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A B S T R A C T

Energy efficiency of inland ships is significantly influenced by navigational environment, including wind speed
and direction as well as water depth and speed. The complexity of the inland navigational environment makes it
rather difficult to determine the optimal speeds under different environmental conditions to achieve the best
energy efficiency. Route division according to the characteristics of these environmental factors could provide a
good solution for the optimization of ship engine speed under different navigational environments. In this paper,
the distributed parallel k-means clustering algorithm is adopted to achieve an elaborate route division by
analyzing the corresponding environmental factors based on a self-developed big data analytics platform.
Subsequently, a ship energy efficiency optimization model considering multiple environmental factors is es-
tablished through analyzing the energy transfer among hull, propeller and main engine. Then, decisions are
made concerning the optimal engine speeds in different segments along the path. Finally, a case study on the
Yangtze River is performed to validate the present optimization method. The results show that the proposed
method can effectively reduce energy consumption and CO2 emissions of ships.

1. Introduction

Waterway transportation is playing an irreplaceable role in the
economic development (Hoffmann and UNCTAD, 2015). However, it
also leads to an array of concerning issues, such as high energy con-
sumption and environment pollution (Doulgeris et al., 2012; Wan et al.,
2016; Walsh and Bows, 2012). Due to the rising fuel prices (García-
Martos et al., 2013), shipping companies face great challenges to reduce
operating costs and improve market competitiveness. Moreover, ac-
cording to the green-house gas (GHG) study by the IMO (IMO, 2009),
international shipping accounts for approximately 2.7% of the total CO2
emitted globally. Inland ships also have these problems. Take Yangtze
River as an example: the yearly ship emission of CO2 reaches 5.27
million tons (Li, 2010). These emissions inevitably impose a negative
impact on the cities along the waterway. For this reason, energy effi-
ciency optimization and improvement of inland ships is an essential
task for the development of environmentally friendly and efficient
shipping methods.

To facilitate the energy efficiency optimization of a large set of ships
in service, researchers have studied and proposed various measures on
energy conservation and emission reduction, including new energy
application (Burel et al., 2013; Attah and Bucknall, 2015; Vergara et al.,
2012), navigation optimization (Norstad et al., 2011; Wang et al.,
2018), and operation management and control strategies (Molina et al.,
2014; Liu et al., 2013; Guan et al., 2014; Wang and Meng, 2012; Wang
et al., 2015). Speed optimization, with the advantage of requiring no
ship modification and lower investment, is strongly favored against
other measures (Faber et al., 2010). In the previous studies, a series of
speed optimization methods were investigated (Corbett et al., 2009;
Lindstad et al., 2011; Psaraftis and Kontovas, 2013, 2014; Chang and
Chang, 2013; Fagerholt et al., 2010; Magirou et al., 2015). These stu-
dies are roughly based on two approaches: 1) analyzing the influence of
speed on the operational economics and CO2 emissions so as to assess
the overall improvement potential; 2) optimizing the routing and
scheduling of ships based on sailing speed adjustment from the per-
spectives of maritime logistics and operational management. In general,
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these two types of speed optimization methods address the issue on a
more macroscopic level, i.e., they focus exclusively on seagoing ships
while optimizing the sailing speeds between different legs, assuming
that the fuel consumption for a given sailing speed and weather con-
dition is known and constant (fuel consumption is typically a cubic
function of speed). By contrast, few studies focus on inland ships. In
addition, for a given sailing speed, the fuel consumption can vary sig-
nificantly due to the influence of weather conditions. To date, there are
limited studies on the relationship among engine speed, fuel con-
sumption and environmental factors, let alone the development of a
decision-making method for optimizing engine speed considering the
influence of various environmental factors.

Due to the strong interaction between propulsion system and na-
vigational environment, the energy consumption of a ship's main en-
gine is influenced significantly by complex environmental factors in-
cluding water speed and depth as well as wind speed and direction
(Zhao et al., 2016; Wang et al., 2016a). These factors can result in an
increase of hydrodynamic resistance force, which consumes a large
portion (28%) of the overall propulsive force eventually (Marine
Environment Protection Committee, 2009). Lin et al. (2013) analyzed
the influence of weather conditions on fuel consumption during sailing
by using a three-dimensional modified isochrones method. Lee et al.
(2018) revised the empirical function for predicting fuel consumption
and sailing speed by considering the effect of wind and current on fuel
consumption, and then proposed a speed optimization model from the
perspective of maritime logistics. These studies either only focus on the
speed optimization of seagoing ships while neglecting the influence of
location-dependent weather conditions on ship's energy efficiency, or
only consider several environmental factors. Besides the seagoing ships,
one also needs to comprehensively consider the wave and wind as well
as the water speed and depth due to their significant influence on the
energy efficiency of inland ships (Sun et al., 2013; Zheng et al., 2016).
The complex navigational environment of the inland waterway makes it
very difficult to determine the segment-dependent optimal engine
speeds along the entire route. A previous study carried out a sensitivity
analysis concerning the influence of environmental factors on the en-
ergy efficiency of inland ships (Yan et al., 2015), which laid a solid
foundation for determining optimal engine speeds under various
weather conditions. The environmental factors in different segments
exhibit different characteristics, leading to a variation of impacts on the
ship energy efficiency. Hence, the optimal speed also varies from seg-
ment to segment, especially when the environmental factors are subject
to marked variation along the entire route. As such, it is advised to
divide the route into a set of small segments, based on which segment-
dependent speed optimization of inland ships can be achieved by ac-
counting for multiple regional environmental factors so as to maximize
the overall energy efficiency. To our best knowledge, such decision-
making method for determining segment-dependent optimal engine
speeds has not yet been published before.

This paper aims to develop an engine speed optimization workflow
based on big data analytics that takes multiple environmental factors
into consideration. This method can enhance the energy conservation
and emission reduction of inland ships to the extent possible. The
technical merits of the present paper are threefold: a) a distributed
parallel k-means statistical analysis is proposed to cluster environ-
mental factors into multiple groups, allowing an elaborate route divi-
sion; b) a model for optimizing ship energy efficiency is built by ana-
lyzing the energy transfer among hull, propeller and main engine while
considering multiple environmental factors, i.e., wind speed and di-
rection as well as water depth and speed; and c) an algorithm is es-
tablished to determine optimal engine speeds based on the corre-
sponding environmental factors of different segments along the entire

route, which results in an improved ship energy efficiency.
The remainder of this paper is organized as follows: Section 2 il-

lustrates the existing methods; Section 3 proposes a new route division
strategy based on environmental data analysis, followed by an ela-
boration of the engine speed optimization model and the corresponding
solving method; Section 4 presents a case study on Yangtze River to
demonstrate the applicability of this optimization method; and Section
5 summarizes main conclusions and proposes future research direc-
tions.

2. Methods

2.1. Big data analytics and its state-of-the-art applications

In recent years, big data has rapidly become a hot topic in the do-
mains of science and technology. Nature and Science magazines have
published monographs illustrating the opportunities and challenges
associated with big data (Lynch, 2008; Wren, 2014). Big data is typi-
cally characterized by high volume, variety and velocity, i.e., three Vs,
making it difficult to analyze the data efficiently using the traditional
methods with limited data processing and calculation power (Dean and
Ghemawat, 2008). Big data analytics is capable of extracting a sig-
nificant amount of hidden information and knowledge by analyzing
sizable datasets in various types so as to assist in the information il-
lustration and decision making (Xie et al., 2017). With the advantages
of being more comprehensive and accurate in revealing insights as well
as less dependent on models, big data analytics has gained wide at-
tentions from academia and industry in many different fields
(Diamantoulakis et al., 2015; Xin et al., 2015).

Nowadays, decision making during inland ship navigation mainly
relies on personal experience. Due to the lack of theoretical guidance,
such approach is highly subjective, resulting in excessive energy con-
sumption and serious environmental pollution. Therefore, there is a
need to conduct ship navigation optimization based on scientific and
well-informed decision-making derived from fundamental knowledge
and representative data, including ship performance and navigation
information. The application of big data analytics provides a new ap-
proach for ship manager and operators to boost the ship's energy effi-
ciency, which echoes the modern trend of big data era. Over the last few
years, extensive research efforts have been dedicated to the study of big
data analytics and the development of platforms, resulting in significant
achievements (Kambatla et al., 2014). Meanwhile, the application
scope of big data analytics is becoming increasingly wide. In the mar-
itime industry, the marine data has been leveraged to allow tsunami
warning, disaster inversion, and visual modeling of hazards (Huang
et al., 2015). Rødseth et al. (2016) analyzed the challenges and op-
portunities for applying the big data technology in shipping, and pro-
posed that the big data analysis can be used for providing on-line de-
cision support to ships, ship performance analysis, and fleet
optimization. In addition, Perera and Mo (2016) focused on the ship
energy efficiency optimization by using machine learning algorithms,
including the pre-processing and post-processing of data. The rapid
development of Internet of Things and communication technology
promotes an explosive growth of data in the waterway transport, in-
cluding environmental and operational information. The availability of
information and the associated big data analytics can benefit from ad-
vanced information extraction and supreme computation efficiency,
making it highly feasible to develop an effective speed optimization
method under different environmental conditions so as to improve ship
energy efficiency and reduce CO2 emissions.
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2.2. Big data analysis platform for ship navigation

Compared with traditional data, the big data is characterized by its
large scale, fast evolution, and high diversity, making it rather hard to
analyze. Therefore, a rational design of big data platform is the basis for
fully unlocking the potential value of big data in ship navigation opti-
mization. To achieve this purpose, a big data analysis platform based on
the widely used Hadoop framework is designed. The platform mainly
consists of four functional layers, namely data acquisition layer, com-
puting layer, optimization layer, and decision-making layer, as illu-
strated in Fig. 1.

The data acquisition layer is responsible for collecting data con-
cerning the states of navigation, environment, and energy consumption.
The collected data is then preprocessed and stored in the database
system within the computing layer, which utilizes MapReduce-based
algorithm and HDFS-based file system to realize data analysis for route
division in this paper. Afterwards, in the optimization layer, the optimal

solutions can be obtained based on an optimization model and the as-
sociated solver. Finally, the obtained optimization results are provided
to the managers, ship owners and operators to drive the decisions
concerning navigation optimization in the decision-making layer.

The MapReduce algorithm here is favored for its cost-efficient,
scalable and easy-to-use natures, making it suitable for mining data on
ship navigation optimization. The platform can make a full use of the
distributed computing resources and achieve optimal allocation of these
resources so as to significantly improve computational efficiency.

2.3. Energy efficiency optimization method based on big data analysis

The main purpose of energy efficiency optimization in this paper is
to determine the optimal engine speeds in response to the segment-
dependent environments along the entire route. The specific process of
speed optimization is shown in Fig. 2.

Based on the obtained environmental information of the waterway,

Fig. 1. Structure of the big data analysis platform.

Fig. 2. Illustration of the speed optimization process.
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the distributed parallel k-means algorithm is used to achieve the route
division according to the various environmental factors. Based on this,
the optimal engine speeds in different divisions can be obtained by
establishing a non-linear optimization model concerning ship energy
efficiency, which is in turn solved by the Particle Swarm Optimization

(PSO) algorithm for reducing energy consumption and CO2 emissions.
The route division based on environmental data analysis and the engine
speed optimization model considering multiple environmental factors
are crucial to the optimization of ship energy efficiency, and are
thereby detailed in the following sections.

3. Optimization of ship energy efficiency based on big data
analysis

3.1. Route division based on the distributed parallel k-means clustering
algorithm

The route division according to navigational environmental factors
serves as the basis for engine speed optimization. k-means clustering
algorithm is a type of clustering analysis based on the similarity theory.
Compared with other clustering algorithms, e.g., canopy algorithm, the
advantages of k-means clustering algorithm are three-fold: firstly, it is
faster and simpler; secondly, it delivers higher efficiency and better
scalability when it comes to processing large datasets; thirdly, it ex-
hibits a linear time complexity, making it very suitable for mining large-
scale datasets (Mehendale and Dhamal, 2016). Therefore, we propose
to use the k-means clustering algorithm for the route division in this
paper.

However, the need for handling a massive environmental dataset
here makes the traditional clustering method impractical to use, and

therefore the distributed parallel clustering algorithm based on the
MapReduce becomes an ideal choice for making the runtime manage-
able. The implementation of the distributed parallel k-means clustering
algorithm based on MapReduce is shown in Algorithm 1.

Algorithm 1. Distributed parallel k-means clustering algorithm.

The route division according to multiple environmental factors can
be achieved by running the distributed parallel k-means clustering al-
gorithm on the newly developed big data analysis platform.

3.2. Engine speed optimization model based on the route division

3.2.1. Energy efficiency model considering multiple environmental factors
When a ship sails at a certain speed, the main engine should output

enough power to overcome the hydrodynamic resistance forces, in-
cluding hydrostatic resistance, wave-induced resistance, wind re-
sistance, and shallow water resistance. The total resistance force can be
calculated by using the published methods (Holtrop and Mennen, 1982;
Kwon, 2008; Townsin et al., 1975; Hu, 1986) as shown in Eqs. (1)–(6),
where the total resistance force is expressed as a function of sailing
speed, wind speed, wind direction, water speed, and water depth etc.

= + + + + + +R R k R R R R R(1 )T F APP W B TR A1 (1)

=R
F

h
L

SV1
2

0.065
( )

( )
r

Swave 2
wl

2 2
(2)

=R C V1
2

Awind wind air T wind
2

(3)

=R f Rshallow s deep (4)
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= +f V
d

1 0.065
( 1)s

S
H
d

2

(5)

= + + +R R R R RT wave wind shallow (6)

where, RT denotes the total hydrostatic resistance; RF denotes the fric-
tional resistance; RAPP denotes the appendage resistance; RW denotes
the breaking waves resistance; RB denotes the additional resistance of
the bulbous bow; RTR denotes the stern leaching additional resistance;
RA denotes the related resistance of the model ship; k1 denotes the ship
viscous resistance factor; Fr denotes the Froude number; h denotes the
wave height; Lwl denotes the waterline length of the ship; ρ denotes the
density of water; S denotes the wet area of the ship; Vs denotes the
ship's hydrostatic speed; Rwind denotes the wind resistance; Cwind de-
notes the coefficient of wind resistance; ρair denotes the air density; AT

denotes the windward area; Vwind denotes the relative wind speed;
Rshallow represents the shallow water resistance; Rdeep indicates the deep
water resistance; fs is a conversion coefficient; H represents the water
depth; d denotes the ship's draft; R denotes the total resistance of the
ship.

For a given engine speed, the thrust and torque of the propeller can
be expressed using the following equations:

= ×T K n DT
2 4 (7)

= ×Q K n DQ
2 5 (8)

where, KT is the thrust coefficient of the propeller; KQ is the torque
coefficient; ρ is water density; n is the propeller speed; D is diameter of
the propeller; KT and KQ can be obtained using the interpolation
polynomials method (Bernitsas et al., 1981):

=K f J( )T Q T Q, , (9)

where, J denotes the propeller's advance coefficient, which can be
calculated by:

=J w V
n D

(1 ) S
(10)

where, w is the wake coefficient.
The power of the propeller is provided by the main engine whose

power can be expressed by the following equation:

=P R V
kB

S

S G O H R (11)

where, ηS is transmission efficiency of the shaft; ηG is the efficiency of
the gearbox; ηR is relative rotating efficiency; ηO is open water effi-
ciency of the propeller, and ηH is the hull efficiency, which can be ex-
pressed by the following equations:

= =t
w

K
K

J1
1

;
2H

T

Q
0 (12)

Therefore, the final main engine power can be obtained by the
following equation:

= = =P
R V K w

k K J t
n D K n Q2 (1 )

(1 )
2 2

B
S Q

S G R T

Q

S G R S G R

3 5

(13)

Then, one can calculate the main engine's fuel consumption per unit
distance, as shown in the following equation:

=
±

=
±

q k n Q
V V

g
k n f n

f n V
g2

( )
2 ( )

( ( ) )main
S G R s w

main
power

S G R speed w
main

(14)

where, qmain denotes the main engines' fuel consumption per unit dis-
tance; Vw is the water speed; gmain denotes the main engine's specific
fuel consumption rate; Q and Vs are functions of n:

= = ×Q f n K n D( )power Q
2 5 (15)

= =V f n J n D
w

( )
(1 )S speed (16)

Finally, the ship energy efficiency model considering multiple en-
vironmental factors can be established. In this model, the fuel con-
sumption differs as a function of engine speeds and environmental
conditions, which are the considered parameters here for optimizing
the ship energy efficiency.

3.2.2. Non-linear optimization of engine speed
Through the established ship energy efficiency model considering

multiple environmental factors, the real-time fuel consumption and
sailing time corresponding to different engine speeds under various
navigational environments can be obtained. In this paper, the total
main engine fuel consumption through a route is taken as the objective
function of optimization; the sailing time serves as the main constraint;
and the segment-dependent main engine speeds are used as the opti-
mization variables. Therefore, the established non-linear optimization
model is shown below:

=
±=

Q
k n f n

f n V
g Smin

2 ( )
( ( ) )total

i

M
i power i

S G R speed i w
main i

1 (17)

Subject to the following constraints:

= <
=

T S f n T i M( / ( )) , (1,..., )total
i

M

i speed i
1

limit
(18)

< <N n N i M, (1,..., )imin max (19)

< <V f n V i M( ) , (1,..., )speed imin max (20)

where, M denotes the total kinds of segments; ni is the engine speed of
the ith category of segment (r/min); Si denotes the total distance of the
ith category of segment (m); fspeed(ni) is the sailing speed of the ith
category of segment (m/s); Tlimit denotes the required sailing time.

3.3. Solution method based on PSO algorithm

PSO is a swarm intelligence algorithm based on iterative processes.
Compared with other optimization algorithms, the PSO algorithm is
easy to implement and especially suitable for handling nonlinear opti-
mization problems (Wang et al., 2016b). With these advantages, the
PSO algorithm has been effectively applied to solve a wide range of
optimization problems (Kornelakis, 2010; Wang et al., 2017). There-
fore, in this paper, the PSO algorithm is also adopted to solve the non-
linear optimization problem concerning the optimal engine speeds
under different environmental conditions. The workflow is outlined as
follows:

Step 1: Initialize N particles withM dimensions corresponding to the
engine speeds of the M kinds of segments of the route; calculate fitness
value of each particle using Eq. (17); determine the individual optimal
value and group optimal value.

Step 2: Update the velocity and position of each particle; the loca-
tion of each particle is updated according to its own velocity; the ve-
locity and location of each particle are updated by the following
equations:

= + ++V w V c r p X c

r g X k k

( )

( ), (1,..., 1)

k k
best

k k

best
k k

max

1
1 1 2

2 (21)

= ++ +X X V k k, (1,..., 1)k k k
max

1 1 (22)

where, k denotes the number of the current iteration; Pbest denotes the
previous optimal value; gbest denotes the global optimal value; X
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denotes the particle location; V denotes the particle velocity; c1 and c2
denote the learning factors; r1 and r2 are random numbers between 0
and 1; and w is the inertia weight, which can be expressed as:

=w w w w iter iter( ) /max max currentmin max (23)

where, wmax denotes the maximum inertia factor; wmin denotes the
minimum inertia factor; itercurrent denotes the current iteration number;
and itermax denotes the maximum iteration number.

Step 3: Recalculate the fitness value of each particle subject to the
constraints in Eqs. (18)–(20), then update the optimal values of the
individual particles and the overall population.

Step 4: Go to Step 2 until the algorithm converges, then the optimal
individual can be obtained, which gives the segment-dependent optimal
engine speeds.

Fig. 3. Case study based on the Yangtze River.

Table 1
Data acquisition form based on the target ships.

Ships Parameters Values Sensors Data

Ship 1# Length 80 m Wind speed sensor Wind speed
Width 14.8 m Wind direction sensor Wind direction
Design sailing speed 28 km/h Water depth sensor Water depth
Gross tonnage 4587 t Water speed sensor Water speed
Design draft 2.7 m Shaft power tester Speed and torque
Engine power 960 kW×2 GPS receiving device Sailing speed
Engine speed 750 rpm Fuel consumption sensor Fuel consumption

Ship 2# Length 90 m Wind speed sensor Wind speed
Width 16.16 m Wind direction sensor Wind direction
Depth of the ship 6 m Water depth sensor Water depth
Gross tonnage 5270 t Water speed sensor Water speed
Main engine 8190ZLC-1 GPS receiving device Sailing speed
Engine power 720 kW×2 Shaft power tester Speed and torque
Engine speed 1450 rpm Fuel consumption sensor Fuel consumption

Ship 3# Length 107 m Doppler velocity log Ship speed to water
Width 17.2 m Speed tester Engine speed
Design sailing speed 9.5 kn GPS receiving device Sailing speed
Gross tonnage 4559 t
Design draft 4.0 m
Engine power 518 kW×2
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Fig. 4. Average environmental data at different locations of the lower reach.
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4. Case study

The present case study is based on the Yangtze River, the longest
river in China. The Yangtze River has three reaches, namely upper,

middle and lower reaches, as shown in Fig. 3. The upper reach has a
river bed with a huge drop ratio; the middle reach has a multi-bridge
tortuous waterway with small water depth; and the lower reach has a
gentle environment. The navigational characteristics of different
reaches are strongly season-dependent. Therefore, the present study
splits the entire route into three reaches, and conducts analysis based
on the dry season and the rain season separately.

4.1. Data acquisition and preprocessing

The data concerning the ship energy efficiency optimization can be
divided into two categories 1) the operational data, including sailing
speed, position, engine speed, and fuel consumption; 2) the environ-
mental data, including wind speed, wind direction, water depth, and
water speed. These data points are collected through onboard sensors,
part of which are shown in Table 1 with the corresponding parameters
also illustrated in the table. The collected data covers different seg-
ments and working conditions spanning the all three reaches of the
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Fig. 7. Categories of environment at different locations of the lower reach (Dry season).
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Yangtze River. The sampling frequency is once per second, leading to
800 K samples per trip. Over the last four years, a large number of data
points concerning environmental and operational information were
obtained. In addition, the technical and operational parameters were
obtained from an on-shore information center.

Upon the completion of data collection, the next important proce-
dure is the data preprocessing. To analyze the characteristics of the
navigational environment, the data points concerning water speed,
water depth, wind speed, wind direction, longitude, and latitude are
retrieved from the database. The data preprocessing stage starts with

the removal of low-quality data points, e.g., those with missing values
(Han, 2012), aiming to enhance the data quality. In practice, this op-
eration does not result in a massive loss of data, as the removed data
points only accounts for less than 0.5% of the overall dataset. Besides,
the incomplete and obviously abnormal data points are replaced by the
linearly interpolated values (Yin and Zhao, 2017). In addition, the
water velocity is obtained by computing the difference between the ship
speed to ground and the ship speed to water. Similarly, the absolute
wind speed can be obtained from the difference between the relative
wind speed and the ship speed to ground. Finally, we collect data
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Fig. 9. Categories of environment at different locations of the upper reach (Dry season).

Table 2
The environmental characteristics of different segments - Dry season.

Items Lower reach Middle reach Upper reach

Segments 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Water depth (m) 21.1 24.9 21.9 17.9 13.9 21.3 10.6 10.3 10.1 10.8 94.5 38.6 23.0 126 66.1
Water speed (m/s) 0.50 0.49 0.60 0.90 1.01 0.16 0.96 1.20 1.40 0.65 0.07 0.16 0.26 0.08 0.10
Wind direction (deg) 262 159 107 71.9 27.9 35.2 44.5 66.4 91.4 30.5 52.4 63.7 79.6 80.2 71.1
Wind speed (m/s) 6.52 6.63 5.82 4.59 3.76 3.76 4.44 5.54 3.09 4.80 2.96 4.44 3.27 1.99 3.75
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Table 3
Ship energy efficiency optimization results - Dry season.

Items Lower reach Middle reach Upper reach

Segments 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Engine speed (r/min) Original 551.35 560.12 561.81 570.28 585.05 608.58 600.58 601.20 599.19 609.97 541.12 564.91 457.40 509.43 573.73
Optimal 577.04 579.76 570.55 548.53 546.07 638.10 597.31 589.47 581.77 609.27 539.64 540.34 541.34 544.04 535.94

Sailing speed (m/s) Original 4.988 4.965 5.073 4.913 4.936 5.695 5.167 5.162 5.152 5.218 5.192 5.374 4.498 4.945 5.445
Optimal 5.208 5.139 5.148 4.742 4.639 5.899 5.147 5.091 5.046 5.214 5.180 5.184 5.201 5.222 5.155

Fuel consumption (g/m) Original 8.960 9.598 9.585 11.575 13.057 11.648 15.532 16.563 17.289 15.085 10.464 11.751 7.432 9.116 12.027
Optimal 9.970 10.364 9.934 10.584 11.182 13.168 15.319 15.771 16.080 15.041 10.399 10.621 10.855 10.593 10.291

CO2 emission (g/m) Original 28.726 30.771 30.730 37.110 41.860 37.342 49.795 53.102 55.427 48.364 33.548 37.673 23.827 29.225 38.560
Optimal 31.965 33.228 31.849 33.934 35.850 42.217 49.114 50.563 51.553 48.222 33.340 34.050 34.802 33.960 32.994
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Fig. 10. Categories of environment at different locations of the lower reach (Rain season).
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Fig. 11. Categories of environment at different locations of the middle reach (Rain season).
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Fig. 12. Categories of environment at different locations of the upper reach (Rain season).

Table 4
The environmental characteristics of different segments - Rain season.

Items Lower reach Middle reach Upper reach

Segments 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Water depth (m) 21.4 18.4 20.8 22.7 17.8 15.5 15.7 15.5 18.3 14.2 31.8 62.5 29.7 20.0 48.1
Water speed (m/s) 0.35 0.59 0.56 0.49 0.62 0.75 0.82 1.26 0.87 1.31 0.83 0.43 1.28 1.10 0.41
Wind direction (deg) 209 292 102 153 71 53 80 113 183 141 213 296 173 293 128
Wind speed (m/s) 7.00 5.27 4.87 5.68 3.92 3.87 5.03 5.43 2.56 4.13 4.30 5.24 3.54 5.14 2.93

Table 5
Ship energy efficiency optimization results - Rain season.

Items Lower reach Middle reach Upper reach

Segments 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Engine speed (r/min) Original 563.04 553.15 572.77 559.71 586.21 590.78 600.22 588.18 570.32 584.49 558.36 455.87 566.85 593.85 480.50
Optimal 586.67 575.25 566.92 578.53 553.42 593.90 583.54 578.48 592.22 576.98 529.18 530.45 533.35 589.30 546.33

Sailing speed (m/s) Original 4.994 4.996 5.171 4.996 5.034 5.245 5.319 5.230 5.408 5.167 5.303 4.468 5.369 5.587 4.691
Optimal 5.200 5.185 5.122 5.160 4.782 5.265 5.211 5.166 5.570 5.117 5.072 5.102 5.107 5.554 5.232

Fuel consumption (g/m) Original 9.406 9.239 9.912 9.463 11.559 16.259 17.018 18.141 13.932 18.377 13.258 7.740 15.169 15.923 8.632
Optimal 10.324 10.116 9.678 10.201 10.087 16.452 15.982 17.513 15.111 17.886 11.835 10.796 13.419 15.665 11.465

CO2 emission (g/m) Original 30.155 29.621 31.777 30.339 37.057 52.128 54.560 58.159 44.665 58.918 42.504 24.815 48.633 51.049 27.673
Optimal 33.098 32.433 31.026 32.704 32.339 52.746 51.239 56.145 48.445 57.343 37.944 34.612 43.021 50.221 36.755

Table 6
Comparative analysis for different reaches in different scenarios.

Season Original Optimal Reduction

Fuel consumption CO2 emission Fuel consumption CO2 emission Fuel consumption CO2 emission Reduced percent

Lower reach (kg)
Dry season 9679 31031 9442 30272 237 759 2.45%
Rain season 9198 29487 9085 29126 113 361 1.22%
Middle reach (kg)
Dry season 15090 48380 14640 46937 450 1443 2.98%
Rain season 18235 58462 17742 56880 493 1582 2.70%
Upper reach (kg)
Dry season 8636 27687 8320 26675 316 1012 3.66%
Rain season 8010 25680 7771 24915 239 765 3.00%
The entire route including the above three reaches (kg)
Dry season 33405 107096 32402 103880 1003 3216 3.00%
Rain season 35443 113630 34598 110921 845 2709 2.38%
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concerning ship operation and environmental factors, which are partly
shown in Figs. 4–6, spanning different reaches of the Yangtze River.

4.2. Scenario A: dry season

4.2.1. Route division based on the distributed k-means algorithm
Based on the aforementioned distributed k-means algorithm and the

data processing method, the present study sets the initial number of
clusters to 5 and the maximum number of iterations to 15. In addition,
the Squared Euclidean Distance method is adopted here for measuring
distances. Considering the fact that the commonly used engine speeds
have five different levels, the present model divides the route into five
types of segments so as to reduce the fluctuation of engine speed.

According to the clustering result, the data points with similar en-
vironmental conditions can be put into the same type of segment. The
five types of segments obtained here are labeled as 1 through 5, which
are in turn distributed over different segments of the route, as shown in
Figs. 7–9.

4.2.2. Energy efficiency optimization based on route division
In this section, a cruise ship sailing in the Yangtze River is modeled

as the target ship. Based on the results of route division, the environ-
mental characteristics of different segments are obtained by statistical
analyses. For three different reaches, the average water depth, water
speed, wind direction, and wind speed for different segment categories
in the dry season are obtained, as shown in Table 2. According to the
characteristics of navigational environment in different divisions, the
aforementioned PSO algorithm is used to determine the optimal engine
speed in each category of navigational environment, based on the es-
tablished non-linear optimization model in Section 3. Here, 50 parti-
cles are initialized in the population. Each particle has five dimensions,
corresponding to the optimal engine speeds of the five different kinds of
segments.

The algorithm converges after a number of iterations, giving the
optimal fitness value, i.e., the total fuel consumption of the entire reach.
The obtained optimal engine speeds in different segment categories for
the three reaches are shown in Table 3. In addition, the field data (i.e.,
sailing speed, fuel consumption, and CO2 emission) for the original
engine speeds and the optimal engine speeds are illustrated in Table 3.
The results show that in some segments, the optimized engine speeds
exceed the original engine speeds, while in some others, the optimized
engine speeds are below the original engine speeds. That is the main
reason why the fuel consumption and CO2 emissions can be reduced
effectively by adopting this optimization method considering multiple
environmental factors.

4.3. Scenario B: rain season

4.3.1. Route division based on the distributed k-means algorithm
Similar to the Scenario A, the same distributed k-means algorithm is

used to determine the route division based on the environmental factors
in the rain season. According to the clustering result, the obtained total
five types of segments are distributed in different locations of the route,
as shown in Figs. 10–12.

4.3.2. Energy efficiency optimization based on the route division
Based on the route division results, the environmental character-

istics of different segments are obtained by statistical analyses. For the
three different reaches, the average water depth, water speed, wind
direction, and wind speed for different segment categories in the rain
season are obtained, as shown in Table 4. According to the character-
istics of the navigational environment in different divisions, the PSO
algorithm is used to determine the optimal engine speed for each ca-
tegory of navigational environment based on the established non-linear
optimization model in Section 3.

The algorithm converges after a number of iterations, with the

optimal fitness value generated, i.e., the total fuel consumption of the
entire reach. The obtained optimal engine speeds in different segment
categories for the three reaches are shown in Table 5. The field data
(i.e., sailing speed, fuel consumption, and CO2 emission) for the original
engine speeds and the optimal engine speeds are also illustrated in
Table 5. The results show that the optimal engine speeds differ from the
original engine speeds in different segments with different environ-
mental characteristics, which is the main reason why the fuel con-
sumption and CO2 emissions can be reduced effectively by adopting the
present optimization method considering multiple environmental fac-
tors.

4.4. Comparative analysis

The final results for different reaches in the dry and rain seasons are
shown in Table 6. For the lower reach of the Yangtze River in the dry
season, the total reduction in fuel consumption is 237 kg, compared
with the practical navigation method. Given that the CO2 conversion
rate of the diesel fuel is 3.206 (Burel et al., 2013), the reduction in CO2
emissions can reach 759 kg using the present optimization method,
corresponding to a change of 2.45%. As for the middle reach, the op-
timization yields 450 kg of reduction in fuel consumption and 1443 kg
of reduction in CO2 emission, corresponding to a change of 2.98%.
When it comes to the upper reach of the Yangtze River, the present
optimization leads to the highest reduction in fuel consumption and
CO2 emission, with a change of 3.66%, i.e., the total amount of fuel
reduction is 316 kg and the total amount of reduction in CO2 emission is
1012 kg for the dry season.

Similarly, for the rain season, the reductions in fuel consumption
and CO2 emission are 113 kg and 361 kg, respectively, corresponding to
a change of 1.22% for the lower reach. As for the middle reach, this
optimization method can reduce fuel consumption and CO2 emission by
about 2.7%, corresponding to 493 kg and 1582 kg, respectively. When it
comes to the upper reach of the Yangtze River, the change can reach
3%, with the reduction in fuel consumption and CO2 emission reaching
239 kg and 765 kg, respectively.

By comparing the optimization results of these three different
reaches, one can see that the upper reach appears to be superior to the
middle and lower reaches in terms of how much enhancement of ship
energy efficiency the optimization can bring about. This is likely caused
by the fact that, compare to the middle and lower reaches, the upper
reach of the Yangze River has a larger drop ratio of river bed and the
two dams (the Gezhou dam and Three Gorges dam), which leads to a
larger difference in the environmental factors associated with different
segments. The complex environmental conditions provide more po-
tential for speed optimization and fuel saving, as it is difficult to de-
termine the optimal engine speeds manually. Following the same logic,
one can explain why the middle reach is superior to the lower reach in
terms of how much enhancement of ship energy efficiency the opti-
mization can bring about: the waterway in the middle reach are more
complex than that in the lower reach due to the presence of narrow and
complex channels, leading to a larger difference in the environmental
factors associated with different segments. By contrast, the small var-
iation of environmental factors in the lower reach leads to the lowest
room for optimizing the energy conservation and emission reduction
there.

For the entire route including the upper, middle and lower reaches,
the total amount of reduction in fuel consumption per trip is 1003 kg in
the dry season and 845 kg in the rain season. Meanwhile, this optimi-
zation effort can undoubtedly improve the profit margin of shipping
companies as driven by the fuel conservation. Such improvement is
significant for a shipping company, especially in an era with the re-
cession of shipping industry.
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5. Conclusions and future research

In this paper, an attempt has been made to optimize ship energy
efficiency through big data analysis in the field of waterway transport.
The route division based on the environmental data analysis is achieved
and the ship navigation optimization method based on the route divi-
sion is proposed. The case study on the Yangtze River demonstrates the
applicability of this method. It can reduce the ship's fuel consumption
and CO2 emission over the entire route by around 3% and 2.38% in the
dry and rain seasons, respectively. The percentage of reduction can
reach 3.66% under complex environmental conditions for the upper
reach in the dry season.

The proposed optimization method can also be applied to other
types of ships and other inland rivers such as the Rhine River, so long as
the related data is available. Building a data-driven energy efficiency
model considering multiple influencing factors will be the next step of
our research. In addition, one can further extend the present optimi-
zation method to handle the energy efficiency optimization of a ship
fleet. Such extension will involve much more influencing factors, such
as ship parameters, route characteristics, port operation and transport
demand. Besides, one needs to consider the correlation among these
factors as well as the coordination between ships. Therefore, the future
research will focus on modifying the present energy efficiency optimi-
zation method so as to provide a theoretical foundation for the ship
fleet energy efficiency optimization.
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