
point.

As for the future, anonymous seeding has to be designed and implemented
for p2p onion router. Research on anonymous seeding has recently started and is
planned to be launched in the end of 2014. A file that is anonymously uploaded and
anonymously downloaded will have to travel two circuits in order to be untraceable.
This will increase the total circuit length and thus the total encryption and decryp-
tion CPU cycles for both the uploader and the downloader. This will dramatically
decrease the throughput as the speed is CPU limited as shown in section 5. Figure
6.2 shows a schematic overview of anonymous uploading in future Tribler.

6.2. Resilience to attacks ..

6

59

Figure 6.2: Anonymous uploading in Tribler. (Image by Myra Vreede)

6.2. Resilience to attacks
In the current implementation the circuits are created incrementally, in which the
last hop in the circuit returns a candidate list. The originator of the circuit picks one
and extends the circuit. A trivial weakness of the system is the circuit selection. Any
malicious node can return a set of malicious nodes and the circuit is compromised.
With a fixed circuit length this reveals the identity of the originator. With a variable
circuit length, timing attacks can still reveal the originator of the circuit.

In the near future, Bartercast will be deployed as a semantic overlay which keeps
track of download / upload rate and stability. The original Bartercast system only
relied on download upload ratio[32] and it is currently being enriched. Bartercast
will function as a reputation system on which hop selection is based. The originator
of the circuit can ask Bartercast if any of the candidate nodes are to be trusted and
he can base its decision on the reputation of the nodes.

In the current implementation circuit identifiers are plaintext and can easily be
linked to eachother. With as few traffic as there currently is, it is very easy for
a global observer to follow traffic and determine downloader and exit node. With
these two linked, an eavesdropper knows exactly what the downloader is doing.
In order to counter this form of traffic analysis cover traffic will have to be im-
plemented, which unfortunately will pressure the network load. An approach to
counter traffic analysis based on circuit identifier DTLS could be introduced as un-
derlying protocol for UDP, which fully encrypts UDP traffic.

Before the software is distributed as an anonymous Internet, the resilience to
attacks will have to be investigated. The different kinds of attacks described in 3.3
should be performed and risks and damage should be measured. Only with insight
of these attacks the system can be enhanced to counter these attacks.

..

6

60 6. Future work

6.3. Circumventing infrastructure
One of the goals of anonymous Internet is to be able to bypass filtering and blockage
of traffic by governmental forces. One of the major advantages of the governmental
forces is that they have full control of the infrastructure. Therefore the software
should be able to function fully on mobile devices. An internet of interconnected
devices could be used, or devices connected to infrastructures out of reach for the
governmental forces. This could be Telecom carriers, satellites, other ISPs or a
combination of providers.

Carrier Grade NAT
Telecom providers often use a so called carrier grade NAT or large-scale NAT, which
makes it possible for multiple devices to share the same address space. This intro-
duces the same problem as described in section 3.2, it cannot be certain that if 𝐴
and 𝐵 can both communicate with 𝐶, they can communicate with each other. When
a large portion of the community is behind such a carrier grade NAT, the candidates
that a node can find will be fewer than with other NAT’s, as routers used by carriers
are often very hard to puncture[24]. Figure 6.3 shows a Carrier NAT.

..

Network provider

.

130.161.211.245

..

10.0.0.2

.

10.0.0.3

.

Internet

.

10.0.0.1

Figure 6.3: Carrier NAT. Users of one provider share the same external IP.

Rewarding PORT forwarding
A clear problem that arises with the anonymous seeding model described in 6.1 is
that the introduction point and the rendezvous point much be reachable the first
hops of both the content requesters circuit as the content provider. The fact that the
content provider can build a circuit with an introduction point as end node does not
imply that the introduction point is connectible. The same goes for the rendezvous

6.3. Circumventing infrastructure ..

6

61

point picked by the content requester.
In ideal situations the introduction point and the rendezvous point would be

fully connectible. So either there shouldn’t be any NAT at all or the ports should
be opened and forwarded. Port forwarding can’t be expected of the average user,
so an award system has to be implemented that rewards port forwarding. People
that open their ports and are thus suitable to use as an introduction point and
rendezvous point could be given some advantages such as the right to cause a
higher network load than other users. This however is out of the scope of this
thesis.

7
Conclusion

In order to circumvent governmental mass surveillance on the Internet many pro-
tocols have been introduced such as TOR, Tarzan and OneSwarm. Only TOR has
partially succeeded and has gathered a userbase of over one million daily users.
TOR offers anonymity, but speeds peak at only 200KB/s. This is far from enough in
the current multimedial era. There is no anonymous Internet which satisfies user
expectations such as high-bandwidth and auto-configuration.

This thesis provides a proof-of-concept of an anonymous file sharing network
which tries to balance anonymity and user friendliness. The p2p onion router is
introduced, which takes advantage of both onion routing and peer to peer traffic in
order to provide high bandwidth anonymous file sharing. A new cryptographic ap-
proach based on CTR mode is introduced. This opportunistic cryptography ensures
that patterns are not leaked, but does not require packet ordering and the certainty
that packets arrive. This makes it suitable for UDP traffic whilst still being resilient
to eavesdroppers and traffic analysts.

Synthetic experiments showed that speeds up to 4MB/s can be reached with
opportunistic encryption over a three hop circuit. This is fast enough for even HD
video streaming. The network still provides up to 3MB/s with 0.1% packet loss. The
p2p onion router is fully integrated in the open source file sharing system Tribler.
An anonymous download test is implemented in which Tribler users automatically
download a 50MB test file over circuits created with other users. Every user func-
tions both as relay and as exit node for other users, which makes the p2p onion
router both fast and highly scalable.

The introduced system is however in an early stage in which circuit selection is
a weak spot. Before deployment, research must focus on resilience against traffic
analysis and other types of attacks. Furthermore it is impossible to anonymously
upload files in the p2p onion router. Public opinion upon release of the Tribler
version with the anonymous test download will indicate whether being an exit node
discourages people from using the p2p onion router, although there is plausible
deniability that the content is someone else’s.

63

Glossary

Adversary In the context of distributed networks and cryptography an adversary
is an entity that is trying to break the network. The adversary tries to break
the cryptographic system, the trust model or influences other entities in the
network. More on adversaries in section 3.4.

Asymmetric Encryption Mathematical transformation of a value to another value
using a key. Decryption is done with another key. Asymmetric encryption is
mostly based on the infeasibility of deriving shared prime factors.

Attacker See Adversary.

Bartercast Reputation system created by the Delft University of Technology. More
on Bartercast at http://tribler.org/BarterCast.

BitTorrent Protocol for Peer to Peer file sharing. Files are downloaded through
multiple peers. Peers are rewarded with the tit-for-tat mechanism. More on
BitTorrent on http://bittorrent.org.

BitTorrent Swarm Swarm of nodes that are sharing the same torrent file.

Certificate authority Entity which issues SSL certificates. Every web browser
trusts a set of root certificate authorities to be genuine.

Client-side The ‘side’ of the communication where the user is. In browsing The
Internet it’s the side of the person who is surfing the web.

Community Swarm Swarm of nodes that are in the same community.

Cottonmouth Device created by the NSA which hacks a target computer by their
Universal Serial Bus. More information in the ANT catalogue: https://ww
w.eff.org/document/20131230-appelbaum-nsa-ant-catalog.

Diffie Hellman Algorithm to derive shared secrets. Two entities generate a ran-
dom number and use it as input in a one way function. The output is send to
each other. Together with their privately generated random number a shared
secret can be derived which is impossible to find by eavesdroppers.

Dispersy Community Group of nodes in Dispersy that are interconnected due to
the common community identifier.

Edward Snowden Former employee of the National Security Agency of the United
States of America. Disclosed thousands of classified documents of the USA.

65

http://tribler.org/BarterCast
http://bittorrent.org
https://www.eff.org/document/20131230-appelbaum-nsa-ant-catalog
https://www.eff.org/document/20131230-appelbaum-nsa-ant-catalog

66 Glossary

ElGamal Asymmetric encryption form based on Diffie Hellman developed by Taher
Elgamal. Invented in 1985 but widely used since 2004. Based on the principle
that it is infeasible to generate a discrete logarithm of a random elliptic curve
element to a known base point.

Elliptic Curve Cryptography Form of asymmetric cryptography that is based on
the mathematical property of elliptic curves and finite fields.

End-to-end cryptography Cryptographic system for which two statements hold
when A and B are communicating. B is the only one that can decrypt a
message that is sent to him. B can tell with absolute certainty that A is the
sender of the message.

Flash proxy Attempt to block censorship on the Internet. See section 2.4.

Glimmerglass Governmental contractor of the United States of America that pro-
duce devices which can tap underwater cables independant of the data rate,
protocol and format. More information: http://www.theatlantic.com/
international/archive/2013/07/the-creepy-long-standing-p
ractice-of-undersea-cable-tapping/277855/.

Gumby Synthetic experiment framework developed at the Delft University of Tech-
nology. Available open source at http://github.com/tribler/gumby.

Internet Engineering Task Force Group of volunteers that try to standardize
algorithms and methods with the mission to create a safer and better internet.
More information available at http://ietf.org.

Leecher Entity that is downloading (parts of) a file in BitTorrent.

LibTorrent C++ implementation of the BitTorrent protocol with full support for
TCP, UDP and 𝜇TP. Available for download at http://libtorrent.org.

M2Crypto Python extension which implements OpenSSL cryptographic function-
alities. Available for download at https://pypi.python.org/pypi/M2C
rypto.

MAINWAY Program of the NSA which was used to collect records of over 1.9
trillion telephone calls. More information: http://www.democracynow.o
rg/2006/5/12/three_major_telecom_companies_help_us.

Network Address Translation NAT is used as a firewall and as a way of letting
multiple entities make use of the same IP address. The address information
in IP packets is interpreted by the NAT and transfered to another IP address.

OneSwarm Attempt to anonymize the Internet. See section 2.2.

http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
http://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
http://github.com/tribler/gumby
http://ietf.org
http://libtorrent.org
https://pypi.python.org/pypi/M2Crypto
https://pypi.python.org/pypi/M2Crypto
http://www.democracynow.org/2006/5/12/three_major_telecom_companies_help_us
http://www.democracynow.org/2006/5/12/three_major_telecom_companies_help_us

Glossary 67

Onion Routing Wrapping a message in multiple ‘layers’ using asymmetric encryp-
tion. When a message is forwarded, a layer is peeled by the private key or
added by the private key.

OpenSSL Open source implementation of a lot of cryptographic standards includ-
ing RSA, AES, ElGamal, SHA-1 and many more. More information and down-
load at http://openssl.org.

Perfect Forward Secrecy Term used in cryptography that ensures that once a
private key has been compromised, previous communication cannot be de-
crypted.

Plausible deniability In anonymous Internet context plausible deniability is the
ability to deny that data that came by your computer is yours. This is possible
for for example TOR exit nodes.

PRISM Program of the NSA that focusses on electronic mass surveillance of major
Internet companies such as Google.

Seeder Entity that is uploading (parts of) a file in BitTorrent.

Server-side The ‘side’ of the communication where the server is. In browsing
The Internet it’s the side of the computers hosting the content that is being
requested.

Silk road Online drugs and weapon marketplace in TOR lead by the arrested Ross
William Ulbricht on which an estimated $15 million per year was spend on
mostly illegal contraband. More on the Silk road: http://securityaffa
irs.co/wordpress/8005/cyber-crime/traveling-the-silk-roa
d-study-of-the-famous-market-places.html.

Single point of failure The entity in a system where the entire system relies
upon. Taking this entity down will take the entire system down.

Single point of trust The entity in a system which is trusted by everybody in the
system. When this entity is hacked or malicious, the entire cryptographic
system is not to be trusted.

SSL certificate File containing a public key of a key pair of which only the com-
pany mentioned in the certificate has the private key of. Certificates are issued
by certificate authorities. Certificates not issued by official certified certificate
authorities are not trusted by default in web browsers.

Symmetric Encryption Mathematical transformation of a value to another value
using a key. Decryption with the same key leads to the same original value.
Symmetric encryption is mostly based on the infeasibility of deriving shared
prime factors.

Tarzan Attempt to anonymize the Internet. See section 2.3.

http://openssl.org
http://securityaffairs.co/wordpress/8005/cyber-crime/traveling-the-silk-road-study-of-the-famous-market-places.html
http://securityaffairs.co/wordpress/8005/cyber-crime/traveling-the-silk-road-study-of-the-famous-market-places.html
http://securityaffairs.co/wordpress/8005/cyber-crime/traveling-the-silk-road-study-of-the-famous-market-places.html

68 Glossary

Tit-for-tat Mechanism used in BitTorrent which gives users that upload much
higher download speed.

TOR The Second Generation Onion Router. Uses multi hop onion routing to ensure
anonymity. TOR is one of the most used tools for online anonymity and is
mainly used in the TOR browser which can browser the world wide web.
Available from the TOR website http://torproject.org.

Tracker Server that keeps track of users that are downloading and uploading parts
of a torrent file.

Tribler Peer to peer file sharing tool developed at the Delft University of Technology
by the department of Parallel and Distributed Systems, Delft. Available for
download for free at http://tribler.org.

XKeyScore Program of the NSA that combines all information sources. Edward
Snowden disclosed that with XKeyScore any computer, cellphone and email
are trackable and compromised with XKeyScore. More information in a ger-
man interview with Edward Snowden: http://www.commondreams.org
/headline/2014/01/27-1.

http://torproject.org
http://tribler.org
http://www.commondreams.org/headline/2014/01/27-1
http://www.commondreams.org/headline/2014/01/27-1

Acronyms

AES Advanced Encryption Standard.

CBC Cipher Block Chaining.

CTR Counter Feedback.

DAS4 Distributed ASCII Supercomputer 4th generation.

DHT Distributed Hash Table.

DTLS Datagram Transport Layer Security.

EC Elliptic Curve.

ECB Electronic Code Book.

HTTP HyperText Transfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

I2P Invisible Internet Protocol.

ISP Internet Service Provider.

KLOC 1000 Lines Of Code.

MITM Man In The Middle.

NAT Network Address Translation.

NSA National Security Agency.

OR Onion Routing.

P2P Peer to Peer.

PFS Perfect Forward Secrecy.

RSA Rivest, Shamir & Adleman.

69

70 Acronyms

TCP Transmission Control Protocol.

TOR The Onion Router.

𝜇TP Micro Transport Protocol.

UDP User Datagram Protocol.

References

[1] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen, RFC 1945 – Hypertext Trans-
fer Protocol – HTTP/1.0, http://www.faqs.org/rfcs/rfc1945.html
(1996).

[2] E. Rescorla, HTTP Over TLS, RFC 2818 (Informational) (2000).

[3] R. Dingledine, N. Mathewson, and P. Syverson, Tor: The second-generation
onion router, in Proceedings of the 13th Conference on USENIX Security Sym-
posium - Volume 13, SSYM’04 (USENIX Association, Berkeley, CA, USA, 2004)
pp. 21–21.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital sig-
natures and public-key cryptosystems, Communications of the ACM 21, 120
(1978).

[5] B. Kaliski, PKCS 1: RSA Encryption Version 1.5, RFC 2313 (Informational)
(1998), obsoleted by RFC 2437.

[6] D. Eastlake 3rd and P. Jones, US Secure Hash Algorithm 1 (SHA1), RFC 3174
(Informational) (2001), updated by RFC 4634.

[7] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, High-speed high-
security signatures, Journal of Cryptographic Engineering 2, 77 (2012).

[8] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced En-
cryption Standard (Springer Verlag, Berlin, Heidelberg, New York, 2002).

[9] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf.
Theor. 22, 644 (2006).

[10] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), RFC 2409 (Pro-
posed Standard) (1998), obsoleted by RFC 4306, updated by RFC 4109.

[11] R. Dingledine and S. Murdoch, Performance Improvements on Tor or, Why
Tor is slow and what we’re going to do about it, Tech. Rep. (The Tor Project,
2009).

[12] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, Privacy-preserving
p2p data sharing with oneswarm, in Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10 (ACM, New York, NY, USA, 2010) pp. 111–122.

71

http://www.faqs.org/rfcs/rfc1945.html
http://www.ietf.org/rfc/rfc2818.txt
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://www.ietf.org/rfc/rfc2313.txt
http://www.ietf.org/rfc/rfc3174.txt
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://www.ietf.org/rfc/rfc2409.txt
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://dx.doi.org/10.1145/1851182.1851198
http://dx.doi.org/10.1145/1851182.1851198

72 References

[13] S. Prusty, B. N. Levine, and M. Liberatore, Forensic investigation of the
oneswarm anonymous filesharing system, in Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11 (ACM, New
York, NY, USA, 2011) pp. 201–214.

[14] M. J. Freedman and R. Morris, Tarzan: A peer-to-peer anonymizing network
layer, in Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, CCS ’02 (ACM, New York, NY, USA, 2002) pp. 193–206.

[15] B. Schneier, Description of a new variable-length key, 64-bit block ci-
pher (blowfish), in Fast Software Encryption, Cambridge Security Workshop
(Springer-Verlag, London, UK, UK, 1994) pp. 191–204.

[16] M. O. Rabin, DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNCTIONS AS
INTRACTABLE AS FACTORIZATION, Tech. Rep. (Cambridge, MA, USA, 1979).

[17] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh, R. Dingledine, and
P. Porras, Evading censorship with browser-based proxies. in [33], pp. 239–
258.

[18] T. E. Gamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory 31, 469 (1985).

[19] T. Pornin, Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA), RFC6979 (2013).

[20] T. Hansen, US Secure Hash Algorithms, RFC6234 (2011).

[21] S. Farrell, T. C. Dublin, and T. Tschofenig, Pervasive monitoring is an attack,
https://www.rfc-editor.org/rfc/rfc7258.txt (2014).

[22] B. Cohen, Incentives build robustness in bittorrent, (2003).

[23] N. Christin, Traveling the silk road: A measurement analysis of a large anony-
mous online marketplace, CoRR abs/1207.7139 (2012).

[24] G. Halkes and J. Pouwelse, Udp nat and firewall puncturing in the wild, in
Proceedings of the 10th International IFIP TC 6 Conference on Networking -
Volume Part II, NETWORKING’11 (Springer-Verlag, Berlin, Heidelberg, 2011)
pp. 1–12.

[25] D. Genkin, A. Shamir, and E. Tromer, Rsa key extraction via low-bandwidth
acoustic cryptanalysis, IACR Cryptology ePrint Archive 2013, 857 (2013).

[26] V. S. Miller, Use of elliptic curves in cryptography, in Lecture Notes in Computer
Sciences; 218 on Advances in cryptology CRYPTO 85 (Springer-Verlag New
York, Inc., New York, NY, USA, 1986) pp. 417–426.

[27] N. Zeilemaker, B. Schoon, and J. Pouwelse, Dispersy Bundle Synchronization,
Tech. Rep. PDS-2013-002 (TU Delft, 2013).

http://dx.doi.org/ 10.1145/2046707.2046731
http://dx.doi.org/ 10.1145/2046707.2046731
http://dx.doi.org/ 10.1145/586110.586137
http://dx.doi.org/ 10.1145/586110.586137
http://dl.acm.org/citation.cfm?id=647930.740558
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6979.txt
http://www.ietf.org/rfc/rfc6234.txt
https://www.rfc-editor.org/rfc/rfc7258.txt
http://dl.acm.org/citation.cfm?id=2008826.2008828
http://dl.acm.org/citation.cfm?id=2008826.2008828
http://dl.acm.org/citation.cfm?id=18262.25413
http://dl.acm.org/citation.cfm?id=18262.25413
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-002.pdf

References 73

[28] T. Kivinen and M. Kojo, More Modular Exponential (MODP) Diffie-Hellman
groups for Internet Key Exchange (IKE), RFC 3526 (Proposed Standard)
(2003).

[29] R. Tanaskoski, Anonymous HD Video Streaming, Master’s thesis, Delft Univer-
sity of Technology, Delft, the Netherlands (2014).

[30] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. van Steen, and H. J. Sips, Tribler: A social-based
peer-to-peer system: Research articles, Concurr. Comput. : Pract. Exper. 20,
127 (2008).

[31] A. Friedl, S. Ubik, A. Kapravelos, M. Polychronakis, and E. Markatos, Realistic
passive packet loss measurement for high-speed networks, in Traffic Moni-
toring and Analysis, Lecture Notes in Computer Science, Vol. 5537, edited by
M. Papadopouli, P. Owezarski, and A. Pras (Springer Berlin Heidelberg, 2009)
pp. 1–7.

[32] M. Meulpolder, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, Bartercast: A
practical approach to prevent lazy freeriding in p2p networks. in IPDPS (IEEE,
2009) pp. 1–8.

[33] S. Fischer-Hübner and M. Wright, eds., Privacy Enhancing Technologies, Lec-
ture Notes in Computer Science, Vol. 7384 (Springer, 2012).

http://www.ietf.org/rfc/rfc3526.txt
http://www.ietf.org/rfc/rfc3526.txt
http://dx.doi.org/10.1002/cpe.v20:2
http://dx.doi.org/10.1002/cpe.v20:2
http://dblp.uni-trier.de/db/conf/ipps/ipdps2009.html#MeulpolderPES09

	List of Figures
	Introduction
	The illusion of privacy
	The goal of this work

	Privacy enhancing technologies
	TOR
	OneSwarm
	Tarzan
	Flash proxy
	I2P

	Problem description
	Cryptography requirements
	Usability requirements
	Attacks
	Adversaries

	Design of p2p onion routing
	General outline
	Packet specification
	Packet encryption
	Block cipher mode of operation
	Opportunistic decryption

	Implementation and experiments
	Synthetic experiments
	Profiling
	Tribler integration

	Future work
	Anonymous seeding
	Resilience to attacks
	Circumventing infrastructure

	Conclusion
	Glossary
	Acronyms
	titleReferences

