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Abstract

This thesis investigates the performance of various
bandit algorithms in non-stationary contextual en-
vironments, where reward functions change unpre-
dictably over time. Traditional bandit algorithms,
designed for stationary settings, often fail in dy-
namic real-world scenarios. This research eval-
vated the adaptability and computational perfor-
mance of popular algorithms such as UCB, Lin-
UCB, and LinEXP3 using a self-implemented ban-
dit framework. Empirical results reveal signifi-
cant insights into the trade-offs and optimal strate-
gies for applying these algorithms in non-stationary
conditions. Notably, LinEXP3 demonstrated supe-
rior performance in complex environments due to
its ability to incorporate Bayesian posteriors, de-
spite its higher computational cost. The key con-
tributions of this paper include the empirical eval-
uation of these algorithms and their implementa-
tions, with tailored environment settings. The re-
sults suggest promising directions for further re-
search, including the incorporation of broader al-
gorithmic ranges like Contextual Thompson Sam-
pling and other reinforcement learning algorithms
adapted for linear contextual settings. Addition-
ally, future work should focus on using real-world
datasets to validate these algorithms and introduc-
ing covariance matrices for context vectors to sim-
ulate more realistic learning processes. These find-
ings could influence the design and implementation
of bandit algorithms in practical applications such
as recommendation systems and financial portfolio
management.

1 Introduction

Traditional bandit algorithm: Bandit algorithms are in-
spired by a decision-making scenario faced by a gambler at a
slot machine, where each arm represents a different decision
with uncertain rewards[1]. Mathematically speaking, each
arm represents an unknown distribution, and the reward is a
draw from the distribution of the chosen arm. These distribu-
tions can be of any type, such as Bernoulli, Normal, or Uni-
form. The primary challenge in traditional bandit problems is
that the player cannot observe the reward distributions. The
aim is to find the arm that will give the highest cumulative
reward over time by balancing exploration and exploitation.
Contextual bandit algorithm: Building on the traditional
bandit problems, contextual bandit algorithms introduce an
additional layer of complexity. Before the selections, the arm
vectors drawn from each arm distribution are revealed to the
player. The arm vectors are called context in this setup. How-
ever, there exist some hidden vectors that affect the reward.
For example, the reward can be modeled as a simple linear
function involving the context:

reward=a-x+b @)

where a is a hidden vector, x is the context, and b is some
negligible noise. The reward function can be anything more

complex. Despite the differences, the goal is still to learn a
policy that maps contexts to arm pulls in a way that maxi-
mizes cumulative reward.

Challenges: While many existing works have addressed the
efficiency of traditional bandit algorithms and proposed ban-
dit algorithms in non-stochastic environments[2] and further
literature proposed a rich study on contextual bandits[3], most
of the previous literature assumed the environment to be sta-
tionary, but in more realistic scenarios, the environments are
often non-stationary. For example, the hidden vectors that
influence the reward could change unexpectedly. Take a Rec-
ommendation System as an example: It describes a system
that needs to decide which advertisements to display to users,
different ads provide different rewards: the rewards can be
click-through rates or revenue per click, which are not known
to the system. The reward of each ad is unlikely to be station-
ary, instead, different rewards might be given based on when
the ad is shown, due to a series of factors, like changing user
tastes, competitor actions, or seasonal changes. This raises
the main aim of this research: find the bandit algorithm that
outperforms the rest when the environment is non-stationary.
This research seeks to test some popular bandit algorithms in
simulated environments.

Research Questions: Since the study focuses on identifying
the most effective MAB algorithms for non-stationary envi-
ronments, the research questions are closely relevant:

1. Which bandit algorithms best adapt to different non-
stationary environments?

2. What are the trade-offs associated with these algorithms
in terms of computational performance and algorithm
optimum?

Contributions: The main contributions of this research are
the empirical evaluation of several leading bandit algorithms
in changing linear contextual environments and a supple-
mentary implementation that supports adaptability in non-
stationary conditions. These contributions may provide in-
sights that could influence future algorithm design focuses.
On top of this, an existing implementation in applied settings.
Conclusions: Despite that in theory, it is expected LinEXP3
and LinUCB should outperform EXP3 and UCB1, however,
this is not always the case.

Structure: The rest of the paper is organized as follows: Sec-
tion 2, the paper will discuss the methodologies and introduce
the problem description. In section 3 the paper will present
the experimental setups and main results. Section 4 will share
the conclusion of this paper. Section 5 discusses the ethical
parts of the study. Finally, Section 6 denotes some possible
improvements and future works for researchers who are will-
ing to continue the study.

2 Methodologies
2.1 Methodology and Background

To address the research question, this study used Python and
several of its popular libraries: Pandas for data preprocessing
and Matplotlib for data visualization. Additionally, the study
heavily relied on the SMPyBandits framework[4] by Lilian



Besson, which provides implementations of various bandit al-
gorithms and environments. For the specific purposes of this
study, the library was slightly modified to support contextual
environments and newly developed algorithms that were not
part of the original framework.

2.2 Formal Problem Description

The experiment involves a linear contextual bandit setup,
where an agent interacts with a dynamic environment over
multiple rounds. This section formally describes the problem
and introduces related concepts.

Problem Setup

Consider an adversarial interaction between a learner (agent)
and a set of k context vectors {x;, | a = 1,2,...,k} C R,
where the context vectors are generated from some indepen-
dent and identically distributed (i.i.d.) distributions. The in-
teraction proceeds in discrete time steps t = 1,2,...,7. At
each time step ¢, the following steps are executed:

1. Policy-based Selection:

» The agent selects a context vector X 4, from the set
of available context vectors {X;1,X¢,2,. -, Xt}
based on its policy 7;(x). The context vectors are
revealed to the agent.

2. Hidden Reward Vector:

* Independently of the choice of the context vector,
there exists a hidden reward vector 0; € R< that is
unknown to the agent. The hidden reward vector 6,
is non-stationary.

3. Reward Observation:

» The agent observes the reward r; ,,, which is ob-
tained by taking the dot product of the selected con-
text vector X ,, and the hidden reward vector 6;:

Tt,ay = Xt,ay -0,

4. Learning: Based on the observed reward 7, , the agent
updates its weights for each arm and learns a better
decision-making strategy.

5. Objective:

» The agent’s objective is to minimize the camulative
regret over ' time steps. There are differences in
how regrets are calculated between papers, in this
paper, the best-fixed policy regret would be used:

T
Ry = Z (rt,‘n'}(:r) - Tt,‘n'T(a:)>

t=1

where an assumption is made about a theoretically
optimal policy 7-(z) which always selects context
vectors that yield the highest possible rewards in
every t, the cumulative regret is then equal to the
cumulative reward achieved by 7%(z) minus the
cumulative reward achieved by the policy of choice.

Algorithms

The study explores various bandit algorithms adapted to the
contextual setting. Some state-of-art algorithms in this do-
main include but are not limited to:

» UCBI5I:

— The basic UCB algorithm that uses upper confi-
dence bounds to balance exploration and exploita-
tion. It was used as one of the baseline agents for
comparison.

+ EXP3[2]:

— The EXP3 algorithm is designed for adversarial set-
tings, where the reward distributions are not as-
sumed to be stationary. It adapts to the observed
rewards and balances exploration and exploitation
probabilistically.

» LinUCBI3I:

— An adapted UCB algorithm that models the reward
as a linear function of the context vector and uses
upper confidence bounds to balance exploration
and exploitation.

o LinEXP3[6]:

— A new probabilistic algorithm built upon EXP3[2]
and LinUCB. It uses both context information and
Bayesian inference to make decisions.

3 Experimental Setup and Results

To know how well a policy learns and how it could be help-
ful in the real world, selected algorithms are run against an
artificial dataset to verify their reliability and theoretical cor-
rectness.

3.1 Environment: Artificial data

To simulate recurring events, we consider several coordinates
of the reward vector:

1. 0 , = |sin(w;t + &;)|

2,61, = |cos(wit + y)|

3. 0} o = [log(t) - (wi + )|

where w; and ¢; are fixed vector chosen for each direction
i € [d], t could be seen as the current timestamp.
The reason for choosing sin and cos is because they could
model seasonal changes. For example, presenting ice cream
to users in summer is generally more attractive than present-
ing them in winter. Likewise, the same context may give de-
sirable or undesirable results based on the period, which rep-
resents periodic changing environments. Logarithm could be
seen as a slowly changing environment.
Ten 3d-context vectors with different characteristics are pre-
pared. The definition of characteristics is based on the values
in each dimension. For example, low value in the first dimen-
sion and high in the second and third; medium value across
all directions to include more variances. For each iteration,
the algorithm takes context z¢ 4.
To ensure the accuracy of the algorithms and provide a better
understanding, Each algorithm is executed in different envi-
ronmental settings for 20 realizations, 5000 epochs each, with



their cumulative regrets, and corresponding normal distribu-
tions plotted.

3.2 Algorithm setup

For each algorithm, attempts are made to fine-tune the pa-
rameters, to make them perform optimally in the specific en-
vironment settings. A parameter is optimal if the algorithm
reaches the highest average cumulative reward. This section
will discuss the choices of values and why these values are
chosen. A random policy that always chooses arms randomly
is added as a baseline agent.

1. UCB: In the past years, many papers proposed differ-
ent versions of UCB. This study will stick to UCB1 which
was proposed by Auer[7]. This is because UCB1 does not
introduce additional parameters, it chooses arms according to
a fixed formula. This not only reduces the cost and time com-
plexity, but also produces no variances between realizations,
which makes it a perfect baseline policy.

2. EXP3: A first attempt is made to tune -y on a logarithmic
scale. However, for +y ranged in [10~%, 10~ !], EXP3 behaves
randomly. For vy above 0.95, the agent converges early, which
leads to a local minimum. We then did some rounds for grid
search for v between 0.1 and 0.8 and found 0.15 the most op-
timal. Since EXP3 chooses arms according to Bayesian pos-
teriors, to prevent overflows during the weights calculation,
log-sum-exp trick[8] is applied to the probability calculation
of the original algorithm. The plot of the first round’s grid
search results is shown in Figure 1 and 2.
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Figure 1: EXP3 Parameter Grid Search in Trignometric Environ-
ment

3. LinUCB: In LinUCB, there is one controllable parame-
ter cv, which is an exploration term. Again, if a is set too high,
LinUCB is more likely to explore and behave randomly. On
the other hand, if « is set too low, the algorithm might exploit
too much, potentially missing out on better arms that haven’t
been explored enough. After some rounds of grid search for
«, we found that a=0.3 performs the best overall. The plot of
the first round’s grid search results is shown in Figure 3 and
4.

4. LinEXP3: There is a learning rate parameter n and an
exploration term ~y. For the ideal setting, 7 is set to 0.5 and
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Figure 2: EXP3 Parameter Grid Search in Logarithmic Environment
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Figure 3: LinUCB Parameter Grid Search in Trignometric Environ-
ment
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Figure 4: LinUCB Parameter Grid Search in Logarithmic Environ-
ment

v to 0.2. If n is low or -y is high, the algorithm will per-
form randomly; If 7 is high or v is low, the algorithm will



quickly converge to a local minimum. Again to prevent over-
flows during the weight calculation, log-sum-exp trick is ap-
plied. Moreover, the literature LinEXP3 proposed a sampling
method called MGR[6] which included some tuneable param-
eters, namely M, the number of samples taken from the con-
text distribution, and /3, which is used to calculate variances.
In the experiment, /3 is set to 0.5 according to the optimal
value formula in the paper, but M is only set to 1500 instead
of the optimal value, due to limited computational resources.
The plots for grid searches will not be displayed as there are
too many parameters to tune, but they can be found in the TU
repository.

Results

For trigonometric environments combined, the average cu-
mulative regret is calculated and illustrated in Figure 5. As
for the logarithm environment, the average cumulative regret
is calculated and shown in Figure 6.

Cumulative Regret Over Time

Figure 5: Performance of algorithms in trigonometric environment
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Figure 6: Performance of algorithms in logarithmic environment

Additionally, the normal distributions of the results can be
found in Figure 7 and 8 respectively.

Normal Distribution of Cumulative Regret for 20 Realizations

Figure 7: Normal distributions in trigonometric environment
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Figure 8: Normal distributions in logarithmic environment

As observed, the standard deviation of UCB1 and LinUCB
is zero since they choose arms according to a fixed formula.
LinEXP3 has a moderate density curve, indicating standard
variability. As for EXP3, it has a wider density curve, show-
ing that there is a higher variability, which implies the algo-
rithm’s performance is less consistent.

The time taken per algorithm in experimental settings is
shown in Table 1, the numbers are gotten by summing up the
time taken for the algorithms to finish in all environments,
then normalized to the second decimal place for a better vi-
sual comparison:

Algorithm Avg. Computation Time
UCBI 0.02
LinUCB 0.08
EXP3 0.02
LinEXP3 0.87
Random Policy 0.01

Table 1: Computation costs per algorithm

4 Conclusions

From the theoretical hypotheses, algorithms not adapted to
contextual environments perform worse than contextual algo-



rithms. However, the experimental results have shown this is
not the case. The outcomes can be attributed to the following
factors:

1. UCBI: This algorithm does not utilize contextual in-
formation when making decisions, which is crucial for en-
vironments where context significantly impacts the reward.
Therefore, in contextual environments, it often converges
slower than LinUCB. Figure 6 also verified this fact. In
non-stationary environments where the best arm changes fre-
quently, UCB1 performed worse, but better than LinUCB in
the experiments because contexts could sometimes provide
misleading information.

2. LinUCB: This algorithm leverages contextual information
to inform decisions. In the logarithmic environment, it con-
verges the fastest, because it finds the best arm immediately
by observing the contexts. Unfortunately, in non-stationary
settings, where the best arm keeps changing, LinUCB be-
comes stuck in a local minimum quickly, repeatedly select-
ing the arm it believes to be the best, which might turn out to
be the worst in later stages, causing LinUCB to perform even
worse than a random selection.

3. EXP3: This algorithm is designed for adversarial settings,
meaning it does not assume that the reward distributions are
stationary. Instead, it continuously adapts to the observed re-
wards, making it capable of quickly responding to changes in
environments. In both trigonometric and logarithmic environ-
ments LinUCB adapts well, with slightly better performance
in trigonometric environments due to its probabilistic man-
ner of arm selection. However, it does not utilize contextual
information, where some useful data could be inferred.

4. LinEXP3: Among the algorithms, LinEXP3 demon-
strated superior performance in the more complex trigono-
metric environment. Like EXP3, LinEXP3 accounts for non-
stationarity by incorporating Bayesian posteriors. This ap-
proach allows LinEXP3 to occasionally select sub-optimal
arms, resulting in lower cumulative regret over time. While
LinUCB and UCBI1 assume a fixed optimal arm, leading to
suboptimal performance in these environments. On top of
adaptability in non-stationary environments, LinEXP3 also
infers contextual information, which makes it capable of
making more informed choices. However, to improve the
estimator of the hidden reward vectors, LinEXP3 uses a sam-
pling method called Geometric Matrix Resampling [6], which
requires sampling many times from the context distributions
during every selection. As the number of samples grows
with the complexity of environments, it could be computa-
tionally expensive. In real-time systems, where immediate
feedback is crucial, LinEXP3 might not always be the most
suitable choice. Due to the computation resource constraint
mentioned earlier, the number of samplings per round is de-
creased. It is expected that LinEXP3 would perform even
better if resources allow.

The normal distribution graph shows the variability and per-
formance of the different algorithms. Using the data from
the normal distributions, their 95% confidence intervals can
be calculated to show the range within which the true perfor-
mance is expected to lie in both environments:

Trigonometric Environment

Algorithm Lower Bound Upper Bound

UCB 613.75 613.75
EXP3 596.05 635.13
LinUCB 191291 191291
LinEXP3 563.80 573.80
Random 1557.86 1569.22

Table 2: Confidence Intervals for Trigonometric Environment

Logarithmic Environment

Algorithm Lower Bound Upper Bound

UCB 151.35 151.35
EXP3 318.19 334.41
LinUCB 3.67 3.67

LinEXP3 257.77 265.95
Random 1154.08 1161.50

Table 3: Confidence Intervals for Logarithmic Environment

This way, it is more straightforward to observe that:

* UCBI1 and LinUCB: These provide highly consistent
performance with zero variability due to their determin-
istic arm selection mechanisms. They are stable and pre-
dictable.

o EXP3: This algorithm shows significant variability, re-
flecting its probabilistic nature and capability to adapt to
changing environments.

e LinEXP3: This algorithm displays moderate variability,
indicating that while it incorporates contextual informa-
tion, the randomness in its decision-making process in-
troduces some unpredictability in performance.

Another noticeable trend in logarithmic environments is that
LinEXP3 found the best arm faster than UCB1, at about 300
iterations. However, due to its probabilistic way of selecting
arms, it still occasionally chooses suboptimal arms, causing
it not to converge, at about 2600 iterations UCB starts to stay
at the best arm which causes it to beat LinEXP3 by then. To
cope with this situation, one could introduce a method called
learning rate decay[9] to reduce exploration over time.

In conclusion, to answer the research question in the begin-
ning:

1. Which bandit algorithms best adapt to different non-
stationary environments?

2. What are the trade-offs associated with these algorithms
in terms of computational performance and algorithm
optimum?

The answer to the questions is that the best bandit algorithm
depends on the nature of the specific environments and con-
straints of the application context. UCB1 and LinUCB are
suitable for stable environments where the best arm is fixed
and stability is desired. EXP3 offers better adaptability across



various environments, albeit with higher variance, making it a
good choice when the environment is unknown. LinEXP3, on
the other hand, demonstrates reliable performance in environ-
ments where the optimal arm changes frequently, but it does
not pull away from other algorithms in simpler environments.
Given the performance and as observable in Table 1, which
indicates LinEXP3 uses nearly 90% out of total resources to
run, other algorithms may still be preferable due to their time
efficiency. Consequently, LinEXP3 is better in environments
where higher precision is the most required.

5 Responsible Research

This study adheres to the principles of responsible research,
emphasizing ethical considerations and reproducibility. The
research process is guided by the FAIR principles, which
stands for Findable, Accessible, Interoperable, and Reusable,
to enhance transparency and impact:

1. FAIR Principles:

¢ Findable: All code and data generated during this
research will be deposited in public repositories
such as the TU Repository[10] and the author’s
GitHub Repository. These resources will be find-
able by detailed metadata and unique identifiers to
allow easy access for other researchers.

e Accessible: The data and code are openly acces-
sible without restrictive barriers. This paper will
be provided as a reference to ensure that other
researchers can easily understand and utilize the
repository.

 Interoperable: The research outputs adhere to
standardized formats, and utilize popular Python
frameworks such as MatPlotLib and NumPy. This
promotes compatibility with other datasets and
tools, which leads to broader usage and integration.

* Reusable: Methodologies and metadata are pro-
vided in the paper to maximize the reusability of
the code, and to enable other researchers to repli-
cate, verify, and build upon the work.

2. Data Privacy: The study employs artificial data that has
no connection to real-world data, in compliance with
GDPR[11]. This approach eliminates the risk of privacy
breaches and safeguards sensitive information.

3. Proper Citation: All sources of data, information, and
code that influenced this research are properly cited in
IEEE style. The references list includes details for each
source, ensuring proper acknowledgment and facilitat-
ing further investigation.

4. Use of LLM: Large Language Models (LLMs), specif-
ically ChatGPT[12], have been utilized responsibly in
this research. LLMs mainly assisted in code debugging
and rephrasing the paper into a more academic writing
style. In some use cases where LLM are asked about
related literature, this kind of use was carefully man-
aged, with human researchers evaluating and validating
all generated responses to avoid inaccuracies, such as
non-existent references.

6 Discussions and Future Work

This study has explored the application and performance of
contextual bandit algorithms in various settings. It addressed
key research questions regarding the adaptation and perfor-
mance of these algorithms in non-stationary linear contextual
settings. The findings suggest several avenues for future re-
search and improvements.

Firstly, incorporating a broader range of algorithms, such as
Contextual Thompson Sampling, could enhance the reliabil-
ity of the analysis. Further exploration into other reinforce-
ment learning algorithms that can be adapted for linear con-
textual settings is also warranted, in this way proposing new
algorithms inspired by earlier works could potentially im-
prove the performance of contextual bandit algorithms. For
instance, combining the settings of LinEXP3 with elements
from algorithms like Exp4, as described by Beygelzimer et
al. (2011) [13], could be a good direction.

Moreover, the current study used artificial data to validate
the algorithms, which are not directly correlated to real-world
scenarios. Using the artificial data allows for controlled ex-
perimentation and initial proof of concept. However, it lacks
the complexity and variability found in real-world data. This
can limit the applicability and generalizability of the find-
ings. In future research, it is recommended to use real-world
datasets to validate the algorithms. One example dataset is the
Criteo Attribution Modelling dataset [14] available on Kag-
gle. However, due to the complexity of the dataset, it is not
suitable to use it in this scope due to limited computational re-
sources and analysis complexity. The given instance is only
an illustration, it is recommended to find a similar but simpler
dataset.

If future researchers wish to continue using artificial data, it
is a good idea to introduce covariance matrices for the con-
text vectors. Because the current study only cares about the
expectation of cumulative regret, the contexts are set to be
fixed for convenience. However, variances might introduce
a bigger impact on the outcome of experiments. Therefore,
changing the fixed contexts to normal distributions with dif-
ferent variances could add another layer of complexity, and
denote a more realistic learning process.
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