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“The purpose of computing...
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Samenvatting

Gëıntegreerde schakelingen (ICs) worden op een wereldwijde schaal gepro-

duceerd met nanolithografie. De halfgeleider industrie wordt gedreven door

het handhaven van de wet van Moore bij het steeds kleiner maken van

de elektronische schakelingen. Het verkleinen van de elektronische scha-

kelingen kan echter de doorvoer van een lithografisch systeem reduceren,

d.w.z. het aantal wafers dat per uur geproduceerd kan worden. De door-

voersnelheid is een belangrijke parameter omdat het de kosteneffectiviteit

van de productie van gëıntegreerde schakelingen bepaalt. Lithografische

systemen zijn daarom geoptimaliseerd voor hoge doorvoersnelheden. De

doorvoersnelheid kan op verschillende manieren worden verhoogd. In op-

tische lithografie is bijvoorbeeld het gebruik van een krachtigere lichtbron

een oplossing. In e-beam lithografie is een toename van het aantal parallelle

bundels een oplossing. Nu is het zo dat in beide gevallen het gebruik van

een gevoeliger chemisch-versterkt resist (engels: Chemically Amplified Re-

sist, oftewel CAR) in een vermindering van de vereiste belichtingsdosis en

derhalve een vermindering van de belichtingstijd van de wafers resulteert.

Het lijkt voor de hand te liggen om de doorvoersnelheid te maximaliseren

door het meest gevoelige chemisch-versterkte resist met de daarbij horende

laagst mogelijke belichtingsdosis te kiezen. In deze limiet is echter een

stijging van de ruwheid van een lijn (engels: Line Edge Roughness, ofte-

wel LER) geconstateerd. Dit resulteert in onvoldoende controle over de

karakteristieke dimensies (engels: Critical Dimension, oftewel CD) in de

productie van elektronische schakelingen. De toename van de LER wordt

hoofdzakelijk veroorzaakt door fundamentele kwantumruis effecten (ook

wel bekend als hagelruis, engels: shotnoise). Deze shotnoise effecten com-

pliceren de verkleining van de dimensies van de transistors en dat staat de

vooruitgang van de toekomstige generaties ICs in de weg. Dit onderzoek

heeft als doelstelling om de fundamentele grenzen van de kwantumruis ef-

fecten te onderzoeken en om de theoretische kennis voor de productie van

kleinere ICs te verbeteren.
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De resultaten van dit onderzoek kunnen als volgt worden samengevat,

1. Ontwikkeling van een nieuwe meettechniek voor de LER in tweedi-

mensionale CD-SEM beelden (hoofdstuk 2).

2. Ontwikkeling van een snelle GPU-versnelde Monte-Carlo elektron-

materie interactie simulator. Deze simulator is gebaseerd op de meest

geavanceerde modellen uit de vaste stof fysica (hoofdstuk 3, 4 en 6).

3. Een uitgebreide toepassing van de GPU-versnelde simulator: De ka-

rakterisering van de ruwheid van driedimensionale patronen vanuit

gesimuleerde CD-SEM beelden (hoofdstuk 5 en 6).

4. Ontwikkeling van een Monte-Carlo bouwwerk voor de ab-initio bere-

kening van shotnoise effecten in e-beam direct-write lithografie (hoofd-

stuk 7).

Shotnoise effecten in lithografische systemen ontstaan door de fluctua-

ties in het aantal elektronen (of fotonen in optische lithografie) tijdens het

belichtingsproces. Deze effecten zijn het beste waar te nemen in een reeks

patronen van lijnen waarbij opeenvolgende lijnen aan een steeds kleinere

(lithografische) belichtingsdosis worden blootgesteld. De shotnoise effec-

ten worden vervolgens gemeten en afgebeeld door gebruik te maken van

een CD-SEM. Van de verkregen beelden van de lijnen wordt vervolgens

de LER bepaald. Wanneer we de belichtingsdosis verlagen, nemen de fluc-

tuaties in het aantal elektronen toe (kwantum effect) en dat resulteert in

een dramatische toename van de LER. Hoewel dergelijke metingen alom

bekend zijn in de wetenschappelijk literatuur, is de methode van de LER

bepaling allesbehalve triviaal te noemen. Zo zijn de nauwkeurigheid en

betrouwbaarheid van de bestaande metingen op zijn minst twijfelachtig te

noemen. De huidige bepaling van de LER stelt een limiet aan de maximaal

toegestane beeldruis in de afbeelding van een patroon met een CD-SEM.

Dit betekent dat de beelden bijvoorbeeld moeten worden verkregen met

een hogere dosis elektronen. Een andere oplossing is om de afbeelding van

de CD-SEM te filteren vóórdat de LER wordt bepaalt. Echter, door het
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verhogen van de dosis lopen we het risico dat patronen beginnen te krim-

pen door de impact van de elektronenbundel. Dit betekent dat de patronen

veranderen terwijl we aan het meten zijn. De meest voor de hand liggende

oplossing is om de beeldruis te reduceren door het toepassen van een ruis-

onderdrukkend filter vóórdat de LER bepaling begint. Dit laatste is dan

ook de gebruikelijke manier in de halfgeleiderindustrie. Echter, we laten

in dit onderzoek zien dat het gebruik van een dergelijk filter een systema-

tisch afwijking introduceert in de LER bepaling. Onze eerste pogingen zijn

gebaseerd op het optimaliseren van een elliptisch ruis-onderdrukkend filter

voor experimentele CD-SEM beelden. Wat we zien is dat het effect van

het filter in de transversale en longitudinale richtingen niet kunnen wor-

den genegeerd, zelfs niet wanneer gekozen wordt voor een geoptimaliseerde

sterkte van het filter. We hebben dit probleem aangepakt door op een

nieuwe en speciale manier de LER te bepalen. Deze bepaling is zódanig,

dat een ruis-onderdrukkend filter niet meer nodig is. Daartoe modelleren

we de signaal-respons van de CD-SEM om de ruwheid van de lijn te bepa-

len. De signaal-respons wordt verkregen door een experimenteel CD-SEM

beeld van een patroon met lijnen te integreren. Het signaal wordt vervol-

gens gefit met een niet-lineaire kleinste kwadraten methode tegen de ruwe

(ongefilterde) amplitudes van het CD-SEM beeld. Hoewel de lokale rand

verplaatsingen op zich al een directe meting van de ruwheid geven, wordt

de LER het beste geanalyseerd door gebruik te maken van de de spectrale

vermogensdichtheid (engels: Power Spectral Density, oftewel PSD). De ruw-

heid wordt vervolgens gekarakteriseerd door het model van Palasantzas met

vier parameters (de LER, correlatie lengte, ruwheids-exponent en sterkte

van het beeldruis) aan de verkregen PSD te fitten. Met deze filter-vrije

methode kan de LER nauwkeurig en éénduidig bepaalt worden, zelfs uit de

meeste ruizige CD-SEM beelden zonder (1) het risico van inkrimpen van

de patronen en (2) zonder systematische afwijkingen die te wijten zijn aan

het toepassen van een filter. In een theoretische studie tonen we aan dat

de LER afgeleid kan worden door slechts twee elektronen per pixel gemid-

deld te gebruiken in de belichting. Dit laatste komt neer op zo’n 10 µC/cm2
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en geeft zeer ruizige afbeeldingen. Om de statistische fout in de PSD te on-

derdrukken moeten vele lijnen geanalyseerd worden. Echter, we laten zien

dat zelfs één enkel beeld met 12 lijnen al een redelijke schatting van de LER

oplevert met een relatieve fout van slechts 10%. Het verder verhogen van

de belichtingsdosis dan 20 elektronen per pixel resulteert in geen verdere

verbetering in de bepaling van de LER. Tenslotte hebben we de methode

toegepast op experimentele, zeer ruizige CD-SEM beelden. In het experi-

ment hebben we een vast patroon van lijnen herhaaldelijk afgebeeld met de

laagst mogelijke instelling van een CG4000 CD-SEM van Hitachi. De beel-

den zijn verkregen door een elektronenbundel te gebruiken met een voltage

van 300 eV, stroom van 10 pA en hoogstens één integratie frame. De re-

sulterende belichtingsdosis is gelijk aan ongeveer één elektron per vierkante

nanometer. Alhoewel dit een extreem lage belichtingsdosis is, accumuleert

deze dosis desalniettemin bij het nemen van opeenvolgende beelden. Het

gevolg daarvan is dat het patroon bij opeenvolgende beelden steeds meer

gaat inkrimpen. We hebben twee verschillende soorten resists geanalyseerd

en gebruiken een multi-exponentieel model om de krimp te karakteriseren.

Wat we hebben waargenomen is dat de meeste krimp gebeurt in de eerste

frames van de beeldopname en is niet-lineair van aard. Bovendien consta-

teren we dat de LER langzaam en geleidelijk minder wordt bij toenemende

belichtingsdosis. We concluderen dat het gebruik van een lage voltage en

een lage dosis in CD-SEM beeldanalyse een noodzakelijke voorwaarde is

voor een betrouwbare karakterisering van de CD en de LER.

De ware grootte, vorm en kenmerken van de ruwheid worden niet vol-

ledig onderzocht in de analyse van tweedimensionale CD-SEM beelden. In

werkelijkheid zijn de ruwe patronen complexe driedimensionale structuren.

De karakterisering van de ruwheid van een lijn gaat dan over op de analyse

van de ruwheid van de zijwand (engels: Sidewall Roughness, oftewel SWR).

Deze ruwheid kan gemeten worden met bijvoorbeeld een atomic force mi-

croscoop (AFM). Echter, gezien het grote aantal wafers dat geproduceerd

wordt in een typische productieomgeving, wordt de AFM niet gezien als ge-

schikt instrument voor inspectie. Een ander probleem met de AFM betreft
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de complexiteit van de meting waarbij de exacte vorm van de tip een cru-

ciale rol speelt. Een andere mogelijkheid is om virtuele patronen van lijnen

met ruwheid te creëren en de beeldopname van een CD-SEM te simuleren.

Dergelijke numerieke studies zijn moeilijk uitvoerbaar, omdat de details van

de ruwheid tot atomair niveau gedefinieerd moeten worden. Simulaties van

CD-SEM beelden van patronen met ruwe lijnen zijn zeer tijdrovend en wor-

den daarom feitelijk vermeden. De tijdspanne van een simulatie kan verkort

worden door sterk vereenvoudigde fysische modellen te gebruiken. Het na-

deel is dat er een grote onzekerheid zit in de geldigheid en nauwkeurigheid

van de vereenvoudigde modellen. Onze zoektocht om de rekentijd van CD-

SEM beelden te reduceren heeft ons doen overwegen of graphics processing

units (GPUs) daar een rol in kunnen spelen. Het is ons gelukt om een

geavanceerde Monte-Carlo simulator voor CD-SEM beelden te ontwikke-

len. Onze simulator is, naar ons beste weten, de eerste en enige simulator

voor CD-SEM beelden die volledig draait op een GPU. We hebben ge-

bruik gemaakt van de meest geavanceerde modellen uit de vaste stof fysica:

Mott-verstrooiing voor de elastische processen, diëlektrisch functie model

voor de inelastische bulk en oppervlakte verstrooiingsprocessen, akoestische

en optische fonon-verstrooiing, het opsluiten van elektronen in isolatoren,

alsmede effecten op de grensvlakken van materialen door gebruik te maken

van kwantummechanische berekeningen voor transmissie en reflectie van

elektronen. De modellen in de GPU-versnelde simulator worden geverifi-

eerd door meetbare uitkomsten te vergelijkingen met experiment, zoals de

secundaire en backscatter elektronen-yield en spectra van het energieverlies

van de elektronen. We hebben als toepassing voor de simulator gekozen voor

het bepalen van de ruwheid uit gesimuleerde CD-SEM beelden van kunst-

matig gecreëerde driedimensionale ruwe lijnen. De voorgestelde simulatie

is buitengewoon complex en groot van opzet omdat het (1) noodzakelijk is

om een groot aantal CD-SEM beelden te verwerven voor de statistiek, (2)

vele parameters te variëren (karakteristieke dimensie, ruwheidsparameters,

hoogte van het lijntje en de energie van de elektronenbundel) en (3) het

lijntje (ter grootte van één micrometer) gedefinieerd moet worden met een
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ruwheid op de schaal van nanometers. In eerste instantie voeren we de

simulatie uit op een GeForce GTX480 van NVIDIA. De simulatie wordt

tevens gedupliceerd op een CPU-gebaseerd programma, waarvoor wij een

Intel Xeon X5650 hebben gebruikt. We concluderen dat, buiten de wille-

keurige statistieken in de simulatie, geen verschil kan worden aangewezen

tussen de CPU- en GPU-gesimuleerde resultaten. Dit kan echter niet ge-

zegd worden over de rekentijd. We hebben vastgesteld dat de GTX480 de

CD-SEM beelden (afhankelijk van de energie van de primaire elektronen-

bundel) 387 tot 894 maal sneller dan een enkele thread op een Intel X5650

CPU genereert. Deze prestatieverbetering wordt als volgt bereikt. Aller-

eerst hebben wij een speciale manier om de geometrie te definieëren. Het

vacum, de sample en de vorm van de detectoren worden gedefinieerd in een

speciale driedimensionale octree van kubusvormige cellen. De detectoren

en de grensvlakken van de materialen wordt opgedeeld in driehoeken. Elke

cel in de octree heeft een lijst van precies die driehoeken die overlappen met

deze specifieke cel. Dit resulteert in een aanzienlijke vermindering in het

bepalen van het aantal elektron-driehoek doorsnijdingen tijdens de simula-

tie van een complexe geometrie. Ten tweede, elektronen met soortgelijke

gebeurtenissen worden gegroepeerd met behulp van een parallelle radix sor-

teermethode, die eveneens op een GPU draait. Door het sorteren van de

elektronen naar gebeurtenis, verminderen we het risico van instructie di-

vergentie binnen de rekeneenheden van de GPU. Tot slot verzadigen we de

GPU door voldoende elektronen parallel te traceren. In de praktijk heeft

de GTX480 niet voldoende geheugen om alle elektronen van de CD-SEM

tegelijk te verwerken. In plaats daarvan moet een batch proces gebruikt

worden om de GPU met regelmaat te voorzien van primaire elektronen. De

versnellingsfactor in het verkrijgen van de gesimuleerde CD-SEM beelden

betekent dat bijvoorbeeld vele parameters van een ruw patronen (karakte-

ristieke dimensie, ruwheid, hoogte, . . .) kunnen worden gevarieerd in een

acceptabele tijdspanne. Bovendien kunnen ten bate van de statistieken een

groot aantal CD-SEM beelden gesimuleerd worden.
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Als laatste onderzoeken we hoe de vorming van SWR tot stand komt. In

de nanolithografie wordt eerst een resistlaag aangebracht op een substraat.

De resistlaag wordt dan optisch (met fotonen) of met een elektronenbun-

del belicht. In beide gevallen resulteert de blootstelling aan zowel fotonen

als aan elektronen in het vrijkomen van zuren in de resistlaag. Daarop

volgt een fase (de zogenaamde post-exposure bake, owel PEB) waarbij de

zuren gaan diffunderen en maken of breken daarbij moleculaire verbindin-

gen. Door het maken of breken van verbindingen worden delen van het

resist oplosbaar of juist onoplosbaar. Het doel van de computationele li-

thografie is het voorspellen van de effecten zodat het lithografische proces

kan worden geoptimaliseerd. Eén van de belangrijkste uitdagingen van

dit onderzoek is om te begrijpen hoe de shotnoise effecten vanaf de eerste

blootstelling de uiteindelijke SWR bëınvloeden. We hebben, voor het be-

studeren van de vorming van shotnoise-gëınduceerde SWR, een zeer snel

3D Monte-Carlo bouwwerk ontwikkeld. Als voorbeeld geven we een bere-

kening waarbij een resistlaag van 100 nm dik bovenop een oneindig dikke

laag silicium wordt blootgesteld aan een elektronenbundel. We gebruiken

de eerder genoemde GPU-versnelde Monte-Carlo simulator voor elektron-

materie interactie, echter nu ten behoeve van lithografie. Een patroon

van een gëısoleerde lijn wordt in de resistlaag geschreven door het scan-

nen van de elektronenbundel (met een energie van 20 keV) over een gebied

van 32 nm×1 µm (breedte maal lengte). Tijdens de belichting gebruiken

we een spotgrootte van 20 nm, een stapgrootte van 4 nm en een Poisson-

verdeelde belichtingsdosis van 80 µC/cm2, 60 µC/cm2 en 40 µC/cm2. Tij-

dens de belichting registreren we de locaties van de inelastische gebeur-

tenissen in de resistlaag. De verdeling van de vrijgekomen zuren wordt

bepaald aan de hand van de vereenvoudigde aanname dat elke inelastische

gebeurtenis leidt tot het vrijkomen van een zuur. We maken vervolgens een

driedimensionaal beeld van de (on)oplosbaarheid van de resistlaag in een ge-

bied van van 128 nm(256px) breed, 800 nm(1024px) lang en 100 nm(128px)

hoog. De (on)oplosbaarheid wordt verkregen door het optellen van de bij-

dragen van alle zuren in de resistlaag voor elke voxel. We veronderstellen
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dat het proces van diffunderen van de zuren in de resistlaag een Gaussische

kansverdeling volgt met σx,y,z = rD = 5 nm. Vervolgens bepalen we het

grensvlak tussen oplosbaar en onoplosbaar door een drempelwaarde te kie-

zen. De gemiddelde LER wordt verkregen door het berekenen van de stan-

daardafwijking van de linker en rechter begrenzing van de xy-segmenten.

Hierin worden alle segmenten, van de top van de resistlaag tot op de bo-

dem van het substraat, de gemiddelde LER als functie van de diepte van

de resistlaag verkregen. Bij het verlagen van de belichtingsdosis zien we de

shotnoise effecten toenemen. Tevens zien we een versterkt effect van shot-

noise nabij de grensvlakken met het vacuüm en het substraat. Een oorzaak

daarvoor is terug te vinden in het daadwerkelijke aantal zuren dat effectief

een bijdrage kan leveren aan de oplosbaarheid. Het aantal zuren is vanwege

de elektronen verstrooiing minder in de buurt van een grensvlak dan in

de bulk van de resistlaag. Een andere oorzaak komt voort uit het feit dat

er geen zuren kunnen worden vrijgemaakt aan de vacuümzijde noch aan

de substraatzijde. De resultaten van dit onderzoek geven een veelbelovend

vooruitzicht. Niet alleen voor de inspectie, maar ook voor het optimaliseren

van nanolithografische processen.
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Summary

Integrated circuits on a global scale are produced with nanolithography.

The industry is driven by maintaining Moore’s law as chip feature sizes

are decreasing from generation to generation. The downscaling may re-

duce the throughput of a lithographic system, i.e. the number of wafers

produced per hour, which in turn determines the cost effectiveness of the

production of integrated circuits. As a consequence, lithographic systems

are optimized for high throughput, which can be increased in several ways.

In optical lithography, for example, a more powerful source is one solution.

In electron-beam lithography, an increase of the number of parallel beams

is another solution. In either case, the use of a more sensitive chemically

amplified resist (CAR) results in a reduction of the required illumination

dose, and hence a reduction of the exposure time of the wafers. In or-

der to maximize throughput, it is tempting to choose the most sensitive

chemically amplified resist with the lowest possible illumination dose. In

that limit, however, an increase of line edge roughness (LER), and hence

an insufficient control of critical dimension (CD) is observed. This increase

of LER is primarily caused by fundamental quantum noise (shotnoise) ef-

fects and becomes the dominant mechanism in the formation of LER. This,

in turn, complicates the downscaling of transistor dimension. The subject

of this PhD is to investigate the fundamental limits of quantum noise effects

and strengthen the theoretical basis to improve the production of smaller

integrated circuits. The achievements of this work can be summarized as

follows,

1. Development of a novel measurement technique for LER from noisy

two-dimensional scanning electron microscopy images (Chapter 2).

2. Development of a fast GPU accelerated Monte-Carlo electron-matter

interaction simulator based on the most advanced models in solid

state physics (Chapter 3, 4 and 6).
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3. Application for metrology using the GPU simulator: roughness char-

acterization of 3D features from simulated 2D SEM images (Chapter 5

and 6).

4. Development of a Monte-Carlo framework for the ab-initio calculation

of quantum noise effects in electron beam direct-write lithography

(Chapter 7).

The root cause for the emergence of quantum noise effects in litho-

graphic systems is the number statistics of electrons (or photons in op-

tical lithography) during exposure. The effects are best seen in consecu-

tive acquisitions of patterns of lines and spaces obtained with decreasing

(lithographic) exposure dose. The shotnoise effects are then measured from

top-down 2D images acquired with an industry standard critical dimension

scanning electron microscope (CD-SEM). From the images of lines and

spaces, the LER is determined, which increases dramatically for decreasing

exposure dose. Although such measurements are well known, the actual

determination of LER is anything but trivial and the accuracy of existing

measurements is questionable. To begin with, the determination of LER

involves edge detection which in turn introduces a limit to the maximum

allowable image noise. This means that images must be acquired with a

higher electron dose or the CD-SEM image is filtered before edge detection.

However, by increasing the imaging dose, there is the risk of resist shrinkage

due to the impact of the electron beam, which in turn affects the quantity

being measured. The most obvious solution is to reduce the image noise

by applying a noise-suppressing filter to the image before edge detection.

Although this is common practice in semiconductor industry, the use of

such a filter complicates the determination of LER by introducing a bias

to the measurement. Our first attempts are based on optimized elliptic

filtering of noisy experimental SEM images, where we use threshold-based

peak detection to determine the edge displacements. What is observed is

that the effect of transversal and longitudinal filtering cannot be ignored,

even when considering an optimized filter strength. We have addressed the

issue of measurement by introducing a special method which avoids the use
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of a noise-suppressing filter. We have exploited the signal response func-

tion of the CD-SEM in order to determine the edge displacements along

the length of a line. The idea is to fit the SEM signal profile, which is

obtained by integrating an experimental SEM image of line edges in the

direction of the edges, against the raw (unfiltered) amplitude of edges in

the SEM image. Although the edge displacements already give a direct

measurement of the roughness, LER is best analyzed by the Power Spec-

tral Density (PSD). The roughness is characterized by fitting the model of

Palasantzas with four parameters (the LER, correlation length, roughness

exponent and image noise) to the PSD of the edge displacements. With

edge based fitting, LER can be determined more accurately from very noisy

images without increasing the risk of resist shrinkage and without biasing

due to image filtering. In a simulation study we show that the LER can

still be determined from very noisy images with only two electrons per pixel

on average 10 µC/cm2. The PSDs are generally averaged over many line

edges to reduce the statistical error. However, even a single image with

12 line edges, produces an estimation of the LER with a relative error of

only 10%. Furthermore, increasing the dose beyond 20 electrons per pixel

does not significantly improve the LER determination. Finally, we have ap-

plied the method to experimental CD-SEM images. We have accomplished

an experiment where a pattern of lines and spaces is repeatedly imaged

with the lowest possible settings of a CG4000 CD-SEM from Hitachi: A

beam of 300 eV at 10 pA with a single integration frame. The resulting dose

equals one electron per square nanometer. For each consecutive image, the

net accumulated dose increases, which causes the resist to shrink. We have

analyzed two different types of resist and used a multi-exponential decay

model to characterize the shrinkage. What is observed is that most of the

shrinkage happens in the very first few frames and is non-linear of nature.

Furthermore, we have observed that the LER decreases for accumulating

dose. We conclude that low voltage and low dose CD-SEM image analy-

sis is a necessary prerequisite for reliable characterization of the CD and

the LER.
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The true size, shape and roughness characteristics of resist features

are not fully investigated in the analysis of 2D SEM images. In reality,

rough resist features are complex 3D structures. The characterization of

roughness of resist features naturally extends to the analysis of sidewall

roughness (SWR) which can be measured, for instance, by using an atomic

force microscope (AFM). However, in view of the large volume of wafers

being produced in a typical production line, the AFM is not considered as

a suitable metrology tool. Another problem with the AFM involves the

complexity of the measurement, in which the exact shape of the tip plays a

crucial role. Another way in which SWR can be studied is by creating vir-

tual rough samples of patterns of lines and spaces and simulate the image

acquisition using a CD-SEM image simulator. Numerical studies on side-

wall roughness are difficult to perform because the details of the roughness

are defined at the (sub) nanometer scale. Studies involving the discrete

modeling of the roughness on the sidewalls are therefore subject to time

consuming simulations, and especially in the case of Monte-Carlo simula-

tions. Because of the latter, detailed Monte-Carlo simulations are usually

avoided and simulators with simplified physical models are used instead.

Although simplified physical models do not have the performance issue,

the validity and accuracy remains an open question. Our quest in reducing

the computation time of SEM image simulations has led us to investigate

the use of graphics processing units (GPUs). We have created a rigorous

Monte-Carlo simulation program for CD-SEM images, which to our best

knowledge, is the first and only simulator for CD-SEM images which runs

entirely on a graphics processing unit (GPU). We have employed the follow-

ing models in the simulator: Mott scattering for elastic scattering, dielectric

function theory for inelastic bulk and surface scattering, acoustic/optical

phonon scattering, trapping of electrons for insulators and interface effects

such as quantum mechanical transmission/reflection. The GPU simulator

is verified by making comparisons to experimental secondary/backscatter

yields and EELS spectra. As a case study, we consider the determination

of SWR from simulated 2D images of 3D rough features. This is a noto-
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riously complex and extensive simulation as it requires (1) the acquisition

of many images for statistics, (2) variation of many parameters (critical

dimension, roughness parameters, feature height and beam energy) and (3)

spatially resolved details of micrometer-sized features with roughness de-

fined at the nanometer scale. At first we run the simulation on a GeForce

GTX480 from NVIDIA. The very same simulation is duplicated on a CPU-

based program, for which we have used an Intel Xeon X5650. We conclude

that, apart from statistics in the simulation, no difference is found between

the CPU and GPU simulated results. This, however, cannot be said about

the total simulation time. We have determined that the GTX480 generates

the images (depending on the primary electron energy) 387 to 894 times

faster than a single threaded Intel X5650 CPU. The performance increase is

achieved as follows. First of all, we have used a special implementation for

the geometry. The geometry includes the vacuum, sample, electrons and

shape of the detectors and is subdivided into a special 3D octree of cuboid

cells. The shape of the detectors and the material boundary, which defines

the interface between two different materials, is triangulated. Every cell

in the octree has a list of precisely those triangles which overlap with this

particular cell. This gives a significant reduction on the number of electron-

triangle intersections during the simulation of a complex geometry. Second,

electrons with similar events are grouped by using a parallel radix sorting

method, which also runs on the GPU. By sorting the electrons by event,

we reduce the risk of instruction divergence within a warp of 32 threads.

Finally, we saturate the GPU by using sufficient electrons per iteration to

track in parallel. In practice, the GTX480 does not have sufficient memory

to process all electrons of the SEM image at once. Instead, a batch process

is used to push primary electrons at regular intervals. The speedup enables

the fast acquisition of simulated SEM images for metrology. This means,

for example, that many parameters of a rough feature (critical dimension,

roughness, height, and so on) can be simulated in a reasonable amount of

time. Moreover, because of the speedup, statistics can be generated as well

by simulating a multitude of SEM images.
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In the final piece of the puzzle we investigate the formation of SWR. In

nanolithography, a resist layer is spin coated on a wafer with a substrate.

The resist layer is then exposed optically or with a beam of electrons. In

any case, the effect of the exposure of the resist layer results in the release

of acids. In the post-exposure baking phase, the acids start diffuse and

break or cross-link molecular bonds which either become soluble or insol-

uble. The subject of computational lithography is to predict the effects in

detail, such that the lithographic process can be optimized for throughput

and minimizing the errors to within acceptable tolerances on feature di-

mensions for example. One of the major challenges is to investigate how

quantum noise effects, starting from the initial exposure, affect the result-

ing feature. For studying the formation of shotnoise induced SWR, we

have developed a fast 3D Monte-Carlo framework. The calculation out-

line is demonstrated by an exposure of a 100 nm thick layer of chemically

amplified resist (CAR) on top of an infinitely thick silicon substrate. We

use the GPU accelerated Monte-Carlo electron-matter interaction simula-

tor for the purpose of lithography. A pattern of an isolated line is written

into the resist layer by scanning a beam with 20 keV electrons over an area

of 32 nm×1 µm (width times length). During the exposure, we use a spot-

size of 20 nm, beam step-size of 4 nm and a Poisson distributed exposure

dose of 80 µC/cm2, 60 µC/cm2 and 40 µC/cm2. During the exposure of the

sample, we record the locations of the inelastic events within the resist

layer. The distribution of released acids is determined under the simpli-

fied assumption that every inelastic event corresponds to a release. We

now construct a three dimensional image of the (in)solubility of the resist

layer within a cuboid of 128 nm(256px) wide, 800 nm(1024px) in length

and 100 nm(128px) in height. The (in)solubility is obtained by summing

the contribution of all acids to every voxel in the 3D image, where we have

used a 3D Gaussian with σx,y,z = rD = 5 nm for the diffusion of the acid.

The boundary between exposed and unexposed resist is determined by a

threshold. The resulting image of the (in)solubility is analyzed in different

ways by considering slices and three dimensional views of the boundary.
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The average LER is obtained by calculating the standard deviation of the

left and right boundary from xy-slices. By considering all slices, ranging

from the top of the resist layer to the bottom of the substrate, the aver-

age LER as a function of the depth from the top surface of the resist layer is

obtained. Shotnoise effects are observed as we decrease the exposure dose.

An increased effect of shotnoise is observed near the vacuum and substrate

interface. One contribution relates to the actual number of acids, which

due to the scattering is less near the interface than away from the inter-

face. Another contribution stems from the fact that no acids are found

on the vacuum side nor on the substrate side. The results of this study

provide a promising prospect. Not only for the inspection, but also for the

optimization of nano-lithographic processes.
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Chapter 1

Introduction

Integrated circuits on a global scale are produced with nanolithography.

The industry is driven by maintaining Moore’s law as chip feature sizes

are decreasing from generation to generation. The downscaling reduces the

throughput of a lithographic system, i.e. the number of wafers produced

per hour, which in turn determines the cost effectiveness of the production

of integrated circuits. As a consequence, lithographic systems are opti-

mized for high throughput, which can be increased in several ways. In

optical lithography, for example, a more powerful source is one solution.

In electron-beam lithography, an increase of the number of parallel beams

is another solution. In either case, the use of a more sensitive chemically

amplified resist (CAR) results in a reduction of the required illumination

dose, and hence a reduction of the exposure time of the wafers. In order

to maximize throughput, it is tempting to choose the most sensitive CAR

with the lowest possible illumination dose. In that limit, however, an in-

crease of line edge roughness (LER), and hence an insufficient control of

critical dimension (CD) is observed.1 This increase of LER is primarily

caused by fundamental quantum noise (shotnoise) effects and becomes the

dominant mechanism in the formation of LER.2, 3, 4, 5, 6, 7, 8 This, in turn,

complicates the downscaling of transistor dimension. The subject of this

study is to investigate the fundamental limits of quantum noise effects and

strengthen the theoretical basis to improve the production of smaller inte-

grated circuits.
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Quantum noise effects are best seen in patterns of lines and spaces, ob-

tained from exposing resist with decreasing dose in consecutive experiments.

The shotnoise effects are then measured from top-down two-dimensional im-

ages acquired with an industry standard critical dimension scanning elec-

tron microscope (CD-SEM). From the images of lines and spaces, the LER is

determined, which increases dramatically for decreasing exposure dose. Al-

though such measurements are well known,9, 10, 11 the actual determination

of LER is anything but trivial. The accuracy of existing measurements is

questionable. Typically in LER analysis, the fluctuations in edge displace-

ments are determined using a threshold based peak detector, a Canny-edge

detection filter or by a homemade edge detection algorithm, see for exam-

ple Ref. 12. Although the edge displacements already give a direct mea-

surement of the roughness, LER is best analyzed by the Power Spectral

Density (PSD).13, 14, 15, 16, 17 There are a couple of problems related to this

type of determination. First of all, there are statistical and systematic

errors because the actual PSD is approximated by sampling the edge dis-

placements of a pattern with a finite number of measurement intervals. The

statistical errors are for example described in Refs. 15, 16. The systematic

errors have recently been studied in Ref. 17. There is also the problem

of shrinkage, where the act of measuring the edge displacements by irra-

diating with an e-beam induces changes in the pattern, see for example

Refs. 18, 19, 16, 20. Finally, there is the problem of biasing due to the

use of a filter prior to the edge detection in noisy CD-SEM images, see for

example Refs. 12, 18, 21, 15, 22, 23.

Another problem is that the true size, shape and roughness character-

istics of resist features are not fully investigated in the analysis of two-

dimensional scanning electron microscopy images. In reality, rough resist

features are complex three-dimensional structures. The characterization

of roughness of resist features naturally extends to the analysis of side-

wall roughness (SWR) which can be measured, for instance, by using an

atomic force microscope. However, in view of the large volume of wafers

being produced in a typical production line, the atomic force microscope

(AFM) is not considered as a suitable metrology tool. Another problem
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with the AFM involves the complexity of the measurement, in which the

exact shape of the tip plays a crucial role. Another possibility is to create

virtual rough samples of patterns of lines and spaces and simulate the image

acquisition using a CD-SEM image simulator. Numerical studies on SWR

are difficult to perform because the details of the roughness are defined at

the (sub) nanometer scale. Studies involving the discrete modeling of the

roughness on the sidewalls are therefore subject to time consuming simula-

tions, and especially in the case of Monte-Carlo simulations. Because of the

latter, detailed Monte-Carlo simulations are avoided and simulators with

simplified physical models are used instead. Although simplified physical

models do not have the performance issue, the validity and accuracy re-

mains an open question. The studies that we found in literature indicate

that the true SWR is larger than the measured LER in a top-down CD-

SEM image.24, 25 We have a few remarks with respect to these studies. In

the study of Li et al., the focus is on pure poly crystalline silicon lines with

a Gaussian roughness model for the sidewalls.24 The roughness of a resist

feature, however, is typically characterized by more than just the standard

deviation of a Gaussian-like distribution and involves additional parame-

ters, such as correlation length and a roughness exponent.26, 16, 27, 28 What

happens, for example, to the measured LER when the correlation length

of the SWR changes? The study of Lawson et al. is different for two

reasons.25 In the first place, Lawson et al. have used a more sophisticated

model for the roughness of the sidewalls.29 Unfortunately, the relation of the

roughness parameters to correlation length and roughness exponent are not

explicitly mentioned nor are the roughness parameters varied to study its

influence on the LER. Second, the lines used in the study of Lawson et al.

are made of pure poly-methyl methacrylate (PMMA) coated on a pure

silicon substrate. Not only is PMMA a different material, it also comes,

contrary to pure silicon lines, with a risk of resist shrinkage caused by the

electron beam.16 Although it is not addressed in the work of Lawson et al.,

this risk can be reduced, for example, by lowering the beam voltage and

total electron dose, i.e. reduce the number of integration frames.16, 28
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The final piece of the puzzle is to determine the formation of SWR. To

that order, let us briefly discuss the process of nanolithography. In nano-

lithography, a resist layer is spin coated on a wafer with a substrate. The

resist layer is then exposed optically or with a beam of electrons. In the

case of a CAR, the exposure results in the release of acids of in the resist

layer. In the post-exposure baking (PEB) phase, the acids start to diffuse

and break or cross-link molecular bonds which either become soluble or in-

soluble. The subject of computational lithography is to predict the effects

in detail, such that the lithographic process, for example, can be optimized

for throughput while minimizing the errors on feature dimensions to ac-

ceptable values. One of the major challenges of this study is to investigate

how quantum noise effects, starting from the initial exposure, affect the

resulting feature.

This thesis is organized into seven chapters, which all can be read inde-

pendently, as follows,

• Development of a novel measurement technique for quantum noise

effects from two-dimensional scanning electron microscopy images

(Chapter 2).

• Development of a fast GPU Monte-Carlo electron-matter interaction

simulator based on the most advanced models in solid state physics

(Chapter 3 and 4).

• Investigation of roughness characterization of 3D features from simu-

lated 2D SEM images (Chapter 5 and 6).

• Development of a Monte-Carlo framework for the ab-initio calculation

of quantum noise effects in e-beam direct write lithography (Chap-

ter 7).

Every chapter of the thesis includes a brief description of the content and

related publications, followed by an introduction and ends with a conclu-

sion.
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Chapter 2

Dimensional metrology of

line edges

The root cause for the emergence of quantum noise effects in lithographic

systems is the number statistics of electrons (or photons in optical lithogra-

phy) during exposure. The effects are best seen in consecutive acquisitions

of patterns of lines and spaces obtained with decreasing (lithographic) ex-

posure dose. The shotnoise effects are then measured from top-down two-

dimensional images acquired with an industry standard critical dimension

scanning electron microscope (CD-SEM). From the images of lines and

spaces, the line edge roughness (LER) is determined, which increases dra-

matically for decreasing exposure dose. Although such measurements are

well known, the actual determination of LER is anything but trivial and

the accuracy of existing measurements is questionable. To begin with, the

determination of LER involves edge detection which in turn introduces a

limit to the maximum allowable image noise. This means that images must

be acquired with a higher electron dose or the CD-SEM image is filtered

before edge detection. However, by increasing the imaging dose, there is

the risk of resist shrinkage due to the impact of the electron beam, which in

turn affects the quantity being measured. The most obvious solution is to

reduce the image noise by applying a noise-suppressing filter to the image

before edge detection. Although this is common practice in semiconductor
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industry, the use of such a filter complicates the determination of LER by

introducing a bias to the measurement.

In this chapter we address the issue of measurement by introducing a

special method which avoids the use of a noise-suppressing filter. The ap-

proach is unique as the signal response function of the CD-SEM is exploited

in order to determine the edge displacements along the length of a line. As

a result, LER can be determined more accurately from very noisy images

without increasing the risk of resist shrinkage and without biasing due to

image filtering.

The content of this chapter is an updated version of the article we have

published in the Journal of Micro/Nanolithography, MEMS, and MOEMS:

Verduin, T., Kruit, P., and Hagen, C. W., “Determination of line edge

roughness in low dose top-down scanning electron microscopy images,” Jour-

nal of Micro/Nanolithography, MEMS,and MOEMS 13, 033009 (2014).

This work was presented at the SPIE 2014 conference in San Jose and

was rewarded with the Karel Urbanek best student paper award.

2.1 Introduction

The determination of Line Edge Roughness (LER) becomes increasingly im-

portant as the semiconductor devices decrease in dimensions.9, 10, 11 This

results in smaller tolerances on LER determination and as a consequence,

the metrology becomes more critical. There are two classes of LER metrol-

ogy. There is on-line metrology, which is typically performed in SEMs

combined with dedicated (proprietary) software for LER analysis. Another

class is off-line metrology and only deals with the image analysis. The lat-

ter is used for instance for resist characterization. Typically in off-line LER

analysis, the fluctuations in edge displacements are determined using a

threshold based peak detector, a Canny-edge detection filter or by a home-

made edge detection algorithm, see for example Ref. 12. Although the edge

displacements already give a direct measurement of the roughness, LER is

best analyzed by the Power Spectral Density (PSD).13, 14, 15, 16, 17 There

are a couple of problems related to this type of determination. First of all,
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there are statistical and systematic errors because the actual PSD is ap-

proximated by sampling the edge displacements of a pattern with a finite

number of measurement intervals. The statistical errors are for example

described in Refs. 15, 16. The systematic errors have recently been stud-

ied in Ref. 17. There is also the problem of shrinkage, where the act of

measuring the edge displacements by irradiating with an e-beam induces

changes in the pattern, see for example Refs. 18, 19, 16, 20. Finally, there

is the problem of biasing due to the use of a filter prior to the edge detec-

tion in noisy SEM images, see for example Refs. 12, 18, 21, 15, 22, 23. In

this chapter we focus on off-line metrology and investigate how much image

noise is acceptable by decreasing the dose in simulated top-down SEM-like

images. The determination of LER is a delicate issue and we ask the fol-

lowing questions: Can we reduce the influence of a filter to negligible levels

by carefully optimizing the filter strength? Is it possible to avoid filtering

in low dose images at all? How many low dose images of the line edges are

required for estimating LER?

2.2 Line edge determination

Let us begin with a typical example of a top-down SEM image of line edges,

which is given in Fig. 2.1. This image was recorded by J. Jussot from CNRS-

LTM/CEA-LETI in 2012 using a CD-SEM from Hitachi. The properties

of the resist are unknown to us due to disclosure restrictions. These resist

properties, however, are of no further interest to us. In Fig. 2.2a we

show the amplitude of a single horizontal scan-line taken from the center

of Fig. 2.1. The noise in Fig. 2.2a is due to the pixel noise and corresponds

to 16 integration frames. The number of integration frames should be

kept as low as possible to reduce the effect of resist shrinkage.18, 19, 16, 20

However, detection algorithms, such as threshold based detectors or Canny-

edge detection filters, often do not find the edge or find too many edges

in such noisy data. Working with low noise images has two problems:

they take a long time to accumulate and there is a risk of resist shrinkage.

An obvious way to reduce the noise is to apply a filter to the recorded
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Figure 2.1: A typical top-down SEM image of line edges, which was recorded
by J. Jussot from CNRS-LTM/CEA-LETI in 2012 using a CD-SEM from Hitachi.
This image is recorded with a probe current of 6.0 pA at an acceleration voltage
of 500 V. The number of integration frames equals 16. The magnification is such
that the field size is 2.76 µm in length (1024px) and 450 nm wide (1024px). The
resulting pixel size is approximately 2.7 nm× 0.44 nm.

image. The result of applying a symmetric Gaussian filter on the amplitude

is shown in Fig. 2.2b. The edge displacements can be determined by a

threshold detector, if the noise in the amplitude is sufficiently reduced.

The discrete PSD of the edge displacements is obtained by calculating

the complex amplitude of the Fourier coefficients,

Pn =
L

2π
|Fn|2 (2.1)

where the discrete Fourier transform is determined as,

Fn =
1

N

N−1∑
j=0

(xj − 〈x〉N ) exp (−iknj∆y) (2.2)

where N is the number of sampled edge displacements, xj is the displace-

ment of the jth edge position, 〈x〉N is the mean position of the edge, ∆y is
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Figure 2.2: The amplitude of a single horizontal scan-line taken from the center
of Fig. 2.1. The signal in Fig. 2.2a represents the amplitude directly from the
image without any post-processing. This raw signal is too noisy for threshold
based edge detection. However, the noise of this signal can be reduced by apply-
ing a symmetric Gaussian filter to the image and the result on the amplitude is
demonstrated in Fig. 2.2b.

the measurement interval and kn is the discrete wave number,

kn =
2πn

L
(2.3)

where n = 0, 1, 2, . . . , N − 1 and L is the length of the edge. The variance

of the edge displacements is related to the PSD by,

σ2 =
2π

L

N−1∑
n=0

Pn (2.4)

which is Parseval’s relation. The discrete PSD given by Eq. 2.1 is only an

approximation to the actual spectrum of a quasi-infinite long line and the

finite line length L is a source of statistical noise, see for example Ref. 15, 16.

The statistical noise in the discrete PSD can be reduced by averaging over

many line edges,

P ?n =
L

2π

〈
|Fn|2

〉
N?

(2.5)
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whereN? counts the number of line edges over which the PSD is averaged.

This averaging is possible if the length of the line edge is much longer than

the correlation length of the edge fluctuations.

We calculate the discrete PSD of the line edges shown in Fig. 2.1 and,

in order to reduce the noise in the power spectrum, we average the PSDs

of the 50 recorded SEM images of line edges of the same kind. Every

individual SEM image is at first convoluted with an elliptic Gaussian filter,

Ĩ(x, y) = I(x, y) ? G(x, y) = I(x, y) ?
exp

(
− x2

2σ2
T
− y2

2σ2
L

)
2πσTσL

(2.6)

where Ĩ is the filtered SEM image, I the original SEM image and G the

elliptic filter. The strength of the elliptic filter in the transverse direction to

the edges is σT and the strength in the longitudinal direction is σL. The edge

displacements are then determined using a threshold based edge detection

algorithm. In this method, we identify an edge whenever the normalized

amplitude of a peak is larger than 0.3 with respect to the noise level. This

threshold is obtained empirically by analyzing many images. The choice of

a particular threshold level is subjective and we will discuss the effect of this

on our results later. The directional strengths of the filter are optimized on

a per image basis and is such that every scan-line of a SEM image produces

the real number of edges in the image. In other words, if we decrease the

strength of the elliptic filter even further, then we will count more or fewer

edges than physically present in the pattern. This happens because there

are peaks within the signal (see Fig. 2.2a) which are not related to the edges

but to the image noise. As we decrease the strength of the elliptic filter,

the amplitudes of the peaks from the image noise increase and at some

point we can no longer distinguish the peak due to an edge from the noise.

It is at this point that the threshold method of determination becomes

indecisive: it can no longer decide which peak is an edge and which peak

is not. Suppose, for a particular SEM image of line edges, that we check

for a range of longitudinal and transversal filter strengths whether the edge

detection method produces the correct number of edges for all scan-lines.

There exists a subdomain where the edge detection method produces the
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Figure 2.3: The effect of filtering on the number of detected edges in Fig. 2.1.
The longitudinal filter strength σL is shown on the vertical axis and the transversal
filter strength σT is shown on the horizontal axis. The marked region corresponds
to a domain where the number of detected edges does not match the real number
of edges (12). The open marker on the boundary represents one of the possible
optimized filter settings and the arrows indicate how the directional filter strength
is adjusted.

correct number of edges and a complementary domain where it does not

produce the correct number of edges. This idea is illustrated in Fig. 2.3,

where the marked region corresponds to the domain where the number of

detected edges does not match (at least for one scan-line) the real number

of edges. We define a filter to be optimized whenever it is on this boundary.

We note that an optimized filter is preferred, because a filter not only

reduces image noise but also destroys frequency content related to the ac-

tual edge displacements. The idea of an optimized filter is to minimize this

effect. A point on the boundary of Fig. 2.3 can be found, for example, by

bisective optimization. The idea is to start with a predefined minimal and

maximal filter strength and split the interval in half as long as the number

of edges is correct. This procedure (bisection) is repeated until the resulting

interval convergences to a point on the boundary. This way we have found,
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for the 50 recorded SEM images, the following optimized directional filter

strengths: σT = 2.5px ± 0.87px and σL = 3.6px ± 0.69px. We emphasize

that this particular filter strength relates to just one arbitrary point on the

boundary of Fig. 2.3. However, we attempt to demonstrate that the PSD

is affected, even though we optimize our filter strength. In this respect,

any point on the boundary is acceptable as long as we are consistent in our

method of determination. In Fig. 2.4a we increase the strength of the filter

in the transverse direction, while the longitudinal strength remains fixed at

the optimized value. Similarly, in Fig. 2.5a we only increase the strength

of the filter in the longitudinal direction. The arrows in Fig. 2.3 show how

the directional filter strength is adjusted. In Fig. 2.4b and Fig. 2.5b we plot

the square root of the cumulative sum of the PSD from the lowest wave

number towards the highest wave number. This cumulative sum gives the

variance via Parseval’s Eq. 2.4 and by taking the square root we can see

how the standard deviation develops as a function of increasing wave num-

bers. In Figs. 2.4a and 2.5a we observe an undesired effect of the filtering

on the PSD: besides suppression of the high frequencies (which is required

to reduce the image noise), the center frequencies (near k/(2π) = 10−1)

are affected as well. This conclusion (filtering biases the result) is drawn

by various authors as well, see for example Refs. 12, 18, 21, 15, 22, 23.

Here we show that this effect, for both transversal and longitudinal filter-

ing, cannot be ignored, even when considering an optimized filter strength.

This is best seen in the cumulative sums in Figs. 2.4b and 2.5b, where the

total roughness is shown for different filter strengths. We have summarized

the effect on LER in Table 2.1 for varying directional filter strengths. Sev-

eral attempts have been made to correct for this biasing, see for example

Refs. 30, 18, 19, 31, 16, 23. The problem is, however, that these attempts do

not capture the effect of filtering, instead they capture the effect of image

pixel noise.

We now ask the following question: How much further do we need to

reduce the strength of the filter (beyond the optimized filter), such that the

filter dependency on the measured LER becomes insignificant? We failed

in reducing the strength of the filter, because then the edges cannot be

12
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Figure 2.4: The effect of transverse filtering on the discrete PSD and the total
roughness is shown. The results are obtained from analyzing the set of 50 experi-
mental SEM images recorded by J. Jussot. The PSD is given in Fig. 2.4a and the
total roughness is given in Fig. 2.4b, which is obtained by taking the square root of
the cumulative sum of the PSD. The markers correspond to different transversal
strengths with respect to the optimized elliptic filter.
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Figure 2.5: The effect of longitudinal filtering on the discrete PSD and the
total roughness is shown. The results are obtained from analyzing the set of 50
experimental SEM images recorded by J. Jussot. The PSD is given in Fig. 2.5a
and the total roughness is given in Fig. 2.5b, which is obtained by taking the
square root of the cumulative sum of the PSD. The markers correspond to different
longitudinal strengths with respect to the optimized elliptic filter.
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Filter strength Transversal Longitudinal

Optimized filter 1.37 nm 1.37 nm
Intermediate filter 1.30 nm 1.25 nm

Strong filter 1.28 nm 1.16 nm

Table 2.1: LER when using an intermediate or strong filter in respectively the
transverse or longitudinal direction. The optimized elliptic filter, obtained by ana-
lyzing 50 recorded SEM images of line edges, corresponds to a transversal strength
of σT = 2.5px ± 0.87px and a longitudinal strength of σL = 3.6px ± 0.69px.
The intermediate filter has 1.5× the strength of the optimized filter in either
the transversal or longitudinal direction. Similarly, the strong filter has 2.0× the
strength of the optimized filter.

detected anymore by our threshold based peak detection. The interested

reader might argue that we could use the threshold level to reduce the

strength of the optimized filter even further. It is true indeed that the

strength of the optimized filter depends on the particular choice of the

threshold level. The threshold level balances the amplitude of the image

noise and the amplitude of a peak due to an edge. This must be seen in the

context of filtering, where we would like to reduce the filter strength as much

as possible. This means that the threshold level should be as low as possible.

In addition, the threshold level could be optimized dynamically per line edge

which would probably produce a weaker filter than the optimized filter we

have used. In other words, maybe we could reduce the influence of the filter

by clever optimization tricks, but how do we know if and when the influence

has become insignificant? We conclude that the best solution would be to

avoid a filter at all.

We recently developed a method to detect edge displacements without

the use of a filter. In fact, this method works without using any post-

processing of the SEM image. Let us explain this method in detail. We

approximate the signal profile of the SEM by integrating a recorded SEM

image in the direction of the line edges. For example, the approximate SEM

signal profile of Fig. 2.1 is given in Fig. 2.6. We emphasize that this is

only an approximation, because by integrating in the direction of the line

edges, the actual shape of this profile becomes a function of the roughness,
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Figure 2.6: The SEM signal profile for twelve line edges as obtained by inte-
grating the SEM image of Fig. 2.1 in the direction of the line edges.

which is present in the edges. In principle, the roughness of the edges

must be corrected for by counter displacing the rows. For the moment

we assume that this roughness dependency can be neglected and that the

profile function can be seen as a the SEM signal response to a straight edge.

We will come back to this issue later. The SEM signal profile of an isolated
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Figure 2.7: The SEM signal profile of an isolated edge taken from Fig. 2.6. The
solid line is the best fit of the model given by Eq. 2.7.

edge is shown in Fig. 2.7, which is just one of the twelve peaks shown in

Fig. 2.6. We model the SEM signal profile of an isolated edge by matching

two vertically shifted and normalized Gaussians at the center, which has

the following mathematical representation,

P (x) =

bL + (1− bL) exp
(
−1

2
(x−µ)2

σ2
L

)
x < µ

bR + (1− bR) exp
(
−1

2
(x−µ)2

σ2
R

)
x ≥ µ

(2.7)
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where bL and bR defines the base level found at the far left and right in

Fig. 2.7, σL and σR defines the standard deviation to the left and right of

the center µ. The left base level is defined such that bL = limx→−∞ P (x)

and the right base is defined such that bR = limx→+∞ P (x). Note that

if bL = bR = 0 (the Gaussians are not shifted upwards), and σL = σR

(same standard deviation), then Eq. 2.7 reduces to the standard definition

of a Gaussian distribution, up to a normalization factor. The parame-

ters bL, bR, σL and σR are fitted against the integrated SEM signal profile.

The solid line in Fig. 2.7 is the best fit of this model against a single isolated

experimental profile obtained by integrating Fig. 2.1 in the direction of the

line edges. The method of fitting a Gaussian to an integrated SEM image is

also found in Ref. 32, where it is used to estimate line widths. This study,

however, considers a more complicated fit for the determination of LER.

The idea is now to match this double Gaussian model to every sam-

pled row of a single edge using parameter optimization. We introduce the

following degrees of freedom to the model for the SEM signal profile,

s · P (x−∆x) (2.8)

where s scales the profile amplitude P and ∆x is the transversal displace-

ment of the profile. The parameters s and ∆x are determined by using

an interior trust-region-reflective minimization algorithm. The interested

reader is referred to the article of Coleman33 for details on the minimization

procedure. In Fig. 2.8 we demonstrate one of the matching results using the

raw unfiltered signal, which is taken directly from the SEM image. Clearly

for such noisy data, a threshold based edge detection method could not

have found the position of the edge. Now that we can detect the edge dis-

placements without using a filter, we reconsider the set of recorded SEM

images from J. Jussot. However, this time we use our SEM profile based

edge detection. The PSD without using a filter is given in Fig. 2.9a together

with the optimized filter found in Figs. 2.4a and 2.5a. In Fig. 2.9a we ob-

serve that the pixel noise really starts to contribute after the marker ‘noise

limit’. In Fig. 2.9b we observe that the cumulative sum after the marker

accounts for approximately 1.6 nm − 1.4 nm = 0.2 nm. Therefore, a crude
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Figure 2.8: The matching of the model for the SEM signal profile in the raw
(unfiltered) amplitude of an edge in a SEM image is illustrated. The profile is
matched by varying the transversal displacement and amplitude of the profile
function.

estimate for the actual LER is 1.4 nm. This is to be compared to the esti-

mate of 1.3 nm for the optimized filter (square markers) found in Fig. 2.9b.

Apparently, the optimized filter that we have applied in our first attempt

is not that far off. What about the fact that we neglected the roughness in

the edges when determining the SEM signal profile? At the moment, the

roughness of the edges is effectively absorbed into the parameters (specifi-

cally σL and σR) of the approximated SEM signal profile. We expect that

the noise level in the PSD (see Fig. 2.9a) could be lowered by correcting

for the roughness in the SEM signal profile. This ultimately means that we

have not yet established the Cramér-Rao Lower Bound (CRLB). At this

point LER no longer depends on post-processing (such as filtering), but

has become a function of the pixel noise and, because our estimator is not

the CRLB, additional noise due to the specific method of edge determina-

tion. This, however, is not a problem because the total noise level can be

taken into account16 and will be our next point of attention.
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Figure 2.9: A comparison is shown of the PSD and total roughness of filter-
free SEM profile based detection to optimized elliptic filtered edge detection.
These results are obtained from analyzing the set of SEM images from J. Jus-
sot (see Fig. 2.1 for an example of one of the images). The PSD is given in
Fig. 2.9a and the total roughness is given in Fig. 2.9b, which is obtained by taking
the square root of the cumulative sum of the PSD. Note that the optimized filter
from Figs. 2.4a and 2.5a is used for comparison.
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2.3 Image noise analysis

In estimating LER (Fig. 2.9a) we used all available images (50 in total)

to reduce the uncertainty in the discrete PSD. We now improve this LER

determination by considering a model for the PSD and question how much

noise is acceptable, such that we still can determine LER? In fact there

are two questions: How much noise can we allow in a single image such

as Fig. 2.1 and how many line edges do we need in total? We begin our

investigation on the effect of image noise on the determination of LER by

generating rough edges at random using the model of Palasantzas26 with

known parameters,

PSD(k) =

√
π

2π

Γ
(
α+ 1

2

)
Γ(α)

2σ2ξ

(1 + k2ξ2)α+ 1
2

(2.9)

This PSD defines an infinitely long line with σ as the LER, ξ the correlation

length and α the roughness exponent. It can be verified that the integral

of this PSD equals the variance,

σ2 =

∫ +∞

−∞
PSD(k) dk (2.10)

The random displacements can be generated via the algorithm of Thorsos,

which is explained in Ref. 27. The algorithm of Thorsos produces random

edge displacements that, in the limit of large averages, converges towards

the PSD of Palasantzas up to a bias in the standard deviation. This bias

is explained in Ref. 27 as well and can be compensated for by multiplying

the edge displacements with a constant factor.

We generate top-down SEM-like images by using the model of the SEM

signal profile obtained earlier (Fig. 2.7). A SEM-like image is obtained by

displacing the SEM signal profile at every row in accordance to the random

generated displacements, which in turn satisfy the PSD given by Eq. 2.9.

If we collect a number of randomly generated lines next to each other in

one image, we obtain the result of Fig. 2.10a. This is a simulated result

of a noise-free top-down SEM-like image of randomly generated line edges.
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The image is further processed by adding Poisson distributed noise to every

pixel of the noise-free image. This Poisson distributed noise is added in a

similar way as in Ref. 23. We emphasize that, in contrast to Ref. 23, we did

not include Gaussian distributed noise. Examples of Poisson noise gener-

ated SEM-like images are given in Figs. 2.10b, 2.10c and 2.10d. In each of

the images, the average electron density is set to (in respective order) 200, 20

and 2 electrons per pixel. The corresponding average charge density equals

(in respective order) 1000 µC/cm2, 100 µC/cm2 and 10 µC/cm2.

(a) Noise free image. (b) 〈density〉 ∼ 200 e−/px.

(c) 〈density〉 ∼ 20 e−/px. (d) 〈density〉 ∼ 2 e−/px.

Figure 2.10: Randomly generated top-down SEM-like images with line edges.
The field size is 2 µm in length (256px) and 450 nm wide (1024px). The pixel size
is about 7 nm× 0.5 nm.
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Figure 2.11: Demonstration of filter-free SEM profile based detection applied
to a randomly generated top-down SEM-like image with line edges. The field size
is 2 µm in length (256px) and 450 nm wide (1024px). The average electron density
of this image is about 2 electrons per pixel and corresponds to an average charge
density of about 10µC/cm2.

The edges of the random generated images are determined using filter-free

SEM profile based detection as described before. An example of displace-

ment detection applied to a randomly generated image is given in Fig. 2.11.

The difference between the randomly generated displacements and the de-

tected displacements after adding pixel noise tells us how pixel noise trans-

lates to noise in the edge displacements. This is illustrated in Fig. 2.12,

where the black line corresponds to the randomly generated displacements

and the red line corresponds to the detected displacements after adding

pixel noise. We conclude from running many simulations that this pixel

noise translates to a noise distribution in the edge displacements which is

uniform (flat) in the PSD. In other words, this means that pixel noise trans-

lates to white noise in the edge displacements. Now that we have classified
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Figure 2.12: The randomly generated displacements (black) are compared with
the detected displacements (red) after adding Poisson distributed pixel noise. The
difference between the generated and detected displacements gives the noise dis-
tribution in edge detection.

the total noise (constituting of pixel noise and additional noise due to our

specific method of edge determination), we are free to add this noise term

to the Palasantzas model (see also Refs. 16, 17),

PSDw/noise(k) = PSDw/o noise(k) + σ2
N

∆y

2π
(2.11)

where σN is the noise level and ∆y the measurement interval. The PSDs

obtained by detecting the edge displacements in simulated SEM-like images

with an electron density of 2, 20 and 200 electrons per pixel are given in

Fig.2.13. In these images we can also see that pixel noise translates to white

noise: The power of the high frequencies flattens out to a straight line as we

decrease the electron density per pixel and thus introduce more noise. The
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Figure 2.13: The effect of adding a noise term to the Palasantzas model is
shown. The PSDs in this figure are obtained from averaging many images for
different noise settings.

idea is now to fit the simulated discrete PSD as a function of the number of

line edges and analyze the convergence of the parameters (σ, ξ and α) of the

Palasantzas model, Eq. 2.11, extended with a term to capture the total noise

(σN ). We remark that by fitting Eq. 2.11, we neglect the systematic errors

described by Ref. 17. We neglect the systematic errors because in our study

we have a larger number of sampled edge displacements N and the power

of the noise level renders the effects due to aliasing or spectral leakage to

negligible levels. Our simulation is set up as follows. We generate random

line edges with a length of 2 µm (256px) using the modeled SEM signal

profile of Fig. 2.7. We choose a roughness (LER) of 1.5 nm, correlation

length ξ of 25 nm and a roughness exponent α of 0.75 in the Palasantzas

model. These are typical values for experimentally measured edges.16, 17

Now we consider the worst case in image noise of the densities given in

Fig. 2.10, which corresponds to an electron density of about 2 electrons per

pixel on average (charge density ≈ 10 µC/cm2). We run many simulations

and determine the distributions of the outcome values of the parameters
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of the Palasantzas model (LER σ, noise level σN , correlation length ξ and

roughness exponent α). The results of this low dose (high noise) simulation

are given in Fig. 2.14. At first we observe that all estimated parameters of

the Palasantzas model are converging towards the predefined parameters.

The convergence, however, seems to be asymptotic, which is best seen by

the noise term σN in Fig. 2.14b and the correlation length ξ in Fig. 2.14c.

There seems to be a very small bias in the LER, which is best seen in

Fig. 2.14a. One of the possible causes for this bias is related to the intrinsic

bias in Thorsos algorithm. Although we have corrected this bias in Thorsos

algorithm numerically, it is with limited precision (about 3 digits). The

errorbars roughly decrease as the square root of the number of averages,

which is to be expected based on averaging principles. The relative errors

(size of the errorbars divided by the value of the predefined parameter) are

given in Fig. 2.15.
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Figure 2.14: The simulation results for fitting the parameters of the Palas-
antzas PSD model to random generated lines after adding Poisson distributed
pixel noise are shown. The random lines are generated with a length of 2µm
(256px) using the modeled SEM signal profile of Fig. 2.7. The generated lines
have a roughness (LER) of 1.5 nm, correlation length ξ of 25 nm and a roughness
exponent α equal to 0.75. The simulated electron density is about 2 electrons
per pixel on average. This corresponds to a charge density of approximately
10 µC/cm2.
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Figure 2.15: The relative error (one-sigma) in parameter estimation with respect
to the Palasantzas model for simulated top-down SEM-like images with a density
of about 2 electrons per pixel on average is shown. The result of this figure is
based on the errorbars in Fig. 2.14.

We observe in Fig. 2.15 that the correlation length ξ and roughness

exponent α are harder to estimate, i.e. it takes more averages to produce

the same relative error as for LER σ and noise level σN . The same conclu-

sion can be found in Ref. 23. The most interesting parameter for industry

is LER σ, because that is the parameter against which process performance

is evaluated. When the number of averages is low, the intrinsic noise in the

discrete PSD is significant, as can be seen in Fig. 2.16. It is remarkable

that under these conditions LER can still be estimated with a relative error

(one-sigma) of about 10%. In other words, it only takes one single image,

Fig. 2.10d, with 2 electrons per pixel (charge density ≈ 10 µC/cm2) to esti-

mate LER as 1.5 nm ± 10%. We now question how the parameters converge
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Figure 2.16: The intrinsic noise in the discrete PSD after averaging only 10 edges
is shown. The purple line corresponds to the limit of many averages. The data
is obtained from a simulation corresponding to a density of about 2 electrons per
pixel, which corresponds to a charge density of about 10 µC/cm2.

when we increase the electron density per pixel. The effect of this on LER σ

is given in Fig. 2.17, where we plot the relative error as a function of the

number of line edges for densities of 2, 20 and 200 electrons per pixel. The

result of Fig. 2.17 shows that it hardly makes any difference if we increase

the density from 20 electrons per pixel (charge density ≈ 100 µC/cm2) to

200 electrons per pixel (charge density ≈ 1000 µC/cm2). The explanation

is as follows. We identify that the relative error has two contributions:

Pixel noise and variance because of limited edge length. This can also be

seen by integrating the Palasantzas model given by Eq. 2.11,

σ2
w/noise = σ2

w/o noise + σ2
N (2.12)

The relative error is then determined as,

error
(
σ2

w/noise

)
= error

(
σ2

w/o noise

)
+ error

(
σ2
N

)
(2.13)
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Figure 2.17: The relative error in LER determination for simulated top-
down SEM-like images with a density of 2, 20 and 200 electrons per pixel on
average is shown.

In the simulation of an average density of 2 electrons per pixel we have

that both terms in Eq. 2.13 contribute to the total error. The error due to

pixel noise, which is the second term in Eq. 2.13, decreases as we increase

the electron density per pixel. If we increase the electron density even

further, the variance caused by limited edge length, which is the first term

in Eq. 2.13, becomes significantly larger than the error contribution due to

pixel noise. When we reach this point, the total relative error is primarily

determined by the variance caused by limited edge length. This means that

there is no point in further increasing the dose as this does not improve LER

determination. In Fig. 2.17 we see that this already occurs at an averaged

density of 20 electrons per pixel.
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2.4 Resist shrinkage

So far we have only applied our method of determination to artificially

generated images. Our intention for this section is to apply the method to

images acquired with a real CD-SEM. We consider the acquisition of images

in the limit of image shot noise using a CG4000 CD-SEM from Hitachi. In

order to achieve maximum image noise, and hence the lowest electron beam

impact, we choose a beam voltage of 300 eV, a probe current of 10 pA and

a single integration frame. The latter corresponds to the lowest possible

default configuration.1

In collaboration with CNRS-LTM/CEA-LETI, we have accomplished

the following experiment. At first a wafer is exposed using a pattern gen-

erator from VISTEC with a repeated pattern of lines and spaces with fixed

spacing and fixed line width.2 After the development, a sequence of images

is recorded at a fixed position on the wafer using only a single integration

frame per image. An example of an isolated image in that sequence is shown

in Fig. 2.18. The consequence of ‘hammering’ the same pattern is that the

net dose accumulates for consecutive images in the sequence. The essential

idea is to extract the effect of shrinkage by comparing the average critical

dimension (CD) per image in the sequence. Care was taken to be sure that

the first recorded image was really the first deposited imaging dose (the fo-

cus and optimization of the CD-SEM was performed on a nearby pattern).

For statistics, we repeat this procedure at different locations on the wafer.

We have recorded a total of 25 independent sequences with 50 images per

sequence. In other words, we have 25 independent measurements for each

frame with a certain net accumulated dose,

D =
probe current × scan rate

scan area
× frame number (2.14)

For the CG4000, we have a probe current of 60 pA and a scan rate of 50 Hz

(TV scan mode). The scan area equals 2.76 µm×450 nm. The resulting

1In reality, the CD-SEM can be pushed further in service mode, but then requires
manual fine tuning which we would like to avoid for additional complications.

2The resist that was used by CNRS-LTM/CEA-LETI is unknown to us due to disclo-
sure restrictions.
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Figure 2.18: An image of line edges acquired using the lowest possible default
configuration of a CG4000 CD-SEM from Hitachi is shown. This image which was
recorded by I. Servin from CNRS-LTM/CEA-LETI in 2016. The lowest possible
configuration corresponds to a beam voltage of 300 eV, probe current of 10.0 pA
and only a single integration frame. The magnification is such that the field size
is 2.76 µm in length (1024px) and 450 nm wide (1024px). The resulting pixel size
is approximately 2.7 nm× 0.44 nm.

dose equals approx. 16.13 µC/cm2 per image. Please note that the latter

boils down to a single electron per square nanometer per image. The in-

terested reader is invited to compare the experimental image (Fig. 2.18

with 1 electron/nm2) to the randomly generated image (Fig. 2.11 with

2 electrons/nm2).

We have determined the change in CD per image as follows. At first

we detect the edges using our profile based edge detection algorithm. In

reality, care must be taken in how to define the line width from the edge

positions in a two dimensional image. We, however, are only interested

in how the CD changes per image. This means in practice, that we can

choose any definition as long as we are consistent. For each line, we therefore

simply determine the CD by subtracting the position of the right edge from
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the left edge. The CD for each image is then obtained by calculating the

average CD per line in that image. The change in CD for consecutive

images is then obtained as follows,

∆CD = CDi − CD0 (2.15)

where CDi is the average CD for image number i ≥ 1 and CD0 is the

extrapolated CD for zero exposure dose. The CD at zero exposure dose is

determined by invoking a model based on independent multi-exponential

decay,34, 35, 36

CD(D) =
∑
i

αi exp
D

βi
(2.16)

where D is the net accumulated dose, α is the amplitude for the exponential

decay and β the corresponding decay constant. The summation accounts

for the fact that different processes take place on different time scales. For

example, there could be (1) a very fast process (small β) which only affects

the outer rim of the material, (2) a slower process (larger β) for the main

bulk of the material and (3) a very slow process (largest β) accounting for

the decay of the entire material.34 In the end, a Levenberg-Marquardt non-

linear least square fit of the decay model is applied to the measured CD

per image with respect to the net accumulated dose. The final result of our

measurement is shown in Fig. 2.19. We found, by trial and error, that a

model with two terms for the decay works best for Fig. 2.19. The corre-

sponding parameters of the exponential decay model are given by Table 2.2.

magnitude (1) 2.434 nm (12.92 %)
decay constant 4.129 electrons/nm2

magnitude (2) 16.41 nm (87.08 %)
decay constant 691.5 electrons/nm2

Table 2.2: The fitted parameters in the double exponential decay model for
resist ‘S13’ is shown.
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Figure 2.19: The amount of shrinkage of resist ‘S13’ as a function of accumulated
dose is shown. The red line corresponds to a fitted double exponential decay
model. The extrapolated CD to zero dose is found to be 18.8 nm ± 0.351 nm.
Details on the acquisition and analysis are explained in the main text.
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Figure 2.20: The LER of resist ‘S13’ as a function of accumulated dose is shown.
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Notice that in Fig. 2.19, there is a strong non-linear effect of shrinkage for

a dose lower than 10 electrons/nm2 (approx. 161 µC/cm2). In fact, most

of the shrinkage occurs in this regime. The typical amount of integration

frames used for the analysis of CD is somewhere between 8 and 32, see for

example Ref. 16. We would like to point out that by the time we have

accumulated 8 frames, the CD has shrunk already by more than 2 nm!

The shrinkage beyond 10 electrons/nm2 is dominated by the decay of the

bulk, which accounts for approx. 87%. Notice that the corresponding

decay constant renders the reduction of the CD to approximately linear. In

addition, we have also determined the LER as a function of accumulated

dose, see Fig. 2.20. What is observed is a decreasing trend in LER as the

dose accumulates.

We have repeated the shrinkage analysis by using another wafer with a

different type of resist. The result of that analysis for the CD is shown in

Fig. 2.21, and for the LER in Fig. 2.22. For this particular resist (which
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Figure 2.21: The amount of shrinkage of resist ‘S23’ as a function of accumulated
dose is shown. The red line corresponds to a fitted triple exponential decay model.
The extrapolated CD to zero dose is found to be 20.4 nm ± 5.27 nm. Details on
the acquisition and analysis are explained in the main text.
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Figure 2.22: The LER of resist ‘S23’ as a function of accumulated dose is shown.

is also unknown to us due to disclosure restrictions) we found that a model

with three terms for the decay works best. The corresponding parameters

of the exponential decay model are given by Table 2.3. The latter includes,

in comparison to Table 2.2, a decay process with an intermediate rate.

magnitude (1) 2.719 nm (13.36 %)
decay constant 1.740 electrons/nm2

magnitude (2) 1.923 nm (9.450 %)
decay constant 19.97 electrons/nm2

magnitude (3) 15.71 nm (77.19 %)
decay constant 2031 electrons/nm2

Table 2.3: The fitted parameters in the triple exponential decay model for re-
sist ‘S23’ are shown.

Inevitably, what we see is that the amount of shrinkage of the CD

strongly depends on the type of resist and that LER decreases as a function

of accumulated dose. The resist shown by Fig. 2.21 has a stronger decay

(the shrink at 8 integration frames is more than 3 nm). This demonstrates

that the risk of resist shrinkage is real and has a significant impact.
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2.5 Conclusion

The off-line determination of LER in top-down SEM image requires low

noise images. This means that we need a higher dose or we filter the SEM

image before edge detection. However, by increasing the dose we run the

risk of resist shrinkage. We have shown that the effect of transversal and

longitudinal filtering cannot be ignored, even when considering an opti-

mized filter strength. We conclude that the best solution is to avoid a filter

at all.

We developed a different method in which we match the approximated

SEM signal profile against the raw (unfiltered) amplitude of edges in a SEM

image. The SEM signal profile is obtained by integrating an experimental

top-down SEM image of line edges in the direction of the edges. With

this method it is possible to detect the edge displacements in very noisy

images without using a filter. In fact, this method works without using any

post-processing of SEM images.

In a simulation study we show that LER can still be determined from

very noisy images with only 2 electrons per pixel on average (≈ 10 µC/cm2).

The PSDs are generally averaged over many line edges to reduce the sta-

tistical error. However, even a single image with 12 line edges, produces

an estimation of the LER with a relative error of only 10%. Furthermore,

increasing the dose beyond 20 electrons per pixel does not significantly

improve the LER determination.

Finally, we have applied the method to experimental CD-SEM images.

We have accomplished an experiment where a pattern of lines and spaces

is repeatedly imaged with the lowest possible settings of a CG4000 CD-

SEM from Hitachi. For each consecutive image, the net accumulated dose

increases, which causes the resist to shrink. We have analyzed two different

types of resist and used multi-exponential decay model to characterize the

shrinkage. What is observed is that most of the shrinkage happens in the

very first few frames and is non-linear of nature. In addition, we have

observed that LER decreases for accumulating dose.

We conclude that low voltage and low dose CD-SEM image analysis is

a necessary prerequisite for reliable characterization of CD and LER.
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Chapter 3

The physics of electron

scattering in matter

The purpose of this chapter and the upcoming chapters is to provide a de-

tailed description of our electron-matter interaction simulator. There are

two separate topics to be mentioned: we have (1) physical models and (2)

the details of the implementation. In this chapter we only consider the phys-

ical models. In general, the physics of electron scattering can become very

complicated depending on what level of detail must be included. Therefore,

it is very important that we frame our intentions more precisely. Let us first

discuss what we would like to simulate. We would like to (1) calculate SEM

images of a given arbitrary complex solid geometry, and (2) determine the

spatial distribution of electron interactions inside resist. The calculation of

SEM images will be used for advanced studies concerning the dimensional

metrology of patterns of lines and spaces (chapter 5). The determination

of the spatial electron distribution is useful for computational lithography

(chapter 6). In either case, the contents of this chapter is designed in such a

way as to provide the interested reader with a consistent and self-contained

theoretical description of electron scattering in matter.

Let us briefly discuss how this chapter is organized. At first we in-

troduce and discuss the very first principles of electron scattering, such

as Beer-Lambert absorption, the mean free path, (differential) scattering
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cross-sections and sampling of distributions. The physics of scattering is

then divided into two separate sections: elastic and inelastic scattering

events. Special attention is given to the realm of low energy physics, in

which the scattering of electrons with acoustic phonons plays a crucial

role. We then proceed by introducing the physical effects occurring at an

interface. The latter includes the interaction with surface plasmons, trans-

mission, reflection and refraction of electrons. Finally we will discuss the

limitations of the present state of the art.

Throughout this chapter we will use three different unit systems: Inter-

national system of units , Gaussian units (G.S.) and natural units (A.U.).

To avoid confusion, system of units other than S.I. are expressed explicitly

in the right margin of each equation.

3.1 The basics of scattering

We begin our journey with the concept of electron scattering. One partic-

ular scattering event is illustrated in Fig. 3.1, where we have an electron

moving in a straight line in the direction of a target, which is located inside

the circle. Inside the circle, there is an interaction between the electron

and the target. The net result of this event, where the target is the frame

of reference, is the deflection of the electron by an angle θ.

Figure 3.1: The deflection of an electron caused by the interaction with a target
is shown.
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In general, there are a few possible types of scattering events for the electron

to be considered,

e− + T −→



e− + T elastic event (3.1a)

e− + T inelastic event (3.1b)

e− + T ? + · · · inelastic event (3.1c)

T ? absorption event (3.1d)

where T is the target and T ? implies that the target has changed in the in-

teraction process. In an elastic event, the energy of the electron is conserved

(Eq. 3.1a) and the electron is deflected by an angle. On the other hand,

inelastic events are characterized by energy-momentum transfer. Actually,

there are two subcases for the inelastic event. The first case (Eq. 3.1b) is

a purely dissipative one and the second case (Eq. 3.1c) involves additional

products (· · · ) following from the interaction process. The absorption event

(Eq. 3.1d) occurs when an electron is absorbed by a target and the elec-

tron is therefore not found after the interaction process. There is, in fact,

another event which is kind of special: the electron and the target can be

annihilated in a recombination event. In any case, the target T must be

seen as generic and could be, for example, a molecule, atom, electron, or

collective excitations, such as a plasmon or a phonon. Throughout this

chapter we will discuss the physics and models of the individual interac-

tions in detail. For the moment, however, we will be concerned with a far

more pragmatic question: what is the distance an electron travels before an

event occurs? All that we need to answer this question is a very intuitive

description about the number of scattered electrons inside matter. Suppose

that we have N initial electrons with energy E moving parallel through a

material in a particular direction. We expect that the number of electrons

that scatter within a slice ∆s is proportional to the number of electrons

going through that slice, i.e.,

∆N = −µ(E)∆sN (3.2)

where ∆N = Nafter −Nbefore relates to the number of scattered electrons,

39



N is the initial number of electrons and µ(E)∆s is the fraction of the num-

ber of electrons with energy E that scatter within a slice ∆s. There is an

important assumption that we would like to mention. The scattering like-

lihood inside the interaction volume, for which µ(E) applies, is assumed to

be homogeneous. In other words, any local change in the scattering likeli-

hood is a violation of homogeneity. As a consequence, the initial electrons

do not influence the scattering likelihood, nor is the scattering likelihood

influenced by the result of the scattering event. Neither, however, are really

true in reality and will be discussed further in the upcoming sections. Nev-

ertheless, let us proceed and note that N actually is the number of electrons

that have not scattered and are thus left unperturbed. In that view, let us

rewrite Eq. 3.2 as follows,

∆N

∆s
=
N(E, s+ ∆s)−N(E, s)

∆s
= −µ(E)N(E, s) (3.3)

By taking the limit of ∆s→ 0, we obtain a first-order differential equation

for the number of unperturbed electrons N . The solution to that equation

is,
N(E, s)

N0
= exp (−µ(E) · s) (3.4)

which we have written in such a way that it gives the ratio of the number of

unperturbed electrons N(E, s) to the number of initial electrons N0. The

latter becomes a probability function upon normalization,

p(E, s) =
exp (−µ(E) · s)∫∞

0 exp (−µ(E) · s′)ds′
= µ(E) exp (−µ(E) · s) (3.5)

This is the celebrated Beer-Lambert law and µ is known as the attenuation

coefficient of the material. The Beer-Lambert law gives us, in this case, the

probability that an electron with energy E propagates a distance s through

a medium without scattering. Now that we have a probability function, let

us determine the mean free path (MFP) by calculating the expected value,

λ(E) = µ(E)

∫ ∞
0
s exp (−µ(E) · s) ds =

1

µ(E)
(3.6)
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Although this basically answers our question, the distance before an event

occurs, however, is a random distribution. A random distance is obtained

via the cumulative probability,

p(E,S ≤ s) =
1

λ(E)

∫ s

0
exp

(
− s′

λ(E)

)
ds′ = 1− exp

(
− s

λ(E)

)
(3.7)

By inverse sampling of the cumulative probability, we can draw a random

distance before a particular event (associated with a certain MFP) occurs,

s = −λ(E) lnU (3.8)

where U is a random sample from the uniform distribution. In the latter

expression we have used that the distribution of 1− U is the same as U .

So far we have only considered a single type of scattering event with a

characteristic MFP defined by λ. Let us now discuss how the Beer-Lambert

law is affected by a variety of different possible scattering events. The

probability that an electron has not experienced any event within a given

distance s is determined by the product of the individual probabilities,

p(E, s) =

∏
i exp

(
− s
λi(E)

)
∫∞

0

∏
i exp

(
− s′

λi(E)

)
ds′

=

(∑
i

1

λi(E)

)
exp

(
−s
∑
i

1

λi(E)

)
(3.9)

Note that the latter is identical to Eq. 3.5 if, and only if we define the

total MFP as follows,
1

λ(E)
=
∑
i

1

λi(E)
(3.10)

Is this rule of addition of inverse MFPs applicable in general? The answer

is no. The addition rule relies on the assumption that all of the scattering

events considered in the summation are independent of each other. Another

case where the addition rule becomes questionable will be discussed later

when we consider the determination of the scattering cross-section of a com-

pound using its atomic constituents. Nevertheless, one might point out that

Eq. 3.10 actually corresponds with the addition rule of (differential) scat-

tering cross-sections. Indeed, the addition rule of scattering cross-sections
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is an intrinsic property of the Beer-Lambert law. To see this, let us go back

to Eq. 3.2 and assume that we can write the attenuation coefficient µ as

follows,

µ(E) = σ(E)ρn = σ(E)ρm
NA

M
(3.11)

where σ is the scattering cross-section, ρn is the number density, i.e. the

number of elements per volume, ρm is the mass density, NA is Avogadro’s

number and M is the molar mass. Since the attenuation coefficient µ relates

to the likelihood of scattering, then so does the scattering cross-section. We

already know that µ = λ−1 has units of inverse length and ρn has units

of inverse length to the third power. This means that σ must have units

of length squared. Indeed, the scattering cross-section can be interpreted

as the effective surface area for collision as seen by the electrons. The

addition rule shown in Eq. 3.10 can now be expressed in terms of scattering

cross-sections as follows,

1

λ(E)
=
∑
i

1

λi(E)
=
∑
i

σi(E)ρn,i (3.12)

For completeness we mention the discrete probability pi for a particular

event, which is determined by,

pi(E) =
σi(E)ρn,i∑
j σj(E)ρn,j

=
λ(E)

λi(E)
(3.13)

We now introduce the concept of differential scattering cross-sections. We

are free to define a probability density, from which we not only deduce the

likelihood of scattering in general but also, for example, in which direction.

The latter can be expressed as follows,

σT (E) =

∫ 2π

0

∫ π

0

∂σ(E)

∂Ω
sin θ dθdφ (3.14)

where σT is the total scattering cross-section and ∂σ/∂Ω is the angular dif-

ferential scattering cross-section with units of length squared per steradian.

The normalized angular probability density function for scattering is then
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given by,

p(E, θ) =
2π

σT (E)

∂σ(E)

∂θ
(3.15)

where we have assumed that the scattering is azimuthally symmetric. A

random scattering angle is then obtained, similar to what is done with

Eq. 3.7, by solving the integral equation,

U =

∫ θ

0
p
(
E, θ′

)
dθ′ (3.16)

for the scattering angle θ, where U is a random number with uniform dis-

tribution.

We would like to formulate the details and remaining theory on electron

scattering by considering the following experiment. Suppose that we have

a half-infinite sample of a perfectly conducting material, which is homoge-

neous with respect to the scattering likelihood of electrons. We expose the

sample with a constant beam of primary electrons with energy E. At first,

we will assume that the primary electron beam is perfectly monochromatic

and infinitely sharp. We also assume that the material-vacuum interface

plays no role in the interaction. We would like to study the electrons escap-

ing the material again. To that order, let us consider an analytical model

based on the Beer-Lambert law at first, which gives us the probability den-

sity that an electron with energy E at depth z travels to the interface and

escapes,

p(E, z) ∼
∫ 2π

0

∫ π
2

0
exp

(
− z

λ(E) cos θ

)
sin θ dθdφ (3.17)

where we have expressed the probability density function conveniently in

an angular-based coordinate system, see Fig. 3.2. Notice that expression

Eq. 3.17 assumes that the emission of electrons at depth z is isotropic. So

far we only considered the escape of the electrons from the sample, but what

about the distribution of electrons inside the sample? We can create a more

general version by introducing a probability density function to the inte-

grand. It is explained in words as follows. Upon exposure with a primary

electron beam of energy E, the electrons start to scatter around inside the
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Figure 3.2: The angular coordinate system for the scattering of electrons towards
the vacuum interface is shown. The probability that an electron at depth z escapes
to the surface in the direction of (θ, φ) is calculated by using the Beer-Lambert
law for the effective distance z/ cos θ.

material. Due to the inelastic collisions, we expect to find electrons with

an energy less than E within the sample. The general distribution is there-

fore a multivariate function which not only depends on the primary energy

E and depth z, but also on the energy of the electrons inside the sample

E′ and the direction (θ, φ) in which the electrons are moving towards the

interface. A more general case is therefore written as follows,

p(E, z) ∼
∫ E

0

∫ π
2

0
S
(
θ, z, E′, E

)
exp

(
− z

λ(E′) cos θ

)
sin θ dθdE′ (3.18)

where we have, without loss of generality, applied azimuthal symmetry for

a homogeneous material. The first term S(θ, z, E′, E) in the innermost

integrand gives us the probability to find an electron at depth z with en-

ergy E′ moving in the direction of θ. The second term (exponential) gives

the probability that this particular electron reaches the interface and es-

capes. We must emphasize that Eq. 3.18 has severe limitations in view of

reality. First of all, electrons can only move in a straight line to the inter-

face and escape the material without any intermediate collisions. Second,

energy-momentum transfers between the electron and the material are not

considered. There are no interface effects included (absorption, reflection,
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transmission, interactions with surface plasmons, . . .). In view of these lim-

its, we will restrict ourselves for the moment to elastic backscattered elec-

trons only. The elastic backscattered electrons are the (primary) electrons

that have penetrated the material and then directly scattered elastically out

of the material again without losing energy. Furthermore, we assume that

the backscattering of electrons occurs without preference for any particular

direction. This implies that the distribution function simplifies to

S
(
θ, z, E′, E

)
∼ δ
(
E′ − E

)
exp

(
− z

λ(E)

)
(3.19)

which actually is the Beer-Lambert law for the probability that a primary

electron with energy E reaches a depth of z. By substitution, we arrive at

the following integral,

p(E, z) ∼
∫ π

2

0
exp

(
− z

λ(E)

cos θ + 1

cos θ

)
sin θ dθ (3.20)

We now determine the cumulative probability to quantify the likelihood

that backscatters escape from within a certain depth,

p(E,Z ≤ z) =

∫ z
0 p(E, z

′) dz′∫∞
0 p(E, z′) dz′

=

∫ z
0 p(E, z

′) dz′

λ(E)(1− ln 2)
(3.21)

The cumulative probability function is shown in Fig. 3.3 in the dimension-

less variable z/λ(E). As a rule of thumb, we can see that approximately

95% of the backscattered electrons escape from within a distance of λ(E).

Now that we have a rule of thumb for elastic backscatters, let us consider

all the other electrons emitted from the sample. In order to proceed, we

must somehow determine the function S(θ, z, E′, E) in Eq. 3.18 for a more

general case. We have already seen that λ(E) can be determined from the

differential scattering cross-sections. In addition, it turns out that the func-

tion S can also be determined from the differential scattering cross-sections

by using a method which we will introduce in a moment. In fact, we will

show that some of the aforementioned shortcomings related to Eq. 3.18 can

be resolved.
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Figure 3.3: The cumulative probability for backscattered electrons to escape
from a half-infinite sample is shown.

This brings us to describe the rigorous Monte-Carlo method for electron

transport. The idea is to take the Beer-Lambert law on a per event basis for

every electron. The moment an electron enters the material, we will sample

the scattering probability and draw a random distance. The trajectory of

the electron is updated accordingly. In the case of inelastic events, we will

create new particles which will be tracked as well. The new particles could,

in turn, create other particles. The net result of that is a cascading process,

where we start with a single primary electron and end with a nested tree

of descendants. Because of the latter, the rigorous Monte-Carlo method,

where each descendant is tracked individually, is known to be notoriously

slow. A detailed discussion on performance (and a solution to lengthy

computation times) is given in chapter 4. Nevertheless, additional physical

models can be included whenever an electron reaches the surface prior to es-

caping the material. For example, a quantum mechanical transmission and

reflection model will be introduced in Section 3.5. The function S simply

follows from the distribution of electrons inside the material as the rigorous

Monte-Carlo method is applied. It is important to note that the rigor-

ous Monte-Carlo method requires the differential scattering cross-sections

for every relevant scattering event. The upcoming sections are therefore

devoted to the determination of the differential scattering cross-sections.
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3.2 Elastic electron scattering

In an elastic event, the electron is deflected by an angle θ without changing

the energy. In reality, there can be a certain transfer of energy between

the electron and a target. However, we neglect the recoil energy as the

mass of the electron is orders of magnitude smaller than that of a typical

target. We will concern ourselves with the determination of the elastic

angular differential scattering cross-sections shown in Eq. 3.14. The elastic

differential scattering cross-sections can be calculated ab-initio for all of

the atomic elements of the periodic table, see for example Ref. 37. Let us

outline the details of the calculation, which involves the elastic scattering

of an electron wave against a central scattering potential. The latter is a

textbook example of partial wave analysis (PWA), which is typically based

on the Schrödinger equation and hence does not account for relativistic

effects. Interestingly, and as counter intuitive as it may seem, relativistic

effects are also important at lower energies. The most important effect is

the spin-orbit coupling. Relativistic effects are accounted for in the Dirac

equation, which in the system of natural units, i.e. ~ = c = me = 1, reads,

[α · p+ β + V (r)]ϕ = Wϕ (A.U.)(3.22)

where W is the total energy of the electron in units of mc2, the distance r is

measured in units of ~/mc,

α =

(
0 σ

σ 0

)
and β =

(
I 0

0 −I

)
(A.U.)(3.23)

In the latter, I is the 2×2 identity matrix and σ = (σ1, σ2, σ3) are the Pauli

matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A.U.)(3.24)

It is not our intention to duplicate literature, but for the sake of com-

pleteness, let us summarize the method of PWA for the relativistic Dirac
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equation. At first, the Dirac Eq. 3.22 is reduced to a single first-order

differential equation,37, 38, 39, 40

dφ±l (r)

dr
=
k±

r
sin
(
2φ±l (r)

)
− cos

(
2φ±l (r)

)
+W − V (r) (A.U.)(3.25)

where φ±l is a function related to the phase shifts and the plus- and minus-

sign represent the spin-up and spin-down case respectively. In particular,

k+ = −l− 1 = −
(
j + 1

2

)
and k− = l = j + 1

2 . For each quantum number l,

the phase shifts for spin-up and spin-down are calculated as follows,

tan δ±l =
κjl+1(κr)− jl(κr)

[
(W + 1) tanφ±l + (1 + l + k±)/r

]
κnl+1(κr)− nl(κr)

[
(W + 1) tanφ±l + (1 + l + k±)/r

] (A.U.)(3.26)

where jl(κr) is the spherical Bessel function, nl(κr) is the spherical Neu-

mann function, κ2 = W 2−1 and φ±l is the limit of φ±l (r) as r →∞. Notice

that κ is the relativistic kinetic energy. The differential scattering cross-

section for an unpolarized beam of electrons is now calculated as follows,

dσ

dΩ
= |f(θ)|2 + |g(θ)|2 (A.U.)(3.27)

where the direct scattering amplitude f(θ) and spin-flip scattering ampli-

tude g(θ) are determined by,

f(θ) =
1

2iκ

∞∑
l=0

[
(l + 1)

(
exp

(
2iδ+

l

)
− 1
)

+ l
(
exp

(
2iδ−l

)
− 1
)]
Pl(cos θ) (A.U.)

(3.28)

g(θ) =
1

2iκ

∞∑
l=1

[
exp

(
2iδ−l

)
− exp

(
2iδ+

l

)]
Pl(cos θ) (A.U.)(3.29)

In practice, the details of the calculation must be found in the choices that

can be made for the interaction potential V (r).

We could calculate the elastic scattering cross-sections ourselves, pro-

vided that we have the interaction potential at hand. Fortunately, a pro-

gram called ELSEPA exists which does this exactly for us.40 In addition,

the ELSEPA program includes sophisticated physical models for the inter-
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action potential. We will use the ELSEPA program in the remainder of

this thesis for the calculation of elastic scattering cross-sections. To provide

more insight, we would like to discuss the optical-model potential which is

used by that program,

V (r) = Vst(r) + Vex(r) + Vcp(r)− iWabs(r) (A.U.)(3.30)

Let us briefly mention each of the terms in the optical-model potential,40

• The electrostatic potential, Vst(r), accounts for the interaction with

the electron and nuclear charge distributions of the atom. The elec-

trostatic potential is defined as

Vst(r) = −e [ϕn(r) + ϕe(r)] (A.U.)(3.31)

where ϕn is the contribution from the nucleus and ϕe is the contribu-

tion from the electron cloud. The ELSEPA program uses the Fermi

distribution for the nuclear charge and numerical Dirac-Fock densities

obtained from density functional calculations by default.

• The exchange potential, Vex(r), accounts for the indistinguishability

of the incident electron from the electrons of the atom. The ELSEPA

program uses the Furness-McCarthy exchange potential by default.

• The correlation-polarization potential, Vcp(r), accounts for the polar-

ization of the atomic charge as the electron approaches the atom. The

net result is an electric field due to an induced dipole moment which

attracts the electron. We use the implementation of the elaborate

local density approximation (LDA) correlation-polarization potential

in the ELSEPA program.

• The absorption potential, Wabs(r), accounts for a loss of particles

from the elastic to the inelastic channels above the first excitation

threshold. It is modeled by means of LDA, where it is assumed that

the electron interacts with the electron cloud as if it is moving through

a homogeneous electron gas.
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We would like to emphasize that the optical-model potential given by

Eq. 3.30 applies to free atoms only. The scattering of electrons by an atom

bound to a crystal structure can effectively be described by the muffin-tin

model. The electrostatic potential is defined as follows,

Vst,mt(r) = Vst(r) + Vst(2rmt − r) (A.U.)(3.32)

where 2rmt is the average distance between two neighboring atoms. What

is assumed, is that the electrons of the neutral atom are confined to within

a sphere of radius rmt centered at the nucleus. This implies, for example,

that for distances beyond rmt, the electrostatic potential of a bound atom

is significantly smaller than that of a free atom, see Fig. 3.4.
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Figure 3.4: The electrostatic potential of silicon as used in the ELSEPA program
is shown. The muffin-tin radius rmt equals 1.175 Å. Note that for distances beyond
rmt, the electrostatic potential of a bound atom (muffin-tin model) is smaller than
that of a free atom.
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As a consequence, the differential scattering cross-section at smaller angles

are lower than for a free atom. The optical-model potential for the muffin-

tin approximation is defined as follows,

Vmt(r) =

Vst,mt(r) + Vex(r) + Vcp(r)− iWabs(r) if r ≤ rmt

Vst,mt(rmt) + Vex(rmt) + Vcp(r) if r > rmt

(A.U.)(3.33)

Although this provides us a first step towards the scattering of electrons in

a solid, the fact that the potential function is defined as rotational symmet-

ric, and hence only depends on the scalar r, in Eq. 3.22 sets a limit to what

can be achieved. For the purpose of demonstration, we have calculated the

elastic MFP for silicon using the optical-model potential function, which is

shown in Fig. 3.5. The specific models used for the optical-model potential

are the default of ELSEPA, except for the correlation-polarization poten-

tial, where we have used the LDA model. For each curve we have assumed

a number density of approx. 5 · 1022 silicon atoms per cubic centimeter.

The refinements shown in Fig. 3.5 are cumulative from top to bottom in
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Figure 3.5: The elastic MFP of silicon for increasing level of detail to the free-
atom potential is shown. Notice the sensitivity of the MFP to the potential as the
kinetic energy decreases.
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the legend. This means, for example, that the curve for charge polarization

includes the exchange correction and the muffin-tin approximation as well.

What we are trying to show here is that the elastic MFP becomes sensitive

to the details of the potential as we approach lower electron energies. Be-

low an energy of approx. 100 eV, the additional terms in the optical-model

potential have an enormous impact on the elastic MFP. This, however, is

opposite for higher electron energies, where we can see that none (except

for muffin-tin) really have a significant effect on the elastic MFP. The ef-

fect on the angular probability of scattering can be seen in Fig. 3.6, where

we show the differential scattering cross-section at an energy of 100 eV for

various models of the optical-model potential. Here we can see that the
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Figure 3.6: The elastic differential scattering cross-section of silicon for E =
100 eV is shown. The scattering angle is taken with respect to the incident direc-
tion of the electron.

differences associated with the terms of the optical-model potential are rel-

atively small perturbations, but integrate out to larger differences in the

elastic MFP. We conclude that the optical-model muffin-tin potential given

by Eq. 3.33 fails to accurately describe the interaction of electrons with

the atoms bound to a crystal lattice at lower energies. A more accurate
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result is obtained by a full three-dimensional function for the nuclear and

electron charge density. In view of the latter, we identify the following two

additional effects originating from the periodicity of the lattice:

• Coherent scattering resulting into constructive and/or destructive in-

terference of the scattered electron wave (Bragg diffraction).

• The electron wavefunction is expected to behave like a Bloch-electron

with the periodicity of the lattice.

Unfortunately, the potential in Eq. 3.22 only depends on the scalar r and

thus it is not possible to have a full three-dimensional analysis in the present

calculation. What we can do however, is predict the effect of coherent

scattering with free atoms (with radial potential function) in a lattice by

introducing to Eq. 3.27 a term for a spatial dependent phase shift,40

F (θ) =
∑
i

exp (iq · ri)fi(θ) (A.U.)(3.34)

G(θ) =
∑
i

exp (iq · ri)gi(θ) (A.U.)(3.35)

where q relates to the momentum transfer, ri is the position vector of the

nucleus of the i-th atom and fi(θ) and gi(θ) are the scattering amplitudes

for the free atom. To see the difference, we calculate the differential scat-

tering cross-sections by using the lattice (diamond) structure of silicon (see

Fig. 3.7) and vary the number of unit-cells. We consider a single unit cell,

three unit cells per dimension (27 unit cells in total) and five unit cells per

dimension (125 unit cells in total). The result of that in units Angstrom

per steradian per silicon atom is shown in Fig. 3.8, and the effect on the

elastic MFP is shown in Fig. 3.9. Let us discuss the results of the aforemen-

tioned figures. First of all, note that the differential scattering cross-section

for coherent scattering oscillates around the curve for the free-atom cross-

section. This comes as no surprise: the curves for coherent scattering are

based on scattering with free atoms located at the lattice sites of the unit

cell shown in Fig. 3.7. The oscillatory behavior comes from constructive

and destructive interference of the scattered electronwave. Furthermore,
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Figure 3.7: The diamond structure of a silicon unit cell is shown. The atoms are
tetrahedrally bonded by sharing valence electrons. The lattice constant is 5.43 Å.
The number density is approx. 5 · 1022 silicon atoms per cubic centimeter. Image
taken from the book of Shockley.41
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Figure 3.8: The effect of coherent scattering in silicon on the differential scat-
tering cross-section is shown. The electron has an incident energy of E = 100 eV.
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Figure 3.9: The effect of coherent scattering in silicon on the elastic MFP.

note that the elastic MFPs in Fig. 3.9 show a peculiar behavior: the elas-

tic MFP is decreasing significantly as we increase the number of unit cells

and does not seem to convergence. We suspect this is an artificial effect

attributable to the simplistic view of scattering with free atoms located at

the lattices sites. We are therefore tempted to follow the advice given in the

ELSEPA manual and accept the muffin-tin model as a first order approx-

imation to solid state effects. Nevertheless, we cannot ignore the fact that

the real lattice structure is not accounted for in the muffin-tin model. We

argue that the most acceptable solution is to include both effects: Bragg

diffraction and a modified electron density function to account for the ag-

gregation. We will come back to this issue at a later stage in the thesis.1 In

any case, we should, for the sake of the validity of single-atom scattering,

only consider electron energies where the electron wavelength� the lattice

constant. The electron wavelength can be estimated by using the formula

1To be more precise, we will make the connection to experiments once we have a fully
operational electron-matter interaction simulator.
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of de Broglie,

λe− =
h

p
=

h√
2mE

(
1 + E

2mc2

) ≈ h√
2mE

(3.36)

where E is the kinetic energy of the electron and the approximate result

applies to the non-relativistic case. The electron wavelength as a function

of kinetic energy is shown in Fig. 3.10. We have added a typical lattice

lattice
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[Å
]

kinetic energy [eV]

Figure 3.10: The electron wavelength as a function of kinetic energy is shown.
We have included an additional tic to the y-axis for a typical lattice constant
of 5 Å. Notice that for low kinetic energies, the electron wavelength approaches
the lattice constant.

constant of approx. 5 Å to the vertical axis. We conclude that, for energies

smaller than 10 eV, the electron wavelength becomes on the order of the

lattice constant. This means that the models of elastic scattering presented

in this section should no longer be used for that regime. There is a special

Section 3.4 in this chapter devoted to the regime of low-energy scattering.

We would like to conclude this section with a graph (Fig. 3.11) of the

elastic MFP for various materials: aluminum (metal), silicon (semiconduc-

tor), gold (metal) and silica (insulator). The MFP of each curve is de-
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Figure 3.11: The elastic MFP for various materials is shown. Each curve is
obtained by using the full options of ELSEPA. Details for the compound silica
are given in the main text.

termined using the full options of ELSEPA. For the compound silica, we

have used the (weighted) addition rule (SiO2 → 1
3Si + 2

3O) to approximate

the total effective elastic scattering cross-section.2 For the MFP we have

used the actual number density associated with silica, rather than weighted

average number density of the constituents.

3.3 Inelastic electron scattering

In this section, we concern ourselves with inelastic scattering events. In

contrast to the theory of elastic events from the previous section, the in-

elastic event is associated with energy-momentum transfer. We will pursue

the idea of a dielectric in the sense that the presence of an electron per-

turbs the equilibrium charge distribution of the material. Consequently,

the material becomes polarized and induces an irreversible electromagnetic

stopping force on the electron. Starting from first principles, we derive the

2There is no muffin-tin radius rmt for oxygen. Instead, we have used the muffin-tin
radius of silicon for the scattering cross-sections of oxygen.
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relevant dielectric function expressions for electron energy losses in matter.

We would like to mention that the derivation closely follows the elaborate

work of Francesc Salvat-Pujol.42 However, instead of a more complicated

generic case, we present a derivation specific for bulk losses. The idea is

that we would like to provide sufficient theoretical background for dielectric

losses to at least understand the key assumptions and physical principles.

Suppose that we have an electron inside a homogeneous and isotropic

medium of infinite size. The electric field is determined by Maxwell’s equa-

tions, which we choose to express in the Gaussian system of units. In

addition, we choose to work in the Coulomb gauge, which implies that the

vector potential A(r, t) is transverse. The time-dependent electric field

E(r, t) is then expressed in terms of a scalar potential ϕ(r, t) and vector

potential A(r, t) as follows,

E(r, t) = −∇ϕ(r, t)− 1

c

∂A(r, t)

∂t
(G.S.)(3.37)

We assume that the material responds linearly to the motion of the electron

as it traverses through the material. In other words, the electric displace-

ment D(r, t) relates to the electric field E(r, t) in the following way,

D(r, t) =

∫ ∞
−∞

∫
R3

ε
(
r − r′, t− t′

)
E
(
r′, t′

)
d3r′dt′ (G.S.)(3.38)

We recognize the integral as a convolution and therefore, by the theorem

of convolution, transforms to a plain multiplication in Fourier space,

D(q, ω) = ε(q, ω)E(q, ω) (G.S.)(3.39)

where q and ω are the Fourier conjugate variables with respect to position

and time respectively and ε(q, ω) is the dielectric function of the material.

We assume that the speed of the electron is much less than the speed of

light such that relativistic effects can be neglected. This implies that the

transverse components of the electromagnetic field can be ignored and thus
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we set the vector potential equal to zero,

E(r, t) ≈ −∇ϕ(r, t) (G.S.)(3.40)

With the assumptions at hand, we determine our first quantity of interest:

the stopping power (SP), i.e.,

SP (E) = −dE

ds
= −1

v

dE

dt
(G.S.)(3.41)

where we have used that ds = vdt. In order to account for the influence of

the material, we must consider the total energy, viz. kinetic plus potential,

of the electron,

dE

dt
=

d

dt

[
1

2
mv · v − eϕind(r, t)

]
r=vt

(G.S.)(3.42)

where ϕind(r, t) is the induced potential on the electron. The time deriva-

tive can be worked out to give,

dE

dt
= v · F ind(r, t)− edϕind(r, t)

dt

∣∣∣∣
r=vt

= −e∂ϕind(r, t)

∂t

∣∣∣∣
r=vt

(G.S.)(3.43)

where F ind(r, t) is the induced force on the electron, which has canceled by

virtue of applying the multivariable chain rule to the induced potential. It

comes as no surprise that the change in energy of the electron is ultimately

determined by the explicit time dependence of the scalar potential. We now

need to figure out how the induced potential ϕind(r, t) relates to the dielec-

tric function ε(q, ω) of the material. Evidently we find that the induced

potential follows from Maxwell’s equations for the dielectric displacement,

∇ ·D(r, t) = 4πρ(r, t) (G.S.)(3.44)

The charge density ρ(r, t) on the RHS must account for the electron, which

we model as a point charge using the Dirac delta,

ρ(r, t) = −eδ(r − vt) (G.S.)(3.45)
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The connection to the dielectric function is made by first transforming

Eq. 3.44 to Fourier space,

iq ·D(q, ω) = −2eδ(q · v − ω) (G.S.)(3.46)

where the Fourier transform3 of the charge density of the point charge is

evaluated as,

ρ(q, ω) = − e

(2π)2

∫ ∞
−∞

∫
R3

δ(r − vt) exp [−i(q · r − ωt)] d3r′dt (G.S.)(3.47)

= − e

(2π)2

∫ ∞
−∞

exp [−it(q · v − ω)] dt (G.S.)(3.48)

= − e

2π
δ(q · v − ω) (G.S.)(3.49)

The expression for the electric field E(q, ω), in terms of the dielectric func-

tion ε(q, ω), is found by substituting Eq. 3.39 into Eq. 3.46. The result of

that yields the following expression for the electric field in Fourier space,

E(q, ω) = i
2qe

q2

1

ε(q, ω)
δ(q · v − ω) (G.S.)(3.50)

What we actually have found is an expression for the total electric field

E(q, ω). What we need, however, is the induced electric field E ind(q, ω).

In order to obtain the induced electric field, the self-contribution of the

electron must be subtracted from the total electric field,

E ind(q, ω) = E(q, ω)− E0(q, ω) = i
2qe

q2
δ(q · v − ω)

[
1

ε(q, ω)
− 1

]
(G.S.)(3.51)

where E0(q, ω) is the electric field when moving through vacuum. The

expression for the induced potential is obtained via the Fourier transform

of Eq. 3.40,

E ind(q, ω) = −iqϕind(q, ω) (G.S.)(3.52)

which gives us the following expression for the induced potential in Fourier

3We use symmetric normalization factors of 1
2

√
2 for the forward and inverse Fourier

transforms.
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space,

ϕind(q, ω) = −2e

q2
δ(q · v − ω)

[
1

ε(q, ω)
− 1

]
(G.S.)(3.53)

We are now ready to go back to our expression for the stopping power,

SP (E) =
e

v

∂ϕind(r, t)

∂t

∣∣∣∣
r=vt

(G.S.)(3.54)

and rewrite the term for the induced potential ϕind(r, t) as the inverse

transform of ϕind(q, ω), i.e.,

SP (E) = −i e
v

1

(2π)2

∫ ∞
−∞

ω

∫
R3

ϕind(q, ω) exp [it(q · v − ω)] d3qdω (G.S.)(3.55)

What remains to be done is: (1) substitute the expression for the induced

potential, (2) transform the integral to spherical coordinates, (3) assume

that ε(q, ω) = ε(q, ω) and integrate out the azimuthal angle, (4) change

of variables θ → qv cos θ and work out the Dirac delta and finally (5) use

that ε(q, ω) = ε?(−q,−ω) to arrive at,

SP (E) =

∫
ωτ(E,ω)dω (G.S.)(3.56)

where τ(E,ω) is proportional to the probability for an energy-loss between

ω and ω + dω per unit distance,

τ(E,ω) =
e2

πE

∫
dq

q
Im

[
− 1

ε(q, ω)

]
(G.S.)(3.57)

and the integration domains of both q and ω are determined by the kine-

matics of the inelastic collision. This is the celebrated expression for the SP

of an electron from dielectric theory, see for example Refs. 43, 44, 42. No-

tice that we have used the non-relativistic expression to relate the velocity

of the electron v to the kinetic energy E. In other words, the dispersion

relation of a free electron is applied, which in turn defines the energy scale,

see Fig. 3.12. Let us emphasize that the bending of the dispersion relation

near the Brillouin zone boundary is neglected in the present model.
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Figure 3.12: The schematic dispersion relation for electrons in a semiconductor
is shown. The dashed red line corresponds to the free electron model, which is
used in the dielectric function model. In reality, the dispersion relation bends near
the Brillouin zone boundary (solid black line). The gray area in between is the
forbidden energy gap. The dashed black line inside the bandgap represents the
Fermi level.

A first order approximation for the latter is obtained by assuming that the

bottom of the conduction band is purely parabolic,

E = ECB +
(~k)2

2m?
(3.58)

where ECB is the energy at the bottom of the conduction band, m? is the

effective mass which determines the curvature of the band and ~k defines

the crystal momentum of the electron. What is assumed in the dielectric

function model is that ECB is zero and that the effective mass m? is equal to

the free electron mass me. This implies, for example, that Eq. 3.57 should

only be used for energies E much larger than the Fermi level.

Another quantity of interest is the inelastic inverse MFP, which is ob-

tained by directly integrating τ(E,ω),

1

λ(E)
=

∫
τ(E,ω)dω (G.S.)(3.59)

Let us discuss the kinematics of the inelastic collision. It is more convenient

to use natural units at this point, i.e. ~ = c = me = 1, such that energy-

loss (~ω) coincides with the Fourier variable ω and momentum transfer (~q)
coincides with the Fourier variable q. The momentum transfer q is deter-
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mined as follows,

q = p− p′ (A.U.)(3.60)

where p is the wavevector before and p′ is the wavevector after the collision.

The lower and upper bound on the momentum transfer is determined by

squaring the expression for momentum transfer,

q2 = p2 + p′
2 − 2p′p cos θ (A.U.)(3.61)

where θ is the polar scattering angle. In the non-relativistic limit, we obtain

the following expression for the momentum transfer in terms of energy,

q2 = 2E + 2(E − ω)− 4
√
E(E − ω) cos θ (A.U.)(3.62)

The maximum (q+) and minimum (q−) momentum transfer corresponds to

a scattering angle of θ = π and θ = 0 respectively and equals,

q± =
√

2E ±
√

2(E − ω) (A.U.)(3.63)

Note that this last expression assumes that the energy-momentum transfer

is the same as that for a free electron in vacuum.

Although we have defined the integration limits of Eq. 3.57, we still

cannot calculate the inelastic scattering probability τ(E,ω). The reason

is that we need to know the “imaginary part of the inverse of the dielec-

tric function”. What is this complex function and how do we obtain it?

The dielectric function can be written as a complex function in terms of a

dispersive ε1(q, ω) and absorptive ε2(q, ω) term as follows,45

ε(q, ω) = ε1(q, ω) + iε2(q, ω) (A.U.)(3.64)

The connection to observables is made through the optical limit q ≈ 0,

ε(0, ω) = ε(ω) = (η(ω) + iκ(ω))2
(A.U.)(3.65)

where the RHS is the complex index of refraction with the observables η(ω)

as the refractive index and κ(ω) as the extinction coefficient. The observ-
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ables are linked to the dielectric function in the optical limit by,

ε1(ω) = η(ω)2 − κ(ω)2
(A.U.)(3.66)

ε2(ω) = 2η(ω)κ(ω) (A.U.)(3.67)

The real (ε1) and imaginary (ε2) part of the complex dielectric function

in the optical limit share a deep connection through the Kramers-Kronig

relations,46

ε1(ω) =
2

π
P
∫ ∞

0

ω′ε2(ω′)

ω′2 − ω2
dω′ (A.U.)(3.68)

ε2(ω) = −2ω

π
P
∫ ∞

0

ε1(ω′)− 1

ω′2 − ω2
dω′ (A.U.)(3.69)

where P is the Cauchy principal value. The Kramers-Kronig relations are

based on the fundamental principle of causality applied to the optical re-

sponse of a medium: effect cannot precede cause. The electron energy-loss

function (ELF) shown in Eq. 3.57 is defined in terms of these observables

as follows,

Im

[
− 1

ε(ω)

]
=

ε2(ω)

ε1(ω)2 + ε2(ω)2 =
2η(ω)κ(ω)

η(ω)2 + κ(ω)2 (A.U.)(3.70)

The electron ELF can be determined, for example, from electron energy-loss

spectroscopy (EELS). The idea is to measure the energy losses of the inci-

dent electrons after interaction with a particular target. The spectroscopy

yields an electron spectrum in which the number of electrons as a function

of energy-loss is given. Let us give a brief and generic description of a typi-

cal electron energy-loss spectrum. The first peak in an electron energy-loss

spectrum is found at zero and is called the zero-loss peak. The zero-loss

peak represents the fraction of transmitted electrons in TEELS or reflected

(backscattered) electrons in REELS with negligible energy losses.4 Next, a

broader peak is found within approximately 50 eV away from the elastic-

peak. This peak is the result of scattering with the outer-shell electrons and

4With negligible energy losses we mean no energy loss at all (pure elastic) or a few
losses resulting from the interactions with phonons (quasi-elastic) for example.
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scattering with plasmons. In practice, we may find two peaks for losses less

than 50 eV: one for the bulk plasmons and one for the surface plasmons.

For energy losses typically larger than 100 eV we find sharp edges which cor-

respond to inner-shell electron excitations. Roughly speaking, each sharp

edge corresponds with a measure of the binding energy of an inner-shell

electron. In the acquisition of an electron energy-loss spectrum, we should

only consider electrons with only one inelastic event in the interaction. In

reality, multiple inelastic events cannot be ignored and hence form an in-

trinsic difficulty in the acquisition of an electron energy-loss spectrum. The

electron energy-loss spectrum can be retrieved nevertheless by means of one

or more deconvolution procedures. For example, see Refs. 47, 45 for a more

thorough discussion on the acquisition of electron energy-loss spectra from

measurements.

Let us discuss the electron ELF of silicon, which is shown in Fig. 3.13.

How do we tell that this is the electron ELF of silicon? There are several

characteristics in the electron ELF that reveal the identity of silicon. First
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Figure 3.13: The electron ELF for silicon is shown. The markers are actual
measurements, which are connected in the log-log figure by straight lines. The
loss function is taken from Ref. 44.

65



of all, let us enumerate the binding energies of the electrons of silicon. The

binding energies of the electrons for a free silicon atom can be found, for

example, in the Livermore evaluated electron library (EEDL).48 We have

summarized, for the convenience of the reader, the binding energies of all

14 electrons of silicon from the Livermore database in Table 3.1. We would

electron shell occupancy binding energy

K (1s1/2) 2 1828.5 eV
L1 (2s1/2) 2 151.55 eV
L2 (2p1/2) 2 108.67 eV
L3 (2p3/2) 4 107.98 eV
M1 (3s1/2) 2 13.63 eV
M2 (3p1/2) 2/3 6.55 eV
M3 (3p3/2) 4/3 6.52 eV

Table 3.1: The binding energies for the electrons of each subshell of free silicon
are shown. The values are taken from the Livermore evaluated electron library
(EEDL).

like to emphasize once more that Table 3.1 applies to a free silicon atom

only. This means that the lowest binding energies shown in Table 3.1 are of

no interest to us because of solid state physics. Nevertheless, the binding

energy of 1828.5 eV (associated to the two electrons in the K-shell) is identi-

fied by the rightmost sharp edge in Fig. 3.13. Unfortunately, the resolution

of the electron ELF shown in Fig. 3.13 does not allow us to resolve the in-

dividual binding energies of the L-shell electrons. What is observed instead

is that, in the vicinity of the binding energies of the electrons in the L-shell,

the electron ELF decreases less rapidly when compared to the sharp edge

of the K-shell. There is, in fact, another aspect in view of interaction with

inner-shell electrons: not every subshell has an equal probability of electron-

ionization. The scattering cross-section per subshell can also be found in the

Livermore database, viz. Ref. 48. We have, once more for the convenience

of the reader, made a graph of the electron-ionization scattering cross-

sections. The corresponding scattering cross-sections of the K- and L-shell

are shown in Fig. 3.14. Notice that the scattering cross-section, and hence

the probability for electron-ionization, of the K-shell is about 2 to 3 orders

less than the L-shell. Looking back at the electron ELF in Fig. 3.13, we see
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Figure 3.14: The electron-ionization scattering cross-section of the K- and L-
shell for free silicon is shown. The curves are derived from the Livermore evaluated
electron library (EEDL).

that the corresponding ratio between the K- and L-shell edge is of similar

magnitude. We would like to point out the, rather satisfactory, agreement

between the aforementioned characteristics of the measured electron ELF

with the ab-initio calculated electron-ionization scattering cross-sections of

the Livermore database! The reader is referred to Ref. 49 for intricate

details on the calculation of electron-ionization scattering cross-sections.

Another interesting feature of Fig. 3.13 is that near 1 eV, the electron ELF

practically drops to zero. This drop to zero-loss relates to the band gap of

silicon which is approx. 1.1 eV at room temperature. Below the band gap,

however, we still see non-zero amplitudes in the electron ELF. What are

these losses below the band gap? The answer is that below the band gap we

have losses due to the interaction with phonons.50 There are, in fact, two

types of phonons: acoustic and optical phonons. The losses below the band

gap in the electron ELF of Fig. 3.13 are due to optical phonons. The reason

is that energy losses associated to acoustic phonons are on the order of meV

and, hence, are not observed in the spectrum of Fig. 3.13. We will discuss
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losses due to acoustic and optical phonons in more detail in an upcoming

section on low-energy electron scattering. Another loss mechanism below

the band gap is given by Ref. 51. In that article it is discussed that losses

below the band gap could relate to transitions to exciton states5 below the

conduction band. This brings us to the following remark. The acquisition

of the electron ELF, i.e. Fig. 3.13, covers quite a large domain of energy

losses from various physical regimes. In fact, an electron ELF can range

from a few tens of meV up to a MeV and beyond. It seems unlikely that an

electron ELF for as much as nine orders is determined solely from EELS.

The truth is indeed that, in practice, energy-loss measurements originating

from different sources, such as optical measurements, EELS and atomic

photo-absorption data resulting from X-ray interactions are combined to a

single electron ELF, see for example Ref. 52. In this way, the determination

of the electron ELF usually involves Kramers-Kronig analysis to connect a

specific measurement of one observable to another optical observable.45 A

legitimate question rises: How do we know that the resulting energy-loss

function is accurate when the different experiments are combined? The

answer is that an energy-loss function is restricted by so called sum-rules.

We will not discuss the sum-rules further in this thesis. Instead, we would

like to refer to Refs. 43, 53, 54 for more discussion on the application of

sum-rules to energy-loss functions.

The use of optical data gives us at least two advantages: (1) a connection

to experiment through optical observables can be made, and (2) optical data

for a variety of materials is readily available.55, 56, 57, 58, 59 We would like

to point out, however, that the connection to experiment is made through

the optical limit, i.e. q ≈ 0. What we need in view of Eq. 3.57, however,

is a non-zero momentum-transfer energy-loss function. The connection to

the optical limit for non-zero momentum transfers can be made in several

ways. We will restrict ourselves to the connection made by Ashley,43

Im

[
− 1

ε(q, ω)

]
=

1

ω

∫ ∞
0

ω′ Im

[
− 1

ε(0, ω′)

]
δ

(
ω −

(
ω′ − q2

2

))
dω′ (A.U.)(3.71)

5The exciton is a quasi-particle: a bound state of an electron and electron-hole.
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where a quadratic extension into the momentum-transfer plane is assumed

and ω′ is the zero-momentum energy-loss. Let us review the physics con-

tained in the model of Ashley. The model of Ashley relates to the single-pole

approximation of the Penn model60, which in turn is based on the Lindhard

dielectric function. The Lindhard dielectric function εL(q, t) describes the

response of a degenerate free-electron gas to an external perturbation in

terms of energy-momentum transfer. It includes the following two basic

modes of energy absorption for the electron,

1. Electron-hole pair excitations.

2. Collective/plasmon excitations.

A shortcoming of the Lindhard dielectric function is that it cannot represent

the finite width of the plasmon resonance, nor the associated lifetime of

the plasmon. Nevertheless, let us proceed with the extension of Ashley.

The Dirac delta allows us to integrate out the momentum-transfer q which

results in the following expression,

τ(E,ω) =
1

2πE

∫ ∞
0

ω′ Im

[
− 1

ε(0, ω′)

]
F
(
E,ω, ω′

)
dω′ (A.U.)(3.72)

where,

F
(
E,ω, ω′

)
=

 1
ω(ω−ω′) for ω′ +

q2−
2 < ω < ω′ +

q2+
2

0 otherwise
(A.U.)(3.73)

What happened to the e2-term in front of the integral? Let us remind

the reader that we have switched to atomic units in which the elementary

charge e is set equal to one. We now express the inelastic inverse MFP as an

integral over zero-momentum energy transfer. By using Fubini’s theorem,

we change the order of the ω and ω′ integrals such that

1

λ(E)
=

1

2πE

∫ E
2

0
Im

[
− 1

ε(0, ω′)

]
L
(
E,ω′

)
dω′ (A.U.)(3.74)

which has an integral over zero-momentum energy transfer and where the
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function L(E,ω′) is defined as follows,

L
(
E,ω′

)
= ω′

∫ ω+

ω−

F
(
E,ω, ω′

)
dω (A.U.)(3.75)

In a similar way, SP (E) is calculated by multiplying the integrand of

Eq. 3.75 with ω. The lower integration limit follows from momentum con-

servation,

ω = ω′ +
q2
−
2

= ω′ +
(√

E −
√
E − ω

)2
(A.U.)(3.76)

Solving the latter for ω = ω− yields the following expression for the lower

limit,

ω− =
1

2
E

(
1 +

ω′

E
−
√

1− 2ω′

E

)
(A.U.)(3.77)

The upper integration limit evaluates to,

ω+ =
1

2
E

(
1 +

ω′

E

)
(A.U.)(3.78)

In the work of Ashley, an additional exchange corrected version of Eq. 3.75

is given. We refer to Ref. 43 for the analytic solutions of both the regular

and exchange corrected version.

It was observed by Kieft and Bosch from FEI company44 that several

refinements can be made to the quadratic extension of Ashley. The refine-

ments can be summarized as follows.

1. Introduce a distinction between the interaction with (1) outer-shell

electrons and plasmons, and (2) inner-shell electrons. It is assumed

that outer-shell electrons and plasmon interactions apply to ω′ <

50 eV.

2. Neglect the exchange correction of Ashley for ω′ < 50 eV. The ratio-

nale is that the dominant loss mechanism in this regime is through

the creation of a plasmon excitation, which then decays and subse-

quently creates a single electron-hole pair. Since plasmon excitations

are of bosonic nature, exchange corrections should not be applied.
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3. Restrict the energy loss such that a primary electron cannot end up

with an energy below the Fermi level. This is achieved by using a

modified upper limit, i.e. ω+ → 1
2E
(

1− EF
E + ω′

E

)
, where EF is the

Fermi level.

4. Introduce a rescale, Lc(E,ω
′) = 3

2L(E,ω′), for ω′ < 50 eV. The

rescale is introduced to compensate the underestimation of Eq. 3.75

with respect to experimental and theoretical sources. The authors of

Ref. 44 suspect that the limited validity is attributable to the sin-

gle plasmon-pole approximation of Ashley. We emphasize that the

authors have considered a constant factor of 3/2 for all materials.

5. Ignore momentum conservation for interactions with inner-shell elec-

trons. Instead of momentum conservation, the following phenomeno-

logical model is used,

L
(
E,ω′

)
=

∫ E+ω′

2ω′
ω′F

(
E,ω, ω′

)
dω = − ln

ω′

E
(3.79)

where the integrand is identical to Eq. 3.75, but with a modified

domain of integration.

The consequences for the above considerations lead to the following expres-

sion,

L
(
E,ω′

)
=


3
2 ln

[
2E
ω′

(
1 +

√
1− 2ω′

E

)
− 1

]
+ 3

2 ln E−EF−ω′
E−EF+ω′ for ω′ < 1

2E

− ln ω′

E for ω′ > 50 eV

0 otherwise

(A.U.)

(3.80)

Let us quantify the consequences of the refinements of Kieft and Bosch.

The resulting inelastic MFP is shown Fig. 3.15 and the SP is shown in

Fig. 3.16. We have also included the inelastic MFP and SP from Ashley

with and without the exchange correction applied. A few of the refinements

can be observed directly from the inelastic MFP in Fig. 3.15. Let us first

conclude that the effect of exchange correction for the inelastic MFP van-

ishes in the limit of higher electron energies. In that same limit, we observe
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Figure 3.15: The inelastic MFP of silicon for different dielectric function models
is shown.

that the inelastic MFP of Kieft and Bosch is about 1.5× lower than Ash-

ley’s version. This is a direct consequence of the rescale that was introduced

(item number 4 in the refinement summary). Also notice that the inelas-

tic MFP of Kieft and Bosch approaches ‘infinity’ at the left, i.e. where the

inelastic MFP becomes very steep, at kinetic energy somewhat higher than

Ashley’s version without exchange correction. This observation relates to

the decision to neglect the exchange correction (item number 2 in the re-

finement summary) and the restriction for energy losses below the Fermi

level (item number 3 in the refinement summary). The latter implies that

Kieft and Bosch start to run out of inelastic channels at an energy some-

what higher than Ashley. Similar effects are visible in the SP (Fig. 3.16).

Notice that the loss per distance of Kieft and Bosch is about 1.5× larger

than Ashley (without exchange correction) in the low energy regime. For

completeness we have added data from the National Institute of Standards

and Technology (NIST) to the SPs in Fig. 3.16. It should be noted that

the SP from NIST is calculated by means of the Bethe model61, 62 using

a density-effect correction63, 64. That calculation, however, becomes ‘ques-
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Figure 3.16: The SP of silicon is shown. This result is calculated using the
dielectric function model of Ashley, including exchange correction.

tionable’ at lower energies according to NIST, hence no data is given be-

low 1 keV. The expected error at 1 keV is on the order of 10% and decreases

for higher energies. We would like to refer to report no. 37 from the In-

ternational Commission on Radiation Units and Measurements (ICRU) for

more details.65 Whether or not the SP of Kieft and Bosch for electron ener-

gies lower than 1 keV follows experiment more closely, is an open question

we cannot address at the moment. The reason is that the measurement

of SPs at (very) low electron energies is problematic. We will come back to

validation of the models in another chapter.

For the moment, let us focus our attention back to the rigorous Monte-

Carlo method. What we need to determine, in addition to the inverse MFP,

is a way to find the energy loss for a particular inelastic event. The amount

of energy loss in an inelastic event is probabilistic of nature and hence

follows a particular distribution. What is this distribution and how do we

sample a random energy loss? At first we remind that, by virtue of Eq. 3.11,

the inelastic scattering cross-section is proportional to the inverse MFP. In

other words, we may interpret the integrand of Eq. 3.74 as an inelastic
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scattering probability density for the case of zero-momentum energy-loss

(ω′). As a result, we identify from the integrand the following normalized

probability density function,

p
(
E,ω′

)
=
λ(E)

2πE
Im

[
− 1

ε(0, ω′)

]
L
(
E,ω′

)
(A.U.)(3.81)

A random zero-momentum energy-loss is obtained via the cumulative prob-

ability by solving the following integral equation for ω′,

p
(
E,Ω′ ≤ ω′

)
=
λ(E)

2πE

∫ ω′

0
Im

[
− 1

ε(0, ω′)

]
L
(
E,ω′

)
dω′ = U (A.U.)(3.82)

where U is a random sample from the uniform distribution. What use

do we have for a zero-momentum energy-loss (ω′) anyway? Indeed, we

need to sample yet another distribution from which the actual energy-

loss (ω) can be determined, provided that ω′ is given. The corresponding

distribution is given by L(E,ω′). To see this, let us go back to Eq. 3.74. We

already discussed that the integrand can be seen as an inelastic scattering

probability density. Notice that the function L(E,ω′) is contained in the

integrand, which in turn contains an integral over ω. In other words, the

integrand of Eq. 3.74 actually is a probability density with respect to both

ω′ and ω,

p
(
E,ω, ω′

)
∼ ω′ Im

[
− 1

ε(0, ω′)

]
F
(
E,ω, ω′

)
(A.U.)(3.83)

where the function F on the RHS is given by Eq. 3.73. The cumulative

probability density function can be calculated analytically,

p
(
Ω < ω,ω′

)
=

ln
(

1− ω′

ω

)
− ln

(
1− ω′

ω−

)
ln
(

1− ω′

ω+

)
− ln

(
1− ω′

ω−

) (A.U.)(3.84)

A random energy loss is obtained by equating the cumulative distribution

function to a random sample from the uniform distribution and solve for ω.
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The result of that gives us the following relation for a random energy loss,

ω
(
U, ω′

)
=

ω′

1− exp
[
(1− U) ln

(
1− ω′

ω−

)
+ U ln

(
1− ω′

ω+

)] (A.U.)(3.85)

provided that a random number U from the uniform distribution and a zero-

momentum energy-loss ω′ are given. Let us summarize the determination

of a random energy loss in an inelastic scattering event:

1. Sample a random zero-momentum energy-loss by solving Eq. 3.82

using a random number from the uniform distribution. Preferably,

the cumulative integral is precomputed such that a random zero-

momentum energy-loss can be determined from a lookup table.

2. With ω′ at hand, determine a random energy-loss (ω) through Eq. 3.85

by using another uniformly distributed random number.

We would like to consider what have we achieved so far by using a prag-

matic example. Suppose that we have an electron with energy E which is

about to scatter inelastically. We have explained that the distance to that

event is determined randomly by using the total MFP, which includes the

inelastic MFP. We can calculate the energy loss ω and hence determine that

the electron will end up with an energy E−ω after the inelastic event. But

where is the energy ω transferred to? Surely, in view of energy conservation,

it must go somewhere! Indeed, a solid theory on inelastic scattering must

include details of specific inelastic channels. We will restrict ourselves to

the two basic inelastic channels which are captured by the model of Ashley:

electron-hole pair excitations and collective/plasmon excitations. Let us

first discuss the most elaborate one: electron-hole pair excitations. What

happens physically is that an electron from a lower energy state is excited

to a higher energy state. This is illustrated in the schematic band structure

shown in Fig. 3.17. In reality, the band gap of a semiconductor can be

classified into two categories: either it is a direct or an indirect band gap.

The distinction is made as follows. In the band diagram of Fig. 3.17, each

state is associated to a certain energy (vertical direction in the diagram)

and crystal momentum (horizontal direction in the diagram). In an indi-
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Figure 3.17: A schematic band structure for an intrinsic semiconductor is shown.
At the top we have the conduction band with empty states (open circles). At the
bottom we have a valence band with filled states (filled circles). The band gap
is defined as the shortest distance between the highest state in the valence band
and the lowest state in the conduction band. The dashed line halfway between
the two bands represents the Fermi level (EF ). Notice that an electron is excited
(arrow) across the band gap from the valence band into the conduction band,
leaving behind an electron-hole in the valence band.

rect band gap material, the conduction band and valence band are shifted

horizontally with respect to each other. This means that an excitation of

an electron in an indirect band gap material from the valence band into the

conduction band involves not only energy transfer (vertical change in the

diagram), but also a change in crystal momentum (horizontal change).

Let us consider the band structure of a real material, such as silicon for

example. The corresponding band structure is shown in Fig. 3.18. Indeed,

silicon has an indirect band gap: the excitation of an electron from the

highest energy state in the valence band (Γ25) to the lowest state (X1)

across the band gap involves a change in crystal momentum.
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Figure 3.18: The band structure of silicon is shown. The symbols read Γ →
kx = ky = kz = 0, L → kx = 2π/a, ky = kz = 0 and X → kx = ky = kz = π/a.
The lattice constant a is 5.43 Å. Notice that silicon has an indirect band gap. The
excitation of an electron from Γ25 in the valence band to X1 across the band gap
involves a change in crystal momentum. Image of the band structure was taken
from Ref. 66.
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Suppose that an energy transfer of ω from our primary electron with energy

E is associated with the excitation of an electron-hole pair. What is the

resulting energy of the secondary electron in the conduction band? First of

all, we should be aware that, before the excitation, the secondary electron

is in a bound state and hence has a certain binding energy. This binding

energy must be overcome in order to excite the electron to a higher state in

the conduction band. In other words, the expected energy of the secondary

electron after the excitation equals,

Ese = EF + ω − EB (A.U.)(3.86)

where EF is the Fermi level, ω is the amount of energy transfer and EB

is the binding energy of the secondary. Notice that, for reasons that will

become clear later, we have defined the energy of the secondary electron

with respect to the bottom of the band by including the Fermi level. Ap-

parently we need to know the binding energy of the electron, but how do

we determine it? This is where the sampling of the zero-momentum energy

loss comes in handy. A random binding energy associated to an energy

loss of ω′ can be determined from the (relative) scattering cross-sections

for electron-ionization, see Fig. 3.14. The only problem is that the scatter-

ing cross-sections from the Livermore database apply to free atoms. The

use of electron-ionization cross-sections is therefore restricted to inner-shell

excitations only. How do we deal with the outer-shell electrons? They

need to be defined separately. In the simulator of Ref. 44, the following

additional binding energies are used for silicon: 1.12 eV, 5 eV and 8.9 eV.

Unfortunately, these binding energies are not provided with relative prob-

abilities. Instead, the largest binding energy from that list, which is still

smaller than ω′, is considered. In any case, the band gap is defined as the

lowest binding energy for an ω′ above the band gap, but below the smallest

available binding energy. The special case where ω′ is lower than the band

gap relates to optical phonons and will be dealt with in Section 3.4.
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We briefly turn our attention to the electron-holes in the valence band.

Are the electron-holes important for an electron-matter interaction simula-

tor? At first we should mention the three key processes in which electron-

holes play a role:

1. Radiative recombination: The electron-hole pair annihilates and a

photon, with an energy equal to the difference between the electron

and the electron-hole, is emitted consequently.

2. Auger recombination: A vacancy in an inner-shell is filled by an elec-

tron from a higher energy level of the same atom under the release

of energy. This release of energy can be either a photon or another

electron: the Auger-electron.

3. Trap-assisted recombination: This is similar to radiative recombina-

tion, but instead of direct, through intermediate energy states within

the band gap. Such intermediate energy states are created by impu-

rities for example.

Radiative recombination for materials with an indirect band gap involves

a third (quasi) particle to account for the difference in crystal momentum.

This particular type of recombination is, for a material such as silicon, very

unlikely as conservation of crystal momentum requires the involvement of

three (quasi) particles, i.e. the electron, the hole and a phonon for example.

By looking at Fig. 3.13, we can see that inner-shell excitations have low

probabilities. The amplitude of the L1-3 shell excitations is about two

orders lower than the (bulk) plasmon excitation. The K-shell excitation is

even more unlikely: it is about six orders lower. We therefore expect that

the amount of inner-shell excitations, and hence the likelihood for Auger

recombination, is of minor importance to our study. On the other hand,

the trap-assisted recombination must be the most dominant recombination

process for an indirect band gap material. The reason is that the trap

inside the band gap allows the exchange of energy through lattice vibrations

and hence can account for differences in crystal momentum between the

electron-hole pair. Nevertheless, we expect that this process is of minor

importance to us. The reason is that we are mainly interested in (hot)
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electrons, i.e. the electrons with sufficient energy to (1) be ejected from the

material and/or (2) initiate the chemical reactions in resists. We expect

that the recombination rate of hot electrons through intermediate traps in

the band gap is very low. Instead, they are most likely occupied by the

electrons from the states close to the Fermi level. We therefore neglect the

recombination of electron-hole pairs, for both indirect as well as direct band

gap materials.

What remains to be discussed is the deflection angle of the primary

electron and the resulting direction of the secondary electron. The corre-

sponding scattering angles can be obtained by applying energy-momentum

conservation. To that order, let us consider a collision of the primary elec-

tron (subscript index i) with relativistic energy E + mc2 and a secondary

electron (subscript index t). We choose to work in the frame of reference

Figure 3.19: The inelastic collision of a primary electron (red) with a secondary
electron (green) is shown. The frame of reference is with respect to the secondary
electron (green). Before the collision, a primary electron (red) with energy E is
traveling in the direction of the stationary secondary electron (green). After the
collision, the primary electron (with energy E −∆E) and the secondary electron
(with energy ∆E) are scattered in the directions of α and β respectively. The
respective angles are determined from conservation of energy-momentum.

of the secondary electron, such that the secondary has zero kinetic energy.

The kinetic energy of the primary electron before the collision is E. A total

energy of ∆E is transferred to the secondary electron, such that the primary

electron ends up with an energy of E −∆E, see Fig. 3.19. Conservation of

momentum in the direction perpendicular to pi gives us,

sinβ =
p′i
p′t

sinα (3.87)
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Similarly, conservation of momentum in the direction tangential to pi gives

us,

pi = p′i cosα+ p′t cosβ (3.88)

= p′i cosα+ p′t

√
1−

(
p′i
p′t

sinα

)2

(3.89)

where we have used Eq. 3.87 to eliminate the angular dependence (β) of

the secondary electron. The scattering angle of the primary electron is

obtained by considering,

(
pi − p′i cosα

)2
= p2

i − 2pip
′
i cosα+ p′2i cos2 α (3.90)

= p′2t − p′i2 sin2 α (3.91)

where the last equality follows from rewriting Eq. 3.89. By equating the

RHS of both equations, we obtain the following expression,

2pip
′
i cosα = p2

i + p′2i
(
cos2 α+ sin2 α

)
− p′2t (3.92)

The scattering angle of the primary electron as a function of the momenta

becomes,

cosα =
p2
i + p′2i − p′2t

2pip′i
(3.93)

The scattering angle of the secondary electron is obtained by eliminating

the angular dependence (α) of the primary electron in Eq. 3.88. The net

result of that gives us the following scattering angle,

cosβ =
p2
i − p′2i + p′2t

2pip′t
(3.94)

We now determine the momenta in Eq. 3.93 and Eq. 3.94 in terms of the

kinetic energy (E) and energy loss (∆E) of the primary electron. Observe

that the square of the energy-momentum relation reads,

(
E +mc2

)2
= (pc)2 +

(
mc2

)2
(3.95)
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This enables us to express the momenta in terms of kinetic energy and

energy loss as follows,

(pic)
2 = E

(
E + 2mc2

)
(3.96)(

p′ic
)2

= (E −∆E)
(
E −∆E + 2mc2

)
(3.97)(

p′tc
)2

= ∆E
(
∆E + 2mc2

)
(3.98)

We now substitute the momentum relations into Eq. 3.93 and Eq. 3.94.

The scattering angle of the primary electron in terms of the kinetic energy

and energy loss becomes,

cosα =

√√√√(1− ∆E

E

)(
1 + E

2mc2

1 + E−∆E
2mc2

)
≈
√

1− ∆E

E
(3.99)

where the RHS is the non-relativistic approximation. Similarly, the result-

ing scattering angle of the secondary electron in terms of the same quantities

(E and ∆E) equals,

cosβ =

√√√√∆E

E

(
1 + E

2mc2

1 + ∆E
2mc2

)
≈
√

∆E

E
(3.100)

Unfortunately, we cannot apply Eq. 3.99 and Eq. 3.100. The reason is

that the secondary electron is in a bound state. To simplify matters, let us

assume that we have an isolated system of an electron moving with charge

−e in a stable orbit around a positively charged nucleus with charge +Q.

The classical Hamiltonian for this system reads,

Hse = E + P =
1

2
mv2 − eQ

4πε0r
(3.101)

The kinetic energy of the bound electron can be determined in a classical

way by equating the centrifugal force and electric force of the electron with

respect to the positively charged nucleus,

Fc + Fe =
mv2

r
− eQ

4πε0r2
= 0 (3.102)
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The ‘stable’ velocity for the electron for an orbit around the nucleus equals,

v =

√
eQ

4πε0mr
(3.103)

which can be substituted for the kinetic energy E = 1
2mv

2 in the Hamilto-

nian:

E + P =
1

2

eQ

4πε0r
− eQ

4πε0r
= −1

2

eQ

4πε0r
= −B < 0 (3.104)

Notice that the kinetic energy of the electron equals the binding energy and

that the electric potential near the orbit is twice the binding energy. By

transforming the kinetic energy E → E + 2B, we obtain the Hamiltonian

of a free electron, which is purely kinetic and equals the binding energy.

The same transformation is applied to the primary electron, assuming that

the electrostatic potential near the primary electron is also comparable

to twice the binding energy. In addition, the Fermi level is subtracted

from the primary energy to account for the fact that we are considering

an isolated electron-atom system. The result of the transformation is that

we can consider the primary and secondary electron as two ‘free’ scattering

electrons. The energy of the primary electron is thus defined as E →
E − EF + 2B and the energy of the secondary is B. We cannot transform

the ‘initial’ momentum, i.e. p ∼
√

2mB of the secondary electron away

because the direction is unknown. This means that we still cannot apply

Eq. 3.99 and Eq. 3.100. Instead, we will pursue the procedure of Ref. 44,

which in turn is based on the method of Ivanchenko in the Geant4 low

energy ionization extension.6 In that method the initial momentum of the

secondary is neglected at first. Although no argument (neither by Kieft

nor by Ivanchenko) is given for this reasoning, we suspect the following: If

we assume that the initial momentum is completely random, then, for the

average case, the net momentum must be zero. Despite the assumption

for zero-momentum, the kinetic energy of the secondary is non-zero. As

a consequence, they consider an inelastic process with an energy transfer

of (ω −B) + 2B such that the resulting kinetic energy of the secondary

6See the source file ‘G4LowEnergyIonization.cc’ of the Geant4 simulation toolkit.
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electron includes the initial kinetic energy. The assumption of zero (net)

momentum gives way to use Eq. 3.99 and Eq. 3.100. The relations between

the kinetic energy, energy-transfer ∆E and energy-loss ω in the equations

are,

E → E − EF + 2B (A.U.)(3.105)

∆E → ω +B (A.U.)(3.106)

The relative scatter direction of the secondary electron in the model of

Ivanchenko, with respect to a primary electron moving in the ẑ direction,

is modeled as follows,

p̂?t = sinβ cos (2πU)x̂+ sinβ sin (2πU)ŷ + cosβẑ (3.107)

where U is a random sample from the uniform distribution. Note that the

actual scatter direction p̂′t is obtained by alignment of the z-direction of

Eq. 3.107 with the initial direction p̂i of the primary electron. In the end,

a randomly oriented instantaneous momentum of the secondary electron is

added,

p̂′′t ∼ p̂′t +

√
B

∆E

(
sin θ cos (2πU2) x̂+ sin θ sin (2πU2) ŷ + cos θ ẑ

)
(3.108)

where cos θ = 2U1 − 1 and both U1 and U2 are random samples from the

uniform distribution. What about the direction of the primary electron?

We cannot use Eq. 3.99 because we have added a randomly oriented instan-

taneous momentum to the direction of the secondary electron. We can still

apply conservation of momentum nevertheless by equating the momentum

before and after,

p′i = pi − p′′t (3.109)

which can be recast to unit-directional vectors as follows,

p′i =
√
E p̂i −

√
∆E p̂′′t (A.U.)(3.110)

where we have used the non-relativistic energy-momentum relations on the
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RHS. The resulting direction of the primary electron based on momentum

conservation can be defined as follows,

p̂′i ∼
E√

E −∆E
p̂i −

∆E√
E −∆E

p̂′′t =
1

cosα
p̂i −

cosβ

cosα
p̂′t (3.111)

We would like to make a final remark about the inelastic scattering process.

What we have assumed so far is that the secondary electron is released at

the position of the primary electron. In reality, however, there can be a

delocalization effect. The delocalization is described as follows. Energy of

the primary electron is transferred by means of a (bulk) plasmon, which

decays and subsequently releases a secondary electron at another position,

which is some distance away from the primary. At present, delocalization

is not included and is left for further discussion in the outlook.

We conclude this section with graphs of the SP (Fig. 3.20) and the in-

elastic MFP (Fig. 3.21) for various materials: aluminum (metal), silicon

(semiconductor), gold (metal) and silica (insulator). We have included the

refinements of Kieft and Bosch. Notice the peculiar behavior of the MFP

0

2

4

6

8

10

12

101 102 103 104

st
op

p
in

g
p

ow
er

[e
V
/
Å
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Figure 3.20: The SP for various materials is shown. The refinements of Kieft
and Bosch are included.
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Figure 3.21: The inelastic MFP for various materials is shown. The refinements
of Kieft and Bosch are included.

for silica in Fig. 3.21 for energies lower than 10 eV. Starting from the high-

est kinetic energy, the inelastic MFP of silica follows the same trend as the

other materials. At approx. 100 eV the inelastic MFP reaches a minimum

and then starts to rise. Then, at approx. 30 eV we see a deviation from the

other curves: the inelastic MFP of silica starts to decrease again. What is

happening there? What we actually see in this regime is the effect of longi-

tudinal optical (LO) phonons. Let us have a closer look at the electron ELF

of silica (Fig. 3.22) First of all, we can clearly see the large band gap of 9 eV.

Observe that, similar to the electron ELF of silicon (Fig. 3.13), there are

losses due to LO phonons below the band gap. If that is true, then why is

the inelastic MFP of silica so different from silicon in the low energy range?

The answer is found in the amplitude of the losses in the electron ELF.

The losses due to LO phonons in the electron ELF of silica have, contrary

to silicon, an amplitude comparable to the main (bulk) plasmon! We con-

clude that the coupling to LO phonons is much stronger for silica than for

silicon. More evidence for this strong coupling to LO phonons is found, for

example, in the work of Ref. 67. Our inelastic MFP for silica in the low en-
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Figure 3.22: The electron ELF for silica (SiO2) is shown. The markers are
actual measurements, which are connected in the log-log figure by straight lines.
The loss function is taken from Ref. 44.

ergy regime is consistent with the LO phonon model shown in Fig. 11 from

Ref. 67. This suggests that phonon scattering potentially plays a crucial

role. In the upcoming section we discuss the subject of phonon scattering

in more detail.

3.4 Scattering at low electron energies

We have already discussed the elastic scattering of electrons by the inter-

action potential of atoms by using the Dirac equation using PWA. One

problem with the latter is that it only considers the binary collision in-

teraction which becomes questionable at energies lower than 100 eV.68 We

have argued that it is more likely that low energetic electrons behave like

Bloch-electrons and interact with perturbations of the lattice (phonons) in-

stead. There are two types of phonons to be considered: acoustic (AC) and

longitudinal optical (LO) phonons. In the work of Ref. 67 (more precisely

Fig. 11) it is shown that the dielectric function model applied to silica is
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consistent with the Fröhlich theory of electron polar-optical phonon inter-

actions. That very same conclusion is drawn in Ref. 50. We would like to

point out that the consistency applies to the MFP. What about the angu-

lar scattering probabilities? Let us remember that the angular scattering

distribution does not follow from the dielectric function model as presented

in this study, and hence must be modeled separately. Fortunately, the an-

gular scattering distribution associated to LO phonons is mainly forward

scattered.68 This means that the path of the electron effectively remains

unperturbed after the interaction with an LO phonon. That very same

assumption is employed in the program of Ref. 44, although it was never

stated explicitly.7 The AC phonons, however, must be modeled separately

and there are at least two reasons why we need to do so.

Before we give our reasons, let us first obtain a rule of thumb for the

typical amount of energy-loss associated to AC phonons. Throughout this

section we will use S.I. units, unless stated otherwise. We consider the

largest energy of the AC phonon in the first Brillouin zone, which is found

at the boundary with k = kBZ . Furthermore, we assume that the first Bril-

louin zone is spherically symmetric and that AC phonons have the following

isotropic dispersion relation,

ωAC(k) = usk − αk2 (3.112)

where us is the sound velocity and α relates to the bending of the disper-

sion relation towards the Brillouin zone boundary. The sound velocity is

obtained from the dispersion relation by taking the zero limit of the group

velocity,

lim
k→0

dωAC(k)

dk
= us (3.113)

The expected energy of the acoustic phonons at the first Brillouin zone

equals,

~ωAC(kBZ) = ~uskBZ − ~αk2
BZ (3.114)

7The source code of that program reveals the path of the electron remains unper-
turbed.

88



In addition to AC phonon emission, there can also be absorption for T>0

which results in energy gain rather than energy loss. What we thus intend

to determine is the net average of the energy loss and gain per event. We

will follow the reasoning of Erik Kieft from FEI company: AC phonon

absorption and emission should follow detailed balancing,8

absorption

emission
∼ NBE

NBE + 1
= exp

(
−~ω(k)

kBT

)
(3.115)

which states that the AC phonon absorption is proportional to NBE(k, T )

and emission is proportional to NBE(k, T ) + 1. He arrives at the following

expression,

EAC =
4π
∫ kBZ

0 [NBE(k, T ) + 1−NBE(k, T )]~ωAC(k)k2dk

4π
∫ kBZ

0 [2NBE(k, T ) + 1]k2dk
(3.116)

where NBE(k, T ) is the Bose-Einstein distribution, i.e.,

NBE(k, T ) =
1

exp ~ω(k)
kBT

− 1
(3.117)

Let us evaluate the integrals for silicon with a diamond cubic structure.

We consider the quadratic phonon dispersion relations given in Ref. 69.

There are three acoustic phonon modes in total: one longitudinal mode

and two transverse modes, see Fig. 3.23. The coefficients for the longitudi-

nal mode are us = 9010 m/s and α = 2.00× 10−7 m2/s. The coefficients

for the transverse mode are us = 5230 m/s and α = 2.26× 10−7 m2/s.

The boundary of the first Brillouin zone is effectively found at kBZ = 2π/a,

where the lattice constant a equals 5.43 Å. With a temperature T of 300 K,

the average loss per event renders down to 25.2 meV for the longitudinal

mode and 5.74 meV for the transverse mode. The net average (taking

into account a factor of two for the transverse mode) evaluates to an en-

ergy loss of 12.3 meV per event. Consequently, the scattering of electrons

by AC phonons is nearly (quasi) elastic. The low energy losses due to

8This reasoning was presented to us through email correspondence with Erik Kieft.
It is not, however, included in the simulator from FEI company.
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Figure 3.23: The phonon dispersion relations for silicon in the (100) direction
are shown. The markers are taken from neutron scattering data.70

AC phonons are usually not included in the electron ELF, and when they

do, they are marginally represented, see for example Fig. 3.13 and Fig. 3.22.

Another reason to model the AC phonons separately is that the angular

scattering distribution is not forward scattered.68 We therefore would like

to model the scattering of (hot) electrons with AC phonons in more detail.

We will pursue the model for AC phonons of Ref. 68, which is based on

the expression of Sparks et al.71 extended with a Coulomb screening param-

eter from Bradford and Woolf72. The idea is to use the model for (quasi)

elastic AC phonons in the limit for low electron energies as a replacement

for the elastic (Mott) scattering cross-sections.50, 54, 67, 68, 44. Let us work

through the expressions for AC phonons of Schreiber and Fitting.67, 68 The

idea is to simplify the expressions such that they can be used more generi-

cally. For general applications, we assume a parabolic conduction band for

electrons with an effective density of states (DOS) mass mD. Furthermore,

we assume that AC phonon scattering applies to electron energies where

relativistic corrections can be neglected. The DOS as a function of energy
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is given by the following relation,

D(E) =

√
2m3

D(E − ECB)

π2~3
(3.118)

where mD is the DOS mass and ECB is the energy at the bottom of the

conduction band. The screened scattering rate PAC in the low energy limit

E < 1
4EBZ is given by Fitting et al. and equals,

PAC(E)|E< 1
4
EBZ

=
πΞ2kBT

~u2
sρm

A

A+ E
D(E) (3.119)

where Ξ is the AC deformation potential, ρm the mass density and A is

the screening factor as introduced by Bradford and Woolf.72 The electron

energy at the Brillouin zone is estimated as follows,

EBZ =
(~kBZ)2

2me
(3.120)

The inverse MFP follows from dividing the scattering rate by the electron

velocity,

1

λAC(E)
=
PAC(E)

u(E)
=
m?
e

~k
PAC(E)

ρn
=

m?
ePAC(E)√

2m?
e(E − ECB)

(3.121)

where we have included the effective mass of electrons in the conduction

band. The inverse MFP for AC phonon scattering in the low energy limit

evaluates to,

1

λAC(E)

∣∣∣∣
E< 1

4
EBZ

=

√
m?
em

3
DΞ

2kBT

π~4u2
sρm

A

A+ E
(3.122)

The screened scattering rate PAC in the high energy limit E > EBZ is also

given by Fitting et al. and equals,

PAC(E)|E>EBZ =
4π(2nBZ + 1)mDΞ

2

~ωBZ~ρm
A2

E

(
ln
A+ E

A
− E

A+ E

)
D(E)

(3.123)
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where nBZ is the AC phonon population density. Note that, contrary to

Ref. 67, a factor of ~ is missing in the denominator of Eq. 12b in Ref. 68.

The inverse MFP in the high energy limit evaluates to,

1

λAC(E)

∣∣∣∣
E>EBZ

=
8
(
nBZ + 1

2

)
mD

√
m?
em

3
DΞ

2

π~4ρm~ωBZ
A2

E

(
ln
A+ E

A
− E

A+ E

)
(3.124)

The angular differential inverse MFP is obtained by normalizing the angular

distributions from Ref. 68. It is convenient to define the following constant,

λ−1
0 =

√
m?
em

3
DΞ

2kBT

π~4u2
sρm

(3.125)

which is the inverse MFP evaluated at E = 0. The angular differential

inverse MFP for both regimes is then expressed as,

d

dΩ

1

λAC(E, θ)
=


λ−1
0
4π

1

(1+ 1−cos θ
2

E
A )

2 for E < 1
4EBZ

λ−1
0
4π

(
nBZ + 1

2

) 8mDu
2
sA

~ωBZkBT

1−cos θ
2

E
A

(1+ 1−cos θ
2

E
A )

2 for E > EBZ

(3.126)

The inverse MFP is obtained from the differential inverse MFP by integra-

tion over the full solid angle,

1

λAC(E)
=

λ
−1
0

A
A+E for E < 1

4EBZ

λ−1
0

(
nBZ + 1

2

) 8mDu
2
sA

~ωBZkBT

(
A
E ln A+E

A − A
A+E

)
for E > EBZ

(3.127)

Now that we have generic expressions for AC phonons, let us try and

reproduce the MFP of silica shown in Fig. 11 of Ref. 67. Note that in

the work of Fitting et al., the effective mass and DOS mass for electrons

in the conduction band is set equal to that of a free electron, i.e. mD =

me. Although it is not stated explicitly in that study, we assume that the

parameters for the longitudinal and two transversal modes are identical.

Note that in the work of Fitting et al., no details are given on the dispersion

relation for AC phonons in silica. We therefore assume that the dispersion

relation is linear, i.e. α = 0. The MFP for silica is shown in Fig. 3.24, where
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we have evaluated Eq. 3.127 using the parameters shown in Ref. 67. By

visual inspection of the corresponding figures, we conclude that Eq. 3.127

reproduces the work of Fitting et al. What about Fig. 7 in Ref. 68? If we
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Figure 3.24: The (quasi) elastic MFP for AC phonons in silica is shown. The
model of Fitting et al. involves a low and high energy limit with respect to the
kinetic energy at the first Brillouin zone (dashed curves). The intermediate region
between the two regimes is linearly interpolated (black curve). Details are given
in the main text.

carefully consider the parameters used in that work (pay attention to εAC ,

the modified screening parameter and the rescaled scattering rate), then

Fig. 7 is reproduced as well.

We would like to have a closer inspection on the characteristic shape

of the MFP for AC phonons. At first we consider the energy at which

the MFP is minimal. It is obtained by equating the first order derivative of

the inverse of Eq. 3.127 to zero and solve for the energy. The smallest MFP

is found at,

λAC,min = λAC(E)|E=αA =
λ0

nBZ + 1
2

~ωBZkBT
4mDu2

sA

α(1 + α)

(1 + α) ln (1 + α)− α
(3.128)

where, α = 2.162581587 . . . is a transcendental number, which follows from

solving the extremum of the first order derivative. Another property is
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found by looking at the limit of the derivative for E → ∞, which equals

zero. This means that the MFP must have an inflection point for E > αA.

This point is found by equating the second order derivative and solve for

the energy. The inflection point is found at,

λAC,ip = λAC(E)|E=βA (3.129)

where, β = 7.577356793 . . . is another transcendental number, which fol-

lows from solving the extremum of the second order derivative. After the

inflection point the MFP is close to linear. The latter can be understood

because λAC → ∞ and dλAC/dE → 0 as E → ∞. The model of Fit-

ting and Schreiber can thus also be explained as a phenomenological model

with four parameters determined from the shape of the MFP curve, see

Fig. 3.25. It is described as follows. At the lowest energy, the MFP starts

flat out at λ0, then reaches a cross-over point at Eco = EBZ/4 and decreases

to a minimum at E = αA. The MFP starts to increase again until E = βA

is reached, after which the MFP continues to grow linearly. The MFP can

be expressed in terms of these parameters,

λ(E) =


λ0

(
1 + αE

Emin

)
for E < Eco

λmin
α(1+α)

αE
Emin

(1+α) ln (1+α)−α

ln
(

1+ αE
Emin

)
− αE
Emin

(
1+ αE

Emin

)−1 for E > 4Eco
(3.130)

In any case, the most straightforward way is to use the AC deformation

potential Ξ in Eq. 3.125, rather than the phenomenological model. Unfor-

tunately, that parameter is usually not found in standard reference material

property tables. There is, however, a work around for the special case of

metals, which is also discussed in Ref. 44. The idea is that the mobility of

electrons at the Fermi level relates to the scattering rate in the following

way,

µ =
−e
ρRne

=
−e

mePm
(3.131)

where µ is the electron mobility, ρR the electric resistivity, n the density

of conduction electrons and Pm is the scattering rate. The inverse MFP
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Figure 3.25: The schematic trend for the (quasi) elastic MFP for AC phonons
on a log-log scale is shown. The MFP starts flat out at λ0 at the far left, until
it reaches the cross over at E = Eco. The minimum MFP (λmin) is found at
E = αA. The inflection point is reached at E = αB, after which it continues to
grow linearly. The constants α and β are discussed in detail in the main text.

follows when the scattering rate is divided by the velocity of electrons at

the Fermi level,

1

λ(E)

∣∣∣∣
E=EF

=
Pm
uF

=
ρRne

2

√
2meEF

=
2

3

mee
2

π2~3
ρREF (3.132)

In the latter we have used the non-relativistic relation for the electron

velocity and,

n =

∫ EF

0
D(E)dE =

2
√

2

3π2

(
meEF
~2

) 3
2

(3.133)

We now assume that the inverse MFP for energies lower than EF does not

depend on energy, i.e.

λ−1
0 =

1

λ(E)

∣∣∣∣
E=0

=
1

λ(E)

∣∣∣∣
E=EF

(3.134)

The result of that gives the following relation for the effective AC deforma-

tion potential of metals,

Ξ2 =
2

3π

e2u2
sρmρR~
me

EF
kBT

(3.135)
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We conclude this section by giving a demonstration of the (quasi) elas-

tic MFP (Fig. 3.26) associated with AC phonons for various materials:

aluminum (metal), silicon (semiconductor), gold (metal) and silica (insula-

tor). The curves are obtained by assuming a screening parameter equal to
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Figure 3.26: The (quasi) elastic MFP associated with AC phonons for various
materials is shown. Specific details on the parameters are given in the main text.

five times the kinetic energy at the first Brillouin zone.44 The correspond-

ing parameters in the phenomenological model are given for completeness

in Table 3.2. The deformation potentials for silicon and silica are obtained

from Ref. 44 and Ref. 67 respectively. We have, on the other hand, no

deformation potential at our disposal for aluminum and gold. Instead, we

material λ0 λmin Eip Eco

aluminum (Z=13) 52.7 Å 4.57 Å at 99.2 eV 347 eV 2.30 eV
silicon (Z=14) 152 Å 9.45 Å at 55.2 eV 193 eV 1.28 eV
gold (Z=79) 69.5 Å 6.62 Å at 97.7 eV 342 eV 2.26 eV
silica (SiO2) 60.4 Å 12.8 Å at 55.1 eV 193 eV 1.28 eV

Table 3.2: The four parameters in the phenomenological AC phonon model for
various materials are shown. The MFP in the limit of zero kinetic energy is given
by λ0, the minimum MFP is given by λmin (including the energy at the minimum),
the inflection point is given by Eip and, finally, the cross-over point is given by
Eco.
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have used the Fermi level and electrical resistivity and evaluated Eq. 3.135

for an effective AC deformation potential. The DOS mass for aluminum,

gold and silica67, 68 is assumed to be me. For silicon we have used an effec-

tive mass and DOS mass of m?
e = 0.26me and mD = 1.09me respectively

for electrons in the conduction band.73. Moreover, we have included the ex-

perimental acoustic phonon dispersion relations for aluminum74, silicon69

and gold75, all of which are obtained by neutron scattering experiments.

The remaining parameters, such as Fermi level and mass density, can be

found in standard reference material property tables.

The idea is now to use the AC phonon MFP as a replacement for the

elastic MFP obtained with ELSEPA. We choose a regime where we only use

the model for AC phonons and a regime where we exclusively use the Mott-

scattering cross-sections from ELSEPA. That choice, however, is rather

subjective and is determined at best for each material individually. At

present, however, we employ a more generic approach, similar to Ref. 44,

and define 100 eV as the limiting case for the Mott-scattering cross-sections.

This means that below that 100 eV, the AC phonon MFP is used exclusively.

The limiting case for AC phonons is set to 200 eV, after which the Mott-

scattering cross-sections are used exclusively. In the intermediate range,

we linearly interpolate the scattering cross-section of both models. The net

result is an interpolated curve for the (quasi) elastic MFP (see Fig. 3.27),

which includes the AC phonon model for the lowest energies and ELSEPA

for the higher energies.
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Figure 3.27: The interpolated (quasi) elastic MFP of silica from AC phonon
and Mott-scattering cross-sections is shown. The MFP of the AC phonon model
(green) is used exclusively for energies lower than 100 eV. The MFP for energies
larger than 200 eV are determined exclusively by the Mott-scattering cross-sections
of ELSEPA (red). The scattering cross-sections are linearly interpolated in the
intermediate region. The net result is a single curve for the (quasi) elastic MFP
(black).

3.5 Interface effects

In addition to the physics of elastic and inelastic scattering, special atten-

tion must be given to interface effects. An interface either marks the border

between two different materials or it marks the vacuum-material boundary.

There are, in either case, at least three different effects associated with

interfaces: (1) refraction, (2) transmission/reflection and (3) interactions

with surface plasmons. The transport of electrons across different materi-

als requires us at first to properly define what we mean by the kinetic energy

and momentum of the electron. To clarify matters, let us demonstrate the

change in kinetic energy by virtue of a material-vacuum interface diagram,

see Fig. 3.28. Suppose that an electron with kinetic energy E is injected

from the vacuum side. Inside the material, the kinetic energy increases from

E to E +EF + Φ, where EF is the Fermi level and Φ is the work function.
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Figure 3.28: A Schematic diagram of a material-vacuum interface is shown. The
dashed line between the conduction and valence band edge is the Fermi level EF .
The workfunction Φ is defined relative to the Fermi level. The electron affinity
χ defines the energy difference between the vacuum level and the bottom of the
conduction band.

When an electron crosses the boundary from one material to another, the

resulting kinetic energy of the electron is calculated as follows,

E → E +
(
E′F + Φ′

)
− (EF + Φ) = E + U ′ − U = E + ∆U (3.136)

where the primed terms correspond to the target material, U is defined as

in the inner potential and ∆U denotes the net change in kinetic energy

when moving from one material to another.

We now would like to discuss the effect of refraction. Refraction com-

prises an angular deflection due to a change in electron energy when cross-

ing the interface. Suppose that we have an interface between two materials.

Furthermore, suppose that an electron with kinetic energy E is propagat-

ing towards the interface at an angle θ with respect to the surface normal,

see Fig. 3.29. The refraction angle θ′ is found by applying momentum

conservation parallel to the surface.

p sin θ = p′ sin θ′ (3.137)

where p and θ relate to the momentum and angle of incidence. Similarly, p′

and θ′ relate to the momentum and angle of refraction. It is more convenient

99



Figure 3.29: A Schematic diagram for refraction when crossing an interface is
shown. The solid line at the center defines the interface and the dashed line is the
surface normal. An electron is propagating at an angle θ towards the interface,
which then deflects in the direction of θ′ after the interface.

to express the momenta in terms of non-relativistic kinetic energy,

√
E sin θ =

√
E + ∆U sin θ′ (3.138)

Solving the latter for sin θ′ gives us the following relation for the angle of

refraction,

sin θ′ =

√
1

1 + ∆U
E

sin θ (3.139)

The angle of refraction is shown in Fig. 3.30 in the dimensionless variable

∆U/E. Notice that for ∆U = 0 we have that sin θ′ = sin θ and thus the path

of the electron remains unperturbed. This happens when EF +Φ = E′F +Φ′.

For ∆U > 0, we can see that sin θ′ < sin θ which implies that we have

deflection towards the surface normal. Analogously, we have deflection

away from the surface normal for ∆U < 0. Also notice that sin θ′ → ∞
as ∆U → −E. This corresponds to the critical angle, where the angle of

refraction becomes parallel to the plane of the interface.
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Figure 3.30: The angle of refraction for the special case of a free electron in the
dimensionless variable ∆U/E is shown.

The probability for transmission and reflection of electrons at the in-

terface is determined in a quantum mechanical way. In a one-dimensional

potential, we define the interface between two materials and consider the

solution to the Schrödinger equation on both sides, see Fig. 3.28. The

electron wave function before the interface is defined as,

φ(z) = A exp (ikz) +B exp (−ikz) (3.140)

where A is the initial amplitude of the electron wave, B is the amplitude of

the reflected electron wave and k is the momentum of the electron before

the interface,

~k =
√

2meE cos θ (3.141)

The solution on the other side is given by,

φ′(z) = A′ exp
(
ik′z

)
(3.142)

where A′ is the amplitude of the transmitted electron wave and k′ is the
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corresponding momentum,

~k′ =
√

2me(E + ∆U) cos θ′ (3.143)

The transmission coefficient T of the electron wave is obtained in terms of

the reflection coefficient as follows,

T = 1−R = 1−
∣∣∣∣BA
∣∣∣∣2 = 1−

(
k′ − k
k′ + k

)2

=
4k′k

(k′ + k)2 (3.144)

where we have applied continuity of the electron wave and its first order

derivative at the interface z = 0. We now use the definitions of the non-

relativistic electron momenta to evaluate the transmission coefficient in

terms of the angle of incidence and angle of refraction,

T =
4 tan θ tan θ′

(tan θ + tan θ′)2 =
4
√

1 + ∆U
E cos2 θ(

1 +
√

1 + ∆U
E cos2 θ

)2 (3.145)

The transmission coefficient versus the ratio of the tangent of the angle of

refraction to the tangent of the angle of incidence is shown in Fig. 3.31. For

θ′/θ < 1 we have deflection towards the normal. Notice that the transmis-

sion coefficient is unity when θ′ = θ.

At last we would like to discuss the coupling of electrons to surface

plasmons. The physical picture is that the electron interacts with induced

surface charges.42 Consequently, there is, analogously to the plasmon peak

for bulk losses, a plasmon peak associated to surface losses. Far away

from the surface, the coupling to a surface plasmon is negligible and we

can rely on bulk losses only. When the electron approaches the surface,

the coupling to the surface plasmon increases and the coupling to bulk

plasmons diminishes. We therefore employ, in the vicinity of the surface, a

modified electron ELF associated to surface losses,54, 76, 42

Im

[
− 1

ε(ω) + 1

]
=

ε2(ω)

(ε1(ω) + 1)2 + ε2(ω)2 (A.U.)(3.146)

where ε1(ω) and ε2(ω) relate respectively to the real and imaginary part of
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Figure 3.31: The transmission coefficient in terms of the angle of incidence and
angle of refraction is shown.

the complex index of refraction for the bulk of a dielectric material. The

real and imaginary part can be expressed in terms of the electron ELF as

follows,

ε1(ω) =
−Re

[
− 1
ε(ω)

]
(

Re
[
− 1
ε(ω)

])2
+
(

Im
[
− 1
ε(ω)

])2 (A.U.)(3.147)

ε2(ω) =
Im
[
− 1
ε(ω)

]
(

Re
[
− 1
ε(ω)

])2
+
(

Im
[
− 1
ε(ω)

])2 (A.U.)(3.148)

where the real part is obtained from the imaginary part through the Kramers-

Kronig relation, viz.,

Re

[
− 1

ε(ω)

]
=

2

π
P
∫ ∞

0
Im

[
− 1

ε(ω)

]
ω′

ω′2 − ω2
dω′ − 1 (A.U.)(3.149)

We have calculated the electron ELF for surface losses in silicon. The

real part of the complex index of refraction is obtained by numerical inte-

gration of the Kramers-Kronig relation using Maclaurin’s formula.77 The

electron ELF for surface losses is then obtained through substitution in
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Eq. 3.146. The result of that is shown in Fig. 3.32. Notice that, in com-

parison to the bulk plasmon peak, the amplitude of the surface plasmon

is smaller and the characteristic energy loss is lower. The excitation of a

surface plasmon depends on the amount of parallel momentum transfer and

the distance to the surface. The resulting electric field of a surface plasmon

– in the direction perpendicular to the plane – is proportional to,54

E(z) ∼ exp (−|q − q · n̂|z) (3.150)

where z is the distance to the surface, n̂ the unit normal of the surface

and the vectorial quantity q − q · n̂ is the momentum transfer parallel to

the plane of the surface. As a rule of thumb, the coupling depth to surface

plasmons for an electron with kinetic energy of 1 keV is on the order of a

few Ångstroms.
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Figure 3.32: The bulk and surface plasmon peak in the electron ELF of silicon is
shown. The markers are actual measurements, which are connected in the log-log
figure by straight lines. The bulk loss function (black) is taken from Ref. 44. The
surface loss function (red) is obtained through Kramers-Kronig analysis. Details
are given in the main text.
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3.6 Conclusion

We have discussed the determination of the scattering cross-sections for

elastic and inelastic processes throughout this chapter in detail. In this

concluding section, we would like to put the pieces of the puzzle together.

Let us consider the ratio of the inelastic to elastic scattering cross-sections

for various materials as a function of kinetic energy. This ratio will provide

us with insight in the most probably scattering process at a given energy

for a particular material. The ratio σinelastic/σelastic = λelastic/λinelastic for

aluminum (metal), silicon (semiconductor), gold (metal) and silica (insula-

tor) is shown in Fig. 3.33. We can see some interesting effects in Fig. 3.33.
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Figure 3.33: The ratio of the inelastic versus elastic scattering cross-sections is
shown for various materials.

First of all, observe that σelastic > σinelastic for kinetic energies lower than

approx. 40 eV. What happens is that we run out of inelastic channels as

we approach the Fermi level. Instead, the electrons primarily interact with

(quasi) elastic AC phonons with a (nearly) isotropic angular scattering dis-

tribution. The result of that is electron diffusion, which has a profound

effect on the spatial distribution of the electrons. Especially since, given
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the fact that the loss per event is on the order of meV, the number of

isotropic scattering events is abundant. The insulator silica, however, is an

exception. At the lowest energies we can see that AC phonon scattering is

overshadowed by the strong coupling of the electron to LO phonons. We

would like to remind the reader that, although the effect of LO phonons

is that σinelastic becomes larger than σelastic, no secondary electrons result

from that process. Moreover, in the case of electron emission from solids,

only electrons with sufficient energy to escape the material are considered.

Notice that for the metals aluminum and gold, most secondary electrons

are created in the vicinity of the inelastic peak at approx. 100 eV. At in-

creasing kinetic energies, the inelastic scattering process remains dominant

for aluminum, but not for gold. A plausible explanation is that the high Z

of gold is responsible for the dominance of elastic scattering. On the other

hand, the insulator silica and the semiconductor silicon seem to maintain

the preference for inelastic scattering in the higher kinetic energies. Notice

that on average, most secondary electrons are created in silica. We can

already anticipate that the number of emitted secondary electrons from

the insulator is going to be significantly larger. Without performing any

detailed calculation at present, the scattering cross-sections alone already

provide deeper insight in the effects of electron scattering. As a final re-

mark, we would like to mention that, despite the details and variety of the

physics described in this chapter, there are still effects which have not been

included:

• Detailed dispersion relations (instead of free electron model) for elec-

trons in solids.

• Crystallographic anisotropy: the effective mass of the electron is de-

pendent on the wavevector direction.

• Delocalization of secondary electron generation.

• Additional surface effects: roughness and super surface scattering.

• Electric fields: charging effects, trapping of electrons and charge dis-

sipation.
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The only additional effect that will be discussed in more detail is trap-

ping (chapter 4) when we model the insulator PMMA. Perhaps the most

critical effect neglected at present is the wavelike nature of the electron

in the Monte-Carlo framework. What is assumed is that electrons behave

like infinitesimally small scattering point particles. In reality, the extent of

the electron wavefunction cannot be ignored and especially at lower elec-

tron energies. This brings us to the following question: have we included

and modeled the physics sufficiently? What is and what is not important

strongly depends on what is being measured/calculated. There are two ap-

proaches to justify the physics, which both are discussed in the upcoming

chapters. The first, and most direct way, is to make a comparison to exper-

imental observables (chapter 4). Another way is to consider a sensitivity

analysis (chapter 6): exactly how sensitive is the outcome of the experiment

with respect to the physics of the simulation?
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Chapter 4

Electron-matter interaction

simulator

Full Monte-Carlo simulation programs for SEM image acquisition are known

to be notoriously slow. Our quest in reducing the computation time of SEM

image simulations has led us to investigate the use of graphics processing

units (GPUs). We have succeeded in creating a rigorous Monte-Carlo sim-

ulation program for SEM images, which runs entirely on a GPU.

In this chapter we present the details of the implementation of our GPU

accelerated Monte-Carlo simulator for electron-matter interaction. As a

case study for the performance, we consider the simulated exposure of a

complex feature: an isolated silicon line with rough sidewalls located on a

flat silicon substrate. We have also included a preliminary comparison to

experimental electron yields and EELS spectra.

The content of this chapter is a modified version of an article we have

published in the Proceedings of SPIE: Verduin, T., Lokhorst, S.R., Kruit,

P., and Hagen, C.W., “GPU accelerated Monte-Carlo simulation of SEM

images for metrology,” Proceedings of SPIE 9778, Metrology, Inspection,

and Process Control for Microlithography, 97780D (2016). This work was

presented at the SPIE 2016 conference in San Jose.
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4.1 Introduction

Scanning electron microscopy (SEM) image simulators can be of great ben-

efit in the study of dimensional metrology. An example is the interpretation

of the true size, shape and roughness characteristics of three dimensional

resist features in top-down SEM images.24, 25, 78 The computation time of a

rigorous Monte-Carlo electron-matter interaction simulation is known to be

notoriously slow. In Table 4.1, we present the simulation times for a yield

experiment, which consists of an infinitely wide and thick slab of silicon.

The simulation times are obtained by using the simulator from Ref. 78. We

have calculated the average time it takes for a primary electron, including

the cascading process, to come to rest or to be detected for various primary

electron energies with an Intel Xeon X5650 processor using a single thread.

In the case of a simulation with a rough feature, which is typically decom-

kinetic energy time per primary time per 106 primaries

5 keV 128.937 ms 35h49m
3 keV 78.048 ms 21h41m
1 keV 22.851 ms 6h21m
800 eV 17.882 ms 4h58m
500 eV 9.571 ms 2h40m
300 eV 4.193 ms 1h10m

Table 4.1: The simulation times for a simple yield experiment of an infinitely
wide and thick slab of silicon are shown. We have calculated the average time it
takes for a primary electron, including the cascading process, to come to rest or
to be detected for various primary electron energies. Simulation times are given
in terms of milliseconds (ms), minutes (m) and hours (h). Results are obtained
with an Intel Xeon X5650 processor using a single thread.

posed into many geometrical elements, the computation times of Table 4.1

are increased dramatically. This problem is tackled, for example, with voxel

based geometries25, regions and height maps79, and tetrahedra with shared

faces78. Although these solutions seem to work well, computation time is

still a problem, especially when statistics in the metrology play a role. A

typical example is the determination of line edge roughness (LER) using

the power spectral density (PSD).27, 80 Another example is when one or

more input parameters are varied over a range of values.78
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We now ask ourselves the question: how can we reduce the simulation

time per primary? One solution is to introduce range or depth cuts for

electrons. The idea is to estimate the probability for an electron to escape

the material, which is based on the kinetic energy of the electron and the

shortest distance to the material boundary. If that probability is below some

threshold, then we stop tracking that electron. This, however, typically

affects the higher energetic primary electrons because they penetrate deeper

into the material. We note that range or depth cuts have not been used in

the calculation of Table 4.1. Another solution is to use more cores, which

could be distributed over a cluster of workers. Our quest in reducing the

computation time of SEM image simulation has led us to investigate the use

of graphics processing units (GPUs).81 The aim of this work is to investigate

the advantage in computation time of SEM image simulation for metrology

by using a GPU.

4.2 Design of the simulator

Let us begin by describing the GPU, which can be seen as a special type

of parallel processor. At our disposal, we have the GTX480 from NVIDIA.

The architecture of this GPU consists of 15 streaming multi-processors (SMs)

with multiple processing cores running at 1.4GHz. Each SM has 32 pro-

cessing cores and executes in a single instruction, multiple thread (SIMT)

fashion. Instructions are issued per warp of 32 threads, where instruction

divergence within a warp (due to if-then statements for example) is seri-

alized. The maximum number of threads that can be resident on-chip is

calculated as follows: 15 SMs times 48 warps per SM times 32 threads per

warp equals 23 040 threads. We emphasize that this is not a fair number

to compare against regular multicore CPUs. The throughput or peak per-

formance of the GPU depends, for example, on register pressure, latencies

due to arithmetic pipelines and memory transactions. More technical de-

tails on the GPU architecture and the graphics pipeline can be found in

the documentation of CUDA from NVIDIA.1

1http://docs.nvidia.com/cuda
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The implementation of the physics discussed in the previous chapter in

a fully functional program running on the GPU is not straightforward. In

order to match the parallel architecture of the GPU, the simulator needs to

have a special design. The most basic assumptions of our simulation tool

with respect to the tracking of electrons are the following,

• There are four possible discrete events: elastic scatter event, inelastic

scatter event, detection event and boundary crossing.

• One electron can produce at most one secondary per inelastic event.

• Electrons move in a straight line from event to event.

• All electrons can be tracked independently.

• There are no time-dependent effects.

The elastic and inelastic scatter events require the random sampling of scat-

ter angles and energy losses by means of cumulative distribution functions.

The cumulative distribution functions are pre-computed and stored as two-

dimensional tables in memory. We have employed the following strategy

for the tables. One dimension accounts for the cumulative probability,

0 ≤ Pi =
i

ni − 1
≤ 1 (4.1)

where the index i runs from zero to ni− 1. The second dimension accounts

for the kinetic energy of the electron,

E1 ≤ Ej = E1 exp

(
j

nj − 1
ln
E2

E1

)
≤ E2 (4.2)

where the index j runs from zero to nj − 1. Notice that the kinetic energy

is logarithmically spaced between the end points E1 and E2. Random
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sampling of the tables is achieved through bilinear interpolation of the

table,

t = (1− u)(1− v)Ti,j + u(1− v)Ti+1,j + (1− u)vTi,j+1 + uvTi+1,j+1 (4.3)

where t is the interpolated value. The indexes i and j are related to P and

E as follows,

i = b(ni − 1)P c (4.4)

j =

⌊
(nj − 1)

lnE − lnE1

lnE2 − lnE1

⌋
(4.5)

The corresponding interpolation constants u and v are determined by,

u = P − Pi (4.6)

v = E − Ej (4.7)

The interested reader might point out that dedicated hardware exists on

the GPU for interpolating textures. Naively we would say it is beneficial

to exploit this hardware. First of all, two-dimensional texture memory on

the GPU is spatially cached by means of space filling curves. Second, the

actual interpolation is performed on-chip and only a single instruction for a

texture fetch is issued. We have tried to implement hardware-driven bilin-

ear interpolation for the GTX480 and it turns out that it is actually slower

than a global memory implementation. The reason is that the bandwidth

of the texture cache of the GTX480 is significantly slower than the L1 cache

of global memory. We therefore conclude that, performance wise, no ad-

vantage is found in exploiting the texture hardware of the GPU for bilinear

interpolation.

The geometry, which is implemented in a special way, includes the vac-

uum, sample, electrons and shape of the detectors and is subdivided hierar-

chically into a (three dimensional) octree of cuboid cells. The shape of the

detectors and the material boundary, which defines the interface between

two different materials, is triangulated. Every leaf of the octree has a list

of precisely those triangles which overlap with this particular cell. Let us
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briefly discuss the construction of the octree. The idea is similar to Ref. 82,

but then applied to triangles instead of particles. At first we define the root

cell which has dimensions that determine the bounding box of the geom-

etry. We then insert, one by one, the triangles that overlap with the root

cell. The overlap of a triangle with a particular cell is calculated using the

method of Ref. 83. There comes a moment when the number of triangles

in the root cell surpasses a predefined threshold nT . It is at this point that

we split the root cell into eight octants by subdividing each dimension in

half (the volume of each octant is 1/8th of the root cell). The triangles of

the root cell are then re-inserted recursively into each overlapping octant.

Note that each triangle in the root cell overlaps with at least one octant

and possibly overlaps with multiple octants of the root cell. Another trian-

gle from the ensemble is inserted by recursively traversing through the tree

starting from the root cell until the overlapping leafs are found. The trian-

gle at hand is then inserted in every overlapping leaf of the tree. When the

number of triangles in a leaf surpasses the threshold, then that particular

leaf is split into eight octants and the triangles of that leaf are re-inserted

recursively. Note that every time we traverse one level down the tree, the

dimensions of the cells are halved. This procedure is repeated until all tri-

angles have been inserted. The net result is a nested tree in which no more

than nT triangles are found per leaf. For each leaf, only a small subset

of the ensemble of triangles is found within that particular subspace. The

determination of the intersection of a line segment, i.e. the straight path

of an electron following Eq. 3.8, with the triangles only requires us to in-

vestigate the leafs of the tree that actually intersect with the line segment.

For the latter we use the the fast, efficient and robust ray-box intersec-

tion algorithm of Williams et al.84. The idea of this intersection method

is demonstrated for the two-dimensional case (quadtree) in Fig. 4.1. This

limits the number of electron-triangle intersections per electron and hence

reduces the computational stress. Please note that without any special im-

plementation, we would have to determine the intersection of every electron

with all triangles.2

2We assume a large number of electrons (∼ 106) and a large number of triangles (∼
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Figure 4.1: Schematic drawing of the intersection of a line segment with the
triangles distributed in an hierarchical tree structure is shown. Every cell corre-
sponds to a leaf of the quadtree and contains no more than nT triangles. The
determination of the intersection of a line segment (red) with the triangles only
requires us to investigate the triangles in the (yellow) leafs that intersect with the
line segment. The triangles in the remaining leafs (white) are not considered. The
result is a significant reduction in electron-triangle intersections. The construction
of a three-dimensional octree is explained in the main text.

The tracking of electrons within a cell can be summarized by the fol-

lowing steps. At first, for any electron, we determine the next event. To

that order, we calculate (1) the distance to the material boundary (if any)

(2) the elastic and inelastic attenuation length and (3) distance to the next

detector in the direction of the electron (if any). The next event is deter-

mined by the smallest distance associated with a particular event. Finally,

the electron is displaced and the event is executed. This is one iteration

in our simulation tool, which is repeated until the electron is terminated.

An electron is terminated in our simulation tool in the following four cases:

(1) the electron is detected, (2) the electron is in vacuum and there is no

material interface and no detector in the direction of the electron, (3) the

electron is inside material and the kinetic energy is lower than the energy

barrier and (4) the electron moves out of the border, i.e. the enclosed space

of the full geometry.

106) which gives a problem size of order ∼ 1012.
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To clarify matters, we now give an example of a few iterations for a

single primary electron. In Fig. 7.3, we have a primary electron (1) moving

in the direction of event 2, where the electron is transmitted and refracted

from vacuum into silicon. The arrow at event 2 (also visible at event 8)

indicates the normal of the surface at the intersection of the electron with

the material boundary. The electron then moves to event 3 where the

electron intersects with the cell boundary and traverses into the cell on

the bottom left. We remark that no physical property of the electron is

changed when the electron moves from one cell to another. The electron

then scatters elastically at event 4 and moves in a new direction towards

event 5 where the electron traverses into the cell on the bottom right.

From event 5, the electron moves towards event 6, scatters inelastically and

moves in the direction of event 7 where it moves in the adjacent cell (not

shown). The secondary electron from inelastic event 6 moves towards the

silicon-vacuum boundary and refracts at event 8 into the vacuum. This

secondary electron then moves towards the boundary of the cell at event 9

and proceeds to event 10 where it traverses into the adjacent cell (not

shown).

Figure 4.2: Schematic of the scattering trajectories in the cells. The cell bound-
ary is given by the dashed lines. In reality, the simulation is three dimensional
and the boundary consists of triangular shaped elements. The propagation of the
electron via the numbered events is explained in detail in the main text.
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In view of of parallel processing with the GPU, we face three main

problems which we would like to discuss. The first problem is that the

total number of electrons to be traced during a simulation increases because

of inelastic events. In practice, memory on the GPU is contiguous and

pre-allocated and so we must allocate contiguous arrays which are large

enough to fit the cascading process. The size of the arrays, related to

the properties of an electron in our simulation tool, is called the electron

capacity. What is an appropriate value for the electron capacity? We

will answer this question later when we discuss the saturation of the GPU

hardware. The second problem can be stated as follows: if the properties

of the electrons are indexed in contiguous arrays, then at which indices do

we create secondary electrons? The third problem is related to the different

types of events per electron. The next event for any electron is, due to the

Monte-Carlo procedure, of random nature. This means that we expect to

find different types of events per warp of 32 threads. This is a performance

penalty because instructions on the GPU are, as mentioned before, issued

per warp, hence different events within a warp are serialized.

Fortunately, the last two problems are both solved by grouping similar

electrons, i.e. sharing the same type of event, by using a parallel GPU

radix sorting method.85 Performance wise, the use of sorting is justified by

the fact that the method of Ref. 85 is capable of sorting a mind boggling

∼ 1010 4-bit keys3 per second on the GTX480. The idea of sorting the

electrons is illustrated in Fig. 4.3. At the left side we have the contiguous

array of n electrons, where each index corresponds to an electron in the

simulation. An iteration begins with the determination of the next event

for all electrons. In the illustration, we have designated the possible events

with labels: inelastic events (I), elastic events (E), boundary events (B),

detected electrons (D) and terminated electrons (X). Note that the events

at this stage in sequential order are randomly distributed. Now comes the

crucial step: the indices of the electrons are sorted by event to another

array.4 The result of that is a contiguous array where similar events are

3We only need four bits to discriminate between the different possible events in our
simulation tool.

4We do not explicitly sort all properties of the electrons, instead we only sort the
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grouped together and groups of different type of events are sequentially

ordered. By using the sorted array on the right, we minimize the risk of

having serialized execution within a warp.

Figure 4.3: The grouping of similar electrons in an iteration is shown. There are
inelastic events (I), elastic events (E), boundary events (B), detected electrons (D)
and terminated electrons (X). At the left side we have the contiguous array of n
electrons, where each index corresponds to a particular electron. In the simulation,
the upcoming event (pointed by the arrow on the left) is determined. The indices
of the electrons are then sorted by event to another array. The events in the sorted
array (pointed by the arrows on the right) are grouped and the groups of different
types are sequentially ordered.

The sorted array has an additional advantage with respect to the cre-

ation of secondary electrons. Suppose that we sort the events in such a

way that the inelastic events are upfront (having the lowest indices) and

the terminated electrons are at the back (having the highest indices). This

actually corresponds to the ordering shown in Fig. 4.3 on the right. Note

that terminated electrons are no longer used, and therefore can be replaced

by new electrons. A secondary electron from an inelastic event with index

i can now be created at index n− 1− i, which due to the order in sorting,

is a terminated electron.

indices pointing to electrons.
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It is possible, however, that a terminated electron is not available at

the given index and so a secondary electron cannot be created. The latter

typically happens when the electron capacity is not sufficiently large. We

have solved this issue by setting the inelastic event in that particular case

on hold. In the next iteration, another attempt is made to create a sec-

ondary electron. This procedure is repeated until a free slot, i.e. terminated

electron, becomes available. We emphasize that, in view of performance,

this situation should be avoided by increasing the electron capacity. We

also mention that an over-sized electron capacity, i.e. an array with too

many free slots, is not beneficial either, because the sorting procedure also

includes any excess of free slots in the array. In other words, an over-

sized electron capacity would waste computational resources to redundant

sorting.

This brings us to our first problem, i.e. what is an appropriate value

for the electron capacity? To answer this question, let us suppose that we

simulate a particular geometry, in which vacuum, material boundaries and

detector shapes are defined. Also suppose that we have a particular field of

view and that we have n > 106 primary electrons ready for the exposure.

The electron capacity should be such, that enough room is available in the

array to hold both the primary and future secondary electrons, which will

be created during the exposure of the sample. But how many secondary

electrons do we create? To answer this question, we initially oversize the

electron capacity and pre-expose the geometry with a limited number, say

∼ 103, of primary electrons at random within the field of view. During

the pre-exposure in our GPU simulation tool, we count the total number

of electrons (which includes both primary and secondary electrons) per

iteration. An example of this counting for an exposure of an infinitely wide

and thick slab of silicon is shown in Fig. 4.4. The result is a (set of) curve(s),

which tells us how many electrons we are tracking on average during the

simulation per incident primary.

Note that a curve from Fig. 4.4 starts with one electron, which is the

incident primary, and ends with no electrons at all. The shape in-between

is explained as follows. The number of electrons increases as soon as the
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Figure 4.4: The total number of electrons being traced per iteration for various
primary electron energies is shown. The curves are obtained by counting the total
number of electrons during a pre-exposure of an infinitely wide and thick slab of
silicon. Each curve is normalized by dividing the obtained counts with the number
of incident primary electrons.

primary electrons enter material. The increase means that more secondary

electrons are created in the inelastic events than terminated per iteration.

This increase of number of electrons continues up to the top of the curve

where the number of created secondary electrons equals the number of ter-

minated electrons per iteration. This is the point where the electrons have

lost most of their initial kinetic energy and the (quasi) elastic scattering

starts to dominate over the inelastic scattering process. We now have, per

iteration, more electrons terminating, which results in a decrease of the to-

tal number of electrons. This continues until all electrons are terminated.

There are, however, two more aspects to the number of electrons which

we have not yet discussed. How many electrons do we need at least in

parallel to saturate the GPU hardware? The answer can only be found

by profiling the GPU using NVIDIA’s visual profiler, which is included

in the CUDA toolkit from NVIDIA. We have found that the GTX480 is

saturated at a total of n > 1.5 · 105 electrons per iteration, which means
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that the throughput, in terms of electrons per second, is maximized. In

view of the latter, we would like to make a remark with respect to the tails

visible in Fig. 4.4. No matter how many electrons we begin with, in the end,

all electrons will terminate and so the tails in Fig. 4.4 cannot be avoided.

We must accept that in those cases the GPU is not saturated, hence the

performance is severely reduced.

The last aspect relates to the limited amount of available memory on a

GPU. In practice, we typically have the problem that the electron capacity

can be sufficient to hold all primary electrons, but cannot be sufficient to

include all future secondary electrons. The latter is solved, for example,

by using a batch process with regular intervals. At the beginning of each

interval, we push new primary electrons to the GPU. We do this in such a

way that the total number of electrons is sufficient to saturate the GPU, but

never exceeds the amount of available memory. This introduces two new

questions: what size of the interval do we choose and how many primary

electrons do we push to the GPU at the beginning of each new interval? Let

us first discuss the choice for the size of the interval. The consequence of

a small interval size is that the frequency of the batch process is increased.

We should avoid this because memory copies between CPU and GPU are

costly and reduce the overall performance. On the other hand, a large in-

terval size should be avoided as well, which is best understood by looking

at the tails in Fig. 4.4. With a large interval size, we run the risk that the

number of electrons has dropped significantly at the moment we push new

primary electrons to the GPU. The repeated result of that is a large fluctu-

ation in the number of electrons throughout the simulation. In general, we

choose the interval size equal to where the total number of electrons, which

is determined from a pre-exposure with randomly distributed primary elec-

trons, reaches a maximum. Let us now discuss the choice for the number of

electrons per interval. The electron capacity can be decomposed as follows,

capacity ∼ primary count + secondary count + terminated count

We assume that the electron capacity is a fixed number, which is larger than

the saturation level of the GPU. At the very beginning of the simulation, we
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only have primary electrons and no secondary electrons. Remember that,

in our simulation tool, terminated electrons are replaced by new electrons.

This means that the number of terminated electrons must be larger than

the (expected) number of secondary electrons. In order to estimate the

size of the batch, we need to know the expected number of primary elec-

trons and secondary electrons throughout the simulation in advance. The

expected number of primary and secondary electrons can be estimated by

multiplying the curve from Fig. 4.4 with the size of the batch, which is then

superimposed at regular intervals. This way we can optimize the size of the

batch such that at each interval during the bulk of the simulation time:

(1) the total number of electrons does not exceed the capacity, (2) the total

number of electrons is higher than the saturation level and (3) the number

of terminated electrons is larger than the number of secondary electrons.

An example of an optimized batch process is shown in Fig. 4.5 for the ex-

posure of an infinitely wide and thick slab of silicon with 5 keV electrons

using an electron capacity of 2 · 105.
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Figure 4.5: The expected total number of electrons per iteration for an optimized
batch process is shown. The curve corresponds to an exposure of 5 keV electrons to
an infinitely wide and thick slab of silicon. The number of electrons is determined
by multiplying the curve from the pre-exposure with the optimized size of the
batch, superimposed at regular intervals. The saturation level of the GTX480 is
also given. Note that a limited number of iterations is shown because, ultimately,
the total number of electrons vanishes to zero.
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In this particular case we have on average, at each regular interval

of 245 iterations during the bulk of the simulation time, 1024 primary

electrons, 194836 secondary electrons accumulated from previous intervals

and 2033 new secondary electrons. At the beginning of an interval we have

approximately 2 · 105 − 194836 = 5164 free slots, i.e. terminated electrons.

After pushing the primary electrons, we have a total of 5164 − 1024 =

4140 terminated electrons available for replacement with new secondary

electrons, which is approximately twice the expected number during that

interval.

4.3 Performance results

For the demonstration of the performance, we now give an example of

an exposure in our GPU simulation tool. At first we define, similar to

Ref. 78, a geometry of a silicon line with rough sidewalls with dimensions

1.5 µm×32 nm (length, width) and 32 nm in depth.5 This silicon line is

centered on top of a flat silicon substrate with dimensions 1.5 µm×1.5 µm

(length, width) and 2 µm in depth. The field of view for our exposure

is 256 nm×64 nm (length and width) and so we only image a small part

of the line. We have verified that the actual length of the line and the

dimensions of the substrate are sufficiently large enough for electrons to

scatter freely. We choose a spot size of 1.5 nm and a beam step size of

approximately 0.5 nm, such that the resulting image has 512×128 pixels

(length, width). For each exposure we use a dose of 6 mC/cm2, which

corresponds to a total of 6 553 600 primary electrons on average.

There are a few differences with respect to Ref. 78. In this work we use

a resolution of 2 nm to define the roughness, which is increased because of

memory limitations (1536 MB) of the GTX480. The model for generating

the roughness is actually, in view of performance not important. This is

why we have used a purely Gaussian roughness with a 3σ of 1.5 nm. For

completeness, we mention that the total number of triangles for the rough

isolated line equals 408 012.

5The interested reader is referred to Chapter 5 for a detailed description.
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At first we run a pre-exposure of 103 randomly distributed electrons

within the field of view. From this pre-exposure, we determine the size of

the interval and the number of primary electrons per interval. The result

of that, for various primary electron energies, is shown in Table 4.2. We

kinetic energy size of the interval primaries per interval

5 keV 249 1095
3 keV 184 1424
1 keV 83 2137
800 eV 70 2370
500 eV 49 3226
300 eV 31 4464

Table 4.2: The optimized batch process parameters for various primary electron
energies are shown. The values are determined from a pre-exposure with 103 ran-
domly distributed electrons within the field of view. The size of the interval is
given as the number of iterations.

are now ready to fully simulate the SEM images by exposing the pattern

with all of the primary electrons. The primary electrons are pushed to

the GPU in batches at regular intervals of which the details are shown in

Table 4.2. The resulting simulated SEM images are shown in Fig. 4.7. We

have duplicated, for the sake of comparison, the simulation on the CPU by

using the program of Ref. 78. We conclude that, apart from statistics in

the simulation, no difference is found between the CPU and GPU simulated

results. This, however, cannot be said about the total simulation time,

which is shown in Table 4.3 for the GPU (GTX480) and the CPU (single

threaded Intel Xeon X5650).

For completeness, we have also determined the maximum throughput

of the GTX480, i.e. total number of electrons being tracked per second.

The maximum throughput is given in Fig. 4.6 as a function of the kinetic

energy of the primary electrons. Note that this throughput corresponds to

the geometry of an isolated silicon line with rough sidewalls, located on a

flat silicon substrate. We emphasize that the saturation level of the GPU

relates to the number of electrons per iteration. What is shown in Fig. 4.6

is the number of electrons per second.
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kinetic energy GTX480 Intel X5650 (single thread) speedup

5 keV 32m 2w5d12h 894×
3 keV 22m 1w4d20h 796×
1 keV 10m 3d11h 538×
800 eV 8m 2d17h 530×
500 eV 5m 1d10h 472×
300 eV 3m 15h16m 387×

Table 4.3: Comparison of simulation times for an exposure of an isolated silicon
line with rough sidewalls, located on a flat silicon substrate. Each simulation
involves 6 553 600 primary electrons on average. The geometry of the rough feature
is decomposed into a total of 408 012 triangles. Simulation times are given in terms
of weeks (w), days (d), hours (h) and minutes (m).

Although the speedup factors in Table 4.3 are tremendous, we would

like to make two remarks about further improvements. First of all, we have

not used a range or depth cut in the simulation. This means that electrons

are being tracked, even if they have practically zero probability of escaping

the material. Second, we would like to mention that newer GPUs are more

powerful than the GTX480. The more recent GTX970 from NVIDIA, for

example, has more multiprocessors, a faster clock-rate and faster memory

in comparison to the GTX480.
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Figure 4.6: The throughput of the GPU measured in terms of total number of
electrons per second. This graph corresponds to the geometry of an isolated silicon
line with rough sidewalls, located on a flat silicon substrate, of which the details
are given in the main text. For various primary electron energies, the total number
of electrons, which includes primary and secondary electrons, is determined per
second.
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(a) 300 eV (b) 500 eV (c) 800 eV

(d) 1 keV (e) 3 keV (f) 5 keV

Figure 4.7: The GPU simulated SEM images of an isolated silicon line with
rough sidewalls, located on a silicon substrate are shown. The field of view equals
256 nm×64 nm (length and width) and so only a small part of the rough line is ex-
posed. The spot size equals 1.5 nm and the beam step size is approximately 0.5 nm.
Each image is made out of 512×128 pixels (length and width). The exposure dose
equals 6 mC/cm2.
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4.4 Comparison to experiment

In this section we would like to make a connection to experiment. At first

we consider the emission of secondary electrons and backscattered electrons

from a half-infinite sample. In the simulation, we expose the sample to a

(infinitely small) beam of electrons. A detector is located just above the

surface to count the number of electrons that have escaped the material

relative to the number of primary electrons, which is known as the electron

yield. The idea is to vary the kinetic energy and measure the secondary yield

(SEY) and backscatter yield (BSY) as function of primary kinetic energy.

We have verified that the dimensions of our bulk sample are sufficiently large

enough for electrons to scatter freely. In addition, we have added a small

layer with varying thickness ∆ to account for surface losses. Within the

layer, we exclusively use the surface ELF, rather than the bulk ELF. This,

however, is a crude simplification as the coupling of the electron to surface

plasmons is more complicated.54 Nevertheless, the strength of the coupling

can be controlled by varying the thickness ∆. The latter gives way to

investigate the sensitivity of the electron yield with respect to surface losses.

The result of this experiment for silicon is shown in Fig. 4.8. Notice that

the inclusion of a small layer of a few Ångstrom already has a seizable effect

on the simulated yield. In particular, notice that for increasing thickness,

the SEY decreases and that the low energetic electrons in the BSY increase.

There are two reasons for this effect. The inclusion of a surface layer affects

the inelastic versus elastic scattering ratio. The calculated surface ELF is

typically smaller in magnitude than the bulk ELF. This means that the

scattering cross-sections for the surface ELF are smaller which results in a

larger MFP for inelastic scattering. The latter implies that the balance in

the inelastic versus elastic scattering ratio shifts in the direction of elastic

scattering, which in turn results in lower probabilities for creating secondary

electrons. Another effect, although of lesser importance, is that the surface

plasmon peaks at a loss somewhat lower than the bulk plasmon. This means

that the energy loss per inelastic event in the vicinity of the surface is most

likely lower: electrons near the surface with an energy in the backscatter

energy range dissipate slower to energies in the secondary energy range.
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Figure 4.8: The secondary and backscatter yield of silicon is shown. All markers
correspond to the experimental database of David Joy.86
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In the next chapter we will consider the simulation of rough PMMA

lines on a silicon substrate. We would therefore like to repeat the yield

experiment for the case of PMMA. The simulation of an insulator, such as

PMMA, however, is much more complicated since effects such as charging

and trapping of electrons must be included.87 We will strictly follow the

approach of Dapor et al.88 and include the trapping of low-energetic elec-

trons.6 The idea is that a low energetic electron propagating through an

insulator induces a polarization field, which in turn induces a stabilizing

effect. The resulting electron (or hole) with a polarization cloud is called

a polaron. We have assumed, similarly to Ganachaud et al.89, that the

effective mass of polaron is large and therefore effectively remains localized

at the trapping site. The model of Ganachaud et al. predicts the following

energy-dependent probability for a polaron,

λtrapping = C exp (−γE) (4.8)

In the work of Dapor et al., the parameters C = 1 nm and γ = 0.14/eV for

PMMA are obtained from best fits of experimental data to a phenomeno-

logical model for the SEY. The interested reader is referred to Ref. 88 for

more details on the determination of the parameters. We would like to make

one final remark about the polaron. Note that the MFP, associated to the

emergence of a polaron, is more than 1 µm for electrons with kinetic energy

of 50 eV. This means that the polaron has no influence on the backscatter

yield.

In addition, Dapor et al. have included optical phonons through Fröhlich

theory, but neglected the acoustic phonons. We do not include Fröhlich

theory explicitly, instead, we have used the ELF from Ref. 44 for PMMA,

which includes the losses due to optical phonons below the bandgap.7 For

the (quasi) elastic scattering, we have exclusively used the ELSEPA cross-

sections all the way down to a few electron volts. We assume that no

surface effects have been included in the work of Dapor et al. The results

6The reason that we have not included this in chapter 3 is that the theory presented
here is too specific for the case of PMMA.

7Notice in the work of Dapor et al. that optical phonons are indeed missing in the ELF.
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for PMMA are shown in Fig. 4.9, where we have used the same constant

C = 1 nm as Dapor et al. The interested reader is invited to compare the

calculated yield to the experimental results shown in Ref. 88.

We now consider another experiment in which we expose a sample of fi-

nite thickness (50 nm) with a beam of electrons of fixed energy (E=50 keV).

The idea is to measure the spectrum of energy losses as electrons escape

the material. Note that electrons can emit from the top (reflection) as well

as from the bottom (transmission) of the sample. That is why we have

included another detector at the bottom of the sample. The acquisition of

such an energy-loss spectrum is known as electron energy-loss spectroscopy

(EELS). We emphasize that multiple inelastic events cannot be ignored and

hence form an intrinsic difficulty in the acquisition of an electron energy-

loss spectrum. In experiment, the electron energy-loss spectrum is retrieved

nevertheless by means of one or more deconvolution procedures. In sim-

ulation, we simply neglect (1) the creation of secondary electrons and (2)

neglect the electrons with more than one inelastic event. The result of this

EELS experiment for silicon is shown in Fig. 4.10.
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Figure 4.9: The secondary and backscatter yield of pmma is shown. The con-
stant γ refers to a parameter in the model for electron trapping. The markers
correspond to the experimental database of David Joy.86. More details are given
in the main text.
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Figure 4.10: The EELS spectrum for silicon is shown. The spectrum near the
bulk plasmon is shown in (a). The spectrum near the L-shell excitation is shown
in (b). All markers correspond to experimental measurements.
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4.5 Conclusion

We have succeeded in creating a full Monte-Carlo simulation program for

SEM images, which runs entirely on a GPU. We have used as a case study

the simulation of a complex feature: an isolated silicon line with rough

sidewalls located on a silicon substrate. At first we run the simulation on

a GeForce GTX480 from NVIDIA. The very same simulation is duplicated

on a CPU-based program, for which we have used an Intel Xeon X5650.

We conclude that, apart from statistics in the simulation, no difference is

found between the CPU and GPU simulated results. This, however, cannot

be said about the total simulation time. We have determined that the

GTX480 generates the images (depending on the primary electron energy)

387 to 894 times faster than a single threaded Intel X5650 CPU.

The performance increase is achieved as follows. First of all, we have

used a special implementation for the geometry. The geometry includes

the vacuum, sample, electrons and shape of the detectors and is subdivided

into a special three dimensional octree of cuboid cells. The shape of the

detectors and the material boundary, which defines the interface between

two different materials, is triangulated. Every cell in the grid has a list of

precisely those triangles which overlap with this particular grid cell. This

gives a significant reduction on the number of electron-triangle intersections

during the simulation of a complex geometry. Second, electrons with similar

events are grouped by using a parallel radix sorting method, which also

runs on the GPU. By sorting the electrons by event, we reduce the risk of

instruction divergence within a warp of 32 threads. Finally, we saturate

the GPU by using sufficient electrons per iteration to track in parallel. We

have found, by using the visual profiler from NVIDIA, that the GTX480

is saturated at a total of n > 1.5 · 105 electrons per iteration. In practice,

the GTX480 does not have sufficient memory to process all electrons of

the SEM image at once. Instead, a batch process is used to push primary

electrons at regular intervals.
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The speedup enables the fast acquisition of simulated SEM images for

metrology. This means, for example, that many parameters of a rough

feature (critical dimension, roughness, height, and so on) can be simulated

in a reasonable amount of time. Moreover, because of the speedup, statistics

can be generated as well by simulating a multitude of SEM images.

We conclude that with a GPU accelerated SEM image simulator, more

results can be generated in less time. We now have the potential to in-

vestigate case studies in CD-SEM metrology, which otherwise would take

unreasonable amounts of computation time.
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Chapter 5

Simulation of side-wall

roughness imaging

The true size, shape and roughness characteristics of resist features are not

fully investigated in the analysis of two-dimensional SEM images. In reality,

rough resist features are complex three-dimensional structures. The char-

acterization of roughness of resist features naturally extends to the analysis

of sidewall roughness (SWR) which can be measured, for instance, by using

an atomic force microscope (AFM). However, in view of the large volume of

wafers being produced in a typical production line, the AFM is not consid-

ered as a suitable metrology tool. Another problem with the AFM involves

the complexity of the measurement, in which the exact shape of the tip

plays a crucial role. Another possibility is to create virtual rough samples

of patterns of lines and spaces and simulate the image acquisition using a

SEM image simulator. Numerical studies on SWR are difficult to perform as

it requires (1) the acquisition of many images for statistics, (2) variation of

many parameters (critical dimension, roughness parameters, feature height

and beam energy) and (3) spatially resolved details of micrometer-sized fea-

tures with roughness defined at the nanometer scale. Studies involving the

discrete modeling of the roughness on the sidewalls are therefore subject

to time consuming simulations, and especially in the case of Monte-Carlo

simulations. Because of the latter, detailed Monte-Carlo simulations are

avoided and simulators with simplified physical models are used instead.
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In this chapter we present a study on the effect of the SWR on the LER

from two-dimensional SEM images. The core idea of this chapter is to

randomly generate patterns of three-dimensional patterns of rough lines and

spaces, where the SWR of the lines is modeled by means of a power spectral

density (PSD) function. The three-dimensional patterns are then used in

our GPU accelerated Monte-Carlo electron-matter simulator to simulate the

acquisition of two-dimensional SEM images. The influence of the (three-

dimensional) SWR on the resulting (two-dimensional) images is quantified

using LER analysis. The analysis of this chapter provides new insight in

the interpretation of the true size, shape and roughness characteristics of

resist features from SEM images.

The content of this chapter is an updated version of an article we

have published in the Proceedings of SPIE: Verduin, T., Lokhorst, S.R.,

Kruit, P., and Hagen, C.W., “The effect of sidewall roughness on line edge

roughness in top-down scanning electron microscopy images,” Proceedings

of SPIE 9424, Metrology, Inspection, and Process Control for Microlithogra-

phy, 942405 (2015). This work was presented at the SPIE 2015 conference

in San Jose.

5.1 Introduction

In a previous chapter, we proposed a method for the determination of line

edge roughness (LER) in low dose top-down SEM images.28 However, the

true size, shape and roughness characteristics of resist features are not fully

investigated in the analysis of top-down SEM images. The studies that

we found in literature indicate that the true SWR is larger than the mea-

sured LER in a top-down SEM image.24, 25 We have a few remarks with

respect to these studies. In the study of Li et al., the focus is on pure poly-

crystalline silicon lines with a Gaussian roughness model for the sidewalls.24

The roughness of a resist feature, however, is typically characterized by

more than just the standard deviation of a Gaussian-like distribution and

involves additional parameters, such as correlation length and a rough-

ness exponent.26, 16, 27, 28 The study of Lawson et al. is different for two
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reasons.25 In the first place, Lawson et al. have used a more sophisticated

model for the roughness of the sidewalls.29 Unfortunately, the relation of the

roughness parameters to correlation length and roughness exponent are not

explicitly mentioned nor are the roughness parameters varied to study its

influence on the LER. Second, the lines used in the study of Lawson et al.

are made of pure poly-methyl methacrylate (PMMA) coated on a pure

silicon substrate. Not only is PMMA a different material, it also comes,

contrary to pure silicon lines, with a risk of resist shrinkage caused by the

electron beam.16 Although it is not addressed in the work of Lawson et al.,

this risk can be reduced, for example, by lowering the beam voltage and

total electron dose, i.e. reduce the number of integration frames.16, 28

We would like to extend the study of Refs. 24, 25 and examine the

relation between the SWR and the LER measured from simulated top-down

SEM images by varying the parameters of a non-Gaussian roughness model.

What happens, for example, to the measured LER when the correlation

length of the SWR changes? In particular, we consider a case similar to that

of Lawson et al. with rough PMMA lines on a silicon substrate. However,

in order to reduce the risk of shrinkage, we will consider a beam energy

of 300 eV and an approximate dose of 20 incident electrons per pixel. We

have already shown in a previous study, albeit theoretically, that the LER

can be determined under such noisy circumstances.28 For this study, we

use the power spectral density (PSD) function to model the roughness as

described by Palasantzas.26

PSD(k) =

√
π

2π

Γ
(
α+ 1

2

)
Γ (α)

2σ2ξ

(1 + k2ξ2)α+ 1
2

(5.1)

which we have also used in our previous study and seems a logical exten-

sion to the case of rough surfaces.28 In the model of Eq. 5.1, roughness is

defined with σ as the standard deviation, ξ the correlation length and α the

roughness exponent. Random rough surfaces with a PSD equal to that of

Eq. 5.1 are generated by using the method of Thorsos, which is explained

for example in Ref. 27. The idea is to compute the inverse two-dimensional

Fourier transform of the amplitude of the PSD with a random phase. We
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remark that the roughness generated via the method of Thorsos is biased.

This can be corrected for by multiplying the resulting displacements of the

roughness with a scalar, which is also explained in Ref. 27. We emphasize

that the statistics of the rough surfaces generated in this way are isotropic.

5.2 Simulation of rough lines

We would like to study a pattern of rough lines and spaces, where each line is

made of PMMA located on a silicon substrate. The dimensions of the lines

are 2 µm in length, 32 nm wide and 32 nm in height. We randomly generate

rough lines as follows. At first we create a template line with flat surfaces

of which, for example, a small section is shown in Fig. 5.1a. A randomly

generated rough surface is made by using the PSD of Palasantzas, given by

Eq. 5.1, and the method of Thorsos. The area of the rough surface is equal

to that of the flat sidewall (2 µm × 32 nm). We define the rough surface with

a resolution of 1 nm in both dimensions. The justification for this number

will be given later, when we define the image pixel size and beam spot size.

An example of a randomly generated rough surface is shown in Fig. 5.1b.

Rough lines are produced by replacing the flat sidewalls of the line shown

in Fig. 5.1a with randomly generated rough surfaces. The result of that

is illustrated in Fig. 5.1c. We emphasize that the top of the PMMA line

remains flat, and the silicon substrate remains flat too. This is analogous

to the work of Li et al., and Lawson et al. In reality, the top of the line and

the substrate are expected to be rough as well. For more realistic cases,

we should include the effects of post lithographic processing as well. The

effect of that could be, for instance, that the base of the sidewall is inclined

or even curved. None of these effects are taken into account in this study,

which means that we investigate a rather ideal case of SWR. We do not use

a single isolated line, but instead, we symmetrize the sample in the direction

perpendicular to the line by introducing ideal electron mirrors. The mirrors

are located to the left and right of the isolated line such that the spacing

between the lines equals exactly 32 nm. The resulting symmetrized sample

is effectively an infinitely repeated pattern of lines and spaces. The reason
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(a) A small section of an isolated line with flat surfaces is shown. This flat line is used as a
template for the construction of a rough line.

(b) A small section of a randomly generated rough surface is shown. The roughness is generated
by effectively sampling height displacements over a discretized flat surface by using the PSD
function of Palasantzas and the method of Thorsos. The width and height of the rough surface
is equal to the full size of the sidewall of the flat line of which a small section is illustrated in (a).

(c) A small section of a randomly generated isolated rough line is shown. The flat sidewalls
shown in (a) are replaced with rough surfaces, of which one example is shown in (b).

Figure 5.1: The construction of a randomly generated isolated rough line is
demonstrated. At first, a flat line (a) with a length of 2 µm, width of 32 nm and
a height of 32 nm is constructed. The sidewalls of the flat line are replaced with
randomly generated rough surfaces (b). The result of that is a randomly generated
rough line of which a small section is shown in (c). Note that the top of the line
and the substrate, on which the line is located, remains flat.
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for this more complicated geometry, is to accommodate for the scattering

of electrons into neighboring lines. Now that we have the sample defined,

we can instruct the program to scan the line and count the secondaries

as follows. An electron is instantaneously detected whenever the following

two criteria are satisfied at the same time: (1) The electron is transmitted

from material to vacuum and (2) the kinetic energy of the electron is less

than 50 eV. We have assembled illustrations of induced scattering events

as calculated by our home-built simulator in Fig. 5.2.

Let us now discuss the actual simulation of an image of a randomly

generated rough line. The pixel size is fixed at the size of 0.43 nm × 2.7 nm

(width times length), which is in accordance with our previous study of

rough lines.28 We choose a beam with an energy of 300 eV and a spot size

of 3 nm. The decision for this spot size (instead of a smaller one) is due

to the increased aberrations related to the low energy of the beam. The

decision for the low beam energy is to reduce the risk of shrinkage that

is involved in samples made of the organic resist PMMA. Note that the

spot size and the pixel size in the direction of the edges are larger than

the resolution of 1 nm at which the rough surfaces of the sidewalls are

defined. Each pixel is exposed with 20 electrons on average following the

Poisson distribution, by which we simulate the effect of illumination shot

noise. The resulting dose is approximately 276 µC/cm2 on average. An

example of a simulated SEM image of a randomly generated rough line is

shown in Fig. 5.3. There are a few remarks to be made with respect to

this simulated image. In the first place, we have not simulated the effect of

detector noise, i.e. the detection of electrons is assumed to be perfect. For a

more realistic image we should include, for example, a detection threshold,

detection efficiency, Gaussian-like background noise and additional Poisson

noise. The precise position of a detector also plays a role in the image

formation as the position of the detector could introduce a shadow effect.

This means that we expect to find more noise in a real SEM image with

20 electrons per pixel on average than shown in Fig. 5.3. Moreover, in a

real (CD-)SEM, there is also a control mechanism for image contrast. We,

however, simply scaled the intensity linearly over the full range of secondary
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(a) (b)

(c) (d)

Figure 5.2: Demonstration of the scattering events induced by an incident stream
of primary electron onto a sample of lines and spaces at different positions. The
lines are made of PMMA located on a silicon substrate. The detection of secondary
electrons with an energy less than 50 eV at the surface of the lines and substrate
is not shown. In reality, the lines have rough sidewalls and the electron beam has
a finite spot size of 3 nm. Notice that backscattered electrons may travel through
vacuum into the neighboring lines where more scattering events are induced.
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counts. Although none of these additional effects in the image formation

are taken into account in our simulations, the resulting image, i.e. Fig. 5.3

still appears realistic.

In order to generate statistics, we repeat the simulation of a randomly

generated rough line 10 times. This means that, for each roughness, we

calculate a full image of rough lines and spaces such as shown in Fig. 5.4.

−60−40−20 0 20 40 60

a.
u

.

scan position [nm]

Figure 5.3: Simulated top-down image of a randomly generated rough line (left),
including its integrated profile (right) is shown. The line is made of PMMA,
located on a silicon substrate and is 1 µm long, 32 nm wide and 32 nm in height.
The area of the image is 64 nm × 1 µm (width times length). The SWR that was
generated has a standard deviation σ3D of 1 nm, correlation length ξ3D of 20 nm
and a roughness exponent α3D of 0.75. The pixel size is 0.43 nm × 2.7 nm (width
times length). Each pixel is exposed with 20 primary electrons on average by
sampling the Poisson distribution. The primary beam has a spot size of 3 nm and
the kinetic energy of the primary incident electrons equals 300 eV. The detector
for secondary electrons with an energy less than 50 eV is assumed to be perfect
and does therefore not introduce additional noise.
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The resulting image is used for analysis by applying the method as pre-

sented in our previous study.28 In that method we (1) measure the edge

displacements using a model for the integrated profile function, (2) deter-

mine the PSD by Fourier transform and finally (3) fit the measured PSD

against Eq. 5.1 extended with a white noise term in order to capture the

pixel noise. Let us discuss the two examples of the PSD analysis shown in

Fig. 5.5. The SWR that was generated for both cases has an equal stan-

dard deviation σ3D of 1 nm and equal roughness exponent α3D of 0.75. The

correlation length, however, was taken differently. In Fig. 5.5a we have

used a correlation length ξ3D of 6 nm, and for Fig. 5.5b we have used a

correlation length ξ3D of 25 nm. Note first of all that the bending point

at the far left shifts in the direction of lower frequencies as the correlation

length increases. This means that, in the case of the increased correlation

length, the high frequencies, relative to the low frequencies, are more sup-

pressed. This can also be seen from Eq. 5.1, where the correlation length ξ

is coupled to the wave number k. Suppose, for the sake of argumentation,

that the PSDs in Fig. 5.5 are unbiased measurements of the actual SWR.

Note that the total variance σ2
3D is obtained by integrating Eq. 5.1. Since

the standard deviation σ3D is kept constant, the area under the PSDs must

be equal as well. As we increase the correlation length, the PSD essen-

tially shifts to the left, due to the coupling with wave number k, and the

total area remains invariant because of an increase in power. This can also

be seen from Eq. 5.1, where the power (and thus the integral, hence the

variance) scales as a function of correlation length ξ.

Although the (pixel) noise is found to be close to equal (0.5 nm), the

measured LER for Fig. 5.5a (0.63 nm) is smaller than for Fig. 5.5b (0.90 nm).

This means that the determination of the SWR from top-down SEM images

is biased. Since the actual three-dimensional roughness has a standard de-

viation σ3D of 1 nm, we conclude that the bias in the LER has increased

for decreasing correlation length ξ3D.
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Figure 5.4: Simulated top-down image of randomly generated rough lines and
spaces (top), including its integrated profile (bottom) is shown. This image is
constructed by merging the individual images of ten randomly generated lines
of which one is shown in Fig. 5.3. Each line is made of PMMA, located on a
silicon substrate and is 1µm long, 32 nm wide and 32 nm in height. The SWR
that was generated has a standard deviation σ3D of 1 nm, correlation length ξ3D
of 20 nm and a roughness exponent α3D of 0.75. The pixel size of this image
is 0.43 nm × 2.7 nm (width times length). Each pixel is exposed with 20 primary
electrons on average by sampling the Poisson distribution. The primary beam
has a spot size of 3 nm and the kinetic energy is set to 300 eV. The detector for
secondary electrons with an energy less than 50 eV is assumed to be perfect and
does therefore not introduce additional noise.
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Figure 5.5: The measured PSD, including a model fit, derived from a simulated
top-down image of randomly generated rough lines and spaces is shown. The open
squares are the measurements obtained from analyzing ten lines, the solid line is
the model fit (Palasantzas) and the dashed line is the corresponding (pixel) noise
level. The SWR that was generated has a fixed standard deviation σ3D of 1 nm
and roughness exponent α3D of 0.75. The only difference between (a) and (b)
is the roughness exponent ξ3D, which equals 6 nm and 25 nm respectively. The
measured LER (one-sigma) for (a) is found by fitting and equals 0.90 nm with a
pixel noise of 0.56 nm. The measured LER (one-sigma) for (b) is found by fitting
and equals 0.63 nm with a pixel noise of 0.54 nm.
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Now that we are able to create, simulate, measure and analyze ran-

domly generated rough lines, we demonstrate and discuss our simulations

in which we vary the parameters of the Palasantzas roughness model as

given by Eq. 5.1. At first we vary the correlation length ξ3D of the SWR

while keeping the standard deviation σ3D at the fixed value of 1 nm. The

result of that simulation is shown in Fig. 5.6. We already concluded that

the determination of the SWR in top-down SEM images is biased when

changing the correlation length of the SWR. Here, in Fig. 5.6, we see that

the bias in SWR determination is actually a non-linear function of the

correlation length ξ3D of the SWR. The conclusion from the work of Law-

son et al. was that the LER is typically 50% smaller than the true SWR.

In our simulation, this corresponds to a case where ξ3D < 5 nm. In order to

compare, we must know the effective correlation length ξ3D for the SWR of

PMMA in the mesoscopic roughness model of Lawson et al. Unfortunately,

the parameters that they have used in the mesoscopic model for PMMA

are not mentioned in Ref. 25 and a direct comparison can therefore not

be made. In any case, the result of Fig. 5.6 indicates that the effective

correlation length ξ3D for the SWR of PMMA in the mesoscopic roughness

model of Lawson et al. is probably less than 5 nm.

We have found, by trial and error, that a particular function fits our

simulations very well,

LER

σ3D
=

1

a−1 + (b−1 − a−1) exp (−c−1 · ξ3D)
(5.2)

where the fit parameter 0 < a < 1 relates to the lowest possible bias on

the far right (limξ3D→∞), 0 < b < 1 relates to the highest possible bias

on the left (limξ3D→0) and c relates to the bending point. Notice that

the LER/σ3D is always less than one. We now question if and how the

fit parameters a, b and c depend on (1) the kinetic energy of the primary

beam and (2) the height of the feature. We therefore extended the study by

repeating the simulation for the following kinetic energies: 100 eV, 300 eV

and 500 eV. In addition, we have adjusted the height of the feature to

16 nm, 32 nm and 48 nm while maintaining a fixed width and spacing of
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Figure 5.6: The measured LER (one-sigma) versus the correlation length ξ3D of
the SWR is shown. The markers are the result of analyzing the PSDs of randomly
generated rough lines. The kinetic energy equals 300 eV and the feature height is
fixed to the value of 32 nm. The standard deviation σ3D of the SWR is fixed to
the value of 1 nm, and the roughness exponent α3D is fixed to the value of 0.75.
The solid line corresponds to the best fit for a reciprocal exponential. Details are
given in the main text.

32 nm. The result of that simulation is shown in Fig. 5.7. We observe in

Fig. 5.7a that the bias increases dramatically for increasing height. On

the other hand, we see in Fig. 5.7b and Fig. 5.7c that the amount of the

bias decreases for increasing primary energy. Also notice that the bending

point in Fig. 5.7 shifts to the right, i.e. c becomes smaller, as we increase the

energy of the primary beam. Moreover, notice for the height of 16 nm that a

does not seem to increase further above 100 eV. In other words, it seems

that the fit parameter a saturates asymptotically for increasing energies.

To demonstrate this effect, we show the explicit energy dependence for

the case of a fixed feature height of 48 nm in Fig. 5.8. Although the bias

appears to decrease asymptotically for increasing energy, we repeat that

LER is always lower than σ3D. This brings us to the following conclusion:

the bias in LER (with respect to σ3D) can be reduced by tuning the kinetic

energy of the primary beam with the feature height. The interested reader

might point out that we have only considered varying the correlation length

of the SWR. What about the roughness exponent? In a third simulation
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(a) primary energy = 100 eV
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(b) primary energy = 300 eV
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Figure 5.7: The measured LER (one-sigma) versus the correlation length ξ3D
of the SWR is shown for various kinetic energies and feature heights. The stan-
dard deviation σ3D of the SWR is fixed to the value of 1 nm, and the roughness ex-
ponent α3D is fixed to the value of 0.75.
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run, we have fixed the kinetic energy of the primary beam to 1 keV. The

roughness exponent is then varied from 0.25 to 0.50 and finally to the value

of 0.75 for a fixed feature height of 32 nm. The result of that simulation is

shown in Fig. 5.9. We inevitably conclude that the fit parameters a, b and

c depend on the roughness exponent as well.

We now see that the bias in the determination of the SWR from top-

down SEM images can be very significant. But what exactly can we learn

from this study? Although we would like that the LER only depends on

the geometry of the sample (roughness). This study suggests, however,

that the LER can have a strong dependence on (1) the kinetic energy of

the beam, (2) feature height, (3) the frequency dependence of the SWR,

i.e. correlation length and roughness exponent. In a previous study we

proposed to reduce the kinetic energy of the electron beam to avoid resist

shrinkage.28 The current study, however, demonstrates that the bias in

the LER measurement is reduced by choosing a larger kinetic energy for

the primary beam. In other words, we reduce the risk of resist shrinkage

at the cost of increasing the bias in the LER with respect to the SWR.

At present, we have no explanation for the dependence of the bias in the

determination of the SWR. We suggest to find an explanation in a follow

up study.
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Figure 5.8: The measured LER (one-sigma) versus the correlation length ξ3D
of the SWR is shown for different kinetic energies. The feature height is fixed to
the value of 48 nm. The standard deviation σ3D of the SWR is fixed to the value
of 1 nm, and the roughness exponent α3D is fixed to the value of 0.75.
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Figure 5.9: The measured LER (one-sigma) versus the correlation length ξ3D
of the SWR is shown for different roughness exponents. The kinetic energy
equals 1 keV and the feature height is fixed to the value of 32 nm. The stan-
dard deviation σ3D of the SWR is fixed to the value of 1 nm.
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5.3 Conclusion

We have investigated the determination of the SWR from top-down SEM

images by using a numerical study. In particular, we consider patterns of

randomly generated rough PMMA lines located on a silicon substrate. Our

lines have a length of 2 µm, a width of 32 nm and a height of 32 nm. The

SWR is modeled by using the PSD of Palasantzas and generated by using

the method of Thorsos. The rough surface is defined at a resolution of 1 nm

in both dimensions. The top surface of our PMMA lines and the silicon

substrate are modeled as flat.

We generate a SEM-like image of randomly generated rough lines by

using a fixed pixel size of 0.43 nm × 2.7 nm (width times length), which is

in accordance with our previous study on rough lines. In order to reduce

the risk of shrinkage, we use a beam energy of 300 eV and a spot size

of 3 nm, which is due to the aberrations caused by the low energy of the

beam. Each pixel is exposed with 20 electrons on average, following the

Poisson distribution to account for illumination shot noise. The resulting

dose is approximately 276 µC/cm2 on average. We have assumed that the

detection of electrons is perfect and does not introduce additional noise to

the SEM images.

Finally, we apply the PSD analysis as presented in our previous work

while changing the standard deviation and the correlation length of the

SWR in a controlled way. The measured LER is then compared against

the actual SWR that was used to generate the rough lines. We conclude

that the bias in the determination of the SWR is a non-linear function of the

correlation length ξ3D of the actual SWR. The bias in the determination of

the SWR increases for decreasing correlation length of the actual SWR. We

have observed that the LER can have a strong dependence on (1) the kinetic

energy, (2) feature height, (3) the frequency dependence of the SWR. We

conclude that the bias in the LER measurement can be reduced by choosing

a higher kinetic energy, and that the risk of resist shrinkage is reduced at

the cost of increasing the bias in the LER with respect to the SWR.
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Chapter 6

Sensitivity analysis of

scattering models

In the simulation of secondary electron yields (SEY) and secondary electron

microscopy (SEM) images, there is always the question: “are we using the

correct scattering cross-sections?”.

In this chapter we artificially scale the scattering cross-sections, such

that the probability for events associated with a particular model is either

increased or decreased. We then investigate the influence of this adjustment

on the calculated SEYs and simulated SEM images. At first we investigate

the influence on the calculated SEY of pure and infinitely thick silicon.

Then, we extend the analysis to the simulation of SEM images of three

dimensional rough lines made of silicon located on a silicon substrate. Pre-

cisely how sensitive is LER with respect to scattering cross-sections?

The content of this chapter is an updated version of an article we

have published in the Microelectronic Engineering: Verduin, T., Lokhorst,

S.R., Hagen, C.W., and Kruit, P., “Sensitivity of secondary electron yields

and SEM images to scattering parameters in MC simulations,” Microelec-

tronic Engineering 155, 114-117 (2016). This work was presented at the

MNE 2015 conference in the Hague.
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6.1 Introduction

In nano lithography, scanning electron microscopy (SEM) images of resist

features are used for dimensional metrology and inspection. The question

remains how to interpret the true size, shape and roughness characteriza-

tion of the three dimensional resist features from two dimensional SEM

images. For that purpose, simulation tools can be of great help. Reliable

Monte-Carlo electron-matter interaction simulators exist 44, 79, but are un-

fortunately notoriously slow for SEM image simulation. The performance

has been improved by using a triangulated mesh 24 and voxel based geome-

tries 25. Nevertheless, computation time can still be a problem. A practical

example is the determination of line edge roughness (LER) using the power

spectral density (PSD), which requires the simulation of multiple images 28.

Recently, we have reduced the computation time further by rewriting the

GEANT4 extension from FEI company, see Ref. 44, for the purpose of SEM

imaging and lithography simulations (see chapter 4). The subject of this

article is to investigate the sensitivity of (1) calculated secondary electron

yields (SEY) and (2) simulated SEM images of three dimensional patterns

of lines and spaces to the parameters of the physical models. The idea is to

artificially scale the scattering cross-sections, such that the probability for

events associated with a particular model are either increased or decreased.

The influence of this adjustment on the calculated SEY and simulated SEM

images is then evaluated. By doing so, we can determine the importance

of the individual scattering processes with respect to the final result.

6.2 Model sensitivity analysis

We investigate the cross-section sensitivity by using our own high perfor-

mance simulation tool (chapter 4) and discriminate between three scatter-

ing processes: inelastic scattering, elastic scattering and phonon scattering.

For each and per scattering process, we multiply or halve the correspond-

ing cross-section by a factor of two. The factor of two for the rescaling

of the scattering cross-sections is argued as follows. In the refinements

of Kieft and Bosch, a rescale of 3/2 is introduced to compensate the un-
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derestimation of Eq. 3.75 in chapter 3 with respect to experimental and

theoretical sources. Also notice that the DCS (or inverse MFP) scales (see

Fig. 3.5 in chapter 3) roughly with about a factor of two with respect to the

components of the optical-model potential. Other contributions that will

‘scale’ the MFP are, for example, the number density, i.e. λ = 1/(ρnσ) and

the parameters in the pre-factor (temperature, sound velocity, deformation

potential, . . .) of the AC phonon model (Eq. 3.126 in chapter 3). Although

nothing prevents the overall factor to be larger than two, the results ob-

tained with a factor of two are still useful as it reveals the trend in the

change of the observables.

Before we proceed, let us mention the key differences with respect to

our previous publication.93 First of all, the results shown in Ref. 93 are ob-

tained by using the exact same scattering models as used in the simulator

from FEI company.44. What is presented here follows the latest develop-

ments described in chapter 3. In other words, the physical models have

been improved significantly with respect to our previous publication. The

model for AC phonons in the present work, for example, is more accurate

as it includes three acoustic modes (one longitudinal and two transversal

modes), which must be compared to the single longitudinal mode used

in Ref. 93 and Ref. 44. Furthermore, in comparison to the free electron

mass used in Ref. 44, we consider effective masses (density of states and a

conductivity mass) in the AC model. Another improvement is the use of

the elastic scattering cross-sections from ELSEPA, which includes among

the other subtle effects described in chapter 3, the muffin-tin based optical-

model potential. In the work of Ref. 93 and Ref. 44, however, the free-atom

elastic scattering cross-sections of Czyzewski37 are used. We finally men-

tion that the FEI simulator considers a peculiar (exponential decaying)

energy-dependent particle filter at interfaces, which has as strong tendency

to annihilate low energetic electrons. Although no explanation is given in

the work of Kieft et al., that filter is necessary for SEYs to match with

experiment. The energy-dependent filter is fortunately no longer necessary

if we follow the (improved) physical models described in chapter 3. The

results shown in Figs. 6.1, 6.2 and 6.3 are calculated SEYs of pure and
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infinitely thick silicon. Similarly to what is done in chapter 4, we include

a small layer of ∆ = 5 Å to account for surface effects. Within that layer

we exclusively use the surface ELF, instead of the bulk ELF. In each of
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Figure 6.1: The influence of acoustic phonon scattering cross-sections on the
SEY of silicon is shown. Notice that the acoustic phonons are, due to the quasi-
elastic nature, part of the elastic scattering cross-sections (E<100 eV).

the three figures, we have examined the influence of a scattering process by

scaling the scattering cross-sections associated with that particular process.

Much to our surprise, we observe that the influence of the acoustic phonon

scattering cross-sections in Fig. 6.1 is seen all the way up to the incident

primary electron energy of 10 keV. This is a remarkable effect, because

acoustic phonon scattering is a low-energy extension to the elastic scatter-

ing cross-sections and is only applied to kinetic energies less than approxi-
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Figure 6.2: The influence of elastic Mott scattering cross-sections on the SEY
of silicon is shown. Notice that energies lower than 100 eV in (a) are not scaled
because that part is determined by the model for AC phonon scattering instead
of Mott scattering.

mately 100 eV. The influence of the acoustic phonon interaction at primary

energies higher than 100 eV must stem from the cascading process: elec-

trons with a higher energy ultimately reach, via inelastic scattering events,

energy scales at which the coupling to acoustic phonons becomes relevant.

In Fig. 6.2, which corresponds to a scaling of Mott scattering cross-sections,

we see no observable effect for electrons with an energy less than 200 eV.

In fact, there should be no effect at all1 because, similarly to the work of

Ref. 44, Mott scattering cross-sections are only used for primary energies

1Differences due to statistics are excluded from this statement.
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Figure 6.3: The influence of inelastic cross-sections on the SEY of silicon is
shown.

ranging from 200 eV and upwards. Notice that in all three figures a sudden

decrease in the SEY is observed near 50 eV. The explanation is found in

the way that secondaries are distinguished from backscattered electrons.

In the simulation, we denote similar to Ref. 44, electrons emitted into the

vacuum with an energy less than 50 eV as secondaries and electrons with an

energy higher than 50 eV as backscatters. The consequence of that defini-

tion is that, below 50 eV every emitted electron into the vacuum is simply

counted as a secondary electron. From 50 eV and upwards, we suddenly

start to make a distinction between secondary and backscattered electrons

based on the kinetic energy. This causes the SEY to slightly decrease be-

cause, instead of all electrons, a smaller fraction (those with an energy less
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than 50 eV) are now counted as secondary electrons. We remark that the

total yield, i.e. the sum of secondary and backscattered electrons, does not

have the sudden decrease after 50 eV.

We have calculated for completeness the effect of the scaling of the scat-

tering cross-sections to the backscatter yield (BSY). The result of that for

each scattering process is shown in Fig. 6.4. Let us compare the effects

in Fig. 6.4 to the influence on the SEY. We already see some interest-

ing effects. First of all, notice that AC phonons play no role in the BSY

for energies higher than 200 eV, which coincides with the boundary after

which the elastic Mott model is used exclusively.2 Although this particular

energy is an artefact in the modeling of the physics, we can conclude nev-

ertheless that the effect of AC phonons is different for backscatters than

for secondary electrons: contrary to the SEY In fact, in the regime where

the AC phonon scattering model is applied (less than 200 eV), we see that

when the scattering cross-sections for AC phonons are multiplied by two,

the corresponding BSY increases, whereas the SEY decreases. The re-

verse is found when we halve the AC phonon scattering cross-sections. Let

us proceed with the the influence of the elastic scattering cross-sections.

Notice that the trend on the SEY is comparable to the BSY. A multiplica-

tion factor of two results in an increase of the SEY as well as an increase

of the BSY for kinetic energies above which we start to include the elas-

tic Mott model (100 eV). However, the increase (or decrease) of the SEY

diminishes for higher kinetic energies. Notice on the other hand that the

increase (or decrease) of the BSY remains relatively constant for increasing

kinetic energy. Finally, we see that the scaling of the inelastic scatter-

ing cross-sections affects the BSY on the entire energy scale. Here too we

see that both the SEY and BSY increase (or decrease). Observe however

that the influence of the inelastic scattering cross-sections is opposite with

respect to AC phonon and elastic Mott scattering. When the scattering

cross-sections are multiplied by two, the yields (SEY and BSY) increase

when applied to AC phonons and elastic Mott, but decrease when applied

to the inelastic scattering cross-sections

2Let us remind the reader that the model for AC phonon scattering is used exclusively
below 100 eV and elastic Mott scattering is used exclusively above 200 eV. The models
are interpolated in between.
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Figure 6.4: The influence of the scaling of the scattering cross-sections on
the BSY of silicon is shown. A comparison with the SEY is discussed in the
main text.
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We now focus on the sensitivity of simulated SEM images. Our approach

is to calculate the SEM image of a fixed pattern of rough lines and spaces for

four different cases. The lines are made of silicon, located on a silicon sub-

strate, with dimensions 32 nm × 1 µm × 32 nm (width × length × height).

The spacing between the lines equals 32 nm. The calculation, in which the

pattern is exposed to an electron beam with energy 500 eV, is essentially

identical to Ref. 78, except for the fact that for each case, we have scaled

the scattering cross-sections of one particular scattering process. Let us

emphasize that we have not included a surface layer in the calculation of

the SEM image. What we have obtained is one SEM image corresponding

to the default scattering cross-sections and three SEM images where either

the phonon, elastic Mott or inelastic scattering cross-sections are multi-

plied by a factor of two. The influence on the resulting SEM images is best

seen on the SEM signal profile3 of a single line, which is shown in Fig. 6.5.

The primary effect of the scaling of the scattering cross-sections is more or

less signal in the SEM image. We expect that, in practice, the roughness

characterization of the lines remains unaffected. To demonstrate this, we

applied the profile based edge-detection method of Ref. 28 to all four SEM

images. For the characterization of the roughness, we use the model of

Palasantzas26. The result of the roughness characterization (the 3σ LER),

including the estimation for the correlation length (ξ) and roughness expo-

nent (α) is given in Table 6.1 for the four different cases.

3The SEM signal profile is discussed in detail in chapter 2.
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Figure 6.5: The influence of the scattering cross-sections on a SEM image of
rough lines and spaces is shown. A composition of the influence of the scattering
cross-sections to a small part of the SEM image is shown in the left image. The
profile in the figure on the right is obtained by integrating the full SEM image
(1 µm in length) from top to bottom.

scattering cross-sections 3σ [nm] ξ [nm] α

default 2.68 ± 0.02 30.3 ± 5.2 0.83 ± 0.09
phonon ×2.0 2.72 ± 0.03 34.3 ± 7.4 0.72 ± 0.12
elastic ×2.0 2.75 ± 0.02 32.6 ± 5.8 0.80 ± 0.09

inelastic ×2.0 2.70 ± 0.02 33.4 ± 7.8 0.75 ± 0.12

Table 6.1: The roughness characterization of four simulated SEM images of a
fixed pattern of rough lines and spaces is shown. Each row corresponds to a
separate simulation, where in each simulation only one scattering cross-section is
multiplied by a factor of two.

Notice that the measured LER (3σ) is somewhat lower than the actual

SWR (3σ of 3 nm). This is the bias which has been discussed in detail

in the previous chapter. Nevertheless, we conclude that the 3σ of the

LER is indeed not sensitive to the introduced changes in the scattering

cross-sections. This demonstrates that the profile based edge-detection, as

explained in Ref. 28, is not sensitive to the scaling of the scattering cross-

sections.
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6.3 Conclusion

Our sensitivity analysis demonstrates that acoustic phonon scattering plays

a significant role in the calculation of SEYs. Although acoustic phonon

scattering has a strong coupling to low energetic electrons, its influence on

the SEY of pure silicon is seen all the way up to primary electron energy of

10 keV. We have extended the analysis to the simulation of SEM images of

three dimensional rough lines made of silicon located on a silicon substrate.

The scaling of the scattering cross-sections affects the contrast of the SEM

image, but not the roughness characterization of the lines, i.e. the 3σ of the

LER, correlation length and roughness exponent. This means that there

is no need to increase the accuracy of the scattering cross-sections. SEM

image simulation programs could perhaps be simplified, because the exact

cross-sections are not that important.
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Chapter 7

Simulation of shotnoise

effects in lithography

In nanolithography, a resist layer is spin coated on a wafer with a substrate.

The resist layer is then exposed optically or with a beam of electrons. In

the case of a chemically amplified resist (CAR), the exposure results in the

release of acids of in the resist layer. In the post-exposure baking (PEB)

phase, the acids start to diffuse and break or cross-link molecular bonds

which either become soluble or insoluble. The subject of computational

lithography is to predict the effects in detail, such that the lithographic

process, for example, can be optimized for throughput while minimizing

the errors on feature dimensions to acceptable values.

In this chapter we investigate how quantum noise effects, starting from

the initial exposure, affect the resulting feature. The approach is to study

the formation of shotnoise induced SWR, for which we have developed a

fast three-dimensional Monte-Carlo framework. In comparison to existing

studies, where simplified models are used to avoid dramatic computation

times, we simulate the full electron-beam resist interaction by using our

rigorous GPU-accelerated electron-matter interaction program. After the

simulated resist exposure, we then determine the release and diffusion of

acids from photo acid generators (PAGs) in three dimensions. We will show

the emergence of interesting effects due to the beam-resist interaction.
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The content of this chapter is an updated version of an article we have

published in the Proceedings of SPIE: Verduin, T., Lokhorst, S.R., Ha-

gen, C.W., Kruit, P., “Simulation of shotnoise induced side-wall roughness

in electron lithography,” Proceedings of SPIE 9778, Metrology, Inspection,

and Process Control for Microlithography, 97781Z (2016). The work was

presented at the SPIE 2016 conference in San Jose.

7.1 Introduction

The throughput of a lithographic system is an important parameter in a

typical production line. This parameter can be increased in several ways.

In optical lithography, for example, a more powerful source is one solution.

In electron-beam lithography, an increase of the number of parallel beams

is another solution. In either case, the use of a more sensitive CAR would

result in a reduction of the required exposure dose, and hence a reduction

of the exposure time. In order to maximize throughput, it is tempting

to choose the most sensitive CAR with the lowest possible illumination

dose. In that limit, however, an increase of LER, and hence an insufficient

control of critical dimension (CD) is observed.1 This increase of LER is

primarily caused by fundamental quantum noise (shotnoise) effects and

becomes the dominant mechanism in the formation of LER.2, 3, 4, 5, 6, 7, 8

Our attempt, in this theoretical study, is to develop an extended Monte-

Carlo framework for the investigation of shotnoise induced SWR formation

in CARs. We extend the existing studies in two different ways: (1) by

including the interaction of the electron beam with a CAR by using our

Monte-Carlo electron-matter interaction simulator and (2) by considering

a full three dimensional model which, in contrast to Refs. 4, 5, 6, includes

near-surface effects of acid diffusion. We expect that this extended model

provides more insight in the effects on SWR of changing parameters such

as resist thickness, acid diffusion and dose distribution. We will explain

the method of SWR formation and give a striking example with analysis

to demonstrate its use.
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7.2 Method of SWR formation

At first, a (thin) layer of CAR is defined on top of an infinitely thick sub-

strate. We now use the simulator of Ref. 78 for lithography: the electron

beam is scanned over the sample such that a particular pattern is written.

During the exposure, we record where the inelastic events take place within

the resist layer. Next, we determine the distribution of released acids from

the inelastic events under the following three assumptions. We assume that

the initial distribution of photo acid generators (PAGs) in the resist layer

is homogeneous and isotropic. Furthermore, we assume that every inelas-

tic event in the simulation is associated with the release of an acid from

a PAG. We emphasize that, for realistic studies, the probability for the

release of an acid as a function of the kinetic energy of the electron must

be included. In addition, we assume that a secondary electron is created

in the inelastic event. The distribution of the acids is then used to deter-

mine the breaking/making of bonds in the resist by considering a diffusion

like process in the post exposure baking (PB) phase. The (in)solubility at

position (x, y, z) in the resist layer is determined by substituting each acid

with a three dimensional Gaussian distribution,

S(x, y, z) ∼
nacid−1∑
i=0

exp
−
(
x− µ(i)

x

)2
−
(
y − µ(i)

y

)2

2r2
d

exp
−
(
z − µ(i)

z

)2

2r2
d

where nacid is the number of released acids in the resist layer, µx,y,z the

position of the acid and rd the diffusion radius. We strive to replace this

model by a more sophisticated model in the future. The determination

of the (in)solubility close to the substrate and vacuum interface deserves

special attention. The problem is that an acid cannot diffuse beyond the

interface. Instead, we assume that an acid is reflected. The contribution

of an acid to the (in)solubility is determined by using mirror symmetry at

the vacuum and substrate interface.
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It is achieved by substituting the following expression,

exp
−
(
z − µ(i)

z

)2

2r2
d

−→

exp
−
(
z − µ(i)

z

)2

2r2
d

+ exp
−
(
z + µ

(i)
z − 2zs

)2

2r2
d

+ exp
−
(
z + µ

(i)
z − 2zv

)2

2r2
d

where zs defines the position of the substrate interface and zv defines the

position of the vacuum interface. The determination of the (in)solubility at

a particular position in the resist layer is shown in Fig. 7.1 schematically.

A three dimensional image of the (in)solubility of the exposed resist layer

vacuum

substrate

resist

layer

Figure 7.1: Schematic of the determination of the (in)solubility of a CAR at a
particular location. The black sphere is the position of an acid in the resist layer,
which is obtained with a Monte-Carlo electron-matter interaction simulator. Two
mirrored acids (gray spheres) are virtually located in the substrate layer and in
the vacuum. The mirrored acids are used for calculating the reflection of the acid
diffusion with respect to the vacuum and substrate interface. The (in)solubility at
the square marker is determined by evaluating a Gaussian kernel for the diffusion of
the acid. The net (in)solubility at the square marker is obtained by accumulating
the contributions of all released acids in the resist layer.

is then constructed by evaluating the expression S(x, y, z) for each voxel.

The computational complexity of the latter scales with the product of the

dimensions of the three dimensional image and the number of acids in the

resist layer. Typically, the computational complexity is > 1012 and the

computation time for the three dimensional image is reduced dramatically

by using a graphics processing unit (GPU).
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We now proceed similarly to the work of Refs. 4, 5, 6, where a thresh-

old determines the boundary between exposed and unexposed resist. For

a positive tone resist (PTR), intensities higher than the threshold in the

three dimensional image are dissolvable in a developer. Analogously for a

negative tone resist (NTR), intensities lower than the threshold are dissolv-

able. In reality, there is also a development phase, which we so far have

ignored in this study. We acknowledge that this is a simplified view of post

lithographic processing.

It is necessary, for realistic cases, that the elastic and inelastic scatter-

ing cross-sections of a CAR are available. The inelastic scattering cross-

sections, for example, can be determined from optical loss functions, which

can be obtained from optical experiments and from electron energy loss

spectroscopy (EELS) measurements.1 Unfortunately, we do not have the

optical loss function of any particular CAR at our disposal. Therefore, we

can only demonstrate the framework for the investigation of shotnoise in-

duced SWR formation by using artificial scattering cross-sections. In our

simulation tool, for example, we do have the scattering cross-sections for

the organic resist PMMA. For the sake of demonstration, we will assume

in the upcoming example that PMMA behaves as a CAR. We acknowledge

that this is not a realistic approximation.

7.3 Example of lithographic exposure

Let us now give an example of the SWR formation. We define a 100 nm

thick layer of PMMA on top of an infinitely thick silicon substrate and

use the simulator of Ref. 78 for the purpose of lithography. We assume

that the resist behaves as a NTR and write the pattern of an isolated line

into the resist layer by scanning a beam with 20 keV electrons over an

area of 32 nm×1 µm (width and length), see Fig. 7.2. During the exposure,

we use a Gaussian spot-size with FWHM=FW50%=20 nm, beam step-size

of 4 nm and a Poisson distributed exposure dose of 80 µC/cm2, 60 µC/cm2

and 40 µC/cm2. During the exposure of the sample, we determine the

1More details on the sources for the scattering cross-sections, which are used in our
Monte-Carlo electron-matter interaction simulator, can be found in Ref. 78.
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Figure 7.2: Schematic view of the lithographic exposure is shown. The left image
shows the spot-size and beam step-size. The image on the right shows how the
beam is scanned to form the pattern of an isolated line in the resist layer. Details
are given in the main text.

distribution of released acids by recording the locations of the inelastic

events within the resist layer. We now construct a three dimensional image

of the (in)solubility of the resist layer within a cuboid of 128 nm(256px)

wide, 800 nm(1024px) in length and 100 nm(128px) in height. The latter

is obtained by evaluating expression S(x, y, z) for each voxel in the three

dimensional image, where we have used a three dimensional Gaussian with

σx,y,z = rd =5 nm for the diffusion of the acid. Furthermore, we have nor-

malized the three dimensional image such that the minimum value for the

(in)solubility is zero and the maximum value is one. We are now ready to

analyze the resulting image of the (in)solubility in different ways. Let us

first look at the average (in)solubility in a xz-slice of the three dimensional

image. The result of that is shown in Fig. 7.4, where we have marked the

boundary between exposed and unexposed resist by contour lines for differ-

ent values of the threshold. Notice the result of the scattering, which causes

the distribution of the acids to broaden at increasing depth. In the remain-

der of the article, we arbitrarily choose a threshold of 0.5 with respect to

the normalized (in)solubility to mark the boundary between exposed and
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Figure 7.3: Demonstration of the interaction of the electron-beam with the resist
layer is shown. A resist layer of 100 nm thickness is exposed to a beam of 20 keV
electrons centered at zero. The electrons scatter (black lines) into the resist layer
and facilitate the release of acids (red markers) from PAGs. The distribution of
the acids is then used to determine the (in)solubility of the resist layer. Notice
how electrons backscatter from the silicon substrate back into the resist layer.
More details are given in the main text.

unexposed resist. A xy-slice of the three dimensional image, taken at a

depth of 50 nm from the top surface of the resist layer, is shown in Fig. 7.5

for three different exposure doses. Notice that the boundary appears to

have increasing roughness for decreasing dose (from left to right). We will

discuss this effect in detail later on. Instead of a slice at a particular depth,

we also construct a three dimensional view of the boundary between ex-

posed and unexposed resist. The result for the left side of the boundary is

shown in Fig. 7.6 for the three different exposure doses. Next, we deter-

mine the average LER as a function of the depth in the resist layer from

the xy-slices by calculating the standard deviation (one-sigma) of the left

and right boundary. If we repeat that procedure for all slices, ranging from
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Figure 7.4: The average (in)solubility in a xz-slice of the three dimensional
image. The sample consists of a 100 nm thick layer of CAR on top of an infinitely
thick silicon substrate. A pattern of an isolated line is written into the resist layer
by scanning a beam with 20 keV electrons over an area of 32 nm×1µm (width
and length) by using a Monte-Carlo electron-matter interaction simulator. The
(in)solubility is obtained by accumulating the contributions of all acids in the resist
layer, where we have used a three dimensional Gaussian with σx,y,z = rd =5 nm for
the diffusion of the acid. The (in)solubility is normalized such that the minimum
value for the (in)solubility is zero and the maximum value is one. The boundary
between exposed and unexposed resist is shown by contour lines for different values
of the threshold.

the top of the resist layer to the bottom of the substrate, we obtain the

result of Fig. 7.7: the average LER as a function of the depth in the resist

layer. We emphasize that in Fig. 7.7 the average LER is shown, and not

not the boundary between exposed and unexposed resist. The observed

increase in roughness for decreasing dose in Fig. 7.5 is confirmed by this

calculation. This was also concluded in the work of Refs. 4, 5, 6 for two

dimensional cases. In the current study, we observe the very same effect in

a more sophisticated three dimensional model. In addition, we observe an

interesting effect close to the vacuum and substrate interface: the rough-

ness is increasing as we approach the interface. Let us discuss the observed

trends for shotnoise effects in SWR formation. Shotnoise effects arise due to

the nature of Poisson statistics: the number of acids varies with the square

root of the number of acids, i.e. nacid ±
√
nacid. The ratio between the
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Figure 7.5: A xy-slice of the simulated three dimensional (in)solubility of an
exposed resist layer. Dimensions in the figures are given in units of nanometers.
The slice is taken at a depth of 50 nm from the top surface of a 100 nm thick layer
of CAR, which is located on a infinitely thick silicon substrate. The white wavy
lines mark the boundary between exposed and unexposed resist for a threshold
of 0.5. The three subfigures (a)-(c) correspond to a Poisson distributed exposure
dose of respectively 80µC/cm2, 60 µC/cm2 and 40µC/cm2.

fluctuations and the number of acids is given by
√
nacid/nacid = 1/

√
nacid.

What this really means is that if we decrease the dose, and hence reduce

the number of released acids, we get worse statistics. The result of that, as

shown in Fig. 7.7, is an increase in roughness for decreasing dose. There

are two contributions for the increase of roughness near the vacuum and

substrate interface. One contribution relates to the actual number of acids,

which is less near the interface than away from the interface. The explana-

tion for this effect is as follows. Secondary electrons at the top of the resist
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(a) D=80µC/cm2

(b) D=60µC/cm2

(c) D=40 µC/cm2

Figure 7.6: A three dimensional view of the boundary between exposed and
unexposed resist. The surfaces are obtained from a simulated exposure of a 100 nm
thick layer of CAR, which is located on a infinitely thick silicon substrate. Similar
to Fig. 7.5, the boundary between exposed and unexposed resist is determined with
threshold of 0.5. The three subfigures (a)-(c) correspond to a Poisson distributed
exposure dose of respectively 80µC/cm2, 60 µC/cm2 and 40µC/cm2.

174



average line edge roughness [nm]

0 1 2 3 4 5 6

d
e

p
th

 i
n

 r
e

s
is

t 
[n

m
]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

80 µC/cm
2

60 µC/cm
2

40 µC/cm
2

Figure 7.7: The average LER as a function of the depth. The figure is derived
from xy-slices of the three dimensional image of the (in)solubility. The bound-
ary between exposed and unexposed resist is determined with a threshold of 0.5.
Please note that the average LER is shown, and not the boundary between ex-
posed and unexposed resist. The average LER is obtained by calculating the
standard deviation (one-sigma) of the left and right boundary. By considering all
slices, ranging from the top of the resist layer to the bottom of the substrate, the
average LER as a function of the depth from the top surface of the resist layer is
obtained.

layer escape into vacuum, and hence cannot contribute any further to acid

release within the resist layer. At the bottom we have a similar effect: sec-

ondary electrons scatter into the silicon substrate. The difference is (with

respect to the vacuum side) that secondary electrons are created in the

silicon substrate. There are, however, fewer secondary electrons scattering

from the silicon substrate back into the resist layer. Another contribution

stems from the fact that no acids are found on the vacuum side nor on the

substrate side. We will demonstrate the consequence on the statistics by

example. Suppose that the distribution of the acids in the resist layer is

homogeneous and isotropic, i.e. the probability to find an acid anywhere in

the resist layer is independent of position. The (in)solubility in the center

of the resist layer is primarily determined by the sum of the contributions

from the n±
√
n acids surrounding that position. There are no acids found
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beyond the interface and so near the interface we only have 1
2n ±

√
1
2n

acids in the resist layer to account for the (in)solubility. Remember that

the acids in the resist layer are reflected by using mirror symmetry and

hence we effectively have n ±
√

2
√
n (mirrored) acids contributing to the

(in)solubility, see Fig. 7.8. We conclude that the statistics near an interface

Figure 7.8: Illustration of shotnoise effects in the vicinity of an interface. Notice
that the number of acids that contribute to the (in)solubility is less near the
interface than away from the interface. In comparison to the bulk of resist layer,
only half of the acids can contribute near the vacuum interface. More details are
given in the main text.

are worse because (1) the number of acids near the interface is less than

away from the interface and (2) because there are no acids found beyond

the interface.

7.4 Power spectral density analysis

To complete the analysis, we now proceed by feeding the simulated resist

feature into our CD-SEM imaging simulator. The construction of the rough

line is analogous to what is done in Chapter 5 (see Fig. 5.1). Let us remind

the reader that in Chapter 5 we have used the model of Palasantzas with the

method of Thorsos to generate the rough surface for the sidewall. In this

study, we use the rough surface obtained from the simulated lithographic

exposure (see Fig. 7.6). The idea is to construct a two-dimensional height

map of the sidewall and then triangulate the surface in a regular way. An

example of the latter is shown in Fig. 7.9 for a sidewall obtained from a

simulated lithographic exposure. Next, we add the substrate layer (silicon)

and enclose the sample with electron detectors. The resulting triangulated

mesh of the isolated line is then fed into the CD-SEM image simulator.
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Figure 7.9: An illustration of a triangulated sidewall is shown. The triangulated
sidewall is used for defining the geometry of an isolated line. The method of con-
struction of the isolated line is analogous to the procedure explained in Chapter 5
with the exception of a custom generated height map. The length of the line
is 650 nm and the height equals 100 nm. More details are given in the main text.

We then generate CD-SEM images by exposing the isolated line with three

different primary energies, i.e. 0.5 keV, 1 keV and 5 keV. The resulting

CD-SEM images taken with 5 keV are shown in Fig. 7.10. We now would

like, similar to chapter 5, determine the PSDs of the simulated CD-SEM

images and investigate the influence of the lithographic exposure dose and

imaging energy on the LER. To that order we apply the edge detection

technique of Chapter 2 and determine the PSDs of the simulated CD-SEM

images. An example of a PSD obtained in this way is shown in Fig. 7.11.

For the latter we have used a lithographic exposure dose of 80 µC/cm2 and

imaging energy of 5 keV. Let us make a few remarks about the PSD shown

in Fig. 7.11. First of all, by looking at Fig. 2.10d in Chapter 2, we see
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(a) D=80µC/cm2 (b) D=60 µC/cm2 (c) D=40µC/cm2

Figure 7.10: The simulated CD-SEM images of an isolated line obtained with
various lithographic exposure dose are shown. Each CD-SEM image has a field of
view of 128 nm×650 nm (width times length). The images shown in (a), (b) and
(c) are all obtained with an electron energy of 5 keV. The integrated profiles are
shown at the bottom. More details are given in the main text.

178



that a single image of 10 lines with an imaging dose of approx. 10 µC/cm2

results in an error on the LER of about 10%. This time, however, we have

used the extreme case of a single line in the determination of the PSD.

The latter is only possible if we compensate for the lack of statistics by

using a high imaging dose (2000 µC/cm2). Second, notice that the shape of

the PSD fits the description of Palasantzas model. This is to be compared

to the results of Chapter 5, where we have explicitly used the Palasantzas

model to generate the sidewall roughness. In the present study we made no

such assumption on the model of the roughness, and still a Palasantzas-like

roughness emerges. This means that the resulting PSD (LER, correlation

length and roughness exponent) is a complex mixture of lithographic con-

ditions (spot-size, beam step-size, exposure dose, beam energy, diffusion

radius, (in)solubility threshold, . . .) and imaging conditions (electron de-

tectors, spot-size, beam step-size, imaging dose, beam energy, . . .).
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Figure 7.11: An example of a PSD obtained from a simulated CD-SEM image
of a simulated isolated line is shown. For this particular example we have used
a lithographic exposure dose of 80µC/cm2. The corresponding PSD is obtained
by analyzing the simulated CD-SEM image by using 5 keV electrons. The solid
line (red) is the best fit of the Palasantzas model, which has been extended with
a term to capture the total noise. More details are given in the main text.
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exposure dose [µC/cm2] imaging energy [keV] LER [nm]

80 0.5 1.32 ± 0.13
80 1.0 1.24 ± 0.12
80 5.0 0.98 ± 0.10

60 0.5 1.63 ± 0.16
60 1.0 1.56 ± 0.16
60 5.0 1.24 ± 0.12

40 0.5 1.72 ± 0.17
40 1.0 1.56 ± 0.16
40 5.0 1.32 ± 0.13

Table 7.1: The LER and the correlation length resulting from the PSD analysis
for various lithographic exposure dose and imaging energies are shown. More
details are given in the main text.

We have made Table 7.1 to show the measured LER for various lithographic

exposures and imaging energies. We have obtained each LER by fitting the

corresponding PSD to the model of Palasantzas extended with a term to

capture the total noise. The errors in the LER are estimated by extrap-

olating Fig. 2.17 (Chapter 2) to a single line with two edges. Although

the resulting errors are substantial, we can still see two interesting trends.

The first trend is that for a fixed lithographic exposure dose, the LER is

decreasing for increasing imaging energy. This is a confirmation of the

energy-dependent effect on the LER as described in Chapter 5. Another

trend is that for a fixed imaging energy, the LER increases for decreasing

lithographic exposure dose. For example, we see for an imaging energy

of 500 eV that the LER increases from 1.32 nm at 80 µC/cm2 to 1.72 nm

at 40 µC/cm2. The same trend is visible for the other imaging energies.

This is the expected shotnoise effect caused by dose statistics of the illumi-

nation. We would like to end this chapter with a summary outline of the

presented methodology for ab-initio SWR analysis:

• Define the initial geometry for the exposure. In the simplest case we

have a single resist layer with a certain thickness located on top of a

infinitely thick substrate.

• Specify an exposure strategy for a particular pattern by tuning various

parameters: spot-size, beam step-size, beam energy and dose.
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• Expose the geometry using the GPU accelerated electron-matter in-

teraction simulator (Chapter 4). During the exposure, the distribu-

tion of released acids is determined.

• Simulate the PEB phase by allowing the released acids to diffuse

with a certain radius. The latter includes reflection at the interfaces

by symmetrization of the acid distribution.

• Generate a three dimensional image where each voxel relates to the

probability of (in)solubility of the resist.

• Determine the boundary between exposed and unexposed resist by

choosing a (in)solubility threshold.

• Construct a triangulated mesh of the resulting resist feature (Chap-

ter 5) and include the remaining components of the geometry (sub-

strate for example).

• Add electron detectors to the geometry and specify imaging condi-

tions: field of view, spot-size, beam step-size, imaging energy and

imaging dose.

• Simulate the acquisition of the CD-SEM image using the same GPU

electron-matter interaction simulator (Chapter 4).

• Apply the edge detection method of Chapter 2 and determine the PSD.

• Measure the parameters of the PSD by fitting the model of Palas-

antzas extended with a term to capture the total noise.

The elaborate calculation allows the investigation of trends in the metrol-

ogy of CD-SEM images by varying lithographic exposure conditions. An

example is the minimization of the LER by fine tuning the writing strat-

egy (spot-size, beam step-size) and by controlling the diffusion radius of the

electrons. The latter is most interesting for industrial applications when the

process is optimized for a reduced lithographic exposure dose, and hence a

higher throughput of the lithography process.
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7.5 Conclusion

We have succeeded in creating a fast three dimensional Monte-Carlo frame-

work for the investigation of shotnoise induced SWR formation. In com-

parison with existing studies, we simulate the electron-resist interaction by

using an advanced Monte-Carlo program. We have considered a simplified

model for the release of an acid from a PAG and used three dimensional

Gaussian diffusion for the acids. The latter includes reflection of acids at

the vacuum and substrate interface by using mirror symmetry. We can

already see interesting effects such as: surface effects, broadening of the

acid distribution in the resist layer due to the scattering and roughness as

a function of the penetration depth.

The exposed resist gives rise to a three dimensional feature which is

then fed into our CD-SEM image simulator, which is the same Monte-

Carlo simulator used for the lithographic exposure but now applied for

the purpose of imaging. The LER in the resulting two dimensional top-

down image is further processed using PSD analysis. What is observed is

that the resulting PSD shares the same characteristics of the Palasantzas

model and thus can be described effectively by the LER, correlation length,

roughness exponent and a (white) noise term. In a case study we have

varied the lithographic exposure dose for the pattern of a single isolated

line. For each line, we have generated a simulated CD-SEM image by

using three different imaging energies. The analysis of the ensemble of

PSDs gives us two confirming trends. The first trend is that for a fixed

lithographic exposure dose, the LER is decreasing for increasing imaging

energy. This is a confirmation of the energy-dependent effect on the LER

and is in agreement with the result of Chapter 5. Another trend is that

for a fixed imaging energy, the LER increases for decreasing lithographic

exposure dose. The increase in LER is the expected shotnoise effect caused

by dose statistics in the illumination.
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Chapter 8

Conclusions

The following conclusions can be drawn from the thesis:

1. We conclude that low dose CD-SEM image analysis is a necessary

prerequisite for reliable characterization of CD and LER. The most

important reason is to avoid resist shrinkage.

2. We have shown that the effect of transversal and longitudinal filtering

in the determination of LER from CD-SEM images cannot be ignored,

even when considering an optimized filter strength. The best solution

is to avoid a filter at all.

3. The determination of LER from noisy CD-SEM images without using

image filtering is made possible by means of profile-based edge detec-

tion. We acquire the SEM signal profile by integrating a SEM image

of line edges in the direction of the edges. The profile is then matched

against the raw (unfiltered) amplitude of edges in the image.

4. We have shown in a simulation study that LER can still be deter-

mined from very noisy images with only 2 electrons per pixel on av-

erage ( ≈ 10 µC/cm2): a single image with 12 line edges, produces an

estimation of the LER with a relative error of only 10%.

5. We observed that the determination of LER does not significantly

improve anymore beyond an image dose of 20 electrons per pixel.

There is no point in using higher imaging dose.
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6. We have observed in an experimental study that most of the resist

shrinkage happens in the very first few frames of the CD-SEM im-

age acquisition and is non-linear of nature.. Furthermore, we have

observed that LER decreases for accumulating dose during imaging.

7. We have succeeded in creating a rigorous Monte-Carlo simulation

program for CD-SEM images, which runs entirely on a GPU. The

GPU simulator is verified by making comparisons to experimental

secondary/backscatter yields and EELS spectra.

8. We have determined that the GTX480 from NVIDIA generates CD-

SEM images (depending on the primary electron energy) 387 to 894 times

faster than a single threaded Intel X5650 CPU.

9. We have observed an averaging of the 3D side wall roughness in the

2D determination of the LER. The averaging is non-linear with re-

spect to the correlation length ξ3D of the SWR. The effect is reduced

by increasing the kinetic energy of the primary beam.

10. We have observed that determination of LER from a CD-SEM image

has a strong dependence on (1) the kinetic energy of the beam, (2)

feature height and (3) the frequency dependence of the SWR.

11. We conclude from a sensitivity analysis that acoustic phonon scat-

tering plays a significant role in the calculation of SEYs. Although

acoustic phonon scattering has a strong coupling to low energetic elec-

trons, its influence on the SEY of pure silicon is seen all the way up

to primary electron energy of 10 keV.

12. The scaling of the scattering cross-sections affects the contrast of the

CD-SEM image, but not the roughness characterization of the lines,

i.e. the 3σ of the LER, correlation length and roughness exponent.

This means that there is no need to increase the accuracy of the scat-

tering cross-sections. SEM image simulation programs could perhaps

be simplified, because the exact cross-sections are not that important.
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13. We have succeeded in creating a fast three-dimensional Monte-Carlo

framework for the investigation of shotnoise induced SWR formation.

In comparison with existing studies, we can simulate the electron-

resist interaction by using the GPU accelerated Monte-Carlo program.

14. In a simulation study of SWR formation, we have observed shot-

noise effects as we decrease the exposure dose. An increased effect of

shotnoise is observed near the vacuum and substrate interface. One

contribution relates to the actual number of acids, which due to the

scattering is less near the interface than away from the interface. An-

other contribution stems from the fact that no acids are found on the

vacuum side nor on the substrate side.
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