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Introduction

Automated imaging systems play a crucial role in numerous domains, such as medical imaging, autonomous
driving, and securing perimeters. Images from for example video cameras are processed automatically, sav-
ing time when compared to manual inspection of a human. In practice, these systems suffer from noise
caused by sensor measurements and electronic circuits, especially in bad lighting conditions or dark scenes.
Some tasks that are effected by this noise are image classification [1], instance segmentation [2], and object
detection [3].

This thesis focuses on object detection: The problem concerned with localizing and classifying objects
present in an image. Object detection has many applications, such as autonomous driving, systems related to
security [4], and highway traffic monitoring. The context of this thesis is object detection in security cameras.
Even though these systems are automated, the ability to verify the systems’ actions is important. The system
should provide clear images and accurate object detection to facilitate this. When we consider a building
security scenario, a guard has to monitor a certain property using an automated system to detect intruders.
High-quality images allow the guard to accurately double-check the alerts from the system. Reliable object
detection ensures that the system does not miss any intruder that tries to break into the property. Excellent
performance in denoising and detection is therefore essential.

The limitation of other approaches [5]–[7] that combine denoising with object detection, is that they focus
only on the final detection performance. The image quality is not one of the final objectives that is optimized
for. Having noisy images with detection is insufficient, as verification of the detections and manual inspection
of the images is difficult when noise is present.

Motivated by the importance of both image quality and detection, and the limitations of related literature,
this thesis provides an analysis that is focused on optimizing for both image quality and detection perfor-
mance, in the context of security cameras. This thesis compares a number of strategies to combine denoising
and object detection, providing an in-depth understanding of each strategy’s performance, and what strategy
performs best.

This report is structured as follows: Chapter 2 is a scientific article of the thesis, presenting and discussing
all the experiments and results. Chapter 3 contains background information on technical aspects discussed
in the scientific article, which assists the reader in understanding the research.
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DODa: Denoising-Object Detection Analysis

Rick Huizer1,2 Osman Semih Kayhan1,2 Jan C.van Gemert2
1 Bosch Security Systems 2 Delft University of Technology

Abstract

Automated imaging systems, critical in domains like
medical imaging, autonomous driving, and security,
experience noise from camera sensors and electronic
circuits in bad or dark lighting conditions. This impacts
downstream tasks, including object detection. However,
an analysis of strategies combining denoising and object
detection is lacking. This study addresses this gap by
analyzing diverse strategies for optimizing both image
quality and detection performance. Results reveal that
isolating denoiser network optimization and training a
detector on its outputs yields the best overall performance.
Combining detection and denoising enhances detection
outcomes. The results offer valuable insights to make
educated decisions on how to combine denoising and
detection in modern imaging systems.

1. Introduction

Automated imaging systems play a crucial role in
numerous domains, such as medical imaging, autonomous
driving, and securing perimeters. By using automated
image analysis, these systems provide valuable and
important assistance to humans. In practice, these systems
suffer from noise caused by sensor measurements and
electronic circuits, especially in bad lighting conditions.
Video cameras are a common imaging system that enables
automatic image analysis like image classification [26],
instance segmentation [4], and object detection [24], yet
noise affects these downstream tasks severely [10].

Object detection systems are used in autonomous
driving, security scenarios [17], and highway traffic
monitoring. Even though these systems are automated, the
ability to verify the systems’ actions is important. The
system should provide clear images and accurate object
detection to facilitate this. When we consider a building
security scenario, a guard has to monitor a certain property
using an automated system to detect intruders. High-quality
images allow the guard to accurately double-check the alerts
from the system. Reliable object detection ensures that the
system does not miss any intruder that tries to break into the

(a) Ground truth (b) Input image with σ = 0.5.

(c) Freeze denoiser (d) Finetuning

(e) Sequential optimization (f) Integrated optimization

Figure 1. Denoised images with detections by different
combination strategies for denoising and detection (Zoom in to
see details). (c) has better detection and fewer denoising artifacts
compared to other strategies, and is therefore preferred over other
optimization strategies.

property. Excellent performance in denoising and detection
is therefore essential.

The limitation of other approaches [16, 25, 32] that
combine denoising with object detection, is that they focus
only on the final detection performance. The image quality
is not one of the final objectives that is optimized for.
Having noisy images with detection is insufficient, as
verification of the detections and manual inspection of the
images is difficult when noise is present.

Motivated by the importance of both image quality
and detection, and the limitations of related literature,
we provide an analysis in this paper that is focused
on optimizing for both image quality and detection
performance, in the context of security cameras. We
compare naı̈ve, existing, and novel strategies to combine
denoising and object detection, providing an in-depth



understanding of each strategy’s performance. The main
contributions are:

1. We provide multiple in-depth analyses of various
strategies in combining denoising and object detection

2. We propose and analyze a novel optimization strategy
to combine denoising and object detection

2. Related work
Denoising. The work of Burger et al. [1] shows

that a simple Multi-Layer Perceptron (MLP) network is
able to outperform the popular hand-crafted BM3D [6]
algorithm. Following this, more complex CNN-based
denoising networks were introduced like DnCNN [41]
and MVCNN [21]. Recently, transformer-based denoisers
like SwinIR [18] and Uformer [37] were presented.
Interestingly, many of these proposed denoising networks
utilize an encoder-decoder structure, such as RED-Net
[23], MVCNN and UNet [31]. UNet in particular
is an architecture that inspired many follow-up works
with competitive performance, for example SUNet [12],
RDUNet [40], and Uformer. This popularity of UNet is
supported by the work by Ulyanov et al. [34], which shows
that the UNet architecture is suited to suppress noise and
reconstruct natural images. This analysis uses UNet for
denoising for these reasons.

Object detection. RCNN [14] was one of the first
object detector networks that outperformed algorithms
using handcrafted features like HOG [8] or the Viola-Jones
[35] detector. Followup works of this two-stage detector
such as FastRCNN [13] and FasterRCNN [29] improved
results significantly. FasterRCNN is used as inspiration
for many subsequent research, including R-FCN [7], Mask
RCNN [15], PANet [22] and DetectoRS [27]. Next
to the two-stage family, single-stage detectors including
YOLO [28], RetinaNet [20] and CenterNet [11] were
proposed. Single-stage models are faster, but at the cost of
performance [39]. State-of-the-art detection performance is
achieved by transformer-based networks like Group-DETR
v2 [5] and Co-DETR [42]. These networks are based on
DETR [2]. The authors show that FasterRCNN combined
with Feature Pyramid Networks [19] and GIoU [30] loss
can compete with DETR, even outperforming on detecting
small objects. A major downside of transformer-based
networks is the complex and long training process. Because
of its competitive performance, wide adaptation, and simple
and relatively quick training process, we use FasterRCNN
in this analysis.

Combining denoising and object detection. Some
existing approaches [24, 33] fuse denoising and object
detection using algorithms only optimized for one task.
They are combined in a sequential configuration: First, the
denoising algorithm is applied, after which detection takes

place. Other works [25, 32, 38] concatenate two networks
into one network that is optimized end-to-end. This network
consists of part (i): responsible for denoising, and part
(ii): performing detection. The exact setup varies between
publications: sometimes parts of the network are frozen
and pretrained [25], or authors target detection performance
[16]. The work of Hong et al. [16] blends the networks
of denoising and object detection into one, resulting in a
shared feature representation. They have a shared encoder
for both denoising and detection, followed by distinct
output heads for each task. Their work focuses on reaching
high performance in detection, not caring about denoising
results. An important common factor is that these methods
do not focus on achieving good performance in both tasks,
which is something we do focus on in this analysis.

3. Optimization of Denoising and Object
Detection

In this section, we explain various strategies to combine
denoising and object detection, which are used in the
analysis in the paper. Figure 2 visualizes and explains the
strategies used.

Isolated optimization. The first strategy to combine
the two tasks is to optimize each task in isolation
and concatenate the detector network after the denoiser
network. The denoiser is trained with denoising loss, and
the detector is trained with detector loss. The denoiser first
removes noise from input images. The cleaned image is
then fed into the detector.

Freeze denoiser. One can also first optimize the
denoiser in isolation with denoising loss, and then freeze
the weights. Afterward, the detector can be trained on the
output of the denoiser with detection loss. This approach
allows the detector to adapt to the outputs of the denoiser.

Finetune both networks. Instead of training the
detector from scratch on the output of the denoiser, one
can also first train both networks in isolation with separate
denoising and detection loss. Next, finetune the outputs and
inputs to each other by concatenating the detector after the
denoiser network. The network is then trained end-to-end
with a weighted combination of denoising and detection
loss resulting in the following loss function:

L = λDen ∗ LDenoising + λDet ∗ LDetection (1)

To finetune, the learning rate is set to a smaller value than
is used during training from scratch. The detector can adapt
to the output from the denoiser, and the denoiser can adjust
its outputs to help the detector’s performance.

Sequential optimization. Optimizing both networks
with random initialization in a sequential setup is another
strategy that can be used to combine the tasks. The detector
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(I) Architecture
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Figure 2. (i): Architectures used to denoise and detect objects. The red network is a UNet architecture for denoising. The blue network
is an object detector network, using the denoised output images of UNet. The green network is a different object detector, using shared
features of the red network as input. The denoised image and detections are combined together to achieve the final image. (ii): Explanations
for each combination strategy, what parts are trained, and how each of them is initialized. Pretrained describes that the strategy is using
pretrained weights, from a task optimized in isolation. Random means that random network initialization is used. Freeze indicates what
parts of the network are frozen during training. Which parts of the network are optimized is shown by the Optimize column. If no blocks
are optimized, the network can immediately be evaluated on a test set.

is concatenated after the denoiser. This strategy combines
both loss functions, shown in Equation (1).

Integrated optimization. The two networks can also
be combined into one single network. This network
has a shared encoder, and two distinct output heads for
(i): denoising and (ii): detection. The network is
randomly initialized and optimized end-to-end using loss
from Equation (1).

Definitions In the rest of the paper, we refer to the
general combination of denoising and object detection
using DOD. We refer to finetuning using Finetuning of
Denoising and Object Detection (FDOD). Configurations
where the detector network is concatenated after the
denoising network, which are Freezing the denoiser,
finetuning and sequential optimization, are indicated by Seq
in tables. Optimizing a network in isolation is indicated by
Single. Similarly, integrated configurations are indicated
by Int. Frozen indicates that a method is using frozen
denoiser weights. Pretrained indicates that a method is
using pretrained denoiser weights.

4. Fully controlled experiments

In this section, we provide an analysis of all
aforementioned strategies on a toy setup. This toy setup
allows for fully controlled experiments.

Dataset. We use MNIST [9] to generate the toy dataset.
A black square image of size 96x96 is created, and a few
random MNIST digits are placed at a random location with
a random size between 0.5 and 2x the original digit size,
an example is shown in Figure 4a. Additionally, a random
constant background shift is applied to the background.

This is a randomly sampled value between 0.1 and 0.3, to
prevent the denoiser from shortcutting the denoising task.
To introduce noise to the images, Gaussian noise is added
with 0 ≤ σ ≤ 2. Increasing σ above 2 is not relevant, as
images are like white noise at σ = 2.

Methods are evaluated by taking the average
performance across a range of models that are each
trained for a specific σ ∈ {.1, .2, .4, .8, 1.2, 1.6, 2.0}.

Network setup. The depth of the U-NET is set to 4 and
the base feature channel width to 32. A tanh nonlinearity is
used to force the final outputs to be between 0 and 1.
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Figure 3. Training an integrated network with a frozen encoder
using either random or pretrained weights initialization. In (a) and
(b), the network is optimized for denoising, whilst the pretrained
encoder is taken from a detection network. In the case of (c), The
network is optimized for detection, with an encoder trained for
denoising. Subfigures (a) and (b) show that performance using
pretrained encoders is better than that of random ones. Results
of (c) show that the performance of pretrained encoder features
is more than 2.5 times better compared to randomly encoded
features.



Motivation of integrating DOD. We propose the
integrated optimization strategy under the assumption that
denoising and object detection have subtasks in common, as
this network uses a shared encoder. We test this hypothesis
with two experiments: First, we train an integrated network
for denoising with (i) a randomly initialized frozen encoder
and (ii) a frozen encoder pretrained for detection. The
results in Figure 3(a) and 3(b) show that performance using
pretrained encoders is better than that of random ones.
Second, we train an integrated network for detection with
the difference of the first experiment being that (ii) is a
frozen encoder trained for denoising instead of detection.
The result in (c) shows that the pretrained encoder features
can boost detection performance by more than 2.5 times
compared to training on randomly encoded features. These
results show that denoising and object detection have
overlapping parts.

4.1. Denoising and Classification

To analyze the strategies on just denoising and
classification, the ground-truth bounding box data is used
to extract the relevant image areas for classification. We
presume perfect localization this way. The classifier
network is the encoder of UNet, followed by a global max
pooling and a fully connected layer. This classifier allows
for a fair comparison of all the different strategies. The
number of digits in the images is fixed to two and the
original sizes are kept. Because we use the ground truth
bounding boxes to extract the patches containing the digits,
adding more or resizing digits does not affect the classifier
input much.

An additional two experiments are performed to
establish a baseline. For the first experiment, we take a
classification network trained on clean input images and
evaluate it on noisy images. Secondly, we train a classifier
on noisy images and evaluate them on noisy images.

Training settings. For denoising, a weighted
combination of Charbonnier [3] and SSIM [36] loss was
used. For classification, Cross Entropy loss was used. The
total loss becomes:

L = (αChar ∗LChar+αSSIM ∗LSSIM)∗λDen+LCE ∗λCls (2)

αChar and αSSIM are empirically set to 0.8 and 0.2
respectively. λDen is set to 0.9 and λCls is set to 0.1. These
weights are also chosen from experimental results. For
optimization, the Adam optimizer with a learning rate of
0.001 is used. For finetuning, a 10x smaller learning rate
is used. A plateau learning rate scheduler is used with
patience 20 and a multiplier of 0.1. Also, early stopping
is used with patience 25. The maximum number of epochs
was set to 100.

Results. Models are trained on an RTX 3090. The
results of the experiments can be found in Table 1. We

Experiment PSNR
(dB) ↑

SSIM
↑

Acc
(%) ↑Name Config Train data Frozen Pretrained

Classifier Single Clean ✗ ✗ - - 46.8
Classifier Single Noisy ✗ ✗ - - 76.7
Isolated Seq Both ✓ ✓ 26.71 0.943 63.9

DC Seq Noisy ✓ ✓ 26.71 0.943 76.0
FDC Seq Noisy ✗ ✓ 26.58 0.940 78.5
DC Seq Noisy ✗ ✗ 26.03 0.938 79.4
DC Int Noisy ✗ ✗ 26.69 0.944 73.0

Table 1. Results of combining classification and denoising on
the toy dataset. FDC refers to Finetuning DC. In training
data, both means the denoiser is trained using noisy data, and
the classifier uses only clean data. The Isolated and DC-Int
strategies achieve the best denoising performance, outperforming
sequential optimization with random initialization by 0.66 dB
PSNR. Randomly initialized sequential optimization achieves
the best classification accuracy, beating others by at least 1%.
However, it also has worst denoising compared to the other
strategies.

refer to Denoising and Classification using the acronym
DC. Results show that the best denoising performance is
achieved by optimizing the denoiser in isolation, and by
training according to the DC-Int setup. These methods
outperform other methods by up to 0.66 dB PSNR.
Best classification accuracy is obtained when training a
sequential DC configuration from scratch by a difference
of 1% to the second-best strategy. However, denoising
performance is the worst out of the DC configurations.
Also, classification accuracy improves by almost 3%
when adding denoising loss to the classification network,
indicating that denoising the images is beneficial for
classification performance. A visual comparison is shown
in Figure 4.

(a) GT (b) σ = 1.2 (c) Frozen (d) FDC (e) DC-seq (f) DC-int

Figure 4. Denoised images from different Denoising and
Classification (DC) strategies. Freezing the denoiser and
integrated optimization perform best denoising, Sequential
optimization is not able to reconstruct the digit, and finetuning is
more blurry. (c) and (f) are therefore preferred.

4.2. Denoising and Localization

Denoising and localization experiments use the same
training settings as the DC analysis, with a different loss
function and network for localization. We use FasterRCNN
[29], ignoring the classification loss. We set the backbone
to be a UNet encoder, to ensure fair comparisons across all
strategies. Anchor boxes are configured to have sizes of 10,
28, or 56, with an aspect ratio of 1. We use the losses from



Experiment PSNR (dB) ↑ SSIM ↑ Mean IOU ↑
Config Frozen Pretrained

Seq ✓ ✓ 24.91 0.903 0.538
Seq ✗ ✗ 24.88 0.902 0.540
Int ✗ ✗ 24.89 0.902 0.539

Table 2. Results of various strategies of combining denoising and
localization. For both denoising and localization, all strategies
have similar performance.

Experiment PSNR (dB) ↑ SSIM ↑ AP50 ↑
Config Frozen Pretrained

Seq ✓ ✓ 24.91 0.903 0.539
Seq ✗ ✗ 24.82 0.902 0.543
Int ✗ ✗ 24.85 0.903 0.538

Table 3. Denoising and detection results on the toy setup of various
combining strategies. The different strategies show no significant
difference.

FasterRCNN to localize digits, ignoring the classification
part of the loss. The learning rate is set to 0.0001. As an
evaluation metric, the mean Intersection over Union (IOU)
for the predicted bounding boxes is used. We analyze
three different strategies inspired by the classification
experiments: freezing the denoiser and training a detector
on these outputs, sequential optimization, and integrated
optimization.

Results. Results can be found in Table 2. The
results show that there is no significant difference between
the different strategies, contrary to the classification
experiments. It is interesting to note that the denoising
performance of the sequential optimization from scratch is
now the same as that of the frozen denoiser and integrated
optimization.

4.3. Denoising and Detection

The analysis of denoising and detection uses the same
networks and training settings as denoising and localization,
no longer discarding outputs of FasterRCNN. To measure
the performance of the detection, we use the AP50 metric.

Results. The results from Table 3 show that there is
no significant difference between the different strategies.
An interesting observation is that in both localization and
detection experiments, sequential optimization from scratch
performs similarly in denoising as other strategies. Some
additional experiments were done to analyze the influence
of including the detection loss in each strategy.

Influence of detection loss. An analysis of the influence
of the detection loss is done by training the sequential
optimization strategy using only classification loss on the
exact same dataset as used for localization and detection.
This dataset is the toy dataset including between 1 and 5

Experiment PSNR (dB) ↑ SSIM ↑
Loss Dataset

Classification Classification 26.03 0.938
Detection Classification 26.50 0.940

Classification Detection 24.19 0.895
Detection Detection 24.82 0.902

Table 4. Effect of adding detection loss compared to just
classification loss on the classification and detection datasets.
Denoising loss is the same. The difference between these
datasets is the number of digits and digits of varying sizes. The
denoising networks are exactly the same, the only difference is in
the classification/detection networks. Denoising performance is
always better when detection loss is included.

digits of varying sizes. The dataset used in classification
experiments uses a fixed digit size and a fixed amount of
digits. Additionally, the detector is trained on the dataset
used in the classification experiments.

Results. Results are shown in table Table 4. It shows that
adding the detection loss improves the denoising quality of
sequential optimization from scratch by 0.47 to 0.63 dB
PSNR on both datasets.

5. Experiments on real data
We perform experiments with the various strategies on

the PascalVOC dataset. As security cameras are the context
of our analysis, we choose the following five relevant
classes from PascalVOC: person, bike, truck, car and cat.
For training, we use the trainval2012 set. For testing, we
use the 2007 test set. FasterRCNN is used with a pretrained
Resnet50-FPN backbone on Imagenet. We use the same
denoiser as in the toy setup.

Training settings. The shortest side of images is resized
to 800 pixels, to preserve aspect ratios. The longer side is
capped at 1333 pixels. After this, image dimensions are
rounded to the nearest multiple of 32, to ensure matching
spatial resolutions for the skip connections of UNet. For
each strategy, a single model is trained on a uniform
range of σ between [0, 1]. Each image samples a σ from
this interval. σ is capped at 1 because this noise is
already distorting the input image significantly, as shown
in Figure 9a. Adam optimizer is used with a base learning
rate of 1e−4. This learning rate is adapted per strategy
for optimal performance, as explained in the following
sections.

How to integrate denoising and detection? The
integrated network used in the toy setup, attached the
detector to the bottom of the UNet network, shown in
Figure 2. Another approach to integrating the two networks
is by attaching a denoising head to the ResNet50 backbone,
visualized in Figure 5. An experiment is done to compare
the performance of both approaches.



Experiment PSNR (dB) ↑ SSIM ↑ AP50 ↑
UNet w/ detector 28.87 0.814 0.313
ResNet50 w/ denoiser 28.96 0.813 0.631

Table 5. Results show that attaching a denoiser head to a detector
backbone results in over 2x better detection performance, whilst
denoising performance is similar. This configuration is therefore
preferred for subsequent experiments.

Results. Results shown in Table 5 show that attaching
a denoising head to the backbone achieves more than 2x
better detection performance, whilst denoising performance
is similar. This configuration is therefore also used in
subsequent experiments.

Denoising and Object Detection We optimize the
different strategies including baseline experiments for
denoising and detection. To ensure a fair comparison
between all strategies, the denoiser network used in other
strategies consists of a part of the ResNet-50 backbone up
until Stage 3, followed by the denoising head shown in
Figure 5.
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Figure 5. Figure illustrating how the denoising head is attached
to the ResNet-50 backbone. The denoising head is the same as
a UNet decoder. The FPN is left out as it is not used for the
denoising head.

Results. The performance of all the different strategies
is shown in Table 6. A visual comparison is shown in
Figure 1 and 6. For each strategy, results are obtained
using the best settings as found by ablation experiments.
Training FasterRCNN only for detection on clean images
achieves the best performance with 0.769 AP50. In
noisy images, DOD-Seq with frozen denoiser weights
achieves the best overall performance. FDOD achieves
slightly better denoising metrics, but 3.6 worse AP50.
Also, sequential optimization from scratch is better than
integrated optimization, in both denoising and detection.
Notably, results show that a combination of denoising and
detection can outperform isolated detector optimization on

Experiment PSNR
(dB) ↑

SSIM
↑

AP50

↑Name Train data Test data Config Frozen Pretrained

Detection Clean Clean Single ✗ ✗ - - 0.769
Detection Clean Noisy Single ✗ ✗ 12.02 0.107 0.162
Detection Noisy Noisy Single ✗ ✗ 12.02 0.107 0.621
Isolated Both Noisy Seq ✓ ✓ 29.73 0.830 0.474

DOD Noisy Noisy Seq ✓ ✓ 29.73 0.830 0.749
FDOD Noisy Noisy Seq ✗ ✓ 29.80 0.831 0.713
DOD Noisy Noisy Seq ✗ ✗ 29.23 0.821 0.688
DOD Noisy Noisy Int ✗ ✗ 28.96 0.813 0.629

Table 6. Comparison of the different strategies on a subset of the
PascalVOC dataset. The DOD sequential setup with frozen and
pretrained denoiser weights achieves the best overall performance
in terms of denoising and detection. FDOD achieves slightly better
denoising performance, but over 3 AP50 on detection. Adding a
denoising loss to the detector network helps to improve detection
performance by almost 13 AP50.

Experiment PSNR (dB) ↑ SSIM ↑ AP50 ↑
Config Learning rate

Seq Single 29.18 0.821 0.604
Seq Task-specific 29.08 0.819 0.684

Int Single 28.23 0.803 0.635
Int Task-specific 28.96 0.813 0.629

Table 7. Results showcasing the effect of including task-specific
learning rates, meaning that parts of the networks are optimized
with different learning rates than other parts. Results show that
task-specific learning rates boost one of the two tasks’ accuracy,
whilst not decreasing the other significantly.

noisy data by 12.8 AP50.
Task-specific learning rate. An experiment is done

to show the effect of using different learning rates for
denoising and detection parts of the network. Learning rates
used are 1e − 4 for denoising and 1e − 5 for detection.
Results can be found in Table 7. They show that training
with task-specific learning rates can boost the performance
of a task, but sacrifices a bit of performance in the other.
Sequential optimization from scratch improves 8 AP50 with
denoising staying similar. Integrated optimization improves
denoising quality by 0.74 dB PSNR and 0.01 SSIM, and
detection performance only decreases by 0.06 AP50.

Using pretrained weights. An ablation study is
done to show the effect of initializing detector networks
with pretrained weights. The weights are taken from
a pretrained detector trained on clean images from the
PascalVOC subsets. All experiments use task-specific
learning rates. Results in Table 8 show that including a
pretrained detector benefits denoising performance for all
strategies. Detection performance does not always increase:
sequential optimization with a frozen denoiser increases 5.6
AP50, whilst integrated optimization decreases 2.2 AP50.
Optimal settings, therefore, vary per strategy.

Analyzing class performance. An in-depth analysis
is done to investigate the performance of denoising and
detection per class. Denoising metrics are calculated



(a) (b) (c) (d) (e) (f)

Figure 6. Denoised images with detections by different combination strategies for denoising and detection (Zoom in to see details). (a):
GT. (b): Input image with σ = 0.5. (c): Freeze denoiser. (d): Finetuning. (e): Sequential optimization. (f): Integrated optimization. (c) has
better detection and fewer denoising artifacts compared to other strategies.

Experiment PSNR
(dB) ↑

SSIM
↑

AP50

↑
Config Frozen Pretrained

denoiser
Pretrained

detector

Seq ✓ ✓ ✗ 29.73 0.830 0.693
Seq ✓ ✓ ✓ 29.73 0.830 0.749

Seq ✗ ✗ ✗ 29.08 0.819 0.684
Seq ✗ ✗ ✓ 29.23 0.821 0.688

Int ✗ ✗ ✗ 28.96 0.813 0.631
Int ✗ ✗ ✓ 29.17 0.818 0.609

Table 8. Effect of training various strategies starting from
a pretrained detector network. The networks are pretrained
on clean PascalVOC images. Task-specific learning rates are
used. Initializing with pretrained networks boosts denoising
performance up to 0.21 dB PSNR. However, detection
performance decreases more than 2 AP50, in the integrated
configuration, compared to an increase of more than 5 AP50

when freezing the denoiser. Optimal settings, therefore, vary per
strategy.

by extracting the ground truth bounding boxes out of
the denoised and ground truth images. Results of this
experiment can be found in Figure 7. Findings from
Table 6 translate to class-specific results, with the finetuning
strategy achieving the best denoising and freezing the
denoiser achieving the best detection. Considering average
performance on both tasks, freezing the denoiser is
preferred as the detection performance is on average 3 AP50

better, with similar denoising performance.
Investigating noise levels. To provide more insight into

the strategies’ performance, methods are evaluated across a
set of noise levels. Results are shown in Figure 8. In lower
noise levels, strategies have similar denoising performance,
but freezing the denoiser consistently achieves better
detection. Freezing the denoiser is preferred as it achieves
the best overall performance for each noise level.

Signal dependent noise. Gaussian noise is
signal-independent, but many camera sensors experience
signal-dependent noise. This noise distribution is different
for different camera sensors. An experiment is done to
investigate the behavior of the strategies with sensor noise
applied to the images. A noise model of an OmniVision
sensor is used for this experiment, with gain levels sampled
uniformly from [0, 1024]. A gain level of 1024 is opted

Experiment PSNR
(dB) ↑

SSIM
↑

AP 50

↑
Name Config Frozen

den
Pretrained

den
Pretrained

det

DOD Seq ✓ ✓ ✓ 32.62 0.894 0.803
FDOD Seq ✗ ✓ ✓ 32.61 0.893 0.773
DOD Seq ✗ ✓ ✓ 31.88 0.884 0.749
DOD Int ✗ ✗ ✗ 31.88 0.883 0.729

Table 9. Results when applying signal-dependent sensor noise
of an OmniVision sensor. Sequential and integrated optimization
are much closer compared to Gaussian noise. This is because
the highest level of sensor noise would be considered less
noisy compared to the Gaussian noise, as shown in Figure 9.
Freezing the denoiser is the preferred approach, reaching a similar
denoising performance as FDOD, but outperforming over 3 AP50

on detection.

for, given that it is already a substantial amplification for
this camera sensor. A comparison of Gaussian and sensor
noise is shown in Figure 9. Results are found in Table 9.
Freezing the denoiser and finetuning optimization strategies
again achieve similar denoising performance, but FDOD is
outperformed 3.0 AP50 by freezing the denoiser strategy.
It is also interesting that the difference in performance
between DOD-Seq without freezing the denoiser and
DOD-Int is much smaller. This can be attributed to the fact
that the images with the highest level of sensor noise that
can be sampled are less noisy compared to the Gaussian
noise counterpart, as shown in Figure 9.

6. Discussion
The results from the toy setup show no clear preference

between DOD strategies. When looking at DC results,
Sequential optimization from scratch has the worst
denoising of all configurations but achieves the best
classification accuracy. Freezing the denoiser results in
the best overall performance. When training on real-life
images, FDOD achieves the best denoising performance but
has more than 3 AP50 worse detection compared to freezing
the denoiser. Freezing the denoiser is therefore preferred as
the best approach for overall performance.

We show that denoising and detection can use features
of the other task to extract information. Additionally,
analysis of the toy setup indicates that the utilization of
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Figure 7. Class specific results on PascalVOC subset. Finetuning achieves the best denoising on all classes, but freezing the denoiser
achieves the best detection performance. Overall, freezing the denoiser is preferred compared to the other strategies, as average performance
is best.
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Figure 8. Performance of strategies across different noise levels. The x-axis represents the standard deviation of Gaussian noise. Finetuning
and freezing the denoiser achieve similar denoising performance, but finetuning consistently has worse detection. Freezing the denoiser is
therefore preferred considering all metrics.

(a) Gaussian noise (σ=1.0) (b) Sensor noise (gain = 1024)

Figure 9. Example images show that the sensor noise image is less
noisy than the Gaussian noise image.

a localization loss enhances the denoising performance
of the sequential optimization from scratch. Analyzing
the performance across various noise levels in the real
setup shows that the denoising performance of the various
strategies is similar at lower noise levels. The results when
using sensor noise support this finding. Using pretrained
weights and task-specific learning rates can help improve
the performance of both tasks.

By tuning the weights of the losses, the performance
between denoising and detection can be tweaked. The
optimal weights depend on the importance of each task.
The weights proposed in this paper aim to give equal
importance to both tasks, which might not be optimal for
different domains. For finetuning, the learning rate is
also an important setting. Setting the learning rate too
high causes the network to behave similarly to sequential
optimization from scratch. Finetuning with a lower learning
rate is therefore important to ensure that the networks
cannot change their weights a lot.

The denoising in this paper aims to achieve full

denoising of the input image. When images have a high
noise level, it is difficult to obtain a clean version of the
original image. High-frequency information is lost, which
could result in loss of texture such as disappearing faces and
unreadable text (See Figure 1 and 6).

To preserve more high-frequency information, future
work could analyze the effect of partial denoising instead of
full denoising. Additionally, it is interesting to investigate
if the findings from our analysis also hold for different
combinations of detection and denoiser networks, such as
transformer-based approaches.

7. Conclusion

Modern imaging systems, pivotal in domains such as
medical imaging, autonomous driving, and security, grapple
with noise from sensor measurements and electronic
circuits, impacting downstream tasks including object
detection. Despite this, denoising and detection’s combined
potential remains underexplored. This work addresses
this gap by analyzing different naı̈ve, existing, and novel
strategies that optimize both image quality and detection
performance. The results show that the best overall
performance is obtained by optimizing a denoiser network
in isolation and training a detector on the outputs of
the denoiser. Analysis shows that combining detection
and denoising is beneficial for detection performance.
Investigating the effect of doing partial denoising is
an interesting direction for future works. Additionally,
different detector and denoising networks can be analyzed
to broaden this analysis.
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3
Background

3.1. Deep learning background
This section explains some building blocks for deep learning that are more advanced and less well-known.
Specifically, we will focus on GroupNorm [8] and transposed convolutions.

Group Normalization Including normalization layers like BatchNorm [9] in neural networks has been
shown to improve training stability and speed up convergence. Santurkar et al. [10] propose that it helps
to smoothen the loss function over the parameter space. The downside of BatchNorm is that performance
starts to degrade when the batch sizes are reduced. Fitting large batch sizes in memory can be a challenge
nowadays, with the amount of high-resolution training data available. A visualization of BatchNorm and
other normalization techniques is shown in figure 3.1

Two normalization approaches that aim to overcome limitations of BatchNorm are LayerNorm [11] and
InstanceNorm [12]. Instead of normalizing across the batch dimension, they normalize per entry in a batch.
LayerNorm normalizes features across all channels, and InstanceNorm normalizes features per channel.

GroupNorm [8] can be seen as a tradeoff between LayerNorm and InstanceNorm. They divide the chan-
nels in G groups. The number of channels should be divisible by G. If G = 1, we get LayerNorm. Similarly, if
G =C , we get InstanceNorm, as C represents the number of channels. The mean µG and standard deviation
σG are calculated for each group.

Figure 3.1: Illustration of various normalization methods used in neural networks. The blue part indicates across what dimensions nor-
malization is applied. N represents the batch dimension, C represents the channel dimension, and H,W represent spatial dimensions.
In this figure, GroupNorm parameter G = 2. Image taken from the GroupNorm [8] paper.
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They are used to normalize the feature activations using the following formula:

GroupNorm(x, g ) = x −µg

σg
∗γg +βg (3.1)

Where:

x is the input tensor.

g is the group index or identifier.

µg is the mean of the elements in group g .

σg is the standard deviation of the elements in group g .

γg is a learnable scaling parameter for group g .

βg is a learnable shifting parameter for group g .

The learnable parameters are included so that the network can learn to undo the normalization of the
groups.

Transposed convolution
Normal convolutions are performed by sliding a kernel over an input feature map, performing element-

wise multiplication and summing the results to produce an output feature map. Transposed convolutions do
the opposite: Each value of the input is multiplied with the kernel. The resulting values of this multiplication
are summed and inserted in an output grid. This process is visualized in figure 3.2. This process results in an
output with increased spatial dimensions.

Figure 3.2: Visualization of performing a transposed convolution. The kernel is multiplied with each element of the input. The results
of these calculations are placed on the output grid and summed. Stride and padding control the size of the output. Image taken from
geeksforgeeks.org.

geeksforgeeks.org


3.2. Denoising 19

3.2. Denoising
Definition

Image denoising is the task of removing unwanted noise from an image. The noise can have various
sources, such electronic measurement noise or camera sensor noise. Additive white Gaussian noise (AWGN)
is a noise model that can be used to simulate random noise. Additive refers to the fact that this noise is added
to the raw input signal. White noise means that the noise intensity is equivalent across all input signals.
Gaussian means that the noise signal is drawn from a Gaussian distribution with zero mean. In other words,
each image pixel is constructed of a raw input signal with some noise added on top. Mathematically this can
be formulated as follows:

y = x+n (3.2)

Here y ∈ RN represents the noisy image, x ∈ RN is the ideal clean image and n ∈ RN is the independently and
identically distributed noisy signal. Image denoising is concerned with recovering the clean signal x given y.

Next to AWGN, there are other noise models that can be used. Camera sensors produce noisy signals
caused by the randomness of photon arrival. Noise can also be introduced by the digital circuits present in
cameras. These signals have different behaviour than the AWGN discussed above. They are signal dependent,
and can be represented by a multiplication with the signal instead of addition.

Denoising networks
More traditional approaches try to denoise images by using hand-crafted methods, such as the works by

Buades et al. [13], Dabov et al.[14] and Lan et al.[15]. The downside of these methods is that they often need
hand-tuned parameters and are complex to optimize or slow in usage. With the development of the deep
learning field and the availability of faster hardware, neural networks were used to perform image denois-
ing. Instead of handcrafting the features as done in the more traditional approaches, by using deep learning
the feature representations can be learned in an end-to-end fashion. These deep learning based denoisers
outperform classical hand-crafted approaches, as is shown in Figure 3.3 found in the survey by Elad et al.
[16].

Figure 3.3: PSNR score of various denoising methods on the BSD86 dataset [17]. Recent deep learning based approaches outperform
more traditional methods.

UNet
The denoising network used in this paper is UNet [18]. This network is well known and widely used. Many

followup works are based upon this network. We also choose it because of its simplicity and its modular ar-
chitecture. The network architecture can be seen in Figure 3.4. The network can be split up into two different
parts: the encoder and the decoder. The encoder is responsible for encoding the image in an efficient repre-
sentation and capturing the context of the image. The decoder is responsible for reconstructing the original
clean image in the original resolution.

The encoder consists of multiple layers. Between each layer, a max pooling operation is applied which
reduces the spatial resolution by a factor of 2. The decoder has the same amount of layers, and in each layer
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Figure 3.4: Visualization of UNet network architecture. The networks takes in an RGB image and outputs another RGB image. the
concatenation of channels allows for efficient learning and preserves detailed information.

a transposed convolution is used to increase the feature resolution by a factor of 2, see section 3.1 for an
explanation. The concatenation of the channels from the encoder in the blocks of the decoder allows the
network to produce high resolution outputs with only limited training data.

The layers consist of two convolutional blocks, each block consisting of a ReLU followed by a normaliza-
tion. The normalization used in the scientific article is GroupNorm, explained in section 3.1. The analysis in
the scientific article adds an additional tanh nonlinearity after the final 1x1 convolution to force the outputs
to be between 0 and 1.

Image quality
To be able to quantitatively analyze denoising performance on images, there exist various metrics to de-

termine the quality of an image. These metrics compare a distorted image with an ideal ground truth image.
The metrics used in the paper are Peak Signal to Noise Ratio (PNSR) and Structural Similarity Index Measure
(SSIM).

PSNR The PSNR is a metric that compares pixel values between a reference image and a distorted image.
The metric has a logarithmic scale, expressed in terms of dB. It uses the Mean Squared Error (MSE) to calculate
its values.

The MSE is defined as follows:

MSE = 1

M ×N

M∑
i=1

N∑
j=1

(I (i , j )− I ′(i , j ))2 (3.3)

Where:

M : Height of the image

N : Width of the image

I (i , j ) : Pixel value of the original image at position (i , j )

I ′(i , j ) : Pixel value of the reconstructed image at position (i , j )

PSNR has two advantages over the MSE, namely (i) it is independent of the number of bits used to encode
the images and (ii) it is a logarithmic scale resulting in values typically between 0 and 60, which is much easier
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Figure 3.5: Leftmost image is a reference image, other images are images with various distortions applied. All these distorted images
have the same MSE and PSNR value, even though perceptual quality is very different. The SSIM metric does distinguish between these
images. Image taken from the work of Wang et al. [19].

Figure 3.6: Example scenario where SSIM fails to indicate the better quality images. Leftmost image is the groundtruth image. The other
images are distorted versions of this image. The SSIM value of the two right images is higher than that of the second image, even though
visually the right images look worse. The PSNR metric does rank images as expected. Image taken from the work of Kotevski et al. [20].
This motivates the use of both SSIM and PSNR to quantitatively asses image quality.

to compare than the large values the MSE produces. PSNR can be seen as a normalized version of the MSE.
PSNR is defined as follows:

PSNR = 10 · log10

(
MAX2

MSE

)
(3.4)

Where:

PSNR : Peak Signal-to-Noise Ratio

MAX : The maximum possible pixel value (usually 255 for an 8-bit image)

MSE : Mean Squared Error

SSIM The downside of metrics that are based on comparing pixel values, is that two very visually differ-
ent images can have the same metric value. The work of Wang et al. [19] showcased these shortcomings
and proposed a new image quality metric: Structural similarity index measure (SSIM). An illustration of this
problem is given in figure 3.5. Instead of comparing pixel values, SSIM compares structural elements of the
pixels. Images that have the same PSNR now get different values for SSIM, solving the shortcomings of pixel
based image quality metrics. SSIM is calculated on image patches of size NxN, typically 11x11. The formula
to calculate SSIM on an NXN window is as follows:

SSIM(I , I ′) = (2µIµI ′ +C1)(2σI ,I ′ +C2)

(µ2
I +µ2

I ′ +C1)(σ2
I +σ2

I ′ +C2)
(3.5)

Where:

I , I ′ : Original and reconstructed image patch

µI ,µI ′ : Mean pixel intensities of I and I ′

σI ,σI ′ : Standard deviations of I and I ′

σI ,I ′ : Cross-correlation between I and I ′

C1,C2 : Constants to stabilize the division with weak denominator

To compute the SSIM of an entire image, the average is taken of all the SSIM values on the patches. SSIM
is a value between -1 and 1, where -1 represents perfect anti-correlation, and 1 perfect similarity.
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The SSIM metric however also has scenarios where high values do not necessarily correspond to high
image quality. The work of Kotevski et al. [20] shows examples of cases where SSIM metric fails to rank
images based on visual quality. This is shown in figure 3.6. The two right images in this figure have a higher
SSIM score than the second image. PSNR does rank images as expected in this example.

These examples show that image quality metrics like PSNR and SSIM both have their shortcomings and
advantages. To provide a more reliable quantitative analysis in Chapter 2, both SSIM and PSNR are used to
assess image quality.

Loss function
PNSR is not a differentiable metric due to the MAX term in the equation (3.4). Therefore it cannot be used

directly as a loss function. SSIM is differentiable, and can be used as a loss function. Because we want to
minimize loss, we obtain the following SSIM loss:

LSSIM = 1−SSIM(I, I’) (3.6)

Where:

I , I ′ : Original and reconstructed image patch

We subtract the SSIM metric from 1 to minimize the loss, and therefore maximizing the SSIM value. This
loss is also used in the scientific article of Chapter 2.

Charbonnier loss As shown before, no single image metric always perfectly corresponds to to visual qual-
ity. Therefore, another loss is used in combination with SSIM loss to get the best of both worlds. This loss is
a pixel-based loss that can be seen as a mix between L1 and L2 loss. The downside of L2 loss is that it is sen-
sitive to outliers, and gradients of the L1 loss are always the same, even when coming close to the minimum.
This can cause optimization to overshoot the minimum. Charbonnier loss has a smooth shape around the
minimum, reducing the gradient magnitudes, but has smaller values when further away from the minimum
than L2, adressing the outlier problem. It has the following formula:

LCharbonnier =
√

(x − y)2 +ϵ2 (3.7)

x : Distorted image

y : Reference image

ϵ : Small constant to control the tradeoff between L1 and L2, usually 1e−3
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3.3. Image classification and object detection
Image classification is the task concerned with assigning a label to a complete image based on its contents.
Pictures of a dog would be labeled as ’dog’ for example. Neural networks can solve this task by training on
large datasets of labeled images. A popular dataset for this is called ImageNet [21]. This dataset has over
14 million annotated images with 1000 different classes. Convolutional neural networks are used to extract
discriminative features out of images, which are fed into a linear layer that has 1000 output heads, where
each head corresponds to a different label. To be able to properly extract discriminative features for good
classification accuracy, deep networks are required. The problem with these deep networks is that the gra-
dient vanishes when the number of layers becomes too large. The work of He et al. [22] solved this issue by
introducing residual connections, preserving gradients even if networks consist of a lot of layers. Their work
introduced ResNet, a deep network able to achieve state-of-the-art performance at the time on the ImageNet
dataset. Concepts introduced in their work are the basis of many networks that achieve state-of-the-art per-
formance today.

Figure 3.7: An example of a residual building block. The input features x are added to the output of several weight layers. This allows
gradients to flow back into the earlier layers without vanishing. Image taken from the work of He et al. [22].

The paper introduces residual connections: A connection where the input features are added to the out-
come of applying weight layers to the input. The advantage of this is that gradients can flow freely through
this identity connection. A visual explanation is given in figure 3.7.

These residual building blocks are used in very deep networks like ResNet. A ResNet network is built by
first applying a 7x7 convolution to increase the receptive field of subsequent layers. Then normalization,
nonlinearity and pooling is applied. Next, many residual blocks are stacked on top of each other. Finally, a
global average pooling and linear layer are applied to obtain predictions. The architecture is shown in figure
3.8.

Figure 3.8: A visual representation of the ResNet architecture. ID Blocks refer to the residual blocks shown in figure 3.7. Different
networks can be created depending on how many residual blocks are stacked in stages 2-5. Image by Suvaditya Mukherjee.

Detection Object detection is an extension of image classification. Instead of assigning only a label to the
entire image, we now also want to localize the object. This is done by generating a bounding box around the
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Figure 3.9: Illustration of the FasterRCNN architecture. Features are extracted using a deep convolutional network, like ResNet. A region
proposal network proposes regions in the features that contain objects. All the proposals containing objects are projected onto the
feature maps, and converted to a fixed-size feature vector using RoI pooling. These feature vectors are given to the detection module,
that classifies them and regresses the bounding boxes. Image by Ashutosh Makone.

object. Another difference with image classification is that an image can contain multiple objects, of different
labels. Object detection tries to localize and classify each of them.

FasterRCNN [23] is a popular object detector, successor of RCNN [24] and FastRCNN [25]. This object
detector consists of two stages: (i) Propose regions that contain objects, and (ii) classify these regions. This is
shown in figure 3.9. ResNet is often used as a backbone to extract useful features from an input image. The
final 3 blocks shown in figure 3.8 are left out, and the output of stage 5 is given to FasterRCNN.

Region proposal network The extracted features are given to a Region Proposal Network (RPN). This RPN
generates so-called anchor boxes for each spatial location. Anchor boxes are boxes with different sizes and
aspect ratios, defined in advance. Usually, a total of 9 anchor boxes are used, with 3 different scales and 3
different aspect ratios. These anchor boxes are then classified if they contain an object or not, and bounding
box coordinates are regressed. This is illustrated in figure 3.10.

Figure 3.10: Illustration of anchor box generation. Anchor boxes of various scales and aspect ratios are projected onto each spatial
location of the feature map. Each of these boxes is then classified to be either foreground (containing an object) or background, and
bounding box coordinates are regressed.

Relevant anchor boxes are sampled from all of the boxes and projected onto the feature map. RoI pooling
is applied to convert the projected anchor boxes to have a same-sized feature vector. This feature vector is
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then given to the detection module, that assigns labels to each RoI and regresses the bounding box coordi-
nates. Cross Entropy loss is used to train the classifiers of the RPN, and Smooth L1 Loss is used to train the
regressors of the bounding boxes. The total loss is a weighted combination of these losses:

Ltot al = (Lcl s +λr eg Lr eg )+ (Lr pn_cl s +λr pn_r eg Lr pn_r eg ) (3.8)

With:

Ltotal : Total loss, combining object detection and RPN losses.

Lcls : Cross Entropy loss in object detection.

Lreg : Smooth L1 regression loss in object detection.

λreg : Balancing parameter for detection head. Usually set to 1.

Lrpn_cls : Cross Entropy loss in RPN.

Lrpn_reg : Smooth L1 regression loss in RPN.

λrpn_reg : Balancing parameter for RPN. Usually set to 10.

Feature Pyramid Networks A Feature Pyramid Network (FPN) [26] is a network that takes a single scale
image as input, and outputs feature maps of varying scales. This is useful for object detection, as smaller
objects are difficult to detect when the spatial resolution becomes smaller in the ResNet backbone used by
FasterRCNN. FPN can be merged with ResNet, providing FasterRCNN with different scales of feature maps.
RoI’s of larger objects can be projected onto smaller feature maps, and RoI’s of smaller objects can be pro-
jected onto larger feature maps. This guides the network to let bigger feature maps focus on extracting the
smaller objects, and the smaller feature maps are concerned with extracting larger objects. A visual of the
new pipeline is given in figure 3.11.

Figure 3.11: Pipeline of combining FPN with FasterRCNN. Features are extracted at different scales, and anchor boxes are projected on
scales depending on the size of the anchor box. Smaller feature maps are responsible for detecting larger objects, whilst smaller objects
are projected onto the bigger scale feature maps. Image by Jonathan Hui.
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