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Abstract

GNSS model validation constitutes an essential part of any GNSS data processing scheme. With the inclusion of the very
precise, but integer ambiguous carrier-phase data, the GNSS models become of the mixed-integer type. Although inference
theory of mixed-integer models is well developed for parameter estimation, this is not yet the case for the validity testing
of such models. It is the goal of this contribution to help close this gap by introducing the ambiguity-resolved parameter
significance test. It differs from existing significance tests in that it takes the unknown integerness of the ambiguities rigor-
ously into account. Our analysis shows that the proposed test can significantly outperform currently used tests.

Keywords GNSS - Mixed integer models -
functions - Integer ambiguity resolution

Introduction

GNSS model validation constitutes an essential part of any
GNSS data processing scheme (Leick et al. 2015; Teunissen
etal. 2017). Statistical tests are then employed to test for the
occurrence of model misspecifications, such as pseudorange
(code) outliers, carrier-phase slips, neglected atmospheric
delays, or lack of parameter stability, such as in time-series
for displacement, deformation or landslide studies (Perfetti
2006; Khanafseh et al. 2012; Teunissen and Bakker 2013;
Biagi et al. 2016; Yu et al. 2023; Zeng et al. 2023; Huang
et al. 2023). To achieve the best possible precision in GNSS
parameter estimation, carrier-phase measurements are
used, as they are two orders more precise than their pseu-
dorange counterparts.Strang and Borre (1997), Hofmann-
Wellenhof et al. (2008), Morton et al. (2020). However,
since the carrier-phase observables are integer ambiguous,
their GNSS models consist of both real-valued and integer-
valued parameters, and are therefore of the mixed-integer
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type. Although the theory of mixed-integer inference is
well developed for GNSS parameter estimation (Teunissen
2010; Teunissen et al. 2017; Morton et al. 2020), such is not
yet the case for the validity testing of mixed-integer GNSS
models. It is the goal of this contribution to contribute to
this field by introducing the ambiguity-resolved significance
test. This test complements the ambiguity-resolved detector
test that was introduced and studied in Teunissen (2024),
Yin et al. (2024), Yin et al. (2025).

This contribution is organized as follows. In Section
“Current significance testing”, we formulate our null- and
alternative hypothesis for the general mixed-integer model
and provide a brief overview of its current significance
testing. We hereby emphasize in particular the tremendous
difference in testing power that exists between the ambigu-
ity-float (AF) and ambiguity-known (AK) significance tests.
It is this large difference in power that has motivated us to
develop a new significance test for the mixed-integer model.
It differs from existing tests in that it takes the unknown
integerness of the ambiguities rigorously into account.

In Section “AR-bias estimator and distribution” we
determine the integer ambiguity resolved estimator of the
to-be-tested model bias, together with its probability dis-
tribution. To gain insight into its characteristics, we show
how the shape of its multimodal probability density func-
tion (PDF) is driven by the interplay between the probability
mass function (PMF) of the integer estimated ambiguities
and the PDF of the ambiguity-constrained bias-estimator.
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This analysis is further made GNSS-specific in Section
“Single-epoch GNSS model PDF f:(x)”, where we con-
sider a general single-epoch GNSS mixed-integer model.

In Section “The AR significance test”, we introduce our
ambiguity-resolved significance (ARs) test. To accomo-
date the multimodality of the test-statistic’s PDF, the PDF’s
highest-density level sets are used, instead of the classical
’p-value’ approach, to determine the geometry of the accep-
tance and rejection regions. We show how the test sits in
between the AF- and AK-tests and how it can benefit from
the integerness of the ambiguities to significantly outper-
form the AF-test.

In Section “The AR normed significance test” we dem-
onstrate the importance of properly accounting for the
uncertainty of the integer ambiguity estimators. We show
the errors-in-testing one makes when this uncertainty is
neglected, as is done when using the AK-test. We also show,
when this uncertainty is properly taken into account, that the
corresponding test, referred to as AR-normed (ARn) test,
becomes a good and easy-to-compute, approximation to the
ARs-test in case multimodality is absent. To avoid multimo-
dality and allow for a good use of this test, we introduce the
concept of partial-ambiguity-resolved significance testing.
It is shown how this partial ARs-test improves the AF-test
and also how it can be combined with the fu/l ARs-test so as
to further improve the testing performance. Section “Sum-
mary and conclusions” contains the summary and conclu-
sions, and Section “Appendix” the appendix.

The following notation is used throughout: We denote a
random variable/vector by means of an underscore; thus x
is a random variable/vector, while x is not. E(.) and D(.)
denote the expectation and dispersion operators, respec-
tively, and f,(x) the probability density function (PDF) of
x. A variance-covariance matrix, we usually refer to as a
vc-matrix or simply as a variance matrix. Z" denotes the
n-dimensional space of integer numbers and R? the p-dimen-
sional space of real numbers. The range space of matrix M is
denoted as R(M). Matrix M+ = (MTQ_ M)~ 'M*TQ, !
denotes the BLUE-inverse of the full column rank matrix
M, and Py = MM ™ and Pj; = I,,, — Py are the orthogo-
nal projectors that project on the range space of M and its
orthogonal complement, respectively. The squared weighted
norm is denoted as ||.||% = ()T R™(.). Non (1, Q) denotes
the m-variate normal distribution with mean p and variance
matrix O, and x?(q, \) denotes the noncentral Chi-square
distribution with ¢ degrees of freedom and noncentrality
parameter A. The determinant of a matrix Q is denoted as
|O|. P[E] denotes the probability of event E and .A¢ denotes
the set complementary to A.

@ Springer

Current significance testing

In this section we describe our hypotheses, as well as pro-
vide a brief comparative review of the ambiguity-float (AF)
and ambiguity-known (AK) tests. They form the limiting
versions of the integer ambiguity resolved significance tests
that we will introduce in the sections following.

The null- and alternative hypothesis

With our vector of observables distributed as Y ~ N,
(E(y), Qyy), and its mean parametrized as

E(y) =Aa+Bb+Cc, acZ", beRP, cecR? (1)
we aim to test the hypotheses
Ho:c=0 versus Hg:c#0 )

whereby the given matrix [A, B,C] € R™*(ntrta) g
assumed to be of full column-rank. A prime example of
model (1) is given by the linearized model of GNSS obser-
vation equations, with y € R™ containing the carrier-
phase and pseudorange observables, a € Z" the unknown
integer carrier-phase ambiguities, and b € R? and ¢ € RY,
the unknown real-valued parameters, such as e.g. position
coordinates, atmosphere parameters, receiver and satellite
clock parameters, and instrumental biases (Strang and Borre
1997; Leick et al. 2015; Teunissen et al. 2017). With (2) the
aim is then to test for the significance of the entries in the
g-vector ¢, i.e. to answer the question whether its entries
can be considered small enough to be neglected. Through a
proper choice of ¢ one can then test for the presence of, for
instance, tropospheric delays, ionospheric delays, pseudor-
ange outliers, carrier phase cycle slips, or any of the other
parameters in the model.

We remark that a more general formulation of (1) and (2)
would be

E(y) =Aa+Hz, a€Z", xeRPHI (3)
with hypotheses
Ho: FTe =0 versus Ho:FTa#0 4

whereby F € R(PT9)%4 is of rank ¢. In this case it are
the ¢ functions F'7x that are to be tested for significance.
By taking H = [B,C] and FT =[0,1,] we obtain (1)
and (2) again, thus showing that they are indeed a special
case. Nevertheless, in this contribution we will work with
formulation (1) and (2) as it does not pose any restriction
on the generality of our theory development. The general
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formulation of (3) and (4) can namely always be brought
into the form of (1) and (2). To see this, we reparametrize
xasx = F+b+ Fte, in which F* is a basis matrix of the
null space of FT and F* = F(FTF)~!. Then FTx = ¢
and [HF+, HF*) = [B,C)].

We finally remark that an even more general formulation
than (4) would be one in which the integer parameter vector
a € Z™ would also be taking part in the null-hypothesis H,.
Such mixed form of significance testing is however outside
the scope of the present work.

The AF and AK significance test

An important complication of formulation (1) is the pres-
ence of the integer ambiguity vector a € Z™. No proper sig-
nificance testing is currently in place that incorporate this
integerness. What currently is done is to either disregard the
integerness of the ambiguities and thus work as if a € R”,
or alternatively, with reference to the output of ambiguity
resolution, to treat the ambiguities as if they are known. We
will refer to the significance tests of these two cases as the
ambiguity-float (AF) significance test and the ambiguity-
known (AK) significance test.

If we denote the Best Linear Unbiased Estimator (BLUE)
of ¢ as ¢, when a is treated as an unknown real-valued vec-
tor, and as ¢(a), when a is assumed known, the two corre-
sponding significance tests read

AF - |lel|3. > ke
Reject Hy if Qe 5
Ject #o { AK : [[&(a)l[3, 0 > Fa )
and accept H( otherwise. To be able to evaluate and com-

pare these two tests, we need their distributions. Since
&~ Ny(e,Qee) and 2(a) ~ Ny(c, Qe(a)ea))» We have

el ~x*(a; Xe)

. (6)
(@) 1B ~ X260 Aaga)
with noncentrality parameters
Ae = Hc”érr and )‘é(a) = HCHéé(a)é(a) (7

As the two test-statistics have under H, the same central
Chi-square distribution with ¢ degrees of freedom, they can
indeed work with the same critical value k., = x?2(q,0), cf.
(5), thus providing their same probability of false alarm as
PllIEli3,, > kalHol = Plle()l,,. ... > kalHol =

The following Lemma provides the necessary information
for comparing the power performance of the two tests.

Lemma 1 (Bias precision and noncentrality) The vc-matri-
ces of the BLUEs ¢ and é(a), and the relation between the
noncentrality parameters of (7), are given as

Qéé = [C:’TQ;;C:’]il, Wlth C:’ = P[JA,B]C
Qe(aye(a) = [CTQy, C1™",  with C = PgC (®)

Aé(a) = Ae + [|P;Cc| éw, with A= PéA
Proof see Appendix. O

Since the integral [”° fy2(4,1) (2)da is monotone increas-
ing in A, and Ay(q) > A, it follows for their power that

thus showing that the AF-test is never more powerful than
the AK-test. For the noncentrality parameters we have

Ae =0 if R(C)C R([A,B])
Xeay =0 if R(C) C R(B) 9)
Ae =Xsay if R(C) C R(PFA)*

The first relation shows that significance testing of ¢ is
impossible if the column vectors of C lie in the range space
of [4, B], while the second relation shows that this remains
impossible, even when a is known, if the columns of C
reside in the range space of B. The third relation stipulates
that the two noncentrality parameters are equal if the col-
umn vectors of C lie in the orthogonal complement of the
range space of A = P3 A, i.e. if CTQ;;P§A = 0. In this
case, a, being the BLUE of a, is uncorrelated with ¢, imply-
ing that knowing a does not affect the estimator of c, i.e.
&a) =2

In case of GNSS, the AK-test is driven by the very-pre-
cise carrier-phase data. The difference between the AK-test
and AF-test can then be quite dramatic, in particular if the
AF-test is driven by the relatively poor precision of the
pseudorange data. Figure 1 shows such an example, with
¢ being the vertical tropospheric delay for a single-epoch,
dual-frequency, short-baseline GPS model.

Strictly speaking, one can of course not apply the above
AK-test in case of GNSS. Although the carrier-phase ambi-
guities are known to be integer, they are still unknown.
When the AK-test is currently used in practice, the typical
approach is to replace a by its integer estimate a, thereby
treating it as if it is the known ambiguity value. By replacing
a in (5) by a, the test becomes then

Reject Hy if Hé(d)”éé(a)é(a) > ko = x2(q,0) (10)

@ Springer
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Fig. 1 Tropospheric AK and AF power function curves, computed
using their noncentral Chi-square cumulative distribution function
(CDF). Left: single-epoch GPS skyplot; Right: single-epoch, L1/L2
geometry-based GPS, ambiguity-float (AF) and ambiguity-known
(AK) power function curves for v = 0.05 tropospheric zenith delay
testing, with ¢/o, being the ratio of the vertical tropospheric delay and
pseudorange standard deviation

But due to the randomness of a, this is not a correct way
of performing the test. The random variable ||&(a)] |2Qé(a)é(a)

will namely not have the Chi-square distribution that
[1¢(a)] |éé<a)é<a) of (6) has. This implies that its level-« criti-

cal value can not be computed as k, = x2(q,0) and that its
detection probabilities will not be those of the AK-test.

AR-bias estimator and distribution

To develop a proper test, we first need to take the random-
ness of the estimated integer ambiguities in the expression
of the ambiguity-resolved bias-estimator ¢ = &(a) into
account. This is achieved by determining the PDF of ¢.

Theorem 1 (PDF of AR-bias estimator) The PDF of ¢ =
é(a) is given as

fa(@) = D" fay(2)Pla = 2] (11)

ZEL™

with fs.)(x) the PDF of ¢(2) e Ny(c+ CTA(a - 2),

Qi) = (CT QL C)™1), CTA=-Q: Q5.

Pl = 2] = fsz fa(a)da the PMF of 4, f;(«) the PDF of
QA %L Nn(aa Qdd = (;]'TQ;yI ;1)71)’ ‘Z = P[JB7C]A’ and

S, C R™ the pull-in region of the integer ambiguity estima-
tor a.

Proof See Appendix. O
It is not difficult to verify that the PDF of ¢ is sym-

metric about ¢, fi(c — ) = fs:(c+ x) Yoz € R", at which
point it reaches its maximum, fz(c) > fs(z) V& € R™. Its

@ Springer

symmetry about ¢ confirms that the AR-bias estimator ¢ is
an unbiased estimator of c. We also remark that this prop-
erty, as well as expression (11), hold true for any unbiased
integer estimator @ one chooses from the class of admissible
integer estimators (Teunissen 2003). Popular choices are
integer rounding (IR) or integer bootstrapping (IB) (Teunis-
sen 1998), both of which are very simple to execute, or the
more involved integer least-squares (ILS) which was shown
by Teunissen (1999) to have the largest possible probability
of correct integer estimation. Even combinations of these
integer estimators are possible (Teunissen et al. 2021).

Expression (11) shows that the PDF f:(x) is an infinite
sum of C* A(a — z)-shifted and P[a = z]-downweighted,
but equally (C7'Q,,}C) ' -peaked, normal distributions.
The PDF of ¢ will therefore be multimodal in general, with
its shape governed by the following three drivers:

1. Qe(a)é(a): Peakedness of PDF f:(.)(x)

2. Qaa: peakedness of PMF P[d = z]

3. QeaQj, 2 shift size of fo(z) ()

To get some further insight into the characteristics of the
multimodal PDF and the different shapes that it can take,
we consider the scalar case as illustration. In the scalar
case, the integer estimator ¢ simply boils down to round-
ing & to the nearest integer, denoted as |a]. Forn =¢ =1,
a~N(a=0,02) and v = 0¢40, 2, expression (11) sim-

plifies then to
fe(@) = ZN(’Y&U?;((I))PH@] = z] (12)
Z€EZL

with ambiguity PMF

Pld] = 2] = @ (12_(,52) +2 (1;22) !

in which ®(z) = [*

that drive the characteristics of the PDF (12) are therefore,

1 2
1 v
— 2 I
o e dv. The three parameters

1. 0¢(q): peakedness of PDF N(vz, O‘g(a)).

2. o4 peakedness of PMF P[|a] = z].
3. ~:shiftsize of N'(yz,0%,)).

To illustrate the different shapes the PDF fz(x) can have,
we take two values (small and large) for the three param-
eters o¢(q), 04 and v, thus resulting in 23 = 8 different PDF
versions, all of which are shown in Fig. 2. The PDFs in the
top row differ from those in the bottom row only through
O¢(a)- This explains the spikey behaviour seen in the top row
(0¢(a) small) versus the smoother behaviour in the bottom
row (04(q) large). The influence of the peakedness of the
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Oé(a) = 0.05 05 = 0.5 Y= 1 Oi(a) = 0.05 05 = 0.5 Y= 2 Oi(a) = 0.05 05 =8 Y= 1

) =0.05 o) =8 7:2

4 4 0.3 0.3
S S 202 Z 02
=5 =5 A A
n ’l n n 0.1 0.1
0 0 0 0
-5 0 5 -5 0 5 -5 0 5 -5 0 5
xr xr T xz
O¢(a) =0.5 0@10.5’7:1 Oé(a) =0.50; :0.5’)’:2 O¢(a) =0.5 0'[1:8’}/:1 O¢(a) =0.5 0’@:8’)’:2
0.05
0.5 05 0.035
0.4 0.4 0.048 0.03
& 0.3 \3 03 E 0.046 £ 0,025
0.2
0.2 0.044 0.02
0.1 0.1 0.015
0.042
-5 0 5 -5 0 5 -5 0 5 -5 0 5
xr xr T T

Fig.2 Shapes of the PDF f(z) = Zzez

N (vz,02)P[a = 2] for different values of 0¢(a) (compare top row with bottom row), o4 (compare first

two columns with last two columns), v = s = (compare first and third column with second and last column)

ambiguity PMF can be seen when one compares the PDFs
of the first two columns (o, small) with those in the last two
colums (o, large). The multimodality of the PDF increases,
the less peaked the ambiguity PMF is, i.e. the larger oy is.
Finally, the effect of the shifts vz can be seen when com-
paring the PDFs in the first and third column with those in
the second and fourth column. It shows for instance, that
a multi-peaked ambiguity PMF might still produce a uni-
modal PDF if the shifts vz are small enough and the stan-
dard deviation 0, large enough.

Single-epoch GNSS model PDF f:(x)

To characterize the PDF f:(x) for GNSS, we show in this
section how the above mentioned three drivers work out for
an f-frequency, m double-differenced (DD) pseudorange
and carrier-phase geometry-based model, see e.g. Teunissen
et al. (2017). We consider the most challenging case, being a
single-epoch model under a general alternative hypothesis,

p 0 G C a
nls-[2 8 ][]
3 Lacl|t
T T
A B C
with D(p) = Qpp = 0,Q, D(¢) = Qpy = 03Q, p uncorre-

lated with ¢, and both normally distributed. In (13), the pseu-
dorange and carrier-phase data are collected in p, ¢ € R/™,

(13)

the fin integer DD ambiguities in a € Z/™, the real-valued
GNSS parameters, like baseline components and possibly

atmospheric delays, in b € RP, and the hypothesized ¢
model biases in ¢ € RY. The design matrices in (13) are:
L=A® I, € RI™Jm withA = diag(\1,...,Af)and\;
the wavelength of the ith frequency; G = ey ® G € R/™*P,
with ey the f~vector of ones and G € R™*? the DD receiver-
satellite geometry matrix; and C,, C;; € Rf™* the signa-
ture matrices that link the hypothesized model bias with the
observables.

We assume the bias vector ¢ € R? to be fully estimable
under H, and therefore the design matrix of (13) to be of
full column rank. This implies, as also the design matrix
under Hg, i.e. when ¢ = 0, is assumed to be of full rank,
that linear combinations of the ¢ columns of [C, CT]"

cannot lie in the range space of the first n + p columns of
the design matrix of (13). Note that this also implies that
C)p cannot be zero. Would C,, = 0, then the invertibility
of L implies that the last g columns of the design matrix
become linear dependent on the first n, as a result of which
the design matrix of (13) becomes rank defect.

The following theorem provides the drivers that charac-
terize the PDF f:(x) for the GNSS model (13).

Theorem 2 (GNSS PDF f:(x) characterized) For the sin-
gle-epoch GNSS model (13), the ve-matrices of ¢ and é(a),
the integer driven shift of the bias A(z) = E(é(z) — ¢), and
the ve-matrices of 4(c) and d, are given as

@ Springer
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Qee = [Cr Q) Cpl ™"

Qu(aye(a) = [Qae + CF QupyCo + £DTQ, DI (14)
A(2) = Qe(ayea) (Cp + ﬁeD)TQ;;L(a - z)

and

Qaeya(e) = L (eQpp + PaQpp) LT as)

Qaa = Qa(eya(e) + EQsET

with projectors Pg = GIGTQ 1G] GT Q! and

P} = Iy, — Pg, the projected C-matrices C, = P%C,
and Cy = P} Cy, the phase-code variance-ratio

e=o03 /02, and D = Pg(Cy — Cp), E = L™ [Cy + D,

Proof see Appendix. 0

Note that both D and E do not change with 05) and 012,

and that Q4(c)a(c) 18 the ambiguity-variance matrix under
‘Ho. Furthermore, we remark that the above given matrices
C} and Cy should not be confused with the earlier defined

C' = P#C. With the results of the above theorem we are
now in a position to provide a qualitative discussion on the
driving characteristics of the multimodal PDF of ¢ = &(d).
We first consider the PDF peakedness of f;(.)(x), then the
PMF peakedness of P[G = z] as it is driven by the ve-matrix
of d, and finally the integer-driven bias of f;(.)(z).

The peakedness of f;(.)(x)

As the peakedness of this PDF is completely determined by
the ve-matrix Q¢(a)e(a), We consider the second equation
of (14). To understand when and how the code-precision or
phase-precision dominates the precision of ¢(a), we need to
consider the rank of the fm X (p + ¢) matrix [G, Cy]. Its
rank is bounded as

p <rank(G,Cy) <p+q (16)
The upperbound is clear. The lowerbound follows from
the fact that rank(G) = p, which follows from our earlier
assumption that the design matrix under H, i.e. whenc = 0,
is of full column rank. We now consider the two extreme
cases: rank(G,Cy) =p and rank(G,Cy) =p+gq. We
start with the upperbound.

Case rank(G, Cy) = p + ¢: As matrix [G, Cy] is of full
column rank, the phase data are sufficient to estimate the
bias vector ¢ when the ambiguities are known. One can
therefore expect the precision of ¢(a) to be dominated by
the high-precision of the phase data. And indeed, the follow-
ing lower- and upperbound can then be obtained from (14),

@ Springer

02 [CTQ ' Cy+eCTQ )

_ _ 1 a7)
< Qi) <05 [C5Q7Cy
The lowerbound is the variance matrix when also the base-
line b would be assumed known, while the upperbound
is the phase-only variance matrix. As both the lower- and
upperbound are dominated by the very small phase-variance
035, the PDF f;(.)(x) can be expected to be peaked in this

case.
Caserank(G, Cy) = p: Note, as G is of full column rank
p, that this case is equivalent to stating that all column vectors
of Cy lie in the range space of G, i.e. that C, = P5C, = 0.
Hence, for the ambiguity-known situation, the inclusion of
code data is then needed, as phase data alone will now not
be sufficient for estimating the bias vector c. The following
lower- and upperbound can then be obtained from (14),

oo [(Cp = Cp)TQ™MCy = Cy)

< Quayeta) < 0pCp Q71Cy) ! 1o
The upperbound is the code-only variance matrix, while the
lowerbound can be understood as follows. With the range
space of C, being a subset of R(G), a matrix X exists such
that Cy = G X, thus allowing us to reparametize the ambi-
guity-known model as

oot |=[E o ][]

The lowerbound of (18) is then the code-only variance
matrix of the estimated bias vector, when next to the ambi-
guities, also the lumped parameter vector b + X ¢ would be
assumed known.

As the bounds of (18) are dominated by the relatively
poor precision of the code data, the conclusion is that one
cannot expect the PDF f;(.)(z) to be very peaked when
Cy = 0. As this case includes Cy = 0, i.e. the situation
when the bias vector is only linked to the code data, a simi-
lar conclusion is reached for code or pseudorange outliers.

Also note, when next to Cy=0 also D= Pg
(Cy — Cp) = 0, then Q¢(a)e(a) = Qee, cf. (14). In this case,
integer ambiguity resolution, even when successful, will
have no impact at all on the estimator of c. Two examples of
such are (/) when Cc models a tropospheric delay for which
the vector of mapping functions lies in the range space of G,
and (i7) when Cc models a code-bias for which its signature
matrix C}, lies in the orthogonal complement of the range
space of G.

(19)

With respect to Fig. 2 we can now conclude, as far as
the peakedness of f;(.)(x) is concerned, that the PDF
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characteristics of its top-row correspond to the case
rank(G, Cy) = p + ¢, while those of the bottom-row cor-
respond to the case rank(G, Cy) = p. For the intermediate
cases p < rank(G,Cy) < p+ g, linear combinations of
some of the column vectors of Cy will lie in the range space
of G, while others will not. In that case the PDF f;.)(z)
can be expected to be peaked in some directions, while not
in other directions.

The peakedness of P[a = z]

We will measure peakedness of the PMF by means of the
Ambiguity Dilution of Precision (ADOP). The ADOP
was introduced in Teunissen (1997) and it is defined
as ADOP = */|Qaa| (cycle). The ADOP is invariant
for admissible ambiguity reparametrizations and it pro-
vides an easy-to-compute approximation to the ambi-
guity success-rate, i.e. probability of correct integer
estimation P[d = a] & Papopr = [2®(z3p55) — 1" An
ADOP smaller than 0.14 cycles corresponds with a PApop
larger than 0.99 (Odijk and Teunissen 2008).

We now first give a general expression of how the ADOP
changes when extra parameters need to be estimated in the
model.

Lemma 2 (ADOP under Hy and H,) The ADOP-change,
when switching from H to H,, is given by

IR 2n
ADOPy,, = ADOPy, (|Q|f2>l>|> (20)

Proof see Appendix. O

This result shows that the change in ADOP and the
change in precision of the bias-estimator act similarly as a
law of communicating vessels. The more the bias-precision
improves due to ambiguity fixing, the larger the ADOP gets.
Hence, with the precision improvement of the bias estima-
tor, one can expect the ambiguity success-rate to become
poorer and possibly leading to the necessity of having to
take more than one ambiguity probability mass into account.

To show how Lemma 2 works out for the GNSS model
(13), we first take the determinant of the vc-matrix in the
second equation of (15). As a result we get

|Qaal = |Qa(e)a(e) | g + ETQ(;(IC)@(C)EQM (21)

with ETQ; )40 EQec = [:CFQ7'Coy +1D"Q ™' D]
[CTQ~*Cp]~ . Hence, the ADOP-ratio of the alternative
hypothesis to the null-hypothesis follows as

ADOP . -
ADODy. = 2\/Uq + ETQa(lc)a(c)EQaé\ (22)

thus showing that the ratio can be expected to be large when
rank(G, Cy) = p + gandsmallwhenrank(G, Cy) = p.For
q = 1 for example, we get the ADOP-ratio approximations

1G5\ 2 .
DO, (1 +1 TEATEA it Cy ¢ R(G)
ADOPy, ™ L
D113\ 2 "
1+ I‘ép”% 1 C¢€R(G)

As we may assume the PMF of the integer estimated ambi-
guities under Hg to be very peaked, i.e. the Hy ambiguity
success-rate to be very close to 1, the above shows that a
similar peakedness can be expected of the PMF under H,,
in case rank(G, Cy) = p, i.e. when the ADOP-ratio does
not differ too much from 1. In case of rank(G,Cy) = p + ¢
however, the ADOP-ratio is much larger due to the very
small phase-code variance-ratio €. As a consequence, the
‘H, ambiguity success-rate can then be expected to differ
significantly from 1, implying that nonnegligible probabil-
ity masses can expected to be located at other integer ambi-
guity vectors than a € Z™ as well.

On the integer-driven bias of f;(.)(x)
To measure the significance of the integer-driven bias

A(z) = E(é(z) — ¢), we consider its squared weighted
norm with respect to the ve-matrix Qs(a)é(a)»

182]8), 1oy = [1PeAla =21,

=|CTQ,, Ala—2)||? -
10T QA= 2)lE

= o+ 5D Qa2

from which it follows, together with (17) and (18), that

T % it Cy ¢ R(G) 23
i z||Qé(a)é(ﬂ)O( L if Cy € R(G) =

2
P

q

This shows, consistent with the peakedness of fa(2)(x),
that the integer-driven bias can expected to be significant
when Cy ¢ R(G) and less so otherwise. This measure of
significance does however not give insight into where in
c-space the integer-driven biases are projected to. To make
this clearer, we symbolically write the infinite sum of the
PDF fz(x), cf. (11) under Hy, i.e. when ¢ = 0, as

@ Springer
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PDF(¢[Ho) =
{(Ny(—c1, R) + Ny (+er, R)} Pl = 1]+ 24)
{Ng(=c2, R) + Ny(4c2, R)} Pld = 2] + - -

in which R = Q:(a)¢(a)> i = C*A(a — z;), and where we
made use of the symmetry of the PDF f;(x) with respect to
the origin, i.e. P[d = a + u] = P[a = a — u] forall u € Z™.
If we assume the probability masses at z; to be ordered as
Plad = a] > Pla = z1] > P[d = 23] > ..., then the largest
peak of fz(x) is centred at the origin, a second largest pair
of peaks at +c;, a third-largest pair of peaks at +co, etcetc.
These locations and peak-sizes can be computed once the
ordered ambiguity probability masses and their integer
ambiguity vectors are known. This can be done efficiently
with the LAMBDA 4.0 toolbox (Massarweh et al. 2025).

As an example of the above considerations, we use a
single-epoch, double-differenced dual-frequency geometry-
based GPS model and take the bias parameter ¢ to be an
ionospheric delay. In this case we have Cy ¢ R(G), thus
leading to a very peaked, phase-driven PDF fe.)(z). How-
ever, with the inclusion of the ionospheric delay, the ambi-
guity succes-rate drops from practically 1 to 0.61 under H,,
thus giving a multimodal f(x), with 39% ambiguity prob-
ability mass contributing as scale factors to its noncentral
modes. The result is shown in Fig. 3.

The AR significance test

In this section we introduce our ambiguity-resolved signifi-
cance test and compare it with its AF- and AK counterparts.

Acceptance/rejection region
To be able to decide on the significance of an outcome

of ¢, we need a measure of significance, for which the p-
value concept is often used. Assuming H to be correct, the

501 ]
40t ]
i 30r o5 05 I
20+ 0 A 0 A |

75 7 65 65 7 7.5
10} \L .

0 1 L L 1

-10 -5 0 5 10
¢ (TECU)

Fig. 3 Multimodal PDF of ambiguity-resolved ionospheric delay
based on a single-epoch, dual-frequency, geometry-based GPS model,
cf. skyplot Fig. 1
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p-value is said to be the probability of obtaining results at
least as extreme as the observed results of an hypothesis test
(Rice 2007). A smaller p-value is then said to imply there is
stronger evidence in favor of the alternative hypothesis H,,.
If we assume for the moment that ¢ is a scalar, i.e. ¢ = 1, the
p-value of a two-sided test, having ¢ as observed value, is
then usually defined as
p="P[[¢] > [¢] [Ho] (25)
thus implying that a value ¢; would be more extreme than
¢ if P[] > |¢1] [Ho] > P[|¢] > |é2| |Ho]. Although such
conclusion may seem acceptable in case of unimodal dis-
tributions symmetric about zero, it appears odd for a multi-
modal distribution symmetric about zero. It would namely
imply that és-values close to off-centred modes could still
be considered more extreme than ¢;-values residing else-
where. Hence, for multimodal distributions, like the PDF
of ¢, an alternative approach is needed and one in which the
modes of the distribution come into play as well. Here we
therefore follow the highest density approach as also used in
Teunissen (2007).

Let A C R? be the acceptance region with false-alarm
probability P[¢ & A|Ho] = P[¢ € A°|Hy] = . Since we
want the rejection to be rare when H is correct, the false
alarm probability « is chosen as a small value. But since
there are an infinite number of subsets that can produce this
false alarm probability, we still need to determine a way of
defining a proper A. It seems reasonable to define the optimal
subset as the one which has the acceptance probability 1 — «
most concentrated, and thus captured in the smallest volume.
Such subset is thus the solution to the minimization problem,
mingcpe V4 subject to P[¢ € AlHo] =1—a, where
V4 denotes the volume of A. The solution to this problem
is given by the subset
A={z eRY[ fe(z|Ho) = Ao} (26)
where ), is chosen so as to satisfy the false-alarm con-
straint. For a proof, see Teunissen (2007), pp. 575-576. By
a similar derivation one can also show that of all subsets
with the same volume, A captures the largest possible prob-
ability mass.

Subsets like (26) are referred to as highest density level
sets and from their structure it follows that a more suitable
p-measure than (25) would be
p=P[ fe(&) < fe(¢) [Ho] 27)
Thus now ¢» would be considered more extreme than
¢y if the following inequality holds true: P[f:(z|Ho)
< fé(éﬂ?‘[o)} > P[fé(l’”‘[o) < fé(ég“‘[o)] FOHOWing this
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line of reasoning we define our ambiguity-resolved signifi-
cance (ARs) test as follows.

Definition 1 (4Rs-test) For sample ¢ of ¢,

Reject Ho if fz(¢[Ho) < Ao (28)

with A\, chosen so as to satisfy a user-required false-alarm
probability P[¢ & A|Ho] = .

Two acceptance-region examples of the ARs-test are shown
in Fig. 4. As the acceptance-region of the test is formed from
subsets of highest density, the multimodality of a PDF may
result in a disconnected acceptance region, as is shown in
Fig. 4 (right). For a unimodal PDF, the acceptance-region is
connected, as it would be when the traditional p-value con-
cept, cf. (25) would be used. This is shown in Fig. 4(left).

ARs test sits in between AK and AF

We are now in a position to compare the ARs test with the
AF- and AK-test, and show how they are limiting versions
of the ARs test. In order to facilitate this comparison, we
also write the AF- and AK-test, just like (28), in the form of
a level-set of the PDF. We have:

AF :fs(é|Ho) < pa
Reject Hy if ARs :fe(€[Ho) < Aa (29)
AK :fg(a) (é(a)llHo) < Vq

_%exp{—%xi(q, 0)} and v,
= |27rQé(a)é(a) |7§exp{_%X?x (qv 0)}’ and  where é,
¢ = ¢&(a) and é(a) are the sample values of the respective
statistics. Thus, in essence, if we want to compare the three
tests, we can work with the three PDFs: fa(), fea) (), and
fe().

First we compare fsz(x) with fyq)(x). Since fs(x)
= .czn Je)(x)Pla = 2], the multimodality of the
PDF will get less with increasing ambiguity success-rate
P[a = o] and in the limit give

with Wa= |2’/TQ&@

pam Je(@) = feww (@) 0

Hence, in the limit, the ARs-test equals the AK-test and
will then also have its excellent carrier-phase driven
performance.

To compare f:(x) with fz(x), we write

fulo) = [ feav)do
= [ faateto) fatwrae )
S [ fsalelorsaterao

ZEL™

This shows, if f;4(|v) as function of v is flat over the pull-
in region S, (this happens if the integer-grid is very dense
with respect to the variability of the PDF, i.e. when the
precision is poor), that fza(2|v) = fa.)(x) and therefore
fe(x) = fs(x). Hence, in this limit, the ARs-test equals the
AF-test, with its usually much poorer performance.

Just as the AK- and AF-tests, cf. (5), also the AR sig-
nificance test (28) can shown to be a generalized likelihood
ratio (GLR) test. With our null hypothesis being simple,
Ho : ¢ = 0, the GLR reads

_ fe(zle=0)
GLR(z) = 712% Fa@lo) (32)

It then follows, with z = argmax.crs fz(x|c), noting
fe(x|x) is a constant, that GLR(¢) < Ao/ fz(¢|¢) is equiva-
lent to (28).

An example of the performance of the three significance
tests is given in Fig. 5(Left). It shows the detection prob-
abilities of the ionospheric significance tests as function of
the bias ¢,

Fig.4 ARs-test acceptance region
{z € R fe(x|Ho) > Aa} of
5th (Left) and 6th (Right) PDF of
Fig. 2 for a = 0.15. As the 5th
PDF is unimodal, its acceptance
region is connected, while the
multimodality of the 6th PDF,
results in a disconnected accep-
tance region

fe(z[Ho)

fe(z[Ho)

@ Springer
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Fig.5 Power functions of the

AK, AF, ARs (Left) and ARs-
combined (Right) ionospheric
significance test for different false
alarm probabilities o and based
on a single-epoch, dual-frequency,
geometry-based GPS model, cf.
skyplot Fig. 1

Par(c) = Pfe(8) < pa|Ha]

Pars(c) = P[fe(¢) < Aa|Hd]
Pak(c) = Pfea)(E(a)) < va|Hd]

(33)

The result shows, except for a few particular values of ¢,
a superior performance of the ARs-test. The c-values for
which the detection probability of the ARs-test drops in
value, can be explained by the sharp multimodality of the
PDF of ¢, as shown in Fig. 3. These ¢ values correspond
with the mapped z-vectors for which the ambiguity prob-
abilities P[a = z] are nonnegligible. For all other c-values,
the power function is close to that of the AK-test and far
superior to that of the AF-test.

Combining tests

Despite the significant improvements the ARs-test brings,
there is no guarantee that its power is everywhere better
than that of the AF-test, as Fig. 5(Left) illustrates. Would
one also like to improve on this situation, we introduce the
idea of combining tests, in our case of the ARs-test with a
partially ambiguity-resolved (PAR) version of it (see also
Section “Partial ambiguity resolution based testing”).

To describe the general idea of combining two tests
for the same null-hypothesis, let the two tests be given as
‘reject Ho if T1 > ko, " and ’reject Ho if To > ko, . Then it
seems reasonable to have the combined test reject the null-
hypothesis if one or both of the individual tests rejects the
null-hypothesis, i.e. 'reject Ho if 71 > ko, or 1o > kg, .
To evaluate this combined test, one needs to determine its
"power’ and ’false alarm’. This is not difficult to do if T';
and T, are independent. Denoting the individual powers
as P = P[T, > kqo,|Ha] and Po = P[T > kq,|Ha], the
power of the combined test becomes then

Pro = P{{T > ko, } U{Ty > ko, }Ha]
=P +P-PP

(34)
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This shows that the power of the combined test is never
smaller than that of the individual tests, Pio > P& Ps.
Combining tests with complementary power behaviour (one
large when the other is small) seems therefore in particular
profitable. However, one should keep in mind, that not only
the power increases, but also the false alarm. As (34) can
also be formulated for H, the false alarm of the combined
test iS a9 = a1 + a9 — ajas. Thus if a3 = as = 1%,
then o &~ 2%. Hence, if a; = a is the required false alarm,
one would need to approximately half the false alarm of
the individual tests to recover the required false alarm for
the combined test. We remark however, that for applica-
tions where data are in abundance or easy to come by, the
increase in false alarm may be tolerable and not really an
issue. We also note that (34) is only true if the two test sta-
tistics are independent. Would they be fully correlated, i.e.
identical, then Pj; = P, = P» and no benefit will be reaped
from their combination. In our case the tests are not inde-
pendent, but also not fully correlated. Hence, one can expect
to benefit from their combination. This is indeed illustrated
in Fig. 5(Right). As a result of the combination with the
PAR-test (see 42), we now have an ARs-test that is every-
where better than the AF-test.

The AR normed significance test

As the ARs-test is based on the highest density region of
the PDF f:(x), its execution requires the evaluation of a
weighted sum over the integers, cf. (11). Such is not needed
if one would use the AK-test (10) as starting point and take
the randomness of @ properly into account. In this section
we therefore explore the characteristics of this AR normed
(ARn) test and its relation to the ARs-test.
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The ARn-test

The ARn significance test is essentially the AK significance
test, but then with a proper accounting of the uncertainty of
the estimated integer ambiguities.

Definition 2 (The ARn-test) Let G be an admissible integer
estimator of a € Z". Then the level-a ambiguity-resolved
normed (ARn) test reads,

Reject Ho  if Hé(d)”éa(a)a(a) > k!, (35)
with critical value &/, satisfying

NI
Pl1e(@)]1Qu 0oy > KalHol = @ (36)

Note that due to the inclusion of the uncertainty of a, we
have k!, # k.. We also remark that the test can be written
in its PDF-form as

Reject Ho if f@(a) (é) < V; (37)

with v, = [27Q¢(a)(a)| -3 exp{—1k/,}, thus showing how
it relates to the ARs-test, cf. Theorem 1 and (28). To execute
the ARn-test we only need to compute the squared weighted
norm of the sample ¢ = ¢(d). Also the PDF of ARn’s test-
statistic, ||&(a)| |éémém , as well as the expression of its
Para(e) = PIE@I2,,, ..., > FalHa:
can be computed directly. We have the following result.
Theorem 3 (PDF and power of ARn-test) Let d be the BLUE
of aand d an admissible integer estimator of E(d) = a € Z™.
Then the PDF of T = ||é(d)] %ﬁ(m(a) and the expression of

the power function Pagrn(c) = P[T > k. |H,], are given as

powerfunction,

fr(@le) = Y fye(ar.) (@) Pl = 2]

zezn (38)
Para(c) = Y PIX*(q,\:) > k)] Pla = 2]
zezn
with noncentrality parameter
A= lle+CAla— 2,0
Proof see Appendix. O
This result shows that the PDF of T = ||&(a)] QQa(a>a(a)

is a weighted sum of noncentral Chi-square distributions
with g degrees of freedom. Since the PDF of Hé”éa(@a(a)

= ||§(Q)H2Qé<a)é(a) is multimodal, it seems perhaps tempt-

ing to use, instead of the rejection region (35), the highest
density as rejection region, just as it was done for fz(z).

Such is however not a good choice, since this highest den-
sity rejection region will, in the limit when the ambiguity
succes-rate goes to one, not become equal to that of the AK-
test. Although the PDF goes in the limit to that of the AK
test-statistic, |[2(a)l[3), .., i

hm e
o e

i (@) = file@z, ()

2
HQé<a>é<a> é(a)é(a)

its highest density regions will generally not equal the rejec-
tion region of the AK-test, i.e. its performance will not be
that of the AK-test.

ARn probability bounds

To characterize the error one makes when using the ARn-
test as if it is an AK-test, i.e. without taking the uncertainty
of @ into account, we now provide bounds on its false alarm
and detection probabilities.

Corollary 1 (ARn probability bounds) Let
I =ea)l %5(@5(@’ P[T > ko|Hol =y and

ko = xZ2(q, 0) be the critical value of the level-oc AK-test
(5). Then

P[> ka|Ha] = Pak(c)Pla = d] (39)
and

a<an<at(1-a)Pli+ad (40)
Proof see Appendix. O

From the lower bound (39) we learn that for the same
critical value k,, as used by the AK-test, the ARn detection
probability is always larger than AK’s power times the suc-
cess-rate. This shows, as AK’s power is usually very close
to 1, that a high success-rate will also give a large detection
probability P[T > kq|H,]. Whether or not this translates in
a similar high power for the ARn-test depends then on how
much the critical value k, differs from the level-« critical
value k!, of the ARn-test.

From the bounds of (40) we learn that, for the same criti-
cal value, ARn’s probability of false alarm is never smaller
than that of the AK-test and that the difference between these
two probabilities becomes smaller, the larger the ambigu-
ity success rate gets. Their difference can become quite
large however in case the success-rate differs significantly
from one. For the GNSS model used in Figs. 5 and 6, for
instance, having a success-rate of P[a = a] = 0.6137, the
actual ARn false alarm probabilities are «,, = 0.3894 when
a = 0.005, a,, = 0.3924 when o = 0.01, and «,, = 0.4170
when o = 0.05. This shows the significant errors one will
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Fig.6 Power functions of ARn
(Left) and PARn (Right) tests,
compared with AF and AK
ionospheric significance tests, for
different false alarm probabilities «
and based on a single-epoch, dual-
frequency, geometry-based GPS
model, cf. skyplot Fig. 1

make when applying the AK-test using samples from ¢.
Inequality (40) also implies that ARn’s acceptance region
will not be smaller than that of the AK-test, i.e. k), > kq,
and in fact it will often be much larger if their false alarm
probabilities differ much.

As to the detection performance of the ARn-test, one
should realize, although it converges to the exellent power
performance of the AK-test when the success-rate goes to
one, that the success-rate under H, may be significantly
smaller than under Hy. Such case, having an ambiguity suc-
cess-rate under H, of only 61%, is shown in Fig. 6(Left).
It illustrates the performance of the ARn-test for the same
GNSS model as considered in Figs. 3 and 5. The power
functions shown are

Par(c) P[fé(é) < pal|Had]
Parn(¢) = Pfe(a) (&) < v4|Ha] (41)
Prx(c) = P[fg(a)@(a)) < Va|Ha]

The staircase behaviour of ARn’s powerfunction can be
explained by the fact that the test uses a single connected
acceptance region, while the multimodal PDF f:(z) has
very peaked conditional PDFs f;.)(z), cf. Figure 3. Hence,
when f:(z) translates over ¢ under H,, its probability mass
outside the acceptance region may remain constant for some
time, before suddenly increasing again when another mode
of the PDF exits the acceptance region. Although the ARn-
test has generally a larger power than the AF-test, especially
for large «, there are also many instances in which it per-
forms poorer than the AF-test.

Partial ambiguity resolution based testing

As the above explained performance of the ARn-test is
due to the incompatibility of using a connected acceptance
region for a multimodal PDF, improved performance may
become feasible if multimodality can be avoided. Since
multimodality of fz(x) is due to the peakedness of f(4)

@ Springer

and the flatness of P[d = z], the idea is to refrain from a
full ambiguity resolution (FAR), but instead perform par-
tial ambiguity resolution (PAR). One can then aim to have
the PMF of the PAR-vector to be peaked, e.g. by having a
required sufficiently high ambiguity success-rate of 0.999.
Increasing the peakedness of the PMF, will of course go at
the expence of the PDF-peakedness of the partially ambigu-
ity constrained bias vector. It is therefore their combined
effect that determines whether or not improved performance
can be achieved.

The PAR-method that we apply is the one originally
introduced in Teunissen et al. (1999), see also Massarweh
et al. (2025). The FAR and PAR versions of the ARn-test
are then

. . FAR : 2a) (C) < ;
Reject H, if { PAR ?Zia)§?)61) Z i (42)
with
E=0-QuaQp(a—a
e Qalu e d) @)
& =¢— Qeay andl (Ql - @1)

in which a; is the vector of subset ambiguities as selected
by the PAR-method. The PAR-version of the ARn-test will
be referred to as the PARn-test. The required PAR success-
rate is set at 99.9%.

Figure 6(Right) shows, for the same model as used in
Fig. 6(Left), how the power function of the PARn-test,
Prarn(€) = P[fe(ar)(€1) < V4| Ha], compares with those
of the AF- and AK-test. The result shows that now, due to
partial ambiguity resolution, the relatively simple to execute
PARn-test achieves a performance that is superior to that of
the AF-test for all c.
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Summary and conclusions

In this contribution we introduced a parameter significance
test for carrier-phase GNSS. Our test differs from existing
significance tests in that it takes the unknown integerness
of the ambiguities rigorously into account when testing the
hypotheses of (2). The test is constructed from PDF level
sets of the mixed-integer estimator ¢ of the unknown bias-
estimator ¢ € RY. The test sits in between the ambiguity-
known (AK) significance test and the ambiguity-float (AF)
significance test, in the sense that it converges to the AK-test
in case the ambiguity success-rate goes to one, P[d = a] 1 1,
while converging to the performance of the AF-test the more
dense the integer grid becomes.
The quality of the test is driven by the PDF of ¢,

fo(x) = fo(@)Pla = 2] (44)

zEL™

which on its turn is driven by the PDF of the conditional
bias-estimator ¢(z) and the PMF of the integer ambiguity
estimator @. The PDF is symmetric with respect to ¢, at
which point it also reaches its maximum. Its shape is deter-
mined by the peakedness of P[¢ = z] and the locations and
peakedness of f;(.)(x), cf. Figure 2. Ideally one would like
fe(2)(x) peaked and P[a = a] ~ 1. It was shown however
that such ideal case is difficult to realize in general. For the
ambiguity success-rate under H, to be as large as under
Ho, the float-estimators ¢ and & need to be uncorrelated,
thus implying that then no benefits for the bias-estimator
can be reaped from ambiguity resolution, i.e. &(a) = & We
have also shown, with reference to the ’law of communicat-
ing vessels’, that the more the bias-estimator profits from
ambiguity-constraining, the less likely it is that the precision
of the ambiguities can stay at the level of Hg, cf. Lemma
2. It is therefore the actual interplay between f(.)(x) and
P[d = z] in (44) that will ultimately determine the perfor-
mance of the test.

To infer the situation for GNSS, we considered the chal-
lenging single-epoch GNSS model, which was assumed full
rank, both under Ho and H,. It was shown, if [G, Cy] has
maximum rank p + ¢, that the PDF f;(.(z) is phase-driven
and the PMF P[a = 2| code-driven. In this case one can
expect the PDF f:(z) to be multimodal with several sharp
modes, the number of which depends on the number of
nonneglible probability masses P[a = z]. The ionospheric
delay case was given as one such example, cf. Figure 3.
When [G, Cy] has minimum rank p, then both f;(.)(x) and
Pla = 2] will be code-driven. In such case, the PDF f:(z)
may become unimodal, an example being when one tests for
code outliers.

In formulating our significance test, we discussed the
necessity of abandoning the classical ’p-value’ approach as
it fails to do justice to the multimodality of f:(x). Instead a
level-set approach was used (Teunissen 2007), thus allow-
ing to capture the PDF’s highest density regions for accep-
tance of the null-hypothesis, cf. Figure 4. Hence, its power
function is given as

Pars(c) = Pfe(tlHa) < Ao} (45)

with false alarm probability a = P[fz(¢|Ho) < Ao }. It was
shown under which circumstances the test outperforms the
AF-test, thereby then often even providing a power close to
that of the AK-test, cf. Figure 5.

We also introduced, with a dual purpose, the ambiguity-
resolved normed (ARn) test. First we used it to illustrate the
poor false alarm performance of the AK-test when applied
with samples of ¢, cf. Corollary 1. When neglecting the
uncertainty of @, as one does with the AK-test, the actual
false alarms were shown to be very much larger than that
assumed by the AK-test. Secondly, we showed the ARn-test
to be an easier-to-compute approximation of the ARs-test,
cf. (37). How well this approximation works depends on
the modality of f:(z). As the approximation is excellent in
the unimodal case, the concept of PAR-based testing was
introduced. By means of partial ambiguity resolution, mul-
timodality in the PDF of the ambiguity-resolved bias-esti-
mator is avoided and a test is obtained with an everywhere
better power than the AF-test, cf. Figure 6. It was thereby
also shown how partial and full ambiguity-resolved signifi-
cance testing can be combined to further improve testing
performance.

Appendix

Proof of Lemma 1 (Bias precision and noncentrality):
The reduced system of normal equations of the model

E(y) = Aa+ Bb+ Ce, D(y) = Q,, is CTQ,} Cé
— T Qyly. with C' = Py ,C, from which the
ce= (C:‘TQ;;C:')_l
reduced system of normal equations of the model
E(y — Aa) = Bb+ Cc, D(y) = Qyy is
CTQ,, Ce(a) = CTQ,, (y — Aa), with C = P5C, from
which the result Quq)e(a) = (CTQ;;C_')_l follows. For
the noncentrality parameter we have, with A = Pz A and
Plap = Pz + P,

result follows. Similarly, the
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>\ﬁ _ ITn-1 _ *LP
- =c Qi c A= [ pL GP ]L (48)
= TCTQ lcc G T 1rtG
— T
=c C Q Cc (46) and
=c"'C’Q,, i — P4]Cc .
_ = PrCp+ —=Pc(C, — Cy)
= c(a) ||PACCHQW C = { € 1+5 P 49
PACy— 12 Pa(Cy — Cy) “9)

from which the result follows. O

Proof of Theorem 1 (PDF AR-bias estimator): The float
ambiguity solution of model E(y) = Aa+ Bb+ Ce,

D(y) = Q. follows from solving the reduced system of nor-
mal equations ATnylAa = ATQ, )}y, where A = P, C]A
It is distributed as a ~ N,,(a, Qaa = (ATQ A)~1). For

any admissible integer estimator & = Z(a), I :R” — Z7,
with pull-in regions S, ={x € R"| z=Z(x)}, the PMF is
given as Pla = 2] = [, s, fa(x)dz. The z-constrained bias
solution ¢(z) follows from solving the reduced normal equa-
tions C7Q,,!Cé(z) = CTQ,,} (y — Az). 1t is distributed
~ Nq (c+ CTQ;;A(G z2), Q@(a)@(a)), whereby
we note that @ and &(z) are independent. We therefore may
write for ¢ = ¢(a),

= > Ple(a

as &(2)

a) € Q)d = z]Pla = 2]

zEL™

= ) Ple(2) € Qla = 2IPla = 7]
z€ZL™

= ) Ple(z) € QP[d = 7]
fopmt

As this result holds true for any 2 C R", the result follows.
O

Proof of Theorem 2 (GNSS PDF f:(x) characterized): For
model E(y) = Aa + Bb+ Cc, D(y) = Qyy, the b-reduced
normal matrix, or inverse ve-matrix of (a”,&")T
as

, s given

{ Naa  Nas ] _ { ATQ,, A @7)

A A7Qy, C
Nza  Nee cTQ, A

AT -1
c'Q,,C
with A= PzA and C = PgC. When applied to
the single-epoch GNSS model (13), using Q,, = o7

xblockdiag(Q, €Q), we find for A and C,

@ Springer

First we prove the results pertaining to the conditional
PDF fi.)(x), ie. the results of (14). As Qs = [Nee
—Nza N Nag] 71, it follows from (47), (48) and (49), rec-
ognizing that L is invertible, that Qze = [CF Q) Cp] ™!
which proves the first equation of (14). Similarly, substitu-
tion of (49) into Qe(aye(a) = Naz ! (C’Q )~
the second equation of (14). For the 1nteger—dr1ven shifts,
A(z) = E(&(z) — ¢), we may write

1 proves

A(z) = —QeaQy, (a — 2)
= +N'Nea(a — 2) (50)
= +Qe(a)e(a)C7 Qyy Ala — 2)

which, upon substitution of (48) and (49), proves the third
equation of (14).

We now prove (15). Its first equation follows from substi-
tuting (48) into Qs (cya(c) = N[l’&l = (ATQ;;A)’l, thereby
recognizing that L is invertible. To prove the second equa-
tion, we first write

Qd& = Qd(c Ya(c) + N NachchaN_ (51)

which follows from Qu(cya(e) = Qaa — QacQ:' Qea and
QacQr' = —N;, Nae. Substitution of (48) and (49) into
N'Nae = (ATQ,A)~1ATQ,!C proves the second
equation of (15). O

Proofof Lemma 2 (ADOP under H( and H,): The determi-
nant of a partitioned positive definite matrix can be factored
in a product of determinants as

Qaa  Qac || _ R
’ |: Qéd oo :| ‘ - |Qll¢l||Qc(a)c(a)| (52)
= |QeellQa(eracol

with the conditional vc-matrices Qua)e(a) = Qee

—QeaQys Qae and Qa(oya(e) = Qaa —QacQis Qea. O
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Proof of Theorem 3 (PDF and power of ARn-test): As
16(2)1[3,.,..., ~ X*(2. 1) and &(z) and & are indepen-

dent, we have for any interval @ C R,

P[T € Q]

PllE@I, ..., €9

- Z P[Hé(z)Héé(a)é(a) € Q’Q - Z}
ZGZ"

= > P, €QPlE= -]
zezm

= 3 P(g,\) € YP[a= ]
zEL™

from which (38) follows. Substitution of (38) into Parn(c)
=P[T >k |c fk, fr(zle)dz  gives the sought for

expression of the power function. 0

Proof of Corollary 1 (ARn probability bounds): We first
prove (39). From (38) follows

3" Pl(a,A.) € QPla = 7] 53

ZEL™

P[T e Q)=

Since all terms in the infinite sum are non-negative, we have

P[T € Q] > P[x*(q,0) € QP[a = d (54)
From this inequality follows (39) by setting Q = (k4, 00).
By setting 2 = [0, ko] and ¢ = 0, it also follows from (54)
that 1 — a,, > (1 — @)P[d = a], which gives the upper
bound of (40). To determine the lower bound, we use
P[x*(q,0) > ko] < P[x*(q,A) > ko], fromwhichitfollows
forc = Ofrom(53)thatP[T" > ko] > P[x?(¢,0) > ko] =

0
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