
 
 

Delft University of Technology

Local Stackelberg equilibrium seeking in generalized aggregative games

Fabiani, Filippo; Tajeddini, Mohammad Amin; Kebriaei, Hamed; Grammatico, Sergio

DOI
10.1109/TAC.2021.3077874
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Automatic Control

Citation (APA)
Fabiani, F., Tajeddini, M. A., Kebriaei, H., & Grammatico, S. (2022). Local Stackelberg equilibrium seeking
in generalized aggregative games. IEEE Transactions on Automatic Control, 67(2), 965-970.
https://doi.org/10.1109/TAC.2021.3077874

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAC.2021.3077874
https://doi.org/10.1109/TAC.2021.3077874


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 2, FEBRUARY 2022 965

Local Stackelberg Equilibrium Seeking in Generalized
Aggregative Games

Filippo Fabiani , Mohammad Amin Tajeddini , Hamed Kebriaei , Senior Member, IEEE,
and Sergio Grammatico , Senior Member, IEEE

Abstract—We propose a two-layer, semidecentralized algorithm
to compute a local solution to the Stackelberg equilibrium problem
in aggregative games with coupling constraints. Specifically, we fo-
cus on a single-leader, multiple-follower problem, and after equiv-
alently recasting the Stackelberg game as a mathematical program
with complementarity constraints (MPCC), we iteratively convexify
a regularized version of the MPCC as the inner problem, whose
solution generates a sequence of feasible descent directions for
the original MPCC. Thus, by pursuing a descent direction at every
outer iteration, we establish convergence to a local Stackelberg
equilibrium. Finally, the proposed algorithm is tested on a numeri-
cal case study, a hierarchical instance of the charging coordination
problem of plug-in electric vehicles.

Index Terms—Game theory, hierarchical systems, optimization,
Stackelberg equilibrium.

I. INTRODUCTION

Stackelberg equilibrium problems are very popular within the
system-and-control community, since they offer a multiagent, decision-
making framework that enables one to model not only “horizontal”
but also “vertical” interdependent relationships among heterogeneous
agents, which are, hence, clustered into leaders and followers. The
application domains of Stackelberg equilibrium problems are, indeed,
numerous, spanning from wireless networks, telecommunications [1],
and network security [2], to demand response and energy manage-
ment [3]–[5], economics [6], and traffic control [7].

In its most general setting, a Stackelberg equilibrium problem be-
tween a leader and a set of followers can be formulated as a mathe-
matical program with equilibrium constraints (MPEC) [8, Sec. 1.2] or,
in some specific cases, as a mathematical program with complemen-
tarity constraints (MPCC) [9]. Both MPECs and MPCCs are usually
challenging to solve. Specifically, they are inherently ill-posed, non-
convex optimization problems, since typically there are no feasible
solutions strictly lying in the interior of the feasible set, which may
even be disconnected, implying that any constraint qualification is
violated at every feasible point [10]. It follows that, in this context,
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the basic convergence assumptions characterizing standard constrained
optimization algorithms are not satisfied. Therefore, available solution
methods are either tailored to the specific problem considered, or
designed ad hoc for a subclass of MPECs/MPCCs.

Algorithmic solution techniques for the class of games involving
dominant and nondominant strategies, i.e., leaders and followers, trace
back to the 1970s. For example, open-loop and feedback-control poli-
cies for differential, hence continuous-time, unconstrained games were
designed in [11] and [12], whereas in [13], a comparison between fi-
nite/infinite horizon control strategies involving discrete-time dynamics
was proposed. More recently, a single-leader, multifollower differential
game, modeling a pricing scheme for the Internet by basing on the
bandwidth usage of the users, i.e., with congestion constraints, was
solved in [14], and an iterative procedure to compute a Stackelberg–
Nash saddle point for an unconstrained, single-leader, multifollower
game with discrete-time dynamics was proposed in [15]. By relying
on the uniqueness of the followers’ equilibrium for each leader’s
strategy, standard fixed-point algorithms are also proposed in [16]
and [17]. A first attempt to solve an MPEC by considering a more
elaborated multileader, multifollower game was investigated in [18].
Specifically, the authors established the equivalence to a single-leader,
multifollower game whenever the cost functions of the leaders admit
a potential function and, in addition, the set of leaders has an identical
conjecture or estimate on the follower equilibrium. Similar arguments
are also exploited in [19] to address the same multileader, multifollower
equilibrium problem. In this latter case, for each leader, the authors
proposed a single-leader, multifollower game modeled as an MPEC. On
the other hand, all these subgames, which are parametric in the decisions
of the followers, are coupled together through a game with the leaders
themselves. However, in both papers, the solution to the single-leader,
multifollower game remains to be dealt with, mainly due to the presence
of nonconvexities and equilibrium/complementarity constraints, which
characterize MPEC/MPCC. Early algorithmic works on MPCCs to
solve single-leader, multifollower Stackelberg games, such as Gauss–
Seidel or Jacobi [20], [21], are computationally expensive, especially
for large number of followers. Additionally, they introduce several
privacy issues, since they are designed by relying on diagonalization
techniques. In [22], after relaxing the complementarity conditions, a
solution to an MPCC is computed through nonlinear complementarity
problems, by driving the relaxation parameter to zero.

This article aims at filling the apparent lack in the aforementioned
literature of scalable and privacy preserving solution algorithms for
equilibrium problems with nonconvex data and complementarity condi-
tions, i.e., MPECs/MPCCs. Specifically, we leverage on the sequential
convex approximation (SCA) to design a two-layer, semidecentral-
ized algorithm suitable to iteratively compute a local solution to the
Stackelberg equilibrium problem involving a single leader and multiple
followers in an aggregative form with coupling constraints. The main
contributions of this article are summarized as follows.
1) We reformulate the Stackelberg game as an MPCC by embedding

it into the leader nonconvex optimization problem the equivalent
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KKT conditions to compute a generalized variational Nash equi-
librium (v-GNE) [23] for the followers’ game (see Section II).

2) We exploit a key result provided in [24] to locally relax the comple-
mentarity constraints, obtaining the MPCC-LICQ [25, Def. 3.1],
i.e., the linear independent constraint qualification (LICQ) of all the
points inside a certain neighborhood of the originally formulated
MPCC (see Section III).

3) Along the same lines of the work in [26] and [27], we propose to
convexify the relaxed MPCC at every iteration of the outer loop,
whose optimal solution, computed within the inner loop, points a
descent direction for the cost function of the original MPCC. By
pursuing such a descent direction, the sequence of feasible points
generated by the outer loop directly leads to a local solution of the
Stackelberg equilibrium problem (see Section III).

4) We analyze the performance of the proposed algorithm applied to a
numerical instance of the charging coordination problem for a fleet
of Plug-in Electric Vehicles (PEVs), also investigating the behavior
of the leader and the followers as the regularization parameter varies
(see Section IV).

To the best of our knowledge, the proposed two-layer algorithm
represents the first attempt to compute a local solution to the Stackel-
berg equilibrium problem involving nonconvex data and equilibrium
constraints by directly exploiting (and preserving) the hierarchical,
multiagent structure of the original aggregative game.

Notation: N, R, and R≥0 denote the set of natural, real, and nonneg-
ative real numbers, respectively. 1 represents a vector with all elements
equal to 1. For vectors v1, . . . , vN ∈ Rn and I = {1, . . . , N}, we de-
note v := (v�1 , . . . , v

�
N )� = col((vi)i∈I) and v−i := col((vj)j∈I\{i}).

We also use v = (vi,v−i). v ⊥ w means that v and w are orthogonal
vectors. Given a matrix A ∈ Rm×n, A� denotes its transpose. A⊗B
represents the Kronecker product between the matrices A and B. For
a function f : Rn × Rn → R, f(v; v̄) denotes the approximation of
f at some v̄. For a set-valued mapping F : Rn ⇒ Rm, gph(F) :=
{(y, x) ∈ Rn × Rm | x ∈ F(y)} denotes its graph.

II. MATHEMATICAL SETUP

A. Stackelberg Game

We consider a hierarchical noncooperative game with one leader,
controlling its decision variable y0 ∈ Rn0 , and N followers, indexed
by the set I := {1, . . . , N}, where each follower i ∈ I controls its own
variablexi ∈ Xi := {xi ∈ Rni | Fixi ≤ gi},Fi ∈ Rpi×ni , gi ∈ Rpi ,
and aims at solving the following optimization problem:

∀i ∈ I :

⎧⎨
⎩

min
xi∈Xi

Ji(y0, xi,x−i)

s.t. Aixi +
∑

j∈I\{i} Ajxj ≤ b
(1)

for some cost function Ji : Rn0 × Rn → R. Let x := col((xi)i∈I) ∈
Rn,n =

∑
i∈I ni, be the collective vector of strategies of the followers,

whereas x−i ∈ Rn−ni stacks all the local decision variables except
the ith one. We postulate the following standard assumptions on the
followers’ data in (1).

Standing Assumption 1: For each i ∈ I, the function Ji(y0, ·) is
convex and continuously differentiable, for fixed y0. �

Standing Assumption 2: For each i ∈ I, rank(Fi) = pi. �
In (1), each matrix Ai ∈ Rm×ni stacks m linear coupling con-

straints, whereas b ∈ Rm is the vector of shared resources among
the followers. Let A := [A1 . . . AN ] ∈ Rm×n. Then, we preliminary
define the sets X :=

∏
i∈I Xi and Θ := {x ∈ X | Ax ≤ b}.

For a fixed strategy of the leader y0, the followers aim to solve a gen-
eralized Nash equilibrium problem (GNEP). Specifically, by focusing
on v-GNEs, such problem is equivalent to solve VI(Θ,H(y0, ·)) [23],
where, in view of Standing Assumption 1, H : Rn0 × Rn ⇒ Rn is a
continuously differentiable set-valued mapping defined asH(y0,x) :=

col((∇xi
Ji(y0,x))i∈I). This fact, along with the properties of Θ,

guarantees the nonemptiness of the set of v-GNE that, for any y0 ∈ Y0,
corresponds to the set

S(y0) := {x ∈ Θ | (z − x)�H(y0,x) ≥ 0 ∀z ∈ Θ}. (2)

On the other hand, the optimization problem of the leader reads as⎧⎨
⎩

min
y0,x

J0(y0,x)

s.t. (y0,x) ∈ gph(S) ∩ (Y0 × Rn)
(3)

for some cost function J0 : Rn0 × Rn → R and local constraint set Y0

characterized by the following standard conditions.
Standing Assumption 3: The set Y0 is nonempty, closed, and

convex. �
Standing Assumption 4: The function J0 is coercive, its gradient

∇J0 is Lipschitz continuous on Φ := Y0 × X with constant κ0. �
We note that (3) defines an MPEC where x is not strictly within the

leader’s control, but it corresponds to an optimistic conjecture [18]. In
view of [8, Th. 1.4.1], the MPEC in (3) admits an optimal solution,
since the coerciveness of J0 implies compactness of its level sets, and
the feasible set, gph(S) ∩ (Y0 × Rn), is closed under the postulated
assumptions. Therefore, this ensures existence of a solution to the hi-
erarchical game, according to the following notion of local generalized
Stackelberg equilibrium, inspired by Kulkarni and Shanbhag [18] and
Hu and Ralph [28].

Definition 1: A pair (y∗
0,x

∗) ∈ gph(S) ∩ (Y0 × Rn), with S as in
(2), is a local Stackelberg equilibrium (�-SE) of the hierarchical game
in (1)–(3) if there exist open neighborhoods Oy∗

0
and Ox∗ of y∗

0 and x∗,
respectively, such that

J0(y
∗
0,x

∗) ≤ inf
(y0,x)∈gph(S)∩O

J0(y0,x)

where O := (Y0 ∩ Oy∗
0
)×Ox∗ . �

Informally speaking, at an �-SE, the leader and the followers locally
fulfill the set of mutually coupling constraints and none of them can gain
by unilaterally deviating from their current strategy. Note that we refer
to an SE if Definition 1 holds true withO = Y0 × Rn, i.e.,Oy∗

0
= Rn0

and Ox∗ = Rn, thus coinciding with [18, Def. 1.1].

B. Aggregative Game Formulation

For computational purposes, we consider the cost function of the
followers and leader to be in aggregative form, i.e.,

Ji :=
1
2
x�
i Qixi +

(
1
N

∑
j∈I Ci,jxj + Ci,0y0

)�
xi ∀i ∈ I

J0 := f0 (y0) +
(∑

i∈I f0,i(xi)
)�

y0 (4)

where Qi � 0, Ci,j ∈ Rni×nj , and Ci,0 ∈ Rni×n0 . In view of Stand-
ing Assumption 1, given any feasible y0 ∈ Y0, it follows from [29,
Th. 3.1] that a set of strategies is a v-GNE of the followers game in (1)
if and only if the following coupled KKT conditions hold true:⎧⎨

⎩
∇xi

Ji (y0, xi,x−i) +A�
i λ + F�

i λi = 0 ∀i ∈ I
0 ≤ λ ⊥ −(Ax− b) ≥ 0
0 ≤ λi ⊥ −(Fixi − gi) ≥ 0 ∀i ∈ I

which, in our aggregative setup, can be compactly rewritten as⎧⎨
⎩

Qx+ Cy0 +A�λ + F�λ = 0
0 ≤ λ ⊥ −(Ax− b) ≥ 0
0 ≤ λi ⊥ −(Fixi − gi) ≥ 0 ∀i ∈ I

(5)

where F := diag((Fi)i∈I), λ ∈ Rm
≥0 is the dual variable associated

with Ax ≤ b, λi ∈ Rpi
≥0 is the (local) dual variable associated with the

local constraints defining Xi, λ := col((λi)i∈I), and

Q :=

⎡
⎢⎣
Q1 +

1
N
C1,1 · · · 1

N
C1,N

...
. . .

...
1
N
CN,1 · · · QN + 1

N
CN,N

⎤
⎥⎦ , C :=

⎡
⎢⎣

C10

...
CN0

⎤
⎥⎦ .
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Finally, by substituting back the KKT conditions in (5) into the
optimization problem of the leader in (3), the problem of finding an
SE of the hierarchical game in (1)–(3) can be equivalently written as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
y0,x,λ,λ

J0(y0,x)

s.t. Qx+ Cy0 +A�λ + F�λ = 0

0 ≤ λi ⊥ −(Fixi − gi) ≥ 0 ∀i ∈ I

0 ≤ λ ⊥ −(Ax− b) ≥ 0, y0 ∈ Y0.

(6)

C. Complementarity Constraints Relaxation

We note that the leader nonconvex optimization problem in (6) is
an MPCC and, in general, it does not satisfy any standard constraint
qualification. Therefore, we propose to study a regularized version by
introducing slack variables μ ∈ Rm

≥0 and μi ∈ Rpi
≥0, i ∈ I, together

with parameters θ, θi > 0, i ∈ I, which enable us to replace the com-
plementarity constraints in (6) with the nonlinear constraints λ�μ ≤ θ
and λ�

i μi ≤ θi, for all i ∈ I [24]. Thus, after defining ν := col(λ, μ) ∈
R2m, νi := col(λi, μi) ∈ R2pi , y := col(x, (νi)i∈I), the regularized
version of (6) reads as

R(θ) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
y0,y,ν

J0(y0,x)

s.t. Af y +A� y0 +Ac ν = d

λ�
i μi ≤ θi, λi, μi ≥ 0 ∀i ∈ I

λ�μ ≤ θ, λ, μ ≥ 0, y0 ∈ Y0

(7)

where d := col(0, b, g), g := col((gi)i∈I), A� := col(C, 0, 0), and

Af :=

⎡
⎣
Q ([F�

i 0])i∈I
A 0
F [0 I]⊗ 1

⎤
⎦ Ac :=

⎡
⎣
A� 0
0 I
0 0

⎤
⎦ .

For any given θ, θi > 0, i ∈ I, let us now introduce the sets

C(θ) := {ν ∈ R2m
≥0 | 1

2
ν�Pν ≤ θ}

Ci(θi) := {νi ∈ R2pi
≥0 | 1

2
ν�
i Piνi ≤ θi} ∀i ∈ I. (8)

Here, each P and Pi, i ∈ I, is a symmetric matrix with identities
of suitable dimension on the antidiagonal. Furthermore, we define
Ω(θ) := Y0 × Y × C(θ), where, for brevity, we omit the dependence
from θi, explicated in Y := X ×

∏
i∈I Ci(θi). Finally, by introducing

ω := col(y0,y, ν) and Aω := [A� Af Ac], the closed, nonconvex fea-
sible set of R(θ) in (7) reads as

R(θ) := {ω ∈ Ω(θ) | Aω ω − d = 0}. (9)

We recall now the notion of MPCC-LICQ for the MPCC in (6),
which is characterized by the result stated immediately below.

Definition 2: The MPCC in (6) satisfies the MPCC-LICQ at ω̃ ∈
R(0) if R(0) in (7) satisfies the LICQ at ω̃. �

Lemma 1: (see [24, Lemma 2.1]) Let ω̃ ∈ R(0). If ω̃ satisfies
the MPCC-LICQ for the MPCC in (6), then there exists an open
neighborhood O of ω̃ and scalars θ̃, θ̃i > 0, for all i ∈ I, such that, for
every θ ∈ (0, θ̃) and θi ∈ (0, θ̃i), for all i ∈ I, the LICQ holds true at
every point ω ∈ O of R(θ). �

Then, let us introduce the following fundamental assumption.
Standing Assumption 5: There exists some ω̃ ∈ R(0) that satisfies

the MPCC-LICQ for the MPCC in (6). The regularization parameters
are chosen so that θ ∈ (0, θ̃) and θi ∈ (0, θ̃i), for all i ∈ I. �

In view of Standing Assumption 5, there exists a neighborhood such
that R(θ) locally satisfies the LICQ. As shown in Section IV-B, the
coefficients θ, θi, i ∈ I, play a tradeoff role between the distance from
a v-GNE for the followers and a lower cost for the leader. To conclude
the section, we stress that an optimal solution to (7), whose existence
follows by its local LICQ and the coerciveness of J0, generates a pair

(y∗
0,x

∗) that corresponds to an �-SE of the original hierarchical game
in (1)–(3).

III. LOCAL STACKELBERG EQUILIBRIUM SEEKING VIA SEQUENTIAL

CONVEX APPROXIMATION

A. Two-Layer Algorithm

In the spirit of the work in [26] and [27], we then investigate
how to solve (7) in a decentralized fashion by means of a two-layer
algorithm while preserving the hierarchical structure of the game
(1)–(3). First, we linearize the nonlinear terms appearing in the cost
function around some ω̄ ∈ R(θ). Specifically, with ϕ := (y0,x), J0

is linearized by following a first-order Taylor expansion as J0(ϕ) 

J0(ϕ̄) +∇J0(ϕ̄)�(ϕ− ϕ̄) where, for our aggregative game, we have

∇J0(ϕ)=col(∇y0f0(y0)+
∑
j∈I

f0,j(xj),(∇xj
f0,j(xj)

�y0)j∈I)

:= col(c�(y0,x), cf(y0,x)).

According to [27, Sec. III.A], for the nonlinear constraints defining
the sets in (8), we compute an upper approximation by observing that,
e.g., 1

2
ν�Pν = λ�μ = 1

2
(λ + μ)�(λ + μ)− 1

2
(λ�λ + μ�μ). Thus,

after linearizing the concave term around some ν̄ ∈ C(θ), we define

C̃(θ; ω̄) := {ν ∈ R2m
≥0 | 1

2
([I I] ν)�([I I] ν)− ν̄�ν + 1

2
ν̄�ν̄ ≤ θ}.

The same procedure can be applied to each Ci(θi) to obtain C̃i(θi; ω̄).
Accordingly, Ω(θ) is approximated by Ω̃(θ; ω̄) := Y0 × Ỹ(ω̄)×
C̃(θ; ω̄), with Ỹ(ω̄) := X ×

∏
i∈I C̃i(θi; ω̄) while R(θ) by

R̃(θ; ω̄) := {ω ∈ Ω̃(θ; ω̄) | Aω ω − d = 0}. (10)

Finally, by discarding constant terms and introducing cω(ω̄) :=
col(∇J0(ϕ̄), 0), the convexified version of R(θ) in (7) reads as

R̃ (θ; ω̄) :

⎧⎪⎨
⎪⎩

min
ω∈Ω̃(θ;ω̄)

cω(ω̄)�ω +
σ

2
‖ω − ω̄‖2

s.t. Aω ω = d

(11)

where we add a “proximal-like” term to the linearized cost function in
(7) with σ > 0. Hence, the cost function in (11), namely J̃0(ω; ω̄) :=
cω(ω̄)�ω + σ

2
‖ω − ω̄‖2, is characterized as follows.

Lemma 2: The following statements hold true.
i) Given any ω̄ ∈ R(θ), J̃0(· ; ω̄) is uniformly strongly convex on

Φ× R2(m+p)
≥0 , p :=

∑
i∈I pi, with coefficient σ.

ii) Given anyω ∈ R(θ),∇J̃0(ω; ·) is uniformly Lipschitz continuous
on R(θ) with coefficient κ̃0 := κ0 + σ. �

Proof: (i) The statement directly follows by applying the definition
of uniform strong convexity on the set Φ× R2(m+p)

≥0 .
(ii) Let ω1,ω2 ∈ R(θ). For any given ω ∈ R(θ), we have

‖∇J̃0(ω;ω1)−∇J̃0(ω;ω2)‖=‖cω(ω1)−cω(ω2)+σ(ω2−ω1)‖

≤ ‖col(∇J0(ϕ1), 0)−col(∇J0(ϕ2), 0)‖+σ‖ω1 − ω2‖

≤ (κ0 + σ) ‖ω1 − ω2‖.
�

Remark 1: According to the structure of the vectorω, the coefficient
σ may be replaced with locally defined σ0, σc, σi > 0, i ∈ I, without
affecting the results given in the remainder, see [26, Sec. III.A]. For
simplicity, we adopt a unique, globally known parameter σ. �

Thus, given any ω̄ ∈ R(θ), R̃(θ; ω̄) in (11) admits a unique optimal
solution associated with the mapping ω̂ : Rs → Rs, with s := n0 +
n+ 2(p+m), defined as follows:

ω̂(ω̄) := argmin
ω∈R̃(θ;ω̄)

J̃0(ω; ω̄). (12)

For computing an �-SE, we propose the iterative procedure sum-
marized in Algorithm 1, which is composed of two main loops and
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Algorithm 1: Two-Layer SCA Computation of �-SE.

Initialization: ω0 ∈ R(θ), α > 0
Iteration (k ∈ N):

(S1) Convexify R(θ) to obtain R̃(θ;ωk) as in (11)
(S2) Compute ω̂k, solution to R̃(θ;ωk)
(S3) Update ωk+1 = (1− α)ωk + αω̂k

resorts on the so-called SCA method. Specifically, once fixed the
coefficients θ, θi > 0, for all i ∈ I, at each iteration k ∈ N, the outer
loop is in charge of providing a feasible set of strategies ωk, which
are used to convexify R(θ) (S1). Then, after solving the inner loop by
computing the optimal solution ω̂k := ω̂(ωk) to R̃(θ;ωk) (S2), the
outer loop updates the strategiesωk+1 (S3) to find a new approximation
R̃(θ;ωk+1), and the procedure repeats until a certain stopping criterion
is met.

B. Convergence Analysis

First, we characterize the sequence (ωk)k∈N generated by Algo-
rithm 1 in terms of iterate feasibility. Then, we establish a key property
of the mapping ω̂(·), and finally, we prove that (ωk)k∈N converges
to an optimal solution to (7), generating an �-SE of the hierarchical
aggregative game (1)–(3), according to Definition 1.

Lemma 3: The following inclusions hold true.
i) R̃(θ; ω̄) ⊆ R(θ), for all ω̄ ∈ R(θ).

ii) ωk ∈ R(θ). �
Proof:

i) The upper approximation of the nonlinear constraints, which holds
true for all ω̄ ∈ R(θ), implies C̃(θ; ω̄) ⊆ C(θ) and C̃i(θi; ω̄) ⊆
Ci(θi), i ∈ I. Therefore, Ω̃(θ; ω̄) ⊆ Ω(θ), and in view of the
definitions in (9) and (10), inclusion (i) can be deduced.

ii) First, in view of the approximation of the constraints, note that
ωk ∈ R̃(θ;ωk), for all k ∈ N, with R̃(θ;ωk) convex subset of
R(θ). Then, the proof follows by induction by considering that
ωk+1 is a convex combination of ω̂k ∈ R̃(θ;ωk) and ωk. �

Lemma 4: For every ω̄ ∈ R(θ), the vector (ϕ̂(ω̄)− ϕ̄) is a
descent direction for J0(ϕ) in R(θ), evaluated at ϕ̄, i.e., (ϕ̄−
ϕ̂(ω̄))�∇J0(ϕ̄) ≥ σ‖ω̄ − ω̂(ω̄)‖2 > 0. �

Proof: Given any ω̄ ∈ R(θ), by definition, ω̂(ω̄) satisfies the min-
imum principle for (11), i.e., (ζ − ω̂(ω̄))�∇J̃0(ω̂(ω̄); ω̄) ≥ 0 for all
ζ ∈ R̃(θ; ω̄). From Lemma 3(ii), we choose ζ = ω̄, and by adding and
subtracting the term (ω̄ − ω̂(ω̄))�∇J̃0(ω̄; ω̄), we obtain

(ω̄ − ω̂(ω̄))�∇J̃0(ω̄; ω̄)

≥ (ω̄ − ω̂(ω̄))�(∇J̃0(ω̄; ω̄)−∇J̃0(ω̂(ω̄); ω̄)).

By directly replacing ∇J̃0(ω̄; ω̄) with cω(ω̄) = col(∇J0(ϕ̄), 0), the
term on the left-hand side is equal to (ϕ̄− ϕ̂(ω̄))�∇J0(ϕ̄), whereas
the one on the right-hand side, in view of Lemma 2(i), is bounded from
below by σ‖ω̄ − ω̂(ω̄)‖2, leading to

(ϕ̄− ϕ̂(ω̄))�∇J0(ϕ̄) ≥ σ‖ω̄ − ω̂(ω̄)‖2.
�

Before establishing the convergence to an �-SE for the sequence
generated by Algorithm 1, we recall a key result provided in [27].

Lemma 5: (see [27, Th. 14]) Let (ωk)k∈N be the sequence generated
by Algorithm 1 and assume that limk→∞ ‖ω̂(ωk)− ωk‖ = 0. Then,
every limit point of (ωk)k∈N generated by Algorithm 1 is a stationary
solution to R(θ). �

Theorem 1: Let α in Algorithm 1 be chosen so that α ∈ (0, 2σ/κ0).
Then, the sequence (ωk)k∈N generated by Algorithm 1 converges to
an optimal solution ω∗ to R(θ) in (7), where subvector (y∗0,x

∗) is an
�-SE of the hierarchical game in (1)–(3). �

Algorithm 2: ADAL for (S2) of Algorithm 1.

Initialization: η(0) ∈ Rs, τ, ρ > 0
Iteration (t ∈ N):

Leader:⎧⎨
⎩

y�
0(t) = argmin

y0∈Y0

L̂k
� (y0, η(t), zf(t), zc(t))

z�(t+ 1) = z�(t) + τ(A� y
�
0(t)− z�(t))

Followers:⎧⎪⎨
⎪⎩

y�(t) = argmin
y∈Ỹk

L̂k
f (y, η(t), z�(t), zc(t))

zf(t+ 1) = zf(t) + τ(Af y
�(t)− zf(t))

Coordinator:⎧⎪⎨
⎪⎩

ν�(t) = argmin
ν∈C̃k(θ)

L̂k
c (ν, η(t), zf(t), z�(t))

zc(t+ 1) = zc(t) + τ(Ac ν
�(t)− zc(t))

η(t+ 1) = η(t) + ρτ (zf(t+ 1) + z�(t+ 1) + zc(t+ 1)− d)

Proof: By combining the descent lemma [30, Prop. A.24] and
Lemma 4, the step (S3) in Algorithm 1 leads to

J0(ϕ
k+1) ≤ J0(ϕ

k) + α∇�J0(ϕ
k)(ϕ̂(ωk)−ϕk)

+ α2 κ0
2
‖ϕ̂(ωk)−ϕk‖2

≤ J0(ϕ
k)− α

(
σ − ακ0

2

)
‖ω̂(ωk)− ωk‖2

where the second inequality follows from ‖ω̂(ωk)− ωk‖ ≥
‖ϕ̂(ωk)−ϕk‖. If α < 2σ/κ0, then (J0(ϕ

k))k∈N shall converge to a
finite value, since J0(ϕ

k) → −∞ cannot happen in view of Stand-
ing Assumption 4. Thus, the convergence of (J0(ϕ

k))k∈N implies
limk→∞ ‖ω̂(ωk)− ωk‖ = 0, and, therefore, the bounded sequence
(ωk)k∈N ∈ R(θ) in view of Lemma 3, and has a limit point in R(θ).
From Lemma 5, such a limit point is a stationary solution to R(θ), and
since (J0(ϕ

k))k∈N is a strictly decreasing sequence, no limit point can
be a local maximum of J0. Thus, (ωk)k∈N converges to an optimal
solution ω∗ to (7), where subvector (y∗

0,x
∗) is an �-SE of the original

hierarchical game in (1)–(3). �
Remark 2: If the parameters σ and κ0 are not globally known, The-

orem 1 can be equivalently restated according to a vanishing step-size
rule, i.e.,α = αk that shall be chosen so thatαk ∈ (0, 1], for all k ∈ N,
αk → 0 and

∑
k∈N αk = +∞. �

C. Augmented Lagrangian Approach to Solve the Inner Loop

A scalable and privacy-preserving algorithm, suitable to solve (S2)
in Algorithm 1 by exploiting the hierarchical structure of the original
game, is the accelerated distributed augmented Lagrangian (ADAL)
method proposed in [31]. Since we are interested in finding the optimal
solution to R̃(θ;ωk), from now on, we omit the dependence on ωk

(unless differently specified) to alleviate the notation.
Thus, at every iteration k ∈ N of the outer loop, the Lagrangian

function associated to (11) is defined as

Lk(ω, ν) = (ckω)
�ω +

σ

2
‖ω − ωk‖2 + η�(Aω ω − d) (13)

where ckω := cω(ω
k), and ν ∈ Rl, l := n+m+ p, is the dual vari-

able associated with the linear equality constraints. We note that the
Lagrangian in (13) can be rewritten as the sum of terms associated
to different entities, which happens to correspond to leader, the set of
followers, and a central coordinator, respectively. In details, we define
Lk

� := (ck� )
�y0 +

σ
2
‖y0 − yk

0‖2 + η�A� y0, Lk
f := (ckf )

�y + σ
2
‖y −

yk‖2 + η�Af y, and Lk
c := σ

2
‖ν − νk‖2 + η�Ac ν. In the light of the
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work in [31], we augment each one of these terms as, e.g., L̂k
f :=

Lk
f + ρ

2
‖Af y +A� y0 +Ac ν − d‖2 (L̂k

� and L̂k
c are identical), where

ρ > 0 is a penalty term to be designed freely.
The main steps of the proposed semidecentralized procedure are

summarized in Algorithm 2, where we emphasize that each augmented
Lagrangian term depends on the linearization at the current outer
iteration k ∈ N. Specifically, at every iteration t ∈ N of the inner
loop, the ADAL requires that the followers, the leader, and the cen-
tral coordinator compute in parallel a minimization step of the local
augmented Lagrangian. Here, z� := A� y0, zf := Af y and zc := Ac ν
are auxiliary variables introduced for privacy purposes and, given some
τ > 0, are locally updated. Finally, the central coordinator, which in
some practical applications may eventually coincide with the leader,
gathers z�(t+ 1) and zf(t+ 1) from the leader and followers, and
updates the dual variable.

Proposition 1: Let ρ > 0 be sufficiently large and τ ∈ (0, r−1
max),

where rmax corresponds to the maximum degree among the constraints
in (10). Then, the sequence (ω(t))t∈N generated by Algorithm 2
converges to the minimizer of R̃(θ;ωk), for all k ∈ N. �

Proof: The proof follows by noticing that R̃(θ;ωk) satisfies the
assumptions in [31, Th. 2], for all k ∈ N. Specifically, R̃(θ;ωk) is a
closed and convex set, J̃0(ω;ωk) is inf-compact and each one of its
terms is twice continuously differentiable. Finally, Lemma 1 provides
the local LICQ for R(θ), directly inherited by R̃(θ;ωk). �

Remark 3: For simplicity, we adopt a common τ to update the
auxiliary variables z�, zf, and zc. In principle, each entity involved
within the ADAL in Algorithm 2 can locally set its own step
size according to the degree of each constraint in (11), see [31,
Sec. II.A]. �

IV. NUMERICAL CASE STUDY: CHARGING COORDINATION OF

PLUG-IN ELECTRIC VEHICLES

A. Numerical Simulation Setup

We consider a set of PEVs (followers), I := {1, 2, . . . , N}, which
must be charged over a certain horizon T := {1, . . . , T}. All PEVs
are connected to an aggregator (leader, e.g., a retailer), which manages
the energy requirements of the fleet by purchasing the electricity from
the wholesale energy market. Let us define xi := col((xj

i )j∈T ), and
p := col((pj)j∈T ) as the amount of requested energy by the fleet and
the price of energy over time, i.e., the strategy of the ith follower
and of the leader, respectively. For every PEV i ∈ I, we consider
the cost function Ji(p,x) = qix

�
i xi + c�i xi − (−six

�
i xi + κ�

i xi +
p�xi) + δ‖xi − σ(x)‖2, where x := col((xi)i∈I), qi, ci > 0 depend
on the nominal voltage and on the capacity loss of each battery, whereas
κi, si > 0 model the battery size and the satisfaction of the ith PEV for
charging the amount xi. Moreover, the term (qix

�
i xi + c�i xi) denotes

the battery-degradation cost, (−six
�
i xi + κ�

i xi + p�xi) the benefit
for charging [32], and δ‖xi − σ(x)‖2 a penalty for deviating from the
average charging profile, σ(x) := 1

N
1�x, with δ > 0. On the other

hand, the leader aims at maximizing the following cost function:

J0(p,x) = −p� (D + σ(x)) (14)

which represents the economic benefit for charging the PEVs, where
D ∈ RT is the total non-PEV demand over time. We assume that the
net energy available for the PEVs is fixed, and therefore, the overall
PEV demand shall meet the capacity constraint 1

N
1�x ≤ C, for some

C > 0. Furthermore, we assume that, at every time step, xi ∈ [xi, xi],
for all i ∈ I. Thus, given the amount of energy requested by the PEVs,
the retailer chooses a price p per unit of energy, with p ∈ [0, p], aiming
at maximizing its revenue in (14).

For the numerical simulations, we considerN = 104 PEVs, a charg-
ing horizon discretized into T = 24 time intervals, qi = 1.2× 10−3,
ci = 0.11, whereas κi and si are randomly drawn from N (12, 2)

Fig. 1. Comparison of the convergence behavior between Algorithm 1
(solid blue line) and 3 (dotted red line).

Algorithm 3: Two-layer Naïve Heuristic for �-SE Computation.

Initialization: y0(0) ∈ Y0

Iteration (k ∈ N):
(S1) Compute an v-GNE, x(k), for the game in (1)
(S2) Compute y∗

0(k), solution to (3)
(S3) Update y0(k) := (1− β(k))y0(k − 1) + β(k)y∗

0(k)

and U(0.02, 0.1) respectively, and the capacity upper bound C is
equal to 1.5 from 11 P.M. to 8 A.M., and to 0.5 for the rest of the
day. The convergence behavior of Algorithm 1 over 10 experiments
is shown in Fig. 1. During the numerical simulations, the inner loop
takes between 50 and 75 iterations (on average) to meet a predefined
stopping condition, and above 102 experiments, we did not experienced
any influence on the outer-loop convergence behavior. For this latter,
in view of the fact that limk→∞ ‖ω̂(ωk)− ωk‖ = 0, we have chosen
‖ω̂k − ω̂k−1‖ ≤ 10−4 as a stopping criterion.

The procedure proposed in Algorithm 1 is, then, compared with the
simplest naïve method for possibly computing an �-SE, whose main
steps are summarized in Algorithm 3. Specifically, given the strategy
of the leader at the previous step, the followers compute an v-GNE
of the game in (1), and send their strategy back to the leader (S1). In
turn, the leader first solves its optimization problem in (3) with solution
y∗
0(k) (S2) and, then, updates its strategy taking a convex combination

betweeny∗
0(k) and the strategy at the previous step, where the parameter

β(k) ∈ [0, 1] introduces a possible inertia (S3). Note that, albeit rather
intuitive, this naïve algorithm has no convergence guarantees. However,
in our numerical experience, by considering the cost function in (14)
for the leader and setting β(k) = 1/k, Algorithm 3 apparently shows a
slower convergent behavior compared with the proposed Algorithm 1,
as depicted in Fig. 1 over 10 numerical experiments.

B. Tradeoff Between the Leader and the Followers

Finally, we highlight the tradeoff role played by the relaxation
parameter θ in (7). In fact, for θ sufficiently large, the leader has a larger
feasible set, whereas, on the other hand, the followers are farther away
from an v-GNE, since the complementarity condition is not exactly
satisfied. Therefore, the larger θ, the lower the optimal cost of the leader,
and possibly the higher the optimal cost of each follower. Vice versa,
the smaller θ, the higher the optimal cost of the leader, because his
feasible set shrinks, and possibly the lower the optimal cost of each
follower, since the equilibrium condition is closer to being satisfied.
This behavior is essentially confirmed in Fig. 2 where, for ease of
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Fig. 2. Tradeoff role played by the regularization parameter θ.

visualization, we show the normalized benefit of the leader (J�
0 (θ)) and

the normalized maximum disadvantage among the followers (ΔJ�(θ))
as θ increases. Specifically, for each θ ∈ [θ, 1], we compute an �-SE,
and we denote with J�

0 (θ) the corresponding optimal cost for the
leader. For the followers, we introduce and show the maximum rel-
ative disadvantage with respect to a near-equilibrium condition, i.e.,
ΔJ�(θ) := maxi∈I (J�

i (θ)− J�
i (θ)), where, for a given θ, J�

i (θ) is
the optimal cost for the ith follower, whereas in this case, we set θ equal
to 10−6.

V. CONCLUSION

We have considered a multiagent, hierarchical equilibrium problem
with one leader and multiple followers, with possibly nonconvex data
for the leader, convex-quadratic objective functions and linear con-
straints for the followers, and overall an aggregative structure. In this
setup, a local Stackelberg equilibrium can be approximated arbitrarily
close via the relaxation of the complementarity condition that represents
the equilibrium among the followers. In turn, the relaxed problem can
be solved via a two-layer algorithm, which—thanks to the aggregative
structure—requires semidecentralized computations and information
exchange.
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