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type. Although the theory of mixed-integer inference is 
well developed for GNSS parameter estimation (Teunissen 
2010; Teunissen et al. 2017; Morton et al. 2020), such is not 
yet the case for the validity testing of mixed-integer GNSS 
models. It is the goal of this contribution to contribute to 
this field by introducing the ambiguity-resolved significance 
test. This test complements the ambiguity-resolved detector 
test that was introduced and studied in Teunissen (2024), 
Yin et al. (2024), Yin et al. (2025).

This contribution is organized as follows. In Section 
“Current significance testing”, we formulate our null- and 
alternative hypothesis for the general mixed-integer model 
and provide a brief overview of its current significance 
testing. We hereby emphasize in particular the tremendous 
difference in testing power that exists between the ambigu-
ity-float (AF) and ambiguity-known (AK) significance tests. 
It is this large difference in power that has motivated us to 
develop a new significance test for the mixed-integer model. 
It differs from existing tests in that it takes the unknown 
integerness of the ambiguities rigorously into account.

In Section “AR-bias estimator and distribution” we 
determine the integer ambiguity resolved estimator of the 
to-be-tested model bias, together with its probability dis-
tribution. To gain insight into its characteristics, we show 
how the shape of its multimodal probability density func-
tion (PDF) is driven by the interplay between the probability 
mass function (PMF) of the integer estimated ambiguities 
and the PDF of the ambiguity-constrained bias-estimator. 

Introduction

GNSS model validation constitutes an essential part of any 
GNSS data processing scheme (Leick et al. 2015; Teunissen 
et al. 2017). Statistical tests are then employed to test for the 
occurrence of model misspecifications, such as pseudorange 
(code) outliers, carrier-phase slips, neglected atmospheric 
delays, or lack of parameter stability, such as in time-series 
for displacement, deformation or landslide studies (Perfetti 
2006; Khanafseh et al. 2012; Teunissen and Bakker 2013; 
Biagi et al. 2016; Yu et al. 2023; Zeng et al. 2023; Huang 
et al. 2023). To achieve the best possible precision in GNSS 
parameter estimation, carrier-phase measurements are 
used, as they are two orders more precise than their pseu-
dorange counterparts.Strang and Borre (1997), Hofmann-
Wellenhof et  al. (2008), Morton et al. (2020). However, 
since the carrier-phase observables are integer ambiguous, 
their GNSS models consist of both real-valued and integer-
valued parameters, and are therefore of the mixed-integer 
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This analysis is further made GNSS-specific in Section 
“Single-epoch GNSS model PDF fč(x)”, where we con-
sider a general single-epoch GNSS mixed-integer model.

In Section “The AR significance test”, we introduce our 
ambiguity-resolved significance (ARs) test. To accomo-
date the multimodality of the test-statistic’s PDF, the PDF’s 
highest-density level sets are used, instead of the classical 
’p-value’ approach, to determine the geometry of the accep-
tance and rejection regions. We show how the test sits in 
between the AF- and AK-tests and how it can benefit from 
the integerness of the ambiguities to significantly outper-
form the AF-test.

In Section “The AR normed significance test” we dem-
onstrate the importance of properly accounting for the 
uncertainty of the integer ambiguity estimators. We show 
the errors-in-testing one makes when this uncertainty is 
neglected, as is done when using the AK-test. We also show, 
when this uncertainty is properly taken into account, that the 
corresponding test, referred to as AR-normed (ARn) test, 
becomes a good and easy-to-compute, approximation to the 
ARs-test in case multimodality is absent. To avoid multimo-
dality and allow for a good use of this test, we introduce the 
concept of partial-ambiguity-resolved significance testing. 
It is shown how this partial ARs-test improves the AF-test 
and also how it can be combined with the full ARs-test so as 
to further improve the testing performance. Section “Sum-
mary and conclusions” contains the summary and conclu-
sions, and Section “Appendix” the appendix.

The following notation is used throughout: We denote a 
random variable/vector by means of an underscore; thus x 
is a random variable/vector, while x is not. E(.) and D(.) 
denote the expectation and dispersion operators, respec-
tively, and fx(x) the probability density function (PDF) of 
x. A variance-covariance matrix, we usually refer to as a 
vc-matrix or simply as a variance matrix. Zn denotes the 
n-dimensional space of integer numbers and Rp the p-dimen-
sional space of real numbers. The range space of matrix M is 
denoted as R(M). Matrix M+ = (MT Q−1

yy M)−1MT Q−1
yy  

denotes the BLUE-inverse of the full column rank matrix 
M, and PM = MM+ and P ⊥

M = Im − PM  are the orthogo-
nal projectors that project on the range space of M and its 
orthogonal complement, respectively. The squared weighted 
norm is denoted as ||.||2R = (.)T R−1(.). Nm(µ, Q) denotes 
the m-variate normal distribution with mean µ and variance 
matrix Q, and χ2(q, λ) denotes the noncentral Chi-square 
distribution with q degrees of freedom and noncentrality 
parameter λ. The determinant of a matrix Q is denoted as 
|Q|. P[E] denotes the probability of event E and Ac denotes 
the set complementary to A.

Current significance testing

In this section we describe our hypotheses, as well as pro-
vide a brief comparative review of the ambiguity-float (AF) 
and ambiguity-known (AK) tests. They form the limiting 
versions of the integer ambiguity resolved significance tests 
that we will introduce in the sections following.

The null- and alternative hypothesis

With our vector of observables distributed as y ∼ Nm 
(E(y), Qyy), and its mean parametrized as

E(y) = Aa + Bb + Cc, a ∈ Zn, b ∈ Rp, c ∈ Rq� (1)

we aim to test the hypotheses

H0 : c = 0 versus Ha : c ̸= 0� (2)

whereby the given matrix [A, B, C] ∈ Rm×(n+p+q) is 
assumed to be of full column-rank. A prime example of 
model (1) is given by the linearized model of GNSS obser-
vation equations, with y ∈ Rm containing the carrier-
phase and pseudorange observables, a ∈ Zn the unknown 
integer carrier-phase ambiguities, and b ∈ Rp and c ∈ Rq, 
the unknown real-valued parameters, such as e.g. position 
coordinates, atmosphere parameters, receiver and satellite 
clock parameters, and instrumental biases (Strang and Borre 
1997; Leick et al. 2015; Teunissen et al. 2017). With (2) the 
aim is then to test for the significance of the entries in the 
q-vector c, i.e. to answer the question whether its entries 
can be considered small enough to be neglected. Through a 
proper choice of c one can then test for the presence of, for 
instance, tropospheric delays, ionospheric delays, pseudor-
ange outliers, carrier phase cycle slips, or any of the other 
parameters in the model.

We remark that a more general formulation of (1) and (2) 
would be

E(y) = Aa + Hx, a ∈ Zn, x ∈ Rp+q� (3)

with hypotheses

H0 : F T x = 0 versus Ha : F T x ̸= 0� (4)

whereby F ∈ R(p+q)×q is of rank q. In this case it are 
the q functions F T x that are to be tested for significance. 
By taking H = [B, C] and F T = [0, Iq] we obtain (1) 
and (2) again, thus showing that they are indeed a special 
case. Nevertheless, in this contribution we will work with 
formulation (1) and (2) as it does not pose any restriction 
on the generality of our theory development. The general 
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formulation of (3) and (4) can namely always be brought 
into the form of (1) and (2). To see this, we reparametrize 
x as x = F ⊥b + F +c, in which F ⊥ is a basis matrix of the 
null space of F T  and F + = F (F T F )−1. Then F T x = c 
and [HF ⊥, HF +] = [B, C].

We finally remark that an even more general formulation 
than (4) would be one in which the integer parameter vector 
a ∈ Zn would also be taking part in the null-hypothesis H0. 
Such mixed form of significance testing is however outside 
the scope of the present work.

The AF and AK significance test

An important complication of formulation (1) is the pres-
ence of the integer ambiguity vector a ∈ Zn. No proper sig-
nificance testing is currently in place that incorporate this 
integerness. What currently is done is to either disregard the 
integerness of the ambiguities and thus work as if a ∈ Rn, 
or alternatively, with reference to the output of ambiguity 
resolution, to treat the ambiguities as if they are known. We 
will refer to the significance tests of these two cases as the 
ambiguity-float (AF) significance test and the ambiguity-
known (AK) significance test.

If we denote the Best Linear Unbiased Estimator (BLUE) 
of c as ĉ, when a is treated as an unknown real-valued vec-
tor, and as ĉ(a), when a is assumed known, the two corre-
sponding significance tests read

Reject H0 if
{

AF : ||ĉ||2Qĉĉ
> kα

AK : ||ĉ(a)||2Qĉ(a)ĉ(a)
> kα

� (5)

and accept H0 otherwise. To be able to evaluate and com-
pare these two tests, we need their distributions. Since 
ĉ ∼ Nq(c, Qĉĉ) and ĉ(a) ∼ Nq(c, Qĉ(a)ĉ(a)), we have

||ĉ||2Qĉĉ
∼ χ2(q, λĉ)

||ĉ(a)||2Qĉ(a)ĉ(a)
∼ χ2(q, λĉ(a))

� (6)

with noncentrality parameters

λĉ = ||c||2Qĉĉ
and λĉ(a) = ||c||2Qĉ(a)ĉ(a) � (7)

As the two test-statistics have under H0 the same central 
Chi-square distribution with q degrees of freedom, they can 
indeed work with the same critical value kα = χ2

α(q, 0), cf. 
(5), thus providing their same probability of false alarm as 
P[||ĉ||2Qĉĉ

> kα|H0] = P[||ĉ(a)||2Qĉ(a)ĉ(a)
> kα|H0] = α . 

The following Lemma provides the necessary information 
for comparing the power performance of the two tests.

Lemma 1  (Bias precision and noncentrality) The vc-matri-
ces of the BLUEs ĉ and ĉ(a), and the relation between the 
noncentrality parameters of (7), are given as

Qĉĉ = [ ¯̄CT Q−1
yy

¯̄C]−1, with ¯̄C = P ⊥
[A,B]C

Qĉ(a)ĉ(a) = [C̄T Q−1
yy C̄]−1, with C̄ = P ⊥

B C

λĉ(a) = λĉ + ||PĀCc||2Qyy
, with Ā = P ⊥

B A

� (8)

Proof  see Appendix. � □

Since the integral ́ ∞
kα

fχ2(q,λ)(x)dx is monotone increas-
ing in λ, and λĉ(a) ≥ λĉ, it follows for their power that

P[||ĉ(a)||2Qĉĉ
> kα|Ha] ≥ P[||ĉ||2Qĉ(a)ĉ(a)

> kα|Ha]

thus showing that the AF-test is never more powerful than 
the AK-test. For the noncentrality parameters we have

λĉ = 0 if R(C) ⊂ R([A, B])
λĉ(a) = 0 if R(C) ⊂ R(B)
λĉ = λĉ(a) if R(C) ⊂ R(P ⊥

B A)⊥
� (9)

The first relation shows that significance testing of c is 
impossible if the column vectors of C lie in the range space 
of [A, B], while the second relation shows that this remains 
impossible, even when a is known, if the columns of C 
reside in the range space of B. The third relation stipulates 
that the two noncentrality parameters are equal if the col-
umn vectors of C lie in the orthogonal complement of the 
range space of Ā = P ⊥

B A, i.e. if CT Q−1
yy P ⊥

B A = 0. In this 
case, â, being the BLUE of a, is uncorrelated with ̂c, imply-
ing that knowing a does not affect the estimator of c, i.e. 
ĉ(a) = ĉ.

In case of GNSS, the AK-test is driven by the very-pre-
cise carrier-phase data. The difference between the AK-test 
and AF-test can then be quite dramatic, in particular if the 
AF-test is driven by the relatively poor precision of the 
pseudorange data. Figure  1 shows such an example, with 
c being the vertical tropospheric delay for a single-epoch, 
dual-frequency, short-baseline GPS model.

Strictly speaking, one can of course not apply the above 
AK-test in case of GNSS. Although the carrier-phase ambi-
guities are known to be integer, they are still unknown. 
When the AK-test is currently used in practice, the typical 
approach is to replace a by its integer estimate ǎ, thereby 
treating it as if it is the known ambiguity value. By replacing 
a in (5) by ǎ, the test becomes then

Reject H0 if ||ĉ(ǎ)||2Qĉ(a)ĉ(a)
> kα = χ2

α(q, 0)� (10)
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symmetry about c confirms that the AR-bias estimator č is 
an unbiased estimator of c. We also remark that this prop-
erty, as well as expression (11), hold true for any unbiased 
integer estimator ǎ one chooses from the class of admissible 
integer estimators (Teunissen 2003). Popular choices are 
integer rounding (IR) or integer bootstrapping (IB) (Teunis-
sen 1998), both of which are very simple to execute, or the 
more involved integer least-squares (ILS) which was shown 
by Teunissen (1999) to have the largest possible probability 
of correct integer estimation. Even combinations of these 
integer estimators are possible (Teunissen et al. 2021).

Expression (11) shows that the PDF fč(x) is an infinite 
sum of C̄+A(a − z)-shifted and P[ǎ = z]-downweighted, 
but equally (C̄T Q−1

yy C̄)−1-peaked, normal distributions. 
The PDF of č will therefore be multimodal in general, with 
its shape governed by the following three drivers: 

1.	 Qĉ(a)ĉ(a): peakedness of PDF fĉ(z)(x)
2.	 Qââ: peakedness of PMF P[ǎ = z]
3.	 QĉâQ−1

ââ z: shift size of fĉ(z)(x)
To get some further insight into the characteristics of the 
multimodal PDF and the different shapes that it can take, 
we consider the scalar case as illustration. In the scalar 
case, the integer estimator ǎ simply boils down to round-
ing â to the nearest integer, denoted as ⌊â⌉. For n = q = 1, 
â ∼ N (a = 0, σ2

â) and γ = σĉâσ−2
â , expression (11) sim-

plifies then to

fč(x) =
∑
z∈Z

N (γz, σ2
ĉ(a))P[⌊â⌉ = z]� (12)

with ambiguity PMF

P[⌊â⌉ = z] = Φ
(

1 − 2z

2σâ

)
+ Φ

(
1 + 2z

2σâ

)
− 1

in which Φ(x) =
´ x

−∞
1√
2π

e− 1
2 v2

dv. The three parameters 
that drive the characteristics of the PDF (12) are therefore, 
1.	 σĉ(a): peakedness of PDF N (γz, σ2

ĉ(a)).

2.	 σâ: peakedness of PMF P[⌊â⌉ = z].
3.	 γ: shift size of N (γz, σ2

ĉ(a)).

To illustrate the different shapes the PDF fč(x) can have, 
we take two values (small and large) for the three param-
eters σĉ(a), σâ and γ, thus resulting in 23 = 8 different PDF 
versions, all of which are shown in Fig. 2. The PDFs in the 
top row differ from those in the bottom row only through 
σĉ(a). This explains the spikey behaviour seen in the top row 
(σĉ(a) small) versus the smoother behaviour in the bottom 
row (σĉ(a) large). The influence of the peakedness of the 

But due to the randomness of ǎ, this is not a correct way 
of performing the test. The random variable ||ĉ(ǎ)||2Qĉ(a)ĉ(a)

 
will namely not have the Chi-square distribution that 
||ĉ(a)||2Qĉ(a)ĉ(a)

 of (6) has. This implies that its level-α criti-
cal value can not be computed as kα = χ2

α(q, 0) and that its 
detection probabilities will not be those of the AK-test.

AR-bias estimator and distribution

To develop a proper test, we first need to take the random-
ness of the estimated integer ambiguities in the expression 
of the ambiguity-resolved bias-estimator č = ĉ(ǎ) into 
account. This is achieved by determining the PDF of č.

Theorem 1  (PDF of AR-bias estimator) The PDF of č = 
ĉ(ǎ) is given as

fč(x) =
∑

z∈Zn

fĉ(z)(x)P[ǎ = z]� (11)

with fĉ(z)(x) the PDF of ĉ(z) Ha∼ Nq(c + C̄ +A(a − z),
Qĉ(a)ĉ(a) = (C̄ TQ−1

yy C̄ )−1 ), C̄ +A = −QĉâQ−1
ââ , 

P[ǎ = z] =
´

Sz
fâ(α)dα the PMF of ǎ, fâ(α) the PDF of 

â Ha∼ Nn(a, Qââ = (¯̄ATQ−1
yy

¯̄A)−1 ), ¯̄A = P⊥
[B,C ]A, and 

Sz ⊂ Rn  the pull-in region of the integer ambiguity estima-
tor ǎ.

Proof  See Appendix. � □

It is not difficult to verify that the PDF of č is sym-
metric about c, fč(c − x) = fč(c + x) ∀x ∈ Rn, at which 
point it reaches its maximum, fč(c) ≥ fč(x) ∀x ∈ Rn. Its 

Fig. 1  Tropospheric AK and AF power function curves, computed 
using their noncentral Chi-square cumulative distribution function 
(CDF). Left: single-epoch GPS skyplot; Right: single-epoch, L1/L2 
geometry-based GPS, ambiguity-float (AF) and ambiguity-known 
(AK) power function curves for α = 0.05 tropospheric zenith delay 
testing, with c/σp being the ratio of the vertical tropospheric delay and 
pseudorange standard deviation
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atmospheric delays, in b ∈ Rp, and the hypothesized q 
model biases in c ∈ Rq. The design matrices in (13) are: 
L = Λ ⊗ Im ∈ Rfm×fm, with Λ = diag(λ1, . . . , λf ) and λi 
the wavelength of the ith frequency; G = ef ⊗ G ∈ Rfm×p, 
with ef  the f-vector of ones and G ∈ Rm×p the DD receiver-
satellite geometry matrix; and Cp, Cϕ ∈ Rfm×q the signa-
ture matrices that link the hypothesized model bias with the 
observables.

We assume the bias vector c ∈ Rq to be fully estimable 
under Ha and therefore the design matrix of (13) to be of 
full column rank. This implies, as also the design matrix 
under H0, i.e. when c = 0, is assumed to be of full rank, 
that linear combinations of the q columns of [CT

p , CT
ϕ ]T  

cannot lie in the range space of the first n + p columns of 
the design matrix of (13). Note that this also implies that 
Cp cannot be zero. Would Cp = 0, then the invertibility 
of L implies that the last q columns of the design matrix 
become linear dependent on the first n, as a result of which 
the design matrix of (13) becomes rank defect.

The following theorem provides the drivers that charac-
terize the PDF fč(x) for the GNSS model (13).

Theorem 2  (GNSS PDF fč(x) characterized) For the sin-
gle-epoch GNSS model (13), the vc-matrices of ĉ and ĉ(a), 
the integer driven shift of the bias ∆(z) = E(ĉ(z) − c), and 
the vc-matrices of â(c) and â, are given as

ambiguity PMF can be seen when one compares the PDFs 
of the first two columns (σâ small) with those in the last two 
colums (σâ large). The multimodality of the PDF increases, 
the less peaked the ambiguity PMF is, i.e. the larger σâ is. 
Finally, the effect of the shifts γz can be seen when com-
paring the PDFs in the first and third column with those in 
the second and fourth column. It shows for instance, that 
a multi-peaked ambiguity PMF might still produce a uni-
modal PDF if the shifts γz are small enough and the stan-
dard deviation σĉ(a) large enough.

Single-epoch GNSS model PDF fč(x)

To characterize the PDF fč(x) for GNSS, we show in this 
section how the above mentioned three drivers work out for 
an f-frequency, m double-differenced (DD) pseudorange 
and carrier-phase geometry-based model, see e.g. Teunissen 
et al. (2017). We consider the most challenging case, being a 
single-epoch model under a general alternative hypothesis,

Ha : E
[

p
ϕ

]
=

[
0 G Cp
L G Cϕ

]

↑
A

↑
B

↑
C

[
a
b
c

]
,� (13)

with D(p) = Qpp = σ2
pQ, D(ϕ) = Qϕϕ = σ2

ϕQ, p uncorre-
lated with ϕ, and both normally distributed. In (13), the pseu-
dorange and carrier-phase data are collected in p, ϕ ∈ Rfm, 
the fm integer DD ambiguities in a ∈ Zfm, the real-valued 
GNSS parameters, like baseline components and possibly 

Fig. 2  Shapes of the PDF fč(x) =
∑

z∈Z N (γz, σ2
ĉ )P[ǎ = z] for different values of σĉ(a) (compare top row with bottom row), σâ (compare first 

two columns with last two columns), γ = σĉâσ−2
â  (compare first and third column with second and last column)
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σ2
ϕ

[
CT

ϕ Q−1Cϕ + ϵCT
p Q−1Cp

]−1

≤ Qĉ(a)ĉ(a) ≤ σ2
ϕ

[
C̄T

ϕ Q−1C̄ϕ

]−1� (17)

The lowerbound is the variance matrix when also the base-
line b would be assumed known, while the upperbound 
is the phase-only variance matrix. As both the lower- and 
upperbound are dominated by the very small phase-variance 
σ2

ϕ, the PDF fĉ(z)(x) can be expected to be peaked in this 
case.
Case rank(G, Cϕ) = p: Note, as G is of full column rank 

p, that this case is equivalent to stating that all column vectors 
of Cϕ lie in the range space of G, i.e. that C̄ϕ = P ⊥

G Cϕ = 0. 
Hence, for the ambiguity-known situation, the inclusion of 
code data is then needed, as phase data alone will now not 
be sufficient for estimating the bias vector c. The following 
lower- and upperbound can then be obtained from (14),

σ2
p[(Cp − Cϕ)T Q−1(Cp − Cϕ)]−1

≤ Qĉ(a)ĉ(a) ≤ σ2
p[C̄T

p Q−1C̄p]−1� (18)

The upperbound is the code-only variance matrix, while the 
lowerbound can be understood as follows. With the range 
space of Cϕ being a subset of R(G), a matrix X exists such 
that Cϕ = GX , thus allowing us to reparametize the ambi-
guity-known model as

E
[

p
ϕ − La

]
=

[
G Cp − Cϕ
G 0

] [
b + Xc

c

]
� (19)

The lowerbound of (18) is then the code-only variance 
matrix of the estimated bias vector, when next to the ambi-
guities, also the lumped parameter vector b + Xc would be 
assumed known.

As the bounds of (18) are dominated by the relatively 
poor precision of the code data, the conclusion is that one 
cannot expect the PDF fĉ(z)(x) to be very peaked when 
C̄ϕ = 0. As this case includes Cϕ = 0, i.e. the situation 
when the bias vector is only linked to the code data, a simi-
lar conclusion is reached for code or pseudorange outliers.

Also note, when next to C̄ϕ = 0 also D = PG 
(Cϕ − Cp) = 0, then Qĉ(a)ĉ(a) = Qĉĉ, cf. (14). In this case, 
integer ambiguity resolution, even when successful, will 
have no impact at all on the estimator of c. Two examples of 
such are (i) when Cc models a tropospheric delay for which 
the vector of mapping functions lies in the range space of G, 
and (ii) when Cc models a code-bias for which its signature 
matrix Cp lies in the orthogonal complement of the range 
space of G.

With respect to Fig. 2 we can now conclude, as far as 
the peakedness of fĉ(z)(x) is concerned, that the PDF 

Qĉĉ = [C̄T
p Q−1

pp C̄p]−1

Qĉ(a)ĉ(a) = [Q−1
ĉĉ + C̄T

ϕ Q−1
ϕϕ C̄ϕ + ϵ

1+ϵ DT Q−1
ϕϕD]−1

∆(z) = Qĉ(a)ĉ(a)(C̄ϕ + ϵ
1+ϵ D)T Q−1

ϕϕL(a − z)
� (14)

and

Qâ(c)â(c) = L−1 (ϵQpp + PGQpp) L−T

Qââ = Qâ(c)â(c) + EQĉĉET
� (15)

with projectors PG  = G[GTQ−1 G]−1 GTQ−1  and 
P⊥

G = Ifm − PG , the projected C-matrices C̄p = P⊥
G Cp 

and C̄ϕ = P⊥
G Cϕ, the phase-code variance-ratio 

ϵ = σ2
ϕ /σ2

p , and D = PG(Cϕ − Cp), E = L−1 [C̄ϕ + D].

Proof  see Appendix. � □

Note that both D and E do not change with σ2
ϕ and σ2

p 
and that Qâ(c)â(c) is the ambiguity-variance matrix under 
H0. Furthermore, we remark that the above given matrices 
C̄p and C̄ϕ should not be confused with the earlier defined 
C̄ = P ⊥

B C. With the results of the above theorem we are 
now in a position to provide a qualitative discussion on the 
driving characteristics of the multimodal PDF of č = ĉ(ǎ). 
We first consider the PDF peakedness of fĉ(z)(x), then the 
PMF peakedness of P[ǎ = z] as it is driven by the vc-matrix 
of â, and finally the integer-driven bias of fĉ(z)(x).

The peakedness of fĉ(z)(x)

As the peakedness of this PDF is completely determined by 
the vc-matrix Qĉ(a)ĉ(a), we consider the second equation 
of (14). To understand when and how the code-precision or 
phase-precision dominates the precision of ̂c(a), we need to 
consider the rank of the fm × (p + q) matrix [G, Cϕ]. Its 
rank is bounded as

p ≤ rank(G, Cϕ) ≤ p + q� (16)

The upperbound is clear. The lowerbound follows from 
the fact that rank(G) = p, which follows from our earlier 
assumption that the design matrix under H0, i.e. when c = 0, 
is of full column rank. We now consider the two extreme 
cases: rank(G, Cϕ) = p and rank(G, Cϕ) = p + q. We 
start with the upperbound.
Case rank(G, Cϕ) = p + q: As matrix [G, Cϕ] is of full 

column rank, the phase data are sufficient to estimate the 
bias vector c when the ambiguities are known. One can 
therefore expect the precision of ĉ(a) to be dominated by 
the high-precision of the phase data. And indeed, the follow-
ing lower- and upperbound can then be obtained from (14),
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ADOPHa

ADOPH0
= 2n

√
|Iq + ET Q−1

â(c)â(c)EQĉĉ|� (22)

thus showing that the ratio can be expected to be large when 
rank(G, Cϕ) = p + q and small when rank(G, Cϕ) = p. For 
q = 1 for example, we get the ADOP-ratio approximations

ADOPHa

ADOPH0
≈




(
1 + 1

ϵ

||C̄ϕ||2
Q

|C̄p||2
Q

) 1
2n

if Cϕ /∈ R(G)
(

1 + ||D||2
Q

||C̄p||2
Q

) 1
2n

if Cϕ ∈ R(G)

As we may assume the PMF of the integer estimated ambi-
guities under H0 to be very peaked, i.e. the H0 ambiguity 
success-rate to be very close to 1, the above shows that a 
similar peakedness can be expected of the PMF under Ha 
in case rank(G, Cϕ) = p, i.e. when the ADOP-ratio does 
not differ too much from 1. In case of rank(G, Cϕ) = p + q 
however, the ADOP-ratio is much larger due to the very 
small phase-code variance-ratio ϵ. As a consequence, the 
Ha ambiguity success-rate can then be expected to differ 
significantly from 1, implying that nonnegligible probabil-
ity masses can expected to be located at other integer ambi-
guity vectors than a ∈ Zn as well.

On the integer-driven bias of fĉ(z)(x)

To measure the significance of the integer-driven bias 
∆(z) = E(ĉ(z) − c), we consider its squared weighted 
norm with respect to the vc-matrix Qĉ(a)ĉ(a),

||∆z||2Qĉ(a)ĉ(a)
= ||PC̄A(a − z)||2Qyy

= ||C̄T Q−1
yy Ā(a − z)||2

Q−1
ĉ(a)ĉ(a)

= ||(C̄ϕ + ϵ
1+ϵ D)T Q−1

ϕϕL(a − z)||2
Q−1

ĉ(a)ĉ(a)

from which it follows, together with (17) and (18), that

||∆z||2Qĉ(a)ĉ(a)
∝

{ 1
σ2

ϕ

if Cϕ /∈ R(G)
1

σ2
p

if Cϕ ∈ R(G) � (23)

This shows, consistent with the peakedness of fĉ(z)(x), 
that the integer-driven bias can expected to be significant 
when Cϕ /∈ R(G) and less so otherwise. This measure of 
significance does however not give insight into where in 
c-space the integer-driven biases are projected to. To make 
this clearer, we symbolically write the infinite sum of the 
PDF fč(x), cf. (11) under H0, i.e. when c = 0, as

characteristics of its top-row correspond to the case 
rank(G, Cϕ) = p + q, while those of the bottom-row cor-
respond to the case rank(G, Cϕ) = p. For the intermediate 
cases p < rank(G, Cϕ) < p + q, linear combinations of 
some of the column vectors of Cϕ will lie in the range space 
of G, while others will not. In that case the PDF fĉ(z)(x) 
can be expected to be peaked in some directions, while not 
in other directions.

The peakedness of P[ǎ = z]

We will measure peakedness of the PMF by means of the 
Ambiguity Dilution of Precision (ADOP). The ADOP 
was introduced in Teunissen (1997) and it is defined 
as ADOP = 2n

√
|Qââ| (cycle). The ADOP is invariant 

for admissible ambiguity reparametrizations and it pro-
vides an easy-to-compute approximation to the ambi-
guity success-rate, i.e. probability of correct integer 
estimation P[ǎ = a] ≈ PADOP = [2Φ( 1

2ADOP ) − 1]n. An 
ADOP smaller than 0.14 cycles corresponds with a PADOP 
larger than 0.99 (Odijk and Teunissen 2008).

We now first give a general expression of how the ADOP 
changes when extra parameters need to be estimated in the 
model.

Lemma 2  (ADOP under H0  and Ha) The ADOP-change, 
when switching from H0  to Ha , is given by

ADOPHa = ADOPH0

(
|Qĉĉ|

|Qĉ(a)ĉ(a)|

) 1
2n � (20)

Proof  see Appendix. � □

This result shows that the change in ADOP and the 
change in precision of the bias-estimator act similarly as a 
law of communicating vessels. The more the bias-precision 
improves due to ambiguity fixing, the larger the ADOP gets. 
Hence, with the precision improvement of the bias estima-
tor, one can expect the ambiguity success-rate to become 
poorer and possibly leading to the necessity of having to 
take more than one ambiguity probability mass into account.

To show how Lemma 2 works out for the GNSS model 
(13), we first take the determinant of the vc-matrix in the 
second equation of (15). As a result we get

|Qââ| = |Qâ(c)â(c)||Iq + ET Q−1
â(c)â(c)EQĉĉ|� (21)

with ET Q−1
â(c)â(c)EQĉĉ = [ 1

ϵ C̄T
ϕ Q−1C̄ϕ + 1

1+ϵ DT Q−1D] 
[C̄T

p Q−1C̄p]−1. Hence, the ADOP-ratio of the alternative 
hypothesis to the null-hypothesis follows as
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p-value is said to be the probability of obtaining results at 
least as extreme as the observed results of an hypothesis test 
(Rice 2007). A smaller p-value is then said to imply there is 
stronger evidence in favor of the alternative hypothesis Ha. 
If we assume for the moment that č is a scalar, i.e. q = 1, the 
p-value of a two-sided test, having č as observed value, is 
then usually defined as

p = P[ |č| > |č| |H0]� (25)

thus implying that a value č2 would be more extreme than 
č1 if P[ |č| > |č1| |H0] > P[ |č| > |č2| |H0]. Although such 
conclusion may seem acceptable in case of unimodal dis-
tributions symmetric about zero, it appears odd for a multi-
modal distribution symmetric about zero. It would namely 
imply that č2-values close to off-centred modes could still 
be considered more extreme than č1-values residing else-
where. Hence, for multimodal distributions, like the PDF 
of ̌c, an alternative approach is needed and one in which the 
modes of the distribution come into play as well. Here we 
therefore follow the highest density approach as also used in 
Teunissen (2007).

Let A ⊂ Rq be the acceptance region with false-alarm 
probability P [č ̸∈ A|H0] = P [č ∈ Ac|H0] = α. Since we 
want the rejection to be rare when H0 is correct, the false 
alarm probability α is chosen as a small value. But since 
there are an infinite number of subsets that can produce this 
false alarm probability, we still need to determine a way of 
defining a proper A. It seems reasonable to define the optimal 
subset as the one which has the acceptance probability 1 − α 
most concentrated, and thus captured in the smallest volume. 
Such subset is thus the solution to the minimization problem, 
minA⊂Rq VA subject to P [č ∈ A|H0] = 1 − α, where 
VA denotes the volume of A. The solution to this problem 
is given by the subset

A = {x ∈ Rq | fč(x|H0) ≥ λα}� (26)

where λα is chosen so as to satisfy the false-alarm con-
straint. For a proof, see Teunissen (2007), pp. 575–576. By 
a similar derivation one can also show that of all subsets 
with the same volume, A captures the largest possible prob-
ability mass.

Subsets like (26) are referred to as highest density level 
sets and from their structure it follows that a more suitable 
p-measure than (25) would be

p = P[ fč(č) < fč(č) |H0]� (27)

Thus now č2 would be considered more extreme than 
č1 if the following inequality holds true: P[fč(x|H0) 
< fč(č1|H0)] > P[fč(x|H0) < fč(č2|H0)]. Following this 

PDF(č|H0) =
Nq(0, R)P[ǎ = a]+

{Nq(−c1, R) + Nq(+c1, R)} P[ǎ = z1]+
{Nq(−c2, R) + Nq(+c2, R)} P[ǎ = z2] + · · ·

� (24)

in which R = Qĉ(a)ĉ(a), ci = C̄+A(a − zi), and where we 
made use of the symmetry of the PDF fč(x) with respect to 
the origin, i.e. P[ǎ = a + u] = P[ǎ = a − u] for all u ∈ Zn. 
If we assume the probability masses at zi to be ordered as 
P[ǎ = a] ≥ P[ǎ = z1] ≥ P[ǎ = z2] ≥ ..., then the largest 
peak of fč(x) is centred at the origin, a second largest pair 
of peaks at ±c1, a third-largest pair of peaks at ±c2, etcetc. 
These locations and peak-sizes can be computed once the 
ordered ambiguity probability masses and their integer 
ambiguity vectors are known. This can be done efficiently 
with the LAMBDA 4.0 toolbox (Massarweh et al. 2025).

As an example of the above considerations, we use a 
single-epoch, double-differenced dual-frequency geometry-
based GPS model and take the bias parameter c to be an 
ionospheric delay. In this case we have Cϕ /∈ R(G), thus 
leading to a very peaked, phase-driven PDF fĉ(z)(x). How-
ever, with the inclusion of the ionospheric delay, the ambi-
guity succes-rate drops from practically 1 to 0.61 under Ha, 
thus giving a multimodal fč(x), with 39% ambiguity prob-
ability mass contributing as scale factors to its noncentral 
modes. The result is shown in Fig. 3.

The AR significance test

In this section we introduce our ambiguity-resolved signifi-
cance test and compare it with its AF- and AK counterparts.

Acceptance/rejection region

To be able to decide on the significance of an outcome 
of č, we need a measure of significance, for which the p-
value concept is often used. Assuming H0 to be correct, the 

Fig. 3  Multimodal PDF of ambiguity-resolved ionospheric delay 
based on a single-epoch, dual-frequency, geometry-based GPS model, 
cf. skyplot Fig. 1
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lim
P[ǎ=a]↑1

fč(x) = fĉ(a)(x)� (30)

Hence, in the limit, the ARs-test equals the AK-test and 
will then also have its excellent carrier-phase driven 
performance.

To compare fĉ(x) with fč(x), we write

fĉ(x) =
ˆ

fĉâ(x, v)dv

=
ˆ

fĉ|â(x|v)fâ(v)dv

=
∑

z∈Zn

ˆ

Sz

fĉ|â(x|v)fâ(v)dv

� (31)

This shows, if fĉ|â(x|v) as function of v is flat over the pull-
in region Sz  (this happens if the integer-grid is very dense 
with respect to the variability of the PDF, i.e. when the 
precision is poor), that fĉ|â(x|v) ≈ fĉ(z)(x) and therefore 
fĉ(x) ≈ fč(x). Hence, in this limit, the ARs-test equals the 
AF-test, with its usually much poorer performance.

Just as the AK- and AF-tests, cf. (5), also the AR sig-
nificance test (28) can shown to be a generalized likelihood 
ratio (GLR) test. With our null hypothesis being simple, 
H0 : c = 0, the GLR reads

GLR(x) =
fč(x|c = 0)
max
c∈Rq

fč(x|c) � (32)

It then follows, with x = arg maxc∈Rq fč(x|c), noting 
fč(x|x) is a constant, that GLR(č) < λα/fč(č|č) is equiva-
lent to (28).

An example of the performance of the three significance 
tests is given in Fig. 5(Left). It shows the detection prob-
abilities of the ionospheric significance tests as function of 
the bias c,

line of reasoning we define our ambiguity-resolved signifi-
cance (ARs) test as follows.

Definition 1  (ARs-test) For sample č of č,

Reject H0 if fč(č|H0) < λα� (28)

with λα chosen so as to satisfy a user-required false-alarm 
probability P [č ̸∈ A|H0] = α.
Two acceptance-region examples of the ARs-test are shown 
in Fig. 4. As the acceptance-region of the test is formed from 
subsets of highest density, the multimodality of a PDF may 
result in a disconnected acceptance region, as is shown in 
Fig. 4 (right). For a unimodal PDF, the acceptance-region is 
connected, as it would be when the traditional p-value con-
cept, cf. (25) would be used. This is shown in Fig. 4(left).

ARs test sits in between AK and AF

We are now in a position to compare the ARs test with the 
AF- and AK-test, and show how they are limiting versions 
of the ARs test. In order to facilitate this comparison, we 
also write the AF- and AK-test, just like (28), in the form of 
a level-set of the PDF. We have:

Reject H0 if

{ AF :fĉ(ĉ|H0) < µα

ARs :fč(č|H0) < λα

AK :fĉ(a)(ĉ(a)|H0) < να

� (29)

with µα= |2πQĉĉ|−
1
2 exp{− 1

2 χ2
α(q, 0)}  and να

= |2πQĉ(a)ĉ(a)|−
1
2 exp{− 1

2 χ2
α(q, 0)}, and where ĉ, 

č = ĉ(ǎ) and ĉ(a) are the sample values of the respective 
statistics. Thus, in essence, if we want to compare the three 
tests, we can work with the three PDFs: fĉ(x), fĉ(a)(x), and 
fč(x).

First we compare fč(x) with fĉ(a)(x). Since fč(x)
=

∑
z∈Zn fĉ(z)(x)P[ǎ = z], the multimodality of the 

PDF will get less with increasing ambiguity success-rate 
P[ǎ = a] and in the limit give

Fig. 4  ARs-test acceptance region 
{x ∈ Rq|fč(x|H0) ≥ λα} of 
5th (Left) and 6th (Right) PDF of 
Fig. 2 for α = 0.15. As the 5th 
PDF is unimodal, its acceptance 
region is connected, while the 
multimodality of the 6th PDF, 
results in a disconnected accep-
tance region
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This shows that the power of the combined test is never 
smaller than that of the individual tests, P12 ≥ P1&P2. 
Combining tests with complementary power behaviour (one 
large when the other is small) seems therefore in particular 
profitable. However, one should keep in mind, that not only 
the power increases, but also the false alarm. As (34) can 
also be formulated for H0, the false alarm of the combined 
test is α12 = α1 + α2 − α1α2. Thus if α1 = α2 = 1%, 
then α ≈ 2%. Hence, if α1 = α2 is the required false alarm, 
one would need to approximately half the false alarm of 
the individual tests to recover the required false alarm for 
the combined test. We remark however, that for applica-
tions where data are in abundance or easy to come by, the 
increase in false alarm may be tolerable and not really an 
issue. We also note that (34) is only true if the two test sta-
tistics are independent. Would they be fully correlated, i.e. 
identical, then P12 = P1 = P2 and no benefit will be reaped 
from their combination. In our case the tests are not inde-
pendent, but also not fully correlated. Hence, one can expect 
to benefit from their combination. This is indeed illustrated 
in Fig.  5(Right). As a result of the combination with the 
PAR-test (see 42), we now have an ARs-test that is every-
where better than the AF-test.

The AR normed significance test

As the ARs-test is based on the highest density region of 
the PDF fč(x), its execution requires the evaluation of a 
weighted sum over the integers, cf. (11). Such is not needed 
if one would use the AK-test (10) as starting point and take 
the randomness of ǎ properly into account. In this section 
we therefore explore the characteristics of this AR normed 
(ARn) test and its relation to the ARs-test.

PAF(c) = P[fĉ(ĉ) < µα|Ha]
PARs(c) = P[fč(č) < λα|Ha]
PAK(c) = P[fĉ(a)(ĉ(a)) < να|Ha]

� (33)

The result shows, except for a few particular values of c, 
a superior performance of the ARs-test. The c-values for 
which the detection probability of the ARs-test drops in 
value, can be explained by the sharp multimodality of the 
PDF of č, as shown in Fig. 3. These c values correspond 
with the mapped z-vectors for which the ambiguity prob-
abilities P[ǎ = z] are nonnegligible. For all other c-values, 
the power function is close to that of the AK-test and far 
superior to that of the AF-test.

Combining tests

Despite the significant improvements the ARs-test brings, 
there is no guarantee that its power is everywhere better 
than that of the AF-test, as Fig. 5(Left) illustrates. Would 
one also like to improve on this situation, we introduce the 
idea of combining tests, in our case of the ARs-test with a 
partially ambiguity-resolved (PAR) version of it (see also 
Section “Partial ambiguity resolution based testing”).

To describe the general idea of combining two tests 
for the same null-hypothesis, let the two tests be given as 
’reject H0 if T1 > kα1 ’ and ’reject H0 if T2 > kα2 ’. Then it 
seems reasonable to have the combined test reject the null-
hypothesis if one or both of the individual tests rejects the 
null-hypothesis, i.e. ’reject H0 if T1 > kα1  or T2 > kα2 ’. 
To evaluate this combined test, one needs to determine its 
’power’ and ’false alarm’. This is not difficult to do if T 1 
and T 2 are independent. Denoting the individual powers 
as P1 = P[T 1 > kα1 |Ha] and P2 = P[T 1 > kα2 |Ha], the 
power of the combined test becomes then

P12 = P[{T 1 > kα1} ∪ {T 2 > kα2}|Ha]
= P1 + P2 − P1P2

= 1 − (1 − P1)(1 − P2)
� (34)

Fig. 5  Power functions of the 
AK, AF, ARs (Left) and ARs-
combined (Right) ionospheric 
significance test for different false 
alarm probabilities α and based 
on a single-epoch, dual-frequency, 
geometry-based GPS model, cf. 
skyplot Fig. 1
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Such is however not a good choice, since this highest den-
sity rejection region will, in the limit when the ambiguity 
succes-rate goes to one, not become equal to that of the AK-
test. Although the PDF goes in the limit to that of the AK 
test-statistic, ||ĉ(a)||2Qĉ(a)ĉ(a)

, i.e.

lim
P[ǎ=a]↑1

f||ĉ(ǎ)||2
Qĉ(a)ĉ(a)

(x) = f||ĉ(a)||2
Qĉ(a)ĉ(a)

(x)

its highest density regions will generally not equal the rejec-
tion region of the AK-test, i.e. its performance will not be 
that of the AK-test.

ARn probability bounds

To characterize the error one makes when using the ARn-
test as if it is an AK-test, i.e. without taking the uncertainty 
of ǎ into account, we now provide bounds on its false alarm 
and detection probabilities.
Corollary 1  (ARn probability bounds) Let 
T = ||ĉ(ǎ)||2Qĉ(a)ĉ(a)

, P[T > kα|H0 ] = αn    and 
kα = χ2

α(q, 0 ) be the critical value of the level-α AK-test 
(5). Then

P[T > kα|Ha] ≥ PAK(c)P[ǎ = a]� (39)

and

α ≤ αn ≤ α + (1 − α)P[ǎ ̸= a]� (40)

Proof  see Appendix. � □

From the lower bound (39) we learn that for the same 
critical value kα as used by the AK-test, the ARn detection 
probability is always larger than AK’s power times the suc-
cess-rate. This shows, as AK’s power is usually very close 
to 1, that a high success-rate will also give a large detection 
probability P[T > kα|Ha]. Whether or not this translates in 
a similar high power for the ARn-test depends then on how 
much the critical value kα differs from the level-α critical 
value k′

α of the ARn-test.
From the bounds of (40) we learn that, for the same criti-

cal value, ARn’s probability of false alarm is never smaller 
than that of the AK-test and that the difference between these 
two probabilities becomes smaller, the larger the ambigu-
ity success rate gets. Their difference can become quite 
large however in case the success-rate differs significantly 
from one. For the GNSS model used in Figs. 5 and 6, for 
instance, having a success-rate of P[ǎ = a] = 0.6137, the 
actual ARn false alarm probabilities are αn = 0.3894 when 
α = 0.005, αn = 0.3924 when α = 0.01, and αn = 0.4170 
when α = 0.05. This shows the significant errors one will 

The ARn-test

The ARn significance test is essentially the AK significance 
test, but then with a proper accounting of the uncertainty of 
the estimated integer ambiguities.

Definition 2  (The ARn-test) Let ǎ be an admissible integer 
estimator of a ∈ Zn. Then the level-α ambiguity-resolved 
normed (ARn) test reads,

Reject H0 if ||ĉ(ǎ)||2Qĉ(a)ĉ(a)
> k′

α� (35)

with critical value k′
α satisfying

P[||ĉ(ǎ)||2Qĉ(a)ĉ(a)
> k′

α|H0] = α� (36)

Note that due to the inclusion of the uncertainty of ǎ, we 
have k′

α ̸= kα. We also remark that the test can be written 
in its PDF-form as

Reject H0 if fĉ(a)(č) < ν′
α� (37)

with ν′
α = |2πQĉ(a)ĉ(a)|−

1
2 exp{− 1

2 k′
α}, thus showing how 

it relates to the ARs-test, cf. Theorem 1 and (28). To execute 
the ARn-test we only need to compute the squared weighted 
norm of the sample č = ĉ(ǎ). Also the PDF of ARn’s test-
statistic, ||ĉ(ǎ)||2Qĉ(a)ĉ(a)

, as well as the expression of its 
powerfunction, PARn(c) = P[||ĉ(ǎ)||2Qĉ(a)ĉ(a)

> k′
α|Ha], 

can be computed directly. We have the following result.
Theorem 3  (PDF and power of ARn-test) Let ̂a be the BLUE 
of a and ̌a an admissible integer estimator of E(â) = a ∈ Zn . 
Then the PDF of T = ||ĉ(ǎ)||2Qĉ(a)ĉ(a)

 and the expression of 
the power function PARn(c) = P[T > k ′

α|Ha], are given as

fT (x|c) =
∑

z∈Zn

fχ2(q,λz)(x)P[ǎ = z]

PARn(c) =
∑

z∈Zn

P[χ2(q, λz) > k′
α]P[ǎ = z]

� (38)

with noncentrality parameter  
λz  = ||c + C̄+A(a − z)||2Qĉ(a)ĉ(a) .

Proof  see Appendix. � □

This result shows that the PDF of T = ||ĉ(ǎ)||2Qĉ(a)ĉ(a)
 

is a weighted sum of noncentral Chi-square distributions 
with q degrees of freedom. Since the PDF of ||č||2Qĉ(a)ĉ(a)

= ||ĉ(ǎ)||2Qĉ(a)ĉ(a)
 is multimodal, it seems perhaps tempt-

ing to use, instead of the rejection region (35), the highest 
density as rejection region, just as it was done for fč(x). 
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and the flatness of P[ǎ = z], the idea is to refrain from a 
full ambiguity resolution (FAR), but instead perform par-
tial ambiguity resolution (PAR). One can then aim to have 
the PMF of the PAR-vector to be peaked, e.g. by having a 
required sufficiently high ambiguity success-rate of 0.999. 
Increasing the peakedness of the PMF, will of course go at 
the expence of the PDF-peakedness of the partially ambigu-
ity constrained bias vector. It is therefore their combined 
effect that determines whether or not improved performance 
can be achieved.

The PAR-method that we apply is the one originally 
introduced in Teunissen et al. (1999), see also Massarweh 
et al. (2025). The FAR and PAR versions of the ARn-test 
are then

Reject H0 if
{

FAR : fĉ(a)(č) < ν′
α

PAR : fĉ(a1)(č1) < ν′′
α

� (42)

with

č = ĉ − QĉâQ−1
ââ (â − ǎ)

č1 = ĉ − Qĉâ1Q−1
â1â1

(â1 − ǎ1)
� (43)

in which a1 is the vector of subset ambiguities as selected 
by the PAR-method. The PAR-version of the ARn-test will 
be referred to as the PARn-test. The required PAR success-
rate is set at 99.9%.

Figure 6(Right) shows, for the same model as used in 
Fig.  6(Left), how the power function of the PARn-test, 
PPARn(c) = P[fĉ(a1)(č1) < ν′′

α|Ha], compares with those 
of the AF- and AK-test. The result shows that now, due to 
partial ambiguity resolution, the relatively simple to execute 
PARn-test achieves a performance that is superior to that of 
the AF-test for all c.

make when applying the AK-test using samples from č. 
Inequality (40) also implies that ARn’s acceptance region 
will not be smaller than that of the AK-test, i.e. k′

α ≥ kα, 
and in fact it will often be much larger if their false alarm 
probabilities differ much.

As to the detection performance of the ARn-test, one 
should realize, although it converges to the exellent power 
performance of the AK-test when the success-rate goes to 
one, that the success-rate under Ha may be significantly 
smaller than under H0. Such case, having an ambiguity suc-
cess-rate under Ha of only 61%, is shown in Fig. 6(Left). 
It illustrates the performance of the ARn-test for the same 
GNSS model as considered in Figs.  3 and  5. The power 
functions shown are

PAF(c) = P[fĉ(ĉ) < µα|Ha]
PARn(c) = P[fĉ(a)(č) < ν′

α|Ha]
PAK(c) = P[fĉ(a)(ĉ(a)) < να|Ha]

� (41)

The staircase behaviour of ARn’s powerfunction can be 
explained by the fact that the test uses a single connected 
acceptance region, while the multimodal PDF fč(x) has 
very peaked conditional PDFs fĉ(z)(x), cf. Figure 3. Hence, 
when fč(x) translates over c under Ha, its probability mass 
outside the acceptance region may remain constant for some 
time, before suddenly increasing again when another mode 
of the PDF exits the acceptance region. Although the ARn-
test has generally a larger power than the AF-test, especially 
for large α, there are also many instances in which it per-
forms poorer than the AF-test.

Partial ambiguity resolution based testing

As the above explained performance of the ARn-test is 
due to the incompatibility of using a connected acceptance 
region for a multimodal PDF, improved performance may 
become feasible if multimodality can be avoided. Since 
multimodality of fč(x) is due to the peakedness of fĉ(a) 

Fig. 6  Power functions of ARn 
(Left) and PARn (Right) tests, 
compared with AF and AK 
ionospheric significance tests, for 
different false alarm probabilities α 
and based on a single-epoch, dual-
frequency, geometry-based GPS 
model, cf. skyplot Fig. 1
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In formulating our significance test, we discussed the 
necessity of abandoning the classical ’p-value’ approach as 
it fails to do justice to the multimodality of fč(x). Instead a 
level-set approach was used (Teunissen 2007), thus allow-
ing to capture the PDF’s highest density regions for accep-
tance of the null-hypothesis, cf. Figure 4. Hence, its power 
function is given as

PARs(c) = P[fč(č|Ha) < λα}� (45)

with false alarm probability α = P[fč(č|H0) < λα}. It was 
shown under which circumstances the test outperforms the 
AF-test, thereby then often even providing a power close to 
that of the AK-test, cf. Figure 5.

We also introduced, with a dual purpose, the ambiguity-
resolved normed (ARn) test. First we used it to illustrate the 
poor false alarm performance of the AK-test when applied 
with samples of č, cf. Corollary 1. When neglecting the 
uncertainty of ǎ, as one does with the AK-test, the actual 
false alarms were shown to be very much larger than that 
assumed by the AK-test. Secondly, we showed the ARn-test 
to be an easier-to-compute approximation of the ARs-test, 
cf. (37). How well this approximation works depends on 
the modality of fč(x). As the approximation is excellent in 
the unimodal case, the concept of PAR-based testing was 
introduced. By means of partial ambiguity resolution, mul-
timodality in the PDF of the ambiguity-resolved bias-esti-
mator is avoided and a test is obtained with an everywhere 
better power than the AF-test, cf. Figure 6. It was thereby 
also shown how partial and full ambiguity-resolved signifi-
cance testing can be combined to further improve testing 
performance.

Appendix

Proof of Lemma 1  (Bias precision and noncentrality): 
The reduced system of normal equations of the model 
E(y) = Aa + Bb + Cc, D(y) = Qyy    is ¯̄CT Q−1

yy  ¯̄Cĉ

= ¯̄CT  Q−1
yy y,    with ¯̄C = P ⊥

[A,B]C, from which the 

result Qĉĉ= ( ¯̄CT Q−1
yy

¯̄C)−1  follows. Similarly, the 

reduced system of normal equations of the model  
E(y − Aa) = Bb + Cc, D(y) = Qyy  is  
C̄T Q−1

yy C̄ĉ(a) = C̄T Q−1
yy (y − Aa), with C̄ = P ⊥

B C, from 
which the result Qĉ(a)ĉ(a) = (C̄T Q−1

yy C̄)−1 follows. For 
the noncentrality parameter we have, with Ā = P ⊥

B A and 
P[A,B] = PĀ + PB ,

Summary and conclusions

In this contribution we introduced a parameter significance 
test for carrier-phase GNSS. Our test differs from existing 
significance tests in that it takes the unknown integerness 
of the ambiguities rigorously into account when testing the 
hypotheses of (2). The test is constructed from PDF level 
sets of the mixed-integer estimator č of the unknown bias-
estimator c ∈ Rq. The test sits in between the ambiguity-
known (AK) significance test and the ambiguity-float (AF) 
significance test, in the sense that it converges to the AK-test 
in case the ambiguity success-rate goes to one, P[ǎ = a] ↑ 1, 
while converging to the performance of the AF-test the more 
dense the integer grid becomes.

The quality of the test is driven by the PDF of č,

fč(x) =
∑

z∈Zn

fĉ(z)(x)P[ǎ = z]� (44)

which on its turn is driven by the PDF of the conditional 
bias-estimator ĉ(z) and the PMF of the integer ambiguity 
estimator ǎ. The PDF is symmetric with respect to c, at 
which point it also reaches its maximum. Its shape is deter-
mined by the peakedness of P[ǎ = z] and the locations and 
peakedness of fĉ(z)(x), cf. Figure 2. Ideally one would like 
fĉ(z)(x) peaked and P[ǎ = a] ≈ 1. It was shown however 
that such ideal case is difficult to realize in general. For the 
ambiguity success-rate under Ha to be as large as under 
H0, the float-estimators ĉ and â need to be uncorrelated, 
thus implying that then no benefits for the bias-estimator 
can be reaped from ambiguity resolution, i.e. ĉ(a) = ĉ. We 
have also shown, with reference to the ’law of communicat-
ing vessels’, that the more the bias-estimator profits from 
ambiguity-constraining, the less likely it is that the precision 
of the ambiguities can stay at the level of H0, cf. Lemma 
2. It is therefore the actual interplay between fĉ(z)(x) and 
P[ǎ = z] in (44) that will ultimately determine the perfor-
mance of the test.

To infer the situation for GNSS, we considered the chal-
lenging single-epoch GNSS model, which was assumed full 
rank, both under H0 and Ha. It was shown, if [G, Cϕ] has 
maximum rank p + q, that the PDF fĉ(z)(x) is phase-driven 
and the PMF P[ǎ = z] code-driven. In this case one can 
expect the PDF fč(x) to be multimodal with several sharp 
modes, the number of which depends on the number of 
nonneglible probability masses P[ǎ = z]. The ionospheric 
delay case was given as one such example, cf. Figure  3. 
When [G, Cϕ] has minimum rank p, then both fĉ(z)(x) and 
P[ǎ = z] will be code-driven. In such case, the PDF fč(x) 
may become unimodal, an example being when one tests for 
code outliers.
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Ā =
[

− 1
1+ϵ PG

P ⊥
G + ϵ

1+ϵ PG

]
L� (48)

and

C̄ =
[

P ⊥
G Cp + 1

1+ϵ PG(Cp − Cϕ)
P ⊥

G Cϕ − ϵ
1+ϵ PG(Cp − Cϕ)

]
� (49)

First we prove the results pertaining to the conditional 
PDF fĉ(z)(x), i.e. the results of (14). As Qĉĉ = [Nĉĉ 
−NĉâN−1

ââ Nâĉ]−1, it follows from (47), (48) and (49), rec-
ognizing that L is invertible, that Qĉĉ = [C̄T

p Q−1
pp C̄p]−1, 

which proves the first equation of (14). Similarly, substitu-
tion of (49) into Qĉ(a)ĉ(a) = N−1

ĉĉ = (C̄Q−1
yy C̄)−1, proves 

the second equation of (14). For the integer-driven shifts, 
∆(z) = E(ĉ(z) − c), we may write

∆(z) = −QĉâQ−1
ââ (a − z)

= +N−1
ĉĉ Nĉâ(a − z)

= +Qĉ(a)ĉ(a)C̄
T Q−1

yy Ā(a − z)
� (50)

which, upon substitution of (48) and (49), proves the third 
equation of (14).

We now prove (15). Its first equation follows from substi-
tuting (48) into Qâ(c)â(c) = N−1

ââ = (ĀT Q−1
yy Ā)−1, thereby 

recognizing that L is invertible. To prove the second equa-
tion, we first write

Qââ = Qâ(c)â(c) + N−1
ââ NâĉQĉĉNĉâN−1

ââ � (51)

which follows from Qâ(c)â(c) = Qââ − QâĉQ−1
ĉĉ Qĉâ and 

QâĉQ−1
ĉĉ = −N−1

ââ Nâĉ. Substitution of (48) and (49) into 
N−1

ââ Nâĉ = (ĀT Q−1
yy Ā)−1ĀT Q−1

yy C̄ proves the second 
equation of (15). � □

Proof of Lemma 2  (ADOP under H0 and Ha): The determi-
nant of a partitioned positive definite matrix can be factored 
in a product of determinants as
∣∣∣∣
[

Qââ Qâĉ
Qĉâ Qĉĉ

]∣∣∣∣ = |Qââ||Qĉ(a)ĉ(a)|

= |Qĉĉ||Qâ(c)â(c)|
� (52)

with the conditional vc-matrices Qĉ(a)ĉ(a) = Qĉĉ 
−QĉâQ−1

ââ Qâĉ   and Qâ(c)â(c) = Qââ −QâĉQ−1
ĉĉ Qĉâ. � □

λĉ = cT Q−1
ĉĉ c

= cT ¯̄CT Q−1
yy

¯̄Cc

= cT CT Q−1
yy P ⊥

[A,B]Cc

= cT CT Q−1
yy [P ⊥

B − PĀ]Cc

= λĉ(a) − ||PĀCc||2Qyy

� (46)

from which the result follows. � □

Proof of Theorem 1  (PDF AR-bias estimator): The float 
ambiguity solution of model E(y) = Aa + Bb + Cc, 
D(y) = Qyy  follows from solving the reduced system of nor-
mal equations ¯̄AT Q−1

yy
¯̄Aâ = ¯̄AT Q−1

yy y, where ¯̄A = P ⊥
[B,C]A. 

It is distributed as â ∼ Nn(a, Qââ = ( ¯̄AT Q−1
yy

¯̄A)−1). For 
any admissible integer estimator ǎ = I(â), I : Rn �→ Zn, 
with pull-in regions Sz = {x ∈ Rn| z = I(x)}, the PMF is 
given as P[ǎ = z] =

´
Sz

fâ(x)dx. The z-constrained bias 
solution ̂c(z) follows from solving the reduced normal equa-
tions C̄T Q−1

yy C̄ĉ(z) = C̄T Q−1
yy (y − Az). It is distributed 

as ĉ(z) ∼ Nq(c + C̄T Q−1
yy A(a − z), Qĉ(a)ĉ(a)), whereby 

we note that â and ĉ(z) are independent. We therefore may 
write for č = ĉ(ǎ),

P[č ∈ Ω] =
∑

z∈Zn

P[ĉ(ǎ) ∈ Ω|ǎ = z]P[ǎ = z]

=
∑

z∈Zn

P[ĉ(z) ∈ Ω|ǎ = z]P[ǎ = z]

=
∑

z∈Zn

P[ĉ(z) ∈ Ω]P[ǎ = z]

As this result holds true for any Ω ⊂ Rn, the result follows. 
� □

Proof of Theorem 2  (GNSS PDF fč(x) characterized): For 
model E(y) = Aa + Bb + Cc, D(y) = Qyy , the b-reduced 
normal matrix, or inverse vc-matrix of (âT , ĉT )T , is given 
as
[

Nââ Nâĉ
Nĉâ Nĉĉ

]
=

[
ĀT Q−1

yy Ā ĀT Q−1
yy C̄

C̄T Q−1
yy Ā C̄T Q−1

yy C̄

]
� (47)

with Ā = P ⊥
B A and C̄ = P ⊥

B C. When applied to 
the single-epoch GNSS model (13), using Qyy = σ2

p 
×blockdiag(Q, ϵQ), we find for Ā and C̄,
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indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.
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from which (38) follows. Substitution of (38) into PARn(c) 
= P[T > k′

α|c] =
´∞

k′
α

fT (x|c)dx  gives the sought for 
expression of the power function. � □

Proof of Corollary 1  (ARn probability bounds): We first 
prove (39). From (38) follows

P[T ∈ Ω] =
∑

z∈Zn

P[χ2(q, λz) ∈ Ω]P[ǎ = z]� (53)

Since all terms in the infinite sum are non-negative, we have

P[T ∈ Ω] ≥ P[χ2(q, 0) ∈ Ω]P[ǎ = a]� (54)

From this inequality follows (39) by setting Ω = (kα, ∞). 
By setting Ω = [0, kα] and c = 0, it also follows from (54) 
that 1 − αn ≥ (1 − α)P[ǎ = a], which gives the upper 
bound of (40). To determine the lower bound, we use 
P[χ2(q, 0) > kα] ≤ P[χ2(q, λ) > kα], from which it follows 
for c = 0 from (53) that P[T > kα] ≥ P[χ2(q, 0) > kα] = α. 
� □
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