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Samenvatting

Het Modelleren en Simuleren van Biogrout

Biogrout is een methode om zand en grind te verstevigen door de productie van calci-
umcarbonaat. Dit calciumcarbonaat wordt geproduceerd door gebruik te maken van
micro-organismen die zich in de bodem bevinden of er in gëınjecteerd worden. De
micro-organismen worden voorzien van ureum en calcium. Vervolgens catalyseren
zij de hydrolyse van ureum, waarbij carbonaat wordt gevormd. In de aanwezigheid
van calcium, precipiteert (slaat neer) de carbonaat als calciumcarbonaat. Ammo-
nium is het ongewenste bijproduct van deze reactie. De calciumcarbonaatkristallen
worden gevormd in de poriën en zij verbinden de korrels. Op deze manier wordt de
sterkte van het materiaal verhoogd.

Biogrout kan toegepast worden op locaties waar grondverbetering gewenst is. In
dat geval heeft men een betrouwbare voorspelling van het effect van de Biogroutbe-
handeling nodig. Daarvoor is een goed begrip van het proces nodig en is een goed
wiskundig model onmisbaar. In dit proefschrift focussen we op het modelleren van
het Biogroutproces.

We beginnen met een wiskundig model voor de hydrolyse-precipitatiereactie
(Hoofdstuk 2 en 3). Vanwege de precipitatie (neerslag) van de vaste stof calci-
umcarbonaat neemt de porositeit af. Hierdoor neemt de doorlatendheid ook af.
Door de precipitatiereactie verdwijnen er stoffen uit de oplossing, wat voor een af-
name van het vloeistofvolume zorgt. Aan de andere kant is er ook minder ruimte
beschikbaar door de afnemende porositeit. Deze fenomenen zorgen voor een uit-
waartse stroming vanuit de poriën. De stoffen ureum, calcium en ammonium zijn
opgelost in de vloeistof. De concentraties worden gemodelleerd met een advectie-
dispersie-reactievergelijking. De dichtheid van de vloestof verandert door de tijd
door de veranderende samenstelling, wat een dichtheidsgedreven component aan
de stroming geeft. Er wordt aangenomen dat de vaste stof calciumcarbonaat niet
getransporteerd wordt. Daarom bevat de differentiaalvergelijking voor calciumcar-
bonaat alleen een accumulatie- en reactieterm. De reactiesnelheid hangt af van de
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hoeveelheid micro-organismen in de grond. In deze hoofdstukken wordt aangenomen
dat de micro-organismen homogeen verdeeld zijn. De Eindige Elementen Methode
(EEM) wordt gebruikt om de modelvergelijkingen op te lossen. Omdat hoge stroom-
snelheden niet wenselijk zijn in het Biogrout process vanwege uitspoeling van de
micro-organismen, is advectie niet dominant. Daarom kan de Standaard Galerkin
EEM worden gebruikt. De Euler Achterwaarts methode wordt gebruikt voor de
tijdsdiscretisatie en Newton’s methode wordt toegepast voor de niet-lineariteiten.

Hoofdstuk 4 beschrijft een model voor de plaatsing van micro-organismen en
beschouwt drie soorten concentraties van micro-organismen: gesuspendeerde micro-
organismen, (tijdelijk) geadsorbeerde micro-organismen en gefixeerde micro-orga-
nismen. Deze fixatie vindt plaats na contact tussen de fixatievloeistof en de micro-
organismen.

De resulterende microbiële concentraties kunnen gebruikt worden als invoer voor
de reactiesnelheid in het hydrolyse-precipitatiemodel. Dit wordt gedaan in hoofd-
stuk 5 door de modellen te combineren.

In hoofdstuk 6 worden verschillende differentiaalvergelijkingen voor de stroming
vergeleken. Dit leidt tot een aanpassing van de differentiaalvergelijking voor de
stoming die in de eerste hoofdstukken gebruikt wordt.

Vaak wordt er een hydrostatische druk gebruikt als randvoorwaarde. Hoofd-
stuk 7 legt uit hoe deze druk berekend kan worden in het geval van veranderende
vloeistofdichtheden.

Vanwege de opgeloste stoffen is de vloefstof zwaarder dan water. Als zo’n zware
vloeistof gëınjecteerd wordt kunnen er frontinstabiliteiten in de vorm van vingers
ontstaan. In hoofdstuk 8 worden de frontinstabiliteiten opgewekt door een initiële
variatie van de porositeit in de ruimte. Er wordt gekeken naar het effect van front-
instabiliteiten op het Biogrout process.

In het laatste hoofdstuk worden verschillende experimentele resultaten verge-
leken met de numerieke resultaten van simulaties met het model. Het blijkt dat het
model de experimentele resultaten behoorlijk goed kan beschrijven.



Summary

Modelling and Simulation of Biogrout

Biogrout is a method to reinforce sand and gravel by the production of calcium
carbonate. This calcium carbonate is produced using micro-organisms that are
either present in the subsoil or injected into it. The micro-organisms are supplied
with urea and calcium. Subsequently, they catalyse the hydrolysis of urea, by which
carbonate is formed. In the presence of calcium, the carbonate precipitates as
calcium carbonate. Ammonium is the unwanted by-product of this reaction. The
calcium carbonate crystals are formed in the pores and they connect the grains. In
this way, the strength of the material is increased.

Biogrout can be applied on locations where soil improvement is desired. Upon
doing so, one needs to have a reliable prediction of the effect of the Biogrout treat-
ment. Therefore, a thorough understanding of the process is necessary and a sound
mathematical model is dispensable. In this thesis we focus on the modelling of the
Biogrout process.

We start with a mathematical model for the hydrolysis-precipitation reaction
(Chapters 2 and 3). As a result of the precipitation of the solid calcium carbonate,
the porosity decreases. Therefore, the permeability decreases as well. Due to the
precipitation reaction, chemicals disappear from the solution causing a decrease in
liquid volume. On the other hand, there is less void space available due to the
decreasing porosity. These phenomena cause a net outflow out of the pores. The
chemicals urea, calcium and ammonium are dissolved in the fluid. The concen-
trations are modelled with an advection-dispersion-reaction-equation. The density
of the fluid evolves over time as a result of the altering composition, which gives a
density-driven component to the flow. It is assumed that the solid calcium carbonate
is not transported. Therefore, the differential equation for calcium carbonate only
contains an accumulation and a reaction term. The reaction rate depends on the
amount of micro-organisms present in the soil. In these chapters, it is assumed that
the micro-organisms are homogeneously distributed. The Finite Element Method
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(FEM) is used to solve the model equations. Since high flow rates are not desirable in
the Biogrout process, since such a high flow rate will flush out the micro-organisms,
advection is not dominating. Hence, the Standard Galerkin FEM can be used. The
Backward Euler method is used for the time discretisation and Newton’s method is
applied to deal with the non-linearities.

Chapter 4 describes a model for the placement of micro-organisms and considers
three concentrations of micro-organisms: suspended micro-organisms, (temporarily)
adsorbed micro-organisms and fixated micro-organisms. This fixation takes place
after contact between the fixation fluid and the micro-organisms.

The resulting microbial concentrations can be used as input for the reaction rate
in the hydrolysis-precipitation model. This is done in Chapter 5 by combining the
models.

In Chapter 6 several differential equations for the fluid are compared. This leads
to an adaptation of the differential equation for the flow that is used in the first
chapters.

Often, a hydrostatic pressure is used as a boundary condition. Chapter 7 explains
how this pressure can be calculated in case of dynamically evolving fluid densities.

Due to the dissolved chemicals, the fluid is denser than water. If such a dense
fluid is injected, front instabilities in the form of fingers might occur. In Chapter 8
the front instabilities are induced by an initial variation of the porosity in the spatial
domain. The effect of front instabilities on the Biogrout process is considered.

In the last chapter, several experimental results are compared to the numerical
results of simulations with the model. It appears that the model can describe the
experimental results reasonably well.
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1
Introduction

This introduction explains what Biogrout is, where it can be applied and how this
process can be modelled. Furthermore, a literature review is given as well as the
outline of the thesis.

1.1 Biogrout - a soil improvement method

Nowadays, there is a trend to consider the soil as a living ecosystem. This gives the
possibility to look for innovative and sustainable solutions to geotechnical problems.
It requires a multidisciplinary approach since, besides geotechnology and hydrology,
both microbiology and geochemistry are involved. A review on biogeochemical pro-
cesses and their geotechnical applications can be found in [24].

One such biogeochemical process is MICP: Microbially-induced calcium carbon-
ate precipitation, [4,5,22,59,83,97]. Certain micro-organisms can catalyse chemical
reactions by which carbonate ions (CO2−

3 ) are formed. These ions precipitate in the
presence of calcium ions (Ca2+) as calcium carbonate (CaCO3). Other names for
this specific biogeochemical process are: Biocement ( [96]), Biocementation ( [14])
and Biogrout ( [30,83,85]). In this thesis, the term Biogrout is used.

Urea (CO(NH2)2) is one of the possible sources for the production of carbonate.
A review on MICP based on urea hydrolysis can be found in [63]. The focus of this
thesis is on (modelling and simulating) the urea-based MICP. The micro-organism
used in the urea-based Biogrout is Sporosarcina pasteurii, previously known as Bacil-
lus pasteurii.

Figure 1.1 shows a result of the treatment of glass beads with Biogrout. The
spherical objects are the glass beads. The calcium carbonate crystals (the non
spherical objects) are formed in the pore space and connect the grains. In this way,
Biogrout improves granular soil by increasing the strength [87], such that the soil
can sustain large constructions and if necessary earthquakes, [83]. Biogrout also

1



2 Chapter 1. Introduction

improves other soil properties, including permeability, stiffness, compressibility, and
volumetric behaviour [23].

Figure 1.1: Biogrout increases the strength of granular soils since the calcium car-
bonate crystals (the non spherical objects) connect the grains. Here, Biogrout was
applied in glass beads (spheres).

1.2 Biogrout - applications

Because of its soil improving properties, Biogrout has the following applications:

• piping prevention [9];

• prevention of liquefaction [23,76];

• reduction of the impacts of earthquakes [84];

• bore hole stabilization [77];

• slope stabilization [23];

• stabilization of railroad tracks [83];

• reinforcement of dunes to decrease effects of wave erosion, and hence to protect
delicate coastlines [96];

• erosion prevention by increasing the resistance to erosive forces of water flow
[23];

• building settlement reduction and increase of the bearing capacity for founda-
tions [23].
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1.3 The chemistry and biology behind Biogrout

The Biogrout process consists of two important parts: the formation of carbonate
(in this thesis by the hydrolysis of urea) and the precipitation of calcium carbonate.
Hydrolysis of urea is an irreversible reaction in which urea reacts with water to form
carbonate and ammonium (NH+

4 ):

CO(NH2)2(aq) + 2H2O
urease−−−−→ CO2−

3 (aq) + 2NH+
4 (aq). (1.1)

The hydrolysis reaction is catalysed by the urease enzyme in the Sporosarcina pas-
teurii micro-organisms.

When the micro-organisms produce a sufficient amount of carbonate in the pres-
ence of calcium, the solution becomes oversaturated and calcium carbonate will
precipitate:

Ca2+(aq) + CO2−
3 (aq) → CaCO3(s). (1.2)

For a detailed explanation about the nucleation of calcium carbonate crystals, crys-
tal growth and type of calcium carbonate crystals, see [83].

Combining reactions (1.1) and (1.2) gives the overall urea-based Biogrout reac-
tion:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (1.3)

Since almost all the involved species in these equations form acid-base equilibria,
several other species are involved in the Biogrout process. An extensive model is
proposed in Chapter 2 of [83], which includes the acid-base equilibria. The equi-
librium constants for the acid-base equilibria are given for a temperature of 25◦C
and a pressure of 1 bar and come from [62]. The extensive model is compared to
a model based on the simplified reaction (1.3). The study in [83] shows that it is
justified to work with the simplified equation (1.3), since the simplified model leads
to the same concentrations of the main compounds as the model including all the
equilibria. The concentrations of the other species seem negligible (less than 1%
of the main compounds). Reaction (1.3) is considered to be irreversible, since the
(nett) dissolution of calcium carbonate is assumed to be negligible in the Biogrout
process. For more details about the Biogrout process, see [83,96].

While applying Biogrout, first the micro-organisms are injected into the soil and
transported by water flow to the location where strengthening is required. Several
placement procedures are reported in [36]. Subsequently, urea and calcium chloride
(dissolved in water) are injected into the soil, where the micro-organisms will catal-
yse the Biogrout reaction. The side-product of the reaction is ammonium, which
should be extracted from the soil, since the concentrations are too high to leave it
there. The density of the urea/calcium chloride solution is larger than the density of
water. Besides that, the density changes as a result of reaction (1.3). Hence, when
applying Biogrout, one should be aware of density driven flow effects. Furthermore,
the solid calcium carbonate is formed in the pores, causing a decrease in porosity
and permeability.
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1.4 Biogrout - the modelling

In the applications, mentioned in Subsection 1.2, it is desirable, if not essential, to
be able to give a good prediction of the result of the Biogrout treatment. Therefore,
a thorough understanding of the process is crucially important as well as a good
model to describe it. The following parameters play a major role in the Biogrout
process and should be contained in the model:

• the microbial activity;

• the concentrations of urea, calcium, ammonium and calcium carbonate, which
change due to dispersion, advection and reaction;

• flow through the porous medium, which is influenced by injection, extraction
and changing density, porosity and permeability.

• porosity and permeability, which decrease as a result of the precipitation of
the solid calcium carbonate;

• the density of the solution, which changes due to its altering composition and
which is larger than the density of water, resulting into density driven flow
effects;

Since the process is quite complex and since the parameters influence each other, a
good model, combining these essential features, is indispensable, though a balance
between simplicity and complexity should also be sought since very complicated
models often require the use of many parameters that are hard or even impossible
to obtain. Fitting procedures [6,98] will become expensive and even ill-posedness of
the optimization problem with respect to experimentally measured results can occur
if the number of (unknown) object parameters is large. The aim of the simulations
in this thesis is the prediction of the calcium carbonate concentration. A relation
with strength is given in [87].

This thesis focusses on reactive transport in fully saturated porous media, in-
cluding the transport of micro-organisms. The effect of density driven flow on the
Biogrout process is also considered. Reactive transport in porous media is a well-
known issue in the literature, see for example [2,11,16,44,45,49,50,52,65–68,79,81].
Further, the transport of micro-organisms has been studied for decades, [32, 33, 38,
41, 55, 56, 64, 74, 82, 99]. In this thesis (Chapter 8), front instabilities or fingers are
induced by generating an inhomogeneous porous media. The model equations, used
to describe the Biogrout process, are used to investigate the effect of the formation
of fingers on the Biogrout process. Density driven flow is studied more exhaustively
in [15,21,25,26,29,40,42,58,70,78].

In the literature, three other models are found that describe MICP: [6, 27, 31].
These references all describe Darcy scale (macro-scale) models.

The model in [6] includes the reaction of the hydrolysis of urea and the precip-
itation/dissolution of calcium carbonate. The porosity is assumed to be constant
and the transport of bacteria is not considered. Flow column experiments were
compared to 1D simulations. The two constants in the initial distribution function
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for the amount of urease and the precipitation rate constant were fitted in order to
find a good match to the experimental data.

In [27] a more complex model is proposed to investigate the use of MICP to set
up subsurface hydraulic barriers to increase the storage security near boreholes of
CO2 storage sites. The formalism includes multiphase flow, transport, hydrolysis
of urea, precipitation/dissolution of calcium carbonate, acid-base equilibria, growth
and decay of micro-organisms and a decreasing porosity.

In [31] the transport of bacteria, urea hydrolysis and calcium carbonate precip-
itation are combined with the mechanical properties of the treated soil. Besides
transport and reactions, it predicts porosity and permeability reduction, compress-
ibility reduction and stiffness increase.

1.5 Organisation of this thesis

In Chapter 2, model equations are derived in order to describe the Biogrout pro-
cess, assuming a reaction rate that is homogeneous in space. Several simulations are
done with one and two-dimensional configurations. In Chapter 3, the extension to
3D is made. Chapter 4 proposes a model for the placement of the micro-organisms
and gives the analytical solution for a specific case. The placement model is com-
bined with the soil reinforcement model in Chapter 5. Chapter 6 to Chapter 8
report the research on certain specific aspects: Chapter 6 compares several flow
equations. This comparison leads to an adaptation of the flow equation, that was
used earlier. Chapter 7 proposes a way to deal with hydrostatic pressure boundary
conditions with an altering fluid density. Chapter 8 focuses on front instabilities in
density driven flow, comparing simulations with an experiment. Chapter 9 com-
pares the outcome of numerical simulations with a Biogrout experiment. Finally,
some general conclusions and outlook can be found in Chapter 10. A list with the
used symbols is given in Appendix A.





2
Modelling Biogrout: a new ground improvement

method based on microbial induced carbonate

precipitation

This chapter has been published as:

Van Wijngaarden, W.K., Vermolen, F.J., van Meurs, G.A.M., Vuik, C.: Mod-
elling Biogrout: A New Ground Improvement Method Based on Microbial-Induced
Carbonate Precipitation. Transport in Porous Media 87-2, 397–420 (2011)

7
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Abstract

Biogrout is a new soil reinforcement method based on microbial induced carbonate
precipitation. Bacteria are placed and reactants are flushed through the soil, result-
ing in calcium carbonate precipitation, causing an increase in strength and stiffness
of the soil. Due to this precipitation, the porosity of the soil decreases. The de-
creasing porosity influences the permeability and therefore the flow. To analyse the
Biogrout process, a model was created that describes the process. The model con-
tains the concentrations of the dissolved species that are present in the biochemical
reaction. These concentrations can be solved from a advection-dispersion-reaction
equation with a variable porosity. Other model equations involve the bacteria, the
solid calcium carbonate concentration, the (decreasing) porosity, the flow and the
density of the fluid. The density of the fluid changes due to the biochemical re-
actions, which results in density driven flow. The partial differential equations are
solved by the Standard Galerkin Finite Element Method. Simulations are done for
some 1D and 2D configurations. A 1D configuration can be used to model a column
experiment and a 2D configuration may correspond to a sheet or a cross section of
a 3D configuration.

2.1 Introduction1

Biogrout is a new soil reinforcement method based on microbial induced carbonate
precipitation (MICP), see, among others, [97] and [83].

The overall Biogrout reaction equation is given by:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (2.1)

Urea (CO(NH2)2) is hydrolysed and if calcium ions (Ca2+) are present, ammonium
(NH+

4 ) and calcium carbonate (CaCO3) are formed. The current model for Biogrout
is inspired by the study of [100]. In Chapter 2 and 3 of aforementioned book, the
Advection-Diffusion-Reaction differential equation in saturated porous media has
been derived for a time independent porosity. In the Biogrout case, the porosity is
time dependent. Hence, to get the right differential equation for the concentration
of urea, ammonium and calcium, this derivation should be repeated for a time
dependent porosity. Also the differential equation for the (non aqueous) calcium
carbonate concentration should be derived. Of course, the flow should also be
known. The flow can be calculated from a differential equation for it. Another
possibility is to calculate the flow from a differential equation for the pressure, since
the pressure is related to the flow by Darcy’s Law, derived in Chapter 1 of [100].
Since the boundary conditions are often given in terms of pressure and the density of
the fluid is not constant, it is better to calculate the flow from a differential equation
for the pressure. Hence, a differential equation for the pressure should be derived.
Because of the decreasing porosity, this is not really trivial. To use Darcy’s Law,
the intrinsic permeability should be known. For a relation between the intrinsic
permeability and the porosity, [7] has been used. Further, for a relation between
the density and the various concentrations, [95] has been used.

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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In [101] is explained how differential equations can be solved with the Finite El-
ement Method. The partial differential equations that are derived are (non-linear)
hyperbolic differential equations. [53] provide a method to solve this kind of dif-
ferential equations with Finite Elements. If the transport equations are advection
dominated, instead of the SG (Standard Galerkin) method a SUPG (Streamline
Upwind Petrov Galerkin) method can be used to get a stable solution, see for in-
stance [28, 37, 51]. Also the DG (Discontinuous Galerkin) method can be applied,
see [3, 18], preferably with slope limiters, see for instance [17] and [48]. In [13, 52]
several numerical methods are applied to model reactive transport in porous media.

This chapter contains the following. Section 2.2 describes the model for the
Biogrout process and gives an exact solution for a special case. The model is based
on the overall Biogrout reaction equation (2.1). Furthermore, in Section 2.2 partial
differential equations are derived to describe the concentration of all the species in
this reaction equation. Due to the precipitation of calcium carbonate, the porosity
decreases. A relation between the calcium carbonate concentration and the porosity
is also given in Section 2.2, just like the derivation of the flow equations. Under
particular conditions, an exact solution can be found. The derivation of this solution
can be found in Subsection 2.2.2. Section 2.3 is devoted to the numerical methods
that are used. Section 2.4 contains some computer simulations and in Section 2.5
some conclusions and discussion can be found.

2.2 The mathematical model

In Subsection 2.2.1, the differential equations that are needed to describe the Bio-
grout process are derived. In Subsection 2.2.2, an exact solution for the porosity
and the calcium carbonate concentration is derived for a special case.

2.2.1 Derivation of the differential equations

In this section, a model is developed for the Biogrout process. The differential
equations are derived for the concentrations of the various species, for the porosity
and for the flow. These differential equations are derived under the assumptions
that:

1. Only dissolved species react;

2. The reaction consists of sorption, an hydrolysis reaction and a precipitation
reaction;

3. The equilibrium between the sorbed and the dissolved phase is reached instan-
taneously;

4. The biochemical reaction of the Biogrout process is governed by reaction (2.1)
and is also assumed to take place instantaneously;

5. Calcium carbonate is not transported but it precipitates on the matrix of the
porous medium;
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6. The fluid is incompressible;

7. The hydrolysis of urea and the precipitation of calcium carbonate have no in-
fluence on the total volume of the fluid over the entire domain of computation;

8. The viscosity is constant.

The differential equations for the aqueous species: urea, calcium chloride

and ammonium chloride

First the differential equations for the aqueous species are derived. In [100], the
Advection-Dispersion-Reaction equation for the transport of a solute species in
porous media has been derived for a time independent porosity. Following this
derivation, but now for a time dependent porosity and under assumption 2, the
following differential equation is derived:

Rθ
∂C

∂t
= ∇ · (θD · ∇C)− q · ∇C + qsCs −

(

∂θ

∂t
+∇ · q

)

C + θmrhp, (2.2)

where the retardation factor is given by

R = 1 +
ρb
θ

∂C̄

∂C
. (2.3)

In these equations, C is the dissolved concentration of the species (per pore volume),
C̄ is the sorbed concentration, θ is the porosity, D is the dispersion tensor, q is the
Darcy velocity, qs is the volumetric flow rate, representing fluid sources (positive)
and sinks (negative), Cs is the concentration of the source or sink, rhp is the reaction
rate of equation (2.1), m is some constant and ρb is the bulk dry density.

The term at the left-hand side of equation (2.2) represents the accumulation
and contains the retardation factor R, which is a measure for the retarding effect of
sorption. The first term at the right-hand side represents the effect of dispersion and
diffusion, the second term models advection and the third term represents a source
or a sink. The fourth term is a result of the chain rule, applied on the accumulation
term and the advection term. The last term represents the rate of change in solute
mass (or moles) of a particular species due to the reaction as given in equation 2.1.

In one dimension, the dispersion tensor is given by D = αL|v|. In more di-
mensions, the coefficients of the dispersion tensor D are represented by Dij =

(αL − αT )
vivj

|v| + δijαT

∑

i
v2
i

|v| , see [100]. The quantity αL is the longitudinal dis-

persivity and αT is the transverse dispersivity. The values for the longitudinal and
transverse dispersivity that are used in this chapter come from [34]. The quantity
δij is the Kronecker delta that equals 1 if i = j and 0 otherwise. The factor v is
the pore water velocity and the relation with the Darcy velocity, q, is given by:

v = q

θ . The quantity rhp = rhp(C
urea, CNH+

4 , CCa2+

, CCaCO3 , θ, t) is the reaction
rate of the reaction given in equation 2.1 (in mole per pore volume per unit of time)
and is a possibly non-linear function of the concentrations, the porosity and time.
The value of the constant m differs from species to species and follows from the
relation between the reactants and products in reaction equation (2.1). The value
of m for calcium carbonate is given by m = 1, since calcium carbonate is formed at
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a rate rhp. If one mole of calcium carbonate is formed, two moles of ammonium are
formed and one mole of calcium and one mole of urea are consumed. Hence, in the
differential equation for ammonium, the value m = 2 is used and in the differential
equation for calcium and urea, the value m = −1 is used. This gives the following
differential equations for urea, calcium chloride and ammonium chloride:

Rureaθ
∂Curea

∂t
= ∇ · [θD · ∇Curea]− q · ∇Curea + qureas Curea

s +

−θrhp −
(

∂θ

∂t
+∇ · q

)

Curea, with Rurea = 1 +
ρb
θ

∂C
urea

∂Curea
, (2.4)

RCa2+

θ
∂CCa2+

∂t
= ∇ · [θD · ∇CCa2+

]− q · ∇CCa2+

+ qCa2+

s CCa2+

s +

−θrhp −
(

∂θ

∂t
+∇ · q

)

CCa2+

, with RCa2+

= 1 +
ρb
θ

∂C
Ca2+

∂CCa2+ , (2.5)

RNH+
4 θ

∂CNH+
4

∂t
= ∇ · [θD · ∇CNH+

4 ]− q · ∇CNH+
4 + q

NH+
4

s C
NH+

4
s +

+2θrhp −
(

∂θ

∂t
+∇ · q

)

CNH+
4 , with RNH+

4 = 1 +
ρb
θ

∂C
NH+

4

∂CNH+
4

. (2.6)

The differential equation for the non aqueous species: calcium carbonate

Next, a differential equation is derived for the concentration of the non aqueous
calcium carbonate. Once calcium carbonate is generated, it immediately precipitates
and attaches onto the matrix of the porous medium. Therefore, its concentration
is defined in terms of weight per unit volume (and not per unit pore volume).
Since it has been assumed that the calcium carbonate will not be transported,
the concentration of calcium carbonate will only be changed by the biochemical
reaction. Consider a small box. The number of calcium carbonate ions per pore
volume that will be formed in this small box in time ∆t is given by rhp∆t. The
number of grams of calcium carbonate ions per total volume within time period ∆t is
given by ∆CCaCO3 = mCaCO3

θrhp∆t, where mCaCO3
is the molar mass of calcium

carbonate. Dividing by ∆t and taking the limit of ∆t → 0 gives the following
differential equation for the concentration of calcium carbonate:

∂CCaCO3

∂t
= mCaCO3

θrhp. (2.7)

The differential equation for the porosity

Since the pore volume is being filled with calcium carbonate, the porosity (which

is, by definition, the pore volume per total volume
(

Vpore

Vtotal

)

) decreases. The change

in porosity, ∆θ = −∆Vpore

Vtotal
= −∆CCaCO3

ρCaCO3
, in which ρCaCO3

is the density of calcium
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carbonate. If this change is considered per time ∆t, subsequently taking the limit
of ∆t → 0, the following differential equation is obtained for the porosity:

∂θ

∂t
= − 1

ρCaCO3

∂CCaCO3

∂t
. (2.8)

Solving this differential equation gives:

θ(t) = θ(0)− CCaCO3(t)− CCaCO3(0)

ρCaCO3

. (2.9)

Hence, if the concentration of calcium carbonate is known, subsequently the porosity
can be calculated.

The differential equations for the flow

It has been assumed that the fluid is incompressible and that the hydrolysis of urea
and the precipitation of calcium carbonate have no influence on the total volume of
the fluid over the entire domain of computation (assumption 6 and 7). These two
assumptions imply that there is conservation of fluid volume. Due to the precip-
itation of calcium carbonate, the pore space decreases. Hence, the nett fluid flow
through Γǫ, the boundary of any control volume Ωǫ in the computational domain
Ω, must equal the decrease in pore volume in Ωǫ per unit of time. Hence:

∫

Γǫ

q · ndΓ = −
∫

Ωǫ

∂θ

∂t
dΩ. (2.10)

Applying the divergence theorem of Gauss to the left-hand side of (2.10) gives

∫

Ωǫ

∇ · qdΩ = −
∫

Ωǫ

∂θ

∂t
dΩ. (2.11)

Equation (2.11) holds for any Ωǫ ⊆ Ω and hence

∇ · q = −∂θ

∂t
. (2.12)

Substituting (2.7) into (2.8) and substituting the result into (2.12), gives the follow-
ing differential equation for the flow:

∇ · q =
mCaCO3

ρCaCO3

θrhp. (2.13)

In [100], Darcy’s Law is given by:

qx = −kx
µ

∂p

∂x
,

qy = −ky
µ

∂p

∂y
,

qz = −kz
µ

(

∂p

∂z
+ ρlg

)

.

(2.14)
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In Darcy’s Law, p is the pressure, k is the intrinsic permeability in the various coor-
dinate directions, µ is the viscosity that is assumed to be constant in the Biogrout
case and ρl is the density of the solution.

Substituting (2.14) into (2.13), using (2.16), gives the following differential equa-
tion for the pressure:

−∇ ·
(

k

µ
(∇p+ ρlgez)

)

=
mCaCO3

ρCaCO3

θrhp. (2.15)

The resulting pressure is used to calculate the flow, using Darcy’s Law (2.14).

The intrinsic permeability and the density

To calculated the pressure and the flow, the intrinsic permeability and the density
of the solution should be known.

The intrinsic permeability is determined, using the Kozeny-Carman relation: an
empiric relation between the intrinsic permeability and the porosity that is com-
monly used in ground water flow modelling (see [7]):

k = kx = ky = kz =
(dm)2

180

θ3

(1− θ)
2 . (2.16)

In this relation, dm is the mean particle size of the subsurface medium. If the
porosity is very low, it might be that the pores are not connected. Hence, the
intrinsic permeability is zero. This phenomenon is not directly incorporated in the
Kozeny-Carman relation, [61]. If the porosity is close to zero, the Kozeny-Carman
relation behaves as a third order polynomial. and the permeability is almost zero,
although not equal to zero. Since in the simulations of the Biogrout process the
porosity is higher than 0.12, the use of the Kozeny-Carman relation is maintained.

The density of the solution (at 20◦C) will be calculated with the following ex-
perimental relation:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 . (2.17)

This relation has been found, using [95]. From the tables of the individual species, a
linear relation between the concentration and the density increase has been found.
By adding the contributions of the several species, relation (2.17) was found. Ex-
perimental validation showed that this relation is a good description of reality.

The reaction rate

The reaction rate depends on many factors, like the number of bacteria, growth and
storage conditions before use [96]. Conditions in the subsoil can also influence the
reaction rate, like the temperature [4] and the pH [71, 96]. The concentrations of
urea, ammonium chloride and calcium chloride might be too high for the bacteria.
Encapsulation by calcium carbonate crystals can make a diffusion barrier around
the bacteria [5]. Another point is that aerobic bacteria are injected into an anaerobic
subsoil. Due to the lack of oxygen, the bacteria die. All these phenomena make it
likely that the reaction rate decreases. This is also shown in experiments [97].
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For the moment a linear decay has been assumed: in tmax seconds the reaction
rate decreases from a maximal reaction rate, vmax, to zero. The quantity vmax is
constant, since the distribution of bacteria is assumed to be homogeneous. Further,
the reaction rate equals zero, if there is no urea present and is maximal if an abun-
dant amount of urea is present. The following formula will be used for the reaction
rate:

rhp =

{

vmax
Curea

Km,urea+Curea

(

1− t
tmax

)

if 0 ≤ t ≤ tmax

0 else
(2.18)

In this equation, the saturation constant Km,urea is small.

General perspective and initial conditions

For the aqueous species (urea, calcium and ammonium), differential equations (2.4),
(2.5) and (2.6) were derived. For the non aqueous species (calcium carbonate),
differential equation (2.7) was derived. The porosity can be calculated with formula
(2.9). For the pressure, differential equation (2.15) was derived. The flow can
be calculated with Darcy’s law, (2.14). The intrinsic permeability k, the density
of the solution ρl and the reaction rate rhp can be calculated with respectively
formula (2.16), (2.17) and (2.18). The quantities qs, Cs, D, mCaCO3

, ρCaCO3
,

dm, µ, g, vmax, tmax, Km,urea and ∂C̄
∂C are assumed to be known. Initially, the

concentration of calcium carbonate, urea, calcium and ammonium are equal to zero.
The boundary conditions for the pressure and the concentration of urea, calcium
and ammonium are given in Section 2.4, since they differ from case to case. Having
these boundary conditions, the equations have a unique solution. How this solution
will be approximated, will be explained in Section 2.3. But first an exact solution
will be derived for a special case.

2.2.2 Exact solution for a special case

In this subsection, a formula will be derived to calculate the calcium carbonate con-
centration as a function of time (0 ≤ t ≤ tmax) for a constant urea (and calcium)
concentration.
The rate function (2.18) on this time interval is substituted in the differential equa-
tion for the calcium carbonate concentration (2.7). The result is substituted into
the differential equation for the porosity:

∂θ

∂t
= −θrhp

mCaCO3

ρCaCO3

= −θ
mCaCO3

ρCaCO3

vmax
Curea

Km,urea + Curea

(

1− t

tmax

)

. (2.19)

Solving equation (2.19) by dividing by θ and integrating from 0 to t gives the
following function for the porosity as a function of time:

θ(t) = θ0exp

{

−mCaCO3

ρCaCO3

vmax
Curea

Km,urea + Curea

(

t− t2

2tmax

)}

. (2.20)
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Substituting equation (2.20) and rate function (2.18) into the differential equation
for calcium carbonate, (2.7), gives

∂CCaCO3

∂t
= mCaCO3

θ0

{

vmax
Curea

Km,urea + Curea

(

1− t

tmax

)}

·

·exp
{

−mCaCO3

ρCaCO3

vmax
Curea

Km,urea + Curea

(

t− t2

2tmax

)}

. (2.21)

Solving equation (2.21) by integrating from 0 to t, gives the following solution:

CCaCO3(t) = CCaCO3(0) + ρCaCO3
θ0+

−ρCaCO3
θ0exp

{

−mCaCO3

ρCaCO3

vmax
Curea

Km,urea + Curea

(

t− t2

2tmax

)}

. (2.22)

This formula can be used to calculate the development of the calcium carbonate
concentration exactly (for 0 ≤ t ≤ tmax) at places with a constant urea (and
calcium chloride) concentration. This is for example at the inflow boundary. In
Figure 2.1 the calcium carbonate concentration has been plotted as a function of
time. The values of the constants in equation (2.22), that has been chosen to plot
this figure, can be found in Table 2.1.

Figure 2.1: Plot of equation (2.22): the calcium carbonate concentration as a func-
tion of time for a constant urea and calcium concentration. The values of the
constants in equation (2.22) can be found in Table 2.1.

2.3 Numerical method

In this section is explained which numerical methods are used to solve the equations
in order to do simulations with the model.
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2.3.1 Numerical method to solve the equations for the aque-

ous species

Currently, the Biogrout process is applied to sand. In that case, sorption of calcium,
urea and ammonium plays an insignificant role. Hence, it can be assumed that the
retardation factors for these species are equal to one. In the current model, there

are no internal sources or sinks, hence qureas = qCa2+

s = q
NH+

4
s = 0. Then, using

equations (2.4), (2.5) and (2.6), combining them with equation (2.12), gives the
following differential equations for the aqueous species:

θ
∂Curea

∂t
= ∇ · [θD · ∇Curea]− q · ∇Curea − θrhp, (2.23)

θ
∂CCa2+

∂t
= ∇ · [θD · ∇CCa2+

]− q · ∇CCa2+ − θrhp, (2.24)

θ
∂CNH+

4

∂t
= ∇ · [θD · ∇CNH+

4 ]− q · ∇CNH+
4 + 2θrhp. (2.25)

These differential equations now become linear in the concentration, except for the
differential equation for urea, since the reaction term, (2.18), is non-linear.
The differential equations for the pressure, the velocities and the concentrations of
the aqueous species are solved by the Standard Galerkin Finite Element Method.
First, the weak formulation is derived by multiplication by a test function ηǫH1(Ω)
and integration over the domain Ω. For the time integration, an IMEX (implicit-
explicit) scheme is used. That gives the following weak formulations for the urea
concentration:

∫

Ω

θn
(Curea)

n+1 − (Curea)
n

∆t
ηdΩ+

∫

Ω

(

θnDn · ∇ (Curea)
n+1
)

· ∇ηdΩ+

−
∮

Γ

η
(

θnDn∇ (Curea)
n+1
)

· ndΓ +

∫

Ω

qn+1 · ∇ (Curea)
n+1

ηdΩ =

−
∫

Ω

θnrn+1
hp ηdΩ, (2.26)

for all ηǫH1(Ω), which vanish at location of the boundary where Curea is prescribed
explicitly. Here only the equation for urea has been given since the other equations
are dealt with analogously.

The Newton-Cotes quadrature rules have been used for the development of the
element matrices and vectors. Line elements are used in 1D, whereas triangular
elements are used in 2D. In both cases linear basis functions are used.
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2.3.2 Numerical method to solve the equations for the pres-

sure and the flow

For the pressure, p, the following weak formulation is derived:

∫

Ω

kn

µ

(

∇pn+1 + ρnl gez
)

· ∇ηdΩ−
∮

Γ

η
kn

µ

(

∇pn+1 + ρnl gez
)

· ndΓ =

=

∫

Ω

mCaCO3

ρCaCO3

θnrnhpηdΩ, (2.27)

and for the flow the following:

∫

Ω

qn+1
x ηdΩ = −

∫

Ω

kn

µ

∂pn+1

∂x
ηdΩ, (2.28)

∫

Ω

qn+1
y ηdΩ = −

∫

Ω

kn

µ

∂pn+1

∂y
ηdΩ, (2.29)

∫

Ω

qn+1
z ηdΩ = −

∫

Ω

kn

µ

(

∂pn+1

∂z
+ ρnl g

)

ηdΩ. (2.30)

Also for these equations, the Newton-Cotes quadrature rules have been used for
the development of the element matrices and vectors. Line elements are used in 1D,
whereas triangular elements are used in 2D. In both cases linear basis functions are
used.

2.3.3 Non aqueous species

Since the differential equation for the concentration of calcium carbonate, (2.7),
is an ordinary differential equation (in each grid point), it is not necessary to use
the Finite Element Method. Using an IMEX-scheme for the time integration, the
following equation can be used to calculate the calcium carbonate concentration on
the next time step:

(

CCaCO3
)n+1 −

(

CCaCO3
)n

∆t
= mCaCO3

θnrn+1
hp . (2.31)

2.3.4 Scheme for solving the equations

In order to do simulations with the model, the time span has been divided into
equisized time steps. At each time step, equation (2.26) to (2.31) are solved. First
the equation for the pressure, (2.27), is solved, using the intrinsic permeability,
density, porosity and reaction rate from the previous time step. Subsequently, the
velocities are calculated, using equation (2.28), (2.29) and/or (2.30). Again, the
intrinsic permeability and the density from the previous time step are used. The
differential equation for the urea concentration, (2.26), is solved implicitly, using
the porosity from the previous time step. Newton’s method is used, to cope with
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the non-linearity in the reaction term. Due to the mass balance, in each differential
equation for the concentration the same rhp should be used. This rhp follows from
the differential equation for the urea concentration. The differential equations for the
concentrations of calcium and ammonium are also solved using an implicit-explicit
method, with the porosity from the previous time step. Subsequently the equation
for the calcium carbonate concentration, (2.31), is solved, using the porosity from the
previous time step and the reaction rate on the new one. Finally, the porosity (θ) and
the intrinsic permeability (k) are recalculated with (2.9) and (2.16), respectively. If
necessary, also the boundary conditions and the density of the fluid (ρl) are updated.
The density of the fluid is calculated with the use of equation (2.17).

2.4 Results

In this section, the results of several simulations with the model are shown. In Sub-
section 2.4.2, some one-dimensional simulations are presented. The configuration
and the boundary conditions are given in Subsection 2.4.1. Subsection 2.4.4 con-
tains results from simulations with the two-dimensional model. The configuration
and boundary conditions for the various 2D cases are given in Subsection 2.4.3.

Table 2.1 shows the values that are taken for the various constants. These values
are used in both the 1D simulations and the 2D simulations, unless stated otherwise.

mCaCO3
= 0.1001 kg mol−1, ρCaCO3

= 2710 kg m−3,
vmax = 9.0 · 10−2 mol m−3s−1, Km,urea = 10 mol m−3,
cin = 1.0 · 103 mol m−3, qin = 5.0 · 10−6 m s−1,
dm = 2.0 · 10−4 m, p1 = 100854 Pa,
p2 = 1.00 · 105 Pa, µ = 1.15 · 10−3 Pa s,
θ0 = 0.35, αL = 0.01 m,
αT = 0.001 m, L = 1.0 m,
M = 0.5 m, tmax = 6.12 · 105 s(=170h).

Table 2.1: The values that are taken for the various constants.

2.4.1 Configuration and boundary conditions for a simulation

with the one-dimensional model

The domain is a line segment with length L, which can be the one-dimensional
representation of a column with a small diameter and length L. The domain is
subdivided into 50 (line) elements.

There are several possibilities for boundary conditions. The pressure may be
equal to a constant at the inflow boundary and at the outflow boundary as well
(the pressure driven case). Another possibility is that the flow through the inflow
boundary is constant (the flow driven case). These two cases will be simulated with
the model. The results will show the influences of these two cases on the calcium
carbonate concentration. The boundary at the left-hand side, Γ1, is the inflow
boundary, the boundary at the right-hand side, Γ2, is the outflow boundary.
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Γ1 Γ2

0 x→ L

Figure 2.2: Configuration of the one-dimensional domain.

Table 2.2 displays the boundary conditions that are chosen for the pressure and
the concentration of urea, calcium and ammonium in the one-dimensional configu-
ration, for both the flow driven case and the pressure driven case.

Γ1 Γ2

p

{

− k
µ

∂p
∂n = qin flow driven case

p = p1 pressure driven case
p = p2

Curea Curea = cin
∂Curea

∂n = 0

CCa2+

CCa2+

= cin
∂CCa2+

∂n = 0

CNH+
4 CNH+

4 = 0 ∂CNH
+
4

∂n = 0

Table 2.2: Boundary conditions for the pressure and the concentration of urea,
calcium and ammonium in the one-dimensional case.

The differential equation for the concentration of calcium is equal to the differen-
tial equation for urea. Since also the initial conditions and the boundary conditions
are equal, the concentration of urea and calcium are equal. Hence, it is not neces-
sary to calculate them both. Only the urea concentration is calculated.

2.4.2 Results from a simulation with the one-dimensional

model

This subsection contains results of simulations for a one-dimensional configuration.
Figures are shown with the pressure and the velocity at the inflow boundary. It
also contains some plots of the urea concentration as a function of space and time
and some plots of the calcium carbonate concentration, porosity and intrinsic per-
meability.

Pressure and velocity at the inflow boundary

Figure 2.3 shows the inflow velocity and the pressure at the inflow boundary for
both the pressure driven case and the flow driven case. Initially, the inflow velocity
is high in the pressure driven case. Due to the precipitation of calcium carbonate,
the porosity and the permeability decrease. Since the pressure at the inflow and
outflow boundary stays constant, the inflow velocity decreases. In the flow driven
case, the flow rate is constant. Since the porosity and the intrinsic permeability
decrease due to the precipitation of calcium carbonate, the pressure at the inflow
boundary should increase to keep the flow rate constant.
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Figure 2.3: Left: the inflow velocity as a function of time for the pressure driven case
and the flow driven case, right: the pressure at the inflow boundary as a function
of time for the pressure driven case and the flow driven case.

Results for urea

Figure 2.4 displays the concentration of urea as a function of the position in the
column at several times and Figure 2.5 shows the concentration of urea as a function
of time at several positions in the column, for both the flow driven case and the
pressure case. Figure 2.6 displays the penetration depth of urea and also MCaCO3

=
∫

Ω
CCaCO3dΩ, the total amount of calcium carbonate as a function of time, both

for the flow driven case and the pressure driven case. The penetration depth has
been defined as the largest distance from the inflow boundary for which Curea ≥
Km,urea

100 . From Figure 2.4 and 2.5 it can be seen that in the flow driven case, the
urea concentration is a non-decreasing function of time at all specified positions in
the column. In the pressure driven case, the urea concentration at x=0.2m and
x=0.5m decreases in time for some while. These results correspond to the plot of
the penetration depth of urea as a function of time in Figure 2.6. In the flow driven
case, the urea penetrates further and further into the column. At the end, the urea
even flows out. In the pressure driven case, initially the penetration depth increases
very rapidly. Then it decreases for a while and after that it starts increasing again.
The urea does not flow out within a time period of 6.12 · 105s = 170h.

These results are explained as follows: Let us start with the flow driven case. In
this case the flow rate is constant. Initially the reaction rate of the urea hydrolysis
is high. Hence the urea does not get the possibility to penetrate far into the column.
The reaction rate decreases in time. Hence, at a later stage, the urea can penetrate
further into the column before all urea molecules react. This effect is enhanced
by the fact that, when urea reacts in the presence of carbonate, the solid calcium
carbonate will be formed. This decreases the porosity. As a result, the pore water
velocity, v, increases, since v = q

θ . That also causes urea to penetrate further into
the column before it is hydrolysed.

In the pressure driven case, initially, the inflow velocity is high, so the urea can
penetrate far into the column. Then, the penetration depth decreases and halfway,
it starts increasing again. This behaviour of the penetration depth is the result of
several phenomena: The porosity and the permeability decrease due to the formation
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Figure 2.4: The urea concentration as a function of x at several times. Left: flow
driven case, right: pressure driven case.

Figure 2.5: The urea concentration as a function of time at several positions in the
column. Left: flow driven case, right: pressure driven case.

Figure 2.6: Left: the penetration depth of urea as a function of time for the pressure
driven case and the flow driven case, right: the total amount of calcium carbonate
as a function of time for the pressure driven case and the flow driven case.

of the solid calcium carbonate. As a consequence, the flow rate decreases too, since
the pressure stays constant at the inflow boundary and at the outflow boundary, as
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can also be seen from Figure 2.3. Another phenomenon is the decreasing reaction
rate. As a result, the urea can penetrate further into the column before all urea
molecules react.

After 170 hours, the reaction rate is equal to zero. However, the urea concentra-
tion in the column is not immediately equal to the inflow concentration everywhere.
During the hours before, there was a reaction from bacterial activity and hence
the urea concentration is lower than the inflow concentration (except at the inflow
boundary). Only after some hours, the content of the pore volume of the column
is fully refreshed and the urea concentration is equal to the inflow concentration
everywhere.

Results for calcium carbonate, porosity and permeability

Figure 2.6 also shows the total amount of calcium carbonate in the domain. Except
for the last hours, the total amount of calcium carbonate grows linearly in time in
the flow driven case. This means that per unit of time the same amount of calcium
carbonate is formed. In the model, the reaction rate is linearly decreasing, so this
result might look strange at first sight. However, the amount of urea and calcium
that flows in per unit of time is constant and the urea and calcium should react or
flow out. From Figure 2.6 it can be seen that the urea, and hence also the calcium,
only flows out during the last hours. Hence, during the rest of the time all the urea
and calcium, that flows in, should react. Since the supply of urea and calcium is
constant in time, the amount of calcium carbonate that is formed per unit of time
is also constant. During the last hours, urea flows out. That explains why the total
amount of calcium carbonate is no longer growing that fast.

In the pressure driven case, the total amount of calcium carbonate is not linear
in time so the production rate is not constant. From Figure 2.6 it can be seen that
the urea does not flow out, so only the supply of urea (and calcium) influences the
curve. In the pressure driven case, during the first hours the inflow velocity is higher
than in the flow driven case. As a result, per unit of time more urea and calcium
come in and hence more calcium carbonate will be formed. Hence, the slope of
the graph is steeper than in the flow driven case. The inflow velocity decreases in
time as can be seen from Figure 2.3. Per unit of time less urea and calcium flow
in and hence less calcium carbonate can be formed. As a result the slope of the
graph becomes less steep. Eventually the same amount of calcium carbonate has
been formed.

Figure 2.7 displays the calcium carbonate concentration in the column at several
times, both for the pressure driven case and the flow driven case. The relation with
the penetration depth of urea is clear. For example, in the first 30 hours, in more
than the half of the column, calcium carbonate has been formed in the pressure
driven case. Eventually, the inflow velocity became that low, that the urea molecules
could not reach the end of the column. As a result, no calcium carbonate has been
formed in the last part of the column. In the flow driven case, only in the first part
of the column calcium carbonate has been formed in the first 30 hours. Eventually
the urea molecules reached the end of the column. As a result, everywhere in the
column some calcium carbonate has been formed.

At x = 0, the urea concentration is constant during the process. Hence, using
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formula (2.22), the analytic solution can be calculated. The analytical solution is
602.1 kg/m3. The numerical solution at this position, in both the pressure driven
case and the flow driven case, is equal to 601.4 kg/m3. This is a relative error of
only 0.12%. By increasing the number of time steps with a factor 2, the error in
this point decreases also with a factor 2, so the error depends linearly on the size of
the time step.

Figure 2.7: The concentration of calcium carbonate as a function of x at several
times. Left: flow driven case, right: pressure driven case.

An increase of the generated calcium carbonate concentration, gives a decrease
of both the porosity and intrinsic permeability. This phenomenon is confirmed in
Figure 2.8. At x=0, the porosity equals 0.128, while the initial porosity was 0.35.
So at x=0, the porosity has been decreased with a factor 2.7. At x = 0, the intrinsic
permeability was initially 2.26 · 10−11m2 and after the treatment 6.14 · 10−13m2.
That means a decrease by a factor of 37.

Figure 2.8: Left: the porosity as a function of the position at t=tmax, right: the
intrinsic permeability as a function of the position at t=tmax.

In most applications, low-strength cementation (up to 1.5 MPa) will be sufficient,
see [76]. This corresponds to a calcium carbonate content of approximately 250
kg/m3, see [87]. In some specific cases, such as preventing liquefaction, only a minor
increase in strength (up to 0.15 MPa) is necessary to prevent sand from flowing, see
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[76]. This corresponds with a calcium carbonate content of approximately 80 kg/m3,
see [97]. Biogrouted sand with a calcium carbonate concentration of approximately
400 kg/m3 has the same strength as low-strength concrete, see [76].

It depends on the application which injection strategy should be chosen. If one
wants to reinforce only the first part of the column, but homogeneously, the pressure
driven case (with the parameters chosen as in Table 2.1) is a good option, as displays
Figure 2.7. If, for example, a calcium carbonate content of 200 kg/m3 is asked, the
injection can be stopped after 30 hours. If one wants at least a minor increase in
strength in the whole column, the flow driven case (with the parameters chosen as
in Table 2.1) is a good option (Figure 2.7), although a better injection strategy can
be chosen since only a minor increase in strength is sufficient.

2.4.3 Configuration and boundary conditions for a simulation

with the two-dimensional model

In two dimensions, geometrical effects can be investigated, which was not possible
in 1D. Also the influence of density driven flow can be investigated, now. In this
subsection, the configuration and boundary conditions are given for five different
cases. The first three cases have been constructed to investigate the effect of dif-
ferent permeabilities in one domain. The last two cases have been constructed to
investigate the phenomenon density flow and the effect of the reaction on it.

In each case is the domain a rectangle which size L×M . The domain is subdi-
vided into 5,000 (triangular) elements. The fluid enters the domain through bound-
ary Γ1 and flows out through boundary Γ2. All cases are flow driven. The following
five cases will be considered:

• Case 1: the lower half of the domain has a low permeability, inflow through
the whole boundary at x = 0, no density flow;

• Case 2: the lower half of the domain has a low permeability, inflow through
the upper part of the boundary at x = 0, no density flow;

• Case 3: the kernel of the domain has a low permeability, inflow through the
lower part of the boundary at x = 0, no density flow;

• Case 4: density flow, without reaction, inflow through the whole boundary at
x = 0;

• Case 5: density flow, with reaction, inflow through the whole boundary at
x = 0.

In the first two cases, the permeability of the lower half of the domain is initially
10−4 times the permeability of the upper half, which has been achieved by choosing
the mean particle size of the grains in the lower half to be 10−2dm. This application
accounts for two different adjacent soils. The permeability of the lower half is
comparable with the permeability of clay. It is still assumed that there is no sorption.
In the first case, the inflow boundary is the whole boundary at x = 0 and the outflow
boundary is the whole boundary at x = L.

In case 2 and 3, the inflow and outflow boundary are only one third of these
boundaries. To have the same amount of urea and calcium chloride flowing into the
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domain for all cases, the inflow velocity in case 2 and 3 has been chosen to be equal
to 3 · qin.

In case 3, there is a rectangle with a low permeability in the middle of the
domain. In that rectangle, the mean particle size of the grains also equals 10−2dm,
like in the less permeable zones in case 1 and 2. In the plots with the numerical
results the inflow and outflow boundaries are indicated with a thick black line. The
low permeable zones are dark.

In case 4, the focus is on the density flow, without reaction. Urea and calcium
chloride are injected with several inflow velocities. For the inflow velocities the
following values has been chosen: q1inflow = 1.0 · 10−6m/s, q2inflow = 5.0 · 10−6m/s

and q3inflow = 20·10−6m/s. In the one dimensional numerical simulations, the inflow

velocity equals q2inflow in the flow driven case. In the pressure driven case, the inflow

velocity varies between q1inflow and q3inflow. The simulation time has been chosen
in such a way that the volume of injected fluid is equal.

In case 5, density flow is simulated in combination with reaction.

Table 2.3 displays the boundary conditions that are chosen. An extra term has
been added to the pressure at the outflow boundary to deal with the gravity in the
vertical plane.

p/q Curea/CCa2+

CNH+
4

Γ1 −q · n =

{

qin case 1, 4 and 5
3qin case 2 and 3

C = cin CNH+
4 = 0

Γ2 p = p2 +
∫M

z
ρlgz̄dz̄

∂C
∂n = 0 ∂CNH

+
4

∂n = 0

Γ3 − k
µ (∇p+ ρlgez) · n = 0 ∂C

∂n = 0 ∂CNH
+
4

∂n = 0

Table 2.3: Boundary conditions for the pressure and the concentration of urea,
calcium and ammonium in the two-dimensional, flow driven case.

2.4.4 Results from a simulation with the two-dimensional

model

In this subsection, some two-dimensional results will be shown for the five cases,
that are all flow driven. In the first three cases, the focus is on the effect of dif-
ferent permeabilities in one domain. The last two cases have been constructed to
investigate the phenomenon density flow and the effect of the reaction on it.

The effect of different permeabilities in one domain

The calcium carbonate concentration (contour plot) and the flow (arrows) after the
Biogrout process are shown in Figure 2.9 for case 1 and 2 and in Figure 2.10 for
case 3.

From the result of case 1, it can be seen that the flow through the lower half of
boundary Γ1 tries to reach the upper half of the domain, where the permeability is
much higher. As a result, in the upper half of the domain more calcium carbonate
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Figure 2.9: The flow (arrows) and a contour plots of the calcium carbonate concen-
tration at t=tmax in a domain, of which the lower half is less permeable than the
upper half, for different choices for the inflow and outflow boundaries. Left: case 1,
right: case 2.

is formed. In case 2, urea and calcium are only flushed into the permeable layer.
From the result of case 2, it can be seen that the flow hardly penetrates into the
layer with low permeability. Hence, such a layer can be seen as an (almost) closed
boundary. This is very advantageous if only the upper layer should be reinforced.

From Figure 2.10 it can be seen that in case 3 the flow goes through the whole do-
main, although the inflow and outflow are in the lower part of the domain. Again, in
the low permeable zone is hardly any flow, and hence hardly any calcium carbonate
is generated there.

Figure 2.10: Left: The flow (arrows) and a contour plot of the calcium carbonate
concentration at t=tmax in a domain with a kernel with a low permeability (case
3). Right: The flow (arrows) and a contour plot of the urea concentration (case 4).
The inflow velocity is q1inflow = 1.0 · 10−6m/s.

Density flow and the effect of the reaction on it

From Figure 2.10 and 2.11, it can be seen that there is more density driven flow
if the velocity in horizontal direction is low, since the relation between the vertical
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Figure 2.11: The flow (arrows) and a contour plot of the urea concentration (case
4). Left: The inflow velocity is q2inflow = 5.0 · 10−6m/s. Right: The inflow velocity

is q3inflow = 20 · 10−6m/s.

Figure 2.12: Contour plot of the urea concentration after 2 hours and 40 hours
(left) and the calcium carbonate concentration after the treatment (right) for the
case with density flow (case 5). The arrows display the flow.

(density driven) flow and the horizontal flow is large.

In case 5, the biochemical reaction (2.1) is simulated, too. The inflow velocity
equals qin, again. The left plot in Figure 2.12 displays a contour plot of the urea
concentration after 2 hours and after 40 hours. Comparing Figure 2.12 with Figure
2.11, it can be seen that the urea concentration after 2 hours is lower in the case with
reaction than in the case without reaction, since urea is hydrolysed due to microbial
activity. Comparing the urea concentration after 2 hours and after 40 hours in
Figure 2.12, it can be seen that there is more density flow after 2 hours. There
are two reasons for this. Initially a solution of 1 molar urea and calcium chloride
is injected in water. The density of this solution is 1102 kg/m3 (see (2.17)). The
difference in density between this solution and water is 102 kg/m3. When urea and
calcium chloride react, ammonium is formed. The density of a 2 molar ammonium
solution is 1032 kg/m3. The difference between the urea/calcium chloride solution
and the ammonium solution is smaller than the difference between the urea/calcium
chloride solution and water. Hence, there is less density flow, since it is the difference
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in density that causes density flow. The second reason is the increase in pore water
velocity due to the decreasing porosity. As could be seen in Figure 2.10 and 2.11,
there is less density flow if the horizontal velocity increases. These two phenomena
cause a decrease in density flow.

Initially, when there is relatively much density flow, the urea is in the first part
of the column. Hence in the first part of the column, the largest effect of density
flow can be seen. This is also visible in Figure 2.12.

2.5 Conclusions and Discussion

A model has been formulated to describe the Biogrout process. The model gives
insight into several aspects of the Biogrout process. The Biogrout process influences
several properties of the subsoil. The precipitation of the solid calcium carbonate de-
creases the porosity and the permeability. According to the model, the precipitation
of approximately 600 kg/m3 calcium carbonate at an initial porosity of 0.35 causes
a decrease in the porosity by only a factor 3, while the permeability decreases by a
factor 37. A consequence of a decreasing permeability is that the pressure should
increase to keep up the same flow rate, or, if the pressure is constant, that the flow
rate decreases.

In the first part of the column, more calcium carbonate precipitated than in the
end of the column. The reason is that many urea molecules did already react in
the first part of the column and could not reach the end of the column within the
simulation time. The penetration depth of urea especially depends on the reaction
rate and the inflow velocity. For this configuration and these values for the sev-
eral constants, the pressure driven case resulted in a rather homogeneous calcium
carbonate concentration in the first part of the column, while at the end of the
column (almost) nothing precipitated. In the middle of the column, the calcium
carbonate concentration decreases very fast. The flow driven case results in a cal-
cium carbonate concentration that slowly decreases while the distance to the inflow
boundary increases. In comparison with the pressure driven case, no steep gradients
are present.

When injecting a urea and calcium chloride solution with a small inflow velocity,
the effect of density flow is larger than in the case that the same volume is injected,
but with a high injection velocity.

Initially, the urea and calcium chloride solution is injected into water. Due to
the reaction, the density of the fluid decreases. Since the differences in densities are
not that large any more, there is less density flow.

At the places where the urea and calcium concentration are constant, the cal-
cium carbonate concentration can be calculated, using an analytic expression. In
the model, the urea and calcium concentration were constant at the inflow bound-
ary. The theoretical solution corresponds well with the numerical solution, although
the time steps where reasonable large.

The model has been created under several assumptions. These assumptions
should be validated using experiments. The first assumption was that the process
is governed by the biochemical reaction (2.1). However, in reality this reaction
happens in several steps. Some of these steps are equilibrium reactions that depend
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on the pH. Other assumptions are that the retardation factors are equal to 1 and
that the total volume of the fluid does not change due to the hydrolysis of urea and
the precipitation of calcium carbonate. These assumptions should be verified.

It has also been assumed that calcium carbonate precipitates locally and will not
be transported. Calcium carbonate can precipitate in several ways. It can attach to
sand grains but can also form crystals. When these crystals are large enough, they
will stick in the pore throats and it can be assumed that they are not transported.
But when these crystals are small, probably they can be transported. It should be
verified if this phenomenon is really negligible.

Another assumption is that the distribution of bacteria is homogeneous and that
the reaction rate has a linear decay in time. These bacteria have been placed in the
subsurface by injecting a solution with bacteria and a fixation fluid. The bacteria
are assumed to attach to the solid particles and this effect will be enlarged by the
fixation fluid. This fixation fluid causes the flocculation of bacteria and hence they
cannot easily flow out anymore but will be filtered by the sand. It is not likely that
these processes will result in a homogeneous bacteria distribution. The formula for
the reaction rate includes the saturation constant Km,urea. Experiments should be
done to determine the value of this constant. From experiments, it is known that
the reaction rate decreases in time, but the reasons are not yet clear. Hence as a
starting point, a reaction rate has been assumed, that has a linear decay in time.
Probably, this decay is not linear. Further research should be done to find out which
circumstances influence the reaction rate and a better formula for the reaction rate
should be found.

To calculate the intrinsic permeability the Kozeny-Carman relation has been
used. This empirical relation turns out to be a good relation for many cases. It is
questionable if this is also true for the Biogrout process, with its changing porosity.
Another difficulty is the choice of the mean particle size dm in this relation. Per-
haps the mean particle size needs to be adapted as a result of calcium carbonate
precipitation. If the calcium carbonate mainly attaches to the sand grains, the mean
particle size increases. If mainly crystals are formed that are smaller than the sand
grains, the mean particle size decreases. Experiments need to be done to find out
what actually happens. Furthermore, alternative relationships between the intrinsic
permeability and the porosity have been reported. An example concerns the study
due to [19], where a fractal pore-space geometry has been assumed. In this study,
any relation can be incorporated, but since this issue is not crucial here, the use of
the classical Kozeny-Carman relation is maintained.

The last assumption is that the viscosity is constant and not dependent on the
various concentrations. This is also a simplification of reality.

So, although the assumptions should be verified, the model is a good tool to get
insight into the process.

For engineering design, it is necessary to know the relation between the calcium
carbonate and the mechanical characteristics of the soil. For the strength of the
soil, it is important where the calcium carbonate precipitates. Calcium carbonate,
connecting sand grains, will give a contribution to strength, while loose crystals
hardly will. Furthermore, calcium carbonate is a polymorph, which means that
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several mineral types exist with similar molecular composition (amorphous calcium
carbonate, vaterite and calcite). The crystal properties (size, shape, mineral type)
are dependent on, among others, the precipitation conditions [83] and will result in
a different contribution to strength. In order to find correlations between calcium
carbonate content and strength of Biogrouted sand, several cores have been collected
from a field scale Biogrout experiment and have been tested. In [87] correlations
between Unconfined Compressive Strength (UCS), CaCO3 content and dry density
are found from approximately 50 tests. Several other tests have been done to find
the strength at different confining pressures. Using these test results, failure criteria
(angle of internal friction and cohesion) were determined. These failure criteria can
be used to assess the stability of (biologically) cemented soil.
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Abstract

Biogrout is a new soil improvement method based on microbial induced carbonate
precipitation. Bacteria and reactants are flushed through the soil, resulting in cal-
cium carbonate precipitation and consequent soil reinforcement. A mathematical
model was created to describe the process. The model contains the concentrations of
the dissolved species that are present in the precipitation reaction. These concentra-
tions can be solved from a convection-dispersion-reaction equation with a variable
porosity. Other model equations involve the concentrations of the bacteria and of
the solid calcium carbonate, the decreasing porosity (due to precipitation) and the
flow. The partial differential equations are solved by the Standard Galerkin Finite
Element Method. The subject of this chapter is the extension of the mathematical
model to 3D.

3.1 Introduction1

Biogrout is a new soil reinforcement method based on microbial induced carbonate
precipitation [97]. The overall Biogrout reaction equation is given by:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (3.1)

Urea (CO(NH2)2) is hydrolysed and if calcium ions (Ca2+) are present, ammonium
(NH+

4 ) and calcium carbonate (CaCO3) are formed.
A model to describe the Biogrout process was proposed in [89] (Chapter 2). Thus

far, only simulations for 1D and 2D configurations have been done. In this chapter,
a simulation will be carried out for a 3D configuration.

This chapter contains the following sections. Section 3.2 summarizes the model
for the Biogrout process that was derived in [89] (Chapter 2). Section 3.3 is devoted
to the numerical methods, used to solve the model equations. Section 3.4 contains
some computer simulations for a 3D configuration and in Section 3.5 conclusions
and discussions can be found.

3.2 The Mathematical Model

In this section, the (differential) equations that are needed to describe the Biogrout
process are given, together with a short explanation. In [89] (Chapter 2) the deriva-
tion can be found. These (differential) equations were derived in respect with the
following assumptions:

• Only dissolved species do react;

• The biochemical reaction of the Biogrout process is the only reaction that
takes place and this reaction is governed by reaction (3.1);

• The concentration of the bacteria is constant in time and homogeneous;

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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• Calcium carbonate is not transported but it precipitates on the matrix of the
porous medium;

• The precipitation of calcium carbonate has no influence on the total volume
of the fluid over the entire domain of computation;

• The flow is incompressible;

• The viscosity is constant.

The biochemical reaction of the Biogrout process is given by equation (3.1). We
will start by giving the differential equations for the aqueous species in this equation.
The differential equation for the concentration of urea is given by:

θ
∂Curea

∂t
= ∇ · (θD · ∇Curea)− ~q · ∇Curea − θrhp. (3.2)

In this equation, θ is the porosity, Curea is the dissolved concentration of urea, D
is the dispersion tensor, ~v is the pore water velocity and rhp is the reaction rate
of the production of calcium carbonate, which is a non-linear function of the urea
concentration and the time.

The term at the left-hand side represents the accumulation. The first term
at the right-hand side represents the effect of dispersion and diffusion, the second
term models advection and the last term stands for the biochemical reaction. The
minus-sign comes from the fact that urea is consumed at the same rate as calcium
carbonate is formed, see (3.1).

In three dimensions, the coefficients of the dispersion tensorD equalDij = (αL−
αT )

vivj

|~v| + δijαT

∑

i
v2
i

|~v| , see [100]. The quantity αL is the longitudinal dispersivity

and αT is the transverse dispersivity.
Analogously, we have the following differential equation for the concentrations

of calcium and ammonium:

θ
∂CCa2+

∂t
= ∇ · (θD · ∇CCa2+)− ~q · ∇CCa2+ − θrhp, (3.3)

θ
∂CNH+

4

∂t
= ∇ · (θD · ∇CNH+

4 )− ~q · ∇CNH+
4 + 2θrhp. (3.4)

Note the +2 in the biochemical reaction term in the differential equation for ammo-
nium: for each produced mole of calcium carbonate, two moles of ammonium are
generated.

For the non-aqueous species in reaction equation (3.1), calcium carbonate, we
have the following differential equation:

∂CCaCO3

∂t
= mCaCO3

θrhp. (3.5)

In this equation, mCaCO3
is the molar mass of calcium carbonate and is used to

convert number of molecules (moles) into mass (kilograms). The right-hand side of
this differential equation only contains the reaction term since it has been assumed
that calcium carbonate is not transported.
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We have the following relation between the concentration of calcium carbonate
and the porosity:

θ(t) = θ(0)− CCaCO3(t)− CCaCO3(0)

ρCaCO3

, (3.6)

where ρCaCO3
is the density of calcium carbonate.

The flow is calculated from Darcy’s Law, given in [100]:

qx = −kx
µ

∂p

∂x
, qy = −ky

µ

∂p

∂y
, qz = −kz

µ

(

∂p

∂z
+ ρlg

)

. (3.7)

In Darcy’s Law, p is the pressure, ki is the intrinsic permeability in the various
coordinate directions (i = x, y, z), µ is the viscosity that is assumed to be constant
in the Biogrout case, ρl is the density of the solution and g is the gravitational
constant.

The intrinsic permeability k is determined, using the Kozeny-Carman relation:
an empirical relation between the intrinsic permeability and the porosity that is
commonly used in ground water flow modelling (see [7]):

k =
(dm)2

180

θ3

(1− θ)
2 . (3.8)

In this relation, dm is the mean particle size of the subsurface medium. If the
porosity is small, it might be that the pores are not connected. Hence, the perme-
ability is zero. This phenomenon is not directly incorporated in the Kozeny-Carman
relation. Since in our simulations the porosity is not that small, we assume that
the Kozeny-Carman relation is a good relation between the permeability and the
porosity.

The density of the solution (at 20◦C), ρl, will be calculated with the following
experimental relation:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 . (3.9)

For the pressure, the following differential equation was derived in [89] (Chapter
2) by the use of Darcy’s Law (3.7):

−∇ ·
(

k

µ
(∇p+ ρlgez)

)

=
mCaCO3

ρCaCO3

θrhp. (3.10)

Differential equation (3.2), (3.3), (3.4), (3.5) and (3.10) contain the reaction
rate rhp of the biochemical reaction (3.1). This rate decreases in time as is shown
in experiments, see [97]. In [89] (Chapter 2) a linear reduction had been assumed,
combined with Monod kinetics, [57]. In this chapter, we will combine Monod kinetics
with an exponential reduction, since this is commonly used as a first approximation
(see [64]):

rhp = vmax
Curea

Km,urea + Curea
e−bt. (3.11)

In this equation, vmax is the initial activity, Km,urea is the saturation constant and
b is some constant, representing the reduction in bacterial activity in the course of
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time.

As initial conditions, the concentration of calcium carbonate, urea, calcium and
ammonium are equal to zero and the porosity equals θ0.

As a model experiment, a container (8m×5.6m×1.5m) has been taken, having
closed boundaries (represented by boundary Γ3). In this container injection and
extraction wells have been placed (Figure 3.1). The injection wells are represented
by boundary Γ1, whereas the extraction wells are represented by boundary Γ2. The
following flow strategy has been chosen: there are three batches, starting with nine
hours of injection and no injection during the rest of the batch. The duration of the
batches is respectively 1, 2 and 3 days, see Figure 3.1.

Figure 3.1: Experimental set-up. Left: Configuration, Right: Flow strategy

Table 3.2 displays the boundary conditions that are chosen.

p Curea CCa2+

CNH+
4

Γ1(injection) − k
µ (∇p+ ρlgez) · n = qin C = cin C = cin C = 0

Γ1(rest) p = p2 +
∫ 1.5

z
ρlgz̄dz̄

∂C
∂n = 0 ∂C

∂n = 0 ∂C
∂n = 0

Γ2 p = p2 +
∫ 1.5

z
ρlgz̄dz̄

∂C
∂n = 0 ∂C

∂n = 0 ∂C
∂n = 0

Γ3 − k
µ (∇p+ ρlgez) · n = 0 ∂C

∂n = 0 ∂C
∂n = 0 ∂C

∂n = 0

Table 3.1: Boundary conditions for the pressure and the concentration of urea,
calcium and ammonium

Since we have the same differential equation, initial condition and boundary con-
ditions for both the concentration of urea and calcium chloride, these concentrations
are equal. Hence it is sufficient to calculate only the urea concentration.

3.3 Numerical Method

The differential equations for the pressure, the velocity and the concentration of
the aqueous species are solved by the Standard Galerkin Finite Element Method.
The weak formulation is derived by multiplication by a test function η ∈ H1(Ω)
and integration over the domain Ω. For the time integration, an IMEX-scheme is
used: all components are solved implicitly, except for the porosity θ, the intrinsic
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permeability k and the density of the solution ρl. Solving the differential equation
for the pressure, the reaction rate rhp is also computed explicitly. While solving the
differential equation for the urea concentration, Newton’s method is used, because
of the non-linearity in the reaction term (3.11). The Newton-Cotes quadrature
rules have been used for the approximation of the element matrices and vectors.
Tetrahedral elements have been used, in combination with linear basis functions.

Since the differential equation for the concentration of calcium carbonate, (3.5),
is an ordinary differential equation (in each grid point), it is not necessary to use the
Finite Element Method. For the time integration, an IMEX-scheme is used: solving
all components implicitly, except for the porosity.

At each time step, the differential equations for the following components are
solved successively: the pressure, the flow and the concentration of urea, calcium,
ammonium and calcium carbonate. For more details, see [89].

Finally, the porosity (θ), the intrinsic permeability (k) and the density of the
fluid (ρl) are recalculated with (3.6), (3.8) and (3.9), respectively. Also the boundary
conditions are updated.

Since the porosity, the permeability and the density of the solution (may) vary, at
each time step all the matrices are rebuilt. That means, calculate for each element a
4×4 element matrix and add them to the large matrix. This is done for 10 different
matrices + the number of Newton-iterations, since in each Newton-iteration a new
matrix is built.

3.4 Results

In this section, the results of the simulation with the model for a 3D configuration are
shown. Matlab has been used to do the numerical simulations. The linear systems
are solved by a direct method. The time step ∆t = 1h, qin = 2.29 × 10−4 ms−1,
vmax = 1.621 × 10−2 molm−3 s−1 and b=7.15 × 10−6 s−1. The values of the other
constants can be found in [89].

All the three batches start with nine hours of injection with inflow velocity
qin. During injection, the amount of urea in the domain increases, although this
phenomenon is diminished by the hydrolysis of urea. During rest, the total amount
of urea decreases, due to the hydrolysis of urea. The reaction rate (3.11) decreases
in time. As a consequence, the total amount of urea decreases slower during the
period of rest as time proceeds.

The urea/calcium chloride solution is heavier than water and is also heavier
than the solution of the reaction product ammonium chloride as can be seen from
formula (3.9). As a result, in the lower parts of the domain a higher urea and
calcium chloride concentration are expected. This will result in a higher calcium
carbonate concentration in the lower parts of the domain. Figure 3.2 confirms these
expectations and also gives some quantitative details.

At each time step, new matrices are built, since porosity, permeability and den-
sity of the solution (may) vary. In this chapter, the relation between the CPU time
for the building part and for the solving part has been investigated. Seven different
meshes have been taken, with increasing number of elements. With each mesh 10
time steps have been taken, registering the average CPU time per time step and the
average CPU time per time step for the building part and the solving part. The
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Figure 3.2: Some results of the 3D model experiment. Top left: total amount of urea
(kmol) in time (days) in the whole domain; Middle left: amount of urea (kmol) in
time (days) in several parts of the domain: −− upper part, − middle part, · · · lower
part; Bottom left: the amount of calcium carbonate (kg) in the same parts of the
domain: −− upper part, − middle part, · · · lower part. Top right: a contour plot
of the calcium carbonate concentration (kg/m3) after the three batches at z=1.5m
(top domain), x[m] and y[m] on the x-axis and y-axis; Bottom right: a contour plot
of the calcium carbonate concentration (kg/m3) after the three batches at z=0m
(bottom domain), x[m] and y[m] on the x-axis and y-axis

results can be found in Table 3.4. This table also contains the percentage solving
time/total time.

From this table, it can be seen that, if the number of elements increases with a
factor 2, so does the CPU time for the building part. This is what is expected: for
each element a 4× 4 element matrix is created and is added to the large matrix. If
the number of elements doubles, the amount of work doubles, too.

If the number of elements doubles, the amount of solving work increases with a
factor 2.5, 2.6, 3.6, 4.2, 3.8 and 4.3, respectively. So the amount of work increases
with more than a factor 2, what can also be expected from the analysis of a band
matrix solver. For a mesh with 2500 elements only 30% of the CPU time is spent in
the solving part. For a mesh with 160000 elements this is even 91%. If the number
of elements increases further, it will be necessary to use an iterative method instead
of a direct method.

The discretization error is O(∆x2 +∆t). If the number of elements is increased
with a factor 2, ∆x2 is decreased with a factor 22/3. If the time step is also decreased
with a factor 22/3, then, in the limit, the error should decrease with a factor 22/3(≈
1.6). The last column of Table 3.4 contains the relative error in the concentration
after six hours in an arbitrary point in the domain with respect to the finest mesh.
For the coarsest mesh, a time step of ∆t=0.5 h has been taken and this time step has
been decreased while doubling the number of elements. The relative error decreases
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number of CPU time percentage relative
elements per time building solving solving part error

(approximately) step (s) part (s) part (s)
2500 0.344 0.242 0.102 30% 24%
5000 0.715 0.459 0.255 36% 15%
10000 1.58 0.921 0.661 42% 10%
20000 4.28 1.88 2.39 56% 6.3%
40000 13.9 3.80 10.1 73% 3.5%
80000 46.8 8.23 38.6 82% 1.1%
160000 182 17.0 165 91% (0%)

Table 3.2: CPU time per time step, subdivided in the building part and the solving
part for seven different meshes, with increasing number of elements and the relative
error.

with a factor 1.6, 1.5, 1.6, 1.8 and 3.2, respectively. So in the limit, the error
decreases with even more than a factor 1.6.

3.5 Conclusions and Discussion

An extension to 3D of the Biogrout model has been made. The results of the
numerical simulation with the 3D configuration with three injection lances and three
extraction lances look promising. Also the error analysis gives a good result.

For a small number of elements, building matrices takes more CPU time than
solving the matrix vector systems. For a large number of elements it is the other
way around. In building matrices, the amount of work increases linearly with the
number of elements. If the number of elements increases further, it will be necessary
to use an iterative method instead of a direct method.
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Abstract

Biogrout is a new method for soil reinforcement, which is based on microbial induced
carbonate precipitation. Bacteria and reactants are flushed through the soil, result-
ing in calcium carbonate precipitation and consequent soil reinforcement. Bacteria
are crucially important in the Biogrout process since they catalyze the reaction.
Hence, to control the process, it is essential to know where the bacteria are located.
The bacteria are possibly in suspension but can also be adsorbed or fixated on the
matrix of the porous structure. In this chapter, a model is derived for the placement
of bacteria. The model contains three phases of bacteria: bacteria in suspension,
adsorbed bacteria and fixed bacteria. An analytical solution is derived for instan-
taneous reactions between these three phases. The analytical solution is compared
to numerical simulations for finite reaction rates. For the numerical simulations the
standard Galerkin Finite Element Method is used.

4.1 Introduction1

When applying Biogrout, first the bacteria are cultivated. Subsequently, the bacte-
ria are injected into the subsoil and transported by water flow to the location where
strengthening is required. The bacterial suspension is directly followed by a fixation
fluid, which is a solution with high salinity. As a consequence of the retardation
of the bacteria, the fixation fluid will overtake the weakly adsorbed bacteria and
strongly fix them to the soil particles [36]. This will result into a rather homoge-
neous distribution of bacteria. After the placement of the bacteria, the urea and
calcium chloride (CaCl2) solution is supplied [97]. Due to the calcium chloride, this
solution has n high salinity and will therefore also act as a fixation fluid. The bacte-
ria provide the hydrolysis of urea and the calcium and carbonate ions precipitate as
calcium carbonate. The calcium carbonate crystals form bridges between the sand
grains, thereby increasing the strength and stiffness of the soil. The by-product am-
monium chloride (NH4Cl) needs to be removed. The bacteria and reactants are not
injected at the same time to prevent clogging and crystal accumulation around the
injection point(s). The procedure, in which the bacteria are first injected and only
then followed by the injection of the reactants, also results into a more homogeneous
distribution of calcium carbonate.

Since the bacteria provide the hydrolysis of urea, they are crucial in the Biogrout
process. The reaction rate increases with an increasing bacterial concentration and
urease activity. Further, if no bacterium is present, no carbonate is formed and
consequently no calcium carbonate appears. Therefore, it is essential to know where
the bacteria are located in the aquifer.

When modelling bacterial transport, it is not sufficient to consider advection
and dispersion only. Adsorption and desorption are important phenomena as well,
but also the pore size of the matrix, the size of the microorganisms, filtration and
elimination ( [32,33,55,56]), ionic strength of the ground water ( [32,33]), systematic

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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(chemotaxis) and random (tumbling) motion of bacteria ( [99]), residence time (
[41]), decay and growth ( [33,99]) effect the (rate of) transport of microorganisms.

[38,41,74] provide various models that consider several of these phenomena and
compare the model results with experimental results.

In [90] and [91] (Chapter 2 and 3), the study focusses on modelling the transport
of the reactants, assuming a homogeneous distribution of bacteria. The present
study is devoted to the transport, adsorption and fixation of the injected bacteria.
In Section 4.2, a model is derived for the placement of bacteria. Further, initial and
boundary conditions are given. In Section 4.3, the analytical solution for a simplified
version of the model equations, described in Section 4.2, is presented. In Section 4.3,
the Numerical Methods to solve the model equations are described. In Section 4.4,
the results are displayed and a comparison is made between the analytical solution
and the numerical solutions. In the last section, some conclusions and a discussion
can be found.

4.2 Mathematical model

4.2.1 Derivation of the model equations

First we present the general equation for the transport of bacteria in a fully saturated
porous medium, as in for example [74]:

∂
(

θCbac
)

∂t
+

∂
(

θCads
)

∂t
= ∇ ·

(

Dbacθ∇Cbac
)

−∇ ·
(

qCbac
)

. (4.1)

In this equation, θ is the porosity, Cbac is the bacterial concentration in suspension,
Cads is the imaginary concentration that would result if the attached bacteria were
to be resuspended in a solution volume equivalent to that of the surrounding water.
Note that in literature, Cads is frequently expressed in units of milligrams per kilo-
gram, see for example [100]. Here, Cads has the same unit as Cbac. Further, Dbac

is the dispersion coefficient of bacteria in suspension and q is the Darcy velocity,
which relates to the pore water flow velocity v as

q = vθ. (4.2)

The terms at the left-hand side in equation (4.1) are the accumulation terms for the
suspended and adsorbed bacteria. The first term at the right-hand side accounts
for dispersion and the last term is the advection term. Since bacterial growth
and decay are processes with a large time scale we neglect them. Further, we
assume bacterial movement to be determined by flow only, which means that their
systematic movement is neglected.

In the case of an equilibrium-controlled adsorption, Cads tends to the equilibrium
ϕ(Cbac), where ϕ is an adsorption isotherm, which depends on the concentration of
bacterial cells in suspension (Cbac) and also possibly depends on properties of the
microorganisms, the porous medium and the pH. To be able to calculate Cbac and
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Cads separately, equation (4.1) is split into two equations:

∂
(

θCbac
)

∂t
= ∇ ·

(

Dbacθ∇Cbac
)

−∇ ·
(

qCbac
)

− θrads + θrdes, (4.3)

∂
(

θCads
)

∂t
= θrads − θrdes, (4.4)

where

rads = kads
(

ϕ(Cbac)− Cads
)

+
, (4.5)

rdes = kdes
(

Cads − ϕ(Cbac)
)

+
. (4.6)

The reaction rads is the adsorption reaction, rdes is the desorption reaction,
kads and kdes are respectively the adsorption and desorption rate constant. The
notation (.)+ considers the positive part of an expression and has been defined as
(.)+ := max(0, .). Equations (4.5) and (4.6) account for the difference in desorption
and adsorption rate. If there are no bacteria in suspension, no bacteria adsorb
onto the matrix of the aquifer, therefore ϕ(0) = 0. The number of bacteria that
adsorb increases with the number of bacteria in suspension, hence ϕ′(Cbac) > 0 and
ϕ(Cbac) > 0. It is also assumed that ϕ′′(Cbac) < 0 and lim

Cbac→∞
ϕ′(Cbac) = 0, which

implies that the adsorption rate decreases as adsorption proceeds. This is a logical
consequence from the fact that a higher number of adsorbed bacteria gives a lower
number of free adsorption sites.

In the Biogrout process, the bacterial suspension is directly followed by a fixation
fluid, which is a solution with a high salinity. This fixation fluid will overtake the
weakly adsorbed bacteria and strongly fix them onto the solid matrix. In order to

model this, Cads is split up into a temporarily adsorbed part C
bac

and a permanently
adsorbed, or fixed, part Sbac:

Cads = C
bac

+ Sbac. (4.7)

In the case of an equilibrium, the concentration of temporarily adsorbed bacteria

C
bac

is given by C
bac

= (1 − β)ϕ(Cbac) and, since Sbac is the concentration of
permanently adsorbed bacteria, which can not decrease, the following equilibrium
holds: Sbac(x, t) = max

0≤t̄≤t

{

βϕ(Cbac(x, t̄))
}

. From this equation, it follows that, for

a constant Cbac, Sbac = βϕ(Cbac). The fraction β ranges between 0 and 1, where
the value depends on the concentration of the fixation fluid and it may also depend
on, for example, properties of the microorganisms, the pH and the porous medium.

Substituting relation (4.7) into equations (4.5), (4.5) and (4.6), gives the follow-
ing equations for the adsorbed bacteria:

∂
(

θ
(

C
bac

+ Sbac
))

∂t
= θrads − θrdes, (4.8)

rads = kads

(

ϕ(Cbac)−
(

C
bac

+ Sbac
))

+
, (4.9)

rdes = kdes

(

C
bac

+ Sbac − ϕ(Cbac)
)

+

= kdes

((

C
bac − (1− β)ϕ(Cbac)

)

+
(

Sbac − βϕ(Cbac)
)

)

+
. (4.10)
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Next, we show that equation (4.10) needs to be adjusted. According to this equation,

both the difference between C
bac

and its equilibrium and the difference between Sbac

and its equilibrium, are driving forces for desorption. Next, consider the situation

C
bac

+ Sbac > ϕ(Cbac), C
bac

< (1 − β)ϕ(Cbac) and Sbac > βϕ(Cbac), which can
happen if Cbac (and hence βϕ(Cbac)) is decreasing and if the adsorption rate rads
is not so high. Compared to the equilibrium βϕ(Cbac), too many bacteria are
adsorbed, and according to equation (4.10) there is a driving force for desorption.
Concentration Sbac is the concentration of permanently adsorbed bacteria and these
bacteria will not desorb again. This implies that the concentration temporarily

adsorbed bacteria C
bac

will decrease. However, this concentration is already lower
than its equilibrium (1 − β)ϕ(Cbac). This means that the difference between Sbac

and its equilibrium βϕ(Cbac) will lead to extra desorption and this is not allowed.
Therefore, the difference between Sbac and its equilibrium should only be taken
into account if Sbac < βϕ(Cbac). In that case, it will diminish desorption. Hence,
equation (4.10) is replaced with

rdes = kdes

((

C
bac − (1− β)ϕ(Cbac)

)

+
(

Sbac − βϕ(Cbac)
)

−

)

+
, (4.11)

where the notation (.)− considers the negative part of an expression and is defined
by (.)− := min(0, .).

For the concentration of permanently adsorbed bacteria Sbac, the following equa-
tion is used:

∂
(

θSbac
)

∂t
= θrfix, (4.12)

where the fixation rate rfix is given by

rfix = kfixC
bac (

βϕ(Cbac)− Sbac
)

+
. (4.13)

The constant kfix is the fixation rate constant. The driving force for fixation is
the difference between the concentration of fixated bacteria Sbac and its equilibrium
βϕ(Cbac), which is accounted for by the term

(

βϕ(Cbac)− Sbac
)

. Only the positive
part of this expression is taken into account, since Sbac is the concentration of perma-
nently adsorbed bacteria, which can not decrease. If there are no adsorbed bacteria,
they can not be fixated. If there are many adsorbed bacteria it is likely that fixation
proceeds faster than in the case in which there are only a few adsorbed bacteria on
the matrix. That is the reason why the fixation rate also contains a multiplication

by C
bac

. Note that the fixation of bacteria only occurs after adsorption.
From equations (4.8) and (4.12), the following differential equation is found for

the concentration temporarily adsorbed bacteria:

∂
(

θC
bac
)

∂t
= θrads − θrdes − θrfix. (4.14)

For the concentration of the fixation fluid Cfix, the following differential equation
is used:

∂(θCfix)

∂t
= ∇ · (Dfixθ∇Cfix)−∇ · (qCfix), (4.15)
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where Dfix is the dispersion coefficient of the fixation fluid.

To summarize, we solve the following system of equations for the transport of
bacteria in a saturated porous medium, in combination with a fixation fluid.

∂
(

θCbac
)

∂t
= ∇ ·

(

Dbacθ∇Cbac
)

−∇ ·
(

qCbac
)

− θrads +

+θrdes, (4.16)

∂
(

θC
bac
)

∂t
= θrads − θrdes − θrfix, (4.17)

∂
(

θSbac
)

∂t
= θrfix, (4.18)

rads = kads

(

ϕ(Cbac)−
(

C
bac

+ Sbac
))

+
, (4.19)

rdes = kdes

((

C
bac − (1− β)ϕ(Cbac)

)

+

+
(

Sbac − βϕ(Cbac)
)

−

)

+
, (4.20)

rfix = kfixC
bac (

βϕ(Cbac)− Sbac
)

+
, (4.21)

∂(θCfix)

∂t
= ∇ · (Dfixθ∇Cfix)−∇ · (qCfix). (4.22)

4.2.2 Initial conditions and boundary conditions

For the concentration of suspended, adsorbed and fixed bacteria and for the con-
centration of the fixation fluid, the following initial conditions are chosen:

Cbac(x, 0) = C
bac

(x, 0) = Sbac(x, 0) = Cfix(x, 0) = 0. (4.23)

At time t = T0 the injection of bacteria is stopped and from then on the fixation fluid
is injected. This results into the following boundary condition for the concentration
of suspended bacteria:

Cbac(0, t) =

{

1 for 0 < t < T0,
0 for t > T0,

(4.24)

and for the concentration of fixation fluid:

Cfix(0, t) =

{

0 for 0 < t < T0,
1 for t > T0.

(4.25)

4.3 Analytical Solution and Numerical Methods

In this section, the analytical solution for a simplified version of system (4.16)-(4.22)
is derived. These simplifications have been made in order to be able to construct
an analytical solution. Subsequently, a case study is presented for one particular
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adsorption isotherm. The model equations have also been solved numerically. The
numerical strategy is described at the end of this section. The following simplifica-
tions have been made:

• Restriction to one dimension;

• The pore water velocity v and the porosity θ are constant;

• Dispersion and diffusion are neglected: Dbac = Dfix = 0 m2/h;

• For β the following has been chosen: β = β0C
fix, in which β0 is a constant;

• The adsorption isotherm only depends on the concentration suspended bacte-
ria: ϕ = ϕ(C).

A discussion on these assumptions can be found in Section 4.5.
These simplifications result into the following system of equations:

∂Cbac

∂t
= −v

∂Cbac

∂x
− rads + rdes, (4.26)

∂C
bac

∂t
= rads − rdes − rfix, (4.27)

∂Sbac

∂t
= rfix, (4.28)

rads = kads

(

ϕ(C)−
(

C
bac

+ Sbac
))

+
, (4.29)

rdes = kdes

((

C
bac − (1− β)ϕ(Cbac)

)

+

+
(

Sbac − βϕ(Cbac)
)

−

)

+
, (4.30)

rfix = kfixC
bac (

βϕ(Cbac)− Sbac
)

+
, (4.31)

∂Cfix

∂t
= −v

∂Cfix

∂x
. (4.32)

The initial and boundary conditions are given in Section 4.2.2.

4.3.1 Analytical solution

In this subsection, we describe the analytical solution for the various components:
the fixation fluid and the bacteria.

Fixation fluid

Before deriving the analytical solution for the bacteria, first the solution for the
fixation fluid is derived. A solution of equation (4.32) is Cfix(x − vt). Combining
this with the initial and boundary condition gives the following solution for the
fixation fluid:

Cfix(x, t) = H(v(t− T0)− x), (4.33)
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where H : R → {0, 1} represents a Heaviside function, given by

H(y) =

{

1 for y > 0,
0 for y < 0.

(4.34)

Bacteria

For the derivation of the analytical solution for the concentration of suspended,
adsorbed and fixed bacteria, an extra simplification has been made: the reaction
constants are infinitely large: kads → ∞, kdes → ∞ and kfix → ∞. This simplifica-

tion implies an instantaneous equilibrium. As a result, C
bac

and Sbac can be found
directly as a function of Cbac:

C
bac

= (1− β0C
fix)ϕ(Cbac), (4.35)

Sbac = max
0≤t̄≤t

{

β0C
fixϕ(Cbac)

}

. (4.36)

The total bacterial concentration Ψ is defined by Ψ := Cbac + C
bac

+bac S.

Adding the differential equations for Cbac, C
bac

and Sbac (equations (4.26), (4.27)
and (4.28)), gives the following differential equation for Ψ:

∂Ψ(Cbac)

∂t
= −v

∂Cbac

∂x
. (4.37)

It is assumed that Cbac is piecewise continuously differentiable in t and x and that
ϕ and Ψ are continuous functions in Cbac.

Along characteristics, we have

0 =
d

dt
Cbac(t, x(t)) = Cbac

t + Cbac
x x′(t) (4.38)

and hence
x′(t) =

v

Ψ′(Cbac)
, (4.39)

where Ψ′(Cbac) is given by

Ψ′(Cbac) =















1 + ϕ′(Cbac) if Cfix(x, t)ϕ(Cbac(x, t)) >
max0≤t̄<t

{

0, Cfix(x, t̄)ϕ(Cbac(x, t̄))
}

;
1 + (1− β0C

fix)·
·ϕ′(Cbac) else.

(4.40)
Based on the above relations, we present a sketch of the (x-t)-diagram in Figure 4.1.

The velocity of the characteristics originating for the x -axis, where C = Cfix = 0,
is calculated with equations (4.39) and (4.40):

x′(t) =
v

Ψ′(0)
=

v

1 + ϕ′(0)
. (4.41)

For the characteristics, originating from the t-axis, we distinguish between 0 < t <
T0 and t > T0. For 0 < t < T0, since Cbac = 1 at the inflow boundary, the following
expression is found for the velocity of the characteristics, originating from the t-axis:

x′(t) =
v

Ψ′(1)
=

v

1 + (1− β0Cfix)ϕ′(1)
. (4.42)
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Figure 4.1: Sketch of the (x-t)-diagram.

Note that the velocity of the suspended bacteria changes, when they are overtaken
by the fixation fluid. The characteristic of the front of the fixation fluid starts in
(0, T0). Below this characteristic, we have Cfix = 0 and therefore x′(t) = v

1+ϕ′(1) .

Above this characteristic, we have Cfix = 1 and x′(t) = v
1+(1−β0)ϕ′(1) .

For t > T0, since Cbac = 0 and Cfix = 1 at the inflow boundary, the velocity of
the characteristics is given by:

x′(t) =
v

Ψ′(0)
=

v

1 + (1− β0)ϕ′(0)
. (4.43)

The characteristics from (0, T0) have a lower velocity than the characteristics
originating from the x-axis. This is a result of the retardation effect due to adsorp-
tion and this lower velocity results into a shock. The shock position is denoted by
s(t). Let t = T1 be the time at which the front of the fixation fluid reaches the front
of the pulse with bacteria. For 0 < t < T1, the shock speed s′(t) is determined by
the Rankine-Hugoniot condition (where [.] means the jump over the quantity):

s′(t) =
[vCbac]

[Ψ(Cbac)]
=

[vCbac]

[Cbac + (1− β0Cfix)ϕ(Cbac)]
=

v

1 + ϕ(1)
< v. (4.44)

Since s(0) = 0, for 0 < t < T1 the shock position is given by

s(t) =
vt

1 + ϕ(1)
. (4.45)
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From the intersection of the shock position with the position of the fixation fluid
front, T1 can be found: vT1

1+ϕ(1) = v(T1 − T0). Hence,

T1 =
1 + ϕ(1)

ϕ(1)
T0. (4.46)

Since ϕ(1) is positive, we have that T1 > T0.
Let t = T2 be the time at which the shock speed changes. This change is a

consequence of the decrease of C(s(t), t). For T1 < t < T2, the shock speed is given
by

s′(t) =
[vCbac]

[Ψ(Cbac)]

=
[vCbac]

[Cbac + (1− β0Cfix)ϕ(Cbac) + max
0≤t̄≤t

{

β0C
fixϕ(Cbac)

}

=
v

1 + ϕ(1)
. (4.47)

For T1 < t < T2, the same shock speed has been found as for 0 < t < T1, as can be
seen from equations (4.44) and (4.47). While deriving the model for the placement
of bacteria, this turned out to be very important, since a change in the shock speed
at t = T1 turned out to lead to a violation of the conservation of mass requirement.
Here, the development of the analytical solution, though for a simplified case, turned
out to be very helpful to the actual construction of the model.

For 0 < t < T2 the shock position is given by

s(t) =
vt

1 + ϕ(1)
. (4.48)

At t = T0, the boundary condition changes. This gives a rarefaction wave, which
is illustrated in the (x-t)-diagram. To this extent, we use the Ansatz Cbac(t, x) =
C̃(η), η = x

v(t−T0)
. This gives the following derivatives:















Ct = − η
t−T0

C̃ ′(η),

Cx = 1
v(t−T0)

C̃ ′(η),

(Ψ(C))t = −Ψ′(C̃)C̃ ′(η) η
t−T0

.

(4.49)

Substituting equation (4.49) in relation (4.37) gives
(

−Ψ′(C̃)η + 1
)

C̃ ′(η) = 0. (4.50)

This equation admits two states:
{

1) C̃ ′(η) = 0 (constant state),
2) η = 1

Ψ′(C̃)
(variable state). (4.51)

The variable state implies that

Ψ′(C̃) =
1

η
. (4.52)



4.3. Analytical Solution and Numerical Methods 49

Since Ψ′(C̃) > 0 and Ψ is a continuous function in C̃, this equation can be solved

(Ψ′(C̃) is invertible). The solution is Cbac = (Ψ′)−1
(

1
η

)

. The constant states are

located at
xL(t)

v(t− T0)
= ηL =

1

Ψ′(0)
<

1

Ψ′(1)
= ηR =

xR(t)

v(t− T0)
. (4.53)

Time T2 can be found from the intersection point of s(t) and xR(t):
vT2

1+ϕ(1) =
v(T2−T0)

Ψ′(1) . Solving this equation gives

T2 =
1 + ϕ(1)

1 + ϕ(1)−Ψ′(1)
T0 =

1 + ϕ(1)

ϕ(1)− (1− β0)ϕ′(1)
T0, (4.54)

which has a solution T2 > 0 iff ϕ(1) > (1− β0)ϕ
′(1). If ϕ(1) ≤ (1− β0)ϕ

′(1), then
s(t) is given by equation (4.48) for t > 0. Next, s(t) is derived for t > T2 for the case

that ϕ(1) > (1 − β0)ϕ
′(1). The shock speed s′(t) is given by s′(t) = vCbac(t,s(t))

Ψ(Cbac(t,s(t))
.

On the shock position, the solution is given by Cbac(t, s(t)) = (Ψ′)−1
(

v(t−T0)
s(t)

)

.

This gives the following differential equation in s(t):

s′(t) =
v (Ψ′)

−1
(

v(t−T0)
s(t)

)

Ψ
(

(Ψ′)
−1
(

v(t−T0)
s(t)

)) , s(T2) =
vT2

1 + ϕ(1)
. (4.55)

Solving this differential equation gives the shock position s(t) for t > T2 for the case
that ϕ(1) > (1−β0)ϕ

′(1). Summarizing, the following has been found for the shock
position s(t):

s(t) =











































vt
1+ϕ(1) if ϕ(1) ≤ (1− β0)ϕ

′(1),

for t > 0;
vt

1+ϕ(1) if ϕ(1) > (1− β0)ϕ
′(1),

for 0 < t < T2;

vT2

1+ϕ(1) +
∫ t

T2

v(Ψ′)
−1

(

v(t̄−T0)

s(t̄)

)

Ψ
(

(Ψ′)−1
(

v(t̄−T0)

s(t̄)

))dt̄ if ϕ(1) > (1− β0)ϕ
′(1),

for t > T2.

(4.56)

Next, the solution for the concentration of suspended bacteria is constructed:

Cbac =























1 for (t, x) ∈ (0, T0)× (0, s(t)) ∪ (T0, T2)×
×(xR(t), s(t));

0 for (t, x) ∈ (T0,∞)× (0, xL(t)) ∪ R
+×

×(s(t),∞);

(Ψ′)−1( v(t−T0)
x ) for (t, x) ∈ (T0,∞)× (xL(t),min(xR(t), s(t))).

(4.57)

The concentration of adsorbed bacteria C
bac

and fixated bacteria Sbac is found,
using equations (4.35) and (4.36).

The preferred result is an homogeneous distribution of bacteria. To achieve this
distribution, according to the present model, the following relation should hold:

L ≤ s(T2), (4.58)
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where L is the length of the column. Substituting equations (4.48) and (4.54) into
relation (4.58) gives the following relation between the length of the column L and
the switch time T0.

L ≤ vT0

ϕ(1)− (1− β0)ϕ′(1)
. (4.59)

The above relation (4.59) implies the following criterion on the switch time T0:

T0 ≥ ϕ(1)− (1− β0)ϕ
′(1)

v
L. (4.60)

4.3.2 Case study

In this subsection, the solution, derived in the last subsection is applied to the
Langmuir isotherm. According to [100], the Langmuir isotherm is given by

ϕ(Cbac) =
αCmaxC

bac

1 + αCbac
, (4.61)

where the positive constant α denotes the Langmuir constant and Cmax is the max-
imum adsorption capacity. Substituting equation (4.61) into relations (4.46) and
(4.54) gives the following expressions in R

+ for T1 and T2:

T1 =
1 + α+ αCmax

αCmax

T0; (4.62)

T2 =

(1+α)2

αCmax
+ (1 + α)

α+ β0
T0. (4.63)

The following expression for s(t) is derived:

s(t) =















vt
1+ϕ(1) for t < T2;
v(1+α)T2

1+α+αCmax
+

+
∫ t

T2

v
√

(1−β0)αCmax(t̄−T0)√
(1−β0)αCmax(t̄−T0)+αCmax

√
s(t̄)−(t̄−T0)

dt̄ for t > T2.

(4.64)

The constant states are located at

xL =
v(t− T0)

1 + (1− β0)αCmax

; (4.65)

xR =
v(t− T0)

1 + (1−β0)αCmax

(1+α)2

. (4.66)

The solution for the concentration of suspended bacteria is given by

Cbac =











































1 for (t, x) ∈ (0, T0)× (0, s(t))∪
∪(T0, T2)× (xR(t), s(t));

0 for (t, x) ∈ (T0,∞)×
×(0, xL(t)) ∪ R

+ × (s(t),∞);

1
α

(

√

(1−β0)αCmax
x

t−T0

v− x
t−T0

− 1

)

for (t, x) ∈ (T0,∞)×

×(xL(t),min(xR(t), s(t))).

(4.67)
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Finally, the concentration adsorbed bacteria C
bac

and fixated bacteria Sbac are
given by

C
bac

= (1− β0C
fix)

αCmaxC
bac

1 + αCbac
, (4.68)

Sbac = max
0≤t̄≤t

{

β0C
fixαCmaxC

bac

1 + αCbac

}

. (4.69)

4.3.3 Numerical Methods

The differential equations for the concentrations of bacteria and fixation fluid are
solved by the standard Galerkin Finite Element Method. First, the weak formulation
is derived by multiplication by a test function η ∈ L2(Ω) and integration over the
domain Ω. As an example, the differential equation for the suspended bacteria, see
equation (4.26), is taken. For the adsorption isotherm, the Langmuir isotherm, see
equation (4.61), is used. This gives

∫

Ω

∂Cbac

∂t
ηdΩ+

∫

Ω

v
∂Cbac

∂x
ηdΩ =

∫

Ω

(−rads + rdes) ηdΩ. (4.70)

For the time integration, an implicit scheme is used. That gives the following weak
formulations for the urea concentration:
∫

Ω

Cbac,n+1 − Cbac,n

∆t
ηdΩ+

∫

Ω

v
∂Cbac,n+1

∂x
ηdΩ =

∫

Ω

(

−rn+1
ads + rn+1

des

)

ηdΩ. (4.71)

This equation holds for all η ∈ L2(Ω), which vanish at location of the boundary
where Cbac and Cfix are prescribed explicitly, hence at x = 0.

The Newton-Cotes quadrature rules have been used for the development of the
element matrices and vectors. For this 1D case, line elements are used. Further-
more, linear basis functions are applied.

The differential equations for the various concentrations of bacteria are cou-
pled, due to the reaction terms rads (equation (4.29)), rdes (equation (4.30)) and
rfix (equation (4.31)). Since these reaction rates are also nonlinear functions of
the concentration suspended bacteria (because of the Langmuir isotherm in equa-
tion (4.61)), Newton’s method is used for the solution of the differential equations
containing these reaction rates. By doing so, the three various concentrations of
bacteria come together in one matrix-vector system.

This leads to two matrix-vector systems: one for the fixation fluid and one for
the three various concentrations of bacteria.

The time span has been divided into equisized discrete time steps. First, the
differential equation for the concentration of fixation fluid is solved. Next, the
solution to the coupled system of differential equations for the various concentrations
of bacteria is computed. Some numerical results can be found in the next section.

4.4 Results

In this section, the analytical solution is visualized for some particular times and
locations. For one particular time, we show the comparison between the analytical
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solution and numerical simulations. The length of the column L has been chosen in
such a way that relation (4.59) holds.

The solution expressed by equations (4.67), (4.68) and (4.69) is visualised in Fig-
ure 4.2 and 4.3. These figures display the concentration of suspended, adsorbed and
fixated bacteria at several times and locations. For this visualisation the following
values have been used: α = 1, β0 = 0.5, Cmax = 1, T0 = 0.5 and the length of the
column L = s(T2).
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Figure 4.2: The concentration of suspended, adsorbed and fixated bacteria as a
function of time at x = 0, 0.5, 1 and 1.3333m.

The top left graph of Figure 4.2 shows the concentrations at the inlet. The
concentration of suspended bacteria Cbac and the concentration fixation fluid Cfix

at the inflow boundary are prescribed in boundary conditions (4.24) and (4.25).

From equations (4.61), (4.68) and (4.69) the other concentrations (C
bac

and Sbac)
can be found.

The top right graph of Figure 4.2 shows the concentrations at x = 0.5m. The
front of the fixation fluid starts moving at t = T0 = 0.5h, at a velocity q = 1m/h. At
t = 1h the front of the fixation fluid reaches the position x = 0.5m. At that time and
location, both suspended and temporarily adsorbed bacteria are present. A part of
the temporarily adsorbed bacteria is fixated by the fixation fluid. That explains the

sudden change in the concentration of temporarily adsorbed bacteria C
bac

. This is
also in accordance with equation (4.68). This equation contains the multiplication
factor (1 − β0C

fix). At t = 1h the concentration of fixation fluid changes from 0
into 1 at x = 0.5m and consequently the multiplication factor changes from 1 into

0.5. As a result, C
bac

changes from 0.5 into 0.25. At t = 1h, the concentration of
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fixated bacteria Sbac changes from 0 into 0.25. Since Cbac does not increase in time
after t = 1h, Sbac does not change anymore.

At x = 1m, the pulse bacteria is fully overtaken by the fixation fluid. Hence, the

maximum of C
bac

is 0.25 in the bottom graphs of Figure 4.2. Whereas the graphs
in Figure 4.2 have different maxima for the concentration of temporarily adsorbed
bacteria, the maximum of the concentration of fixated bacteria is the same for all
the graphs. This has the following reason. When there is no fixation fluid present,
the bacteria are not fixated, but as soon as there is fixation fluid present, a part
of the bacteria is fixated. According to equation (4.69), the maximum depends on
the maximum of Cbac, which is in all cases equal to 1. The bottom right graph of
Figure 4.2 shows the concentrations at the outflow boundary.
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Figure 4.3: The concentration of suspended, adsorbed and fixated bacteria as a
function of location at several times.

The top left graph of Figure 4.3 shows the initial situation: all concentrations
are equal to 0 as prescribed in (4.23). The top right graph of Figure 4.3 shows the
situation in which the pulse bacteria is partly overtaken by the fixation fluid. At
t = 1h the front of the fixation fluid is located at x = 0.5m. The fixation fluid causes
a sudden change in the concentration of temporarily adsorbed bacteria as was also
observed in Figure 4.2.

At t = 2h the front of the bacterial pulse reaches the outflow boundary as is dis-
played in the bottom left graph of Figure 4.3. The bottom right graph of Figure 4.3
shows the final situation: all non fixated bacteria are flushed out and only the per-
manently adsorbed bacteria stay in the domain, which will provide the hydrolysis
of urea.
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As a result of the conservation of bacteria, at each time, the number of bacteria
in the domain must be equal to the number of bacteria that flowed in minus the
bacteria that flowed out:

∫ t

0

qcindt̄−
∫ t

0

qcoutdt̄ =

∫

Ω

(Cbac + C
bac

+ Sbac)dΩ, (4.72)

where cin is the inflow concentration and cout is the concentration at the outflow
boundary. This condition holds, as is required.

Furthermore, the analytical solution is compared to the results of the numerical
simulations. This is presented for one particular time: t = 1h, but note that this
could have been done for any other time. The numerical simulations have been
done for several values of the reaction constants kads, kdes and kfix. Figure 4.4
shows the results of this comparison. As a value for the reaction constants we use
the following exemplary values: K := kads = kdes = kfix = 0.01 s−1(= 36h−1),
K := kads = kdes = kfix = 0.1 s−1(= 360h−1), K := kads = kdes = kfix = 1 s−1(=
3, 600h−1) and K := kads = kdes = kfix = 10 s−1(= 36, 000h−1). The following
time step and element size have been chosen: ∆x = 0.001m, ∆t = 0.001h.
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Figure 4.4: Comparison of the analytical solution (A) at t=1h with the solutions
from numerical simulations (N) for several values of the adsorption, desorption and
fixation constant (K = kads = kdes = kfix). The following values have been assigned
to the constants: K = 0.01 s−1 (top left), K = 0.1 s−1 (top right), K = 1 s−1

(bottom left), K = 10 s−1 (bottom right). The graphs of the analytical solutions
are marked with an A and the graphs of the numerical solutions are marked with
an N .

From Figure 4.4 it can be seen that, upon increasing the reaction constants,
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the numerical solution approaches the analytical solution. There is hardly any dif-
ference between the graph for K = 1 s−1 and the graph for K = 10 s−1 in Figure 4.4.

Figure 4.5 shows the results of spatial and temporal refinement. The time and
place steps have been decreased two times by a factor of 2. It follows that in
most cases the numerical solution approaches the analytical solution even more for
smaller time and place steps, although it is not necessarily a result of refining.
Each step of refining should result into a better approximation of the exact solution
and in the limit, the numerical solution will equal the exact solution with given
reaction rate constants. Note that in this case the exact solution is not the analytical
(instantaneous) solution but the solution to the model with finite reaction rates,
with K = 10 s−1 as a reaction constant. Therefore, the numerical solution with
K = 10 s−1 will not converge to the analytical solution, presented in this chapter
for instantaneous reactions, as ∆t and ∆x tend to zero.
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Figure 4.5: Comparison of the analytical solution at t=1h with the numerical so-
lution for decreasing time and place steps. Some details of the graph in the large
subplot are given in the four subplots below. The number between brackets is the
refinement factor. Again, the analytical solutions are marked with an A. In the
numerical solutions, the reaction constant has been chosen to be K = 10 s−1.
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4.5 Discussion and Conclusions

A model has been derived for the placement of bacteria. The model contains the
most important phenomena of the transport of bacteria: advection, dispersion, ad-
sorption, desorption and fixation. Of course, other phenomena can be added, like
decay, growth and systematic motion of bacteria.

The model needs to be simplified in order to be able to construct an analytical
solution. The analytical solution is only valid in 1D and can be used in cases in
which there are variations in only one direction. Further, the pore water velocity
and the porosity have been chosen to be constant. While deriving this model, it
turned out that the shock speed needs to be constant until time T2 to avoid violation
of conservation of mass. To avoid unphysical behaviour, the desorption, adsorption
and fixation rate should be chosen carefully from a mathematical point of view.

This choice to simplify has been made to avoid a complex model, including a
complicated coupling between the differential equation for the concentration of sus-
pended bacteria, the pore water velocity and the porosity. However, since bacteria
are fixated, the porosity decreases and that will result into a somewhat larger pore
water velocity. The pore water velocity, in turn, influences the concentration of
suspended bacteria. The influence of these effects depends on the volume of fixated
bacteria. If this volume is not too large, this simplification will only lead to a small
error. However, if the pores are almost fully filled with bacteria, this effect really
should be taken into account. Although it is difficult (if ever possible) to find an
analytical solution for the case that these differential equations are coupled, it is
possible to find a numerical solution. [90] and [91] (Chapter 2 and 3) deal with a
decreasing porosity (in these papers, due to precipitation) and its effect on the flow,
and obtain a numerical solution to the system of coupled differential equations.

In the model, the pore water velocity v is assumed to be a constant. Due to
a decreasing porosity effect, this might differ from reality as is explained in the
previous paragraph. In the case study, the pore water velocity has been chosen to
be v = 1m/h. The solutions can easily be adapted for other values of v. After
replacing all x-values by x/v, the results will be the same. The question is whether
this is realistic. For example, the velocity might have an influence on the adsorption,
desorption and fixation. Real world experiments should be carried out to examine
the effect of the velocity on the processes.

In the case study, the reaction constants are equal. The larger the reaction
constant, the more this reaction dominates the other reactions. If, for example, the
reaction constant of the fixation reaction is large compared to the reaction constant
of the adsorption reaction, the bacteria that are being adsorbed almost immediately
will be fixated. Until the equilibrium of the fixated bacteria is reached, there will be
far more fixated bacteria than adsorbed bacteria. If, on the other hand, the fixation
constant is small, there will be more adsorbed bacteria than fixated bacteria. The
fixated bacteria will not reach its equilibrium if the pulse of bacteria is too short.

Another simplification is the ignoring of dispersion and diffusion. Due to this,
the front of the bacteria and the fixation fluid is very steep. Adding dispersion
and diffusion to the model will result into smoother graphs. By solving the model
equations numerically, always some numerical diffusion will be introduced. The finer
the mesh and the smaller the time steps, the smaller the numerical diffusion. From
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Figure 4.5 it can be seen that the numerical solution is smoother than the analytical
one (note that this is not only a result of the numerical diffusion but also of the
finite reaction kinetics) and that the refinements result into a steeper front.

The ratio of the fixated bacteria β versus the adsorbed bacteria depends on the
concentration of the fixation fluid, but it may also depend on the properties of the
microorganisms, the pH and the porous medium. Since the fixation fluid has a large
influence on the fixation of the bacteria and hence on β, a simple linear relation
between β and the concentration of the fixation fluid has been chosen. However,
it is likely that this ratio also depends on the flow velocity. The larger the flow
velocity, probably the more bacteria are released from fixation and that will lead to
a smaller β. Additional research needs to be carried out to find a good expression
for this ratio. It is crucial to find a good estimation, since in the model, β prescribes
the amount of fixated bacteria, and finally these bacteria provide the production of
calcium carbonate, which is the aim of the Biogrout process.

In the case study, the Langmuir isotherm has been chosen as the adsorption
isotherm. Real life experiments should point out whether this is a good choice for
the transport of bacteria in combination with fixation.

The last simplification, that is made in order to be able to construct an analyti-
cal solution, is that the equilibrium between suspended bacteria, adsorbed bacteria
and fixated bacteria is instantaneous. Therefore, no kinetics are involved and con-

sequently, the concentration of adsorbed bacteria (C
bac

) and the concentration of
fixated bacteria (Sbac) are a direct function of the concentration of suspended bac-
teria (Cbac). Especially when the flow velocity is low, the equilibrium reaction is
fast with respect to the transport. In that case, an instantaneous equilibrium can
be assumed. However, since the bacteria are injected in the soil, the flow velocity
will be not very low. In that case, this simplification might be not realistic and a
non instantaneous equilibrium should be considered. In Figure 4.4, some results are
displayed for an increasing value of the reaction constants. For a small reaction con-
stant, the result clearly differs from the solution for an instantaneous equilibrium.
The larger the reaction constants are, the more the numerical solution approaches
the analytical solution, and hence, the instantaneous case.

Constructing an analytical solution contributed to the derivation of a physically
consistent model. Although some simplifications might be not realistic, the analyti-
cal solution gives a good idea of what the distribution of bacteria in the aquifer looks
like. The analytical solution can also be used as a benchmark for the numerical solu-
tion. For increasing reaction constants, the numerical solution should approximate
the analytical solution. This turns out to be the case (see Figure 4.4). Refinement
of the place and time step results into smaller numerical errors and in most cases
in a better convergence to the analytical solution. In future, the analytical solution
will be compared to real life bacterial placement experiments.
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Abstract

We present a mathematical model for Biogrout, which is a technique for soil re-
inforcement that is based on Microbially Induced Carbonate Precipitation. The
model deals with the entire process, consisting of fixation of bacteria, as well as
of the subsequent soil reinforcement. This chapter deals with the coupling of two
earlier models for bacterial placement and reinforcement, where the construction of
the model is discussed, as well as numerical results. Further, we present analytical
solutions for the constant flow velocity case. The model is based on the assumption
that the porous medium is stiff.

5.1 Introduction1

The first step in the Biogrout process is the injection of bacteria. The bacteria
will adsorb onto the porous matrix. That gives retardation. To fixate the bacteria
onto the porous matrix, a fixation fluid is injected. This fixation fluid is a solution
with a high salinity, and it will overtake the weakly adsorbed bacteria and strongly
fix them onto the solid matrix. In [92] (Chapter 4), a model has been derived to
describe the placement of the bacteria.

The second part in the Biogrout process is the injection of reactants. Urea
(CO(NH2)2) and calcium chloride (CaCl2) are injected into the soil. The bacte-
ria catalyse the hydrolysis of urea, and ammonium (NH+

4 ) and carbonate (CO2−
3 )

are formed. In the presence of calcium ions (Ca2+), the carbonate precipitates as
calcium carbonate (CaCO3). In [97], the reaction equations are discussed in more
detail. The hydrolysis reaction is given by

CO(NH2)2 + 2H2O
bacteria−−−−−→ 2NH+

4 +CO2−
3 . (5.1)

The precipitation of calcium carbonate happens in several steps, depending on the
pH. The overall reaction equation for the precipitation is given by:

Ca2+ +CO2−
3 → CaCO3(s). (5.2)

Combining the hydrolysis reaction equation (5.1) and the reaction equation for the
precipitation of calcium carbonate (5.2) gives the overall Biogrout reaction equation:

CO(NH2)2 +Ca2+ + 2H2O(l) → 2NH+
4 +CaCO3(s). (5.3)

The side-product ammonium (NH+
4 ) has to be removed. The solid calcium carbonate

forms bridges between the sand grains. These bridges cause an increase in the
strength and stiffness of the soil.

A model for the transport and reaction of the reactants and the formation of
calcium carbonate has been proposed in [90] and [91] (Chapter 2 and 3). In [90,
91], a homogeneous bacterial activity was assumed, which is probably not realistic.
Therefore, in [92] (Chapter 4) a model was derived that describes the placement of
the bacteria. Solving the model equations gives the distribution of the bacteria. In

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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this chapter, these two models are combined to end up with a model that describes
the placement of bacteria as well as the transport of the reactants and the formation
of calcium carbonate. In Section 5.2, the (partial differential) equations are given for
both models and shortly discussed. Further, analytical solutions are presented that
are valid under idealized conditions. In Section 5.3, it is described which numerical
methods are used to solve the model equations. Some results of the numerical
simulations with the combined model are presented in Section 5.4 as well as a
comparison with the model in which a homogeneous bacterial activity was assumed.
Some discussion and conclusions can be found in Section 5.5.

5.2 Mathematical Model

In this section, the model equations are given for the Biogrout process. In Subsection
5.2.1, the (partial differential) equations are given for the placement of the bacteria,
whereas the equations for the precipitation of calcium carbonate are presented in
Subsection 5.2.2. Finally, some analytical solutions are derived.

5.2.1 Model equations for the placement of the bacteria

The first step in the Biogrout process is the injection of bacteria. These bacteria will
partly adsorb onto the solid matrix. This adsorption gives retardation. Next, a fluid
with high salinity is injected into the subsoil. This solution acts as a fixation fluid to
the bacteria. This fluid will overtake the adsorbed bacteria and strongly fixate them
onto the matrix of the porous media. When, later on, the suspended bacteria are
flushed away, the fixated bacteria stay in place and will play an important role in the
precipitation of calcium carbonate, which is the second part in the Biogrout process.
For completeness, we give the model equations for the placement of bacteria, as
derived in [92] (Chapter 4).

The model for the placement of bacteria contains three phases of bacteria: bac-
teria in suspension, adsorbed bacteria and fixated bacteria. Concentration Cbac is

defined as the bacterial concentration in suspension, concentration C
bac

is the con-
centration of adsorbed bacteria and Sbac is the concentration of fixated bacteria.
Note that, for convenience, the concentrations C

bac
and Sbac have the same unit as

Cbac, although the adsorbed and fixated bacteria are no longer in suspension, but
adsorbed or fixated onto the porous matrix. The following differential equations are
derived for the concentrations of the bacteria:

∂
(

θCbac
)

∂t
= ∇ ·

(

Dbacθ∇Cbac
)

−∇ ·
(

qCbac
)

− θrads + θrdes, (5.4)

∂
(

θC
bac
)

∂t
= θrads − θrdes − θrfix, (5.5)

∂
(

θSbac
)

∂t
= θrfix, (5.6)

In these equations, θ is the porosity, Dbac is the dispersion tensor, q is the Darcy
flow velocity which relates to the pore water flow velocity v as q = vθ, rads is
the adsorption reaction rate, rdes is the desorption reaction rate and rfix is the
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fixation reaction rate. The left-hand side of equations (5.4), (5.5) and (5.6) models
accumulation, the first term at the right-hand side of equation (5.4) represents
the dispersion and diffusion of the bacteria and the second term is the advection
term. Since the adsorbed and fixated bacteria can not be transported, there are no
dispersion/diffusion and advection terms in equations (5.5) and (5.6). The other
terms in equations (5.4), (5.5) and (5.6) stand for the adsorption, desorption and
fixation reactions. These equations show that it is assumed that only adsorbed
bacteria are fixated (only equation (5.5) and (5.6) contain a fixation reaction term).

In the case of an equilibrium-controlled adsorption, the concentration of the
adsorbed species tend to the adsorption isotherm. In the Biogrout process, there
are both temporarily adsorbed and permanently adsorbed (fixed) bacteria. The
adsorption isotherm ϕ(Cbac) depends on the concentration of bacterial cells in sus-
pension (Cbac) and may also depend on properties of the microorganisms, the porous
medium and the pH. It has been assumed that the equilibrium of the permanently
adsorbed bacteria is equal to βϕ(Cbac) and that the equilibrium of the temporarily
adsorbed bacteria is equal to (1− β)ϕ(Cbac). The fraction β ranges between 0 and
1. Its value depends on the concentration of the fixation fluid Cfix, but may also
depend on properties of the microorganisms, the pH and the porous medium.

As a driving force for the adsorption reaction, the difference between the adsorp-
tion isotherm and the concentration of the adsorbed (temporarily or permanently)
bacteria is used. Adsorption only takes place when the adsorption isotherm is larger
than the concentration of the adsorbed and fixated bacteria. That gives the follow-
ing adsorption reaction rate:

rads = kads

(

ϕ(Cbac)−
(

C
bac

+ Sbac
))

+
, (5.7)

where kads is the adsorption reaction rate constant. The notation (.)+ considers the
positive part of an expression and has been defined as (.)+ := max(0, .).

In the same way, the driving force for the fixation reaction is the difference be-
tween concentration S and its equilibrium βϕ(Cbac) and fixation only takes place if
Sbac is smaller than its equilibrium. We multiply this driving force by the concen-

tration of adsorbed bacteria C
bac

to guarantee that bacteria only can be fixated if
there are adsorbed bacteria present, hence

rfix = kfixC
bac (

βϕ(Cbac)− Sbac
)

+
. (5.8)

In this equation, kfix is the fixation reaction constant.
As a reaction rate for desorption (the opposite phenomenon of adsorption), the

following equation was derived:

rdes = kdes

((

C
bac − (1− β)ϕ(Cbac)

)

+
(

Sbac − βϕ(Cbac)
)

−

)

+
, (5.9)

where kdes is the desorption reaction rate. The notation (.)− has been defined
as (.)− := min(0, .), which implies that only the negative part of an expression is
considered. Again, the driving force is the difference between the concentration of

temporarily and permanently adsorbed bacteria (respectively C
bac

and Sbac) and
their equilibria (respectively, being (1− β)ϕ(Cbac) and βϕ(Cbac)). Desorption only
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takes place if the difference is positive. Otherwise, it would be adsorption. The
term (Sbac − βϕ(Cbac)) is only considered if it is negative for the following reason:
Consider the case that Sbac is larger than its equilibrium, Sbac > βϕ(Cbac) (which

can happen, if Cbac is decreasing) and that C
bac

is smaller than its equilibrium,

C
bac

< (1 − β)ϕ(Cbac), while the sum of adsorbed bacteria is larger than the ad-

sorption isotherm, C
bac

+ Sbac > (1− β)ϕ(Cbac) + βϕ(Cbac) = ϕ(Cbac). The latter
implies that there is a driving term for desorption and that the concentration of

temporarily adsorbed bacteria C
bac

will decrease. However, this temporarily ad-
sorbed bacteria concentration is already smaller than its equilibrium, which would
give adsorption rather than desorption. Hence, if Sbac is larger than its equilibrium,
the difference should not contribute to desorption. That explains why this difference
is only taken into account if it is negative.

The ratio β depends on the concentration of fixation fluid Cfix. As a relation
between β and the concentration of fixation fluid, the following Monod equation is
used:

β = β0
Cfix

Km,fix + Cfix
, (5.10)

for some positive constant β0.
For this concentration of fixation fluid, the following partial differential equation

is derived
∂(θCfix)

∂t
= ∇ · (Dfixθ∇Cfix)−∇ · (qCfix), (5.11)

where, Dfix is the dispersion tensor. The left-hand side of this equation models
accumulation, the first term at the right-hand side stands for dispersion and diffusion
and the last term is the advection term.

For the simulations in this chapter, a Langmuir adsorption isotherm is used, as
given in [100]:

ϕ(Cbac) =
αCmaxC

bac

1 + αCbac
, (5.12)

where the positive constant α denotes the Langmuir constant and Cmax is the max-
imum adsorption capacity.

A differential equation for the flow is given in the next subsection.

5.2.2 Model equations for the precipitation of calcium car-

bonate

After the placement of bacteria, urea (CO(NH2)2) and calcium chloride (CaCl2)
are injected into the soil. The bacteria provide the hydrolysis of urea according
to reaction (5.1). Carbonate (CO2−

3 ) and ammonium (NH+
4 ) are formed. The

carbonate precipitates with the calcium (Ca2+) as calcium carbonate (CaCO3), see
precipitation reaction (5.2). The solid calcium carbonate causes a (slight) decrease in
porosity and in permeability, which has an influence on the flow and the pressure.
The hydrolysis and precipitation reactions influence the density of the solution.
In [90, 91], partial differential equations are given for the concentration of urea,
calcium chloride, ammonium chloride and calcium carbonate, for the pressure and
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the flow, as well as relations for the porosity, permeability and density of the fluid.
In this subsection we repeat them and shortly discuss them.

We start with the partial differential equations for the aqueous species:

∂(θCi)

∂t
= ∇ · (θD · ∇Ci)−∇ · (qCi) + niθrhp. (5.13)

In this equation, θ is the porosity, Ci is the dissolved concentration of species i,
i ∈ {urea, Ca2+, NH+

4 } with M(=kmol/m3) as a unit, D is the dispersion tensor,
q is the Darcy velocity, ni is a constant that deals with the stoichiometry in the
biochemical reaction equation (5.3) and rhp is the reaction rate of the production of
calcium carbonate, which is a function of the urea concentration and the bacterial
concentrations. From the stoichiometry of reaction (5.3), the values of ni for the
various aqueous species are given by: nurea = −1, nCa2+ = −1, and nNH+

4
= 2.

The left-hand side of equation (5.13) stands for the accumulation. In the right-
hand side, we have terms for dispersion/diffusion, for the advection and for the
biochemical reaction (5.3).

For the reaction rate rhp of equation (5.3), the following relation has been used:

rhp = vmax
Curea

Km,urea + Curea
(Cbac + C

bac
+ Sbac). (5.14)

Here, vmax is the bacterial conversion rate constant and Km,urea ≥ 0 is the satura-
tion constant.

For the concentration of the solid calcium carbonate CCaCO3 , we have the fol-
lowing differential equation:

∂CCaCO3

∂t
= mCaCO3

θrhp. (5.15)

In this equation, mCaCO3
is the molar mass of calcium carbonate, which is used to

convert moles into mass. Since it has been assumed that the calcium carbonate is
not transported, there are no transport terms in the differential equation. Hence,
equation (5.15) only contains an accumulation term and a reaction term.

The solid calcium carbonate that is formed in the pores, causes a decrease in
porosity. The difference (CCaCO3(t) − CCaCO3(0)) gives the amount of calcium
carbonate that has been formed per unit of volume. Division by the density of
calcium carbonate ρCaCO3

gives the decrease in pore volume per unit of volume.
That leads to the following relation between the calcium carbonate concentration
and the porosity:

θ(t) = θ(0)− CCaCO3(t)− CCaCO3(0)

ρCaCO3

. (5.16)

For the flow, we use the continuity equation, that was derived in [93] (Chapter
6), which is an adaptation of the differential equation derived in [91] (Chapter 2).

∇ · q = Kθrhp. (5.17)

The constant K has been defined as

K :=

(

mCaCO3

ρCaCO3

− (1− Vs)

)

. (5.18)
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In this definition, 1− Vs is the decrease of liquid volume as a result of the biochem-
ical reaction (5.3). In [93] (Chapter 6), we compared equation (5.17) to another
differential equation for the flow:

∂ (ρlθ)

∂t
= −∇ · (ρlq)−mCaCO3

θrhp. (5.19)

The results were very similar, at least in 1D, but equation (5.17) turned out to be
more stable than equation (5.19). We also note that equation (5.17) is consistent
with the Oberbeck-Boussinesq approximation as rhp → 0, i.e. in absence of the
reaction.

As a relation between the flow and the pressure p, Darcy’s law is used, [100]

qx = −kx
µ

∂p

∂x
, (5.20)

qy = −ky
µ

∂p

∂y
, (5.21)

qz = −kz
µ

(

∂p

∂z
+ ρlg

)

. (5.22)

In Darcy’s law, ki is the intrinsic permeability in the various coordinate directions,
i ∈ {x, y, z}, µ is the viscosity of the fluid, ρl is the density of the fluid and g is the
gravitational constant.

The Kozeny-Carman equation is used to determine the intrinsic permeability.
This equation is an empirical relation between the intrinsic permeability and the
porosity, that is commonly used in ground water flow modelling (see [7]):

k = kx = ky = kz =
(dm)2

180

θ3

(1− θ)
2 . (5.23)

In this relation, dm is the mean particle size of the sand.

For the fluid density, the empirical relation that is given in [91] is used:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 . (5.24)

The bacteria hardly influence the density. Hence, they are not taken into account
in the density calculation.

Substituting equations (5.20), (5.21) and (5.22) into equation (5.17), using re-
lation (5.23), gives a partial differential equation for the pressure, which can be
used to solve for the flow pattern if the boundary conditions are given in terms of
pressure, or if density differences influence the flow.

∇ · q = ∇ ·
(

−k

µ
(∇p+ ρlgez)

)

= Kθrhp. (5.25)

Here, ez is the unit vector in vertical direction, taken positive upwards.
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5.2.3 Boundary Conditions and Initial Conditions

We consider a one dimensional configuration, which corresponds to a column. We
take a line with a length of 1m, with inflow at the left-hand side (Γ1) and outflow
at the right-hand side (Γ2).

The injection strategy exists of 3 phases. During phase 1, from time t=T0=0h
until time t=T1, bacteria are injected. During phase 2, from time t=T1 until time
t=T2, a fixation fluid is injected. The third phase is from time t=T2 until time
t=Tend. During this phase, urea and calcium chloride are injected.

Table 5.1 gives the boundary conditions for the one dimensional configuration.

Table 5.1: Boundary conditions for the various concentrations and the flow for the
one dimensional configuration.

Γ1 Γ2

Cbac (Dθ∇C − qC) · n =

{

qincin phase 1
0 else

∂C
∂n = 0

Cfix (Dθ∇C − qC) · n =

{

qincin phase 2
0 else

∂C
∂n = 0

Curea (Dθ∇C − qC) · n =

{

qincin phase 3
0 else

∂C
∂n = 0

CCa2+

(Dθ∇C − qC) · n =

{

qincin phase 3
0 else

∂C
∂n = 0

CNH+
4 (Dθ∇C − qC) · n = 0 ∂C

∂n = 0

p/q q = qin p = 105

Initially, all concentrations are equal to zero. The initial porosity is equal to
some constant θ0. Since the partial differential equations for the concentration of
urea and the concentration of calcium ions are the same, as well as the initial and
boundary conditions, both concentration–distributions are identical. Therefore, we
only consider the concentration of urea. We use the parameter values given in Table
5.2.

5.2.4 Analytical solution

In this subsection, an analytical solution is derived for a simplified version of sys-
tem (5.4)-(5.18). For the analytical solution, we restrict ourselves to one dimension.
Furthermore, the reaction constants are infinitely large: kads, kdes, kfix → ∞ and
dispersion and diffusion are neglected: Di = 0 for i ∈ {bac, fix, urea, Ca2+, NH+

4

}. The decrease of the porosity and the change of liquid volume as a result of the
reaction are also neglected: θ(x, t) = θ0 and K = 0. As we consider one dimensional
flow without sinks and sources and a constant porosity, the pore water velocity v is
constant.

The analytical solution for the concentration of suspended bacteria Cbac, the

concentration of temporarily adsorbed bacteria C
bac

and the concentration of fixated
bacteria Sbac are derived in [92] (Chapter 4). We give the analytical solution for
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Table 5.2: The values that are taken for the various parameters.
αbac = 0.001 m, αfix = 0.001 m,
αurea = 0.001 m, αCa2+ = 0.001 m,
αNH+

4
= 0.001 m, Dm,bac = 10−9 m2/s,

Dm,fix = 10−9 m2/s, Dm,urea = 10−9 m2/s,
Dm,Ca2+ = 10−9 m2/s, Dm,NH+

4
= 10−9 m2/s,

α = 0.5 [1], Cmax = 1 [1],
β0 = 0.505 [1], Km,urea = 0.01 kmol/m3,
Km,fix = 0.01 kmol/m3, mCaCO3

= 100.1 kg/kmol,
ρCaCO3

= 2710 kg/m3, Vs = 0.97035 m3/kmol,
dm = 200 µm, g = 9.81 m/s2,
θ0 = 0.35 [1], qin = 0.35 m/h,
vmax = 0.72 kmol/m3/h, cin = 1 [1] or kmol/m3,
T1 = 0.5 h, T2 = 1.0 h,
Tend = 2.0 h.

Cbac:

Cbac =



































1 for (t, x) ∈ (0, T1)× (0, s(t))∪
∪(T1, T3)× (xR(t), s(t));

0 for (t, x) ∈ (T1,∞)×
×(0, xL(t)) ∪ R

+ × (s(t),∞);

1
α

(

√

(1−β(1))αCmax
x

t−T1

v− x
t−T1

− 1

)

for (t, x) ∈ (T1,∞)×
×(xL(t),min(xR(t), s(t))),

(5.26)
where the shock speed s(t) is given by

s(t) =















vt
1+ϕ(1) for t < T3;
v(1+α)T3

1+α+αCmax
+

+
∫ t

T3

v
√

(1−β(1))αCmax(t̄−T1)√
(1−β(1))αCmax(t̄−T1)+αCmax

√
s(t̄)−(t̄−T1)

dt̄ for t > T3,

(5.27)

and the location of the endpoints of the constant states are determined by

xL =
v(t− T1)

1 + (1− β(1))αCmax

; (5.28)

xR =
v(t− T1)

1 + (1−β(1))αCmax

(1+α)2

. (5.29)

Time T3 is the time at which the shock speed of the bacteria changes, which is
calculated from

T3 =

(1+α)2

αCmax
+ (1 + α)

α+ β(1)
T1. (5.30)
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The concentrations of temporarily adsorbed bacteria C
bac

and fixated bacteria
Sbac are determined as a function of the concentration of suspended bacteria Cbac:

C
bac

= (1− β(cfix))
αCmaxC

bac

1 + αCbac
, (5.31)

Sbac = max
0≤t̄≤t

{

β(cfix)
αCmaxC

bac

1 + αCbac

}

, (5.32)

see [92] (Chapter 4) for a derivation.
In [92], the ratio β is given by β(Cfix) = β0C

fix. In this chapter we use the

more complex but also more physical relation β(Cfix) = β0
Cfix

Km,fix+Cfix , see relation

(5.10). Here, β0 has a somewhat larger value, such that the value of β(1) is the same
as for the case in [92].

In this chapter, the fixation fluid is only injected for a finite time, while in [92]
(Chapter 4), the injection of fixation fluid is never stopped. In this chapter, a solu-
tion containing Ca2+ is being injected after the injection of fixation fluid. The Ca2+

is needed for the precipitation reaction but also acts as a fixation fluid, due to its
high salinity. Hence, the solution in [92] is still valid for this study.

The analytical solution for the concentration of urea is constructed with the
method of characteristics. Along characteristics, we have

d

dt
Curea(t, x(t)) = Curea

t + Curea
x x′(t) =

= −vmax
Curea

Km,urea + Curea

(

Cbac + C
bac

+ Sbac
)

, (5.33)

with
x′(t) = v. (5.34)

The injection of the urea starts at time T2. This time has been chosen in such
a way that the urea does not overtake the non fixated bacteria within the domain.
We define xfu as the position of the urea front. If xfu, xL < L, it should hold that:

xfu = v(t− T2) < xL. (5.35)

Hence, everywhere in the domain where the urea concentration is non zero, only
fixated bacteria are left. The length of the domain L has been chosen such that
finally a constant concentration of fixated bacteria is reached, which is the case
if L < s(T3). Therefore, on the locations where the concentration of urea is non
negative, it holds that

Cbac + C
bac

+ Sbac = Sbac = β(1)
αCmax

1 + α
, (5.36)

which is a constant. This constant is substituted into equation (5.33).
A solution to equation (5.33) is the trivial solution:

Curea(x, t) = 0. (5.37)
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The non trivial solution can be found by application of separation of variables on
equation (5.33), to give the following implicit solution:

Km,urealn

(

Curea
0

Curea

)

+ Curea
0 − Curea = vmaxβ(1)

αCmax

1 + α
(t− t0), (5.38)

with Curea
0 the concentration at time t0.

Figure 5.1 displays the (x-t)-diagram for the concentration of urea.

(0,T
2
) x →

t
↑

←
C(x,T

2
)=0

←C(0,t)=1 ← x=v(t−T
2
)

C=0
 ↓

K m
 ln

(C 0
/C

)+
C 0

−C
=ω

(t−
t 0
)↑

Figure 5.1: The (x-t)-diagram for the concentration of urea. In this diagram we

have that C = Curea, C0 = Curea
0 and ω = vmaxβ(1)

αCmax

1+α .

The factors that determine the concentration of urea at time t and location x for
the non trivial case, are the initial concentration and the time difference between
time t and the starting point of the characteristic on the t−axis t0. With equation
(5.34) we find that this time difference equals t− t0 = x/v and hence

Km,urealn

(

Curea
0

Curea

)

+ Curea
0 − Curea = vmaxβ(1)

αCmax

1 + α
(t− t0)

= vmaxβ(1)
αCmax

1 + α

x

v
. (5.39)
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That implies that the concentration of urea has a fixed value on a fixed position x
for a time t > T2 + x/v. Further, Curea = 0 for t < T2 +

x
v . These identities will be

used in the construction of the solution for the calcium carbonate concentration.
The partial differential equation for the concentration of calcium carbonate is

given in equation (5.15), which contains reaction rate rhp. This reaction rate is
given in equation (5.14). Substituting relation (5.36) in this rate, gives the following
differential equation for the concentration of calcium carbonate:

∂CCaCO3

∂t
= mCaCO3

θrhp = mCaCO3
θvmaxβ(1)

αCmax

1 + α

Curea

Km,urea + Curea
. (5.40)

Integrating this equation leads to

CCaCO3(x, t) =

∫ t

0

∂CCaCO3

∂t̄
dt̄

= mCaCO3
θvmaxβ(1)

αCmax

1 + α

∫ t

0

Curea

Km,urea + Curea
dt̄. (5.41)

Since it holds that Curea = 0 for 0 ≤ t̄ < T2 + x/v and since Curea is equal to a
constant for t̄ ≥ T2 + x/v on a fixed position x, equation (5.41) becomes

CCaCO3(x, t) =

=

{

0 for t < T2 +
x
v ;

mCaCO3
θvmaxβ(1)

αCmax

1+α

∫ t

T2+
x
v

Curea

Km,urea+Curea dt̄; for t ≥ T2 +
x
v .

=

{

0 for t < T2 +
x
v ;

mCaCO3
θvmaxβ(1)

αCmax

1+α
Curea

Km,urea+Curea (t− T2 − x
v ); for t ≥ T2 +

x
v .

= mCaCO3
θvmaxβ(1)

αCmax

1 + α

Curea

Km,urea + Curea
(t− T2 −

x

v
)+. (5.42)

In the derivation of these analytical solutions we substituted relation (5.36) into
rate (5.14). According to this equation, the reaction rate is related to the concen-
tration of urea via a Monod equation. For completeness, we consider the case that
the rate is linear in the urea concentration. Then, we have

rhp = vmaxβ(1)
αCmax

1 + α
Curea. (5.43)

Then, the analytical solution for the concentration of urea and calcium carbonate
reads as:

Curea(x, t) = Curea
0 (x− vt) exp{−vmax

αCmax

1 + α
t},

=

{

0 for t < T2 + x/v;

exp{−vmax
αCmax

1+α
x
v } for t ≥ T2 + x/v,

(5.44)

CCaCO3(x, t) =











0 for t < T2 +
x
v ;

(t− T2 − x/v)vmaxβ(1)
αCmax

1+α ·
·θ exp{−vmax

αCmax

1+α
x
v } for t ≥ T2 +

x
v .

(5.45)
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5.3 Numerical Methods

The differential equations for the pressure, the flow and the concentrations of fixation
fluid, bacteria and the aqueous species are solved by the Standard Galerkin Finite
Element Method. The weak formulations have been derived by multiplication by
a test function η ∈ H1(Ω) and integration over the domain Ω. The Newton-Cotes
quadrature rules are used for the development of the element matrices and vectors.
Furthermore, line elements are used, as well as linear basis functions. For the time
integration, the Euler Backward method is used.

The differential equations for the concentrations of bacteria (5.4), (5.5) and
(5.6) are coupled, due to the reaction terms rads (5.7), rdes (5.9) and rfix (5.8).
Due to the Langmuir isotherm (5.12), the differential equations are nonlinear in the
concentration of suspended bacteria Cbac. Hence, Newton’s method is used to solve
for the differential equations for the concentrations of bacteria. By doing so, the
three various concentrations of bacteria come together in one matrix-vector system.

Since the differential equation for the concentration of urea is also nonlinear in
the concentration, due to the reaction term, Newton’s method is used to calculate
the concentration of urea.

The partial differential equation for the concentration of calcium carbonate,
equation (5.15), can be considered as an ordinary differential equation in each grid
point. To calculate the concentration of calcium carbonate, the following scheme is
used:

(CCaCO3)n+1 = (CCaCO3)n +∆tmCaCO3θnrn+1
hp , (5.46)

which uses the porosity θ from the previous time step and the reaction rate rhp
(5.14) from the current time step.

As a step size for the time integration is taken ∆t = 1
640h and as the length of

an element is taken ∆x = 1
640m. For a more detailed description of the numerical

methods, see [90–92].

At each time step, the equations are solved sequentially in the following order:
First, the flow is calculated. This can be done by solving the differential equation
for the pressure (5.25), and from this pressure, the flow is calculated with Darcy’s
law, (5.20), (5.21) and (5.22). Since the pressure is not involved in the boundary
terms for the flow in this case, the flow can be calculated directly from equation
(5.17). Subsequently, the partial differential equation for the concentration of the
fixation fluid (5.11) is solved. Then, the equations for the concentrations of bacteria
(5.4), (5.5) and (5.6) are solved as a coupled system, applying Newton’s method.
These concentrations partly determine the reaction rate rhp (5.14) of the biochemical
reaction, given by equation (5.3). The partial differential equation for the urea
concentration (5.13) is solved, again, using Newton’s method and the reaction rate
rhp (5.14) is updated. Usually, the Newton method converges in approximately three

iterations. Finally, the concentration of ammonium (CNH+
4 ) and calcium carbonate

(CCaCO3) are calculated sequentially and the porosity (θ), intrinsic permeability (k)
and fluid density (ρl) are updated, using equations (5.13), (5.15), (5.16), (5.23) and
(5.24), respectively.
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5.4 Results

In this section, some analytical and numerical results are shown, as well as a com-
parison of the current model and the model with a homogeneous bacterial activity,
that was used in [92] (Chapter 4). The numerical results are in Subsection 5.4.1,
the comparison of the two models is in Subsection 5.4.2, the analytical results are in
Subsection 5.4.3 and the comparison of the numerical and analytical solutions are
in Subsection 5.4.4.

5.4.1 Numerical results

We start with the one dimensional configuration. Numerical simulations have been
done for two different values of the adsorption, desorption and fixation reaction rate
constant. The first value is Kbac := kads = kdes = kfix = 10h−1. The results
are displayed in the left graphs of Figure 5.2. As a second value has been chosen
Kbac = kads = kdes = kfix = 1000h−1. The results for that value are displayed in the
right graphs of Figure 5.2. A small reaction constant means that the process is slow.
The larger the reaction constant is, the more the result tends to the equilibrium.

The top graphs of Figure 5.2 show a situation in the first phase, in which bac-
teria are injected. The graphs show a non zero concentration of suspended bacteria

(Cbac) and adsorbed bacteria (C
bac

, in the legend called Cbar). The concentration
of adsorbed bacteria in the equilibrium case is a function of the concentration of sus-
pended bacteria as described by the Langmuir isotherm (5.12). The bacteria enter
the domain with a steep front, somewhat smoothened by dispersion and diffusion.
Retardation of the front takes place, due to the adsorption process. The top right
graph of Figure (5.2) shows a situation that is close to equilibrium. The top left
graph, where the adsorption process is slow compared to the top right graph, has
a very smooth front. Since, in this phase, fixation fluid is not yet being injected,
there are no fixated bacteria.

The second row of Figure 5.2 shows a situation in the second phase, where
fixation fluid is injected. The concentration of fixated bacteria, Sbac is no longer
zero. Since in the right graph, the fixation rate constant is larger than in the left
graph, the concentration of fixated bacteria is also higher there. In the left graph,
the concentration of adsorbed bacteria is larger than the concentration of suspended
bacteria in a part of the domain. The reason is the slow desorption process.

The bottom four graphs of Figure 5.2 display some shots of phase 3, where urea
and calcium chloride are injected. Note that the calcium carbonate concentration
is scaled, such that the range is comparable to the range of the other graphs. Since
the concentration of fixated bacteria in the left graphs is lower than in the right
graphs, the concentration of calcium carbonate is lower as well. An exception to
this situation is the zone around x = 0.6m in the bottom graphs. Although the
concentration of fixated bacteria is smaller for a smaller Kbac−value, there are still
adsorbed and suspended bacteria left in that zone, which also contribute to the
hydrolysis of urea and hence to a higher calcium carbonate concentration. The
calcium carbonate concentration in the left graphs has its maximum somewhere in
the middle of the domain, whereas in the right graph, the maximum is close to the
injection point.
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Figure 5.2: Numerical solution for the concentration of suspended, temporarily
adsorbed and fixated bacteria and the concentration of fixation fluid, urea and
CaCO3 as a function of location at several times (t=0.2h, t=0.7h, t=1.2h, t=1.7h)
for Kbac=10h−1 (left graphs) and Kbac=1000h−1 (right graphs).
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Both for the calculation of the concentration of the bacteria and the concentra-
tion of urea, Newton iterations are performed. As long as the concentrations are
constant, only one iteration is needed for convergence. Else, for the calculation of
the urea concentration, approximately 3 iterations are needed for convergence and
approximately 3 or 4 iterations are needed for the calculation of the bacteria. Al-
though the number of iterations that is needed for convergence is almost similar,
the CPU-time per iteration differs significantly. It takes 9 times as much CPU time
per Newton iteration to calculate the (three) concentrations of bacteria as to cal-
culate the urea concentration. The reason is that the matrix that is built for the
calculation of the concentrations of the bacteria is 9 times as large as the matrix for
the calculation of the urea concentration, since the concentrations of bacteria are
solved from one matrix-vector system.
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5.4.2 Results of the comparison between the current model

and the model with a homogeneous distribution of bac-

teria

In this section, the current model is compared to the previous model, where the
previous model assumes a homogeneous distribution of bacteria. As in the previ-
ous subsections, this comparison is carried out for two Kbac−values: Kbac=10h−1

and Kbac=1000h−1. To be able to make a good comparison, the average of the
concentration of fixated bacteria in the current model is used as a value for the
(constant) concentration of fixated bacteria in the previous model. Some results of
this comparison are shown in Figure 5.3. The left graphs display the results for the
low Kbac−value: Kbac=10h−1 and the right graphs show the results for the high
Kbac−value: Kbac=1000h−1.

The top graphs show the concentration of fixated bacteria at time t=2h. The
right plot, which displays the situation for a high Kbac−value, shows two graphs
that are almost similar. Only at the inflow boundary, a large difference is visible.
That has the following reason. First, a pulse with bacteria is injected, without
injection of fixation fluid. There is no fixation fluid in the domain, so there are only
non fixated bacteria. Then a pulse with fixation fluid is injected. Bacteria are only
fixated at that location where both bacteria and a fixation fluid are present. The
latter can only happen where the fixation fluid is overtaking the bacteria, since they
are injected after each other. The reason that they are not injected together, is that
this would result in clogging in the injection filter, what leads to stoppage of the
filter. Hence, the injection point is a critical point, where (almost) no bacteria are
fixated.

The middle graphs of Figure 5.3 show the urea concentration at time t=2h. For
the high Kbac-value, there is visually no difference. But also in the left plot, there
is only a small difference between the graphs.

The bottom graphs display the concentration of calcium carbonate. The con-
centrations from the high Kbac-value are again similar, except near the injection
point. The concentrations, calculated with the low Kbac-value, however, show a
large difference.

It can be concluded that, if the concentration of fixated bacteria is similar for
both models, the calcium carbonate profile is similar as well. A high reaction con-
stant leads to a homogeneous bacterial distribution, at least for the first part of the
domain, except for the region around the injection point. A low reaction rate con-
stant, corresponding to slow adsorption, desorption and fixation processes, leads to
a non homogeneous bacterial distribution and hence to a different calcium carbonate
profile. An instantaneous equilibrium, however, is not a guarantee that the bacterial
distribution will be homogeneous. The concentration of fixated bacteria does not de-
pend on the length of the domain. Since only a finite amount of bacteria is injected,
the domain can be chosen so large that only around the injection boundary bacteria
are fixated and that there are no bacteria in the rest of the domain. This can also
be seen from the analytical solution for the instantaneous equilibrium, equations
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Figure 5.3: Several concentrations as a function of location at time t=2h, for
Kbac=10h−1 (left graphs) and Kbac=1000h−1 (right graphs). Top graphs: concen-
tration of fixated bacteria, middle graphs: urea concentration and bottom graphs:
CaCO3 concentration.

(5.26), (5.31) and (5.32). In order to get a homogeneous distribution of bacteria in
this case, more bacteria should be injected, possibly via multiple injection points.

5.4.3 Analytical results

The analytical solution for the equilibrium case, while dispersion, diffusion, decrease
of the porosity and the change of liquid volume are neglected, is shown in Figure 5.4.
As a reaction rate has been taken equation (5.14). This figure shows the analytical
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solutions at the same times as the numerical solutions are shown (Figure 5.2). The
top left graph shows a situation of the first phase where only bacteria are injected.
The top right graphs displays a shot of the second phase, in which fixation fluid is
injected. Where both bacteria and fixation fluid are present, bacteria are fixated.
The bottom graphs show two shots of the last phase in which calcium carbonate is
formed.
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Figure 5.4: The analytical solution for the concentration of suspended, temporarily
adsorbed and fixated bacteria and the concentration of fixation fluid, urea and
CaCO3 as a function of location at several times (t=0.2h, t=0.7h, t=1.2h, t=1.7h).

5.4.4 Comparison of the numerical solutions to the analytical

solutions

In this subsection, we compare the numerical and analytical solution for the con-
centration of urea and calcium carbonate. The comparison for the concentra-
tions of bacteria for the bacterial injection model has been made in [92] (Chapter
4). In order to make a valid comparison, we redo our numerical simulations for
Dbac = Dfix = Durea = DCa2+ = DNH+

4
= 0 and for a constant porosity and

flow rate. We do take a finite Kbac-value, however, namely Kbac = 10h−1 and
Kbac = 1000h−1.
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Figure 5.5 shows the numerical and analytical solution of the concentration of
urea and calcium carbonate. The figures display the situation at times t=1.2h
and t=1.7h, as in Figures 5.2 and 5.4. The results at time t=0.2h and t=0.7h
are not shown, since the urea and calcium carbonate concentration are zero then.
Again, the left graphs show the situation for Kbac = 10h−1 and the right graphs for
Kbac = 1000h−1.
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Figure 5.5: The numerical and analytical solution of the urea and calcium carbon-
ate concentration at times t=1.2h and t=1.7h for Kbac=10h−1 (left graphs) and
Kbac=1000h−1 (right graphs). The numerical solutions are marked with N and the
analytical solutions are marked with A. In both the analytical and numerical solu-
tions, dispersion and diffusion are neglected, as well as the effect of the reaction on
the porosity and flow rate.

In all the graphs of Figure 5.5, the analytical solution of the urea concentration
corresponds well with the numerical solution. The front of the numerical solution is
less steep than the front of the analytical solution, due to numerical diffusion. For
the low Kbac-value (left graphs) is the numerical urea concentration higher than the
analytical urea concentration in the first part of the domain. The reason is that not
so much urea is consumed due to the low concentration of fixated bacteria, which is
a consequence of the low Kbac-value.

The analytical solution of the calcium carbonate concentration is not similar to
the numerical solution for Kbac = 10h−1. The reason is that the analytical solution
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has been constructed for an infinite Kbac-value. The numerical solution for the high
Kbac-value, Kbac = 1000h−1, is similar to the analytical solution, except close to
the inlet. Although the graphs are similar, the difference is not equal to zero. This
time, the reason is not the difference in Kbac-value but the numerical diffusion. Due
to the numerical diffusion, the numerical solution to the urea concentration has a
less steep front and the urea penetrates a little further in the column. Although the
concentration is small, reaction (5.3) can happen and calcium carbonate is formed.
Hence, the numerical solution to the calcium carbonate concentration is somewhat
larger that the analytical solution.

In Figure 5.5, as a reaction rate for reaction (5.3) has been taken rate (5.14).
The urea concentration is related to the reaction rate via a Monod equation. This
chapter also provides an analytical solution for a reaction rate that is linear in
the urea concentration, equation (5.43). For this case, the analytical solutions are
given in equations (5.44) and (5.45). Figure 5.6 shows the comparison between the
analytical and numerical solution for both reaction rates at time t=1.7h. In the left
graph, the urea concentration is related to the hydrolysis reaction rate via a Monod
equation, see equation (5.14). In the right graph, the reaction rate is linear in the
urea concentration, see equation (5.43).
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Figure 5.6: The numerical and analytical solution of the urea and calcium carbon-
ate concentration at time t=1.7h for Kbac=1000h−1. The numerical solutions are
marked with N and the analytical solutions are marked with A. Left graph: the
urea concentration is related to the hydrolysis reaction rate via a Monod equation
(5.14). Right graph: the hydrolysis reaction rate is linear in the urea concentration,
see equation (5.43).

The left graph of Figure 5.6 is equal to the bottom right graph of Figure 5.5. In
both graphs of Figure 5.6, the numerical solution to the urea concentration corre-
sponds well with the analytical one, as well for rate (5.14) (left graph) as for rate
(5.43) (right graph).

In the right graph, which is calculated with rate (5.43), the numerical solution
for the calcium carbonate concentration is closer to the analytical solution than
in the left graph. Due to numerical diffusion, the numerical urea concentration
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approximates zero at a location further away from the inlet than the analytical urea
concentration does. Since for a small urea concentration, we have that

rhp = vmax(C
bac + C

bac
+ Sbac)

Curea

Km,urea + Curea
∼

∼ vmax(C
bac + C

bac
+ Sbac)

Curea

Km,urea
, (5.47)

and since Km,urea = 0.01 (see Table 5.2), the rate as determined by equation (5.14)
is 100 times larger as the rate as computed by equation (5.43). This implies that the
numerical calcium carbonate concentration has a larger increase in the case of use
of equation (5.14). Therefore, the difference between the analytical and numerical
solution is larger if equation (5.14) is used.

5.5 Discussion and Conclusions

In this chapter, the model for the placement of bacteria and the model for the
hydrolysis of urea and the precipitation of calcium carbonate are coupled. These
two models were introduced and discussed in [91] and [92] (Chapter 2 and 4). We
shortly mention some of the discussion points.

It is crucial to find a good relation for ratio β. This ratio determines the amount
of fixated bacteria. These bacteria eventually provide the production of calcium
carbonate, which is the aim of Biogrout. Laboratory experiments need to be car-
ried out to find such a relation. From these experiments should also follow whether
the Langmuir isotherm is a good choice for an adsorption isotherm, as well as the
values of the various constants in this isotherm. Furthermore, experiments need to
be done to find the right values for the adsorption, desorption and fixation reac-
tion constants. Another important effect that should be investigated is the possible
wash-out of bacteria as a result of a high pore water velocity. This wash-out violates
the present model assumption that fixated bacteria will always stay sticked to the
sand grains.

The precipitation model is based on the biochemical reaction equation (5.3). In
reality, this reaction happens in several steps. Some of these steps are equilibrium
reactions that depend on the pH. The differential equation for the calcium carbonate
concentration does not contain a transport term as it has been assumed that calcium
carbonate precipitates locally and will not be transported. Calcium carbonate can
precipitate in several ways. It can attach to sand grains but can also form crystals.
Especially when these crystals are small, they can be transported before they will
stick in the pore throats. The retardation of urea, calcium, ammonium and fixation
fluid is neglected for the moment. Especially when the particles are charged there
can be retardation.

In this chapter, the two models are coupled. It is possible that the parameters in
both models will influence each other. For example, the bacteria can be encapsulated
by the calcium carbonate. Then, the urea can no longer reach these bacteria and
therefore, these bacteria can not contribute to the hydrolysis of urea any more.
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In the biochemical reaction rate rhp (5.14), the concentration of bacteria is used,
multiplied by the maximal bacterial activity vmax. What actually provides the hy-
drolysis of urea are some enzymes in the bacteria. These enzymes can be released
from the bacteria and flow with the water. Consequently, the activity of the bacteria
decreases. It would be better to use the activity of the bacteria in the reaction rate
(5.14). From experiments it is known that the reaction rate decreases [97]. For a
good estimation of the hydrolysis reaction rate, it is necessary to know what the
reasons are and how they influence the rate.

We succeeded in coupling the model for the placement of bacteria with the
precipitation model. From the numerical simulations with the coupled model, it
can be concluded that, when the adsorption, desorption and fixation processes are
fast and hence the Kbac-value is large, the calcium carbonate concentration has its
maximum close to the injection point. When the Kbac-value is small, less calcium
carbonate is formed and its maximum lies further away from the injection point.

Furthermore, a Newton iteration to calculate the concentrations of bacteria costs
nine times as much CPU-time as a Newton iteration to calculate the concentration
of urea.

A high reaction constant leads to a homogeneous bacterial distribution, at least
for the first part of the domain, except for the region around the injection point.
Furthermore, the calcium carbonate content that is calculated from the coupled
model is similar to the calcium carbonate that is calculated from the model where
a homogeneous bacterial distribution is assumed. A low reaction rate constant,
corresponding to slow adsorption, desorption and fixation processes, leads to a non
homogeneous bacterial distribution and hence to a different calcium carbonate pro-
file. High reaction rates, however, do not guarantee that the bacterial distribution
will be homogeneous. This can also be seen from the analytical solution for the
instantaneous equilibrium, equations (25), (31) and (32). The reason is that the
concentration of fixated bacteria does not depend on the length of the domain.
Since only a finite amount of bacteria is injected, the domain can be chosen so large
that only close to the inlet bacteria are fixated and that there are no bacteria in the
rest of the domain.

An analytical solution has been constructed for the coupled model for the case
that dispersion, diffusion, decrease of the porosity and the change of liquid volume
are neglected and the concentrations of suspended, adsorbed and fixated bacteria
are in equilibrium. Although these phenomena are neglected, the analytical solution
of the calcium carbonate concentration is similar to the numerical solution with a
high Kbac-value, see Figures 5.2 and 5.4. Hence, in real life applications that can
be modelled through a 1D model, the analytical solution can be used as a first
estimate for engineering purposes. If the sorption and fixation processes are close
to equilibrium, the analytical solution might be as good as the numerical solution,
since the numerical solution also includes some error as a result of the error in the
estimation of the various parameters.

We further think that the models can be extended with the following features:

• The model for the placement of bacteria contains the most important phenom-
ena of the transport of bacteria: advection, dispersion, adsorption, desorption
and fixation. Other phenomena, like decay, growth and systematic motion of
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bacteria can be included.

• The fixation of bacteria will cause a decrease in porosity and permeability.
This has not yet been added to the model.

• As a function for the ratio β, a Monod equation is used. In this chapter, the
ratio is only a function of the fixation fluid, whereas it may also depend on
the properties of the microorganisms, the pH and the porous medium.

• The (saturated) flow equation can be extended to unsaturated flow to be able
to model also the unsaturated zones.
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Abstract

We consider a mathematical model for Biogrout, which is a novel soil reinforcement
technique based on Microbially Induced Carbonated Precipitation. We focus on an
adaptation of the flow equation such that mass is conserved instead of volume. The
adaptation is validated by a mass balance. Some numerical simulations are presented
and used for the discussion on the various adjustments of the flow equation.

6.1 Introduction1

To describe the Biogrout process, a mathematical model was constructed in [91]
(Chapter 2), including equations for concentrations, flow and porosity. These equa-
tions are presented in Section 6.2. The model is base on the overall Biogrout reaction
equation:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (6.1)

Urea (CO(NH2)2) is hydrolysed and if calcium ions (Ca2+) are present, ammonium
(NH+

4 ) and calcium carbonate (CaCO3) are formed.
The partial differential equation for the flow, as displayed in Section 6.2, is based

on the assumption that the volume of the fluid is conserved. This is verified by a
mass balance calculation, which can also be found in Section 6.2. It appears that
the volume of the fluid is not conserved. Two other partial differential equations
are derived, which are based on the conservation of mass.

In Section 6.3, the numerical methods that are used to solve the system of
equations are presented, as well as the simulations that have been done. In Section
6.4, the results of the application of the various partial differential equations for the
flow are compared. In Section 6.5, some discussion and conclusions can be found.

6.2 The Mathematical Model

In this section, the model equations for the Biogrout process are presented and
shortly discussed. The derivation can be found in [91] (Chapter 2).

The concentrations of the aqueous species are modelled through the following
advection-dispersion-reaction equation:

∂(θCi)

∂t
= ∇ · (θD · ∇Ci)−∇ · (qCi) + niθr. (6.2)

In this equation, θ is the porosity, Ci is the dissolved concentration of species i
with M(=kmol/m3) as a unit, D is the dispersion tensor, ~v is the pore water veloc-
ity, ni is a constant that deals with the stoichiometry in the biochemical reaction
equation (6.1) and r is the reaction rate of the production of calcium carbonate,
which is a non-linear function of the urea concentration. Since the relevant aque-
ous species in the Biogrout process are urea, calcium and ammonium, we have

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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i ∈ {urea,Ca2+,NH+
4 }. From the stoichiometry of reaction (6.1), the values of

ni for the various aqueous species are given by: nurea = −1, nCa2+ = −1, and
nNH+

4
= 2.

The left-hand side of equation (6.2) represents the accumulation. The first term
at the right-hand side stands for the effect of dispersion and diffusion, the second
term represents advection and the last term models the biochemical reaction.

For the reaction rate rhp of equation (6.1), a Monod equation has been used:

rhp = vmax
Curea

Km + Curea
. (6.3)

Here, vmax is the reaction rate constant and Km is the saturation constant.
Since it has been assumed that the non-aqueous calcium carbonate is not trans-

ported, there are no transport terms in the corresponding differential equation. The
concentration of calcium carbonate CCaCO3 can be calculated from the following
differential equation:

∂CCaCO3

∂t
= mCaCO3

θrhp. (6.4)

In this equation, mCaCO3
is the molar mass of calcium carbonate, which is used to

convert moles into mass.
Due to the precipitation of calcium carbonate, the porosity decreases. The fol-

lowing relation exists between the porosity and the calcium carbonate concentration:

θ(t) = θ(0)− CCaCO3(t)− CCaCO3(0)

ρCaCO3

. (6.5)

Here ρCaCO3
denotes the density of calcium carbonate.

It has been assumed that reaction (6.1) has no influence on the total volume of
the fluid over the entire domain of computation and that the fluid is incompressible.
This implies that the total volume of the fluid is conserved. Hence based on this
hypothesis, the following partial differential equation was derived for the Darcy flow
velocity q:

∇ · q =
mCaCO3

ρCaCO3

θrhp. (6.6)

Since the porosity decreases, due to the calcium carbonate precipitation, there is
less space available for the fluid. This lack of space explains the non-zero right-hand
side of equation (6.6). The last differential equation completes the set of equations
that is necessary to simulate the Biogrout process.

Differential equation (6.6) is based on the assumption that the total volume of
the fluid is conserved. With a mass balance calculation it is verified, whether this
assumption is true.

As a relation for the density of the solution, we use

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 , (6.7)

as derived in [91]. Table 6.1 contains the molar mass of urea, calcium chloride
(CaCl2), ammonium chloride (NH4Cl) and water (H2O).
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murea = 60.0551 kg/kmol mCaCl2 = 110.9840 kg/kmol
mNH4Cl = 53.4913 kg/kmol mCaCO3

= 100.0869 kg/kmol
mH2O = 18.0152 kg/kmol

Table 6.1: Molar mass of urea, calcium chloride, ammonium chloride and water.

We consider 1 m3 of a 1M urea/calcium chloride solution. All the urea and
calcium chloride are converted to calcium carbonate and ammonium chloride, which
means that 1 kmol urea, 1 kmol calcium chloride and 2 kmol water disappear from
the solution and 2 kmol ammonium chloride and 1 kmol calcium carbonate are
formed. The calcium carbonate precipitates out of the solution. The ammonium
chloride stays in the solution.

Table 6.2 displays the mass and mole balances of the reaction.

Initial state Conversion Final state
kmol kg kmol kg kmol kg

urea 1 60.0551 -1 -60.0551 0 0
CaCl2 1 110.9840 -1 -110.9840 0 0
NH4Cl 0 0 +2 +106.9826 2 106.9826
CaCO3 0 0 +1 +100.0869 (1) (100.0869)
H2O 51.6894 931.1943 -2 -36.0304 49.6894 895.1645

Table 6.2: The mass and mole balances of the reaction.

We define Vs as the volume after conversion. The density of the solution equals
ρl = 1000+15.8991 · 2

Vs
and the mass of the liquid equals 1000Vs+15.8991 ·2. From

the mass balance in Table 6.2, it follows that this must be equal to 1002.1471 kg.
Therefore, Vs=0.97035 m3, which is not equal to 1 m3.

From this mass balance calculation, it follows that the hydrolysis of urea and
the precipitation of calcium carbonate do influence the volume of the fluid and that
the assumption of conservation of fluid volume is not valid. Hence, the differential
equation for the flow, based on this assumption, should be adapted.

Therefore, two alternative partial differential equations are introduced. The first
one is almost similar to the previously used differential equation (6.6), but corrects
for the shrinking liquid volume. In the previous paragraphs, we calculated that for
each converted kmol urea and calcium chloride, the total liquid volume shrinks with
1− Vs=0.02965 m3. Therefore, an extra term is added to equation (6.6) to correct
for this phenomenon. The following alternative partial differential equation for the
flow is derived:

∇ · q =

(

mCaCO3

ρCaCO3

− (1− Vs)

)

θrhp. (6.8)

As a second alternative partial differential equation for the flow, the following
equation was derived from a more physical point of view:

∂ (ρlθ)

∂t
= −∇ · (ρlq)−mCaCO3

θrhp. (6.9)
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The left-hand side represents the accumulation of mass in the pores. The first term
at the right-hand side models mass flow and the last term stands for the mass that
disappears from the fluid, as a result of precipitation.

6.3 Strategy and Numerical Methods

The aim of this research is to find out whether an alternative differential equation
for the flow will result into a different calcium carbonate content, between realistic
bounds for the process variables that can be chosen freely. In order to do so, these
process variables are varied. As an experimental set-up, we take a one dimensional
configuration, which corresponds to a column experiment. The inflow is at the
left-hand side and the outflow at the right-hand side.

The process variables that can be chosen are: the inflow velocity qin, the inflow
concentration of urea and calcium chloride cin and the maximal bacterial activity
vmax. The latter can be chosen during the cultivation or by diluting a suspension
with a high activity. The (initial) porosity θ0 is given, but varies initially locally.
In laboratory experiments one can more or less adapt the porosity by filling the
experimental set-up with sand.

Several computer simulations have been done to examine whether the various
differential equations for the flow lead to different calcium carbonate contents. These
computations have been done as follows: Certain values have been assigned to the
four process variables. These values are the bold values that can be found in Table
6.3, which forms the basis combination. Then, four sets of simulations are done. In
each set, only one variable from this basis combination is adjusted. The values are
given in Table 6.3, again. The results from this comparison can be found in Section
6.4.

Process variable Value
qin [m/h] 0 0.001 0.01 0.1 1
θ0 [1] 0.1 0.3 0.5
vmax [kmol/m3/h] 0.0036 0.036 0.36
cin [kg/m3] 0.5 1 2 3 4

Table 6.3: The process variables that can be varied. In each simulation set, only
one variable is varied, while the bold values are assigned to the other variables.

Initially, all concentrations are zero. Only for the case qin=0, we need to take
an alternative initial condition for the concentration of urea and calcium chloride,
otherwise nothing will happen. As an initial condition for the urea and calcium
chloride concentration, we take:

Ci(t, 0) =

{

1 for 0 ≤ x ≤ 0.90;
0 for 0.90 < x ≤ 1,

(6.10)

with i ∈ {urea, Ca2+}. The initial porosity is given in Table 6.3.
As a boundary condition for the flow at the inflow boundary we take the Dirichlet

boundary condition q(0, t) = qin. The values of qin can be found in Table 6.3. For the
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concentration of urea and calcium chloride, we take the following Robin boundary
condition at the inflow boundary: (Dθ∇c − qc) · n = qincin, which implies that
the amount of urea and calcium chloride that enters the domain per unit of time
and surface equals qincin. Again, the values of cin are given in Table 6.3. Since
no ammonium chloride is injected, we take (Dθ∇c − qc) · n = 0 as a boundary
condition for the concentration of ammonium chloride at the inflow boundary. At
the outflow boundary we choose the homogeneous Neumann condition Dθ∇c = 0
for the concentration of all aqueous species, which corresponds to an advective flux.
The simulated time is 100 h, unless stated otherwise.

We use the Standard Galerkin Finite Element Method to solve the model equa-
tions. For more information on the numerical methods we refer to [90] and [91]
(Chapter 2 and 3), where this has been reported in more detail, also for the higher-
dimensional cases.

6.4 Results

In this section some results (Figure 6.1) are shown from the comparison between
the two alternative partial differential equations for the flow, (6.8) and (6.9), and
the previously used differential equation (6.6). The left graphs represent the Darcy
flow velocity and the right ones the calcium carbonate concentration.

The top graphs of Figure 6.1 show the Darcy flow velocity and the calcium
carbonate concentration as a function of location at time t=100 h. The values that
have been assigned to the process variables are the bold values in Table 6.3. As can
be seen, the flow that is calculated from the old differential equation differs only by
3% from the flow that is calculated from the alternatives. Hence, this adaptation
only has a minor effect on the calcium carbonate concentration. The results from
the variation of θ0, vmax, cin and qin are similar: the calculated flows show a small
difference, the calcium carbonate content is very similar.

The variation of θ0, vmax and (non-zero) qin results into a maximal difference
in calcium carbonate content of at most 2 kg/m3, which corresponds to a relative
difference in the order of 5%.

The difference in calcium carbonate content increases for an increasing cin. For
cin=4M, the maximal difference in calcium carbonate concentration is 5 kg/m3

for the first alternative differential equation and 3 kg/m3 for the second one. This
difference is still in the order of the measurement error. However, since the solubility
of urea in water is 18M and the solubility of calcium chloride in water is 7M, one
might wonder whether higher urea/calcium chloride concentrations will result into
larger differences in calcium carbonate. However, since a concentration of 4M is
already toxic for bacteria, high concentrations will never be used in the Biogrout
process. The middle graphs of Figure 6.1 show the flow and the calcium carbonate
content for cin = 4M.

The bottom graphs of Figure 6.1 show the Darcy flow velocity and the calcium
carbonate concentration at time t = 25 h for the zero inflow velocity case. In this
case the simulated time is 25 h, since at time t=100 h all the urea and calcium
chloride have reacted, so there is no driving force for a flow any more. Note that
the difference in Darcy flow velocity is more pronounced in the bottom left graph
than in the other graphs. The initial conditions for the urea and calcium chloride
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concentration, as given in equation (6.10), have been chosen in such a way, that the
difference in calcium carbonate content is really large. This difference is 20 kg/m3

for the first alternative differential equation and 19 kg/m3 for the second one. The
graphs are very similar, however. Both graphs have a constant calcium carbonate
content for the first 0.9 m, followed by a steep front. The difference in the location
of this steep front is in the order of only 1 cm. Due to the very steep front, this
difference in location results into a large difference in calcium carbonate content.
The steep front in calcium carbonate content results from the steep front in urea
and calcium chloride that has been chosen as an initial condition. In practice, the
gradient will be much smaller due to dispersion and diffusion.
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Figure 6.1: The Darcy flow velocity (left graphs) and the calcium carbonate concen-
tration (right graphs) as a function of location, for the bold values from Table 6.3
at time t=100 h (top graphs), for inflow velocity cin=4M at time t=100 h (middle
graphs) and for qin=0 m/h at time t=25 h (bottom graphs).
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6.5 Discussion and Conclusions

From the results in Section 6.4, we conclude that the three different partial differen-
tial equations for the flow lead to different flow patterns. However, the graphs of the
corresponding calcium carbonate content are very similar. In most cases the max-
imal difference between the calcium carbonate content is at most 2 kg/m3, which
corresponds to a relative error in the order of 5%.

From the variation of the inflow concentration of urea and calcium chloride cin, it
is concluded that a larger value of cin leads to a higher maximal difference in calcium
carbonate content. But since the inflow concentration that is used is limited, due
to its toxicity for the bacteria, the error stays small for realistic values of cin.

The results of the zero inflow velocity case show that steep gradients in the urea
and calcium chloride concentration lead to steep gradients in the calcium carbonate
content. A small difference in flow then leads to a small difference in the position
of the front (in the order of 1 cm) and to a high difference in calcium carbonate
content in that small region. However, since the calcium carbonate fronts are really
close and such steep gradients in urea and calcium chloride are not likely to occur,
this case does not lead to any important differences in calcium carbonate content.

Therefore, we conclude that the choice of the differential equation for the flow
hardly influences the calcium carbonate content for realistic values of the process
variables. Since the process variables in [90] and [91] (Chapter 2 and 3) are within
the ranges specified in Table 6.3, the results in both articles are still valid.

Although the results are very similar, we will no longer use the previous differ-
ential equation for the flow. Instead, we will use one of the alternative differential
equations, since they do not violate the requirement of conservation of mass. We
choose the first alternative differential equation (6.8) to use from now on, since the
first alternative is simpler and more stable than the second one.

We realize that the alternative differential equations, derived in Section 6.2 are
based, among others, on the empirical relation between the density and the various
concentrations (6.7).
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Abstract

Biogrout is a soil improvement method, in which micro-organisms are used to pro-
duce the solid calcium carbonate, which strengthens the soil by connecting soil
particles. Micro-organisms in the soil are supplied with some nutrients, which they
convert into calcium carbonate. These nutrients and the side product of the reaction
are dissolved in water. Because of these chemicals, the fluid is denser than water.
Moreover, the density changes as a result of the varying composition. This chang-
ing density has a significant impact on the flow. Since the composition and hence,
the density is not known beforehand, a careful choice of the (pressure) boundary
conditions, especially on the outflow boundary, is needed. In this chapter, several
methods to approximate the pressure on the outflow boundary are compared. The
method that we propose also works for an unstructured mesh, which gives a large
freedom in the mesh generation.

7.1 Introduction1

Biogrout is a soil improvement method, in which micro-organisms are used to pro-
duce calcium carbonate (CaCO3). The overall reaction equation is given by:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (7.1)

The urea (CO(NH2)2) and calcium (Ca2+) are dissolved in water, as well as the
side product ammonium (NH+

4 ). Because of these chemicals, the fluid is denser than
pure water. In [91] (Chapter 2), the following relation between the density of the
solution ρl(at 20

◦C) and these concentrations is used:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 . (7.2)

In this relation, Curea is the concentration of urea, CCa2+

is the concentration

of calcium chloride and CNH+
4 is the concentration of ammonium chloride, each

with M(=kmol/m3) as a unit. This relation has been found, using [95]. From the
tables of the individual species, a linear relation between the various concentrations
and the density has been found for a single species dissolved in water. However,
in the Biogrout case several species are present in the fluid. We assume that the
contributions of the various species can be added in the case that more than one
species are dissolved. Experimental validation showed that this relation gives a good
description of reality, [88]. In this chapter, equation (7.2) is used in the simulations.

Due to biochemical reaction (7.1), the solution has a varying composition and
hence, also the density changes. This changing density has an effect on the water
pressure. Flow boundary conditions are often given in terms of pressure, especially
on the outflow boundaries, where usually a fixed head is applied to prevent desatu-
ration of the soil. Unsaturated soil can occur when a fixed flow rate is prescribed.
A fixed head gives a hydrostatic pressure boundary condition. At the injection, the
composition of the solution is usually known, but at the extraction, the density is

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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not known beforehand. Therefore, a careful choice of the boundary condition is
necessary.

In this chapter, several methods to calculate the pressure on the extraction
boundary are presented and compared. The last method, which is most robust,
works for any finite-element mesh, even including unstructured grids. This gives a
large freedom in the mesh generation.

7.2 Mathematical model

In this section we give the model equations with the initial and boundary conditions
for the model.

7.2.1 Model equations

In this subsection the model equations for the Biogrout process are presented. For
a derivation and a more thorough discussion, we refer to [91] (Chapter 1).

To model the concentration of the aqueous species (urea, calcium chloride and
ammonium chloride) we use an advection-dispersion-reaction equation:

∂(θCi)

∂t
= ∇ · (θDi · ∇Ci)−∇ · (qCi) + niθrhp. (7.3)

In this equation, θ is the porosity, D is the dispersion tensor, q is the Darcy veloc-
ity, ni is a constant that deals with the stoichiometry in the biochemical reaction
equation (7.1) and rhp is the reaction rate of the production of calcium carbonate.
From the stoichiometry of reaction (7.1), the values of ni for the various aqueous
species are given by: nurea = −1, nCa2+ = −1, and nNH+

4
= 2.

The left-hand side of equation (7.3) models the accumulation. In the right-hand
side, we have terms for dispersion/diffusion, for advection and for the biochemical
reaction (7.1).

In this chapter, we use the following relation for the reaction rate rhp in equation
(7.1):

rhp = vmax
Curea

Km,urea + Curea
. (7.4)

Here, vmax is the bacterial conversion rate constant for a (given) specific bacterial
density and Km,urea ≥ 0 is the saturation constant. In this chapter, we use a
bacterial conversion rate that is constant over the whole domain, thereby neglecting
any variations of temperature, bacterial density or pH over the time and space. The
concentration of bacteria can also be simulated, using the model proposed in [92]
(Chapter 4). This model describes the placement of bacteria: bacteria are injected
in the soil. After the injection of the bacteria, a pulse with fixation fluid is injected.
This fixation fluid has less retardation than the bacterial pulse and will overtake the
bacterial pulse, fixating the bacteria in the subsoil. Since the focus of this chapter
is on the pressure boundary condition, we use this simplified reaction rate, which
implies a homogeneous distribution of bacteria.
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It is assumed that calcium carbonate is not transported. Hence, there is only
an accumulation term from the reaction term in the differential equation for the
calcium carbonate concentration:

∂CCaCO3

∂t
= mCaCO3

θrhp. (7.5)

In this equation, CCaCO3 is the concentration of calcium carbonate with kg/m3 as
a unit and mCaCO3

is the molar mass of calcium carbonate, which is used to convert
moles into mass.

The solid calcium carbonate that is formed in the pores causes a decrease in
porosity. The difference (CCaCO3(t,x)−CCaCO3(0,x)) gives the amount of calcium
carbonate that has been formed per unit of volume in time period t. Division by
the density of calcium carbonate ρCaCO3

gives the decrease in pore volume per
unit of volume. That leads to the following relation between the calcium carbonate
concentration and the porosity:

θ(t,x) = θ(0,x)− CCaCO3(t,x)− CCaCO3(0,x)

ρCaCO3

. (7.6)

For the flow, we use the continuity equation, that was derived in [93] (Chapter
6). This differential equations is an adaptation of the differential equation derived
in [91] (Chapter 2), since the differential equation in [91] does not conserve mass. It
is based on the assumption that reaction (7.1) does not influence the total amount
of liquid volume, which turned out to be untrue. The adapted differential equation
is given by:

∇ · q = Kθrhp. (7.7)

The constant K represents the amount of volume that is produced per kmol formed
calcium carbonate by reaction (7.1) and it has been defined as

K :=

(

mCaCO3

ρCaCO3

− (1− Vs)

)

. (7.8)

This constant deals with two phenomena. When reaction (7.1) takes place, various
species disappear from the solution and therefore the liquid volume decreases. On
the other hand, due to the same reaction, the solid calcium carbonate is formed,
which causes a decrease in pore space. The decrease in pore space per kmol formed
calcium carbonate is

mCaCO3

ρCaCO3
and the decrease in liquid volume per kmol formed

calcium carbonate is 1− Vs. These two phenomena only partly cancel each other.

As a relation between the flow and the pressure p, Darcy’s law is used [100],

qx = −kx
µ

∂p

∂x
, (7.9)

qy = −ky
µ

∂p

∂y
, (7.10)

qz = −kz
µ

(

∂p

∂z
+ ρlg

)

. (7.11)
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In Darcy’s law, ki is the intrinsic permeability in the various coordinate directions,
i ∈ {x, y, z}, µ is the viscosity of the fluid, ρl is the density of the fluid and g is the
gravitational constant.

The Kozeny-Carman equation is used to determine the intrinsic permeability.
This equation is an empirical relation between the intrinsic permeability and the
porosity, that is commonly used in ground water flow modelling (see [7]):

k = kx = ky = kz =
(dm)2

180

θ3

(1− θ)
2 . (7.12)

In this relation, dm is the mean particle size of the soil.
Substituting equations (7.9), (7.10) and (7.11) into equation (7.7), using relation

(7.12), gives a partial differential equation for the pressure. This partial differential
equation is solved to compute the flow pattern if the boundary conditions are given
in terms of pressure, or if density differences influence the flow:

∇ · q = ∇ ·
(

−k

µ
(∇p+ ρlgez)

)

= Kθrhp. (7.13)

Here, ez is the unit vector in vertical direction, taken positive upwards.

7.2.2 Experimental set-up and initial and boundary condi-

tions

As a model experiment we take the 100m3 experiment as reported in [86]. The
configuration is shown in Figure 7.1. A concrete box (8m × 5.6m × 2.5m) is filled
with sand and fully saturated. Three injection wells (left) and three extraction wells
(right) are used to flush the liquids through the sand body. The distance between
injection and extraction is 5m. The other boundaries are closed.
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Figure 7.1: Set-up of the experiment. Injection lances are denoted by Γin and the
extraction lances by Γout. The other boundaries (Γclosed) are closed.
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Initially, the concentration of calcium carbonate, urea, calcium and ammonium
are equal to zero and the porosity equals some constant θ0.

Boundary Boundary Condition
Curea Γin (Dθ∇C − qC) · n = qincin

Γout (Dθ∇C) · n = 0
Γclosed (Dθ∇C − qC) · n = 0

CCa2+

Γin (Dθ∇C − qC) · n = qincin
Γout (Dθ∇C) · n = 0
Γclosed (Dθ∇C − qC) · n = 0

CNH+
4 Γin (Dθ∇C − qC) · n = 0

Γout (Dθ∇C) · n = 0
Γclosed (Dθ∇C − qC) · n = 0

q/p Γin −q · n = qin
Γout p(x, y, z) = patm +

∫ 2.5

z
ρl(x, y, z̄)gdz̄

Γclosed q · n = 0

Table 7.1: Boundary conditions for the various concentrations and the flow.

Table 7.1 displays the boundary conditions for the various concentrations and
the flow. On the inflow boundary, we prescribe the inflow velocity and the flux.
On the closed boundary, there is no flow perpendicular to the boundary and hence
the flux over the boundary equals zero. On the outflow boundary, we prescribe
the pressure and for the concentrations an advective flux is assumed. Due to the
gravitational force, it is required that each part of the outflow boundaries is part
of a vertical plane. In the extraction wells, at a certain depth (equal to the top
of the sand body), a pump has been installed, which keeps the water level in the
well at a fixed position. Note that the container is covered with a watertight foil,
which is loaded with another layer of sand. This makes it possible to create an
overpressure around the injection wells, which results into flow from injection to
extraction. Since the resistance to flow in the extraction wells is very low, we
assume a hydrostatic pressure on its boundaries, see for example [7]. That leads to
the following differential equation on the surface of the extraction boundaries:

∂p

∂z
= −ρlg, (7.14)

with at the height of the pump (at z=2.5m)

p(2.5) = patm, (7.15)

in which patm is the atmospheric pressure. Integration of equation (7.14), combined
with boundary condition (7.15), gives the following equation for the pressure for all
points z on the surface of the extraction boundaries, for which holds 0 ≤ z ≤ 2.5m :

p(x, y, z) = patm +

∫ 2.5

z

ρl(x, y, z̄)gdz̄, (7.16)

see also Table 7.1.
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To compute the pressure given by equation (7.16), all the nodes of the mesh
should be positioned on vertical lines. On these lines, the x− and y−coordinates
are constant, while the z−coordinate is variable. Over these lines, the integral in
equation (7.16) is computed, which gives the pressure at all nodes on these lines.

The requirement that all the nodes are on certain vertical lines pats a severe
requirement on the mesh generation. Another possibility, which also allows unstruc-
tured meshes, is solving differential equation (7.14) with a finite element method. In
that case, the partial differential equation is solved on a (2D) manifold as a bound-
ary condition for a 3D domain. Some examples from literature in which differential
equations are solved on manifolds are [12], [43], [54] and [69].

7.3 Numerical Methods

In this section, it is explained which numerical methods are used to solve the partial
differential equations in the 3D domain, equations (7.3) to (7.13), as well as the
equations for the pressure boundary condition, equation (7.14) and alternatively
equation (7.16).

Equations (7.3), (7.9), (7.10), (7.11) and (7.13) are solved using the Standard
Galerkin Finite Element Method. These equations are multiplied by a test function
η and integrated over the domain Ω to derive the weak formulation. For the time
integration of equation (7.3), an implicit scheme is used. Since the reaction rate
rhp is non-linear in the urea concentration, Newton’s method is used to calculate
the urea concentration. Since in each node the differential equation for the calcium
carbonate concentration (7.5) is an ordinary differential equation, the finite element
method is not used to solve equation (7.5). An implicit time integration method is
used to solve this equation. For more details about the numerical methods to solve
these equations, we refer to [90] and [91] (Chapter 2 and 3), where this has been
reported in more detail.

In this chapter, the pressure on the outflow boundary is calculated in three
different ways. The first two methods involve a calculation, based on equation (7.16).
In the first method (method 1), the integral in equation (7.16) is approximated using
the Lower Riemann Sum, see [1]. This is a first order method. Let n be the number
of nodes on one of the vertical lines. The nodes on this line are ordered in the
following way: 0 = z0 < z1 < .... < zn−1 < zn = 2.5. Then, equation (7.16) is
approximated by:

p(x, y, zj) ≈ patm +

n−1
∑

i=j

gρl(x, y, zi+1)(zi+1 − zi). (7.17)

This sum is calculated for each node on each vertical line.
In the second method (method 2), the second order trapezoid rule is used to

approximate (7.16), see [1]. Using the same notation as for the Lower Riemann
Sum, we get the following approximation:

p(x, y, zj) ≈ patm +
n−1
∑

i=j

g
ρl(x, y, zi) + ρl(x, y, zi+1)

2
(zi+1 − zi). (7.18)
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This sum is calculated for each node on each vertical line.

As a third method (method 3), the pressure on the boundary is calculated, by
solving equation (7.14) subject to boundary condition (7.15). For this calculation the
Standard Galerkin Finite Element Method is used. To derive the weak formulation,
equation (7.14) is multiplied by a test function η and integrated over the surface of
the outflow boundary Γout:

∫

Γout

∂p

∂z
ηdS = −

∫

Γout

ρlgηdS. (7.19)

The pressure p is approximated by

p ≈
N
∑

j=1

pjϕj , (7.20)

in which ϕj is a linear basis function and where pj denote the pressure approxima-
tions on nodes on the boundary. The z−derivatives of the basis functions are deter-
mined after a mapping to the (x−z)-plane. The integral over the outflow boundary
is approximated by the sum of the integrals over the elements. The Newton-Cotes
quadrature rules have been used to develop the element matrices and vectors. Trian-
gular boundary elements have been used. Differential equation (7.14) with boundary
condition (7.15), can be considered as an initial value problem. Using the Standard
Galerkin Finite Element Method and choosing η = ϕi for i ∈ {1, · · · , N} as a test
function will lead to stability problems. Inspired by the SUPG method, see [80], we
choose as a test function: η = ϕi − hξ

2
∂ϕi

∂z , for i ∈ {1, · · · , N}. In this equation, h
is some representative distance in the element and ξ is some constant. In case of
application on a surface, we choose for h:

h :=

√

2A

nel
, (7.21)

in which A is the total surface of the domain and nel is the number of elements on
the surface. As a value for ξ we take ξ = 10−5. As differential equation (7.14) is
similar to a stationary advection equation, the SUPG method will introduce some
artificial diffusion, which stabilizes the system. If the SUPG method is not used,
then the discretization matrix might have an eigenvalue that is equal to zero.

In this paragraph, we do some analysis to investigate the influence of the value
of ξ on the differences in eigenvalues of the system with SUPG stabilization and the
system without SUPG stabilization, applied on a surface. Let H be the matrix that
is used to solve the system without SUPG stabilization and Ĥ(hξ) the matrix for
the system with SUPG. Both matrices are n × n matrices. The entries of matrix
Ĥ(hξ) are given by Ĥij(hξ) = Hij + hξ∆Hij and hence, Ĥ(ε) = H + ε∆H, with
ε = hξ. The ε∆H part in the matrix accounts for the SUPG stabilization. Further,
let (λ,v) be an eigenpair of H (Hv = λv) and let (λ(ε),v(ε)) be an eigenpair
of Ĥ(ε) (Ĥ(ε)v(ε) = λ(ε)v(ε)) and suppose that wH is a left eigenvector of H
(wHH = λwH). Then

(H + ε∆H)v(ε) = λ(ε)v(ε). (7.22)
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To estimate λ(ε), equation (7.22) is differentiated with respect to ε, which gives

∆Hv(ε) + (H + ε∆H)
dv(ε)

dε
=

dλ(ε)

dε
v(ε) + λ(ε)

dv(ε)

dε
. (7.23)

Set ε = 0, then we get (v(0) = v, λ(0) = λ)

∆Hv +H
dv(0)

dε
=

dλ(0)

dε
v + λ

dv(0)

dε
. (7.24)

Left-multiplication by wH gives

wH∆Hv +wHH
dv(0)

dε
=

dλ(0)

dε
wHv + λwH dv(0)

dε
. (7.25)

Hence, since wHH = λwH:

wH∆Hv =
dλ(0)

dε
wHv. (7.26)

Since wHv 6= 0, we get

∣

∣

∣

∣

dλ(0)

dε

∣

∣

∣

∣

=

∣

∣wH∆Hv
∣

∣

|wHv| ≤
∥

∥wH
∥

∥

2
‖∆H‖2 ‖v‖2
|wHv| =

‖∆H‖2
|wHv| . (7.27)

The last step is motivated by choosing
∥

∥wH
∥

∥

2
= ‖v‖2 = 1. Furthermore,

‖∆H‖2 ≤ ‖∆H‖F :=





∑

i

∑

j

|∆Hij |2




1/2

≤
[

max
i,j

cn|∆Hij |2
]1/2

=

=
C

h
max
i,j

|∆Hij |, (7.28)

where cn is motivated by the sparsity of the matrix ∆H. Moreover, it has been
used that n = L2/h2 with L the length of the domain and C has been defined as
C := L

√
c. Hence, we have

∣

∣

∣

∣

dλ(0)

dε

∣

∣

∣

∣

≤ Cmaxi,j |∆Hij |
h|wHv| . (7.29)

This can be rewritten as

lim
ε→0

|λ(ε)− λ(0)|
|ε| ≤ Cmaxi,j |∆Hij |

h|wHv| . (7.30)

Herewith, we get for ε → 0

|λ(ε)− λ| ≤ Cmaxi,j |∆Hij |
h|wHv| ε. (7.31)

Substitution of ε = hξ gives

|λ(hξ)− λ| ≤ Cmaxi,j |∆Hij |
h|wHv| hξ =

Cmaxi,j |∆Hij |
|wHv| ξ. (7.32)
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Hence, we proved:

Proposition 1 Let Hv = λv, H ∈ R
n×n, and let wHH = λwH, let Ĥij(hξ) =

Hij + hξ∆Hij where the number of non-zero entries is c · n, let C be defined as
C := L

√
c, then

|λ(hξ)− λ| ≤ Cmaxi,j |∆Hij |
|wHv| ξ = O(ξ), (7.33)

where
Ĥ(hξ)v(hξ) = λ(hξ)v(hξ).

The above analysis heavily relies on page 323 in [35]. If wH∆Hv 6= 0 then from
this proposition and equation equation (7.27) we can conclude that, by applying
SUPG stabilization in case of an unstable system, the zero eigenvalue is mapped
onto a non-zero one, where its magnitude is bounded by a value of order ξ.

At each time step, the model equations are solved in the following order. First,
the porosity, permeability, fluid density and flow boundary conditions are updated.
Then, the flow is calculated. Finally, the boundary conditions for the concentrations
are updated and the concentrations of urea, ammonium and calcium carbonate are
calculated.

7.4 Results

Before the results of the 100m3 experiment are presented, we start with a simple 2D
configuration to compare the three methods to calculate the pressure on the outflow
boundary, that were proposed in the last section. This is done in Subsection 7.4.1.
Subsequently, in Subsection 7.4.2, we take the configuration from Figure 7.1 with
some known density function and calculate the pressure on the outflow boundary.
Finally, in Subsection 7.4.3, the model results, which incorporate the numerical
solution of the complete set of partial differential equations, of the 100m3 experiment
are shown.

7.4.1 Comparison of the three methods to calculate the pres-

sure boundary condition

As a domain, we take a rectangle with a width of 2m and a height of 2.5m. In
this domain, we compare the three pressure calculation methods. This is done for
two different relations for the density. The comparison is done for six structured
meshes, with an increasing number of elements and for some unstructured meshes,
with approximately the same number of elements as for the structured meshes.

As a density, the two following (arbitrarily chosen) relations between density and
depth are used:

ρ1 = 1000 + 200z, (7.34)

ρ2 = 1000 + 200z3. (7.35)
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These relations of course do not hold at the same time. Substituting both relations
into equation (7.16), gives the following two analytical solutions for the pressure:

p1(x, y, z) = patm +

∫ 2.5

z

ρ1(x, y, z̄)gdz̄

= patm + g(1000(2.5− z) + 100(2.52 − z2)), (7.36)

p2(x, y, z) = patm +

∫ 2.5

z

ρ2(x, y, z̄)gdz̄

= patm + g(1000(2.5− z) + 50(2.54 − z4)). (7.37)

The first method, which uses the Lower Riemann Sum as an integration tech-
nique, has a first order error, but is exact for a constant density function. The
second method, based on the Trapezium method, has a second order error and is
exact for constant and linear density functions. The third method also has a first
order error, due to the SUPG method. But since the value of ξ has been chosen
very small, a better convergence is possible. When we describe the error to be of the
order O(hα), with h some measure for the mesh size, we expect that for a regular
mesh in the limit, α = 1 for the first and third method and α = 2 for the second
method. We calculate the value of α from the following equation:

e1
e2

=
hα
1

hα
2

= rα, (7.38)

in which ei is the error for mesh i, i ∈ {1, 2}, hi is the mesh size of mesh i and r
is the ratio between h1 and h2 (r = h1/h2). As a measure for hi, we use equation
(7.21).

In Tables 7.2 to 7.6 we display the results of the comparison of the three pressure
calculation methods with the analytical solution on both a structured mesh and an
unstructured mesh for an increasing number of elements and for the two relations
between the density and the depth. In Table 7.3, the three methods are compared
regarding computing time. In the left plot of Figure 7.2, mesh a, an unstructured
mesh with 38 elements, is shown. This mesh is made with the mesh generator in
the COMSOL Multiphysics software. Mesh b is formed from mesh a by dividing
all the elements of this mesh into four equisized elements. Mesh b is shown in the
right plot of Figure 7.2. In the same way, the other unstructured meshes, mesh
c up to mesh f , are formed by dividing all the elements of the coarser mesh into
four smaller, equisized elements. Mesh f2 is not formed from a coarser mesh, but
directly generated with the COMSOL Multiphysics software. It has approximately
the same number of elements as mesh f and is unstructured. Mesh c up to mesh
f2 are not shown in this chapter.

The displayed error in Table 7.2 to 7.6 is the mean of the (absolute value of the)
error that is made in each node:

E =
1

n

n
∑

j=1

|pj − pEj |. (7.39)

In this equation for the error, n is the number of nodes, pj is the numerical solution
for the pressure in point j and pEj is the exact solution for the pressure in point j.
The α-factor is determined from the (unrounded) errors of two subsequent meshes.
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Figure 7.2: Two examples of unstructured meshes. Left: mesh a, the number of
elements is 38. Right: mesh b, this mesh is formed from mesh a by dividing each
elements into four smaller, equisized elements.

number of elements method 1 method 2 method 3
error α error α error α

40 613 1.00 0 302 1.93
160 307 1.00 0 79 1.89
640 153 1.00 0 21 1.89
2560 77 1.00 0 5.8 1.95
10240 38 1.00 0 1.5 1.97
40960 19 0 0.38

Table 7.2: Comparison of the three pressure calculation methods with the analytical
solution on a structured mesh for a linear relation between the depth and the density.
The α-factor is determined from the (unrounded) errors of two subsequent meshes,
using equation (7.38).

number of computing time computing time computing time
elements for method 1 (s) for method 2 (s) for method 3 (s)

40 0.0005 0.0005 0.0006
160 0.0008 0.0008 0.0013
640 0.0021 0.0018 0.0036
2560 0.0035 0.0037 0.0193
10240 0.0113 0.0115 0.1335
40960 0.0471 0.0478 1.7352

Table 7.3: The computing time (average of 10 simulations) for the various methods.
Simulations are done on a structured mesh for a linear relation between the depth
and the density.
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number of elements method 1 method 2 method 3
error α error α error α

40 4880 0.879 485 1.963 1798 1.63
160 2654 0.942 125 1.982 580 1.78
640 1382 0.971 32 1.991 169 1.87
2560 705 0.986 7.9 1.996 46 1.94
10240 356 0.993 2.0 1.998 12 1.96
40960 179 0.50 3.1

Table 7.4: Comparison of the three pressure calculation methods with the analytical
solution on a structured mesh for a non linear relation between the depth and the
density. The α-factor is determined from the (unrounded) errors of two subsequent
meshes, using equation (7.38).

number of method 1 method 2 method 3
elements error α error α error α

mesh a 38 1628 -0.05 872 -0.53 296 1.94
mesh b 152 1690 -0.08 1259 -0.30 77 1.39
mesh c 608 1780 -0.05 1547 -0.15 29 2.66
mesh d 2432 1843 -0.03 1721 -0.08 4.6 1.81
mesh e 9728 1879 -0.01 1816 -0.04 1.3 1.73
mesh f 38912 1898 1866 0.40
mesh f2 40860 1929 1850 0.39

Table 7.5: Comparison of the three pressure calculation methods with the analytical
solution on an unstructured mesh for a linear relation between the depth and the
density. The α-factor is determined from the (unrounded) errors of two subsequent
meshes, using equation (7.38).

number of method 1 method 2 method 3
elements error α error α error α

mesh a 38 9118 -0.05 7147 -0.28 2188 1.23
mesh b 152 9413 -0.08 8704 -0.16 934 1.86
mesh c 608 9974 -0.06 9737 -0.08 258 2.01
mesh d 2432 10394 -0.03 10313 -0.04 64 1.91
mesh e 9728 10645 -0.02 11614 -0.02 17 2.09
mesh f 38912 10781 10768 4.4
mesh f2 40860 11037 10884 2.3

Table 7.6: Comparison of the three pressure calculation methods with the analytical
solution on an unstructured mesh for a non linear relation between the depth and the
density. The α-factor is determined from the (unrounded) errors of two subsequent
meshes, using equation (7.38).
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From Tables 7.2 to 7.4 we conclude that the convergence of methods 1 and 2 is
as expected. For method 1, α converges to 1 and for method 2 α converges to 2.
For method 3, we expected a first order convergence but the convergence is even one
order better than expected since α converges to 2. However, although the method
behaves like a second order method for a small value of ξ, the method is first order.
The error looks like E(h) = ξh + Kh2. If ξ is very small, then ξh > Kh2 only if
h is very small. This gives ξ > Kh ⇐⇒ h < ξ/K. This implies that if h = O(ξ),
then the results will actually look first-order. However, as long as h ≫ ξ/K, which
is used in general in practical purposes, then E(h) behaves like O(h2), which is
observed in our experiments.

For a linear relation between density and depth, method 2 is exact and hence,
the error is equal to zero. Method 1 results in the largest error. The mean error
using method 3 falls within the range of the errors from methods 1 and 2.

The computing time for method 1 and method 2 is almost similar. The comput-
ing time for method 2 is slightly larger since it has an extra addition compared to
method 1, see equations (7.17) and (7.18). The largest part of the computing time
is used for finding the various vertical lines on which the nodes lie and sorting the
nodes on this lines. The computing time for method 3 is comparable with method
1 and 2 for the coarse meshes but increases more rapidly for an increasing number
of elements.

In an unstructured mesh, the nodes usually do not lie on vertical lines. Hence
method 1 and 2 do not work properly. As can be seen from Table 7.5 and 7.6 there
is no convergence using these methods and the error even increases somewhat for an
increasing number of elements. Method 3, however, also works on an unstructured
mesh. The error decreases with a decreasing element size and also here we see a
second order convergence, which is one order better than expected, although the
convergence is not as regular as on the structured meshes.

In Table 7.7, we show some results of the effect of the variation of ξ on the error
of method 3. We take a mesh of 8 elements as shown in Figure 7.3 and refine this
mesh. As can be seen from Table 7.7, method 3 is first order for a high value of ξ.
For values of ξ around ξ = 10−2, the method behaves second order. In this chapter,
we chose ξ = 10−5. Its value can be even smaller, but for the several meshes we
tried, problems arise around ξ = 10−15. Hence, ξ = 10−5 is a ’safe’ value, which
gives a second order method.

7.4.2 Calculation of the pressure on the outflow boundary of

the 100m3 experiment

Before simulating the 100m3 experiment, we first approximate the pressure on the
outflow boundaries for a known density and compare this numerical solution with
the analytical solution. We use the same relations between fluid density and depth
as in the previous subsection: ρ1 (7.34) and ρ2 (7.35). We approximate the pressure,
using four different meshes: mesh 1, mesh 2, mesh 3 and mesh 3b. Mesh 1 is an
irregular mesh. Mesh 2 is formed from mesh 1 by dividing each outflow boundary
element into four smaller, equisized elements. Mesh 3 is formed in the same way
from mesh 2. Mesh 3b is another irregular mesh, with approximately the same
number of outflow boundary elements as mesh 3. The three extraction lances are
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number of ξ = 10−1 ξ = 10−2 ξ = 10−5

elements error α error α error α
8 555 1.82 323 1.47 287 1.52
32 157 1.76 117 1.92 100 2.01
128 46 1.47 30 1.83 25 2.02
512 17 1.14 8.7 1.90 6.2 1.90
2048 7.6 1.00 2.3 1.87 1.7 2.02
8192 3.8 0.64 0.41

ξ = 10−10 ξ = 10−15 ξ = 10−20

error α error α error α
8 287 1.52 287 0.05 287 -9.25
32 100 2.01 278 0.05 174874 -1.62
128 25 2.02 269 2.5 536618 0.45
512 6.1 2.02 47 -0.40 392351 0.93
2048 1.5 2.01 61 -0.21 206335 0.57
8192 0.38 71 138858

Table 7.7: Results of the variation of ξ. Errors for an application on a structured
mesh and a linear relation between the depth and the density. The α-factor is
determined from the (unrounded) errors of two subsequent meshes, using equation
(7.38).
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Figure 7.3: The mesh that is used to examine the effect of the value of ξ.
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modelled through a prism with a regular octagon as a base. Partial differential
equation (7.14) is solved on the total surface of the extraction boundaries in one
matrix-vector solve, using method 3. In Figure 7.4, mesh 1 (top figures) and mesh
3b (bottom) are shown. The results of the comparison of the numerical solution
with the analytical solution is shown in Table 7.8. As before, the error is computed
from equation (7.39).
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Figure 7.4: Mesh on the extraction lances. The top left plot shows the mesh on the
extraction lances for mesh 1. The number of elements on the extraction lances is
618. The top right plot shows the same mesh on one of the extraction lances, but
now as a function of the angle. Mesh 2 is formed from mesh 1 by subdividing the
outflow boundary elements into four (equisized) elements. Mesh 3 is formed in the
same way from mesh 2. In the bottom plot mesh 3b is shown. This is an irregular
mesh that has approximately the same number of outflow boundary elements as
mesh 3. The number of elements on the extraction lances is 618 for mesh 1, 2472
for mesh 2, 9888 for mesh 3 and 9600 for mesh 3b.
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mesh number of elements on density error density error
the outflow boundaries

mesh 1 618 ρ1 73 ρ2 675
mesh 2 2472 ρ1 17 ρ2 124
mesh 3 9888 ρ1 4.5 ρ2 40
mesh 3b 9600 ρ1 5.9 ρ2 41

Table 7.8: Comparison of the numerical solution with the analytical solution for the
pressure on the outflow boundary for three meshes and two relations for the density.

In Table 7.8, we see that the error decreases for an increasing number of elements,
as was expected. The convergence is good, as can be seen from Figure 7.5. In this
figure, the error is plotted against the number of elements. The errors for density ρ1
are marked with a +-sign and the errors for density ρ2 are marked with a diamond-
sign. Also the trend line for an O(h2)-convergence is given. It is clear that method
3 gives a quadratic convergence approximately.

In Table 7.8, we also compare mesh 3 and mesh 3b. Mesh 3b is a ”real” irregular
mesh, while mesh 3 is formed from another mesh by splitting the elements. Both
meshes have approximately the same number of elements and it turns out that the
error is also comparable, as was desired. The size of the boundary elements in mesh
1 is comparable with the mesh size of mesh c, the 2D mesh with 608 elements. In
the same way, mesh 2 and mesh 3 are comparable with mesh d (2432 elements) and
mesh e (9728 elements). For that reason, one expects that the errors are of the
same order of magnitude. This turns out to be the case, although the errors in this
subsection are somewhat larger. The reason might be that the geometry is more
complex and that the elements are located on three different lances instead of on
one rectangular 2D domain.
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Figure 7.5: The error of the density calculation on the outflow boundary plotted
against the number of elements. The errors for density ρ1 are marked with a +-sign
and the errors for density ρ2 are marked with a diamond-sign. Also the trend line
for an O(h2)-convergence is given.
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θ0 = 0.41, mCaCO3
= 100.1 kg/kmol,

µ = 1.15× 10−3 Pa s, D = 0.05[m] diag([q2x q2y q2z ]
T /||q||),

ρCaCO3
= 2, 710 kg/m3, patm = 105 Pa,

vmax = 4.3681× 10−6 kmol/m3/s, K = 0.00728 m3/kmol,
g = 9.81 m/s2, Km,urea = 0.01 kmol/m3,
dm = 124× 10−6 m cin = 1.00 kmol/m3

Qin = 5m3/(8×3600s) Ain = 4.59 m2

qin = 3.78× 10−5 m/s.

Table 7.9: The values that have been assigned to the various model parameters.

For mesh 1, we could also have used method 1 or method 2 to calculate the
pressure on the boundaries since all the nodes lie on certain vertical lines. In mesh
2 and 3, the nodes also lie on some vertical lines. However, some of these lines do not
have a node on the top edge on which the pressure is given. But after calculation of
the pressure at the intersection of these lines and the top edges (which is very easy
in case of a constant pressure at the top), method 1 and 2 can be used. With mesh
3b it is not possible to use method 1 or 2 to calculate the pressure on the outflow
boundary and this mesh clearly needs the application of method 3, where a small
SUPG stabilization has been applied.

7.4.3 Application: a 100m3 experiment

For the 100m3 experiment, we take the configuration (Figure 7.1), the boundary
conditions (Table 7.1) and the initial conditions from Subsection 7.2.2. In this
chapter, the focus is on the calculation of the pressure on the boundary and not on
the validation of the model. Hence, we only model the first part of the experiment.
We lower the flow rate, such that the density effect becomes more visible and we
extend the injection time to 80 hours to allow the urea/calcium chloride pulse to
reach the extraction wells. As a time step we use ∆t = 0.5h. The number of
elements is approximately 23,000. The values that have been chosen for the various
model parameters are shown in Table 7.9. Since the differential equation, the initial
condition and boundary conditions are the same for urea and calcium chloride, the
urea concentration is equal to the calcium chloride concentration.

In Figure 7.6, we consider the pressure on the outflow boundary of the middle
extraction well as a function of time. We focus on the (vertical) edge of the prism
closest to the injection. The pressure on this edge is compared to the hydrostatic
pressure of water with a density of ρwater = 1000kg/m3 and the difference between
these two pressures is shown. This is done at several times.

During the first hours, the extraction wells are surrounded by fresh water since it
takes some time before the urea/calcium chloride solution reaches the outlet. After
some time some urea and calcium chloride will reach the extraction. Due to density
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Figure 7.6: Left: The difference between the pressure at the middle extraction well
and the hydrostatic pressure of water. Right: The concentration of urea and calcium
chloride at the middle extraction well.

flow, this will happen first at the bottom of the extraction, which is illustrated by
the curves for time t = 30h and t = 40h in the right plot of Figure 7.6. As a result,
only in the lower part of the extraction well the pressure (difference) increases,
which results into the quadratic-like shape of the pressure difference curves in the
left plot of Figure 7.6 at t = 30h and t = 40h. Subsequently, the urea/calcium
chloride concentration increases and also in higher regions the urea and calcium
chloride reach the outflow, as shows the right plot of Figure 7.6. Consequently also
the pressure further increases. Eventually, the urea/calcium chloride concentration
is more or less constant over the depth. Due to this, finally the pressure distribution
becomes linear again, while during the first time only an increase in the deeper parts
was observed.

The pressure increase at the outflow at a depth of 2.5 m is approximately 2.2×103

Pa. We do some simple calculations to get a feeling about the magnitude of this
pressure difference. The hydrostatic pressure of water at this depth is 1.25 × 105

Pa. This means that the pressure increase is 1.8% of the hydrostatic water pressure.
This is not so very much, but flow is caused by pressure gradients rather than by the
pressure itself. Given the inflow flow rate Qin from Table 7.9, the cross section of
5.6×2.5 m2, the permeability k and viscosity µ from this simulation and a distance of
5 m between injection and extraction, it can be calculated that a pressure difference
of 4.7× 103Pa between injection and extraction is needed to generate this flow rate.
(Since injection and extraction lances are used, rather than injection and extraction
sheets, the difference between the highest and lowest pressure in a horizontal cross
section will be somewhat larger.) Compared to the pressure difference of 4.7×103Pa,
the pressure increase of 2.2×103Pa due to the higher density is 47%. Hence, although
the absolute pressure does not change so much, the pressure increase due to higher
densities is significant compared to the other pressure differences, which henceforth
gives a significant diversion of the flow.

Figure 7.7 shows a contour plot of the calcium carbonate concentration in the top
and bottom of the domain at time t = 80h. The highest concentrations are around
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the injection wells (the three blue circles left). Since there is urea and calcium
chloride present during the whole simulated time the concentration is higher than
around the extraction wells (the three blue circles right), which are only after some
time reached by urea and calcium chloride. Due to density flow, the urea/calcium
chloride concentration is also higher in the lower regions of the domain than in the
higher ones. As a result, on the bottom, more calcium carbonate has been formed
than in the top of the domain.
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Figure 7.7: The calcium carbonate content in the top (left) and bottom (right) part
of the domain at time t = 80h.

7.5 Discussion and Conclusions

This chapter shows three different methods to calculate the pressure on the bound-
ary. In the first method, the lower Riemann sum is used to calculate the pressure and
in the second method, the trapezoid rule is used. Both methods require that all the
nodes lie on certain vertical lines. In the third method, the SUPG Finite Element
method is used to calculate the pressure from the solution of a boundary value prob-
lem. The large advantage is that this also works for unstructured meshes. Contrary
to the first two methods, it is not required that the nodes lie on certain vertical lines.

In Subsection 7.4.1, the three methods are compared on a (2D) rectangle for
two different relations between density and height on a structured and an unstruc-
tured mesh. Method 1 is a first order method, while method 2 is a second order
method. That agrees with the results. Although method 3 is a first order method,
we approximate second order convergence for a small value of ξ. We approximate
first order convergence for a larger value of ξ. The value of ξ can be chosen smaller
than the value that is used in this chapter, which is ξ = 10−5. A very small value,
however, deletes the Streamline Upwind part of the SUPG method and brings the
method back to the Standard Galerkin method (with its instabilities). On a struc-
tured mesh, the first method gives the largest error, while the second method gives
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the smallest error. For unstructured meshes, only method 3 can be used to get
satisfactory results.

In Subsection 7.4.2, the pressure is calculated on the outflow boundaries of the
configuration in Figure 7.1. This is done for the same relations between density
and height as in Subsection 7.4.1. Method 3 is used to calculate the density on
the outflow boundaries and this numerical solution is compared with the analytical
solution. This is done on four different meshes. The results show that method 3 is
a proper method to calculate the pressure on the boundary.

In Subsection 7.4.3, the first part of the 100m3 experiment as reported in [86] is
simulated. Method 3 is used as a method to calculate the pressure on the outflow
boundary at every time step. This results in a stable simulation and the results for
the pressure are in agreement with the expectations.

The computing time for the various methods is comparable for coarse meshes
but for an increasing number of elements, method 1 and 2 are faster than method
3. Since in method 3 a 2D calculation is performed to calculate the pressure on
the boundary, the computing time will be small compared to the computing time
for the 3D calculations on the full domain. For example, the computing time for
the pressure on the outflow boundaries in the simulation of Subsection 7.4.3 is more
than 800 time as small as for the 3D calculations in one time step on the full domain.
Hence, the contribution to the overall CPU time is not significant, and thereby the
overall CPU-time is about the same for all the three methods.

We can conclude that method 3 provides a good and robust scheme to calcu-
late the pressure on the outflow boundary. It can be applied on a manifold that
represents the boundary of some domain. It works for both unstructured and struc-
tured meshes. We note that the SUPG stabilization is needed to make the method
robust. For the differences in eigenvalues of the system with SUPG stabilization
and the system without SUPG stabilization we proved that |λ(hξ)− λ| = O(ξ). In
our observations, by applying the SUPG stabilization method, the zero eigenvalue
is mapped onto a non-zero one, where its value scales with ξ. The value of ξ can be
chosen very small, which for a reasonable mesh size gives the same convergence as
the system without SUPG, but the value should be larger than the round off error
of the computer with respect to the 8 bytes storage of floating numbers in Matlab.

Differential equation (7.14), which is solved to find the pressure on the boundary,
only contains a z−derivative. The pressure in a certain point only depends on the
density of the fluid straight above it. In this chapter, equation (7.14) is solved on the
boundary (elements) only. This approach only works if the faces of the boundary
are vertical, such that the fluid that determines the pressure in an arbitrary point
at the boundary is on the boundary itself. If this is not the case, considering the
(2D) boundary elements only is not sufficient. Instead, one should consider the 3D
region above the boundary, since the density in this region determines the pressure
on the boundary. Subsequently, one should solve differential equation (7.14) on this
3D subdomain to approximate the pressure on the boundary.
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Abstract

Biogrout is a method to strengthen granular soil, which is based on Microbial-
Induced Carbonate Precipitation (MICP). To model the Biogrout process, a reac-
tive transport model is used. Since high flow rates are undesirable for the Biogrout
process, the model equations can be solved with a Standard Galerkin Finite Element
Method. The Biogrout process involves the injection of dense fluids in the subsur-
face. In this paper we present our reactive transport model for Biogrout and use it
to simulate an experiment in which a pulse of a dense fluid is injected in a porous
medium filled with water. In the experiment front instabilities were observed in the
form of fingers. The numerical simulations showed that the fingering phenomenon
was less pronounced than in the experiment. By reducing the dispersion length and
implementing a randomly distributed permeability field, the fingering phenomenon
could be induced. Furthermore, the results of a case study to a Biogrout application
is reported.

8.1 Introduction1

The current research is done within the framework of Biogrout. It is investigated
what the effects of buoyancy driven flow and the associated fingering phenomenon
can be on Biogrout.

The overall reaction equation for Biogrout is:

CO(NH2)2(aq) + Ca2+(aq) + 2H2O(l) → 2NH+
4 (aq) + CaCO3(s). (8.1)

The substrates and by-product of this reaction are dissolved in water, which
increases the fluid density. For example, a 1 molar calcium chloride/urea solution
has a density of 1.1× 103 kg/m3. If all the calcium chloride and urea of a 1 molar
solution react, one ends up with a 2 molar ammonium chloride solution, which has
a density of 1.03× 103 kg/m3. In a fresh ground water environment, the dense fluid
will move more easily downwards than upwards as a result of density differences.
The forces of gravity and buoyancy can generate front instabilities in the form of
fingers where a dense fluid is on top of a less dense fluid. In order to get the micro-
organisms and their substrates at the desired location and extract the by-product, it
is important to examine the effect of fingering on the flow and transport. This will
help to decide which concentrations and what flow rate should be used and where
the injection and extraction wells should be positioned.

To examine the effect of buoyancy driven flow and the associated fingering phe-
nomenon an experiment has been performed, in which a pulse of saline fluid is
injected in a porous media flow cell, generating a two-dimensional flow field. The
flow cell is filled with glass beads and saturated with water. The saline pulse is fol-
lowed by a pulse of water. The experimental results are compared with the outcome
of numerical simulations. Besides, a Biogrout case study is performed and reported.

A lot of research on fingering has already been done, both on viscous fingering
(Saffman-Taylor instabilities) and instabilities caused by density differences, see for

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 8.1.
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example [26,29,42,78]. There are several approaches. One is the sharp interface ap-
proach in which the fluids are assumed to be immiscible, [15,25]. Another approach
is the miscible fluid approach. If chemical reactions play a role (like in the Biogrout
case), the miscible fluid approach should be taken, since the concentration can have
a whole range of values and does not only have to be binary at the vicinity of a
sharp interface, see for example [21,40,58,70,94].

The set-up of the experiment and the case study are given in the Sections 8.2 and
8.3. The reactive transport model for Biogrout, derived in [91] and [93] (Chapter 2
and 6), is presented in Section 8.4. Section 8.5 contains the numerical methods that
are used to solve the model equations and Section 8.6 reports the results, including
the effect of using a random porosity/permeability field to induce the fingering. In
Section 8.7 some conclusions and discussion can be found.

8.2 Materials and Methods

To evaluate the effect of a buoyancy driven flow on the distribution of injected
solutes, a two-dimensional porous media flow cell experiment is performed. The
flow cell, constructed from a PVC frame with plexiglass front and back plates is 95
cm wide, 45 cm high and 3 cm thick. The space is filled with glass beads, with a grain
size ranging up to 200 µm. A picture of some glass beads is shown in Figure 8.1.
Beside glass beads, also some crystals can be seen. These crystals result from the
Biogrout experiment that is performed after the buoyancy-driven-flow-experiment,
that is reported here. One injection well, a hollow steel tube, is installed at the
center of the flow cell and two extraction wells are installed at mid height about 12
cm from the side of the flow cell as shown in Figure 8.2.

Figure 8.1: A picture of some glass beads (spheres) that are used in the buoyancy-
driven-flow experiment.
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Figure 8.2: Set-up of the experiment. Injection well is denoted by Γin and the
extraction wells by Γout. The other boundaries (Γclosed) are closed.

A solution of 0.5 M sodium chloride (NaCl) is prepared to which a bit of red
food dye powder (Allura Red, E129) is added. The porous media flow cell is first
filled with water and flushed for several hours. The flow rate at the injection and
extraction wells is kept constant, where the injection flow rate is equal to the total
extraction flow rate of about 300 mL/h. At a certain moment the sodium chloride
solution is injected for a period of 30 minutes after which tap water is injected
again. The flow of the red sodium chloride solution is monitored using a Canon G7
compact camera at 10 minutes time-lapse intervals.

8.3 Case study set-up

Since the scale of the experiment is quite small compared to practical applications,
we also do a case study of an application of Biogrout, i.e. to create a cemented zone
underneath a levee in order to prevent piping, [8, 9]. Piping is an important failure
mechanism of levees in the Netherlands, [75]. Piping starts with heave and cracking
of the soft soil top layer at the land side of the levee. The cracks in the top soft soil
layer allow for seepage via the permeable sand layer underneath the clay levee. If
the water level difference between river and land side is large enough, sand grains
may be transported along with the water flow. This will create a pipe underneath
the levee, which becomes wider and wider as the process proceeds. Finally, this will
lead to failure of the levee and to breakthrough.

One way of decreasing the risk of failure of the levee due to piping is to broaden
the levee. This will decrease the pressure gradients in the sandy layer, which is the
driving force for the process. This, however, is expensive and not always possible,
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for example because of existing buildings close to the levee.

In those cases, Biogrout can be used to decrease the risk of failure due to piping.
As it fixates the sand grains, it will prevent the creation of pipes, or block the
propagation of pipes. While the Biogrouted sand will only have a minor decrease of
permeability, the seepage water will flow through the fixated sand body. Hence, the
water will not seek another way and herewith the risk of pipe formation is reduced.

Figure 8.3: The configuration for the case study (cross-section). The levee is shown
as well as the desired location of the Biogrouted sand body. The location of the
injection and extraction drains are indicated. The blue arrows display the seepage
for a high water situation.

Figure 8.3 shows the cross-section of the configuration for the case study. It
shows the levee and the desired location of the Biogrouted sand body. The blue
arrows indicate the seepage. The Biogrouted sand and the top clay layer should
be connected to prevent the formation of pipes in between. Therefore the injection
drain is located close to the top clay layer. The extraction drains are two meters
below the injection, since the dense fluid will tend to move downwards and since we
assume that a Biogrouted sandbody of 2 meters depth provides a sufficient barrier
for the pipes. The distance between the extraction drains is two meters. This case
study can be modelled through a 2D simulation, because of the symmetry. For
our domain of computation Ω we choose a depth of six meters and a width of four
meters. We assume that these dimensions are large enough so that the numerical
results are not affected by the location of the boundaries.

In the numerical simulation, the seepage is not taken into account. Therefore,
we obtain a symmetrical situation. Because of this symmetry, we only calculate the
part left to the injection drain and mirror the results. We take the mathematical
model as described in Section 8.4.2 and the configuration as in Figure 8.3. We
position the origin of the coordinate system above the red circle in this figure, i.e.
on the symmetry axes, at the bottom of the clay layer. Then the coordinates of the
centers of the extraction wells are (±1,-2.2). The radius of the extraction drains is
0.1 m. The injection is placed under the clay layer of the dike. As a simplification,
we use a part of the symmetry axis as the inflow boundary, namely the line segment
between z = −0.3 m and z = −0.1 m. Hence, a line segment is used as the injection



118 Chapter 8. Front instabilities in density driven flow

boundary rather than a semicircle.
As a flow rate, we choose Qin = 0.5 m3 per day per running meter of the drain

(for the whole domain). For comparison: this is twice as much as the flow rate in the
porous media flow cell experiment. To prevent that the dense fluid will sink away,
we choose a larger extraction flow rate, that is Qout = 2 m3 per day per running
meter of the drain for both the extraction drains. Since there are two extraction
drains, the total extraction flow rate is eight times as large as the injection flow
rate. The injection Darcy velocity qin is calculated from the injection flow rate via
qin = Qin/Ain, in which Ain is the surface of the injection. In the same way, we
have that the extraction Darcy velocity qout equals qout = Qout/Aout. The Biogrout
liquids are injected for twelve hours, followed by the injection of water to rinse the
soil. As the inflow concentration of urea and calcium we choose cin = 0.5 kmol/m3.
Afterwards, water is injected which implies that cin is given by cin = 0 kmol/m3 for
t > 12h. Since ammonium chloride is a reaction product, the injected concentration
is equal to 0.

8.4 Mathematical Model

In this section, we describe the model equations that are used to simulate the ex-
periment. The initial conditions and boundary conditions are given as well. This is
done for the experiment as well as for the case study.

8.4.1 Model equations, initial and boundary conditions for

the simulation of the experiment

In this subsection, we describe the mathematical model as well as the initial and
boundary conditions that are used to simulate the experiment. This model is based
on the reactive transport model for Biogrout as reported in [91] (Chapter 2) and
slightly adapted for this experiment.

We assume that the flow is incompressible and therefore divergence free. Hence,
in the domain Ω we have for time t ≥ 0:

∇ · q = 0. (8.2)

Here, q [m/s] is the Darcy flow velocity .
For the relation between the Darcy flow velocity and the pressure, we use Darcy’s

law [100]:

q = −k

µ
(∇p+ ρlgez), (8.3)

in which k [m2] is the intrinsic permeability, µ [Pa·s] is the dynamic viscosity of the
fluid, p [Pa] is the pressure, ρl [kg/m

3] is the density of the fluid and g [m/s2] is the
gravitational constant.

The pore water velocity relates to the Darcy flow velocity via

v =
q

θ
, (8.4)

in which θ [1] is the porosity.
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Substituting equation (8.3) into equation (8.2) gives a partial differential equa-
tion for the pressure:

∇ ·
(

k

µ
(∇p+ ρlgez)

)

= 0, in Ω. (8.5)

This is the Oberbeck-Boussinesq approximation, see for example [26]. The
Oberbeck-Boussinesq approximation consists in neglecting all density dependencies,
except for the crucial buoyancy term ρlg in equations (8.3) and (8.5).

We model the intrinsic permeability as a function of the porosity via the Kozeny-
Carman relation, [7]:

k =
(dm)2

180

θ3

(1− θ)2
. (8.6)

In this equation, dm [m] is the mean particle size. We assume that the porosity is
log-normally distributed θ ∼ logN (µ̃, σ2), see [47,60].

Sodium chloride is dissolved in water. The resulting concentrations of sodium
(Na+) and chloride (Cl−) are equal, because their relation in sodium chloride is
1:1. Since the concentrations of sodium and chloride are in the range of [0, 0.5], all
sodium and chloride ions will dissolve. Hence, it is not necessary to use a crystal
precipitation model like [46]. We used the experimental outcomes of [95] to find
a relation between the density of the fluid and the concentration of sodium (and
chloride). In Figure 8.4 we plotted the fluid density against the concentrations of
sodium and chloride and constructed a linear fit. The (average) slope of this graph
is 41 kg/kmol. For a zero concentration, the density equals 1000 kg/m3. That gives
the following relation for the density as a function of the sodium (and chloride)
concentration:

ρl = 1000 + 41CNa+ , (8.7)

in which CNa+ [kmol/m3] is the concentration of sodium (which is equal to the
chloride concentration).

The concentration of sodium is modelled by an advection–dispersion-equation:

∂(θCNa+)

∂t
= ∇(θD · ∇CNa+)−∇ · (qCNa+), in Ω. (8.8)

In this equation, D [m2/s] is the dispersion tensor, which coefficients equal Dij =

(αL − αT )
vivj

|v| + δijαT

∑

i
v2
i

|v| + δijDm, see [100]. The constant αL [m] is the lon-

gitudinal dispersivity, αT [m] is the transverse dispersivity and Dm [m2/s] is the
molecular diffusion coefficient. In this study, we choose smaller values for αL and
αT than given in [34], because the amount of dispersion is relatively small as in-
dicated by the presence of the fingers and the sharp fronts in the experiment. A
large value for the entries in the dispersion tensor would never show the observed
fingering behaviour. If dispersion would be more important, then the dependence
of the dispersion lengths on the statistical distribution of the permeability can be
incorporated. For more details and mathematical relations, we refer to [72,73].

We assume that the dispersion tensors for sodium and chloride are equal. Fur-
thermore, it is assumed that the porous medium is not charged. Together with
similar initial and boundary conditions, we have that the sodium concentration and
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Figure 8.4: The density of the sodium and chloride solution plotted against the
concentration. Experimental values and a linear fit: ρl = 1000 + 41CNa+ .

the chloride concentration are equal. Hence, we consider only one concentration,
the sodium concentration. In this paper we choose the longitudinal dispersivity
equal to the transverse dispersivity, αL = αT . Usually, the transverse dispersivity
is somewhat smaller than the longitudinal dispersivity as reported in [34]. We want
the fronts as sharp as possible for the given mesh. A smaller dispersion length may
lead to numerical instability, which is a result of the restriction on the mesh Péclet
number in case of central differences, see [80]. Hence, we choose equal dispersivities
for this research.

The experiment is modelled in 2D with the configuration as shown in Figure
8.2. The region is denoted by Ω, which is bounded by Γclosed and by the holes Γin

and Γout. The interfaces with Ω and the injection- and extraction wells are denoted
by Γin and Γout, respectively. The diameter of the injection and extraction wells is
0.02m. The length of the domain is Lx = 0.95m and the height is Lz = 0.45m.

Initially, the pores are filled with tap water and hence, we have that CNa+(t =
0,x) = 0 in Ω. In Table 8.1, the boundary conditions are given. Since the pressure
should be prescribed somewhere to get a unique solution for the pressure, we choose
to prescribe the pressure at the inflow. At the outflow boundaries we prescribe
the flow rate qout. The resulting injection flow rate will be twice as large as the
extraction flow rate. Of course, there is no flow over the closed boundary. At the
inflow boundary we prescribe the mass flux. We assume an advective flux at the
outflow boundary and there is no flux over the closed boundary.

We use a mesh with more than three hundred thousand elements. We assign
a value for the porosity to each element of this mesh. The values come from a
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CNa+ q

Γin (θD∇C − qC) · n = 2qoutcin p = patm + ρl(x, z)g(Lz − z)
Γout (θD∇C) · n = 0 q · n = qout
Γclosed (θD∇C − qC) · n = 0 q · n = 0

Table 8.1: Boundary conditions for the concentration and the flow.

Figure 8.5: Porosity in a region where fingers appear during the simulations. Left:
simulated porosity for the experiment. Middle: zoom in of left figure. Right: sim-
ulated porosity for the case study. The porosity is shown for a logN (0.42, 0.001)
distribution.

log-normal distribution: θ ∼ logN (µ̃, σ2). The mean M of this distribution equals

M = eµ̃+σ2/2 and the variance V equals V = (eσ
2 − 1)e2µ̃+σ2

. From the mean

M and the variance V , one can calculate the µ̃ and σ2 via µ̃ = log
(

M2

V+M2

)

and

σ2 = log(V+M2

M2 ). For each simulation, we use the same sampling from the stan-
dard normal distribution for reasons of reproducibility. Subsequently, the resulting
sample for each element is multiplied by the standard deviation of the normal dis-
tribution, σ, and then shifted by the mean of this distribution, µ̃. Finally, the
exponential value is computed, which finally results into exp (µ̃+ σN (0, 1).) The
variation in porosity is shown in the left two figures of Figure 8.5 for a logN (0.42,
0.001) distribution.

We calculate the intrinsic permeability k with the Kozeny-Carman relation (8.6).
Since the permeability is a function of the porosity θ and the porosity varies from
element to element, the permeability varies as well. The scale of variation for the
chosen mesh is 1.1 mm, which is the square root of the total surface divided by the
number of elements.

The values that have been assigned to the various constants are given in Table
8.2. The value of qout has been chosen in such a way that the red area at time t=0.5
h in the simulation has the same magnitude as in the experiment. As a result, the
pore water velocities at the inflow boundary are equal for all the simulations of the
experiment.
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dm = 200 µm µ = 10−3 Pa s

Dm = 10−9 m2/s cin =

{

0.5 kmol/m3 0 ≤ t ≤ 0.5 h
0 else

qout = M/18000 m/s g = 9.81 m/s2

αL = 0.001 m αT = 0.001 m
patm = 105 Pa

Table 8.2: The values that are taken for the various constants.

8.4.2 Model equations, initial and boundary conditions for

the case study

In this case study, we try to create a cemented zone underneath a levee in order
to prevent piping. Under the clay layer of the levee, the Biogrout substrates are
injected for twelve hours, followed by water injection to rinse the soil. Extraction
drains are placed a few meters below the injection drain. In order to do this case
study, we use the model for Biogrout as derived in [91] and [93] (Chapter 2 and 6).
This model is based on the biochemical reaction equation (8.1).

The concentrations of urea, calcium ions and ammonium ions are modelled with
the advection-dispersion-reaction equation:

∂(θCi)

∂t
= ∇ · (θD∇Ci)−∇ · (qCi) +miθrhp. (8.9)

In this equation, Ci is the concentration of species i, i ∈ {urea,Ca2+,NH+
4 }, D

is again the dispersion tensor with coefficients as in Section 8.4.1, rhp is the rate
of the overall Biogrout reaction (8.1) and mi is a constant that follows from the
stoichiometry of the reaction. As urea and calcium are consumed in the same ratio,
their values of mi are equal and negative: murea = mCa2+ = −1. For the produced
ammonium we havemNH+

4
= 2. The reaction rate rhp is modelled with the following

relation:

rhp = vmaxS
bac Curea

Km,urea + Curea
, (8.10)

in which vmax in kmol/m3/s is the maximal microbial activity constant, Km,urea

[kmol/m3] is the saturation constant of urea and calcium chloride and Sbac [1] is the
ratio of micro-organisms (with respect to the injected concentration) that is fixated
in the placement procedure prior to the injection of the cementation fluids.

Since it is assumed that calcium carbonate is not transported, there is only a
reaction term in the differential equation for the time derivative of its concentration:

∂CCaCO3

∂t
= mCaCO3

θrhp. (8.11)

In this equation, CCaCO3 [kg/m3] is the concentration of calcium carbonate in mass
per total volume rather than per liquid volume and mCaCO3

in kg/kmol is the molar
mass of calcium carbonate which is used to convert from kilomoles into kilograms.

As illustrated in Figure 8.1, the calcium carbonate crystals are formed in the
pores. This causes a decrease in porosity, where the increase of volume of calcium
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carbonate is equal to the decrease of pore space. Hence the following differential
equation holds:

∂θ

∂t
= − 1

ρCaCO3

∂CCaCO3

∂t
, (8.12)

in which ρCaCO3
[kg/m3] is the density of calcium carbonate. From the above

differential equation the following relation between the porosity and the calcium
carbonate content is derived:

θ(x, t) = θ(x, 0)− CCaCO3(x, t)− CCaCO3(x, 0)

ρCaCO3

. (8.13)

Note that the above relation is an averaged approach compared to the upscaling
approaches by [10] and [82].

For the flow, we also use the Oberbeck-Boussinesq approximation, see equations
(8.2)-(8.5). However, since the liquid volume decreases due to the reaction and
since a solid (calcium carbonate) is formed in the pore space, the right-hand side of
equation (8.2) (and hence equation (8.5)) is not equal to zero. Instead, we have:

∇ · q = Kθrhp. (8.14)

The constant K [m3/kmol] has been defined as

K :=

(

mCaCO3

ρCaCO3

− (1− Vs)

)

. (8.15)

As a result of the production of the solid calcium carbonate in the pores, there
is less space available for the fluid. The decrease in pore space per unit of time
is mCaCO3

/ρCaCO3
θrhp. This process is partly cancelled since the hydrolysis and

precipitation reactions cause a decrease in liquid volume. The decrease of liquid
volume per kmol reacted urea/calcium chloride equals 1− Vs. For more details, we
refer to [93] (Chapter 6). In absence of the reaction (rhp = 0), this is again the
Oberbeck-Boussinesq approximation. Substitution of Darcy’s law (8.3) gives the
following partial differential equation for the pressure:

∇ ·
(

−k

µ
(∇p+ ρlgez)

)

= Kθrhp. (8.16)

Again, we use the Kozeny-Carman relation (8.6) to model the intrinsic permeability
as a function of the porosity. The porosity is again lognormally distributed, with
mean M = 0.42 and variance V = 0.001. In the right plot of Figure 8.5 a part of
the porosity distribution in the domain of computation is shown. In this case study,
urea, calcium chloride and ammonium chloride are dissolved, rather that sodium
chloride. Hence, the liquid density depends on these species. As a relation between
the liquid density ρl [kg/m3], and the urea concentration (Curea [kmol/m3]), the

concentration of calcium ions (CCa2+ [kmol/m3]) and the ammonium concentration

(CNH+
4 [kmol/m3]) we have:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+ + 15.8991CNH+
4 . (8.17)
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The values that have been assigned to the various parameters are partly given in
Table 8.2. The used parameters that are not given in that table and the parameters
that have another value as in the simulation of the experiment, are given in Table
8.3.

mCaCO3
= 100.1 kg/kmol 1− VS = 0.02965 m3/kmol

ρCaCO3
= 2710 kg/m3 vmax = 4.26 × 10−5 kmol-urea/m3/s

Km,urea = 0.01 kmol/m3 Sbac = 0.25
Ain = 0.2 m Qin = 0.25 m3/day/meter drain
Aout = 0.628 m Qout = 1.00 m3/day/meter drain
qin = Qin/Ain qout = Qout/Aout

αL = 0.002 m cin =

{

0.5 kmol/m3 0 ≤ t ≤ 12 h
0 else

αT = 0.002 m

Table 8.3: The values that are taken for the various constants in the case study.

We use a mesh with almost two million elements. Since the porosity varies from
element to element, the scale of variation (defined by the square root of the total
surface divided by the number of elements) is 2.5 mm.

The boundary conditions for the flow and concentration in this case study are
shown in Table 8.4. We have a no flux condition on the top boundary and the
symmetry boundary. At the injection boundary, we prescribe the flow rate and the
mass flux. At the extraction boundary, we also prescribe the flow rate and since
the concentration is unknown beforehand, we assume an advective flux. At the
bottom, right (and left) boundary, we assume hydrostatic pressure. We assume an
advective flux in case of outflow over these boundaries and a zero mass flux in case of
inflow, although we aimed at choosing the boundaries sufficiently far away such that
the concentration at the boundary is (approximately) equal to zero. As an initial

condition for the aqueous concentrations, we take Curea = CCa2+ = CNH+
4 = 0

kmol/m3, for all points in the domain of computation at time t=0 h. Initially, there
is no calcium carbonate present in the domain: CCaCO3 = 0 kg/m3, for all points
in the domain of computation at time t=0 h. The partial differential equations
for the concentrations of urea and calcium are equal (assuming that the dispersion
coefficients are equal as well). Since the initial and boundary conditions are also
similar, these concentrations are equal. We will only show some results for the urea
concentration.

8.5 Numerical Methods

In this section, we explain which numerical methods are used to solve the partial
differential equations.

The partial differential equations are solved using the Standard Galerkin Finite
Element Method, with triangular elements and linear functions of local basis.

Since high flow rates are not desirable in the Biogrout process, the advection is
not dominant and an upwind/stabilization method is not necessary. Since an upwind
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Boundary Concentration Flow
symmetry boundary (qC −Dθ∇C) · n = 0 q · n = 0
top boundary (qC −Dθ∇C) · n = 0 q · n = 0
(’closed’ clay layer)
injection boundary urea and calcium:

(qC −Dθ∇C) · n = −qincin q · n = −qin
ammonium:

(qC −Dθ∇C) · n = 0 q · n = −qin
extraction (Dθ∇C) · n = 0 q · n = qout
boundaries
right and bottom if q · n > 0 : (Dθ∇C) · n = 0 p = 2 · 105+
boundary (open) else: (qC −Dθ∇C) · n = 0 −ρlg(z −min(z))

Table 8.4: The boundary conditions for the case study.

method decrease the order of convergence, in our case the Standard Galerkin method
is a better choice.

The partial differential equations are multiplied by a test function η and inte-
grated over the domain Ω to derive the weak formulation. For the time integration
an implicit Euler scheme is used.

The Newton-Cotes quadrature rules are used for the calculation of the element
matrices and vectors. From these element matrices and vectors, the large matrices
and vector are built in MATLAB (R2013b 64). The MATLAB standard direct
solver is used to solve the subsequent systems. As a time step we choose ∆t = 36s.

Most equations are coupled. We solve them decoupledly and check the mass
balances. It appears that the relative deviation is only in the order of tenths of a
percent over the entire simulation.

In order to simulate the experiment, the various partial differential equations are
solved and updates are done in the following order (in pseudo code):

1. ρn+1
l : ρn+1

l = ρ(CNa+,n), according to equation (8.7);

2. pn+1 : ∇ ·
(

k
µ (∇pn+1 + ρn+1

l gez)
)

= 0, partial differential equation (8.5);

3. qn+1: qn+1 = − k
µ (∇pn+1 + ρn+1

l gez), partial differential equation (8.3);

4. CNa+,n+1 :
(

θCNa+,n+1 − θCNa+,n
)

/∆t = ∇ · (θDn+1∇CNa+,n+1) +

−∇ · (qn+1CNa+,n+1), partial differential equation (8.8).

The following list presents in pseudo code the order in which the equations are
solved and the updates are done for the Biogrout case study:

1. ρn+1
l : ρn+1

l = ρ(Curea,n, CCa2+,n, CNH+
4 ,n), from equation (8.17);

2. θn+1 : θn+1 = θ(θ0, C
CaCO3,n), from equation (8.13);

3. kn+1 : kn+1 = k(θn+1), from equation (8.6);
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4. pn+1 : ∇ ·
(

kn+1

µ (∇pn+1 + ρn+1
l gez)

)

= Kθn+1rnhp, from partial differential

equation (8.16);

5. qn+1: qn+1 = −kn+1

µ (∇pn+1 + ρn+1
l gez), from partial differential equation

(8.14);

6. Curea,n+1 :
(

θn+1Curea,n+1 − θnCurea,n
)

/∆t =

= ∇ · (θn+1Dn+1∇Curea,n+1) − ∇ · (qn+1Curea,n+1) − θrn+1
hp , from partial

differential equation (8.9). Due to the reaction term, this partial differential
equation is non linear in the urea concentration. Newton’s method is used to
deal with that;

7. CNH+
4 ,n+1:

(

θn+1CNH+
4 ,n+1 − θnCNH+

4 ,n+1
)

/∆t =

= ∇ · (θn+1Dn+1∇CNH+
4 ,n+1) − ∇ · (qn+1CNH+

4 ,n+1) − θrn+1
hp , from partial

differential equation (8.9). The values for rn+1
hp follow from the last Newton

iteration in the previous step;

8. CCaCO3,n+1:
(

CCaCO3,n+1 − CCaCO3,n
)

/∆t = mCaCO3
θn+1rn+1

hp , from partial
differential equation (8.11).

We also investigated the effect of inner iterations on the results. This was done by
recalculating the density at each time step. If the difference between the previously
calculated density was larger than some tolerance, the equations were solved with
the updated density until the difference was smaller than some tolerance. Figure
8.6 shows some results for the scheme for Biogrout, proposed above. The left plot of
Figure 8.6 shows the convergence behaviour on a cross section for a two-dimensional
Biogrout test case. In each refinement step, the time step size is divided by two and
the mesh size is divided by

√
2, since the expected order of convergence isO(h2+∆t),

with h a measure for the mesh size and ∆t the size of the time step. Figure 8.6
shows a nice convergence behaviour. In the right plot of this figure, the scheme
without inner iterations is compared to the scheme with inner iterations. This is
done for the coarsest and the finest simulation. It appears that the scheme with
inner iterations only leads to small differences compared to the scheme that was
proposed here. When using small time steps, there were no noticeable changes.
Similar results were obtained for the other scheme, while investigating the effect of
inner iterations on the results.

8.6 Results

8.6.1 Results of the experiment and a simulation with a ho-

mogeneous porous medium

This section reports some results of the two-dimensional porous media flow cell
experiment that has been performed. The experimental results are compared to the
results of a simulation using a constant porosity and permeability. The left column
of Figure 8.7 shows some results of the flow cell experiment. The red fluid is the
dense fluid. The colour of the zones, where only water is present, ranges from white
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Figure 8.6: Left: the convergence of the Biogrout scheme without inner iterations.
Right: the scheme without inner iterations compared to the scheme with inner
iterations.

to yellow, depending on the day light and the artificial light. The colours in between
this background colour and the red colour correspond to a concentration between 0
and the injected concentration which is 0.5 kmol/m3, but the exact relation is not
known. At t=0.5h, the injection of the dense fluid stops and the injection of water
starts. This gives the red ring in the pictures for t=1h, t=2h, t=3h, t=4h and t=5h.
From t=2h, fingers appear on roughly two locations: on the bottom of the ring; and
on the top of the ring where the heavy fluid is above the less dense fluid. In either
case, fingers appear on positions where a dense fluid is on top of a less dense fluid.
Note that the fingers on the bottom of the ring are larger.

The right column of Figure 8.7 shows some results of a simulation of this ex-
periment, using a porosity of θ=0.42 and a permeability of k = 5.0× 10−11 m2. As
can be seen in the simulation, no fingers appear. Apparently, the numerical noise is
not sufficient to trigger the fingering. Hence, in the next section, we will vary the
porosity and permeability to trigger the fingering.

8.6.2 Numerical results for an inhomogeneous porosity

In this section we use an inhomogeneous porosity within our simulations. We assign
a value for the porosity to every element of the mesh. The values come from a
log-normal distribution: θ ∼ logN (µ̃, σ2). We vary the mean porosity M and the
variance V of this distribution and do several simulations. As the meanM we choose:
M = 0.36, M = 0.42 and M = 0.49. For the variance we choose: V = 0.0001,
V = 0.001 and V = 0.005. This results in nine different combinations. From the
mean M and the variance V , one can calculate the µ̃ and σ2 via µ̃ = log

(

M2

V+M2

)

and σ2 = log(V+M2

M2 ). The permeability that corresponds to a mean porosity of
M = 0.36 equals k = 2.5× 10−11 m2, according the Kozeny-Carman relation (8.6).
The corresponding permeabilities of the means M = 0.42 and M = 0.49 are k =
5.0× 10−11 m2 and k = 10× 10−11 m2, respectively.

In the right column of Figure 8.8 some results are shown for one of the sim-
ulations. In this simulation, the mean porosity is M = 0.42 and the variance is
V = 0.001.
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Figure 8.7: Some pictures of the experiment (left) and the numerical simulation
with a homogeneous porous medium (right) at several times (from top to bottom:
t=0.5h, t=1h, t=2h, t=3h, t=4h and t=5h). In the simulation, the porosity θ equals
θ=0.42 and the intrinsic permeability k is k = 5.0× 10−11 m2.
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Figure 8.8: Some pictures of the experiment (left) and the numerical simulation
(right) at several times (from top to bottom: t=0.5h, t=1h, t=2h, t=3h, t=4h and
t=5h). In the numerical simulation, the medium is inhomogeneous with a mean
porosity of θ=0.42 and a variance of 0.001. This mean porosity corresponds to an
intrinsic permeability of k = 5.0× 10−11 m2.
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In the numerical simulation with the homogeneous medium, of which the results
are shown in Figure 8.7, no fingers appear. In contrast to this simulation, we now
see the same phenomenon as in in the experiment in Figure 8.8. Moreover, fingers
start to appear at approximately the same time as in the experiment.

There are also some differences between modelling and the experiment. In the
simulation, the fingers only appear on the bottom side of the ring, whereas in the
experiment, also some small fingers appear at the bottom side of the top of the
ring. Furthermore, the speed of the fingers in the experiment is larger than in
the numerical simulation. From the results of the experiment, it can be seen that
the layer close to the lowest boundary is more permeable than elsewhere. At time
t=4h, the red fluid reaches the bottom and in one hour (at time t=5h) it has already
reached the left and right boundary. Apparently, there is some space between the
frame and the plexiglass.

Figure 8.9 shows the effect of the value of the variance. Since the random number
generator is reset before every simulation, the values of the porosity are constructed
from the same set of random numbers, as explained in Section 8.4. Hence, the
fingers appear at the same location. The magnitude, however, depends on the value
of the variance. A larger variance results in longer fingers.

Figure 8.9: The concentration given at time t = 5h. The mean porosity is M = 0.42.
The variance is V = 0.0001 (left), V = 0.001 (middle) and V = 0.005 (right).

Figure 8.10 displays the effect of the variation of the mean M. Clearly, the value
of the mean has a large effect on the fingering phenomenon. For a small mean,
hardly any fingers arise. A larger mean results into more fingers and clearly the
bottom is reached earlier. The effect of the mean value of the porosity on the
density effect is explained below. Remember that the pore water velocity at the
inlet is kept constant in the simulations.

Figure 8.10: The concentration given at time t = 5h. The variance is V = 0.001.
The mean porosity is M = 0.36 (left), M = 0.42 (middle) and M = 0.49 (right).
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The pore water velocity is determined by combining equations (8.3), (8.4) and
(8.6):

vx = − (dm)2

180µ

θ2

(1− θ)2
∂p

∂x
, (8.18)

vz = − (dm)2

180µ

θ2

(1− θ)2
∂p

∂z
− (dm)2

180µ

θ2

(1− θ)2
ρlg. (8.19)

In case of a higher porosity, the term θ2

(1−θ)2 is also larger. Now remember that the

pore water velocity at the inlet is constant. Hence, the increase in the porosity term
in the first term at the right hand side of equations (8.18) and (8.19) is compensated
by smaller pressure gradients in these terms. Now, let the ratio between the buoy-
ancy term and the pressure gradient term in the right-hand side of equation (8.19)
be a measure for the effect of the density differences. This ratio equals: ρlg/

∂p
∂z . A

higher porosity results in smaller pressure gradients and therefore the value of this
ratio increases which indicates a larger effect of density differences.

To quantify the effect of the porosity on the downward movement of the dense
fluid, the lowest location of the front is plotted as a function of time in Figure
8.11. For every time step, this location is determined by finding the smallest z-value
for which the concentration exceeds some threshold. As a threshold, we choose
Cthreshold = 0.05 kmol/m3. Figure 8.11 displays some results for various values of
the mean and the variance. This figure confirms the observations in Figure 8.10: if
the mean is larger, the dense fluid moves faster downwards. Furthermore, a larger
variance results in larger fingers, as we concluded from Figure 8.9. As a result, the
dense fluid is earlier at the bottom of the domain. In our simulations, the variation
of the mean has a larger effect on the fingering than the variation of the variance.

Figure 8.11: The lowest position of the dense fluid as a function of time for various
values of the mean and the variance. The mean porosity isM = 0.36 (left),M = 0.42
(middle) and M = 0.49 (right).
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8.6.3 Variation in substrate concentration

In this section, we vary the inflow concentration of the dense fluid to investigate
its effect. In the previous section, cin = 0.5 kmol/m3 has been used as an inflow
concentration, like in the experiment. In this section we choose cin = 1 kmol/m3

and cin = 2 kmol/m3. As a mean porosity we set M = 0.42 and for the variance
V = 0.001 is chosen. Figure 8.12 shows the concentration at consecutive times
for the various inflow concentrations. For these inflow concentrations, the flow
is considerably affected by the density differences. A higher inflow concentration
results into a heavier fluid. Thereby the gravity component is larger and hence
the dense fluid reaches the bottom earlier. Since the gravity component becomes
more significant for a higher inflow concentration, the pressure term is relatively
less important, and this results into a buoyancy-dominated flow. Since the bottom
is earlier reached, there is less time for the formation of fingers. At the other hand,
the density differences are larger, which is in favour of the formation of the fingers.

8.6.4 Case study simulations

In this section we present the results of the case study simulations. We use the con-
figuration, initial and boundary conditions as proposed in Section 8.4.2, combined
with the heterogeneous porosity distribution. The aim is to construct a calcium
carbonate wall as a barrier for the pipes. In order to prevent waste of materials, it
is desirable that the urea (and calcium) are consumed rather than extracted. Be-
sides that, it is necessary to remove the ammonium because of its impact on the
environment.

Development of the various concentrations

Figure 8.13 shows how the concentrations of urea, calcium carbonate and ammonium
develop in the domain of computation. The concentration profiles are shown at
several times. After 12 hours, the injection of the Biogrout substrates (in the top
of the domain) was stopped and the water injection started. This causes a region
around the injection well with zero urea concentration, which is visible in the plot of
the urea (and calcium) concentration at time t=13h. The urea is forced downwards
by injection/extraction and by the density differences. At time t=13h, the large urea
plume just started splitting in two large fingers. We see the same for the produced
ammonium. In the right plot of Figure 8.5, the initial porosity distribution is shown
for this particular region.

At time t=22h, in the same region small fingers arise, but also at the deepest
location of the urea and ammonium front. At time t=25h, these small fingers are
increased.

At time t=45h, the urea and calcium are consumed and the calcium carbonate
wall has his final shape. A barrier for the pipes has been formed. The plot of
the ammonium concentration for this time shows that more and more fingers arise.
Due to density differences, these fingers tend to flow down. At the other hand, the
extraction (indicated by the white circles) pulls them upwards.
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Extraction of ammonium

In the left column of Figure 8.14 is shown how the ammonium concentration evolves
further in time. The heterogeneous porosity causes the ammonium plume to split
into two parts (time t=22 h) and later on in multiple fingers that are being extracted
(times t=60 h and t=100 h). On the symmetry axis x=0, the horizontal fluid velocity
caused by the extraction drains is equal to zero, since the effect of the one extraction
well is cancelled by the other. Closer to the extraction drain, the horizontal velocity
in the direction of the drain increases. The splitting of the ammonium plume brings
the ammonium closer to the extraction wells. After all the urea is consumed, the
ammonium concentration decreases as a result of the extraction. Hence, the density
difference with the surrounding water decreases, which makes it easier to extract
the ammonium. After 100 hours, only 4 mol ammonium is left in the domain and
121 mol ammonium was extracted.

Comparison with a homogeneous porosity distribution

We repeated the same simulation for a homogeneous porosity. The ammonium
concentration at several times is shown for this simulation in the right column of
Figure 8.14. In this case, only one plume is observed and no fingers appear. The
ammonium plume moves downwards between the extraction wells. Although the
flow rate of the extraction wells is eight time as large as the injection flow rate, only
a part of the ammonium is extracted. After 100 hours, only 50 mol is extracted,
while 75 mol ammonium is still in the soil. In these simulations, the formation of
fingers is advantageous for the removal of ammonium.

Figure 8.15 shows the distribution of the calcium carbonate for the simulation
with the heterogeneous porosity distribution and the one with the homogeneous
porosity. The aim is a to create a calcium carbonate wall below the clay layer of at
least two meters length to decrease the risk on piping. The top two meters of the
calcium carbonate wall are similar for both simulations. Below these two meters,
the distribution of calcium carbonate is rather different. The fingers in the urea and
ammonium plume in the simulation with the heterogeneous porosity are also visible
in the calcium carbonate profile. Of course, this is not surprising, since calcium
carbonate can only be formed where urea is present. In the simulation with the
heterogeneous porosity, 6.22 kg calcium carbonate was formed in the soil. In the
simulation with the homogeneous porosity, the amount of extracted urea was a little
lower and the amount of produced calcium carbonate was therefore a little higher:
6.25 kg.
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Figure 8.12: The concentration for an inflow concentration of cin = 1 kmol/m3 (left
column) and cin = 2 kmol/m3 (right column) at several times (from top to bottom:
t=0.5h, t=1h, t=2h, t=3h, t=4h and t=5h). The mean porosity is M=0.42 and the
variance is V=0.001.
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Figure 8.13: Results of the case study simulation with the heterogeneous porosity
distribution for time t = 13h, t = 22h, t = 25h and t = 45h. Presented are the urea
concentration (left column), the calcium carbonate concentration (middle column)
and the ammonium concentration (right column).
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Heterogeneous porosity Homogeneous porosity

CNH+
4 at t=22 h CNH+

4 at t=22 h

CNH+
4 at t=60 h CNH+

4 at t=60 h

CNH+
4 at t=100 h CNH+

4 at t=100 h

Figure 8.14: Ammonium concentration at several times in the case study. The left
column shows the results with the heterogeneous porosity distribution and the right
column displays the results for a homogeneous porosity.
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Figure 8.15: Final calcium carbonate concentration for the simulation with the
heterogeneous porosity distribution (left) and the homogeneous porosity (right).
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8.7 Discussion and Conclusions

In the experiment, fingers arise as expected where the dense fluid is on top of the
less dense fluid. This happens particularly at the bottom side of the ring. But also
at the bottom side of the top of the ring small fingers come into being, which flow
downwards, in opposite direction to the flow that is generated by injection and ex-
traction. In the simulation, no fingers appeared in case of a homogeneous medium.
When using a variable porosity according to a log-normal distribution fingers de-
veloped in the numerical simulation. Fingers started to appear at approximately
the same time as in the experiment. Several simulations were performed for various
values of the mean porosity and variance. These simulations showed that a large
variation in porosity (and hence permeability) results in larger fingers than a small
variation, but this effect is not very large. The variation of the mean porosity has
a much larger effect on the fingers as can be seen in Figure 8.10. The reason is
explained in Subsection 8.6.2.

In comparison with the experiment, the numerical simulations seem to under-
estimate the fingering phenomenon. Fingers only appear at the bottom side of the
ring, while in the experiment also some small fingers appear at the inside of the top
of the ring. Furthermore, the flow velocity of the fingers in the experiment is larger
than in the numerical simulations.

The numerical simulation, in which the inflow concentration was varied, showed
that the concentration has a large effect on the flow as can be seen in Figure 8.12.
Compared to the experiment and simulation with an inflow concentration of cin=0.5
kmol/m3, the dense fluid moves downwards more rapidly for a higher value for the
inflow concentration.

The case study simulations showed that the fingering phenomenon has not nec-
essarily a negative effect on the extraction of the ammonium. By the formation of
fingers, the front is dispersed, which brings the dense fluid closer to the extraction
drains, with the result that is was easier to extract most of the ammonium. On
the other hand, while comparing the experimental results with the numerical simu-
lations, it was concluded that the numerical simulations were underestimating the
velocity of the fingers. If the velocity of the fingers would be higher than simulated
in the case study, it is likely that more fingers escape from the vicinity of the ex-
traction drains and that more ammonium is left in the soil.

Since the finite-element method is known to suffer from possible numerical mass-
conservation errors, we checked mass-conservation for the time- and mesh resolution
that we used. We found numerically that the relative violation of the mass-balance
was as small as a few tenths of a percent over the entire simulation.

We showed the results of simulations for only one particular drawing from the
lognormal distribution. To get an idea of the bandwidth, the simulations should
be repeated for a large number of (different) drawings from the same log-normal
distribution. Further, the sensitivity of the parameters in the log-normal distribution
should be investigated to be able to make a good prediction of the fluid transport.

The scale of porosity and permeability variation in the simulation of the experi-
ment is 1.1 mm (Sections 8.6.2 and 8.6.3) and 2.5 mm for the case study simulation
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(Section 8.6.4). The question is what this scale of variation is in practice.
In this article, the transverse dispersivity was chosen equal to the longitudinal

dispersivity in order to get the front as sharp as possible for the given mesh. By
using a finer mesh, it can be investigated what the effect is of a smaller transverse
dispersivity.

In reality, a horizontal seepage flow is occurring from surface water toward
drainage ditch. In the case study, the seepage flow is not taken into account during
the injection of the Biogrout fluids. However, this flow influences the transport of
the fluids and should really be taken into account, while designing an injection and
extraction strategy for a real case.

Buoyancy driven flow and associated fingers significantly affect the rate of salt
extraction, which is required when applying Biogrout in practice. To reduce the
density effect, one can use lower concentrations. However, this leads to a larger
injected volume in order to reach a certain target amount of calcium carbonate.
Also the reaction rate should be adapted when using lower concentrations in order
to prevent that all the calcium carbonate will precipitate close to the injection
wells. Another option to mitigate fingering would be to increase the flow rate. This
decreases the retention time, such that the dense fluid has less time to form fingers.
A drawback of a lower retention time is that the reaction rate should be larger
to get the same calcium carbonate production. Furthermore, high injection rates
cause large pressure drops close to the injection well which can fracture the soil in
its surroundings affecting the distribution of injected fluids. Finally, it also possible
to reduce the effect of density by gradually increasing the inflow concentration. In
that case there is no sharp front and it is less likely that fingers come into being.

In laboratory and scale up experiments of Biogrout, typically a concentration of 1
kmol/m3 is used as an injection concentration for urea and calcium chloride, [36,86].
The density of this fluid is 1.1×103 kg/m3, which is even denser than the 2 kmol/m3

sodium chloride solution that was used in the simulation described in Subsection
8.6.3, i.e. 1.08× 103 kg/m3. If all the urea and calcium chloride reacts, one ends up
with a 2 kmol/m3 ammonium chloride solution, which has a density of 1.03 × 103

kg/m3. This density lies in between the density of the 0.5 kmol/m3 and the 1
kmol/m3 sodium chloride solution. According to our simulations all these dense
fluids easily sink away in the subsoil. By the formation of fingers, the dense fluid
sinks even faster.

This paper clearly shows that it is important to take buoyancy driven flow into
account while simulating the Biogrout process. It is possible to simulate the fingering
phenomenon by varying the porosity and the permeability and using a sufficiently
fine mesh. In the simulations in this article, the formation of fingers is advantageous
for the application of Biogrout, since the ammonium is extracted more easily.
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Abstract

Biogrout is a method for reinforcement of granular soil. In the Biogrout process,
calcium carbonate is produced. This solid connects the grains and thereby the
strength of the soil is increased. The calcium carbonate is formed with the use of
micro-organisms. Experiments and numerical simulations have been performed to
demonstrate the process under various conditions. In this paper it has been exam-
ined if a reactive transport model can be used to describe a Biogrout experiment
that was performed in a column with a length of five meters. Four different models
for the course of the reaction rate are considered. The concentration of micro-
organisms and the reaction rate are fine-tuned in order to find a description of the
experiment that is a best fit for the particular model. This is done by minimizing
the error between the experimental and numerical results for the concentration of
calcium carbonate and the byproduct of the reaction.

9.1 Introduction1

The Biogrout process is based on microbial induced carbonate precipitation (MICP),
[5,14,22] and is a bio-mediated soil improvement method [23,24,39]. The proposed
variant of Biogrout is urea-based. For a review on urea-based MICP, see [63]. The
Biogrout process aims at producing calcium carbonate (CaCO3), by the hydrolysis of
urea (CO(NH2)2). In the presence of calcium (Ca2+), calcium carbonate is formed.
Ammonium (NH+

4 ) is the byproduct of this reaction. The overal Biogrout reaction
equation is:

CO(NH2)2 +Ca2+ + 2H2O → 2NH+
4 +CaCO3(s). (9.1)

The solid calcium carbonate forms connections between the grains by which the
strength of the soil increases. However, the formation of a solid in the pores de-
creases the porosity and also leads to a decrease in permeability. This influences
the flow and transport. Furthermore, due to the reaction, the fluid concentrations
changes, which leads to a change in the fluid density. Combining these phenomena
leads to a coupled reactive transport model. Some articles about modelling reactive
flow and transport in porous media are [2,16,65–68,81,82,98], of which [2,65,81] also
consider a variable porosity. In [81], the level set function is used for the boundary
of the crystals and a homogenization procedure is applied to obtain the upscaled
equations. In [65], the differential equation for the porosity is comparable to the
one used in this article. In [66, 67], the Newton method is used to deal with the
non-linear equations and the convergence of this method is studied.

In this paper it is examined whether the reactive transport model for Biogrout,
proposed in [91] (Chapter 2), is able to describe a Biogrout experiment that was
performed. This Biogrout experiment has been described in [97] and [83]. A five
meters long PVC tube was placed vertically and filled with sand. Ten sample points
were made in the column. The flow direction during the experiment was downwards.
First, micro-organisms were injected, followed by a pulse of a saline fluid to fixate

1Parts of the original introduction have been skipped in order to prevent too much repetition

of the Introduction from Chapter 1.
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the micro-organisms. Then, the column was filled with a urea and calcium chloride
solution. After the injection of this solution, the flow was stopped, but the reac-
tion could proceed. During the experiment, samples were taken from the sample
points. At the end of the experiment, the calcium carbonate content in the tube was
measured at several locations on samples of 1-4 g. The ammonium concentrations
that were measured in the sample points and the final calcium carbonate content are
used to fine-tune the concentration of fixated micro-organisms and the reaction rate.

In Section 9.2, this Biogrout experiment is described in more detail. The math-
ematical model is given in Section 9.3 including the initial conditions and boundary
conditions that are used to simulate the experiment. In Section 9.4 it is discussed
which numerical methods are used for these simulations. The results of both the
experiment and the simulations are given in Section 9.5 and a discussion along with
some conclusions can be found in Section 9.6.

9.2 Materials and Methods

In this section, the Biogrout experiment that was performed is described. More
details are given in [97] and [83].

9.2.1 Column preparation

A five meters long PVC tube with an internal diameter of 66 mm was placed verti-
cally and filled with a sand from a quarry in Itterbeck, Germany (Smals IKW, SZI
0032, also referred to as Itterbeck fine). This sand was uniform, fine to medium
grained: d10 = 110 µm (10% of the grains have a diameter of this size or lower);
d50 = 165 µm; d90 = 275 µm; d60/d10 = 1.64; (BSI 1999)). It is mainly siliceous
(97%). The packing of the sand was conducted under water to avoid the inclusion of
air pockets. The mean particle size of the sand grains was 165 µm and the porosity
was 0.378. Each end of the column was fitted with filter material. Ten pore fluid
sampling ports were placed in the column, namely at 0.25 m from the top of the
column, at 0.5 m and thereafter at intervals of 0.5 m till 4.5 m. The flow direction
during the experiment was downwards. A pump was installed at the bottom of the
column to regulate the outflow rate. The top of the column was connected to the
supply with the urea/calcium solution and hence, no air could enter the column.
During the experiment, samples were taken from the sampling ports.

9.2.2 Experiment

First, 6.34 l of a liquid containing micro-organisms were injected at a flow rate
of 0.35 l/h. The micro-organism used was Sporosarcina pasteurii. It contains the
enzyme urease which can hydrolyse urea. The production of ionic species from non-
ionic substrates generates an increase in overall conductivity of the solution. The
urease activity of the micro-organisms is determined by measuring this increase in
conductivity before injection. This activity was 0.23 mS/min. As determined in [96],
this corresponds to 4.26× 10−5 kmol-urea/m3/s. In order to immobilize the micro-
organisms in the column for use in subsequent cementation, the injection of micro-
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organisms was followed by 5.99 l of 0.050 kmol/m3 calcium chloride solution, as
proposed in [36]. The flow rate was again 0.35 l/h. The next phase is the cementation
phase, which also consists of two parts. First 8.72 l of a 1.1 kmol/m3 urea and
calcium chloride solution were injected with a flow rate of 0.35 l/h. Subsequently,
the flow is stopped and the column is left for 102 h to react. Finally, the column is
flushed with tap water, dismantled and the calcium carbonate content is determined
at several locations. The injection scheme and the values of the various parameters
(input for the simulations) are summarized in Tables 9.1 and 9.2.

Phase Description Duration (h) Flow rate (l/h)
Placement Bacterial injection 18.1 0.35

Fixation fluid injection 17.1 0.35
(0.050 kmol Ca2+/m3)

Cementation Reaction fluid injection 24.9 0.35
(1.1 kmol urea and Ca2+

per m3)
No flow - reaction 102 0

Rinse Water flush 23.7 0.35

Table 9.1: The injection scheme for the experiment.

L = 5 m length of the column
dint = 6.6 × 10−2 m internal diameter of the

column
θ0 = 0.378 initial porosity
dm = 165 × 10−6 m mean particle size of sand
Qin = 0.35 l/h flow rate
qin = 2.84 × 10−5 m/s inflow velocity
vmax = 4.26 × 10−5 kmol urea/m3/s maximal bacterial activity
cin = 1.1 kmol/m3 inflow concentration of urea

and calcium chloride

Table 9.2: The values of various parameters, that are input for the simulations (part
I).

9.3 Mathematical Model

In this section the model equations and the initial and boundary conditions that
are used to simulate the Biogrout experiment are given. They are discussed in more
detail in [91] and [93] (Chapter 2 and 6).

9.3.1 Model Equations

Important parameters in the Biogrout model are the concentrations of the species
in chemical reaction (9.1). The advection-dispersion-reaction-equation is used to
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model the concentration of the aqueous species:

∂(θCi)

∂t
= ∇ · (θD∇Ci)−∇ · (qCi) +miθrhp. (9.2)

In this equation, Ci [kmol/m3] is the concentration of species i, i ∈ {urea,
Ca2+,NH+

4 }, θ [1] is the porosity, D [m2/s] is the dispersion tensor, q [m/s] is
the Darcy flow velocity, rhp [kmol/m3/s] is the rate of both the hydrolysis and
the precipitation reaction which are equal during the major part of the reaction
period [83] and mi is a constant that follows from the stoichiometry of the reaction.
As urea and calcium are consumed in the same ratio, their values of mi are equal
and negative: murea = mCa2+ = −1. For the produced ammonium the value
is mNH+

4
= 2. The coefficients of the dispersion tensor D are given by Dij =

(αL−αT )
vivj

|~v| +δij(αT

∑

i
v2
i

|~v|+Dm), with vi = qi/θ [m/s] the pore water velocity and

Dm [m2/s] the diffusion coefficient, see [100]. The quantity αL [m] is the longitudinal
dispersivity and αT [m] is the transverse dispersivity. The term at the left hand
side of (9.2) is the accumulation term, the first term at the right hand side stands
for dispersion and diffusion, the second term for advection and the last term for the
reaction. Urea and calcium are consumed in the same ratio. Choosing an equal
dispersion tensor for urea and calcium gives two identical differential equations.
Since the initial and boundary conditions are also identical, these concentrations
are equal.

Calcium carbonate is a non-aqueous species and it has been assumed that it
is not transported. Hence, its partial differential equation does not contain an
advection and dispersion/diffusion term. Its concentration CCaCO3 [kg/m3] is given
in mass per total volume rather than per pore volume, as is done for the aqueous
species. The molar mass of calcium carbonate mCaCO3

[kg/kmol] is used to convert
from kilomoles into kilograms. This gives the following differential equation for the
calcium carbonate concentration:

∂CCaCO3

∂t
= mCaCO3

θrhp. (9.3)

The solid calcium carbonate is formed in the pores. This process decreases the
porosity. The density of calcium carbonate, ρCaCO3

[kg/m3], is used to calculate the
volume that a certain amount of calcium carbonate occupies. Hence, the following
differential equation for the porosity results:

∂θ

∂t
= − 1

ρCaCO3

∂CCaCO3

∂t
. (9.4)

Solving this differential equation gives the following relation between the calcium
carbonate concentration and the porosity:

θ(x, t) = θ(x, 0)− CCaCO3(x, t)− CCaCO3(x, 0)

ρCaCO3

. (9.5)

Substituting equation (9.3) into equation (9.4), gives the following differential
equation for the porosity:

∂θ

∂t
= −mCaCO3

ρCaCO3

θrhp. (9.6)



146 Chapter 9. Comparison to experimental data

This equation is similar to the differential equation for the porosity that is used
in [65], where a model for concrete carbonation is considered. Both differential
equations for the porosity contain a precipitation reaction rate and a multiplication
with the porosity θ, indicating that the precipitation reaction does not take place
in the solid, but in the pore space or on the boundary of the solid. There are also
some differences, but they do not lead to any substantial deviations in the calculated
results. The equation for the porosity in [65] contains some extra terms to prevent
the porosity from exceeding one or becoming negative. Besides this feature, disso-
lution is also taken into account and the value of the precipitation rate depends on
the difference between the concentration of the chemicals in solution and its equilib-
rium. As discussed in Section 1, in (the urea-based) Biogrout the (net) dissolution
is negligible. Since the reaction rate in this article is non-negative, the porosity is
non-increasing and due to its initial value between zero and one, the porosity will
never exceed one in the current modelling. If the porosity becomes very small, the
permeability will drastically decrease according to the Kozeny-Carman relation. In
a pressure driven case (with the pressure prescribed on boundaries rather than the
flow), there will hardly be any flow to the clogged zone nor will there hardly be any
supply of nutrients and the porosity will not decrease further. If the flow is pre-
scribed on a boundary and the fluid is pressed through the clogged porous media,
this will result in extremely high pressures. High pressures will lead to cracks and
preferential flow through the cracks. One could use a poro-elastic model where one
evaluates the local stresses to predict the initiation of cracks. The appearance of
cracks could give a sudden increase of the porosity and permeability. This issue is
not dealt with in the current modelling.

For the flow, the continuity equation that was derived in [93] (Chapter 6) is used.
This equation is an adaptation of the differential equation derived in [91] (Chapter
2).

∇ · q = Kθrhp. (9.7)

The constant K [m3/kmol] deals with volume changes due to the reaction and has
been defined as

K := Vdecrease of pore space − Vdecrease of liquid volume. (9.8)

Next, the above formula will be explained. The constantK deals with two processes:

1. As a result of the production of the solid calcium carbonate in the pores,
there is less space available for the fluid. This space reduction per kmol
produced calcium carbonate equals the molar volume of calcium carbonate:
Vdecrease of pore space = mCaCO3

/ρCaCO3
m3/kmol. Recall that mCaCO3

is the
molar mass of calcium carbonate and that ρCaCO3

is the density of calcium
carbonate. Hence, the decrease in pore space per unit of time and volume is
Vdecrease of pore spaceθrhp = mCaCO3

/ρCaCO3
θrhp.

2. The hydrolysis and precipitation reactions cause a decrease in liquid volume.
This decrease is partly caused by the water uptake in reaction (9.1). Further-
more urea and calcium do not occupy the same amount of volume as the pro-
duced ammonium. In [92], it has been derived that Vdecrease of liquid volume =
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0.030 m3/kmol. Therefore, the decrease in liquid volume per unit of time and
volume is Vdecrease of liquid volumeθrhp.

Note that equation (9.7) is consistent with the Oberbeck-Boussinesq approximation
as rhp → 0, i.e. in absence of the reaction.

Adding equations (9.6) and (9.7) gives

∂θ

∂t
+∇ · q =

(

K − mCaCO3

ρCaCO3

)

θrhp. (9.9)

Substitution of the definition of constant K (9.8) into equation (9.9) gives the fol-
lowing balance equation:

∂θ

∂t
+∇ · q = −Vdecrease of liquid volumeθrhp. (9.10)

The right-hand side of this equation is the decrease in liquid volume per unit of time
and volume.

For a relation between the pressure and the flow, Darcy’s law is used, see [100]:

q = −k

µ
(∇p+ ρlgez). (9.11)

In Darcy’s law, p [Pa] is the pressure, k [m2] is the intrinsic permeability, µ [Pa·s]
is the viscosity of the fluid, ρl [kg/m3] is the density of the fluid, g [m/s2] is the
gravitational constant and ez is a unit vector in vertical direction.

The Kozeny-Carman equation is used to determine the intrinsic permeability.
This equation is an empirical relation between the intrinsic permeability and the
porosity that is commonly used in ground water flow modelling (see [7]):

k =
(dm)2

180

θ3

(1− θ)
2 . (9.12)

In this relation, dm [m] is the mean particle size of the sand. Since the permeability
is an increasing function of the porosity (for 0 < θ < 1), a decrease in porosity will
lead to a decrease in permeability.

The density of the fluid depends on the concentrations. The following relation,
as derived in [91] (Chapter 2), is used:

ρl = 1000 + 15.4996Curea + 86.7338CCa2+

+ 15.8991CNH+
4 . (9.13)

By substitution of Darcy’s law in equation (9.7), one gets the following differen-
tial equation for the pressure.

∇ ·
(

−k

µ
(∇p+ ρlgez)

)

= Kθrhp. (9.14)

9.3.2 Reaction rate

To complete the model, the rate rhp of the biochemical reaction (9.1) is needed. In
this section, it is explained how this reaction rate is composed.
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Micro-organisms

First of all, before the reaction can take place, the micro-organisms should be
present. It has been assumed that the rate is proportional to the number of
micro-organisms per unit of volume. According to [36], the fixation procedure that
was used in this experiment leads to a rather homogeneous distribution of micro-
organisms. Hence, for the moment a homogeneous distribution of micro-organisms
is used. The quantity Cbac [1] is defined as the normalized concentration of micro-
organisms that is injected. It has vmax as its initial activity. The quantity Sbac [1] is
defined as the ratio between the concentration of fixated bacteria and the (normal-
ized) injected concentration of micro-organisms (the latter is, by definition, equal
to one). This give the following rate:

rhp = vmaxS
bac. (9.15)

Presence of urea

Secondly, before the reaction can take place, urea and calcium should be present.
This relation is modelled with Monod kinetics [57]:

rhp =
Curea

Km,urea + Curea
vmaxS

bac. (9.16)

In this equation, Km,urea [kmol/m3] is the half-saturation constant.

Time effect

The rate may also depend on time. There are several processes that make it likely
that the rate decreases. The micro-organisms need oxygen, which is only scarcely
available in the soil. The micro-organisms are encapsulated by the calcium carbon-
ate they produce and hence they can be reached by the urea less easily. On the
other hand, if the micro-organisms are not encapsulated, they can be flushed out
of the sand. Four different models for the production rate of calcium carbonate (in
kmol/m3/s) are proposed. It was assumed that the decay starts at the beginning of
the cementation phase.

1. The reaction rate is constant over time:

rconshp =
Curea

Km,urea + Curea
vmaxS

bac. (9.17)

This is the simplest model. It neglects growth, death and flush-out of micro-
organisms, as well as other processes that may influence the rate.

2. The decay of the active population of micro-organisms is proportional to the
active population [68], with decay constant b [s−1]:

∂Sbac,active

∂t
= −bSbac,active, for t > tcem.

This results into an exponential decay, with the following solution for the
active population:

Sbac,active = Sbace−b(t−tcem)+ ,
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with Sbac as the initial active population, present in the soil. The notation
(.)+ only uses the value of the quantity between brackets if it is positive and
uses zero otherwise. This gives the following reaction rate:

rexp1hp =
Curea

Km,urea + Curea
vmaxS

bace−b(t−tcem)+ . (9.18)

An exponential decay was also proposed in [83].

3. As a third model for the time effect, a simple engineering approach is proposed,
which is a linearisation of the exponential decay model, proposed above. It
states that the rate is maximal at time t = tcem and is zero from time t = tmax.
In between, the rate decreases linearly. That gives the following rate:

rlinhp =
Curea

Km,urea + Curea
vmaxS

bac

(

1− (t− tcem)+
tmax

)

+

. (9.19)

4. The last model for the time effect is a variation on the exponential decay model
proposed above and it has two different decay constants. It has b1 [s−1] as the
exponential decay constant during the flow part of the cementation phase and
b2 [s−1] as the exponential decay constant during no flow:

rexp2hp =











Curea

Km,urea+Curea vmaxS
bace−b1(t−tcem) for tcem ≤ t ≤ tnoflow;

Curea

Km,urea+Curea vmaxS
bac×

×e−b1(tnoflow−tcem)e−b2(t−tnoflow) for t > tnoflow.
(9.20)

Here, tnoflow [s] is the time in the cementation phase at which the flow is
stopped. This model is continuous at t = tnoflow but provides another decay
constant when the flow is switched off. This is feasible, since there is no flush
out of micro-organisms if there is no flow. Also other processes that influence
the rate might depend on the flow.

All these rates will be used in order to find the best description of the experiment.

9.3.3 Parameter values

Not all the values of the model parameters are given in Table 9.2. In Table 9.3, the
values of the other model parameters that we need to have in order to do simulations
are given.

9.3.4 Initial and boundary equations

As the diameter of the column is quite small compared to the length, the variation
in radial direction has been neglected and hence a 1D simulations is performed.

Initially, there is no urea, calcium, ammonium or calcium carbonate present in
the column. Hence, the initial concentrations are equal to zero. The initial porosity
is equal to θ0.

For urea, calcium and ammonium a mass flux is prescribed at the inlet. Since
ammonium is a reaction product, it is not being injected, so the inward mass flux
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Universal constants
g = 9.81 m/s2

Chemical properties
mCaCO3

= 100.1 kg/kmol
ρCaCO3

= 2710 kg/m3

Hydrodynamic parameters Reference
αL = 0.001 m
Dm = 10−9m2/s [20]
µ = 1.15 · 10−3Pa· s [95]
pref = 1.5 · 105Pa chosen
Reaction parameters Reference
Km,urea = 0.01 kmol/m3 [83]
1-Vs = 0.02965 m3/kmol [93]

Table 9.3: The values of various parameters, that are input for the simulations (part
II).

equals zero. To prescribe the mass flux for urea and calcium, the inflow rate should
be known. There is a pump at the bottom of the column that regulates the outflow,
so the outflow rate is known. In the simulations, the inflow rate equals this outflow
rate. In practice, there might be a small deviation, since at each sample time
approximately 1% of the pore volume is withdrawn and the reaction might also have
an influence. In the determination of the inflow rate, this small change is neglected.
At the outflow boundary, an advective flux is assumed for the concentrations of the
aqueous species. Equations (9.7) and (9.14) describe the effect of the reaction on
the flow. These equations imply that the flow is not necessarily uniform. Hence,
on the outflow boundary, the pressure is prescribed rather than the outflow rate.
This is also necessary to obtain a unique solution. The boundary conditions are
summarized in Table 9.4.

inlet outlet
Urea and CaCl2 (Dθ∇C − qC) · n = qincin (Dθ∇C) · n = 0
NH4Cl (Dθ∇C − qC) · n = 0 (Dθ∇C) · n = 0
flow q · n = −qin p = pref

Table 9.4: The boundary conditions for the simulations.

9.4 Numerical Methods

In this section, the numerical methods that are used to solve the system of (partial)
differential equations are given.

The differential equations for the pressure (9.14), the flow (9.11) and the con-
centrations (9.2) are solved using the Standard Galerkin Finite Element Method.
These equations are multiplied by a test function η and integrated over the domain
Ω to derive the weak formulation. For the time integration an implicit scheme is
used (Euler Backward).
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The Newton-Cotes quadrature rules [80] are used for the development of the
element matrices and vectors. Line elements are used in this 1D experiment in
combination with linear basis functions.

Since the differential equation for calcium carbonate (9.3) is an ordinary differ-
ential equation in each grid point, the (implicit) Backward Euler method is used to
solve it.

The calculations are done with MATLAB. As a mesh size, ∆x=0.002 m is used.
This gives a mesh with 2500 elements. The time span is divided in several equal
time steps, with length ∆t = 36 s. At each time step, first the density, porosity and
intrinsic permeability are updated, using equation (9.13), (9.5) and (9.12). Then,
the pressure and the flow are calculated, solving equations (9.7) and (9.14). Subse-
quently, the concentrations are updated by solving equations (9.2) and (9.3). Due
to reaction term in the partial differential equation for urea, this equation is non
linear. Newton’s method [1,66,67] is used to deal with that. As a stopping criterion

‖(cn+1,k+1 − cn+1,k)‖2
‖cn+1,k‖2

< 10−10

is used, with vectors cn+1,k+1 and cn+1,k the latest results of the iterative process.
In our case, Newton’s method converges within a few iterations. The following list
presents in pseudo code the order in which the equations are solved and the updates
are done. The superscript n and n + 1 denote the approximation at time tn and
tn+1.

1. ρn+1
l : ρn+1

l = ρ(Curea,n, CCa2+,n, CNH+
4 ,n), from equation (9.13);

2. θn+1 : θn+1 = θ(θ0, C
CaCO3,n), from equation (9.5);

3. kn+1 : kn+1 = k(θn+1), from equation (9.12);

4. pn+1 : ∇ ·
(

kn+1

µ (∇pn+1 + ρn+1
l gez)

)

= Kθn+1rnhp, from partial differential

equation (9.14);

5. qn+1: qn+1 = −kn+1

µ (∇pn+1 + ρn+1
l gez), from partial differential equation

(9.7);

6. Curea,n+1 :
(

θn+1Curea,n+1 − θnCurea,n
)

/∆t =

= ∇ · (θn+1Dn+1∇Curea,n+1) − ∇ · (qn+1Curea,n+1) − θrn+1
hp , from partial

differential equation (9.2). Due to the reaction term, this partial differential
equation is non linear in the urea concentration and Newton’s method is used;

7. CNH+
4 ,n+1:

(

θn+1CNH+
4 ,n+1 − θnCNH+

4 ,n+1
)

/∆t =

= ∇ · (θn+1Dn+1∇CNH+
4 ,n+1) − ∇ · (qn+1CNH+

4 ,n+1) − θrn+1
hp , from partial

differential equation (9.2). The values for rn+1
hp follow from the last Newton

iteration in the previous step.

8. CCaCO3,n+1:
(

CCaCO3,n+1 − CCaCO3,n
)

/∆t = mCaCO3
θn+1rn+1

hp , from partial
differential equation (9.3).
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To solve the (coupled) model equations, a splitting is performed. This splitting
introduces an error of O(∆t). Since the backward Euler time integration scheme also
results into an O(∆t) error, the splitting does not worsen the order of convergence.
The mass balance is regularly checked and deviations are only in the order of a few
tenths of a percent.

For each measurement of the ammonium concentration in the experiment, the
value is compared with the outcome of the numerical simulation. The total error for
ammonium is calculated by summing up the squares of the differences and taking
the square root of this sum. Finally, the result is normalized by dividing it by
the number of measurements nam and the theoretical maximum of the ammonium
concentration, which is 2.2 kmol/m3 (if the small decrease in liquid volume due to
the reaction is not taken into account):

Eam =
1

2.2nam

√

∑

i

∑

j

(yij − f(xi, tj))2, (9.21)

where yij are the values of the ammonium measurements at location xi and time
tj and f(xi, tj) is the corresponding numerical value at the same time and location.
In the same way the error for calcium carbonate is defined (for which we only have
experimental data at the end of the experiment):

Ecc =
1

105.1ncc

√

∑

i

(yi − g(xi))2, (9.22)

with ncc the number of calcium carbonate measurements, yi the values of the calcium
carbonate measurements at the end of the experiment at location xi and g(xi) is
the corresponding numerical value at the same time and location. The maximal
calcium carbonate concentration measured was 105.1 kg/m3.

The total error is calculated by summing both errors:

Etot = Eam + Ecc. (9.23)

The Matlab built-in minimization algorithm fminsearch is used to find the un-
knowns (concentration of fixated micro-organisms and decay constant(s)) in the rate
functions that minimize the total error (9.23). This is done for the four different
rate functions that are considered.

With the error definition (9.21) and (9.22), steep fronts may lead to considerable
errors, while the error in location of the front might be very small. Since the
aim of the paper is to examine if this reactive transport model can be used to
model a Bigrout experiment, rather than finding the best solution, this simple error
calculation is sufficient.

9.5 Results

In this section the results of the experiment and the numerical results for the various
models for the activity decrease are reported.
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9.5.1 Experimental Results

The results of the experiment have been reported in detail in [97] and [83]. Here,
only the evolution of the ammonium concentration in the various sampling ports
is shown (Figure 9.1) as well as the final calcium carbonate concentration (Figure
9.3). As in [97] and [83] the time is reset such that the cementation phase starts at
time t=0h.

Ammonium
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Figure 9.1: The course of the ammonium concentration [kmol/m3] in the sample
ports.

Figure 9.1 shows the ammonium concentration in time for various sample ports.
The vertical line at time t=24.9 h divides the graph in the flow part (left) and the
no flow part (right) of the cementation phase.

There is no ammonium present in the column at the beginning of the cementa-
tion phase. Hence, the initial ammonium concentration equals zero. Initially, the
reaction rate is quite high, causing a sharp increase in the ammonium concentra-
tion. Once the reactive front has passed a sample port, the ammonium concentra-
tion rapidly decreases. Since the supply is constant, it seems that the activity is
decreasing.

Figure 9.2 shows the ammonium concentrations as a function of the position in
the column. The left figure shows the ammonium profile at several times during the
flow phase. Samples were only taken, when the concentration in the sample port
was expected to be larger than zero, i.e. when the front is passing/has passed. This
implies that a zero concentration is expected on the sample port locations where
no data are shown. The ammonium penetrates further into the column as time
proceeds. Furthermore, the concentration increases with the position in the column.
This increase was expected, since ammonium is produced by the micro-organisms
and a longer retention time results into a higher concentration. From the slope of
the various graphs, it can be concluded that the production rate, which is a measure
for the microbial activity, decreases in time. The right plot of Figure 9.2 shows the
ammonium profile at several times after t=24.9 h, when the flow was stopped. Since
there is still urea and calcium present in the column, the reaction continues. The
ammonium concentration increases until it reaches a maximum at which all urea
has been consumed. Based on the injected concentration of urea and the reaction
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Figure 9.2: The ammonium concentration in the column at several times. Left:
during flow, right: during no flow.

stoichiometry, the theoretical maximum ammonium concentration is 2.274 kmol/m3,
taking the consumption of water in the hydrolysis reaction into account. However,
the measured concentrations at the end of the cementation phase are significantly
larger than this theoretical maximum, showing a structural difference of 8% with an
average of 2.459 kmol/m3 and a standard deviation 10% or 0.237 kmol/m3. In the
first sample port, the maximum is not reached within the time of the experiment.

Calcium carbonate

The results for the final calcium carbonate concentration are shown in Figure 9.3.
Since the largest heterogeneity was expected in the first part of the column, ad-
ditional samples were taken from this part. The first meter shows indeed a large
spread in results. The results in the rest of the column only show a little devia-
tion from the trend. In [83], several mechanisms which can explain the observed
heterogeneities are suggested: Possibly, the micro-organisms were not distributed as
homogeneously as expected. Perhaps, the initial column material contained some in-
homogeneities. Furthermore, locally clogged areas (by micro-organisms or crystals)
can cause preferential flow paths and stagnant zones.

The calcium carbonate content is decreasing with the length of the column. This
was expected, since the substrates are injected at x = 0 m and the reaction time
(the time needed for full conversion of the injected concentration) is comparable to
the retention time. Consequently, the first part of the column has received more
substrates resulting in a higher calcium carbonate concentration than in the last
part. If the reaction rate would be very large, the substrates are converted before
the end of the column is reached and in that case there would not be any calcium
carbonate at the end of the column. Too high reaction rates could also cause clogging
at the inlet. A high flow rate or a lower reaction rate would result in a more
homogeneous distribution. However, high flow rates could possibly wash out micro-
organisms, whereas low reaction rates will increase the reaction time.
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Figure 9.3: The concentration of calcium carbonate [kg/m3] in the column at the
end of the experiment.

Nitrogen concentration

Considering that both the nitrogen (N) atoms in urea are converted to ammonium,
at first sight, one could expect that the total nitrogen concentration in the cemen-
tation solution should not change, but since in the reaction also water is consumed,
this concentration slightly increases. Since the injected concentration of urea equals
1.1 kmol/m3 the total nitrogen concentration would increase from 2.2 kmol/m3 to
2.274 kmol/m3 when all urea is converted to ammonium. Assuming that the con-
centrations of urea and calcium are equal during the reaction in the sand column
(which is justified since urea is injected at the same concentration as calcium and
both react with the same rate), the total nitrogen concentration can be calculated by
adding the calcium concentration, multiplied by two, to the ammonium concentra-
tion. Figure 9.4 shows the results of the calculations and the theoretical bandwidth.
The figure shows that in many cases the deviation is considerable, potentially in-
dicating significant measurement inaccuracies. The same discrepancy as mentioned
earlier is observed, namely that at the final stage of the reaction the ammonium
concentrations show structurally higher values than expected. Secondly some out-
liers in the measurements were identified at which the total nitrogen concentration
is significantly lower than expected. These outliers should not be taken into account
when comparing the different model simulations with the experimental results.
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Figure 9.4: Concentration of nitrogen (CN [kmol/m3]) in the column (distance in
[m]) at several times (green line) and the theoretical bandwidth for this concentra-
tion (two dotted horizontal lines).

9.5.2 Numerical Results

In this subsection the numerical results are reported and compared with the exper-
imental results.

Minimizing errors

In Section 9.3.2, four different models where proposed for the reaction rate. In all
cases, a value has to be assigned to one or more parameters. Table 9.5 shows which
values minimize the error as defined in (9.21), (9.22) and (9.23) for these four cases.

Model Parameter values Error in Error in
NH+

4 CaCO3

Model with one unknown parameter
Constant activity Sbac=0.418 0.021 0.021
Models with two unknown parameters
Exponential decrease Sbac=0.707 0.012 0.020

b=1.12·10−5 s−1

Linear decrease Sbac=0.537 0.015 0.020
tmax=2.24 ·105 s

Model with three unknown parameters
Exponential decrease 2 Sbac=0.902 0.012 0.019

b1=1.64·10−5 s−1

b2=8.28·10−6 s−1

Table 9.5: The values for which the error between the experimental and numerical
results is minimal for the four models describing the course of the reaction rate.

Biochemical rates (9.17) up to (9.20) are plotted as a function of time for the
parameter values from Table 9.5. The graphs are shown in Figure 9.5. The rates also
depend on the urea concentration, which is a function of location and time. Since
the focus here is on the course of the rates in time, the urea term ( Curea

Km,urea+Curea )

in all rate functions is replaced by 1.
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Figure 9.5: The activity of the micro-organisms in the column as a function of time
for the four models that describe the course of the reaction rate. The urea term in
the rate functions is neglected here.

In the constant activity model, one parameter has to be estimated. Compared to
the other models, it leads to the largest errors, both for the ammonium concentration
and the calcium carbonate concentration.

Both for the exponential decrease model with one decay constant and the linear
decrease model, two parameters need to be estimated. These two decay models
perform similarly with respect to the error in the calcium carbonate content, however
the exponential decay model leads to a smaller error in ammonium concentration.

For the last proposed decay model, three parameters needed to be estimated.
It is also an exponential decay model, but now with two decay constants, one for
the period during flow and one for the period without flow. Although an extra
parameter was involved, it led to an only slightly smaller error in calcium carbonate
content, compared to the simpler exponential decay model.

It can be concluded that the models, which consider decay, should be preferred
over the constant activity model. As it could be expected, involving more param-
eters led to smaller errors. The exponential decay model with one decay constant
performed a little better than the linear decrease model and therefore it should be
preferred since it is based on physics rather than on a linearisation. In this exper-
iment, it was not really worth while to introduce an extra decay constant for the
period without flow. Other experiments are needed to conclude whether this is the
case in general.

Ammonium concentration

Figure 9.6 displays the experimental and numerical results for the ammonium con-
centration. After the first appearance, the ammonium concentration decreases dur-
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ing the flow part of the cementation phase, indicating a decreasing reaction rate.
For both the exponential decay models, this decrease is captured quite well, where
the first part of the column performs a little less well. There, the experiment shows
a drastic decrease in activity. The constant activity model is not able to handle
a decreasing activity as it is based on a constant activity. The small decrease in
ammonium concentration is the result of the decreasing porosity. The latter causes
a decrease in residence time which results in a lower amount of reaction product.
The linear decrease model gives better results than the constant activity model, but
performs worse than the two exponential decay models.

After 24.9 hours, the flow was stopped and the substrates were left to react. The
constant activity model gives the poorest results. It predicts that the maximum
ammonium concentration is reached quite fast. In all sample ports it is reached
earlier than it really does in the experiment. The other three models perform better
than the constant activity model and they are comparable to each other. In some
parts of the column one model describes the experiment the best and in other
parts another model. None of the models gives a good description of the final
concentration at the sample port at x = 0.25 m.

Calcium carbonate concentration

In this subsection the experimental results are compared to the numerical results
for the calcium carbonate concentration. Again, this comparison is done for the
four different models for the activity decrease. The results are shown in Figure 9.7.
The numerical results are quite good for all models and they hardly differ from
each other. There is a large spreading in the experimental results for the calcium
carbonate content in the first part of the column. Possible reasons for this scatter
are discussed in Section 9.5.1.
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Figure 9.6: The ammonium concentration [kmol/m3] in the various sample ports as
a function of time. Both the experimental and numerical values are shown. First
row: constant activity model, second row: exponential activity decrease model,
third row: linear activity decrease model, last row: exponential activity decrease
model with two decay constants.
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Figure 9.7: The calcium carbonate concentration in the column at the end of the
experiment. Both the experimental values and the numerical values for the four
models are shown.
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9.6 Conclusions and Discussion

In this paper, a reactive transport model which was developed to simulate the
Biogrout process was compared to the results of a sand column experiment. This
experiment is presented in [97] and [83]. The measured ammonium concentrations
during the Biogrout experiment and the final calcium carbonate concentrations are
shown in this paper as well.

From the ammonium measurements it followed that the reaction rate is decreas-
ing in time. For that reason, various models were proposed, in which the activity
decreases in time. A model with a constant activity was also considered. These
models were compared to a Biogrout experiment.

The amount of the final calcium carbonate content appeared to decrease with
the distance to the injection, although the experimental results are quite scattered,
especially close to the injection. Close to the inlet, the average amount of calcium
carbonate is approximately 100 kg/m3. This implies a porosity reduction from
0.378 to 0.341. According to the Kozeny-Carman relation (9.12), the permeability
decreases with a factor 1.5. Close to the outlet, the calcium carbonate content is
almost zero. On that location, the porosity and permeability were hardly influenced.

In a 1D experiment, the decreases in porosity and permeability are not very
important, since there is only ’one way’ to travel from the inlet to the outlet. In two
or three dimensions, these reductions become more important, since the liquid will
flow around a cemented zone, where the resistance is relatively high. Furthermore,
the porosity reduction in general can be larger than in this experiment. Therefore
it is important that the porosity and permeability reduction are considered.

The mathematical model, proposed in this article, is quite detailed with respect
to the flow equation in order to have conservation of mass. In [93] it has been shown
that small deviations in the flow equations have a minor effect on the final calcium
carbonate content.

Analysis of the experimental data highlighted several inaccuracies in the mea-
surements. First, the final ammonium concentrations obtained after completion of
the reaction showed significantly higher values (8%) than expected according to
the theoretical stoichiometry. Second, assuming that the concentration of urea and
calcium ions are equal throughout the experiment, the total nitrogen concentration
was calculated from the ammonium concentrations and measured calcium concen-
trations. Analysis of this total nitrogen concentration identified several outliers with
significantly lower values than expected. These outliers were not taken into account
when comparing the various kinetic models. Finally, the volume of each liquid sam-
ple is approximately 5 ml. In the calculations for both the experiment and the
simulations this volume is neglected. However, especially in the no flow part, this
volume might influence the experimental results.

Considering the calcium carbonate concentration, all the models led to a simi-
lar description of the average final calcium carbonate concentration. This is partly
because the experiment contains a no flow part. In case of no flow, the value of the
reaction rate does not influence the final distribution, as long as it is high enough to
get full conversion in the course of the experiment. Changing the experimental con-
ditions, such as the flow period and flow rate or initial activity and concentrations,
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would increase the differences between the various simulations. In the first part of
the column the calcium carbonate measurements showed large variations. Several
mechanisms, explaining the observed heterogeneities have been suggested in [83],
including a heterogeneous distribution of bacteria, locally clogged areas (by bacte-
ria or crystals) causing preferential flow paths and stagnant zones and the kinetics
of the precipitation reaction. The prediction of this local variability requires a far
more advanced model, taking these processes into account. However, measurement
of the parameters which are required to describe these processes at pore scale and
the upscaling of these processes to continuum scale are hard to achieve and will
introduce a significant amount of uncertainty. It is therefore questionable whether
such a complex model will result in a better performance. In order to predict radial
variations, a 1D simulation is not adequate. However, since this paper assumes a
homogeneous distribution of micro-organisms, it is expected that a full 3D modelling
approach for simulating this experiment will not lead to radial variation, except for
a possible fingering effect as a result of buoyancy driven flow. The latter could have
occurred since a dense fluid is injected on top of a less dense fluid.

Ammonium, the side product of the reaction, was measured at several times
and locations during the experiment. Hence, these results are more appropriate to
compare the various model scenarios. The constant reaction rate model does not
perform very well since it is not able to model a decreasing reaction rate, which
is observed in the experiment. The other models are able to capture a decreasing
reaction rate and they perform quite good. Only in the first meter of the column
they predict too high concentrations. The two exponential decay models can be
preferred above the linear decay model since decay processes are often described
using exponential models and since the two exponential models gave the smallest
total error. It was excluded that the differences between the numerical and experi-
mental results were caused by numerical errors by redoing a calculation for a finer
mesh, combined with a smaller time step. The numerical results were overlapping,
indicating that the numerical errors are very small.

According to the ammonium measurements, the microbial activity decreases
drastically in the first meter of the column during flow. Trying to get a better
fit for this part of the column during flow, results in a rapidly declining reaction
rate. Consequently, the simulated calcium carbonate concentrations are much lower
than the experimental concentrations. It seems that in the first part of the column
the reaction rate decreases during flow but subsequently increases after the flow
has been switched off. Since the time dependent activity models that are used
assume a continuous, monotonously decreasing rate, they are not able to handle
this discontinuity in reaction rate.

On the other hand, the measured ammonium concentrations in the first part of
the column seem to be too low. If the concentrations of ammonium at x = 25 cm
and x = 50 cm are used to calculate the final calcium carbonate concentration in
the first 25 cm or 50 cm, values are found that are lower than the average measured
calcium carbonate concentrations. These calculations are done as follows. The con-
centrations of (produced) ammonium at x = 25 cm are used as a measure for the
activity in the first 25 cm between that time and the next sample. This gives an
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Figure 9.8: The activity of the micro-organisms in the first part of the column,
calculated from the produced ammonium concentration.

upperbound since the activity decreases between the samples. This is illustrated
in Figure 9.8. From these activities, the amount of produced calcium carbonate
during flow is calculated. This value is added to the amount of calcium carbon-
ate that is produced during no flow. The latter is easily calculated by subtracting
the ammonium concentration at the beginning of no flow from the final ammonium
concentration and converting it into calcium carbonate. These calculations give an
upperbound for the calcium carbonate content of 41 kg/m3 for the first 25 cm and
58 kg/m3 for the first 50 cm. From the measured calcium carbonate concentrations
a value of 86 kg/m3 was expected in both cases. This value is much higher than
the one calculated from the ammonium concentrations, which either could indicate
an error or a large spread in radial direction in the ammonium measurements. The
radial heterogeneity is confirmed by the variation in the final calcium carbonate
concentration.

It can be concluded that, in order to properly simulate the Biogrout process,
a time dependent decay of the reaction rate should be included. The exponential
decay models performed the best. From this experiment it can not yet be concluded
whether an extra decay constant for the period without flow is really necessary.
Although the models performed quite well, the concentration of micro-organisms
and the decay rate were fine-tuned on the measurements to achieve a good fit. In
order to improve the performance of these numerical simulations, more advanced
models are required. These models should incorporate the placement of micro-
organisms (including the way of cultivation of micro-organisms, sand type, pH, flow,
concentrations, etc.) and other processes, like process-induced preferential flow and
the kinetics of the precipitation reaction [83].





10
General conclusions and Outlook

A model has been developed for the urea-based Biogrout method. The model in-
cludes Darcy flow with fluid density differences, the transport and reaction of micro-
organisms, fixation fluid, urea, calcium and ammonium and finally the production
of calcium carbonate. The changing fluid density and the decreasing porosity and
permeability are also incorporated in the model. Several simulations were performed
in one, two and three spatial dimensions. An analytical solution has been derived
for a specific (simplified) case. Furthermore, some simulations were compared to
experimental results.

To prevent numerical instabilities, the Euler Backward method is used for the
numerical time integration. Since high flow rates should be avoided to prevent the
flush-out of the micro-organisms, the system is not advection dominated and the
Standard Galerkin Finite Element Method can be used to solve the model equations.

A hydrostatic pressure is often used as a boundary condition. In case of an evolv-
ing fluid density, this pressure can be calculated by solving an additional differential
equation on the boundary.

Since a model is always a simplification of reality, a balance between simplicity
and complexity should be sought. A major issue is that very complicated models
often require the use of many parameters that are hard or even impossible to obtain.
On the other hand, the model should contain the important phenomena in order to
be reliable. We propose the following list of phenomena and assumptions that are
possibly relevant to incorporate into future modelling studies for Biogrout:

• Calcium carbonate precipitation; in the current model it is assumed that cal-
cium carbonate precipitates locally and that calcium carbonate is not trans-
ported. However, it is likely that small crystals can be transported before they
will stick in the pore throats.

• Governing biochemical reaction equation; the combined hydrolysis precipita-
tion reaction is assumed to govern the process. Injection into an acid en-
vironment can have an effect on the equilibria and hence on the amount of
precipitated calcium carbonate. Also the pressure and the temperature may
influence the governing biochemical reaction equation. Furthermore, the pre-
cipitation of calcium carbonate takes place by the formation of new crystals
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(for which supersaturation of the solution is needed) and the growth of these
crystals [83]. This may take some time and in the meanwhile the species are
transported. This can be the reason, besides the flush-out of micro-organisms,
that around injection wells the calcium carbonate concentration is quite low
like in [85, 86]. The current model, however, predicts the highest calcium
carbonate concentrations around the injection.

• Retardation; the retardation of urea, calcium and ammonium is not taken
into account. Nevertheless, there can be some retardation, especially when
particles are charged.

• Kozeny-Carman relation for the permeability; it should be tested if this rela-
tion is suitable for the Biogrout process, where the porosity and mean particle
size evolve over time and space.

• Decay of reaction rate; the reaction rate decreases in time, which can be caused
by encapsulation, flush out and death of micro-organisms. It is useful for the
model if a proper relation is available.

• Effect of micro-organisms on the porosity; the injection of micro-organisms
will effect the porosity and may even lead to clogging of the porous medium.
This is not yet included in the model.

• Effect of flow velocity on the detachment of the micro-organisms;

• Biofilm growth; this is especially relevant if micro-organisms are used that are
present in the soil.

The current model is applicable under saturated conditions. It would be inter-
esting to extend the model with unsaturated flow in order to be able to model the
unsaturated zones.

Next to urea hydrolysis, there are other microbial processes, which lead to the
precipitation of calcium carbonate, [84]. In the study in [84], a process is proposed
in which a gas is produced as a by-product of the calcium carbonate production. In
that case a multiphase flow model is needed.

The model for the placement of micro-organisms has not yet been compared to
experiments. This is indispensable for the reliability of the model. The hydrolysis-
precipitation model is compared to a density driven flow experiment in Chapter 8
and to a Biogrout experiment in Chapter 9. The variation of the initial porosity
in space is favourable to induce the formation of the fingers. After finding a best
fit for a couple of parameters, the hydrolysis-precipitation model could describe the
Biogrout experiment quite well. The comparison to more experiments, including
experiments with density driven flow, is necessary for validation and in order to get
a reliable predictive model for the application of Biogrout.

For the simulations, the Standard Galerkin FEM is used for discretisation in
space. In order to model density driven flow including the fingering phenomenon, one
should be able to model sharp fronts which imply a small dispersion length. In the
current modelling, this leads to the need of small elements, due to the mesh-Péclet
condition [80], which forces the dispersion length to be larger than half the element
size. Adaptive mesh refinement at the location of the fronts can be applied to
reduce the computational work. A SUPG method can be applied to avoid unphysical
oscillations.



A
LIST OF SYMBOLS

Concentrations and retardation factor

Curea = concentration of dissolved urea molecules, [kmol/m3];

CCa2+

= concentration of dissolved calcium ions, [kmol/m3];

CNH+
4 = concentration of dissolved ammonium ions, [kmol/m3];

Cfix = concentration of fixation fluid, [kmol/m3];

CNa+

= concentration of dissolved sodium ions, [kmol/m3];
CCaCO3 = concentration of calcium carbonate molecules, [kg/m3];
C̄k = sorbed concentration of species k,

k ∈
{

urea,Ca2+,NH+
4

}

, [kmol/kg];
Ck

s = concentration of species k in the source or sink,
k ∈

{

urea,Ca2+,NH+
4

}

, [kmol/m3];
Cbac = injected concentration of micro-organisms

(normalized), [1];

C
bac

= ratio of the micro-organisms that is adsorbed (with
respect to the injected concentration), [1];

Sbac = ratio of the micro-organisms that is fixated (with respect
to the injected concentration), [1];

Ψ = total concentration of micro-organisms

(Ψ = Cbac + C
bac

+ Sbac), [1];
Rk = retardation factor of species k, k ∈

{

urea,Ca2+,NH+
4

}

,
[1];

cin = inflow concentration, [kmol/m3];
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Properties of the porous medium

ρb = bulk dry density of the subsurface medium, [kg/m3];
θ = porosity, [1];
θ0 = initial porosity, [1];
k = intrinsic permeability, [m2];
dm = mean particle size of the subsurface medium, [m];

Reaction rate related symbols

rhp = reaction rate of the hydrolysis and precipitation
processes, [kmol/m3/s];

vmax = maximal reaction rate, [kmol/m3/s];
tmax = life time of the bacteria, [s];
Km,urea = saturation constant of urea, [kmol/m3];
Km,fix = saturation constant of the fixation fluid, [kmol/m3];
rads = adsorption reaction rate, [1/h];
rdes = desorption reaction rate, [1/h];
rfix = fixation adsorption rate, [1/h];
kads = adsorption rate constant, [1/h];
kdes = desorption rate constant, [1/h];
kfix = fixation rate constant, [1/h];
ϕ = adsorption isotherm, [1];
β = factor that describes which part of the adsorbed

micro-organisms are fixated, [1];
β0 = constant that describes which part of the adsorbed

micro-organisms are fixated, [m3/kmol] or [1];
α = Langmuir constant, [1];

C
max

= Maximum adsorption capacity, [1];

Flow related symbols

p = pressure, [Pa];
q = Darcy flow velocity vector, [m/s];
v = pore water velocity vector, [m/s];
Qin = injected flow rate, [m3/s];
qin = inflow velocity, [m/s];
qks = volumetric flow rate per unit volume of aquifer of

species k, k ∈
{

urea,Ca2+,NH+
4

}

, [1/s];
K = constant in the differential equation for the flow,

[m3/kmol];
1− Vs = liquid volume that disappears per number of

converted particles, [m3/kmol];
ρl = density of the fluid, [kg/m3];
µ = dynamic viscosity of the fluid, [Pa·s];
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Dispersion and diffusion related symbols

D = hydrodynamic dispersion coefficient tensor, [m2/s];
Dm = Molecular diffusion coefficient, [m2/s];
αL = longitudinal dispersivity, [m];
αT = transverse dispersivity, [m];

Miscellaneous

t = time, [s];
x, y, z = Cartesian coordinates, [m];
g = gravitational constant, [m/s2];
mCaCO3

= molecular mass of calcium carbonate, [kg/kmol];
ρCaCO3

= density of calcium carbonate, [kg/m3];
n = outward normal vector, [m];

Chemical components

CaCl2 = calcium chloride;
CaCO3 = calcium carbonate;
Ca2+ = calcium ions;
CO(NH2)2 = urea;
CO2−

3 = carbonate ions;
H2O = water;
NaCl = sodium chloride;
NH4Cl = ammonium chloride;
NH+

4 = ammonium ions.
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