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Abstract 

To overcome the congestion of geostationary orbit slots, previous work proposed to use vertically-displaced, non-

Keplerian geostationary orbits by means of continuous low-thrust propulsion in the form of hybrid solar sail and solar 

electric propulsion (hybrid sail). This work extends and generalizes that concept by loosening the position constraint 

and introducing a station-keeping box. Sub-optimal orbits are first found with an inverse method that still satisfy the 

geostationary position constraint (i.e., no station-keeping box), which will be referred to as ideal displaced geostation-

ary orbits. For these sub-optimal orbits, it is found that the hybrid sail saves propellant mass compared to the pure solar 

electric propulsion case: for solar sail lightness numbers of up to a value of 0.2 and the most favorable time during the 

year (i.e., at summer solstice), the hybrid sail saves up to 71.6% propellant mass during a single day compared to the 

use of pure solar electric propulsion. Subsequently, the sub-optimal orbits are used as a first-guess for a direct optimi-

zation algorithm based on Gauss pseudospectral transcription, which loosens the position constraint. This enables a 

more flexible trajectory around the ideal displaced geostationary orbit and lets the solar sail contribute more efficiently 

to the required acceleration. It therefore leads to a further propellant savings of up to 73.8%. Finally, the mass budget 

shows that by using by using far-term solar sail technology, the hybrid propulsion system enables an evident reduction 

in the required initial mass of the spacecraft for a given payload mass with a relatively long mission duration. 
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I. Introduction1 

The geostationary orbit (GEO) is a circular, equatorial orbit whose period equals the Earth’s rotational period and 

its orbital radius therefore equals approximately 42,164 km. It allows a satellite to be stationary above a certain point 

on the Earth’s equator. With the advantage of being stationary, GEO satellites are largely used for telecommunications 

and Earth observation (mainly meteorology). The GEO is a unique and currently very congested orbit, especially at 

longitudes above densely populated areas [1]. 

Highly non-Keplerian orbits (NKOs) are trajectories that can be achieved by a continuous control acceleration gen-

erated by the spacecraft, which was systematically introduced by Mckay et al. [2]. By partially offsetting or comple-

menting the effects of gravity, NKOs show evident advantages in that new orbits can be designed. The design [4-10], 

optimization [4-10], stability and control [11-13] of NKOs have been researched extensively; proposed applications 

range from pole-sitters [3,4], lunar far-side communication and lunar south-pole coverage [5-7], Mars, Mercury and 

Venus remote sensing [7,8], further Mars exploration [9], to near-Earth asteroids rendezvous [10]. The concept of using 

an NKO to displace the GEO has already been proposed [1] and the existence of light-levitated GEOs for solar sailing 

has already been shown by Baig and McInnes [14]. This paper studies the optimal design of loosely-displaced GEOs 

and proposes the use of solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft (hybrid sail 

propulsion). 

Although solar sailing is a relatively old notion, it has many high-demanding technology requirements on materials, 

control and structures [15]. Only recently, three small sail demonstrator missions were deployed: one by JAXA, the 

Interplanetary Kite-Craft Accelerated by Radiation of the Sun (IKAROS); one by NASA, NanoSail-D2; and one by 

The Planetary Society, LightSail-1 [16-18]. In addition, the NEA Scout mission plans to launch a CubeSat-sized space-

craft propelled by a solar sail for near-Earth asteroid exploration mid-2018 [19]. Much research has focused on using 

solar sailing as the primary propulsion system on a spacecraft to maintain NKOs [20-23]. However, there are still some 

challenges to overcome, such as the difficulties of designing and building large and lightweight membrane structures. 

In addition, the solar sail is unable to generate a thrust component towards the Sun [15]. Compared to solar sailing, 

SEP relies on a finite onboard propellant source, but is a much more mature and near-term technology. It can produce 

a relatively low thrust with high specific impulse. It has been successfully used in several space missions, including 

Deep Space 1 (1998) [24], the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE, 2009) [25], and 
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SMART-1 [26].  

Considering the complementarity of solar sailing and SEP, the concept of hybridizing a relatively small, near-term 

solar sail and SEP has been previously proposed [3, 27]. In this field, research is flourishing, aiming to maximize the 

potential of the hybrid sail propulsion system. Proposed concepts include optimal transfers from Earth to Venus and 

Mars [28, 29], optimal trajectories for Earth pole-sitters [3, 4], pole-sitters at other planets [8], and displaced orbits in 

the Earth-Moon system [30]. As those studies show, the hybrid sail has better performance in terms of long-term 

propellant consumption than pure SEP and lower technological challenge than a large solar sail, at the cost of increased 

system and control complexity. 

In this work, a generalization of the hybrid-sail displaced geostationary orbit (DGEO) proposed by Heiligers et al. 

[1] is presented and discussed. We relax the constraint of a constant relative position with respect to an Earth observer, 

while keeping the spacecraft in an assigned station-keeping box, generating a loosely-displaced GEO (LDGEO). It is 

expected that, by releasing the constraint on the position, additional propellant can be saved by the hybrid sail/SEP 

combination. We indeed show that propellant can be saved, because the station-keeping box allows the orbit to be tilted 

which allows the solar sail to operate more efficiently and therefore reduces the total SEP thrust required. However, 

the introduction of the concept of a station-keeping box comes with the drawback that the spacecraft is not perfectly 

stationary above a point on the Earth, and thus not truly “geostationary”. This could cause potential pointing problems. 

However, we show that, if the station-keeping box is small enough, the effects of pointing problems can be restricted 

to an acceptable level such that this displacement will not be perceivable from Earth.  

The remainder of the paper is organized as follows: after a brief description of the hybrid sail dynamics (Sec. II), 

Sec. III explains the concept of the DGEO. It then presents an inverse method to minimize the SEP thrust and obtain 

the corresponding solar sail control for an ideal DGEO, i.e., without a station-keeping box. Those results are subse-

quently used as a first-guess for a Gauss-pseudospectral algorithm that does include a station-keeping box, which 

solves the optimal control problem numerically. Finally, Sec. IV discusses the optimal mass budget for a hybrid sail 

spacecraft for different sail sizes and mission lifetimes. 

II. Equations of Motion 

The ideal DGEO is an NKO which is parallel to the equatorial plane (above or below) and whose period equals the 

Earth’s rotational period. Compared to the distance from the Sun, a spacecraft in a DGEO is much closer to the Earth. 

Therefore, the dynamics are defined as two-body, Earth-centered dynamics, neglecting perturbations from the higher 
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order harmonics from the Earth’s potential, the Moon, Sun, and so on. A rotating reference frame,  , ,A X Y Z  is 

considered in which the origin is at the center of the Earth; the X  axis points towards the ideal DGEO satellite’s 

projection on the equatorial plane; the Z  axis is aligned with the angular momentum vector of the Earth and perpen-

dicular to the equatorial plane, and the Y  axis completes the right-handed Cartesian reference frame (see Fig. 1). In 

the following, all vectors are expressed in this frame unless specified by a different superscript. The equations that 

describe the motion of the spacecraft in the rotating reference frame are  
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   (1) 

Considering the X , Y  and Z  axes, the spacecraft position vector is 
T=[ , , ]x y zr , r  r , e  is the Earth’s 

constant angular velocity and e  is the gravitational parameter of the Earth. Furthermore, a thrust-induced accelera-

tion 
T=[ , , ]X Y Za a aa  is assumed to maintain the DGEO. For a hybrid sail propulsion system, a  consists of two 

parts, which can be written as 

S SEP a a a          (2) 

where Sa  is the contribution of the solar sail and SEPa  is the contribution of the SEP thruster. 

 

Fig. 1 DGEO in the rotating reference frame (A) 

Because frame (A) rotates at the same angular speed as the Earth’s rotation, the DGEO is represented by a stationary 

point. Therefore, the spacecraft’s position with respect to the Y  axis, the velocity 
T=[ , , ]x y zr  and the acceleration 

T=[ , , ]x y zr  are all equal to 0. Then, the equilibrium solutions can be obtained by eliminating the motion-related terms 

from Eq. (1): 
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  (3) 

Let us consider an inertial reference frame,  ( ) ( ) ( ), ,I I II X Y Z , with the origin at the Earth’s center; the ( )IX  axis 

is aligned with the projection of the Sun-Earth vector on the equatorial plane at winter solstice; the IZ  axis is aligned 

with the angular momentum vector of the Earth and perpendicular to the equatorial plane, and the ( )IY  axis completes 

the right-handed Cartesian reference frame. In that frame, the ideal DGEO is a circle with a constant radius from the 

( )IZ  axis and at constant distance from the ( ) ( )-I IX Y  plane, i.e. parallel to the equatorial plane (see Fig. 2). The 

magnitude and direction of the acceleration required to maintain the NKO are constant in frame (A), see Eq. (3), and 

therefore conduct a rotation once per DGEO period in frame (I), see the arrows in Fig. 2.  

 

Fig. 2 Acceleration and trajectory over one day of a DGEO in the inertial reference frame (I) 

A. Solar sail propulsion 

Solar sails can produce continuous accelerations without any propellant consumption. In this work, a perfect solar 

sail force model will be used, which only accounts for specular reflection. Note that, in reality, the efficiency of the 

sail will be less than that of an ideal sail due to non-ideal reflecting and billowing effects. However, these effects are 

neglected for the current study.  

The acceleration generated by an ideal solar sail can be modeled as  

 
20

S 0 2
ˆ ˆ ˆ( )sm

m s


 a n s n   (4) 

where s  is the gravitational parameter of the Sun, n̂  is the vector normal to the sail surface, s  is the Sun-sail 

vector, ŝ  is the unit vector along s , m  is the instantaneous mass of the spacecraft and 0m  is the initial mass. 
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Note that the ratio of 0m  and m  describes the decrease in the hybrid sail spacecraft mass due to the consumption of 

propellant by the SEP system (for a pure solar sail spacecraft this ratio equals 1). 

In this work, s  is approximated by a constant Sun-Earth distance of 1 astronomical unit (AU). The parameter 0  

is the system lightness number at the start of the mission, which can be defined as  

 0

0

A

m
    (5) 

where A  is the solar sail area and   is the critical sail loading which equals 
2

1.53 g m  in the solar system [3]. 

The analyses in this paper will be performed with a lightness number 0  ranging from 0 (pure SEP) to 0.2. A value 

of 0 0.05   can be assumed to be near-term solar sail technology [3].  

Considering the tilt of the Earth’s rotational axis with respect to the ecliptic plane, the direction of the Sun-sail vector 

s  changes periodically. An Earth-fixed rotating reference frame,  ( ) ( ) ( ), ,B B BB X Y Z , which is shown in Fig. 3, is 

used to model this variation in s . Reference frame (B) is centered at the Earth, with the ( )BZ  axis aligned with the 

angular momentum vector of the Earth and perpendicular to the equatorial plane, the ( )BX  axis aligned with the 

projection of the Sun-sail vector on the equatorial plane, and the ( )BY  axis completes the right-handed Cartesian 

reference frame. Again, because the spacecraft-Earth distance is much smaller than the spacecraft-Sun distance, we 

neglect the tiny variation in the direction of the Sun-sail vector as the spacecraft orbits the Earth and assume it to be 

aligned with the Sun-Earth vector. Reference frame (B) rotates with the angular velocity of the Earth around the Sun, 

s , which ensures that the unit vector ( )ˆ B
s  is always contained in the ( ) ( )-B BX Z  plane. The angle   is the angle 

between 
( )ˆ B

s  and the ( )BX  axis, which reaches its maximum value (equal to the Earth’s obliquity to the ecliptic, 

 ) at winter solstice and reaches its minimum value   at summer solstice. As the Earth orbits around the Sun, the 

angle   describes the position of the Earth in the inertial reference frame ( I ), as  

 st    (6) 

where t  is the time since winter solstice (see Fig. 4). The angle   is a function of   [1]: 

 
1( ) sin (sin cos )   

 (7)
 

and obtains its maximum value at winter solstice when (0)  , and its minimum value at summer solstice when 

( )     [1]. Then, the relationship between   and t  can be written as  
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1( ) sin (sin cos )st t     (8) 

According to Eq. (8),   can be uniquely determined from the time t , yielding  

  
T( )ˆ cos 0 sinB  s  (9) 

 

 

Fig. 3 Frame (B) used to model the cyclical change of the Sun-sail direction ( )ˆ B
s  

 

 

Fig. 4 Frame (B) and Sun-sail direction 
( )ˆ B

s  over one year 

Considering the attitude constraint of the solar sail that n̂  cannot point towards the Sun, a reference frame (C) is 

used to model the control pitch angle α and yaw angle θ of the solar sail. In reference frame (C), the ( )CX  axis 

coincides with the Sun-sail vector (again neglecting the tiny variation in the direction of the Sun-sail vector over one 

orbit, assuming it to be aligned with the Sun-Earth vector), the ( )CZ  axis is perpendicular to the ( )CX  axis and lies 

in the plane spanning the Sun-sail vector and the Earth’s rotation axis, and the ( )CY  axis completes the right-handed 
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reference frame (see Fig. 5). Then, the unit vector n̂  can be described as 

 
( ) Tˆ =[sin cos sin sin cos ]C     n   (10) 

Because ( )ˆ C
n  should always point away from the Sun, in frame (C) the following attitude constraints on α and θ 

apply: 

 

0

2 2

 

 


 


  


  (11) 

 

Fig. 5 Frame (C) with sail normal n̂ , pitch angle α and yaw angle θ 

Through a rotation around the ( )CY  axis over an angle  , frame (C) will coincide with frame (B). Hence, the 

rotation matrix C BR  between those two frames is: 

 

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

C B

 

 



   
 


 
   

R   (12) 

which yields 

 
( ) ( )ˆ ˆB C

C Bn R n   (13) 

Furthermore, the rotation matrix B AR  between frame (B) and frame (A) can be described as 

 

cos sin 0

sin cos 0

0 0 1

B A

 

 

 
 

 
 
  

R   (14) 

where the rotating angle   is given by 

 mod( , )GEO eL t T      (15) 
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In Eq. (15), GEOT  is the orbital period of the (displaced) GEO, i.e. one day. Furthermore, the parameter L  is in-

cluded because the GEO spacecraft can be positioned at any longitude. Note that, for 0L   the frames (A) and (B) 

coincide at winter solstice (see Fig. 6). 

 

 

Fig. 6 Angle correction L in frame (A) for ideal DGEO at winter solstice 

Then, n̂  and ŝ  are given by 

 

( )

( )

ˆ ˆ

ˆ ˆ

B
B A

B
B A





 




n R n

s R s
  (16) 

Substituting Eq. (16) into Eq. (4) allows Sa  to be computed.  

 

B.  Solar electric propulsion 

We assume an ideal SEP thruster that can be tilted in any direction and can provide an adjustable thrust up to a 

maximum thrust maxf . In frame (A), the thrust vector of the SEP thruster SEPf  can be written as 

 
T

SEP [ ]X Y Zf f ff   (17) 

The magnitude of the SEP thrust vector is defined as SEP=f f , which is modeled as 

 SP 0f mI g    (18) 

where m  is the rate of change of the spacecraft mass, SPI  is the specific impulse and 0g  is the standard Earth 

surface gravity acceleration. A specific impulse of SP 3200 sI   can be assumed using current engine technology 

[31,32]. Considering the assumed capabilities of the SEP thruster, the following magnitude constraint for f applies: 

 max0 f f    (19) 
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Then, SEPa  can be obtained according to 

 SEP
SEP =

m

f
a  (20) 

Finally, by introducing the velocity vector 
T[ ]X Y Zv v v v r , the differential equations of the state vector S  

of the hybrid sail spacecraft can be written as 

 
T=[ ]mS r v   (21) 

And then, the first-order form of Eq. (21) can be found by substituting Eq. (1) and Eq. (18) 

 

2
S, SEP,3

2
S, SEP,3

S, SEP,3

SP 0

2

2

X

Y

Z

e
e Y e X X

X e
e X e Y Y

Y

eZ
Z Z

v

v

x v

y x
v x a a

z r

v y
v y a a

v r

zv
a a

rm

f

I g


 


 



 
 
 

   
   
         
          
   
   
     
    

 


 
  

  (22) 

 

III. Displaced Geostationary Orbit Design 

In frame (A), the GEO is a static point along the X  axis, at a distance GEOr  from the origin (see Fig. 7) and 

describes a perfect circle in the Earth-centered inertial reference frame (I). An ideal DGEO is defined as a spacecraft 

that is constantly aligned with a certain point on the Earth which is not necessarily confined to the equator. Then, the 

ideal DGEO is an equilibrium point in the -X Z  plane of frame (A), that has an offset along the X  axis with respect 

to the GEO of Xd  and similar for Yd ( =0Yd ) and Zd  (see Fig. 7). Finally, by defining a station-keeping box around 

the ideal DGEO equilibrium point, the LDGEOs are obtained. In this section, minimum-propellant ideal- and loosely 

DGEOs will be designed by solving an optimal control problem with a Gauss-pseudospectral algorithm, which is 

sensitive to the initial guess for strongly non-linear optimization problems. Therefore, as described in the following 

subsection, we use an inverse method on the ideal DGEOs to create a close-enough sub-optimal initial guess to allow 

the Gauss-pseudospectral algorithm to converge quickly and smoothly to a locally-optimal solution for the LDGEOs. 
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Fig. 7 GEO and DGEO location in frame (A)  

 

A.  Ideal displaced GEO 

The daily rotation period of the Earth is much shorter than its yearly revolution about the Sun. Hence, there is no 

need to consider the change of Sun direction within a daily cycle and it is reasonable to design a one-day periodic 

DGEO and maintain it as long as the direction of the Sun-sail vector does not change significantly. Therefore, the 

dynamics of the spacecraft are constrained to follow the self-rotation of the Earth. Assuming that the initial time 0 0t   

coincides with the winter solstice when 0   and   , in frame (A), the state of the spacecraft at any generic 

instant of time t  can be written as 
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  (23) 

Substituting Eq. (23) into Eq. (22) and rearranging gives the required acceleration for an ideal DGEO (indicated by 

subscript ‘I’): 
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From Eq. (2) it then follows that: 

 SEP I S I I( , )  a a a  (25) 

Inspecting Eq. (25), for any given m  and t , SEPa  is a function of I  and I . Then, the optimal pitch angle 
*
I  
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and yaw angle 
*
I  for the ideal DGEO can be found by minimizing the SEP propellant at each instant of time. 

 
* *
I I SEP

[0, ]
[ 2, 2]

( ( ), ( )) arg min ( ( ) )t t t
 

  

 


 

 a   (26) 

Equation (26) is solved using MATLAB’s genetic algorithm toolbox. Once 
*
I  and 

*
I  are found, the optimal ac-

celerations 
*
S ( )ta , *

SEP ( )ta  can be obtained, as well as the optimal 
*( )m t , for any specific DGEO. Furthermore, for 

multi-revolutions of the DGEO, this method can be repeated for each day. For this, we define the initial time of the 

thi  day, ( 0,1,2...)it i  , as 1i i GEOt t T   . Discretizing the DGEO into n  nodes, the time at each node j  can be 

written as 

  
( 1)

1, 2, ...GEO
ij i

j T
t t j n

n


     (27) 

where ijt  indicates the time at the
thj node of the thi orbit since winter solstice. The corresponding mass ijm  at 

each point can be defined as 

  
*

0

1 0

1, 2, ...
j

GEO ik
ij i

k SP

T f
m m j n

nI g

    (28) 

 

Fig. 8 Ideal DGEO: mass trends at a) winter solstice b) spring equinox c) summer solstice d) autumn equinox for dif-

ferent values of β0 with 0 1000 kgim  , 5 kmXd  , 0 kmYd   and 100 kmZd  . 

where 0 ( 0,1, 2...)im i   is the mass at the beginning of the thi  orbit and 
*

ikf  is the optimized SEP thrust which can 

be obtained from Eq. (18) and Eq. (26). Details of the resulting ideal DGEOs and required solar sail and SEP accel-

erations can be found in [1]. Here, only a summarizing plot of the mass trend over 1 day is given in Fig. 8 for different 
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times during the year and for an initial mass of 0im  1000 kg and a DGEO defined by 5 kmXd  , 0 kmYd   and 

100 kmZd  , for the sake of comparison with following results. 

 

B.  Optimal displaced GEO with loose position constraints 

This section extends the analysis from the ideal DGEO to that of the LDGEO: the constraints of constant distance 

from the GEO through constant values for Xd , Yd  and Zd  are relaxed and the spacecraft is allowed to move freely 

within a station-keeping box. This box is defined as 

GEO GEO{ , , | [ + , ], [ , ], [ , ]}, ( , , 0)X X X X Y Y Y Y Z Z Z Z X Y ZK x y z x r d r d y d d z d d                     

where X , Y  and Z  are relaxing parameters on Xd , Yd  and Zd . As a result, a set of LDGEOs can be ob-

tained. In particular, in frame (A), the movement of the spacecraft is constrained to a control box whose volume is 

determined by 8 X Y Z   . To avoid collisions with spacecraft in GEO, the following constraints are imposed on the 

station-keeping box: 

 
2 2

GEO safe( ) ( ) [ , , ]x r z r x y z K   ，   (29) 

where safer  is a large enough distance from the GEO. 

The LDGEO optimization problem is that of finding periodic orbits that minimize the propellant consumption, while 

satisfying the station-keeping constraints. In this work, the dynamics are described by the differential equations in Eq. 

(22). As the problem is initially solved for one orbital period, the time constraints are: 

 ini GEO fin GEO, ( 1) ( 0,1, 2...)t iT t i T i      (30) 

where init  is the initial time and fint  is the final time on the ith orbit. To minimize the propellant consumption, the 

cost function is 

  finJ m t    (31) 

which corresponds to maximizing the final mass after one orbit. In addition, since the spacecraft should stay in the 

station-keeping box at any time ini fint t t  , the following path constrains are defined: 

 

GEO GEO

2 2
GEO safe

( ) [ , ]

( ) [ , ]

( ) [ , ]

( ( ) ) ( )

X X X X

Y Y Y Y

Z Z Z Z

x t r d r d

y t d d

z t d d

x t r z t r

 

 

 

    


  
   

   

  (32) 
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According to Eq. (17), the controls of the SEP thrust vector are described through the parameters Xf , Yf  and Zf , 

which require the definition of a path constraint on the thrust magnitude 

 
2 2 2

max+ +X Y Zf f f f   (33) 

In addition, the solar sail force is controlled through the attitude angles α and θ with bounds on these angles in Eq.(11). 

The above-mentioned optimal control problem is solved with a numerical direct pseudospectral method imple-

mented in the software tool PSOPT [33]. PSOPT makes use of the automatic differentiation by overloading in C++ 

(ADOL-C) library for the automatic differentiation of the objective, dynamics, constraint functions and the initial guess 

for the problem. 

The optimization is set-up for an LDGEO spacecraft trajectory at winter solstice ( L =0, =0  and   ), for 

different values of 0  and for 0im =1000 kg, max =0.6 Nf , safer =40km, Xd =5 km, X =10 km, Yd =0 km, Y

=10 km, Zd =100 km, and Z =10 km. 

The optimal trajectories of the spacecraft at winter solstice are shown in Fig. 9. It is obvious that the X - and Z -

position components have some symmetrical features around time 12:00 (as seen in Fig. 9 (a) and (c)), and that the Y

-position component is anti-symmetrical (Fig. 9 (b)). That is because at winter solstice, before 12:00 the spacecraft 

moves towards the Sun, and moves away from it after 12:00. Hence, neglecting the slight change of   in a single 

day, the Sun-sail direction is approximately symmetrical around noon. However, although the Sun-sail vector is sym-

metrical, the velocity points towards the Sun before 12:00 and away from it after. This explains why the spacecraft 

velocities and accelerations along the orbit are not perfectly symmetrical/anti-symmetrical. Furthermore, for each po-

sition component, the curves for smaller values of 0  such as 0 and 0.05 change gently, while the curves for larger 

values for 0  such as 0.1 and 0.2 change more rapidly. Finally, there is a tendency for the Z  component of the 

optimal trajectories to be as close as possible to the equatorial plane to save propellant. Hence, the Z  component of 

optimal trajectories roughly coincide with the lower boundary of the station-keeping box. However, in all cases, the 

position of the spacecraft is strictly inside the station-keeping box, which verifies the effectiveness of the path con-

strains in Eq. (31).  

 



15 

 

 

Fig. 9 LDGEO on winter solstice: a-c) spacecraft Cartesian position components in frame (A) d) Orbit in inertial ref-

erence frame (I) (Z-axis not to scale) 

The acceleration required from the SEP thruster is plotted in Fig. 10. At winter/summer solstice, the thrust decreases 

at first and increases at the end of the day, while at spring/autumn equinox, the thrust decreases at first, begins to 

increase after 6:00, and then starts to decrease at 12:00 and increases again at 18:00. It is important to reiterate that the 

solar sail cannot generate a force component in the direction of the Sun. Hence, the solar sail performance is optimal 

when the Sun-sail vector coincides with the direction of acceleration needed to maintain the orbit. From Fig. 10 it is 

clear that, on winter/summer solstice, this occurs around noon as the SEP thrust is close to zero, which means that no 

propellant is consumed during that time span. Furthermore, the larger the value of 0 , the longer that time span is, 

which implies that more propellant is saved. 

 

Fig. 10 LDGEO: SEP thrust magnitude at a) winter solstice b) spring equinox c) summer solstice d) autumn equinox 
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The control angles of the solar sail,   and  , are represented in Fig. 11 and must satisfy the constraints of Eq. 

(11). Note that, when any control angle reaches its limits ( [0 ,180 ]  , [ 90 ,90 ]   ), the sail is oriented parallel 

to the Sun-sail direction, creating no solar sail acceleration. This occurs for larger values of 0 , such as for 0  0.2, 

to prevent the sail from generating a too large acceleration and thereby adversely affecting the SEP propellant con-

sumption. Therefore, the control angles for large values of 0  are adjusted more significantly than for small values 

of 0  to obtain the most optimal coupled magnitude and direction of solar sail thrust. 

 

Fig. 11 LDGEO: solar sail control angles α and θ in frame (C) at a) winter solstice b) spring equinox c) summer sol-

stice d) autumn equinox. 

As an indication of the steering effort required from the solar sail, Fig. 12 presents the rates of change of the solar 

sail control angles   and  . For the angle  , the maximum slew rate is smaller than 0.01 / s , regardless of the 

time during the year. Instead, the maximum slew rate of the angle   is relatively small at spring and autumn equi-

noxes (less than 0.01 / s ), but relatively large on winter and summer solstices at 0.1 / s . This latter value may 

pose a challenge to very large sails. Future research will therefore investigate the inclusion of a constraint on the 

sail’s maximum slew rate. 
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Fig. 12 LDGEO: rate of change of solar sail control angles α and θ at a) winter solstice b) spring equinox c) summer 

solstice d) autumn equinox  

 

 

Fig. 13 LDGEO: spacecraft mass for different values of β0 at a) winter solstice b) spring equinox c) summer solstice 

d) autumn equinox 

Finally, the mass as a function of time appears in Fig. 13 (a-d) and a comparison between the ideal and loosely 

DGEOs is shown in Table 1. For a one-day orbit, the decrease in propellant consumption due to the loosening of the 

position constraint is obvious from Table 1. The relaxing of the orbital constraint clearly increases the effectiveness of 
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the solar sail: for the most favorable time of the year (at summer solstice) and for 0 =0.2 , the optimal trajectory with 

loose position constraints enables the hybrid sail to save up to 74% propellant mass compared to the ideal DGEO. In 

other cases, the propellant saving is not as significant, but still evident. 

The introduction of a station-keeping box (and therefore relative motion of the spacecraft with respect to the ground 

station) may raise concerns on the trackability of the spacecraft from ground. Therefore, the magnitude of this relative 

velocity is shown in Fig. 14. Because the station-keeping box size is relatively small, the additional velocities are also 

small: their maximum values on winter solstice, spring equinox, summer solstice and autumn equinox are 2 m/s, 1.8 

m/s, 2.9 m/s and 1.5 m/s respectively. As an additional measure of the degree in which the spacecraft is geostationary, 

we define the “stationary angle” as the angle between the Earth-spacecraft vector and the X  axis of Frame (A). For 

a traditional GEO, this stationary angle is always 0, while for an ideal DGEO, the stationary angle is constant. Instead, 

for the LDGEOs, the stationary angle on winter solstice, spring equinox, summer solstice and autumn equinox is shown 

in Fig. 15. Even for the worst case (β0 = 0.2), the stationary angle stays within a 0.01° interval, which is assumed to be 

an acceptable level. Finally, note that the assumed size of the station-keeping box is smaller than those used for current 

geostationary spacecraft [34,35]. The relative velocities shown in Fig. 14 and variations in the stationary angles in Fig. 

15 are therefore not expected to impose any tracking difficulties. 

 

Fig. 14 LDGEO: spacecraft velocities in frame (A) at a) winter solstice b) spring equinox c) summer solstice d) au-

tumn equinox 
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Fig. 15 LDGEO: stationary angle at a) winter solstice b) spring equinox c) summer solstice d) autumn equinox 

The comparisons of final mass after one day for the ideal DGEO and the LDGEO are presented in Fig. 16. It is clear 

that the final mass initially increases as the value of 0  increases. However, the relative increase is much larger for 

small values of 0 , i.e., for 0  0.3. In fact, for a given DGEO, the extra solar sail acceleration due to a larger value 

of 0  is not always beneficial from a propellant consumption perspective, and instead there is an optimal value of 

0  that minimizes it. For the ideal DGEO, as Fig. 16 (a) shows, the optimal 0  is approximately 0.2 on winter 

solstice and approximately 0.4 on summer solstice. For the LDGEO, these values are 0.41 and 0.31, respectively. 

Table 1 Comparison of propellant consumption between the ideal DGEO and LDGEOs 

day 0  
ideal DGEO (kg)  LDGEO (kg) 

propellant 

saving (%) 
final 

mass  

propellant  

consumption  

final 

mass  

Propellant 

 consumption 

winter solstice 

0.00 998.52 1.48 998.69 1.31 11 

0.05 998.95 1.05 999.10 0.90 14 

0.10 999.25 0.75 999.39 0.61 19 

0.20 999.32 0.68 999.49 0.51 25 

spring equinox 

0.00 998.52 1.48 998.69 1.31 11 

0.05 998.78 1.22 998.94 1.06 13 

0.10 998.95 1.05 999.10 0.90 14 

0.20 999.16 0.84 999.34 0.66 21 

summer solstice 

0.00 998.52 1.48 998.69 1.31 11 

0.05 998.91 1.09 999.00 1.00 8 

0.10 999.23 0.77 999.36 0.64 17 

0.20 999.58 0.42 999.89 0.11 74 

autumn equinox 

0.00 998.52 1.48 998.68 1.31 11 

0.05 998.78 1.22 998.94 1.06 13 

0.10 998.95 1.05 999.11 0.89 15 

0.20 999.15 0.85 999.30 0.70 18 
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Fig. 16 Final mass after one day for a) ideal DGEO b) LDGEO 

 

IV. Mass Budget 

In this work, the mass budget is based on the model proposed in [36]. The mass as a function of time can be expressed 

as: 

 PO PT SEP GI SA S PL( ) ( )m t m t m m m m m m        (34) 

where POm  is the propellant mass which is also a function of time, PTm  is the mass of the propellant tank which is 

necessary to store the propellant, SEPm  is the mass of the SEP thruster which is a function of the maximum thrust 

required during the whole mission, and GIm  is the mass of the gimbal of the SEP thruster which is a function of 

SEPm . For a pure SEP spacecraft, an attitude maneuver or a simple gimbal are sufficient to enable thrust pointing. 

However, for a hybrid sail spacecraft, a relatively complex gimbal is needed to ensure the solar sail and SEP thruster 

can steer independently of each other. In Eq. (33), SAm  is the solar cell mass which is also a function of the maximum 

SEP thrust required during the whole mission. In this work, the pure SEP case is assumed to use a traditional solar 

array, while the hybrid sail case is assumed to use thin film solar cells which cover part of the sail. Finally, Sm  is the 

mass of the solar sail and PLm  is the mass of the payload. The specific sub-items of Eq. (32) are given by [36]: 
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  (35) 

where SEPk  and SAk  are the SEP thruster and solar cell array performance coefficients, SEP, maxP  is the maximum 

power required by the SEP thruster, 
'

maxf  is the maximum SEP thrust magnitude during the whole mission, W  is 

the energy flux density of the Sun and '
maxf

  is the pitch angle of the solar sail at the instant that 
'

maxf  is required. 

Furthermore, SEP  and TF  are the efficiencies of the SEP thruster and the thin film solar cells, TF  and S  are 

the sail loading of the thin film solar cells and the solar sail, and TFA  and SA  are the area of the thin film solar cells 

and the solar sail.  

Compared to the pure SEP system, the hybrid system inevitably brings some additional complexity and correspond-

ing mass. The goal of the mass budget is to find the smallest initial mass 0 0( )m t m  for a given PLm  and mission 

time [ 0t , ft ]. For the sake of comparison, the mass budget will be considered for both the hybrid sail spacecraft and 

the pure SEP spacecraft. To ensure that the spacecraft can maintain the optimal LDGEO,  PO 0fm t   must be sat-

isfied. Furthermore, substituting Eq. (35) into Eq. (34), and rearranging gives 

 max

'
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S 0 S 0 SEP S 0 TF
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  (36) 

To simplify the expression of 0m  in Eq. (34), we define 1K  and 2K  as follows: 
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Then, for the hybrid sail, 0m  can be written as: 

 0 1 PO 0 1 PL 21.1 ( )m K m t K m K     (38) 

For current technology, realistic values for the different parameters appearing in Eq. (35) are shown in Table 2. Fur-

thermore, based on solar sail technology development, realistic near-term and far-term values for S  are shown in 

Table 3. 

 

Table 2 Reference values of different parameters in the mass budget [31,37-39] 

SAk  SEPk  spI  
0g  TF  W  TF  SEP  *  

0.022 kg/W 0.02 kg/W 3200 s 9.81 m/s2 0.1 kg/m2 1367 W/m2 0.05 0.7 1.53 g/m2 

 
Table 3 Value of S  for different solar sail technology levels [3] 

near-term far-term future 

7.5 g/m2 5 g/m2 2 g/m2 

 

The smallest initial mass to carry a certain payload for a number of years, 
*
0m , can be obtained by solving Eq. (35) 

with an iterative method. The optimal orbit is computed for each day during the year by repeatedly solving the optimal 

control problem with the method described in Section III.B, and updating the Sun-sail direction at the start of each day. 

Furthermore, the initial states of one day’s trajectory match the final states of the previous day. According to Eq. (37), 

for a specific hybrid sail, the value of 1K  is fixed. Once PO 0( )m t  and PLm  are fixed, the value of 2K  will be 

fixed too. Hence, if the optimal PO 0( )m t  is found, the 
*
0m  will be found too. With an initial guess for the initial 

propellant mass, PO 0 0( )m t， , the optimal trajectory for a multi-year mission can be obtained by repeated optimization 

runs. The values of the thi  solution, PO, 0( )im t  and PO, ( )i fm t , are computed to update the value of the +1thi  initial 

guess PO, 1 0 PO, 0 PO,( ) ( ) ( )i i i fm t m t m t    for the next iteration until the initial mass does not change by more than 

-110 kg. Tables 4-6 show the mass budgets for two mission scenarios: a 1-year mission and a 3-year mission, with three 

types of solar sails (a near term sail, a far-term sail and an imaginary future sail whose value for S  equals 2 g/m2) 

and two different orbits (an ideal DGEO and an optimal LDGEO). For ease of comparison, the payload mass has the 

same value in all cases, PLm  = 100 kg, and different values for 0  are also taken into consideration. 
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For the case of a near-term sail, the results are shown in Table 4. The pure SEP ( 0  = 0) spacecraft requires 
*
0m  = 

1370.5 kg (for 1 year) and 
*
0m  = 17877.0 kg (for 3 years) at injection into the ideal DGEO, while the optimal LDGEO 

only requires 
*
0m  = 1180.7 kg (for 1 year) and 

*
0m  = 9843.2 kg (for 3 years). This gives a first indication of the 

benefit of the LDGEO compared to the ideal DGEO. For the hybrid sail cases, according to Eq. (37), there is a strong 

and positive correlation between the value of 0m  and the values of 1K  and 2K . In addition, the value of PO ( )fm t  

should be greater than or equal to zero. Hence, with that constraint, if the values of 1K  and 2K  are too large, Eq. 

(37) does not have a valid solution. This occurs for a 1-year mission for 0  = 0.2 ( 1K  51.0) and for all hybrid 3-

year missions. For the cases where a solution does exist (1-year mission and 0 =0.05 and 0 =0.1), the optimal 

LDGEO again provides significant savings in the initial mass (938.7 kg and 2274.8 kg, respectively). However, all 

initial masses for the hybrid case are larger than for the pure SEP case. This means that, for near-term solar sail tech-

nology, the weight of the solar sail makes the hybrid propulsion system uneconomic.  

Table 4 Mass budget for near-term solar sail ( S  = 7.5 g/m2) 

 ft , y 1 1 1 1 3 3 3 3 

 0  0.0 0.05 0.1 0.2 0.0 0.05 0.1 0.2 

 K1 -- 1.325 1.962 51.0 -- 1.325 1.962 51.0 

Ideal DGEO 
K2 , kg -- 981.8 314.6 -- -- -- -- -- 

*
0m , kg 1370.5 2269.5 4890.3 -- 17877.0 -- -- -- 

LDGEO 
K2 , kg -- 531.3 1778.7 -- -- 5990.9 -- -- 

*
0m , kg 1180.7 1330.8 2615.5 -- 9843.2 14470.6 -- -- 

Mass saving, kg 189.8 938.7 2274.8 -- 8033.8 -- -- -- 

 
Similar analyses are carried out for the far-term solar sail and the results are shown in Table 5. Again, the values of 

*
0m  for the hybrid case and LDGEO are smaller than those for the ideal DGEO and are in this case also smaller than 

for the pure SEP case. Therefore, for a relatively small value of S , the hybrid sail is effective. For future sail tech-

nology ( S =2 g/m2), the results of the mass budget analysis are shown in Table 6. The small value for S  makes 

1K  less sensitive to the value of 0 . Hence, 1K  remains small for relative large values for 0  and the hybrid sail, 

optimal LDGEOs can again achieve significant mass savings with respect to the SEP case and the ideal DGEO, espe-

cially for long duration missions.  

 

Table 5 Mass budget for far-term solar sail ( S  = 5 g/m2) 

 
ft , y 1 1 1 1 3 3 3 3 

 
0  0.0 0.05 0.1 0.2 0.0 0.05 0.1 0.2 
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 K1 -- 1.195 1.485 2.887 -- 1.195 1.485 2.887 

Ideal DGEO 
K2 ,kg -- 763.7 583.8 -- -- 9668.0 4290.7 -- 

,kg 1370.5 1440.2 1233.0 -- 17877.0 19577.7 9762.2 -- 

LDGEO 
K2 ,kg -- 372.5 433.1 -- -- 3944.1 4209.7 -- 

*
0m ,kg 1180.7 972.3 877.1 -- 9843.2 9266.6 8871.2 -- 

Mass saving, kg 189.8 467.9 355.9 -- 8033.8 10311.1 891.0 -- 

 

Table 6 Mass budget for future solar sail ( S  = 2 g/m2) 

 ft , y 1 1 1 1 3 3 3 3 

 0  0.0 0.05 0.1 0.2 0.0 0.05 0.1 0.2 

 K1 -- 1.070 1.150 1.354 -- 1.070 1.150 1.354 

Ideal DGEO 

K2 ,kg -- 359.4 300.9 376.3 -- 2289.5 1981.8 2567.9 

*
0m ,kg 1370.5 1022.4 822.2 850.5 

17877.
*
0m 0 

6289.3 5001.0 5899.2 

LDGEO 
K2 ,kg -- 357.2 277.4 280.4 -- 2020.2 734.8 788.8 

*
0m ,kg 1180.7 812.3 720.5 642.1 9843.2 5697.2 2104.4 1800.7 

Mass saving, kg 189.8 210.1 101.7 208.4 8033.8 592.1 2896.6 4098.5 

 

V. Conclusions 

In this paper, the concept of loosely-displaced geostationary orbits (GEOs) using a hybrid (solar sail and solar elec-

tric propulsion, SEP) propulsion system is proposed as a solution to the congestion of the GEO. This concept loosens 

the strict steady position constraint of the previously-introduced displaced GEO such that the spacecraft is now free to 

move within an assigned station-keeping box. Furthermore, by using hybrid sail propulsion instead of pure SEP, the 

spacecraft will consume less propellant to maintain the orbit. For a 101010 km3 station-keeping box around a dis-

placed GEO 5 km outside and 100 km above the nominal GEO, the propellant mass needed to maintain the orbit for 1 

day at summer solstice is 1.31 kg and 0.11 kg for the pure SEP and the hybrid sail (with a lightness number of 0.2), 

respectively. Smaller mass savings are observed for the case of no station-keeping box, which shows that the loosely-

displaced GEO can more effectively exploit the contribution of the solar sail than the ideal displaced GEO. Furthermore, 

the mass budgets for a fixed payload mass and a given mission duration show that for sufficiently small sail mass-to-

area ratios, the hybrid sail configuration requires smaller initial masses than the SEP configuration and that the loosely-

displaced GEO can provide even more mass savings than the ideal displaced GEO, especially for long–duration mis-

sions.  
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