

Delft University of Technology

Search-Based Crash Reproduction and Its Impact on Debugging

Soltani, Mozhan; Panichella, Annibale; van Deursen, Arie

DOI
10.1109/TSE.2018.2877664
Publication date
2020
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Soltani, M., Panichella, A., & van Deursen, A. (2020). Search-Based Crash Reproduction and Its Impact on
Debugging. IEEE Transactions on Software Engineering, 46(12), 1294-1317. Article 8502801.
https://doi.org/10.1109/TSE.2018.2877664

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2018.2877664
https://doi.org/10.1109/TSE.2018.2877664

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

1

Search-Based Crash Reproduction and Its
Impact on Debugging

Mozhan Soltani, Annibale Panichella, Arie van Deursen

Abstract—Software systems fail. These failures are often reported to issue tracking systems, where they are prioritized and assigned
to responsible developers to be investigated. When developers debug software, they need to reproduce the reported failure in order to
verify whether their fix actually prevents the failure from happening again. Since manually reproducing each failure could be a complex
task, several automated techniques have been proposed to tackle this problem. Despite showing advancements in this area, the
proposed techniques showed various types of limitations. In this paper, we present EvoCrash, a new approach to automated crash
reproduction based on a novel evolutionary algorithm, called Guided Genetic Algorithm (GGA). We report on our empirical study on
using EvoCrash to reproduce 54 real-world crashes, as well as the results of a controlled experiment, involving human participants, to
assess the impact of EvoCrash tests in debugging. Based on our results, EvoCrash outperforms state-of-the-art techniques in crash
reproduction and uncovers failures that are undetected by classical coverage-based unit test generation tools. In addition, we observed
that using EvoCrash helps developers provide fixes more often and take less time when debugging, compared to developers
debugging and fixing code without using EvoCrash tests.

Index Terms—Search-Based Software Testing; Genetic Algorithms; Automated Crash Reproduction; Empirical Software Engineering.

F

1 INTRODUCTION

D ESPITE the significant effort spent by developers in
software testing and verification, software systems still

fail. These failures are reported to issue tracking systems,
where they are prioritized, and assigned to responsible de-
velopers for inspection. When developers debug software,
they need to reproduce the reported failure, understand
its root cause, and provide a proper fix that prevents the
failure. While crash stack traces indicate the type of crash
and the method calls executed at the time of the crash, they
may lack critical details that a developer could use to debug
the software. Therefore, depending on the complexity of the
reported failures and amount of available information about
them, manual crash reproduction can be a labor-intensive
task which negatively affects developers’ productivity.

To reduce debugging effort, researchers have proposed
various automated techniques to generate test cases repro-
ducing the target crashes. Generated tests can help de-
velopers better understanding the cause of the crash by
providing the input values that actually induce the failure
and enable the usage of a debugger in the IDE with runtime
data. To generate such tests, crash reproduction techniques
leverage various sources of information, such as stack traces,
core dumps, failure descriptions. As Chen and Kim [21]
first identified, these techniques can be classified into two
categories: record-replay techniques, and post-failure tech-
niques. Record-replay approaches [10], [23], [54], [70], [75]
monitor software behavior via software/hardware instru-
mentation to collect the observed objects and method calls
when failures occur. Unfortunately, such techniques suffer
from well-known practical limitations, such as performance

• M.Soltani, A. Panichella, and A. van Deursen are with the Soft-
ware Engineering Research Group, Delft University of Technology,
The Netherlands. E-mails: m.soltani@tudelft.nl, A.Panichella@tudelft.nl,
Arie.vanDeursen@tudelft.nl

overhead [21], and privacy issues [55].
As opposed to these costly techniques, post-failure ap-

proaches [21], [46], [47], [55], [69], [82], [85] try to replicate
crashes by exploiting data that is available after the failure,
typically stored in log files or external bug tracking systems.
Most of these techniques require specific input data in
addition to crash stack traces [21], such as core dumps [46],
[47], [69], [78] or software models like input grammars [44],
[45] or class invariants [15].

Since such additional information is usually not avail-
able to developers, recent advances in the field have focused
on crash stack traces as the only source of information
for debugging [21], [55], [82]. For example, Chen and Kim
developed STAR [21], an approach based on backward sym-
bolic execution that outperforms earlier crash replication
techniques, such as Randoop [58] and BugRedux [43]. Xuan
et al. [82] presented MuCrash, a tool that mutates existing
test cases using specific operators, thus creating a new pool
of tests to run against the software under analysis. Nayrolle
et al. [55] proposed JCHARMING, based on directed model
checking combined with program slicing [55], [56].

Unfortunately, the state-of-the-art tools suffer from sev-
eral limitations. For example, STAR cannot handle cases
with external environmental dependencies [21] (e.g., file or
network inputs), non-trivial string constraints, or complex
logic potentially leading to a path explosion. MuCrash is
limited by the ability of existing tests in covering method
call sequences of interest, and it may lead to a large number
of unnecessary mutated test cases [82]. JCHARMING [55],
[56] applies model checking which can be computationally
expensive. Moreover, similar to STAR, JCHARMING does
not handle crash cases with environmental dependencies.

This paper is an extension of our previous confer-
ence paper [74], where we presented EvoCrash, a search-
based approach for the automated crash replication prob-

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

2

lem and built on top of EvoSuite [30], which is a well-
known coverage-based unit test generator for Java code.
Specifically, EvoCrash uses a novel evolutionary algorithm,
namely Guided Genetic Algorithm (GGA), which leverages
the stack trace to guide the search toward generating tests
able to trigger the target crashes. GGA uses a generative
routine to build an initial population of test cases, which
exercise at least one of the methods reported in the crash
stack frames (target methods). GGA also uses two novel
genetic operators, i.e., namely guided crossover and guided
mutation, to ensure that the test cases keep exercising the
target methods across the generations. The search is fur-
ther guided by a fitness function that combines coverage-
based heuristics with a crash-based heuristic measuring the
distance between the stack traces (if any) generated by the
candidate test cases and the original stack trace of the crash
to replicate.

We assess the performance of EvoCrash by conducting
an empirical study on 54 crashes reported for real-world
open-source Java projects. Our results show that EvoCrash
can successfully replicate more crashes than STAR (+23%),
MuCrash (+17%), and JCHARMING (+25%), which are the
state-of-the-art tools based on crash stack traces. Further-
more, we observe that EvoCrash is not affected by the path
explosion problem, which is a key problem for symbolic
execution [21], and can mock environmental interactions
which, in some cases, helps to cope with the environmental
dependency problem.

Furthermore, we compare EvoCrash with EvoSuite to
assess whether the crash replicated by our tools could be
simply detected by classical coverage-based test case gen-
erators. The results of this comparison show that EvoCrash
reproduced 85% of the crashes, while EvoSuite reproduced
only 33% of them. For crashes reproduced by both EvoCrash
and EvoSuite, on average, EvoCrash took 145 seconds while
EvoSuite took 391 seconds. Thus, on average, EvoCrash is
170% more efficient than EvoSuite when they both repro-
duce crashes. These results show that coverage-based test
generation lacks adequate guidance for crash reproduction.
This in turn confirms the need for specialized search when
the goal is to trigger specific software behavior rather than
achieving high code coverage.

We also assess the extent of practical usefulness of the
tests generated by EvoCrash during debugging and code
fixing tasks. To this aim, we conducted a controlled exper-
iment with 35 master students in computer science. The
achieved results reveal that tests generated by EvoCrash
increase participants’ ability to provide fixes (+21% on av-
erage) while reducing the amount of time they spent to
complete the assigned tasks (-15.36% on average).

The novel contributions of this extension are summa-
rized as follows:
• A comparison of EvoCrash with EvoSuite, which is a

test generation tool for coverage-based unit testing.
• A controlled experiment involving human participants;

its results show that the usage of the tests aids devel-
opers in fixing the reported bugs while taking less time
when debugging.

• We provide a publicly available replication package1

1. DOI: 10.4121/uuid:001bb128-0a55-4a8d-b3f5-e39bfc5795ea

that includes: (i) an executable jar of EvoCrash, (ii) all
bug reports used in our study, (iii) the test cases gen-
erated by our tool, and (iv) anonymized experimental
data as well as R scripts used to analyze the results from
the controlled experiment.

The remainder of the paper is structured as follows. Section
2 provides background on search-based software testing, in
addition to describing the related work on the approaches to
automated crash replication, unit test generation tools, and
user studies in testing and debugging. Section 3 presents the
EvoCrash approach. Section 4 and 5 describe the empirical
evaluation of EvoCrash as well as the controlled experiment
with human participants, respectively. Discussion follows in
Section 6. Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we present related work on automated
crash reproduction, background knowledge on search-based
software testing,related work in software testing and de-
bugging which conducted experiments involving human
participants.

2.1 Automated Approaches to Crash Replication

Previous approaches in the field of crash replication can
be grouped into three main categories: (i) record-replay
approaches, (ii) post-failure approaches using various data
sources, and (iii) stack-trace based post-failure techniques. The
first category includes the earliest work in this field, such as
ReCrash [10], ADDA [23], Bugnet [54], and jRapture [75]. In
addition, [13] and [19] are recent record-replay techniques
which are based on monitoring non-deterministic and hard-
to-resolve methods (when using symbolic execution) respec-
tively. The recent work on reproducing context-sensitive
crashes of Android applications, MoTiF [36], also falls in
the first category of record-replay techniques. The afore-
mentioned techniques rely on program run-time data for
automated crash replication. Thus, they record the program
execution data in order to use it for identifying the program
states and execution path that led to the program failure.
However, monitoring program execution may lead to (i)
substantial performance overhead due to software/hard-
ware instrumentation [21], [55], [69], and (ii) privacy vi-
olations since the collected execution data may contain
sensitive information [21].

On the other hand, post-failure approaches [44], [46],
[47], [69], [83], [85] analyze software data (e.g., core dumps)
only after crashes occur, thus not requiring any form of in-
strumentation. Rossler et al. [69] developed an evolutionary
search-based approach named RECORE that leverages core
dumps (taken at the time of a failure) to generate input data.
RECORE combines the search-based input generation with
a coverage-based technique to generate method sequences.
Weeratunge et al. [78] used core dumps and directed search
for replicating crashes related to concurrent programs in
multi-core platforms. Leitner et al. [46], [47] used a failure-
state extraction technique to create tests from core dumps (to
derive input data) and stack traces (to derive method calls).
Kifetew et al. [44], [45] used genetic programming requiring
as input (i) a grammar describing the program input, and

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

3

(ii) a (partial) call sequence. Boyapati et al. [15] developed
another technique requiring manually written specifications
containing method preconditions, postconditions, and class
invariants. However, the above mentioned post-failure ap-
proaches need various types of information that are often
not available to developers, thus decreasing their feasibility.
To address lack of available execution data for replicating
system-level concurrency crashes, Yu et al. [83] propose a
new approach called, DESCRY. DESCRY only assumes the
existence of the source code of processes under debugging
and default logs generated by the failed execution. This
approach [83] leverages a combination of static and dynamic
analysis techniques and symbolic execution to synthesize
the failure-inducing input data and interleaving schedule.

To increase the practical usefulness of automated ap-
proaches, researchers have focused on crash stack traces
as the only source of information available for debugging.
For instance, ESD [85] uses forward symbolic execution
that leverages commonly reported elements in bug reports.
BugRedux [43] also uses forward symbolic execution but
it can analyze different types of execution data, such as
crash stack traces. As highlighted by Chen and Kim [21],
both ESD and BugRedux rely on forward symbolic exe-
cution, thus inheriting its problems due to path explosion
and object creation [81]. As shown by Braione et al. [16],
existing symbolic execution tools do not adequately address
the synthesis of complex input data structures that require
non-trivial method sequences. To address the path explosion
and object creation problems, Chen and Kim [21] introduced
STAR, a tool that applies backward symbolic execution to
compute crash preconditions and generates a test using
a method sequence composition approach. Despite these
advances in STAR, Chen and Kim [21] reported that their
approach is still affected by the path explosion problem
when replicating some crashes. Therefore, path-explosion
still remains an open issue for symbolic execution.

Different from STAR, JCHARMING [55], [56] uses a com-
bination of crash traces and model checking to automatically
reproduce bugs that caused field failure. To address the state
explosion problem [12] in model checking, JCHARMING
applies program slicing to direct the model checking process
by reduction of the search space. Instead, MuCrash [82]
uses mutation analysis as the underlying technique for crash
replication. First, MuCrash selects the test cases that include
the classes in the crash stack trace. Next, it applies prede-
fined mutation operators on the tests to produce mutant
tests that can reproduce the target crash.

STAR [21], JCHARMING [55], [56], and MuCrash [82],
have been empirically evaluated on a varying number of
field crashes (52, 12, and 31, respectively) which were re-
ported for different open source projects, including: Apache
Commons Collections, Apache Ant, Apache Hadoop, Dns-
java, etc. The results of the evaluations are reported in the
published papers, however, to the best of our knowledge,
the tools are not publicly available.

A recent approach based on using crash stacks for re-
producing concurrency failures, that violate thread safety of
a class, is CONCRASH, proposed by Bianchi et al. [14]. As
input, CONCRASH requires the class that violates thread
safety and the generated crash stack trace. CONCRASH
iteratively applies pruning strategies to search for test code

and interleaving that trigger the target concurrency failure.
Differently from our approach, CONCRASH targets only
concurrency failures violating the thread-safety of a pro-
gram [14], which represents the minority of failures reported
in issue tracking systems [84]. For example, Yuan et al. [84]
reported that only 10% of the failures in distributed data-
intensive systems are due to multi-threaded inter-leavings.
A later study by Coelho et al. [25] further reported that
a large majority of failures in android apps are related to
errors in programming logic and resource management,
while concurrency accounts only for 2.9% of all failures.

In our earlier study [73], we investigated coverage-based
unit testing tools like EvoSuite as a technology for repli-
cating some crashes if relying on a proper fitness function
specialized for crash replication. However, our preliminary
results also indicated that this simple solution could not
replicate some cases for two main reasons: (i) limitations
of the developed fitness function, and (ii) the large search
space in complex real-world software. The EvoCrash ap-
proach presented in this paper resumes this line of research
because it uses evolutionary search to synthesize a crash
reproducing test case. However, it is novel because it utilizes
a more effective fitness function and it applies a Guided
Genetic Algorithm (GGA) instead of coverage-oriented ge-
netic algorithms. Section 3 presents full details regarding the
novel fitness function and the GGA in EvoCrash.

2.2 Search-based Software Testing
Search-Based Software Testing (SBST) is a sub-field of a
larger body of work on Search-Based Software Engineering
(SBSE). In SBSE, software engineering tasks are reformu-
lated as optimization problems, to which different meta-
heuristic algorithms are applied to automate them [39].
As McMinn describes [51], search optimizations have been
used in a plethora of software testing problems, including
structural testing [79], temporal testing [64], functional test-
ing [17], and mutation testing [42]. Among these, structural
testing has received the most attention so far.

Applying an SBST technique on a testing problem re-
quires [38], [51]: (i) a representation for the candidate solu-
tions in the search space, and (ii) a definition for a fitness
function. The representation of the solutions shall constitute
elements which make it possible to encode them using some
data structures [39] (e.g., vectors, trees). This is mainly be-
cause search optimization techniques rely on operators that
manipulate the encoded elements to derive new solutions.
In addition, the representation shall be accurate enough so
that a small change in one individual solution represents a
neighbor solution in the search space [39].

A fitness function (also called objective or distance func-
tion) is used to measure the distance of each individual in
the search space from the global optimum. Therefore, it is
important that this definition is computationally inexpen-
sive so that it could be used to measure the distance of
multiple individuals until the global optimum is found [39].

Furthermore, as described before, path explosion and
object creation are open problems when using symbolic ex-
ecution [16] [21]. Different from symbolic execution, search-
based software testing uses distance functions to satisfy each
condition of the program in “isolation” [11], i.e., indepen-
dently from which alternative path is taken to reach the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

4

condition to solve. Focusing on each condition at a time
allows to address the path explosion problem but, on the
other hand, it may fail to capture dependencies between
multiple conditions in the programs as in the case of deceiv-
ing conditions [50]. Search-based approaches can be imple-
mented to handle complex input data type by relying on the
APIs of the SUT. Indeed, random sampling is used to create
randomized tests containing object references through the
invocation of constructors and randomly generated method
sequences. The “quality” of the generated test input data
is then assessed through test execution and measuring the
distance to satisfy a given branch. The complexity of the
input is then evolved depending on whether more complex
data structures help or not satisfying the testing criterion.

Moreover, with regards to environmental interactions,
Arcuri et al. [7] show that such interactions may inhibit the
success of automated test generation. This is mainly due to
two reasons: (i) the code that depends on the environment
may not be fully covered, and (ii) the generated tests may be
unstable. Arcuri et al. [7] showed that proper instrumenta-
tion in a search-based test generator can be used not only to
synthesize the test inputs during the search process but also
to control the environmental state. More specifically, mocking
strategy can be used to isolate the execution of a class from
its environmental dependencies.

Finally, meta-heuristics that have been used in SBST in-
clude hill climbing, simulated annealing, genetic algorithms,
and memetic algorithms. The first two algorithms fall in the
category of local search techniques since they evaluate single
points in the search space at the time [39]. On the other
hand, genetic algorithms are global search techniques since
they evaluate a population of candidate solutions from the
search space in various iterations [39]. Memetic algorithms
hybridize the local and global algorithms. Therefore, in
these techniques, the individuals of populations in a global
search are also provided with the opportunity for local im-
provements [31]. Since genetic algorithms have been widely
applied to software testing problems, in what follows, we
provide a brief description of a classic genetic algorithm.

2.2.1 Genetic Algorithms

Genetic Algorithms (GAs) imitate evolutionary processes
observed in nature. A GA starts by initializing a random
population of individuals. When applied to test generation
problems, individuals are typically test suites comprised
of test cases [30], or test cases consisting of a sequence
of statements [59]. After the first population is initialized,
tests are executed against the program under test and the
best ones are selected to form new individuals. This process
continues until either an individual that satisfies the search
criterion is found, or the allocated resources to the search
process are consumed.

To produce the next generation, the best individuals
from the previous generation (parents) are selected (elitism)
and used to generate new test cases (offspring). Offspring
is produced by applying typical evolutionary operators,
namely crossover and mutation, to the selected “fittest” in-
dividuals. Depending on whether the parent or the offspring
scores better for the search criterion, one is selected to be
inserted into the next generation.

To illustrate the evolutionary operators, let us consider as
examples two test cases T1 = {s1, . . . , sm} and T2 = {s∗1,
. . . , s∗n} selected from a given generation as parents. To gen-
erate offspring O1 and O2, first a random number α, called
the relative cut-point, between 0.0 and 1.0 is selected. Then,
the first offspring O1 will contain the first α×m statements
from T1 followed by the last (1 − α) × n statements from
T2. Similarly, O2 will contain the first α×n statements from
T2 followed by (1− α)×m statements from T1. Thus, each
offspring inherits its statements (e.g., objects instantiations,
methods calls) from both the two parents.

Newly generated test cases are further changed by ap-
plying a mutation operator. With mutation, either random
new statements are inserted into the tests, or random exist-
ing statements are removed, or random input parameters
are modified [59]. Both crossover and mutation are per-
formed such that the resulting test cases will be compilable.
For example, if a new object is inserted as a parameter, then
before it is inserted it is declared and instantiated.

2.3 Unit Test Generation Tools

A number of techniques and tools have been proposed in the
literature to automatically generate tests maximizing spe-
cific code coverage criteria [1], [30], [35], [48], [49], [58], [63],
[71], [76]. The main difference among them is represented
by the core approach used for generating tests. For example,
EvoSuite [30], JTExpert [71], and SAPIENZ [49] use genetic
algorithms to create test suites optimizing code coverage;
Randoop [58], T3 [63], Dynodroid [48], and Google Mon-
key [1] apply random testing, while DART [35] and Pex [76]
are based on dynamic symbolic execution.

As reported in the related literature, such tools can
be used to discover bugs affecting software code. Indeed,
they can generate test triggering crashes when trying to
generate tests exercising the uncovered parts of the code. For
example, Fraser and Arcuri [28] successfully used EvoSuite
to discover undeclared exceptions and bugs in open-source
projects. Recently, Moran et al. [52] used coverage-based
tools to discover android application crashes. However, as
also pointed out by Chen and Kim [21] coverage-based tools
are not specifically defined for crash replication. In fact,
these tools are aimed at covering all methods (and their
code elements) in the class under test. Thus, already covered
methods are not taken into account for search even if none
of the already generated tests synthesizes the target crash.
Therefore, the probability of generating tests satisfying de-
sired crash triggering object states is particularly low for
coverage-based tools [21].

On the other hand, for crash replication, not all methods
should be exploited for generating a crash: we are interested
in covering only a few lines in those methods involved in
the failure, while other methods (or classes) might be useful
only for instantiating the necessary objects (e.g., input pa-
rameters). Moreover, among all possible method sequences,
we are interested only on those that can potentially lead
to the target crash stack trace. Therefore, in this paper,
we design and evaluate a tool-supported approach, named
EvoCrash, which is specialized for stack trace based crash
replication.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

5

2.4 User Studies in Testing and Debugging

In 2005, Sjøberg et al. [72] conducted a survey in which they
studied how controlled experiments are conducted in soft-
ware engineering, in the decade from 1993 to 2002. As they
report, 1.9% of the 5453 scientific articles reported controlled
experiments in which human participants performed one or
more software engineering tasks. Later on, in 2011, Buse et
al. [18] surveyed over 3000 papers, spanning over ten years,
to investigate trends, benefits, and barriers of involving
human participants in software engineering research. As
Buse et al. [18] report, about 10% of the surveyed papers
involved humans to evaluate a research claim directly. As
they observed, the number of papers in software engineer-
ing which use human evaluations is increasing, however,
they highlighted that papers specifically related to software
testing and debugging rarely involved human studies.

In the area of software testing, Orso and Rothermel [57]
conducted a survey among 50 software testing scholars,
to provide an account of the most successful research in
software testing, since the year 2000. In addition, they
aimed at identifying the most significant challenges and
opportunities in the area. Orso and Rothermel [57] argue
that while prominent advances have been made in empirical
studies on software testing, more user studies, in particular
within an industrial context, are needed in which practical
impact of research becomes apparent. Ang et al. [3] recently
studied the progress that is made in the research community
since 2011 to address the suggestions given by Orso and
Rothermel [57]. As their study indicates, involving human
evaluations in studies on automated debugging techniques
remains mostly unexplored.

Recently, some research work in software testing and
debugging started involving user evaluations include the
following: [62], [65], [20], [33], [67], [34], and [61]. Parnin
and Orso [62] performed a preliminary study with 34 de-
velopers to investigate whether and to what extent using
an automated debugging approach may aid developers in
their debugging tasks. In their results, Parnin and Orso
[62] show that several assumptions made by automated
debugging techniques (e.g., examining isolated statements
is enough to understand the bug and fix it) do not hold
in practice. Moreover, Parnin and Orso [62] also encourage
the researchers to involve developers in their studies to
understand how richer information such as test cases and
slices may make debugging aids more usable in practice.

Ramler et al. [65] compared tool-supported random test
generation and manual testing, involving 48 master stu-
dents. Their findings are twofold: (i) the number of detected
defects by randomly generated test cases is in the range of
manual testing, and (ii) randomly generated test cases detect
different defects than manually-written unit tests.

Ceccato et al. [20] performed two controlled experiments
with human participants to investigate the impact of us-
ing automatically generated test cases in debugging. They
show that using automatically generated test cases has a
positive impact on the accuracy and efficiency of developers
working on fault localization and bug fixing tasks. Further-
more, Fraser et al. [33], and [34] conducted controlled ex-
periments with human participants to investigate whether
automatically generated unit test cases aid testers in code

Stack Trace

Software Under Test

EvoCrash

Pre-processing

Post-processing

Guided
Initialization

Guided
Crossover

Guided
Mutation

Selection

Guided Genetic Algorithm

Minimized Test Case

Fig. 1. Overview of The Guided Genetic Algorithm in EvoCrash

coverage and finding faults. In their experiments, they
provided JavaDocs to the participants and asked them to
both produce implementations and test suites. Their results
confirmed that while automatically generated test cases,
designed for high coverage, do not help testers find bugs,
they do aid in achieving high coverage when compared to
the ones produced by human participants.

In addition, Rojas et al. [67] combined a controlled
experiment with 41 students with five think-aloud obser-
vations to assess the impact of using the automated test
generation tool, EvoSuite, in software development. Their
results confirmed that using the tool leads to an average
branch coverage increase of 13%, and 36% less time spent
on testing, compared to when developers write tests manu-
ally. The results from their think-aloud observations with
professional programmers confirmed the necessity to (i)
increase the usability of the tool, (ii) integrate it better during
development, and (iii) educate developers on how to best
use the tool during development.

To improve the comprehensibility of test cases which in
turn could improve the number of faults found by devel-
opers, Panichella et al. [61] proposed TestDescriber which
automatically generates summaries of the portions of the
code that is exercised by individual test cases. To assess
the impact of their approach, Panichella et al. [61] per-
formed a controlled experiment with 33 human participants
comprising of professional developers, senior researchers,
and students. The results of their study show that using
TestDescriber, (i) developers find twice as many bugs, and
(ii) test case summaries improve the comprehensibility of
test cases which were considered useful by developers.

To investigate and understand the practical usefulness
of automatically generated crash-reproducing tests, we ac-
knowledge the need for involving human practitioners in
our line of research. Therefore, as the first step in this
direction, we conducted a controlled experiment (described
in Section 5) with master students in computer science to
assess the impact of using the crash-reproducing unit tests
generated by EvoCrash when performing debugging tasks.

3 THE EVOCRASH APPROACH

In the following, we present the Guided Genetic Algorithm
(GGA) and the fitness function we designed in our search-
based approach to automated crash reproduction.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

6

Figure 1 shows the main steps of EvoCrash. EvoCrash
begins by pre-processing a crash stack trace log in order to
formulate the target crash to be reproduced. Next, EvoCrash
applies a Guided Genetic Algorithm (GGA) in order to
search for a test case that triggers the same crash. The search
is over either when the test is found or when the search
budget is over. If a crash reproducing test case is found, it
goes through post-processing, a phase where the generated
test is minimized and transformed into an executable JUnit
test. In what follows, we elaborate on each of the above
phases in more detail.

3.1 Crash Stack Trace Processing

An optimal test case for crash reproduction has to crash at
the same location as the original crash and produce a stack
trace as similar to the original one as possible. Therefore, in
EvoCrash we first parse the log file given as input in order
to extract the crash stack frames of interest. A standard Java
stack trace contains (i) the type of the exception thrown, and
(ii) the list of stack frames generated at the time of the crash.
Each stack frame corresponds to one method involved in the
failure and contains: (i) the method name; (ii) the class name,
and (iii) line numbers where the exception was generated.
The last frame is where the exception has been thrown,
whereas the root cause could be in any of the frames, or
even outside the stack trace.

From a practical point of view, any class or method in the
stack trace can be selected as code unit to use as input for
existing test case generation tools, such as EvoSuite. How-
ever, since our goal is to synthesize a test case generating
a stack trace as similar to the original trace as possible, we
always target the class where the exception is thrown (last
stack frame in the crash stack trace) as the main class under
test (CUT).

3.2 Fitness Function

In search-based software testing, the fitness function is typ-
ically a distance function d(.), which is equal to zero if and
only if the a test case satisfying a given criterion is found. As
described in our previous study [73], we have to consider
three main conditions in the definition of our distance for
crash replication: 1) the line (statement) where the exception
is thrown has to be covered, 2) the target exception has to be
thrown, and 3) the generated stack trace must be as similar
to the original one as possible.

Therefore, we first define three different distance func-
tions for the three conditions above, one for each condition.
Then, we combine these three distances into our final fitness
function using the sum-scalarization approach. The three
distance functions as well as the final one are described in
details in the following subsections.

Line distance. A test case t that successfully replicates
a target crash has to cover the line of the production code
where the exception was originally thrown. To guide the
search toward covering the target line, we need to define
a distance function ds(t) for line coverage. To this aim,
we use two heuristics that have been successfully used in
white-box testing for branch and statement coverage [50],
[73]: the approach level and the normalized branch distance.

The approach level measures the distance in the control flow
graph (i.e., the minimum number of control dependencies)
between the path of the production code executed by t
and the target line. The branch distance uses a set of well-
established rules [50] to score how close t is to satisfy the
conditional expression where the execution diverges from
the paths to the target line.

Exception distance. The exception distance is used to
check whether the test case t triggers the correct exception.
Hence, we define the exception distance dexcept as a boolean
function that takes a zero value if and only if the target
exception is thrown; otherwise, dexcept is set to one.

Trace distance. Several stack trace similarity metrics
have been defined in the related literature [26], although
for different software engineering problems. These metrics
could be in theory used to define our trace distance. Dang et
al. [9], [26] proposed a stack trace similarity to clusterize du-
plicated bug reports. Their similarity metric uses dynamic
programming to find the longest common subsequence (i.e.,
sequence of stack frames) among a pool of stack traces.
The clusters are then obtained by applying a supervised
hierarchical clustering algorithm [26]. However, this simi-
larity metric requires a pool of stack traces plus a training
algorithm to decide whether two stack traces are related to
the same crash. Artzi et al. [9] proposed some similarity
metrics to improve fault localization by leveraging concolic
testing. Their intuition is that fault localization becomes
more effective when generating passing test cases that are
similar to the test cases inducing a failure [9]. However,
the similarity metrics proposed by Artzi et al. cannot be
used in our context for two main reasons: (i) the test inputs
inducing the target failure are not available (generating tests
that replicate a crash is the actual goal of EvoCrash and not
its input) and (ii) the similarity metrics are defined for input
and path-constraints (i.e., not for stack traces).

To calculate the trace distance, dtrace(t), in our prelim-
inary study [73] we used the distance function defined as
follows. Let S∗ = {e∗1, . . . , e∗n} be the target stack trace to
replicate, where e∗i = (C∗1 ,m

∗
1, l
∗
1) is the i-the element in

the trace composed by class name C∗i , method name m∗i ,
and line number l∗i . Let S = {e1, . . . , ek} be the stack trace
(if any) generated when executing the test t. The distance
between the expected trace S∗ and the actual trace S is
defined as:

dtrace(t) =

min{k,n}∑
i=1

ϕ (diff(e∗i , ei)) + | n− k | (1)

where diff(e∗i , ei) measures the distance between the two
trace elements e∗i and ei in the traces S∗ and S respectively;
finally, ϕ(x) ∈ [0, 1] is the widely used normalizing function
ϕ(x) = x/(x + 1) [50]. However, such a distance defini-
tion has one critical limitation: it strictly requires that the
expected trace S∗ and the actual trace S share the same
prefix, i.e., the first min{k, n} trace elements. For example,
assume that the triggered stack trace S and target trace
S∗ have one stack trace element eshared in common (i.e.,
one element with the same class name, method name, and
source code line number) but that is located at two different
positions, e.g., e∗i is the second element in S (eshared = e2

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

7

in S) while it is the third one in S∗ (eshared = e∗3 in S∗). In
this scenario, Equation 1 will compare the element e∗3 in S∗

with the element in S at the same position i (i.e., with e3)
instead of considering the closest element eshared = e2 for
the comparison.

To overcome this critical limitation, in this paper we use
the following new definition of stack trace distance:

Definition 1. Let S∗ be the expected trace, and let S be the actual
stack trace triggered by a given test t. The stack trace distance
between S∗ and S is defined as:

dtrace(t) =
n∑
i=1

min {diff(e∗i , ej) : ej ∈ S} (2)

where diff(e∗i , ej) measures the distance between the two trace
elements e∗i in S∗ and its closest element ej in S.

We say that two trace elements are equal if and only if
they share the same trace components. Therefore, we define
diff(e∗i , ej) as follows:

diff(e∗i , ei) =

 3 if C∗
i 6= Ci

2 C∗
i = Ci and m∗

i 6= mi

ϕ (| l∗i − li |) ∈ [0; 1] Otherwise
(3)

The score diff(e∗i , ei) is equal to zero if and only if the two
trace elements e∗i and ei share the same class name, method
name and line number. Similarly, dtrace(t) in Equation 2 is
zero if and only if the two traces S∗ and S are equal, i.e.,
they share the same trace elements.

Final fitness function. To combine the three distances
defined above, we use the weighted-sum scalarization [27].

Definition 2. The fitness function value of a given test t is:

f(t) = w1∗ϕ (ds(t))+w2∗dexcept(t)+w3∗ϕ (dtrace(t)) (4)

where ds(t), dexcept(t), and dtrace(t) are the three individual
distance functions described above; ϕ(.) is a normalizing function
[50]; w1, w1, and w3 are the linear combination coefficients.

Notice that in the equation above, the first and the
last terms are first normalized before being summed up.
This is because they have different orders of magnitude:
the maximum value for dtrace(t) corresponds to the total
number of frames in the stack traces; dexcept(t) takes values
in {0, 1}; while the maximum value of ds(t) is proportional
to the cyclomatic complexity of the class under test.

In principle, the linear combination coefficients can be
chosen such as to give higher priority to the different
composing distances. In our context, meeting the three
conditions for an optimal crash replication should happen
in a certain order. In particular, executing the target line
takes precedence over throwing the exception, and in turn,
throwing the target exception takes priority over the degree
to which the generated stack trace is similar to the reported
one.

For example, let us consider the three test cases t1, t2,
and t3 reported in Table 1. In the example, t1 does not cover
the target line (i.e., ds(t1) > 0) and it throws an exception
but not the target one; t2 covers the target line but throws
the wrong exception (i.e., ds(t2) = 0 and dexcept = 1.0);
finally, t3 covers the target line (i.e., ds(t2) = 0), it throws
the right exception (i.e., dexcept = 0) but its trace similarity

TABLE 1
Example of three different test cases with their corresponding distances

and fitness function scores.

Test ds dexcept dtrace Fitness Function
t1 0.14 1.00 2 0.12 ∗ w1 + 1.00 ∗ w2 + 0.67 ∗ w3

t2 0.00 1.00 4 0.00 ∗ w1 + 1.00 ∗ w2 + 4.00 ∗ w3

t3 0.00 0.00 5 0.00 ∗ w1 + 0.00 ∗ w2 + 0.86 ∗ w3

is larger than the one for t1 (i.e., dtrace(t3) > dtrace(t1)).
The distance values and the corresponding fitness function
for the three tests are also reported in Table 1.

Now, let us suppose we decide to give larger priority
to dtrace compared to the other distances, e.g., w1 = 0.05,
w2 = 0.05, and w3 = 1. By applying Equation 2, we would
obtain the following fitness scores:

f(t1) = 0.05 ∗ 0.12 + 0.05 ∗ 1.00 + 0.67 ≈ 0.7228
f(t2) = 0.05 ∗ 0.00 + 0.05 ∗ 1.00 + 0.80 ≈ 0.8500
f(t3) = 0.05 ∗ 0.00 + 0.05 ∗ 0.00 + 0.86 ≈ 0.8571

(5)

In other words, with these weights, t3 has the largest
(worst) fitness score although it is the closest one to replicate
the target crash (it covers the target line and triggers the
correct exception). Instead, t1 and t2 do not even cover the
target line even though they have a better fitness than t3.
With the weights above, the corresponding fitness function
f(.) would misguide the search by introducing local optima.
Therefore, our weights should satisfy the constraints w1 ≥
w3 and w3 ≥ w1, i.e., dtrace should not have larger a weight
compared to the other distances.

Let us consider other three coefficients that satisfy the
constraints above: w1 = 0.01, w2 = 1, w3 = 0.01. The
corresponding fitness values for the three tests in Table 1
are as follows:

f(t1) = 0.01 ∗ 0.12 + 1.00 + 0.01 ∗ 0.67 ≈ 1.0079
f(t2) = 0.01 ∗ 0.00 + 1.00 + 0.01 ∗ 0.80 ≈ 1.0080
f(t3) = 0.01 ∗ 0.00 + 0.00 + 0.01 ∗ 0.86 ≈ 0.0086

(6)

With these new weights, t3 has the lowest (better) fitness
value since both the two constraints w1 ≥ w3 and w2 ≥
w3 are satisfied. However, t1 has a better fitness than t2
although the latter covers the target line while the former
does not. To avoid this scenario, our weights should satisfy
another constraint: w1 ≥ w2 + w3.

In summary, choosing the weights for the function in
Definition 2 consists in solving the following linear system
of inequality: 

w1 ≥ w2 + w3

w1 ≥ w3

w2 ≥ w3

(7)

In this paper, we chose as weights the smallest integer
numbers that satisfy the two inequalities in the system
above, i.e., w1 = 3, w2 = 2, w3 = 1. With these weights,
the fitness values for the test cases in the example of Table 1
become: f(t1) = 3.04, f(t2) = 2.80, and f(t3) = 0.86. While
choosing the smallest integers makes the interpretation of
the fitness values simpler, we also used different integers in
our preliminary trials. We did not observe any impact on
the outcomes.

In general, with these weights, fitness function f(t) as-
sumes values within the interval [0, 6]; a value 3 ≤ f(t) ≤ 6

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

8

Algorithm 1: Guided Genetic Algorithm
Input: Class under test C

Target call from the crash stack trace TC
Population size N
Search time-out max time

Result: Test case t

1 begin
2 // initialization
3 Mcrash ←− identify public methods based on TC
4 k ←− 0
5 Pk ←−MAKE-INITIAL-POPULATION(C, Mcrash, N)
6 EVALUATE(Pk)
7 // main loop
8 while (best fitness value > 0) AND (time spent < max time) do
9 k ←− k + 1

10 // generate offsprings
11 O ←− ∅
12 while | O |< N do
13 p1, p2 ←− select two parents for reproduction
14 if crossover probability then
15 o1, o2 ←− GUIDED-CROSSOVER(p1, p2)

16 else
17 o1 ←− p1
18 o2 ←− p2

19 O ←− O
⋃

GUIDED-MUTATION(o1)
20 O ←− O

⋃
GUIDED-MUTATION(o2)

21 // fitness evaluation
22 EVALUATE(O)
23 Pk ←− Pk−1

⋃
O

24 Pk ←− select the N fittest individuals in Pk

25 tbest ←− fittest individual in Pk

26 tbest ←− POST-PROCESSING(tbest)

indicates that a test t does not cover the target line; a value
1 ≤ f(t) < 3 means that the test t covers the target line but
does not throw the target exception; a zero value is reached
if and only if the evaluated test t replicates the target crash.

3.3 Guided Genetic Algorithm

In EvoCrash, we use a novel genetic algorithm, named GGA
(Guided Genetic Algorithm), suitably defined for the crash
replication problem. While traditional search algorithms in
coverage-based unit test tools target all methods in the
CUT, GGA gives higher priority to those methods involved
in the target failure. To accomplish this, GGA uses three
novel genetic operators that create and evolve test cases that
always exercise at least one method contained in the crash
stack trace, increasing the overall probability of triggering
the target crash. As shown in Algorithm 1, GGA contains
all main steps of a standard genetic algorithm: (i) it starts
with creation of an initial population of random tests (line
5); (ii) it evolves such tests over subsequent generations
using crossover and mutation (lines 12-20); and (iii) at each
generation it selects the fittest tests according to the fitness
function (lines 22-24). The main difference is represented by
the fact that it uses (i) a novel routine for generating the
initial population (line 5); (ii) a new crossover operator (line
15); (iii) a new mutation operator (lines 19-20). Finally, the
fittest test obtained at the end of the search is post-processed
(e.g., minimized) in line 26.

Initial Population. The routine used to generate the initial
population plays a paramount role [60] since it performs
sampling of the search space. In traditional coverage-based
tools (e.g., EvoSuite [30] or JTExpert [71]) such a routine is
designed to generate a well-distributed population (set of

Algorithm 2: MAKE-INITIAL-POPULATION
Input: Class under test C

Set of failing methods Mcrash
Population size N

Result: An initial population P0

1 begin
2 P0 ←− ∅
3 while | P0 |< N do
4 t←− empty test case
5 size←− random integer ∈ [1;MAX SIZE]
6 // probability of inserting a method involved in the failure
7 insert probability←− 1/size
8 while (number of statements in t) < size do
9 if random number 6 insert probability then

10 method call←− pick one element from Mcrash
11 // reset the probability of inserting a failing method
12 insert probability←− 1/size

13 else
14 method call←− pick one public method in C
15 length←− number of statements in t
16 // increase the probability of inserting a failing

method
17 insert probability←− 1/(size− length+ 1)

18 INSERT-METHOD-CALL(method call, t)

19 P0 ←− P0

⋃
t

tests) that maximize the number of methods in the class un-
der test C that are invoked/covered [30]. Instead, the main
goal for crash replication is invoking the subset of methods
Mcrash in C that appear in the crash stack traces since
they may trigger the target crash. Instead, the remaining
methods can be still invoked with some random probability
to instantiate objects (test inputs) or if they help to optimize
the fitness function (i.e., decreasing the approach level and
branch distance for the target line to cover).

For this reason, in this paper we use the novel routine
highlighted in Algorithm 2 for generating the initial sample
for random tests. In particular, our routine gives higher
importance to methods contained in crash stack frames.
Subsequently, if a target call, selected by the developer, is
public or protected, Algorithm 2 guarantees that this call is
inserted in each test at least once. Otherwise, if the target call
is private, the algorithm guarantees that each test contains
at least one call to a public caller method which invokes
the target private call. Algorithm 2 generates random tests
using the loop in lines 3-18, and requires as input (i) the
set of public target method(s) Mcrash, (ii) the population
size N , and (iii) the class under test C. In each iteration, we
create an empty test t (line 4) to fill with a random number
of statements (lines 5-18). Then, statements are randomly
inserted in t using the iterative routine in lines 8-18: at each
iteration, we insert a call to one public method either taken
from Mcrash, or member classes of C. In the first iteration,
crash methods in Mcrash (methods of interest) are inserted
in t with a low probability p = 1/size (line 7), where
size is the total number of statements to add in t. In the
subsequent iterations, such a probability is automatically
increased when no methods from Mcrash is inserted in t
(line 15-17). Therefore, Algorithm 2 ensures that at least one
method of the crash is inserted in each initial test2.

2. In the worst case, a failing method will be inserted at position size
in t since the probability insert probability will be 1/(size−size+1) =
1

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

9

Algorithm 3: GUIDED-CROSSOVER
Input: Parent tests p1 and p2

Set of failing methods Mcrash
Result: Two offsprings o1, o2

1 begin
2 size1 ←−| p1 |
3 size2 ←−| p2 |
4 // select a cut point
5 µ←− random number ∈ [0; 1]
6 // first offspring
7 o1 ←− first µ× size1 statements from p1
8 o1 ←− append (1− µ)× size2 statements from p2
9 CORRECT(o1)

10 if o1 does not contain methods from Mcrash then
11 o1 ←− clone of p1

12 // second offspring
13 o2 ←− first µ× size2 statements from p2
14 o2 ←− append (1− µ)× size1 statements from p1
15 CORRECT(o2)
16 if o2 does not contain methods from Mcrash then
17 o2 ←− clone of p2

The process of inserting a specific method call in a test t
requires several additional operations [30]. For example,
before inserting a method call m in t it is necessary to
instantiate an object of the class containing m (e.g., calling
one of the public constructors). Creating a proper method
call also requires the generation of proper input parameters,
such as other objects or primitive variables. For all these
additional operations, Algorithm 2 uses the routine INSERT-
METHOD-CALL (line 18). For each method call in t, such a
routine sets each input parameter as follows:

Case 1 It re-uses an object or variables already defined
in t with a probability p=1/3;

Case 2 If the input parameter is an object, it sets the
parameter to null with a probability p=1/3;

Case 3 It randomly generates an objects or primitive
value with a probability p=1/3;

Guided Crossover. Even if all tests in the initial population
exercise one or more methods contained in the crash stack
trace, during the evolution process—i.e., across different
generations— tests can lose the inserted target calls. One
possible cause for this scenario is the traditional single-point
crossover, which generates two offsprings by randomly
exchanging statements between two parent tests p1 and p2.
Given a random cut-point µ, the first offspring o1 inherits
the first µ statements from parent p1, followed by | p2 | −µ
statements from parent p2. Vice versa, the second offspring
o2 will contain µ statements from parent p2 and | p1 | −µ
statements from the parent p1. Even if both parents exercise
one or more failing methods from the crash stack trace,
after crossover is performed, the calls may be moved into
one offspring only. Therefore, the traditional single-point
crossover can hamper the overall algorithm.

To avoid this scenario, GGA leverages a novel guided
single-point crossover operator, whose main steps are high-
lighted in Algorithm 3. The first steps in this crossover are
identical to the standard single-point crossover: (i) it selects
a random cut point µ (line 5), (ii) it recombines statements
from the two parents around the cut-point (lines 7-8 and
12-13 of Algorithm 3). After this recombination, if o1 (or o2)
loses the target method calls (a call to one of the methods

Algorithm 4: GUIDED-MUTATION
Input: Test t = 〈s1, . . . , sn〉 to mutate

Set of failing methods Mcrash
Result: Mutated test t

1 begin
2 n←−| t |
3 apply mutation←− true
4 while apply mutation == true do
5 for i =1 to n do
6 φ←− random number ∈ [0; 1]
7 if φ 6 1/n then
8 if delete probability then
9 delete statement si

10 if change probability then
11 change statement si

12 if insert probability then
13 insert a new method call at line i

14 if t contains method from Mcrash then
15 apply mutation←− false

reported in the crash stack trace), we reverse the changes
and re-define o1 (or o2) as pure copy of its parent p1 (p2 for
offspring o2) (if conditions in lines 10-11 and 16-17). In this
case, the mutation operator will be in charge of applying
changes to o1 (or o2).

Moving method calls from one test to another may result
in non-well-formed tests. For example, an offspring may
not contain proper class constructors before calling some
methods; or some input parameters (either primitive vari-
ables or objects) are not inherited from the original parent.
For this reason, Algorithm 3 applies a correction procedure
(lines 9 and 15) that inserts all required objects and primitive
variables into non-well-formed offspring.

Guided Mutation. After crossover, new tests are usually
mutated (with a low probability) by adding, changing and
removing some statements. While adding statements will
not affect the type of method calls contained in a test, the
statement deletion/change procedures may remove rele-
vant calls to methods in the crash stack frame. Therefore,
GGA also uses a new guided-mutation operator, described in
Algorithm 4.

Let t = 〈s1, . . . , sn〉 be a test case to mutate, the guided-
mutation iterates over the test t and mutates each statement
with probability 1/n (main loop in lines 4-15). Inserting
statements consists of adding a new method call at a ran-
dom point i ∈ [1;n] in the current test t (lines 12-13 in Algo-
rithm 4). This procedure also requires to instantiate objects
or declare/initialize primitive variables (e.g., integers) that
will be used as input parameters.

When changing a statement at position i (in lines 10-11),
the mutation operator has to handle two different cases:

Case 1 if the statement si is the declaration of a primi-
tive variable (e.g., an integer), then its primitive
value is changed with another random value
(e.g., another random integer);

Case 2 if si contains a method or a constructor call m,
then the mutation is applied by replacingmwith
another public method/constructor having the
same return type; the input parameters (objects
or primitive values) are either (i) taken from the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

10

previous i−1 statements in t, (ii) set to null (for
objects only), (iii) or randomly generated. These
three mutations are applied with the probability
p=1/3. Therefore, they are equally probable and
mutually exclusive for each input parameter.

Finally, removing a method call (lines 8-9 in Algorithm 4)
also requires to delete the corresponding variables and ob-
jects used as input parameters (if such variables and objects
are not used by any other method call in t). If the test t loses
the target method calls (i.e., methods in Mcrash) because of
the mutation, then the loop in lines 4-15 is repeated until one
or more target method calls are re-inserted in t; otherwise
the mutation process terminates.

Post processing. At the end of the search process, GGA
returns the fittest test case according to our fitness function.
The resulting test tbest can be directly used by a developer
as a starting point for crash replication and debugging.

Since method calls are randomly inserted/changed dur-
ing the search process, the final test tbest can contain state-
ments not needed to replicate the crash. For this reason,
GGA post-processes tbest to make it more concise and
understandable. For this post-processing, we reused the
test optimization routines available in EvoSuite [30], namely:
test minimization, and values minimization. Test minimization
applies a simple greedy algorithm: it iteratively removes all
statements that do not affect the final fitness value. Finally,
randomly generated input values can be hard to interpret
for developers [2]. Therefore, the values minimization from
EvoSuite shortens the identified numbers and simplifies the
randomly generated strings [29].

3.4 Mocking Strategies
Since EvoCrash is built on top of EvoSuite, by default,
EvoCrash inherits the mocking strategies implemented in
EvoSuite [6], [7], [8]. Therefore, if reproducing a target
crash requires environmental interactions involving system
calls (e.g., System.currentTimeMillis), network connections
(e.g., calls to java.net APIs) and file system (e.g., calls to
java.io.File), EvoCrash benefits from the available mocking
operators to reproduce the crash.

However, it is possible that reproducing a crash requires
specific content as the result of the interaction with the
environment. For example, it could be that specific content
of an XML file is needed to reproduce a crash. In these cases,
EvoCrash lacks support for finding the specific content
needed to optimize the fitness function. This is an open
problem in automated test generation that calls for future
work and is beyond the scope of this study.

4 STUDY I: EFFECTIVENESS

This section describes the empirical study we conducted to
benchmark the effectiveness of the EvoCrash approach.

4.1 Research Questions
To evaluate the effectiveness of EvoCrash we formulate the
following research questions:
• RQ1: How does EvoCrash perform compared to coverage-

based test generation? EvoCrash is built on top of Evo-
suite, which is a coverage-based test generation tool

for unit testing. Therefore, with this research question,
we aim at investigating to what extent EvoCrash ac-
tually provides the expected benefits in terms of the
number of reproduced crashes and test generation time
compared to a classical coverage-based test generation
approach.

• RQ2: In which cases can EvoCrash successfully reproduce
the targeted crashes, and under what circumstances does it
fail to do so? With this research question, we aim at
evaluating the capability of our tool to generate test
cases (i) that can replicate the target crashes, and (ii)
that are useful for debugging.

• RQ3: How does EvoCrash perform compared to state-of-the-
art reproduction approaches based on stack traces? In this
research question, we investigate the advantages and
disadvantages of EvoCrash as compared to the most re-
cent stack trace based approaches to crash reproduction
previously proposed in the literature.

For RQ1, we selected EvoSuite [30] as a representative
tool for state-of-the-art approaches for coverage-based unit
testing. Our choice is guided by the fact that EvoSuite
won the latest two editions of the SBST tool competition
[37] [32] and achieved very competitive scores (i.e., code
coverage and fault detection rate) compared to hand-written
tests. Moreover, EvoCrash and EvoSuite share the same
instrumentation engine, the test execution environment and
the encoding schema for test cases. By default, EvoSuite
uses the Archive-based Whole Test Suite generation approach
(WSA) [68], which evolves test suites and optimizes mul-
tiple testing criteria. The default coverage criteria are line
coverage, branch coverage, direct branch coverage, weak mutation,
exception coverage, no-exception top-level method coverage, and
output coverage, which are described in detail by Rojas et
al. [66]. Exception coverage is particularly important in
our context: using WSA, when this criterion is enabled,
EvoSuite stores in an archive all test cases (which compose
candidate test suites) that trigger an exception when trying
to maximize the other coverage criteria. Therefore, the final
test suite produced from EvoSuite not only achieves higher
code coverage but also contains all tests triggering some
exceptions which were found during the generation process.

For the sake of our analysis, we conducted the experi-
ments with EvoSuite using the default coverage criteria and
targeting the same class tested by EvoCrash. First, we com-
pare EvoSuite and EvoCrash in terms of crash replication
frequency, i.e., the number of times each of the two tech-
niques successfully reproduced a crash over 15 independent
runs. A crash is covered, according to the Crash Coverage
criterion by Chen and Kim [21], when the test generated
by one tool triggers the same type of exception at the same
crash line as reported in the crash stack trace. Therefore, for
this criterion, we classified as covered only those crashes for
which EvoCrash reached a zero-fitness value, i.e., when the
generated crash stack trace is identical to the target one.

While EvoCrash produces only one test for each crash,
EvoSuite generates entire test suites. Thus, for the latter tool,
we consider a crash as replicated if at least one test case
within the test suite generated by EvoSuite is able to repli-
cate the target crash. To further guarantee the reliability of
our results, we re-executed the tests generated by EvoCrash
and EvoSuite against the CUT to ensure that the crash stack

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

11

frame was correctly replicated.
We also compared EvoSuite and EvoCrash in terms of

search time required to replicate each crash. To this aim,
during each tool run, we stored the duration of the time
interval between the start of the search and the point in time
where each test case (or test suite for EvoSuite) was gener-
ated. Then, the time to replicate each crash (if replicated)
corresponds to the search time interval of the test case (or
test suite) that successfully replicates it.

To address RQ2, we apply the two criteria proposed by
Chen and Kim [21] for evaluating the effectiveness of crash
replication tools: Crash Coverage and Test Case Usefulness.
Crash Coverage is the same criterion used to answer RQ1. For
the Test Case Usefulness, a test case generated by EvoCrash is
considered useful if and only if it reveals the actual bug that
causes the original crash. According to the guidelines in [21],
a test case reveals a bug if the generated crash trace includes
the buggy frame (i.e., the stack element which the buggy
method lies in [21]) or the frame the execution of which
covers the buggy statement. The guidelines in [21] further
clarify that in addition to generating the buggy frame, useful
tests have to reveal the origin of the corrupted input values
(e.g., null values) passed to the buggy methods that trigger
the crash [21]. This implies that if the buggy frame receives
input arguments, then a useful test case must also generate
at least one frame at a higher level than the buggy frame,
through which we can observe how the input arguments to
the buggy method are generated. Of course, if a) the stack
trace has only one frame, or 2) the buggy method does not
receive any arguments, then a useful test must only generate
the buggy frame to be considered as useful.

To assess usefulness of the tests, we carefully inspected
the original developers’ fixes to identify the bug fixing loca-
tions. We manually examined each crash classified as covered
(using the coverage criterion) to investigate if it reveals the
actual bug following the guidelines in [21]. This manual
validation has been performed by the first two authors
independently, and cases of disagreement were discussed
and resolved.

For RQ3, we selected three state-of-the-art techniques,
namely: STAR [21], MuCrash [82], and JCHARMING [55],
[56]. These three techniques are modern approaches to crash
replication for Java programs, and they are based on three
different categories of algorithms: symbolic execution [21],
mutation analysis [82], and model checking [55].

At the time of writing this paper, STAR, MuCrash, and
JCHARMING were not available (either as executable jars
or source code). Therefore, to compare our approach, we
rely on their published data. Thus, we compared EvoCrash
with MuCrash for the 12 bugs selected that have also been
used by Xuan et al. [82] to evaluate MuCrash. We compared
EvoCrash with JCHARMING for the 13 bug reports that
have been also used by Nayrolles et al. [55]. Finally, we
compare EvoCrash with STAR for the 51 bugs in our sample
that are in common with the study by Chen and Kim [21].

4.2 Definition and Context

As Table 2 presents, the context of this study consists
of 54 bugs from seven real-world open source projects:

Apache Commons Collections3 (ACC), Apache Ant4

(ANT), Apache Log4j5 (LOG), ActiveMQ6, DnsJava7,
and JFreeChart8.

ACC is a popular Java library with 25,000 lines of code
(LOC), which provides utilities to extend the Java Collection
Framework. For this library, we selected 12 bug reports pub-
licly available on Jira9 submitted between October 2003
and June 2012 and involving five different ACC versions.

ANT is a large Java build tool with more than 100,000
LOC, which supports different built-in tasks, including com-
piling, running and executing tests for Java applications. For
ANT we selected 21 bug reports submitted on Bugzilla10

between April 2004 and August 2012 and that concern 10
different versions and sub-modules.

LOG is a widely-used Java library with 20,000 LOC that
implements logging utilities for Java applications. For this
library we selected 18 bug reports reported within the time
window between June 2001 and October 2009 and that are
related to three different LOG versions.

ActiveMQ is a messaging and Integration Patterns server
that is actively maintained by the Apache Software Founda-
tion. ActiveMQ has 205000 LOC, and supports many cross-
language clients written in Java, C, C++, C#, and PHP. We
selected one case from ActiveMQ that was also used for
evaluating JCHARMING.

DnsJava is an implementation of DNS in Java, which has
more than 3000 LOC. It supports all defined record types
(including the DNSSEC types), and unknown types. It can
be used for queries, zone transfers, and dynamic updates. It
includes a cache which can be used by clients, and a minimal
implementation of a server. In addition, since it is written
in pure Java, DnsJava is fully threadable. We selected one
case from DnsJava, which was also used in the evaluation
of JCHARMING [55], [56].

JFreeChart is a free Java chart library, with 310000 LOC,
that could be used to display high-quality charts in both
server-side and client-side applications. JFreeChart has a
well-documented API and it has been maintained over a
long period of time, since 2005. We also selected a case from
JFreeChart to use for comparison with JCHARMING.

We selected this set of bugs as they have been
used in the previous studies on automatic crash repro-
duction when evaluating symbolic execution [21], mu-
tation analysis [82], and directed model checking [55]
and other tools [22], [41]. The characteristics of the se-
lected bugs, including type of exception and priority,
are summarized in Table 2. These bugs cover crashes
that involve the most common Java Exceptions [24],
such as NullPointerException (74%), ArrayIndex-
OutOfBoundsException (9%), IllegalStateExcep-
tion and IllegalArgumentException (3%). Further-
more, the severity of these real-world bugs varies between

3. https://commons.apache.org/proper/commons-collections/
4. http://ant.apache.org
5. http://logging.apache.org/log4j/2.x/
6. http://activemq.apache.org/
7. http://www.dnsjava.org/
8. http://jfree.org/jfreechart//
9. https://issues.apache.org/jira/secure/Dashboard.jspa
10. https://bz.apache.org/bugzilla/

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

12

TABLE 2
The 54 real-world bugs used in our study.

Project Bug IDs Versions Exceptions Priority Ref.

ACC

4, 28, 35 2.0 - 4.0 NullPointer (5) Major (10) [21]
48, 53, 68 UnsupportedOperation (1) Minor (2) [82]
70, 77, 104 IndexOutOfBounds (1)
331, 277, 411 IllegalArgument (1)

ArrayIndexOutOfBounds (2)
ConcurrentModification (1)
IllegalState (1)

ANT

28820, 33446, 34722 1.6.1 - 1.8.2 ArrayIndexOutOfBounds (3) Critical (2) [21]
34734, 36733, 38458 NullPointer (17) Major (5) [56]
38622, 41422, 42179 StringIndexOutOfBounds (1) Medium (14)
43292, 44689, 44790
46747, 47306, 48715
49137, 49755, 49803
50894, 51035, 53626

LOG

29, 43, 509, 10528 1.0.2 - 1.2 NullPointer (17) Critical (1) [21]
10706, 11570, 31003 InInitializerError (1) Major (4) [56]
40212, 41186, 44032 Medium (11)
44899, 45335, 46144 Enhanc. (1)
46271, 46404, 47547 Blocker (1)
47912, 47957

ActiveMQ 5035 5.9 ClassCastExecption (1) Major (1) [56]
DnsJava 38 2.1 ClassCastException (1) N/A (1) [56]
JFreeChart 434 1.0 NullPointerException (1) N/A (1) [56]

medium (46%), major (37%) and critical (5%) as judged by the
original developers.

50 of these cases come from the primary study we
performed in [74]. In this extension to [74], we aimed at
extending the comparison with JCHARMING via the cases
reported in [56]. However, ultimately, we chose to discard
several cases reported in [56], and extend the comparison
with JCHARMING via only 4 new cases, for four main
reasons:

1) In six cases, the exact buggy version of the target soft-
ware was either unknown or not found. Consequently,
the reported line numbers in stack traces did not match
the source code. Since the fitness function (Section 3.2)
is primarily designed based on the exact line numbers
where the exceptions are thrown, we discarded such
cases.

2) As Nayrolles et al. report [56], to make a trade-off
between reproducibility and relevance of the test cases,
after a number of incremental attempts, they arrived at
the threshold of 80% for reproducing stack traces. Thus,
in some cases they report partial coverage, which means
that at least 80% of a stack trace could be reproduced
in those cases. While this partial measure is relative to
the size of the stack traces, in our case we need to have
exact measure of the reproduced traces to compare the
usefulness of the tests, as described in Section 4.1.

3) In two cases, ActiveMQ-1054 and ArgoUML-311, the
reported stack traces lack line numbers. Thus, consid-
ering how the fitness function works (Section 3.2), we
could not apply EvoCrash on such cases.

4) Finally, one of the reported cases in [56], Mahout-1594,
actually refers to an external problem in the configura-
tion file. Thus, this case was not a valid crash case to be
considered in this study.

4.3 Experimental Procedure
We run EvoCrash and EvoSuite on each target crash to try
to generate a test case and test suite able to reproduce the
corresponding stack trace. Given the randomized nature of
genetic algorithms, we executed the tools multiple times to
verify that the target crashes are replicated in most of the
runs. For RQ1, we ran EvoSuite and EvoCrash 15 times for
each crash. For RQ2 the search for each target bug/crash
was repeated 50 times.

In our experiment, we configured both tools by using
standard parameter values widely used in evolutionary
testing [5], [30], [59]:
• Population size: we use a population size of 50 in-

dividuals as suggested in [30], [59]. In the context of
EvoCrash, individuals are test cases whereas in the
conext of EvoSuite, individuals are test suites, contain-
ing one or more test cases.

• Crossover: For EvoCrash, we use the novel guided
single-point crossover; in EvoSuite, the crossover opera-
tor is the classic single-point crossover [30]. In both cases,
the crossover probability is set to pc0.75 [30].

• Mutation: EvoCrash uses our guided uniform mutation,
which mutates test cases by randomly adding, deleting,
or changing statements. EvoSuite uses the standard
uniform mutation, which randomly adds, deletes, or
changes test cases in a test suite. For both cases, we
set the mutation probability equal to pm1/n, where n is
the length of the test case/suite taken as input [30].

• Search Timeout: The choice of 10 minutes as the search
budget is a common practice in studies on search-
based test generation [5], [30], [59]:. In our preliminary
experiments, we noticed that the number of reproduced
crashes does not change after 10 minutes. Therefore, in
both cases, the search stops when a zero-fitness function
value is detected or when the timeout of 10 minutes is
reached.

4.4 Comparison with Coverage-Based Test Generation
As Table 3 shows, EvoCrash reproduced 46 crashes (85%)
out of 54, compared to 18 crashes (33%) that were repro-
duced by EvoSuite. In particular, 28 (52%) crashes out of 54
were reproduced only by EvoCrash. Other 18 crashes (33%)
were reproduced by both EvoCrash and EvoSuite. Finally,
for the remaning 8 cases (14%) both EvoCrash and EvoSuite
failed to generate a crash reproducing test.

However, in those 18 cases where both EvoSuite and
EvoCrash generate tests, the former always achieved a
lower or equal reproduction rate compared to the latter,
i.e., every crash was rarely reproduced out of 15 runs (e.g.,
ACC-53 in Table 3). Furthermore, EvoSuite took longer com-
pared to EvoCrash to reproduce the same crashes. Indeed,
EvoCrash took 145 seconds on average to reproduce the
crashes, while EvoSuite required 391 seconds (+170%) to
reproduce the same crashes on average.

The results above show that indeed the GGA in
EvoCrash outperforms WSA in EvoSuite for crash repro-
duction in both the number of reproduced crashes and
test generation times. The underlying explanation for such
observations is that EvoSuite, using WSA, evolves test suites
with the goal of maximizing code coverage. Assuming that
line l is where the target exception e happens, if there is a
test suite that includes a test case tl that covers l, EvoSuite
archives tl and l, and proceeds by evolving test suites
targeting only the remaining uncovered lines. The archived
test case tl that covers the target line l, by chance may
or may not trigger e as well. Furthermore, since criterion
Exception was included in the optimization criteria, if there
exists a test suite that contains test case te which triggers an
exception, EvoSuite would archive te. By chance, te may or
may not trigger e on the target line l.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

13

TABLE 3
Crash reproduction results for comparing Archive-based Whole Test
Suite generation (WSA) in EvoSuite and Guided Genetic Algorithm

(GGA) in EvoCrash. The bold cases are the ones for which only
EvoCrash could generate a test at least 8 times out of 15 runs.

EvoCrash EvoSuite
Project Bug ID avg. time reproduction % avg. time reproduction %

ACC

4 2 100% 314 100%
28 1 100% 10 100%
35 1 100% 50 100%
48 40 100% 350 33%
53 5 100% 377 66%
68 600 0% 600 0%
70 2 100% 407 33%
77 98 100% 233 100%
104 455 73% 600 0%
331 100 73% 315 20%
377 100 100% 335 13%
411 153 80% 600 0%

ANT

28820 600 0% 600 0%
33446 10 100% 540 40%
34722 59 100% 459 26%
34734 45 100% 600 0%
36733 32 86% 600 0%
38458 43 86% 510 20%
38622 33 100% 81 100%
41422 220 66% 590 13%
42179 56 93% 77 60%
43292 600 0% 600 0%
44689 32 100% 358 40%
44790 15 100% 540 40%
46747 600 0% 600 0%
47306 600 0% 600 0%
48715 600 0% 600 0%
49137 90 100% 320 100%
49755 30 100% 449 53%
49803 10 100% 600 0%
50894 42 100% 600 0%
51035 600 0% 600 0%
53626 105 100% 600 0%

LOG

29 28 93% 301 6%
43 600 0% 600 0%
509 136 100% 600 0%
10528 1 100% 3 100%
10706 1 100% 35 100%
11570 1 100% 129 100%
31003 1 100% 9 93%
40212 18 100% 472 26%
41186 1 100% 27 100%
44032 3 100% 487 33%
44899 42 100% 69 93%
45335 10 100% 462 46%
46144 20 93% 533 13%
46271 3 100% 74 100%
46404 59 100% 600 0%
47547 3 100% 10 100%
47912 38 93% 388 40%
47957 5 100% 28 100%

ActiveMQ 5035 377 60% 600 0%
DnsJava 38 115 85% 481 13%
JFreeChart 434 389 53% 500 13%

On the other hand, EvoCrash uses GGA, which cus-
tomizes test generation for crash coverage. Therefore, the
search is aimed for a test case that both covers the target
line l, and triggers the target exception e. This means that
even if a test ti covers l, EvoCrash keeps ti in the search
process in order to evolve it until it can also trigger e.

Thus, this comparison highlights that while coverage-
based test generation by EvoSuite may by chance detect
crashes, using GGA is a more effective and efficient ap-
proach for crash reproduction.

4.5 Crash Reproduction Effectiveness
This section presents the results of the empirical study
we conducted to evaluate the effectiveness of EvoCrash in
terms of crash coverage and test case usefulness.

EvoCrash Results (RQ2) As Table 4 illustrates, EvoCrash
can successfully replicate the majority of the crashes in our

TABLE 4
Detailed crash reproduction results, where Y(Yes), indicates the

capability to generate a useful test case, N(No) indicates lack of ability
to reproduce a crash, NU(Not Useful) shows that a test case could be
generated, but it was not useful, and ’-’ indicates that data regarding
the capability of the approach in reproducing the identified crash is

missing. The bold cases are the ones for which only EvoCrash could
generated a test and the underlined ones are those where EvoCrash

failed to produce a test at least 25 times out of 50 runs.

Project Bug ID EvoCrash STAR [21] MuCrash [82] JCHARMING [55]

ACC

4 Y Y Y -
28 Y Y Y -
35 Y Y Y -
48 Y Y Y -
53 Y Y N -
68 N N N -
70 Y N N -
77 NU NU N -
104 N Y Y -
331 Y N Y -
377 Y N Y -
411 Y Y Y -

ANT

28820 N N - -
33446 NU NU - -
34722 Y N - -
34734 NU N - -
36733 NU NU - -
38458 Y Y - -
38622 Y Y - Y
41422 NU Y - N
42179 Y N - -
43292 N Y - -
44689 Y NU - -
44790 Y Y - -
46747 N N - -
47306 N N - -
48715 N N - -
49137 Y NU - -
49755 Y Y - -
49803 Y Y - -
50894 Y NU - -
51035 N N - -
53626 Y N - -

LOG

29 Y Y - -
43 N N - -
509 Y N - -
10528 Y N - -
10706 Y N - -
11570 Y Y - Y
31003 Y Y - -
40212 Y NU - Y
41186 Y Y - Partial
44032 Y N - -
44899 Y N - -
45335 Y NU - N
46144 Y N - -
46271 NU Y - Y
46404 Y N - -
47547 Y Y - -
47912 Y NU - Y
47957 NU Y - N

ActiveMQ 5035 Y - - N
DnsJava 38 Y - - Y
JFreeChart 434 Y - - Y

dataset. 39 cases could be replicated 50 times out of 50
runs of EvoCrash. Of the replicated cases, LOG-509 had
the lowest rate of replications - 39 out of 50. EvoCrash
reproduces 11 crashes out of 12 (91%) for ACC, 15 out of
21 (71%) for ANT, and 17 out of 18 (94%) for LOG. Overall,
EvoCrash can replicate 46 (85%) out of the 54 crashes.

To assess the usefulness of the generated test cases, as
explained in Sub-section 4.1, we used the same criterion
that was used for STAR [21]. Based on this, 38 (84%) of the
replications were useful, as they included the buggy frame.
The remaining 16% non-useful replications were mainly due
to having dependency on data from external files which
were not available during replication.

For ACC, ACC-68 was not reproducible by EvoCrash. In
this case, the class under test includes three nested classes,
and the inner-most one was where the crash occurs. We
could not replicate this crash as EvoCrash relies on the in-

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

14

Seconds Failing ReplicationSucceeding Replication

1 6 6

5 3 3

300 3 1

600 3 0

0

1

2

3

4

5

6

7

1 10 100 1000

F
it

n
e

ss
 S

co
re

s

Seconds (log scale)

Failing Replication Succeeding Replication

Fig. 2. Fitness progress over time for both succeeding and failing runs
of EvoCrash for ACC-104.

strumentation engine of EvoSuite, which does not currently
support the instrumentation of multiple inner classes.

In addition, for ACC-104 11, EvoCrash could replicate the
case 42 times out of 50. The average time EvoCrash took for
reproducing this case is 300 seconds. In this case, the defect
lies on line 20 in Figure 1, where the shift operation does
not correctly increment or decrement array indexes. In order
to replicate this case, a test case shall meet the following
criteria: 1) Make an object of the BoundedFifoBuffer
class. 2) Add an arbitrary number of objects to the buffer.
3) Remove the last item from the buffer, and add arbitrary
number of new items. 4) Remove an item that is not the last
item in the buffer.

To understand why EvoCrash takes relatively longer
to reproduce ACC-104, Figure 2 demonstrates the search
progress during the failing and successful executions. As the
Figure shows, during the failing executions, the fitness value
quickly progresses to 3.0 and it remains unchanged until
the search budget (10 minutes) is over. In these executions,
a fitness value of 3.0 means that the target line, line 20
in Figure 1 is covered by the execution of the test cases.
However, the target exception ArrayIndexOutOfBounds
is not thrown at this line, which is why the fitness does not
improve and remains 3.0 until the search time is consumed.
On the other hand, during the successful runs, not only line
20 is covered, on average in five seconds, but also after 5
minutes, the target exception is thrown and generates the
reported crash stack trace. As our results indicate, setting an
object of BoundedFifoBuffer to the right state such that
an arbitrary number of elements are added and removed
in a certain order (as indicated previously) to throw the
ArrayIndexOutOfBounds exception is a challenging task.

For ANT, six of the 20 crashes (30%) are currently not
supported by EvoCrash. For these cases, the major hin-
dering factor was the dependency on a missing external
build.xml file, which is used by ANT for setting up
the project configurations. However, build.xml was not
supplied for many of the crash reports. In addition, the use
of Java reflection made it more challenging to reproduce
these ANT cases, since the specific values for class and
method names are not known from the crash stack trace. For
LOG, one of the 18 cases (5%) is not supported by EvoCrash.

11. https://issues.apache.org/jira/browse/COLLECTIONS-104

java.lang.ArrayIndexOutOfBoundsException:
at org.apache.commons.collections.buffer.

BoundedFifoBuffer.remove(BoundedFifoBuffer.
java:347)

Listing 2. Crash Stack Trace for ACC-104.

In this case, the target call is made to a static class initializer,
which is not supported by EvoCrash yet.

1 public void remove() {
2 if (lastReturnedIndex == -1) {
3 throw new IllegalStateException();
4 }
5

6 // First element can be removed quickly
7 if (lastReturnedIndex == start) {
8 BoundedFifoBuffer.this.remove();
9 lastReturnedIndex = -1;

10 return;
11 }
12

13 // Other elements require us to shift the
subsequent elements

14 int i = lastReturnedIndex + 1;
15 while (i != end) {
16 if (i >= maxElements) {
17 elements[i - 1] = elements[0];
18 i = 0;
19 } else {
20 elements[i - 1] = elements[i];
21 i++;
22 }
23 }
24

25 lastReturnedIndex = -1;
26 end = decrement(end);
27 elements[end] = null;
28 full = false;
29 index = decrement(index);
30 }

Listing 1. Buggy method for ACC-104.

4.6 Comparison to State of the Art

This section discusses the results of the comparison be-
tween EvoCrash and the state-of-the-art approaches based
on crash stack traces, namely STAR [21], MuCrash [82], and
JCHARMING [55]. In Table 4, bold entries represent bugs
which can be triggered by EvoCrash, but not by at least
one of the other techniques; Underlined entries represent
bugs that EvoCrash cannot reproduce, while there is another
technique that can. As can be seen, there are 23 (bold)
cases in which EvoCrash outperforms the state of the art,
and there are two (underlined) cases that EvoCrash cannot
handle. Below we discuss these cases in more detail.

EvoCrash vs. STAR. As Table 4 presents, for ACC,
EvoCrash covers all the cases that STAR covers. In addition,
EvoCrash covers three cases (25%) which were not covered
by STAR due to the path explosion problem. For instance,
in ACC-331, the defect exists in a private method, least,
inside a for loop, inside the third if condition, which could
not be handled by STAR.

For ANT, EvoCrash supports seven cases (35%) which
are not covered by STAR. Out of the seven, there are
three cases, for which only EvoCrash can generate a use-
ful test case. Listing 3 shows the crash stack trace for
one of these cases (ANT-49137). As reported in the issue

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

15

tracking system of the project12, in this case, the defect
exists in the 4th stack frame. Thus, a useful test case
should (i) make a call to the method delete, (ii) trigger
a java.lang.NullPointerException, and (iii) yield a
crash trace which includes the first stack frame, which is
where the exception was thrown.

java.lang.NullPointerException:
at org.apache.tools.ant.util.SymbolicLinkUtils.

isSymbolicLink(SymbolicLinkUtils.java:107)
at org.apache.tools.ant.util.SymbolicLinkUtils.

isSymbolicLink(SymbolicLinkUtils.java:73)
at org.apache.tools.ant.util.SymbolicLinkUtils.

deleteSymbolicLink(SymbolicLinkUtils.java:223)
at org.apache.tools.ant.taskdefs.optional.unix.

Symlink.delete(Symlink.java:187)

Listing 3. Crash Stack Trace for ANT-49137.

As Listing 4 depicts, the test case by EvoCrash cre-
ates an instance of Symlink, symlink0, adapts the state
in symlink0, and ultimately makes a call to delete,
which will result in generating the target crash stack trace
with fitness equal to 0.0. On the other hand, as Listing
5 shows, the test case by STAR, makes an instance of
SymbolicLinkUtils, which comes before the defective
frame in the crash stack, and makes a call to the root method,
isSymbolicLink. Consequently, only part of the target
crash stack is generated by this test, which is shown in
Listing 6. Since the defective frame is not revealed in the
resulting crash trace, even though the root frame is covered,
the test by STAR does not evaluate to useful according to
the criteria set by STAR [21].

public void test0() throws Throwable {
Symlink symlink0 = new Symlink();
symlink0.setLink("");
symlink0.delete();

}

Listing 4. Generated test by EvoCrash for ANT-49137.

public void test0() throws Throwable {
java.io.File v1 = (java.io.File) null;
org.apache.tools.ant.util.SymbolicLinkUtils v2 =

org.apache.tools.ant.util.SymbolicLinkUtils
.getSymbolicLinkUtils();

v2.isSymbolicLink((java.io.File) v1, (java.lang.
String) null);

}

Listing 5. Generated test by STAR for ANT-49137.

java.lang.NullPointerException
at org.apache.tools.ant.util.SymbolicLinkUtils.

isSymbolicLink(SymbolicLinkUtils.java:107)

Listing 6. Generated Crash Stack Trace by STAR for ANT-49137.

Other than ACC-104, ANT-43292 is the other case that
is only reproducible by STAR. The main reason for this
lies in an inheritance-related problem and how the current
fitness function compares stack frames. In this case, the tar-
get method, mapFileName, is defined in FilterMapper,
which extends FileNameMapper. However, the search
can find better fitness values, using other subclasses of
FileNameMapper, such as FlatFileNameMapper, be-
cause the implementation of mapFileName in these sub-
classes has lower complexity.

12. https://bz.apache.org/bugzilla/show bug.cgi?id=49137

For LOG, EvoCrash covers all the cases that were cov-
ered by STAR. Six of the LOG cases (33%) are only covered
by EvoCrash. As an example, for LOG-509 there is a need to
interact with the file system in order to open a file, and
in order to do so, EvoCrash benefits from the mocking
mechanisms implemented in EvoSuite.

LOG-47912 (shown in Listing 7) is another example for
which only EvoCrash successfully generated a useful test
case. The buggy frame in this case is at level four, and the
generated test by EvoCrash is at level five, which is shown
in Listing 8. As the listing shows, in order to generate a test
at this level, several complex objects need to be generated
and set up first, until finally the call to jULBridgeHan-
dler0.publish(logRecord0); is made. This example shows the
capability of EvoCrash to generate complex objects which
may be needed to execute a particular execution path that
leads to the target line where the target exception is thrown.
java.lang.NullPointerException:

at org.apache.log4j.CategoryKey.(CategoryKey.
java:32)

at org.apache.log4j.Hierarchy.getLogger(
Hierarchy.java:266)

at org.apache.log4j.Hierarchy.getLogger(
Hierarchy.java:247)

at org.apache.logging.julbridge.
JULLog4jEventConverter.convert(
JULLog4jEventConverter.java:121)

at org.apache.logging.julbridge.JULBridgeHandler
.publish(JULBridgeHandler.java:49)

Listing 7. Stack Trace for LOG-47912.

public void test0() throws Throwable {
Logger logger0 = Logger.getLogger("I}h}$.Xa|yA,

YSXf");
Hierarchy hierarchy0 = (Hierarchy)logger0.

getLoggerRepository();
JULLog4jEventConverter jULLog4jEventConverter0 =

new JULLog4jEventConverter((
LoggerRepository) hierarchy0, (
JULLevelConverter) null);

JULBridgeHandler jULBridgeHandler0 = new
JULBridgeHandler((LoggerRepository)
hierarchy0, jULLog4jEventConverter0);

Level level0 = Level.SEVERE;
LogRecord logRecord0 = new LogRecord(level0, "")

;
jULBridgeHandler0.publish(logRecord0);

}

Listing 8. Generated test by EvoCrash for LOG-47912.

EvoCrash vs. MuCrash. As Table 4 shows, evaluation data
for MuCrash is only available for ACC.13 Except for ACC-
104, EvoCrash covers all the ACC-cases that are covered by
MuCrash. In addition, three cases (25%) are only covered by
EvoCrash, though one of them is not marked as useful.

An example of a covered case is ACC-53, depicted in
Listing 9. It requires that an object is added to an instance of
UnboundedFifoBuffer, the tail index is set to a number
larger than the buffer size, and then that the method remove
is invoked. In addition, the order in which the methods are
invoked matters. So, if the tail index would be set after
remove is called, the target crash would not be replicated.
As shown in Listing 10, EvoCrash synthetized the right
method sequence and reproduced ACC-53.

13. Since MuCrash is not publicly available we could not reproduce
the data or add additional cases by ourselves.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

16

java.lang.ArrayIndexOutOfBoundsException:
at org.apache.commons.collections.buffer.

UnboundedFifoBuffer$1.remove(
UnboundedFifoBuffer.java:312)

Listing 9. Crash Stack Trace for ACC-53

Object object0 = new Object();
UnboundedFifoBuffer unboundedFifoBuffer0 = new

UnboundedFifoBuffer();
unboundedFifoBuffer0.add(object0);
unboundedFifoBuffer0.tail = 82;
unboundedFifoBuffer0.remove((Object) null);

Listing 10. EvoCrash test for ACC-53

EvoCrash vs. JCHARMING. As Table 4 shows, we have
12 cases to derive comparisons between EvoCrash and
JCHARMING. While 75% of the cases are covered both
by EvoCrash and JCHARMING, there is substantial differ-
ence in the efficiency of the two approaches. On average,
EvoCrash takes less than 2 minutes to cover the target
crashes, whereas (based on the published results) JCHARM-
ING may take from 10 to 38 minutes to generate tests for the
same cases.

Among the LOG cases, two out of seven (29%) are only
supported by EvoCrash. As an example, Listing 11 shows
the crash stack trace for LOG-45335, which is one of the two
cases covered only by EvoCrash. To generate a useful test
for LOG-45335, as depicted in Listing 12, EvoCrash sets the
ht state in NDC to null, and then makes a call to the static
method remove, which is the buggy frame method.

Among the other cases, two of them are only supported
by EvoCrash, ANT-41422, and ActiveMQ-5035. The for-
mer is a NullPointerException, and the latter is a
ClassCastException.

java.lang.NullPointerException:
at org.apache.log4jb.NDC.remove(NDC.java:377)

Listing 11. Crash Stack Trace for LOG-45335.

public void test0() throws Throwable {
NDC.ht = null;
NDC.remove();

}

Listing 12. The EvoCrash Test for LOG-45335.

4.7 Threats to Validity

In this section, we outline various possible threats to the
validity of the empirical evaluation we conducted.

External Validity. The main threats arise from the focus
on Java and open source projects. The use of Java is needed
for our experiments due to the dependency on EvoSuite,
yet we expect our approach to behave similarly on other
languages such as Ruby or C#.

To maximize reproducibility and to enable comparison
with the state-of-the-art we rely on open source Java sys-
tems. We see no reason why closed-source stack traces
would be substantially different. As part of our future work,
we will engage with one of our industrial partners, mining
their log files for frequent stack traces. This will help them
create test cases that they can add to their test suite to
reproduce and fix errors their software suffers from.

To facilitate comparison with earlier approaches, we
selected bugs and system versions that have been used
in earlier studies, and hence are several years old. We
anticipate that our approach works equally-well on more
recent bugs or versions as well, but have not conducted a
systematic experiments yet.

A finding of our experiments is that a key limiting factor
for any stack-trace based approach is the unavailability of
external data that may be needed for the reproduction.
Further research is needed to (1) mitigate this limitation; and
(2) identify a different data set of crashes focusing on such
missing data, in order to further narrow down this problem.

Internal Validity. A key threat to the internal validity is
in the evaluation of the crash coverage and usefulness of the
generated test cases. In case EvoCrash generated a test with
fitness = 0.0, we rerun the generated test against the SUT to
double checked that the generated crash stack trace correctly
replicated the target crash stack. Despite having taken the
above procedures, it is still possible that we made errors
in the inspections and evaluations. To mitigate the chances
of introducing errors, we peer-reviewed tests and crashes.
In addition, we make the EvoCrash tool, and the generated
test cases publicly available1 for further evaluations.

5 STUDY II: USEFULNESS FOR DEBUGGING

To assess the degree to which generated crash-reproducing
tests are useful during debugging, we conduct a controlled
experiment. The experiment aims to address the following:
• RQ4: Do participants who use EvoCrash tests more often

locate defects compared to participants who do not use
EvoCrash tests? With this research question, we aim
to understand whether using the generated tests by
EvoCrash helps locate defects.

• RQ5: Do participants who use EvoCrash tests more of-
ten provide fixes compared to participants who do not use
EvoCrash tests? With this research question, we aim
to investigate whether using the generated test by
EvoCrash helps fixing defects.

• RQ6: Do participants who use EvoCrash tests spend less
time than participants who do not use EvoCrash tests? With
this research question, we aim to analyze the impact of
using the generated tests by EvoCrash in the amount of
time the participants took to deliver fixes.

5.1 Task Selection

To select the crash cases to be used in the debug-
ging tasks, we considered the following selection crite-
ria: (i) From the 54 crashes we used in the empirical
evaluation (Section 4), we selected those crashes which
signal the two common types of exceptions in Java
programs [24], namely: NullPointerException, and
IllegalArgumentException; (ii) We filtered out stack
traces which have less than four stack frames, since locating
and fixing the related bug would be very simple; (iii) To
avoid cases that would be overly complicated to fix, we
selected cases for which the original fixes (delivered by
the original developers) are provided for the classes that
were included in the stack traces. (iv) We ensured that the
JavaDoc documentation is available for all classes appearing

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

17

in the stack traces and could serve as specification for the
participants. Finally, (v) considering the usefulness criterion
(described in Section 4.1), we opted for including both a
useful and not useful crash-reproducing unit test case.

As the result, we selected ACC-48, and LOG-47957 to be
the target cases. Listing 13 and 14 show the stack traces for
the two cases.

java.lang.IllegalArgumentException: Initial capacity
must be greater than 0

at org.apache.commons.collections.map.
AbstractHashedMap.(AbstractHashedMap.java
:142)

at org.apache.commons.collections.map.
AbstractHashedMap.(AbstractHashedMap.java
:127)

at org.apache.commons.collections.map.
AbstractLinkedMap.(AbstractLinkedMap.java
:95)

at org.apache.commons.collections.map.LinkedMap
.(LinkedMap.java:78)

at org.apache.commons.collections.map.
TransformedMap.transformMap(TransformedMap.
java:153)

at org.apache.commons.collections.map.
TransformedMap.putAll(TransformedMap.java
:190)

Listing 13. Crash Stack Trace for ACC-48; Fixed at frame 5 (line 153)
and tested at frame 6 (line 190).

java.lang.NullPointerException:
at org.apache.log4jb.net.SyslogAppender.append(

SyslogAppender.java:251)
at org.apache.log4jb.AppenderSkeleton.doAppend(

AppenderSkeleton.java:230)
at org.apache.log4jb.helpers.

AppenderAttachableImpl.appendLoopOnAppenders
(AppenderAttachableImpl.java:66)

at org.apache.log4jb.Category.callAppenders(
Category.java:203)

at org.apache.log4jb.Category.forcedLog(Category
.java:388)

at org.apache.log4jb.Category.info(Category.java
:663)

Listing 14. Crash Stack Trace for LOG-47957; Fixed and tested at frame
1 (line 251).

The original fixes for ACC-48 and LOG-47957 were
provided for the frame levels five and one, respectively.
In addition, the tests from EvoCrash for these cases were
targeted for the frame levels six and one, respectively.

5.2 Experiment Participants
We invited 35 master students in computer science from
the Delft University of Technology to participate in the
study. Table 5 presents the level of formal education the
participants have in Java programming. Table 6 presents the
degree to which the participants have industrial experience
in software engineering. Moreover, Table 7 summarizes the
degree to which the participants were familiar with the
JUnit testing framework.

TABLE 5
Participants’ Education in Java Programming

Self-educated Formal Education
Basic Intermediate Advanced

5.71% 28.57% 45.71% 20%

TABLE 6
Participants’ Industrial Experience

No exp. ≤ 2 years 3-5 years 5-10 years
42.85% 34.28% 20% 2.85%

TABLE 7
Participants’ Familiarity with the JUnit Framework

Unfamiliar Basic Average Advanced
37.14% 25.71% 28.57% 8.57%

5.3 Experiment Procedure
Before conducting the experiment, the participants received
an introduction to the tasks to perform. The students had
two weeks within which, at some point they were to start
performing the experiment and deliver the results. Notice
that to avoid any bias, we made sure participants were
neither aware of the research questions of our study nor
which crashes (name and id) were used as subjects of the
experiment.

The participants were asked to debug and fix the classes
involved in the two bugs ACC-48, and LOG-47957 starting
from the corresponding crash stack traces. Each partici-
pant had to perform one bug fixing task using the crash-
reproducing test from EvoCrash (e.g., ACC-48), while for
the other one (e.g., LOG-47957) we did not provide the test
from EvoCrash. To address potential bias due to learning
effects, we assigned the tasks to have a balanced number of
participants that performed the first task with and with-
out the EvoCrash test. Therefore, we randomly grouped
students in four different groups, whose configurations are
shown in Table 8.

Once participants started performing the experiment
at some point within the two weeks, they were asked to
complete three stages in the context of the experiment:
(i) filling a pre-test questionnaire that we used to collect
data about participants’ background, (ii) performing the first
debugging task and filling the corresponding post-test ques-
tionnaire, and (iii) performing the second debugging task
and filling a second post-test questionnaire. While the time
to complete the first stage was unbounded, for the remaning
two stages we restricted the amount of time participants
could spend on each task following the guidelines by [80]. In
particular, participants had 45 minutes for each task, which
includes: (i) reading the instructions, (ii) cloning a Maven
project from GitHub, and (iii) performing the corresponding
debugging task. Each debugging task consists of (i) locating
the defect that trigger the target crash, (ii) providing the
code fix, (iii) running the existing test suite and adding new
tests if needed. The participants could finish the tasks in
less than 45 minutes if they were sure that (i) the identified
bug location is correct, and (ii) the provided fixes prevent
the crashes to incur again and do not break the existing test
suite. Controlling the time allowed to prevent that too little
or too long time would be spent by participants on each
task.

To prepare the projects on GitHub, we selected the ver-
sions of Apache Commons Collections, and Apache
Log4j that were specified in the bug reports for ACC-48
and LOG-47957. Both projects were already Maven projects,

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

18

TABLE 8
Configuration of the Participant Groups

Group Task 1 Task 2
Bug EvoCrash Bug EvoCrash

I ACC-48 Yes LOG-47957 No
II ACC-48 No LOG-47957 Yes
III LOG-47957 Yes ACC-48 No
IV LOG-47957 No ACC-48 Yes

so we imported them into Eclipse, and made sure the tests
were run with no particular difficulties. For those tasks
where the test from EvoCrash was provided, we included
the tests in the projects, and added their path (packages) in
the instructions provided to the participants.

As the first task reached the time out, or the partici-
pants completed the task within 45 minutes, they would
proceed to the follow-up post-test questionnaire. To make
sure the participants do not take time at this point to keep
working on the task, we allowed 10 minutes to be spent
on answering the questions. The second task followed the
same procedure as the first one, after which the assignment
would be completed. At the end, the participants had to
send the artifacts they produced (including any test cases,
or fixes) via e-mail to the first author. Furthermore, we used
the online platform: https://www.qualtrics.com to collect the
results of the questionnaires.

Before conducting the experiment, the last two authors
performed the tasks to assess their feasibility and correct-
ness in advance. We also conducted three pilot studies
with external researchers within the software engineering
research group at Delft University of Technology. The feed-
back we received from the pilot studies were used to im-
prove both the questionnaires and the instructions for the
tasks. Data points from dry-runs and pilot studies are not
included in our analysis of the results.

5.4 Data Analysis

The original location of the defects and the patches provided
by the developers for both cases represent our golden answers
(oracle) as for the defect locations and fixes.

To answer RQ3, we compared the bug locations which
were pointed to by the participants with the locations in
our golden set. For example, for ACC-48, the defect could
be fixed at two different frame levels in the stack trace,
namely: (a) in the transformMap method at the 5th frame
level in the stack trace reported in Listing13, and (b) in the
putAll method at the 6th level. However, it is important
to target the transformMap routine as the location for
the underlying defect, and not the putAll routine. This
is because putAll is an API call whereas transformMap
is a private routine to which other routines make calls as
well. Therefore, transformMap is the root location where
the defect must be fixed otherwise the crash could recur. In
cases where the participants targeted putAll as the buggy
location, we marked their answers as incorrect.

For what concerns RQ4, we ran the fixes given by the
participants to assess whether they prevented the crashes
from recurring. If so, then we manually analyzed the content
of the fixes. For example, in case of the fixes given for LOG-

47957, we accepted every fix which pointed to checking for
null references at the right location in the source code.

For what regards RQ5, we utilized the data that was
provided by the online platform for collecting the data
related to the time participants took to deliver the fixes.
The data measured the point in time when the participant
started a task (by reading the instructions), and the point
in time when the participant completed the task before
proceeding to answering the subsequent questions.

5.5 Statistical Analysis
To assess the effect of using the EvoCrash tests on the ability
of participants to locate and fix the defects, we used the odds
ratio measure [4] since the data is binary distributed, i.e.,
the defect is correctly located (or fixed) or not. For this test,
we use a 95% confidence interval and we computed it for
each debugging task (ACC-48, and LOG-47957) separately.
In addition, to determine the significance of the findings, we
used the Fisher’s exact test, which is can be used for small
sample sizes [4]. We considered α = 0.05 for the Type I error.
Significant p-values (i.e., lower than 0.05) indicate that par-
ticipants with EvoCrash tests were able to correctly locate
and fix defects more frequently compared the participants
who performed the same task (e.g., ACC-48) without the
EvoCrash tests.

To measure the effect of using EvoCrash tests on the
amount of time the groups took to complete each task, we
used the Vargha-Delaney Â12 statistic [77]. We selected this
effect size measure since it is well-suited for numerical data
distributions [77], such as the time in seconds. Values of
Â12<0.50 indicate that participants with the EvoCrash tests
spend less time than the participants without the EvoCrash
tests to complete the same task; values of Â12>0.50 indicates
the opposite scenario, i.e., participants with the EvoCrash
tests spent more time to complete the assigned tasks;
Â12=0.50 when there is no difference between the partici-
pants who performed the tasks with and without EvoCrash.
The effect size can be classified as one of the four differ-
ent levels [77]: negligible (Â12≥0.44), small (0.36≤Â12<0.44),
medium(0.29≤Â12<0.36), or large (Â12≤0.29). For a given
task, we also test whether the difference (if any) between
the groups with and without EvoCrash were statistically
significant by using the non-parametric Wilcoxon Rank Sum
test with α = 0.05 for the Type I error. Significant p-values
imply that there is significant difference in the amount of
time the participants take when performing the debugging
tasks with and without EvoCrash.

5.6 Analysis of the Results
In this section, we present the results of the controlled ex-
periment with student participants. Table 9 summarizes the
results regarding assessing the impact of using the tests from
EvoCrash on the ability of the participants in locating the
defects and providing fixes for them. As Table 9 indicates,
one of 35 students, corresponding to one of the groups II or
III in Table 8, did not deliver the debugging tasks. Thus, the
number of participants in these groups is 34. On the other
hand, all participants corresponding to groups I and IV in
Table 8 delivered the debugging tasks. Therefore, the total
number of participants in Table 9 is 35. In what follows, we

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

19

discuss the results and thereby answer RQ4, RQ5, and RQ6,
respectively.

TABLE 9
Results of RQ4 and RQ5 grouped by tasks (“With” = with EvoCrash

tests, “Without” = without EvoCrash tests).

Metrics ACC-48 LOG-47957
With Without With Without

No. of correct bug locations 13 13 12 9
No. of incorrect bug locations 5 3 4 8
No. of undelivered tasks 0 1 1 0
No. of correct bug fixes 10 3 8 6
No. of incorrect bug fixes 8 13 8 11
No. of undelivered tasks 0 1 1 0

5.6.1 RQ4: Impact of EvoCrash Tests on Locating Defects

As Table 9 shows, in the case of ACC-48, the number of
participants who located the defect correctly, using the test
from EvoCrash, is the same as the number of participants
who did not use the test from EvoCrash. The number of
participants who failed to locate the defect, with and with-
out using the EvoCrash test, are five and three, respectively.
In the case of LOG-47957, 12 participants, using the test
from EvoCrash, and nine participants without using the test
correctly located the defect. The number of participants who
failed to locate the defect, with and without the EvoCrash
test, are four and eight, respectively.

To assess the impact of using EvoCrash on locating
the underlying defects for each of the debugging task, we
used the odds ratio and Fisher’s exact test as explained
in Section 5.5. For ACC-48, the odds ratio is 0.63, thus,
indicating that the test case from EvoCrash did not help the
participants in locating the underlying defect. Moreover, the
Fisher test further confirms that there is no statistically sig-
nificant difference between the two groups (p-value = 0.86).
For LOG-47957, the odds ratio is 2.66, suggesting that the
test from EvoCrash helped the participants in locating the
underlying defect more often than the participants who did
not use the test. However, these results are not statistically
significant in this case either (p-value=0.14).

RQ4: EvoCrash helps participants in locating the de-
fect for LOG-47957, while in the case of ACC-48 we
did not observe such an impact. In either case, the
differences are not statistically significant.

5.6.2 RQ5: Impact of EvoCrash Tests on Fixing Defects

As Table 9 shows, in the case of ACC-48, the number of
participants who provided acceptable fixes are 10 when
using the test from EvoCrash and three without the test.
In addition, eight and 13 participants, with and without
the test from EvoCrash respectively, failed to provide an
acceptable fix for ACC-48. In the case of LOG-47957, eight
participants, using the test from EvoCrash, and six partici-
pants without using the generated test provided acceptable
fixes. The number of participants who failed to provide
acceptable fixes, with and without using the test is eight
and 11, respectively.

To assess the impact of using EvoCrash on the ability of
participants in providing fixes, we computed the odds ratio

for each debugging task, separately. In addition, we used
the Fisher’s exact test for significance.

For ACC-48, the odds ratio is 5.41. This indicates that the
test case generated by EvoCrash increased the participants’
ability to provide fixes when performing such a debugging
task. According to the Fisher test, the differences are statis-
tically significant (p-value=0.03). We further note, based on
the usefulness criterion described in Section 4.1 we labeled
the test generate by EvoCrash as useful for debugging.

For LOG-47957, the odds ratio is 1.83. Based on these
measures, we observed that using the test from EvoCrash
increased the participants’ ability to provide correct fixes.
However, such an improvement is not statistically signifi-
cant as suggested by the Fisher test (p-value=0.30). These
results are in line with the results of Study I, where we la-
beled the test generated by EvoCrash as not useful according
to the usefulness criterion described in Section 4.1).

RQ5: Using a test from EvoCrash, that is useful ac-
cording the usefulness criterion in Section 4.1, in-
creases developers’ ability in fixing defects when de-
bugging. In addition, our results suggest that using a
test from EvoCrash, that is not useful according to
the usefulness criterion in Section 4.1, also increases
developers’ ability in fixing defects when debugging.
However, in the latter case, the difference is not sta-
tistically significant.

5.6.3 RQ6: Impact of EvoCrash Tests on Debugging Time
The box-plots in Figure 3 show the distribution of time par-
ticipants took to perform each task. In the case of ACC-48,
the median for the group which did not use the EvoCrash
test is 1565 seconds, while the median for the other group,
using the EvoCrash test, is 1064 seconds (-32%). In the case
of LOG-47957, the median for the group which did not use
the EvoCrash test is 2700 seconds, while the median for the
other group, using the EvoCrash test, is 2037 seconds (-25%).
Thus, in both cases, the medians for the group which used
the tests from EvoCrash are lower than the median for the
group which did not use the EvoCrash tests.

To verify whether such differences are statistically sig-
nificant or not, we used the non-parametric Wilcoxon test
for each debugging task (ACC-48, and LOG-47957) as
described in Section 5.5. As effect size measure, we used
the Vargha-Delaney Â12 statistics.

For ACC-48 and LOG-47957, the obtained Â12 scores
are 0.28 (medium) and 0.30 (medium), respectively. The
differences between the groups with and without the
EvoCrash test are also statistically significant according to
the Wilcoxon test, which returns p-values of 0.03 and 0.04 for
ACC-48 and LOG-47957, respectively. Based on the results
above, we conclude:

RQ6: Developers using the tests from EvoCrash take
significanlty less time when debugging, compared to
those not using the EvoCrash tests.

5.7 Threats to Validity
In this section, we outline various possible threats to the
validity of the controlled experiment we conducted.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

20

0

1000

2000

ACC LOG

T
im

e

With EvoCrash Without EvoCrash

Fig. 3. Amount of time participants took to perform each task, with and
without the tests from EvoCrash.

Internal Validity. To reduce factors that could affect the
causal relations under scrutiny, we randomly assigned the
tasks to the participants. Regarding the ability of the partici-
pants in locating the defects and fixing them, it could be that
not being familiar with the source code negatively affects the
degree to which the participants were able to locate and fix
the defects. To mitigate this impact: i) We made sure Java-
Doc documentation is available for the target projects to be
debugged, and ii) We checked with the pilot studies whether
the given time for each task was reasonable, and whether the
available documentation was sufficient to perform them.

Moreover, we conducted the experiment remotely from
the participants, which implies that they would do the ex-
periment at their own discretion. Using the online platform,
we made sure the participants are mandated to perform the
tasks in the specified order, and within the specified time
limit. In addition, the participants could only answer each
follow up questionnaire after they had completed each task.

External Validity. One factor that could affect the gen-
eralizability of the study could be the student participants
of the experiment. Different studies [40], [53] show that
if students are familiar with performing the tasks of the
experiment, then they would perform similar to participants
from industry. Over 50% of the participants declared to have
at least 2 years of industrial experience, and basic familiarity
with the JUnit framework. In addition, by giving an intro-
ductory lecture we further tried to familiarize the students
and thereby, mitigate possible threats to the generalizability
of the experiment results.

Furthermore, we analyzed only two types of exceptions
in the experiment. As described in Section 5.1, to select
these types we considered a number of criteria, including
how often they occur, the stack trace sizes, and whether
they are overly complex or overly simple cases to debug.
We deliberately opted for only two exceptions in order to
i) maintain statistical power in the analysis, and ii) avoid
introducing fatigue and learning effects to the participants.

Construct Validity. Threats to this type of validity con-
cern the degree to which the conducted experiment mea-
sures what is intended to be measured. We used the online
platform to measure the amount of time each participant
took to complete the debugging tasks. Since the experiment
was done remotely, we did not fully observe how the partici-
pants spent the debugging time they took. While by limiting
the debugging time and providing the questions after each
task was completed we tried to control the experiment flow,
it is possible that the participants did not spend the entire
time on the debugging tasks.

Conclusion Validity. We conducted the experiment with
35 master students. In the experiment, each task was per-
formed by at least 16 students. While 16 is not a large
number as for the size of each group, it still yields sufficient
statistical power to assess the impact of using EvoCrash
tests on the number of fixed bugs (when the test is useful
for debugging), as well as the amount of time it takes to
finish the debugging tasks. Regarding assessing the impact
of EvoCrash tests on the ability of developers in locating
defects, our experiment shows preliminary results, and
therefore indicates the need for further future investigation.

We support our findings by using appropriate statistical
tests (namely: The Fisher’s exact test, odds ratio measure,
Wilcoxon Rank Sum test, and the Vargha-Delaney Â12

statistic) to assess the impact of using EvoCrash tests in
debugging.

6 DISCUSSION AND LESSONS LEARNT

Interactive Search. It should be noted that since GGA
strives for finding the fittest test case, thus discarding the
ones with fitness > 0.0, the crash coverage and useful-
ness evaluation was performed on a set of EvoCrash tests
with fitness equal to 0.0. However, considering the crash
exploitability and usefulness criteria adopted from STAR
[21], it could be possible that EvoCrash discarded tests with
fitness between 0.0 and 1.0, which would actually conform
to the aforementioned criteria. Considering the fitness func-
tion range, fitness values could be from 0.0 to 6.0, where
6.0 means a test case that does not reach the target line,
therefore does not invoke the target method, and in turn,
does not trigger the target exception. In contrast, fitness 0.0
means that the test covers the target line and method, and
triggers the target exception. According to the definition of
the fitness function (presented in Section 3), when the fitness
value is between 0.0 and 1.0, the target line and exception
are covered, however, the stack trace similarity is not ideal
yet. In this case, even though the target stack similarity is not
achieved, crash coverage and test usefulness criteria could
be covered. Future work can provide interactive mecha-
nisms through which the precision of the fitness function
could be adjusted, so tests with fitness between 0.0 and 1.0
could also be accepted.

In addition, dependency on external files was a major
factor that prevented EvoCrash from covering more cases.
Therefore, if external files were to be provided by the bug
reporters, then enabling developers to specify the external
files could be another possible direction for the future work.

Extending Comparisons. Towards extending the empirical
evaluation, we aimed at adopting the crash cases reported

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

21

in [56] in order to make a larger comparison with JCHARM-
ING. However, due to various reasons, ultimately we man-
aged to adopt four cases to this end. While the new cases
provide a bigger picture, we are still interested to expand
the comparisons among the recent tools for automated crash
reproduction. This aim would be facilitated if the tools
become publicly available.

In addition, we acknowledge the need for extending the
empirical evaluation of EvoCrash to crashes from recent
industrial projects. In such projects scale, complexity, and
type of the generated crashes may vary, which may indicate
new research dimensions to consider for improving our
search-based crash reproduction approach.

Controlled Experiment. To analyze the impact of EvoCrash
tests in debugging, we selected two common excep-
tions in Java programs, NullPointerException, and
IllegalArgumentException. This is while various types
of exceptions may impose different levels of complexity in
debugging, and thus, the impact of crash reproducing tests
may vary in each case. Therefore, future studies could adopt
more common exceptions in Java programs, and assess the
impact of EvoCrash tests per exception type.

In addition, our experiment results showed that using
useful EvoCrash tests helps developers fix bugs and take
less time in debugging. While using such tests helped the
participants locate the given defect, the observed impact
was not statistically significant. To be able to locate the root
cause of a given failure, having upfront understanding and
knowledge about the defective source code may be another
important factor that can impact the ability of a developer
in localizing a given defect. Therefore, future studies may
assess the impact of having up-front knowledge of source
code and its correlation with using crash reproducing tests
in debugging.

7 CONCLUSIONS

Several approaches to automated crash replication have
been proposed to aid developers when debugging. How-
ever, these approaches report several challenges such as
path explosion and handling environmental dependencies
in practice. We propose a new approach, EvoCrash, to auto-
mated crash reproduction, via a Guided Genetic Algorithm
(GGA). Our empirical evaluation on 54 real-world crashes
shows that GGA addresses the path explosion problem. Fur-
thermore, thanks to the mocking mechanisms in EvoSuite,
some crashes involving environmental interactions were re-
produced. However, handling environmental dependencies
(such as content of a required file) remain to be a chal-
lenge for EvoCrash. We acknowledge the need for further
empirical evaluations on more recent and industrial cases.
The result of such evaluations may help identify the areas
where we can improve our search-based crash reproduction
technique.

In addition, we compare effectiveness and efficiency of
EvoCrash with EvoSuite as a whole test suite generation
approach to coverage-based test generation. Our results
confirm that the provided guidance in GGA is necessary
for effectively and efficiently reproducing the crashes.

Moreover, we report from a controlled experiment with
35 master students in computer science, in which we as-
sessed the impact of using EvoCrash tests in practice. Based
on the results of the controlled experiment, we observed
that: i) Our data regarding the impact of EvoCrash tests on
the ability of developers in locating defects is preliminary.
Therefore, our results show need for further future investi-
gation in this regard. ii) Using a useful test from EvoCrash
when debugging, developers can provide fixes more often,
compared to when debugging without using such tests.
Finally, iii) using EvoCrash tests reduces the amount of time
developers take when debugging.

ACKNOWLEDGMENTS

The authors would like to thank Andy Zaidman and all
the experiment participants for their invaluable collabora-
tion. In addition, the authors thank Marieke Huisman for
reviewing the paper and providing constructive feedback.
This research was partially funded by the EU Project STAMP
ICT-16-10 No.731529, the Dutch 4TU project “Big Software
on the Run” and National Research Fund, Luxembourg
FNR/P10/03.

REFERENCES

[1] UI/Application Exerciser Monkey. https://developer.android.
com/studio/test/monkey.html, 2017. [Online; accessed 24-July-
2017].

[2] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string
test inputs using a natural language model to reduce human oracle
cost. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 352–361, March 2013.

[3] A. Ang, A. Perez, A. van Deursen, and R. Abreu. Revisiting the
Practical Use of Automated Software Fault Localization Techniques.
IEEE, United States, 2017.

[4] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering.
Software Testing, Verification and Reliability, 24(3):219–250, 2014.

[5] A. Arcuri and G. Fraser. Parameter tuning or default values?
an empirical investigation in search-based software engineering.
Empirical Software Engineering, 18(3):594–623, 2013.

[6] A. Arcuri and G. Fraser. Java enterprise edition support in search-
based junit test generation. In International Symposium on Search
Based Software Engineering, pages 3–17. Springer, 2016.

[7] A. Arcuri, G. Fraser, and J. P. Galeotti. Automated unit test gener-
ation for classes with environment dependencies. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 79–90. ACM, 2014.

[8] A. Arcuri, G. Fraser, and J. P. Galeotti. Generating tcp/udp
network data for automated unit test generation. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 155–165. ACM, 2015.

[9] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test generation
for effective fault localization. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA ’10, pages 49–60.
ACM, 2010.

[10] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software
failures reproducible by preserving object states. In ECOOP 2008–
Object-Oriented Programming, pages 542–565. Springer, 2008.

[11] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn,
P. Tonella, and T. Vos. Symbolic search-based testing. In Pro-
ceedings of the 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 53–62. IEEE Computer Society,
2011.

[12] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking.
MIT press, 2008.

[13] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight recording
to reproduce field failures. In Proceedings of the 2013 International
Conference on Software Engineering, pages 362–371. IEEE Press, 2013.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

22

[14] F. A. Bianchi, M. Pezzè, and V. Terragni. Reproducing concurrency
failures from crash stacks. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 705–716.
ACM, 2017.

[15] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on java predicates. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA ’02, pages 123–133, New York, NY, USA, 2002. ACM.

[16] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè. Combining
symbolic execution and search-based testing for programs with
complex heap inputs. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2017, pages 90–101. ACM, 2017.

[17] O. Bühler and J. Wegener. Evolutionary functional testing. Com-
puters & Operations Research, 35(10):3144–3160, 2008.

[18] R. P. Buse, C. Sadowski, and W. Weimer. Benefits and barriers of
user evaluation in software engineering research. ACM SIGPLAN
Notices, 46(10):643–656, 2011.

[19] Y. Cao, H. Zhang, and S. Ding. Symcrash: selective recording
for reproducing crashes. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages
791–802. ACM, 2014.

[20] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and
P. Tonella. An empirical study about the effectiveness of de-
bugging when random test cases are used. In Proceedings of the
34th International Conference on Software Engineering, pages 452–462.
IEEE Press, 2012.

[21] N. Chen and S. Kim. Star: Stack trace based automatic crash repro-
duction via symbolic execution. IEEE Tr. on Sw. Eng., 41(2):198–220,
2015.

[22] H. Cibulski and A. Yehudai. Regression test selection techniques
for test-driven development. In Software Testing, Verification and
Validation Workshops (ICSTW), 2011 IEEE Fourth International Con-
ference on, pages 115–124, March 2011.

[23] J. Clause and A. Orso. A technique for enabling and supporting
debugging of field failures. In Proceedings of the 29th international
conference on Software Engineering, pages 261–270. IEEE Computer
Society, 2007.

[24] R. Coelho, L. Almeida, G. Gousios, A. v. Deursen, and C. Treude.
Exception handling bug hazards in android. Empirical Software
Engineering, pages 1–41, 2016.

[25] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen. Unveiling
exception handling bug hazards in android based on github and
google code issues. In Proceedings of the 12th Working Conference on
Mining Software Repositories, MSR ’15, pages 134–145. IEEE Press,
2015.

[26] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket:
A method for clustering duplicate crash reports based on call
stack similarity. In Proceedings of the 34th International Conference
on Software Engineering, ICSE 2012, pages 1084–1093. IEEE Press,
2012.

[27] K. Deb. Multi-objective optimization. In Search Methodologies,
pages 403–449. Springer US, 2014.

[28] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automati-
cally finding faults while achieving high coverage with evosuite.
Empirical Software Engineering, 20(3):611–639, 2013.

[29] G. Fraser and A. Arcuri. Evosuite: On the challenges of test case
generation in the real world. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages 362–
369. IEEE, 2013.

[30] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291, Feb. 2013.

[31] G. Fraser, A. Arcuri, and P. McMinn. A memetic algorithm
for whole test suite generation. Journal of Systems and Software,
103:311–327, 2015.

[32] G. Fraser, J. M. Rojas, J. Campos, and A. Arcuri. E vo s uite at the
sbst 2017 tool competition. In Proceedings of the 10th International
Workshop on Search-Based Software Testing, pages 39–41. IEEE Press,
2017.

[33] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does
automated white-box test generation really help software testers?
In Proceedings of the 2013 International Symposium on Software Testing
and Analysis, pages 291–301. ACM, 2013.

[34] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does
automated unit test generation really help software testers? A
controlled empirical study. ACM Trans. Softw. Eng. Methodol.,
24(4):23:1–23:49, 2015.

[35] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05,
pages 213–223, New York, NY, USA, 2005. ACM.

[36] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier. Reproduc-
ing context-sensitive crashes of mobile apps using crowdsourced
monitoring. In Mobile Software Engineering and Systems (MOBILE-
Soft), 2016 IEEE/ACM International Conference on, pages 88–99.
IEEE, 2016.

[37] F. Gordon and A. Arcuri. Evosuite at the sbst 2016 tool com-
petition. In The 9th International Workshop on SEARCH-BASED
SOFTWARE TESTING (SBST), 2016.

[38] M. Harman. The current state and future of search based software
engineering. In 2007 Future of Software Engineering, pages 342–357.
IEEE Computer Society, 2007.

[39] M. Harman, P. McMinn, J. De Souza, and S. Yoo. Search based
software engineering: Techniques, taxonomy, tutorial. In Empirical
software engineering and verification, pages 1–59. Springer, 2012.

[40] M. Höst, B. Regnell, and C. Wohlin. Using students as subjectsa
comparative study of students and professionals in lead-time
impact assessment. Empirical Software Engineering, 5(3):201–214,
2000.

[41] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object Capture-
based Automated Testing. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA ’10, pages 159–
170, New York, NY, USA, 2010. ACM.

[42] Y. Jia and M. Harman. Constructing subtle faults using higher
order mutation testing. In Source Code Analysis and Manipulation,
2008 Eighth IEEE International Working Conference on, pages 249–
258. IEEE, 2008.

[43] W. Jin and A. Orso. Bugredux: reproducing field failures for in-
house debugging. In Proceedings of the 34th International Conference
on Software Engineering, pages 474–484. IEEE Press, 2012.

[44] F. Kifetew, W. Jin, R. Tiellam, A. Orso, and P. Tonella. Reproducing
field failures for programs with complex grammar-based input.
In 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation, pages 163–172, March 2014.

[45] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Sbfr: A
search based approach for reproducing failures of programs with
grammar based input. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, pages 604–609,
Nov 2013.

[46] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva. Contract
driven development= test driven development-writing test cases.
In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 425–434. ACM, 2007.

[47] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and M. Oriol. On the
effectiveness of test extraction without overhead. In International
Conference on Software Testing Verification and Validation (ICST),
pages 416–425. IEEE, 2009.

[48] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 224–234.
ACM, 2013.

[49] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective auto-
mated testing for android applications. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 94–
105. ACM, 2016.

[50] P. McMinn. Search-based software test data generation: a survey.
Software testing, Verification and Reliability, 14(2):105–156, 2004.

[51] P. McMinn. Search-based software testing: Past, present and
future. In Software testing, verification and validation workshops
(icstw), 2011 ieee fourth international conference on, pages 153–163.
IEEE, 2011.

[52] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome,
and D. Poshyvanyk. Automatically discovering, reporting and re-
producing android application crashes. In 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
pages 33–44, April 2016.

[53] T. Mortensen, R. Fisher, and G. Wines. Students as surrogates for
practicing accountants: Further evidence. In Accounting Forum,
volume 36, pages 251–265. Elsevier, 2012.

[54] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously
recording program execution for deterministic replay debugging.
In ACM SIGARCH Computer Architecture News, volume 33, pages
284–295. IEEE Computer Society, 2005.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

23

[55] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson. Jcharm-
ing: A bug reproduction approach using crash traces and directed
model checking. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pages 101–
110. IEEE, 2015.

[56] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson. A bug
reproduction approach based on directed model checking and
crash traces. Journal of Software: Evolution and Process, pages n/a–
n/a, 2016. JSME-15-0137.R1.

[57] A. Orso and G. Rothermel. Software testing: a research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering,
pages 117–132. ACM, 2014.

[58] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proceedings of the 29th International Con-
ference on Software Engineering, ICSE ’07, pages 75–84, Washington,
DC, USA, 2007. IEEE Computer Society.

[59] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch
coverage as a many-objective optimization problem. In 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), pages 1–10, April 2015.

[60] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia. Improving
multi-objective test case selection by injecting diversity in genetic
algorithms. IEEE Trans. Software Eng., 41(4):358–383, 2015.

[61] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall.
The impact of test case summaries on bug fixing performance:
an empirical investigation. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, pages 547–558, 2016.

[62] C. Parnin and A. Orso. Are automated debugging techniques actu-
ally helping programmers? In Proceedings of the 2011 international
symposium on software testing and analysis, pages 199–209. ACM,
2011.

[63] I. S. W. B. Prasetya. T3, a Combinator-Based Random Testing Tool
for Java: Benchmarking, pages 101–110. Springer International
Publishing, Cham, 2014.

[64] P. Puschner and R. Nossal. Testing the results of static worst-case
execution-time analysis. In Real-Time Systems Symposium, 1998.
Proceedings. The 19th IEEE, pages 134–143. IEEE, 1998.

[65] R. Ramler, D. Winkler, and M. Schmidt. Random test case
generation and manual unit testing: Substitute or complement
in retrofitting tests for legacy code? In Software Engineering and
Advanced Applications (SEAA), 2012 38th EUROMICRO Conference
on, pages 286–293. IEEE, 2012.

[66] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri.
Combining multiple coverage criteria in search-based unit test
generation. In International Symposium on Search Based Software
Engineering, pages 93–108. Springer, 2015.

[67] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit test gener-
ation during software development: A controlled experiment and
think-aloud observations. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 338–349. ACM,
2015.

[68] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser. A detailed
investigation of the effectiveness of whole test suite generation.
Empirical Software Engineering, 22(2):852–893, 2017.

[69] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Recon-
structing core dumps. In 2013 IEEE Sixth Int. Conf. on Software
Testing, Verification and Validation, pages 114–123. IEEE, 2013.

[70] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test
factoring for java. In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering, pages 114–123. ACM,
2005.

[71] A. Sakti, G. Pesant, and Y. G. Guhneuc. Instance generator and
problem representation to improve object oriented code coverage.
IEEE Transactions on Software Engineering, 41(3):294–313, March
2015.

[72] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. C. Rekdal. A survey of controlled
experiments in software engineering. IEEE transactions on software
engineering, 31(9):733–753, 2005.

[73] M. Soltani, A. Panichella, and A. van Deursen. Evolutionary
testing for crash reproduction. In Proceedings of the 9th International
Workshop on Search-Based Software Testing, pages 1–4. ACM, 2016.

[74] M. Soltani, A. Panichella, and A. van Deursen. A guided genetic
algorithm for automated crash reproduction. In Proceedings of the
39th International Conference on Software Engineering, pages 209–220.
IEEE Press, 2017.

[75] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A
capture/replay tool for observation-based testing, volume 25. ACM,
2000.

[76] N. Tillmann and J. De Halleux. Pex: White box test generation for
.net. In Proceedings of the 2Nd International Conference on Tests and
Proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-
Verlag.

[77] A. Vargha and H. D. Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[78] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing multi-
core dumps to facilitate concurrency bug reproduction. SIGARCH
Comput. Archit. News, 38(1):155–166, Mar. 2010.

[79] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test envi-
ronment for automatic structural testing. Information and Software
Technology, 43(14):841–854, 2001.

[80] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities:
A controlled experiment. In Proceedings of the 33rd International
Conference on Software Engineering, pages 551–560. ACM, 2011.

[81] X. Xiao, T. Xie, N. Tillmann, and J. De Halleux. Precise identifi-
cation of problems for structural test generation. In Proceedings
of the 33rd International Conference on Software Engineering, pages
611–620. ACM, 2011.

[82] J. Xuan, X. Xie, and M. Monperrus. Crash reproduction via test
case mutation: Let existing test cases help. In ESEC/FSE, pages
910–913. ACM, 2015.

[83] T. Yu, T. S. Zaman, and C. Wang. Descry: reproducing system-level
concurrency failures. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 694–704. ACM, 2017.

[84] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. Jain, and M. Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-
intensive systems. In OSDI, pages 249–265, 2014.

[85] C. Zamfir and G. Candea. Execution synthesis: a technique for
automated software debugging. In Proceedings of the 5th European
conference on Computer systems, pages 321–334. ACM, 2010.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2877664, IEEE
Transactions on Software Engineering

24

Mozhan Soltani is a PhD student in the Soft-
ware Engineering Research Group (SERG) at
Delft University of Technology (TU Delft) in the
Netherlands. She has a broad range of inter-
ests in the field of software engineering, includ-
ing development and verification of programming
languages, software architecture, and software
development processes. She has served as a
reviewer of the journal of Software Testing, Ver-
ification and Reliability (STVR) and as program
committee of the MSR18 Mining Challenge.

Annibale Panichella is an Assistant Professor
in the Software Engineering Research Group
(SERG) at Delft University of Technology (TU
Delft) in the Netherlands. He is also a research
fellow in the Interdisciplinary Centre for Security,
Reliability, and Trust (SnT), University of Lux-
embourg, where he worked as Research As-
sociate until January 2018. His research inter-
ests include security testing, evolutionary test-
ing, search-based software engineering, textual
analysis, and empirical software engineering. He

serves and has served as program committee member of various inter-
national conferences (e.g., ICSE, GECCO, ICST, and ICPC) and as a
reviewer for various international journals (e.g., TSE, TOSEM, TEVC,
EMSE, STVR) in the fields of software engineering and evolutionary
computation.

Arie van Deursen is a professor in software
engineering at Delft University of Technology,
where he chairs the Department of Software
Technology. His research interests include test
amplification, software architecture, continuous
delivery, and human aspects of software devel-
opment. He was program co-chair of ESEC/FSE
2017, and will be program co-chair of ICSE
2021. He serves on the steering committees of
the ESEC/FSE and ICSE conference series.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 16,2020 at 09:30:42 UTC from IEEE Xplore. Restrictions apply.

