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ABSTRACT: Quantification of the poromechanical response of subsurface formations due to human-induced pore pressure fluc-
tuations is critical for the performance and stability assessment of many geo-energy systems. In particular, natural faults in the
subsurface introduce the hazard of induced seismicity. Numerical modeling of fault reactivation is challenging, while the specific
details of induced stresses and fault slip in reservoirs with displaced (i.e. non-zero offset) faults may cause additional challenges
depending on the type of numerical formulation employed. To facilitate the systematic development and testing of numerical tools
for the simulation of induced seismicity in faulted reservoirs we developed a set of semi-analytical test problems of increasing
complexity, based on inclusion theory and Cauchy singular integral equations. With these we investigate the accuracy of two
recently developed Finite Volume (FV) schemes with collocated and staggered arrangements of unknowns. One of them employs
a conformal discrete fault model (DFM) which can guarantee sufficient accuracy at the cost of adaptive mesh refinement but
may suffer from modelling and computational challenges when addressing large-scale realistic geological configurations. The
second one employs an embedded (or non-conformal) discrete fault model (EDFM) which avoids the need for excessive mesh
refinement, but of which the accuracy and the range of applicability are still to be investigated. We found that both numerical
schemes accurately represent the pre-slip Coulomb stresses, but show different degrees of accuracy in representing the resulting
depletion-induced fault slip. The semi-analytical benchmark data are available via DOI 10.4121/22240309.

1 INTRODUCTION

The kernel of this paper is formed by a series of semi-
analytical poro-mechanical test problems of increasing
complexity with the aim to systematically compare the ca-
pacities of two poro-mechanical finite-volume-based sim-
ulation codes: one developed by Novikov et al. (2022b)
which employs a discrete fault model (DFM). It forms part
of a comprehensive porous media simulation package, the
Delft Advanced Reservoir Terra Simulator (DARTS) and
will be referred to with that acronym. The second code,
developed by Shokrollahzadeh Behbahani et al. (2022),
is based on a smoothed version of the embedded discrete
fault model (sEFVM) and will be referred to with that last
acronym. Both codes are being developed as part of the
DeepNL Science4Steer project (NWO, 2017), and Appen-
dices A and B give a brief overview of their characteristic
features. The grids used in this study are presented in Ap-

pendix C.

The comparison is performed against semi-analytical so-
lutions of pre-slip stress fields and the resulting induced
fault slip, developed using inclusion theory and Cauchy
singular integral equations with details reported earlier in
Jansen et al. (2019) and Jansen and Meulenbroek (2022).
Appendix D gives a brief overview of these methods. The
semi-analytical benchmark data used to generate the fig-
ures in this paper are available in the form of an Ex-
cel file uploaded to the 4TU Data Repository with DOI
10.4121/22240309.

We employ the solids mechanics sign convention, i.e. pos-
itive strains and stresses imply extension and tension re-
spectively. Pore pressures are taken as positive. We will
frequently refer to inital and incremental variables. The
former refer to the situation before the start of reservoir

D
ow

nloaded from
 http://onepetro.org/AR

M
AU

SR
M

S/proceedings-pdf/AR
M

A23/AR
M

A23/AR
M

A-2023-0695/4084913/arm
a-2023-0695.pdf/1 by Bibliotheek TU

 D
elft user on 25 February 2025



depletion and are indicated with lower case letters with
superscript 0. The latter refer to the situation during reser-
voir depletion and are indicated with plain lower case let-
ters. The sums of initial and incremental variables will be
referred to as combined variables and they are indicated
with capitals. In particular, we have

Σ = 𝜎0 +𝜎, (1)

𝑃 = 𝑝0 + 𝑝, (2)

to indicate combined stresses and pressures respectively.
As regards the stresses, we will apply the common nota-
tion for total stresses 𝜎 and effective stresses 𝜎′ which are
related to each other according to

𝜎′ = 𝜎 +𝛼𝑝, (3)

𝜎′0 = 𝜎0 +𝛼𝑝0, (4)

Σ′ = Σ+𝛼𝑃, (5)

where 𝛼 is the Biot coefficient (Wang, 2000).

2 DEPLETION IN A RESERVOIR WITHOUT
FAULTS

2.1. Model
Consider a schematic representation of a simulation do-
main to model a homogeneous horizontal reservoir with
part of the overburden and underburden and without
faults; see Fig. 1. The simulation domain forms a square
with the vertically centered reservoir covering the entire
width and with the origin of the coordinate system in the
middle. As a first step, we consider quasi-steady-state
poro-mechanics in a domain with uniform elastic prop-
erties. In that case, there is no need to solve for the pres-
sure field which, instead, can be specified in each cell a
priori. Moreover, it is assumed that no incremental pres-
sure change will occur in the overburden and underburden.
The incremental reservoir pressure, as occurs during de-
pletion, can therefore be simulated by specifying the pres-
sure in the reservoir cells while keeping the pressures in
the overburden and underburden equal to their initial val-
ues. (Alternatively, these burdens may be represented as
consisting of a purely elastic solid without porosity.)

Fig. 1 indicates the horizontal and vertical load configura-
tion and the mechanical boundary conditions to simulate
the initial stress field. The dimensions of the simulation
domain and the reservoir are indicated in Table 1, with
𝑎 = 𝑏 = 112.5 m, together with several other parameters
that will be of relevance for later steps of the code com-
parison exercise. Uniform vertical distributed loads, with
different magnitudes and opposite directions, are applied
from the top and bottom boundaries, while non-uniform

Fig. 1: Simulation set-up to represent an infinitely wide reser-
voir without faults (not to scale). Load configuration and me-
chanical boundary conditions to simulate initial stresses.

horizontal distributed loads, with equal magnitudes but
opposite directions, are applied from both sides, thus en-
suring a stress field that is symmetric around the 𝑦 axis.
To constrain rigid body translations and rotation, horizon-
tal displacement is constrained at a single point at the bot-
tom center while vertical displacements are constrained in
single points at the left and right boundaries. In all other
points at the boundaries, the shear stresses are set equal
to zero, as indicated by the ‘rollers’ at all sides. This
configuration, with a minimum number of constraints at
the boundaries, ensures that during the initial loading no
spurious shear stresses are developed because of restricted
displacements. Further details of the initial stress field are
given in the next section. After simulation of these initial
stresses, all vertical displacements are shifted such that the
reference (zero vertical displacement) is located at the bot-
tom of the simulation domain.

To enable the subsequent simulation of depletion, the ver-
tical boundary conditions are changed to roller-type ones
with fixed horizontal displacements, and the bottom one to
a roller-type condition with fixed vertical displacements;
see Fig. 2. The three constraints at the bottom and the
sides are removed. Together with the use of plane-strain
conditions in the simulation codes, which can be inter-
preted as fixing the horizontal displacements in 𝑧 direc-
tion, and given the horizontally constant geometry of the
reservoir layer, the simulation domain now approximates
an infinite horizontal reservoir in 𝑥 and 𝑧 directions.
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Table 1: Reservoir properties, fault geometry and simulation domain.

Symbol Property Value SI units

𝑎 See Figs. 112.5 or 75 m
𝑏 " 112.5 or 150 m
𝐷0 Depth at reservoir center (𝑦 = 0) 3500 m
𝑔 Acceleration of gravity 9.81 m/s2

𝐺 Shear modulus 6500 MPa
𝐻 Height of simulation domain 4500 m
𝐾0 Ratio of initial effective horizontal to vertical stresses 0.5 −
𝑝 Incremental reservoir pressure −25 MPa
𝑝0

0 Initial reservoir pressure at reservoir center 35 MPa
𝑊 Width of simulation domain 4500 m
𝛼 Biot coefficient 0.9 −
𝛽 Effective stress coefficient for fault friction 0.9 −
𝜃 Dip angle 90 or 70 deg.
𝜅 Cohesion 0 MPa
𝜇 friction coefficient 0.52 −
𝜈 Poisson’s coefficient 0.15 −
𝜌 𝑓𝑙 Fluid density 1020 kg/m3

𝜌𝑠 Solid density 2650 kg/m3

𝜙 Porosity 0.15 −
Note: the initial vertical stress, initial pressure and

initial effective normal stress have been computed as:
𝜎0
𝑦𝑦 (𝑦) = [(1−𝜙)𝜌𝑠 +𝜙𝜌 𝑓𝑙]𝑔(𝑦−𝐷0), where 𝜎0

𝑣 < 0,
𝑝0 (𝑦) = 𝑝0

0 − 𝜌 𝑓𝑙 𝑔 𝑦,
𝜎′0
⊥ (𝑦) = 𝜎0

⊥ (𝑦) +𝛼𝑝0 (𝑦).
(Valid for reservoir, overburden and underburden.)

Fig. 2: Identical to Fig. 1 but now with load configuration
and mechanical boundary conditions to simulate incremental
stresses. The figure also shows a line through the center at an
angle of 𝜃 = 70 degrees with respect to horizontal, with an asso-
ciated rotated 𝑥− �̂� coordinate system.

2.2. Initial stresses

With the center of the reservoir (and therefore the center of
the simulation domain) at a depth of 3500 m and a height
of the simulation domain of 4500 m it follows that the
top of the domain is at 1250 m below surface and 2250
m above the center. The required vertical distributed load
𝑓𝑣,top to simulate the combined rock and fluid weight of
the overburden at that depth follows from the text at the
bottom of Table 1 as

𝑓𝑣,top = 𝜎0
𝑦𝑦 (2250)

= [(1−𝜙)𝜌𝑠 +𝜙𝜌 𝑓𝑙]𝑔(𝑦−𝐷0)
= −29.50𝑒6 Pa, (6)

where 𝜙 is porosity, 𝜌𝑠 is solid density, 𝜌 𝑓𝑙 is fluid density,
𝑔 is acceleration of gravity, and 𝐷0 is depth below surface
at the vertical center of the reservoir. Because compressive
normal stresses are negative, 𝑓𝑣,top is also negative valued
which implies that it acts in the negative 𝑦 direction (i.e.
downward, as indicated in Fig. 1.) The distributed load at
the bottom of the domain is obtained in the same manner
as

𝑓𝑣,bot = −𝜎0
𝑦𝑦 (−2250) = 135.7𝑒6 Pa, (7)
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which, in line with its positive value, acts upward. The
required horizontal distributed load 𝑓ℎ can be obtained as

𝑓ℎ (𝑦) = −𝜎0
𝑥𝑥 (𝑦)

= −
{
𝐾0 [𝜎0

𝑦𝑦 (𝑦) +𝛼𝑝0(𝑦)] −𝛼𝑝0(𝑦)
}
, (8)

where 𝐾0 is the ratio of initial effective horizontal to ver-
tical stresses. Because the initial fluid pressures at the top
and bottom of the simulation domain are given by

𝑝0(2250) = 𝑝0
0 − 𝜌 𝑓𝑙 𝑔 𝑦 = 12.49𝑒6 Pa, (9)

𝑝0(−2250) = 57.51𝑒6 Pa, (10)

where 𝑝0
0 is the initial reservoir pressure at depth 𝐷0, the

values of 𝑓ℎ at the top and bottom of the domain follow as

𝑓ℎ (2250) = 20.37𝑒6 Pa, (11)

𝑓ℎ (−2250) = 93.73𝑒6 Pa, (12)

where the positive values of 𝑓ℎ imply that they act in the
positive 𝑥 direction, i.e. to the right, as indicated at the left
boundary in Fig. 1. A distributed load − 𝑓ℎ, with identical
magnitude but acting in the negative 𝑥 direction, is applied
at the right boundary. The corresponding initial stress and
pressure fields are given by

𝜎0
𝑥𝑥 (𝑦) = −57.05𝑒6+16.30𝑒3× 𝑦 Pa, (13)

𝜎0
𝑦𝑦 (𝑦) = −82.60𝑒6+23.60𝑒3× 𝑦 Pa, (14)

𝑝0(𝑦) = 35.00𝑒6−10.06𝑒3× 𝑦 Pa. (15)

Note that the initial shear stresses 𝜎0
𝑥𝑦 are zero by design.

2.3. Incremental stresses
After computation of the initial stresses, removal of the
three constrained displacements, and fixing of horizontal
displacements at the vertical boundaries and vertical dis-
placements at the bottom, depletion can be simulated by
adding a (negative) incremental pressure 𝑝 to the cells in
the reservoir. As indicated in Table 1, the standard deple-
tion in our series of examples is −25𝑒6 Pa.

2.4. Results
The application of distributed loads 𝑓𝑣,top, 𝑓𝑣,bot and ± 𝑓ℎ
to the boundaries, in order to compute the initial stress
field, leads to initial vertical and horizontal displacements
𝑢0
𝑦 (𝑥, 𝑦) and 𝑢0

𝑥 (𝑥, 𝑦). We can use the constitutive equa-
tions for poro-elastic plane strain to approximately com-
pute 𝑢0

𝑦 (𝑦), i.e. independent of 𝑥, at the top boundary
(Wang, 2000, Eq. 7.3). Assuming that the reference level
of zero vertical displacements has been relocated to the
bottom of the simulation domain (at 𝑦 = −2250 m) this

results in

𝑢0
𝑦 (2250) =

∫ 𝐻
2

− 𝐻
2

𝜖0
𝑦𝑦 𝑑𝑦

=
1
𝐸

∫ 𝐻
2

− 𝐻
2

(1− 𝜈2)𝜎0
𝑦𝑦 (𝑦) − 𝜈(1+ 𝜈)𝜎0

𝑥𝑥 (𝑦)

+ 𝛼(1+ 𝜈) (1−2𝜈)𝑝0(𝑦) 𝑑𝑦
= −13.66 m, (16)

where 𝐻 is the height of the simulation domain
and 𝐸 is Young’s modulus which is computed from
the shear modulus 𝐺 and Poisson’s ratio 𝜈 as
𝐸 = 2𝐺 (1+ 𝜈) = 15.0𝑒9 Pa. The approximate initial hori-
zontal displacements at the top left and bottom left of the
simulation domain follow as (Wang, 2000, Eq. 7.2)

𝑢0
𝑥 (−2250,2250) = −

∫ 0

−𝑊
2

𝜖0
𝑥𝑥 (2250) 𝑑𝑥

= −𝑊
2
𝜖0
𝑥𝑥 (2250) = 0.87 m, (17)

𝑢0
𝑥 (−2250,−2250) = 3.98 m, (18)

where we used

𝜖0
𝑥𝑥 (𝑦) = −𝑊

2𝐸
[(1− 𝜈2)𝜎0

𝑥𝑥 (𝑦) − 𝜈(1+ 𝜈)𝜎0
𝑦𝑦 (𝑦)

+ 𝛼(1+ 𝜈) (1−2𝜈)𝑝0(𝑦)], (19)

and where𝑊 is the width of the simulation domain. Iden-
tical displacements, but in opposite direction occur at the
right boundary. The true displacement field will show
small deviations from these approximate values because
of contraction effects due to non-isotropic compression of
the simulation domain as a result of the nonuniform ini-
tial distributed loads. However, the initial displacement
field is not relevant for the subsequent steps in the com-
parison, as opposed to the initial stress field which is im-
portant because it determines the initial Coulomb stresses
at the faults which will be considered later on.

As a reference for a future inclined fault configuration,
consider a line through the center at an angle 𝜃 = 70 deg.
with respect to horizontal; see Fig. 2. The normal and
shear stresses along this line can be computed as (Jansen
and Meulenbroek, 2022, Eqs. 2 and 3)

𝜎0
⊥(𝑦) = 𝜎0

�̂� �̂� (𝑦)
= 𝜎0

𝑥𝑥 (𝑦) sin2 𝜃 +𝜎0
𝑦𝑦 (𝑦) cos2 𝜃

= −60.04𝑒6+17.15𝑒3× 𝑦 Pa, (20)

𝜎0
∥ (𝑦) = −𝜎0

�̂� �̂� (𝑦)
= (𝜎0

𝑥𝑥 (𝑦) −𝜎0
𝑦𝑦 (𝑦)) sin𝜃 cos𝜃

= 8.21𝑒6−2.35𝑒3× 𝑦 Pa, (21)
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Fig. 3: Initial normal stresses (left) and initial shear stresses
(right) along a line through the center of the reservoir at an angle
of 70 deg. with horizontal.

where 𝑥 and �̂� are co-rotated coordinates. The sign con-
vention of the shear stresses 𝜎∥ has been chosen such that
positive shear stresses indicate a normal faulting tendency,
i.e. tendency for the right block to shift upward with re-
spect to the left block.

Fig. 3 displays the initial normal stresses and shear
stresses along the inclined line for the two simulation
codes and the analytical solution. Both codes produce
a fully satisfactory match although the DARTS results
for the shear stresses display small irregularities resulting
from the use of an unstructured grid.

After changing the boundary conditions to fix the initial
stress field, reservoir depletion will result in a uniform ver-
tical compression. The combined vertical total stress Σ𝑦𝑦

will remain equal to the initial vertical total stress 𝜎0
𝑦𝑦 be-

cause the weight of the overburden remains the same (no
arching occurs). The incremental vertical total stress 𝜎𝑦𝑦

will therefore be zero and the incremental pressure will
result in an incremental effective vertical stress with mag-
nitude 𝜎′

𝑦𝑦 = 𝛼𝑝. The uniaxial vertical stiffness is given by
the uniaxial compaction modulus (Wang, 2000, Eq. 6.5)

𝐾𝑣 = 2𝐺
1− 𝜈

1−2𝜈
= 15.79𝑒9 Pa, (22)

such that with a depletion of −25𝑒6 Pa we expect a reser-
voir compaction, i.e. a negative change Δℎ of the reservoir
height ℎ (where ℎ = 𝑎 + 𝑏; see Fig. 1), according to

Δℎ = ℎ𝜖𝑦𝑦 = ℎ
𝜎′
𝑦𝑦

𝐾𝑣

= ℎ
𝛼𝑝

𝐾𝑣

= −0.32 m. (23)

The incremental horizontal strain 𝜖𝑥𝑥 remains equal to

-70 -60 -50 -40
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-50
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100
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Fig. 4: Combined normal stresses (left) and combined shear
stresses (right) along a line through the center of the reservoir
at an angle of 70 deg. with horizontal.

zero, because of the infinite horizontal extent of the reser-
voir, while the incremental horizontal effective stress is
equal to (Wang, 2000, Eq. 6.4)

𝜎′
𝑥𝑥 =

𝜈

1− 𝜈𝜎
′
𝑦𝑦 =

𝜈

1− 𝜈𝛼𝑝 = −3.97𝑒6 Pa, (24)

such that the incremental total horizontal stress becomes

𝜎𝑥𝑥 = 𝜎
′
𝑥𝑥 −𝛼𝑝 = 18.53𝑒6 Pa. (25)

For this simple case of a reservoir without faults no incre-
mental shear stresses 𝜎𝑥𝑦 develop, and because there were
no initial shear stresses 𝜎0

𝑥𝑦 it follows that also the com-
bined shear stresses Σ𝑥𝑦 vanish. However, for the line at
an angle 𝜃 = 70 deg. that was considered earlier in Fig.
3, the incremental horizontal stresses 𝜎𝑥𝑥 have an effect
on both the incremental normal and shear stresses 𝜎⊥ and
𝜎∥ , and therefore also on the combined normal and shear
stresses Σ⊥ and Σ∥ .

Fig. 4 displays the near-reservoir details of Σ⊥ and Σ∥
along the inclined line for the two simulation codes and
the analytical solution. Both codes produce a fully satis-
factory match. We note that DARTS demonstrates a some-
what higher relative accuracy for normal stresses than for
shear, especially in Fig. 3, a feature that is explained by
the higher magnitude of the normal stress.

3 DEPLETION IN A RESERVOIR WITH A VERTI-
CAL FAULT WITH OFFSET AND NO FRICTION

Consider the same reservoir as before while introducing
a displaced vertical fault at the center of the reservoir by
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Fig. 5: Simulation set-up for a reservoir with a vertical dis-
placed fault (not to scale).

choosing 𝑎 = 75m and 𝑏 = 150m such that the reservoir
has the same height ℎ = 𝑎 + 𝑏 = 225m as before but now
contains a fault with throw 𝑡 𝑓 = 𝑏− 𝑎 = 75m; see Fig. 5.
As a first step, we don’t allow for fault slip in the simula-
tion and perform the same steps as in the previous example
to generate the initial and incremental stress fields.

The combined pre-slip Coulomb stress Σ𝐶 , i.e. the pre-
slip Coulomb stress resulting from the sum of initial and
incremental stresses is defined for an arbitrarily oriented
fault with friction coefficient 𝜇 as

Σ𝐶 = |Σ∥ | + 𝜇Σ⊥. (26)

For the particular case of a positive shear stress in a ver-
tical fault without friction, i.e. with 𝜃 = 90 degrees and
𝜇 = 0, and an incremental pressure of 𝑝 = −25 MPa this
reduces to (Jansen and Meulenbroek, 2022, Eqs. 8 and 9)

Σ𝐶 = −𝜎�̂� �̂� = 𝜎𝑥𝑦 =
𝐶

2
ln

(𝑦− 𝑎)2(𝑦 + 𝑎)2

(𝑦− 𝑏)2(𝑦 + 𝑏)2 , (27)

where 𝐶 is given by

𝐶 =
(1−2𝜈)𝛼𝑝
2𝜋(1− 𝜈) = −2.95𝑒6Pa. (28)

Next, we allow for slip in the fault over the entire simu-
lation domain, i.e. from -2250 to 2250 m. The pressure
in the fault is equal to the initial pressure 𝑝0(𝑦) except for
the reservoir section −150m ≥ 𝑦 ≥ 150m where it is equal
to the combined pressure 𝑃 = 𝑝0(𝑦) −25𝑒6 Pa. The ana-
lytical solution for the fault slip is given by (Jansen and

-20 -10 0 10 20
-250

-200

-150

-100

-50

0

50

100

150

200

250

0 0.05 0.1 0.15 0.2
-250

-200

-150

-100

-50

0

50

100

150

200

250

Analytical
DARTS
sEFVM

Fig. 6: Left: pre-slip Coulomb stresses Σ𝐶 in a frictionless ver-
tical fault with offset (which, for this particular case, just equals
the incremental shear stress 𝜎∥ ). Right: the resulting slip 𝛿.

Meulenbroek, 2022, Eqs. (25) and (35))

𝛿(𝑦) = 𝐶
𝐴
×


0 if 𝑦 ≤ −𝑏,

−(𝑦 + 𝑏) if −𝑏 < 𝑦 ≤ −𝑎,
(𝑎− 𝑏) if −𝑎 < 𝑦 < 𝑎,

(𝑦− 𝑏) if 𝑎 ≤ 𝑦 < 𝑏,

0 if 𝑏 ≤ 𝑦 ,

(29)

where

𝐴 =
𝐺

2𝜋(1− 𝜈) = 1.2171𝑒09Pa, (30)

such that we obtain

𝛿(𝑦) = −0.0024

×


0 if 𝑦 ≤ −150,

−(𝑦 +150) if −150 < 𝑦 ≤ −75,
(75−150) if −75 < 𝑦 < 75,
(𝑦−150) if 75 ≤ 𝑦 < 150,

0 if 150 ≤ 𝑦 ,

(31)

with all distances expressed in meters. Fig. 6 (right) dis-
plays this slip distribution over the height of the reservoir,
and Fig. 6 (left) displays the pre-slip Coulomb stress.

The correspondence between the DARTS results and the
semi-analytical results is excellent. The sEFVM results
are slightly in error. This is because sEFVM calculates
the slip by enriching the displacement field with one ad-
ditional degree of freedom per matrix grid node. This is
as opposed to other embedded methods such as XFEM,
where in 2D each node that is enriched with the jump func-
tion is given 2 degrees of freedom. For fault tip enrich-
ment, there are 4 extra degrees of freedom. This means
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Fig. 7: Simulation set-up for a reservoir with an inclined dis-
placed fault (not to scale).

sEFVM is much faster in terms of CPU time, but the pre-
dictions are expected to be less accurate Li et al. (2020);
Xu et al. (2021).

4 DEPLETION IN A RESERVOIR WITH AN IN-
CLINED FAULT WITH OFFSET AND CONSTANT
FRICTION

Consider the same reservoir as in the previous step but
now with a normal fault at 70 deg. with respect to hori-
zontal; see Fig. 7. Fig. 8 (left) displays the pre-slip shear
stresses Σ∥ and the slip threshold Σ𝑠𝑙 = −𝜇Σ′

⊥ for an in-
cremental pressure 𝑝 = −25 MPa, and Fig. 8 (right) shows
the corresponding pre-slip Coulomb stresses.

Again, the DARTS results closely resemble the semi-
analytical ones, while the sEFVM results display small de-
viations, especially near the stress peaks at 𝑦 = ±75 m and
𝑦 = ±150 m. As shown in Fig. 13, sEFVM uses a Carte-
sian grid with embedded faults to model the system. As
a consequence, oscillations in the stress profiles can arise
when the fault is misaligned with the grid. A smoothing
step in sEFVM addresses these oscillations for improved
estimation of slip. However, this smoothing also flattens
the kinks at 𝑦 = ±75 m and 𝑦 = ±150 m.

Fig. 9 displays the post-slip Coulomb stresses (left) and
fault slip (right) for 𝑝 = −25 MPa. At this depletion level
the slip occurs in the form of two separate slip patches. For
increasing depletion, the patches will merge as shown in
the same figure with results for 𝑝 = −27 MPa. Somewhat
surprisingly the DARTS results now show a discrepancy
with the semi-analytical ones, especially for the merged
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Fig. 8: Left: pre-slip shear stresses Σ∥ and slip threshold Σ𝑠𝑙

in an inclined fault with offset and constant friction. Right: the
corresponding pre-slip Coulomb stresses Σ𝐶 . Simulation do-
main width𝑊 = 4500 m.

slip patch. Further comparisons revealed that this discrep-
ancy disappears if the width 𝑊 of the simulation domain
is increased. Fig. 10 displays the same results but now
for a simulation with 𝑊 = 18000 m, i.e. four times as
wide as the original simulation domain. Apparently, the
strongly nonlinear mechanics involved in fault slip leads
to strong sensitivities of the slip patch size to the bound-
ary conditions at the edges of the reservoir. (This finding
suggests that in reality there will also be a large sensitivity
to the boundary conditions of the reservoir and probably
also a significant interaction effect of neighboring faults.)
Fig. 11 displays the reservoir and the simulation domain,
with increased width, to scale.

Fig. 12 displays the location of the four slip patch bound-
aries (two for each of the two patches) as a function of in-
cremental pressure. Merging occurs when the pressure has
dropped to 𝑝 = −26.9 MPa and the DARTS results (com-
puted with𝑊 = 18000 m) match the semi-analytical ones.
The sFEVM results for Figs. 9 to 12 did not fully con-
verge for these test cases and displayed some unexpected
features which require further research.
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Fig. 9: Left: post-slip Coulomb stresses Σ̆𝐶 . Right: the corre-
sponding slip 𝛿. Simulation domain width𝑊 = 4500 m.
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Fig. 10: Left: post-slip Coulomb stresses Σ̆𝐶 . Right: the corre-
sponding slip 𝛿. Simulation domain width𝑊 = 18000 m.

Fig. 11: Simulation set-up, with increased width𝑊 = 18000 m,
to scale.
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Fig. 12: Slip patch boundaries as a function of depletion pres-
sure 𝑝. The vertical dotted line indicates the merging pressure.
Simulation domain width𝑊 = 18000 m.

APPENDIX A. COLLOCATED FVM WITH DFM

The system of single-phase fluid mass balance and static
momentum balance equations for porous media can be
written as

−∇ ·Σ = (𝜙𝜌 𝑓 + (1−𝜙)𝜌𝑠)𝑔∇𝑦, (32)

𝜕

𝜕𝑡

(
𝜙𝜌 𝑓

)
−∇ ·

(
𝜌 𝑓𝐾

𝜇 𝑓

(
∇𝑝− 𝜌 𝑓 𝑔∇𝑦

) )
= 𝑟, (33)

subjected to the constitutive relations (Coussy, 2004)

Σ = 𝑪 : ∇𝑠 (𝑢−𝑢0) − 𝑝𝐵, (34)

𝜙 = 𝜙0 +
tr(𝐵)/3−𝜙0

𝐾𝑟

(𝑝− 𝑝0) +𝐵 : ∇𝑠𝑢, (35)

where Σ is a rank-two total stress tensor, 𝜙 is porosity,
𝜌 𝑓 𝑙, 𝜌𝑠 are fluid and matrix densities, 𝑝 is pore pressure,
𝑔 is accelleration of gravity, 𝑦 is depth, 𝐾 is a rank-two
permeability tensor, 𝜇 𝑓 is fluid viscosity, 𝑟 is a source of
mass, 𝑪 is a rank-four drained stiffness tensor for the rock
matrix, ∇𝑠 is the symmetric gradient operator, 𝑢 is a vec-
tor of displacements, 𝐵 is a rank-two tensor of Biot coeffi-
cients, subscript ”0“ denotes the initial value of a variable,
tr(𝐵) is the trace of 𝐵, and 𝐾𝑟 is the bulk modulus of the
solid phase. Eqs. (32), (33) are subject to corresponding
boundary and initial conditions.

At the fault interfaces, we consider a gap vector 𝑔 that is
equal to the jump of displacements over the contact 𝑔 =

𝑢+ − 𝑢−, where the + asd − signs denote a particular side
of the fault. The contact conditions following Simo and
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Laursen (1992) read

𝑔𝑁 ≤ 0, (36)

𝑓 ′𝑇 − 𝜇 𝑓 ′𝑁
¤𝑔𝑇
| ¤𝑔𝑇 |

= 0, Φ = 0, | ¤𝑔𝑇 | ≠ 0, (slip), (37)

¤𝑔𝑇 = 0, Φ < 0, (stick), (38)

where 𝑓 = −Σ · 𝑛 is the total traction vector, 𝑓 ′ = −(Σ +
𝑝𝐵) · 𝑛 is the effective (Biot) traction vector, 𝑓 ′

𝑁
= 𝑛𝑇 𝑓 ′

and 𝑓 ′
𝑇
= (𝐼 − 𝑛𝑛𝑇 ) 𝑓 ′ are the scalar normal and vectorial

tangential projections of 𝑓 ′ on the fault; 𝑔𝑁 and 𝑔𝑇 are the
equivalent normal and tangential projections of 𝑔 on the
fault; ¤𝑔 stands for the time derivative of the gap vector and
Φ=

�� 𝑓 ′
𝑇

��−𝜇 𝑓 ′
𝑁

is the Coulomb friction function with 𝜇 the
friction coefficient. Eq. (36) represents a non-penetration
condition, Eq. (37) governs relaxation of tangential trac-
tion once slip occurs, and Eq. (38) sets the change of the
tangential gap (i.e. the slip) to zero if the slip criterion is
not exceeded.

In the case of a collocated arrangement of unknown dis-
placements and pore pressure, we can formulate discrete
balance equations in a unified way. We use the cell-
centered Finite Volume Method (FVM) to discretize Eqs.
(32) and (33) (Novikov et al., 2022b,a). They can be writ-
ten in cell 𝑖 in the following vector form

𝑉𝑖

(
Δ𝑡𝜌𝑛+1

𝑡 ,𝑖
𝑔∇𝑦(

𝜙𝜌 𝑓

) ��𝑖,𝑛+1
𝑖,𝑛

+Δ𝑡𝑟𝑛+1
𝑖

)
+

+
∑︁
𝑗∈𝜕𝑉𝑖

𝛿𝑖 𝑗

(
Δ𝑡 𝑓 𝑛+1

𝑖 𝑗

𝜌 𝑓 𝑖𝑞 𝑓 ,𝑖 𝑗

��𝑛+1
𝑛

+Δ𝑡 (𝜌 𝑓 𝑞 𝑓 /𝜇 𝑓 )𝑛+1
𝑖 𝑗

)
= 0, (39)

where subscript 𝑗 denotes the neighbours of cell 𝑖, Δ𝑡 is the
time step size, 𝑉𝑖 is the volume of cell 𝑖, 𝛿𝑖 𝑗 denotes the
area of the connection between cells 𝑖 and 𝑗 , superscripts
𝑛, and 𝑛+1 denote the variables taken from the current and
next time step, respectively, while 𝜙 and 𝑞𝑖 𝑗 are defined as

𝜙 = 𝜙0 +
tr(𝐵)/3−𝜙0

𝐾𝑠

(𝑝− 𝑝0), (40)

𝑞 𝑓 ,𝑖 𝑗 = (𝑢−𝑢0) |𝑖 𝑗𝑖 · (𝐵𝑛)𝑖 𝑗 , (41)

where last term is approximated using Gauss’ formula
as a sum of fluxes 𝑞 𝑓 ,𝑖 𝑗 over cell interfaces. The term(
𝜌 𝑓 /𝜇 𝑓

)
𝑖 𝑗

is calculated using an upwind approximation.

We use a gradient-based coupled multi-point stress and
multi-point flux approximation for 𝑓𝑖 𝑗 , 𝑞 𝑓 ,𝑖 𝑗 and 𝑞 𝑓 ,𝑖 𝑗

(Novikov et al., 2022b,a).

To satisfy Eqs. (36)-(38), we use a penalty regularization
(Simo and Laursen, 1992; Yastrebov, 2013) which leads

to a return-mapping algorithm according to

𝑓
′𝑛+1
𝑁 − 𝜀𝑁 ⟨𝑔𝑛+1

𝑁 ⟩ = 0, (42)

�̃� ′𝑇 = 𝑓
′𝑛
𝑇 + 𝜀𝑇 (𝑔𝑛+1

𝑇 −𝑔𝑛𝑇 ), Φ̃ =

��� �̃� ′𝑇 ���− 𝜇𝑛+1 𝑓
′𝑛+1
𝑁 , (43)

𝑓
′𝑛+1
𝑇 − �̃� ′𝑇 + ⟨Φ̃⟩

�̃� ′
𝑇��� �̃� ′𝑇 ��� = 0, (44)

where �̃� ′
𝑇

denotes a trial traction, which represents the pe-
nalized effective tangential traction (Simo and Laursen,
1992). Penalty parameters 𝜀𝑁 , 𝜀𝑇 ≫ 1 are calculated as
𝜀𝑁 = 𝑓𝑠𝑐𝑎𝑙𝑒𝐸𝛿/𝑉,𝜀𝑇 = 𝑓𝑠𝑐𝑎𝑙𝑒𝐺𝛿/𝑉 where 𝑓𝑠𝑐𝑎𝑙𝑒 is an em-
pirical scaling factor, 𝛿 denotes the area of contact inter-
face, 𝑉 stands for the mean volume of two neighbouring
matrix cells, while 𝐸 and 𝐺 denote the mean Young’s and
shear moduli of two neighbouring matrix cells (Cardiff
et al., 2017). Moreover, the Coulomb friction function Φ

used as a slipping criterion is evaluated at the trial state
Φ̃ = Φ( �̃� ′) that accounts for the change of slip 𝑔𝑇 over the
time step. Macaulay brackets are used to indicate that ⟨𝑎⟩
is equal to 𝑎 if 𝑎 ≥ 0 and otherwise equal to zero. Thus, in
the slip state Φ̃ = 0 Eq. (44) requires contact to remain at
the slipping surface defined by Φ = 0 where the direction
of forces is defined by the trial traction. Contact reaches
the stick state once the slip increment in Eq. (43) becomes
negligible compared to the previous traction ( ¤𝑔𝑇 = 0). In
this case, Eq. (44) claims the traction to be equal to the
trial one. In our experience, the return-mapping algorithm
described in Eqs. (43)-(44) does not exhibit significant
convergence problems, except for cases with severe inf-
sup instability (pressure oscillations) and when the slip di-
rection reverses. We may also expect convergence issues
in the presence of intersecting faults or in the case of a
hydraulically active fault when its volume and transmissi-
bilities depend on the aperture 𝑔𝑁 .

Note that we treat displacements over the lower-
dimensional fault interface as discontinuous whereas pres-
sure remains continuous there according to the assump-
tions of the equidimensional DFM approach. Sometimes
this combination is called the mixed-dimensional fault
model (Boon and Nordbotten, 2022).

APPENDIX B. SMOOTHED ENHANCED FINITE
VOLUME METHOD

The smooth enhanced finite volume method (sEFVM)
(Shokrollahzadeh Behbahani et al., 2022) uses the finite
volume method (FVM) for both mechanics and flow. The
mass conservation equations for a single phase, slightly-
compressible flow inside a poroelastic domain with con-
ductive faults using the embedded discrete fracture model-
ing (EDFM) method read (Hajibeygi et al., 2011; Li et al.,
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2008),

𝛼
𝜕∇ · ®𝑢
𝜕𝑡

+ 1
𝑀

𝜕𝑝𝑚

𝜕𝑡
+∇ ·

(
−
𝐾 𝑓

𝜇 𝑓

· ∇𝑝𝑚
)
+Ψ𝑚→ 𝑓 =𝑄𝑚,

(45)
and

𝜕𝐸 𝑓

𝜕𝑡
+∇ ·

(
−
𝑎𝐾 𝑓

𝜇 𝑓

· ∇𝑝 𝑓

)
+Ψ 𝑓→𝑚 =𝑄 𝑓 , (46)

where 𝑝 is pressure, 𝑡 is time, 𝑀 is the Biot modulus, Ψ is
the net flux between the fault and matrix and 𝑎 is aperture
of the fault. 𝐸 𝑓 is the fault accumulation which is neg-
ligible if fault porosity is constant (McClure and Horne,
2011). Subscripts 𝑓 and 𝑚 indicate the fault and matrix,
respectively.

The linear momentum balance for a faulted poroelastic
medium can be expressed as

∇ · (�̃�−𝛼𝑝�̃�) + ®𝑓 = 0, (47)

where �̃� is the effective stress, ®𝑓 is the body force per
unit volume and �̃� is the identity matrix (Wang, 2000,
Eq. 4.10). Assuming linear elastic deformation, the stress
reads

�̃� = 𝐶 : ∇𝑠 ®𝑢, (48)

where 𝐶 is the elasticity tensor (Wang, 2000, Eq. 2.42).

The sEFVM determines a nonzero value for the fault slip
whenever the Coulomb stresses on a fault node become
positive. Further details on the governing equations and
initial and boundary conditions are described in Shokrol-
lahzadeh Behbahani et al. (2022).

The computational domain of the sEFVM is shown in
Fig. 13. It shows the control volumes for mechanics (Ω𝑢)
and flow (Ω𝑝) for the matrix. Faults are represented in an
embedded manner with unknowns (slip and fault pressure)
placed at the location of the fault. In the sEFVM, a jump
is appended to the estimation of the displacement field in-
side a matrix grid (Simo et al., 1993) . The displacement
reads

®𝑢 ≈
4∑︁
𝑖=1

𝑁𝑖 ®𝑢𝑖 +
𝑛𝑠∑︁
𝑖=1
𝑠𝑖𝑊𝑖®𝑡𝑖 , (49)

where 𝑁 are basis functions that interpolate displacement
within the cartesian control volume of Fig. 13. For cells
intersected by faults, the latter term in Eq. (49) is included.
It contains the directional component of the unit tangent
vector to the fault (®𝑡). 𝑊 is defined as

𝑊 (𝑥, 𝑦) =
4∑︁
𝑖=1

𝑁𝑖 (𝑥, 𝑦)
[
𝐻

(
𝑓 (𝑥, 𝑦)

)
−𝐻

(
𝑓 (𝑥𝑖 , 𝑦𝑖)

)]
,

(50)
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Fig. 13: Representation of the control volumes for the sEFMV
method

Table 2: The cell size of adaptive grids shown in Fig. 14 used
in calculations.

Case Boundary cell size, m Refined cell size, m

without fault 50 20
with fault 100 2

where 𝑓 (𝑥, 𝑦) is the signed distance to the fault and 𝐻 is a
modified Heaviside function defined as

𝐻 (𝜁) =
{
−1 𝜁 ≤ 0
+1 𝜁 > 0 . (51)

The sFVM method numerically solves the momentum bal-
ance for the matrix, the friction law for the faults, and the
mass balance equations for matrix and faults in a fully-
implicit fully-coupled manner.

APPENDIX C. GRIDS USED IN CALCULATIONS

DFM implies a computational grid to be conformal with
faults. We use unstructured triangular grids shown in Fig.
14. Grid refinement helps to resolve discontinuities along
the fault. characteristic grid sizes used in calculations are
listed in Table. 2. sEFVM uses a Cartesian grid for the
matrix and the fault is embedded over it as shown in Fig.
15. All sEFVM runs were performed for cell size of 8.3m

APPENDIX D. SEMI-ANALYTICAL TECHNIQUES

Details of the semi-analytical techniques used to generate
the results in this paper have been reported in Jansen et al.
(2019) and Jansen and Meulenbroek (2022). Here we give
a brief overview of these methods

D.1 Inclusion Theory
Linear elastic displacements, strains and stresses inside
and outside a reservoir undergoing injection or production
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(a) No fault

(b) Vertical fault

(c) Inclined fault

Fig. 14: Collocated FV with DFM (DARTS) uses adaptive tri-
angular grids illustrated above. The grid size is scaled for con-
venient representation, the real grid size is listed in Table 2. In
the initial stage, the grid is adaptively refined towards the reser-
voir, in the presence of a fault - towards the fault.

can be determined with the ‘theory of inclusions’ as in-
troduced by Eshelby (1957). Inclusion theory is closely
related to the ‘nucleus-of-strain’ concept (Love, 1927) as
discussed in detail by Rudnicki (2002); see also Mura
(1987). Inclusion theory and the nucleus of strain concept
have been applied to compute stress fields around pro-
ducing reservoirs to establish the risk on reactivation of
nearby (nondisplaced) faults (Segall, 1985, 1989; Segall
and Fitzgerald, 1998; Soltanzadeh and Hawkes, 2008).

Consider a homogeneous porous and permeable inclusion
undergoing an increase of pore pressure inside a homo-

(a) No fault

(b) Vertical fault

(c) Inclined fault

Fig. 15: sEFVM uses cartesian grids with embedded faults. The
grid size is scaled for convenient representation, the real grid
size is listed in Table 2

geneous infinite domain with the same elastic properties
as the inclusion. Flow to or from the outer domain is not
possible. An increase in pore pressure in the inclusion
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causes a reduction in effective stress in its matrix and con-
sequently an elastic expansion of the inclusion. Fig. 16 de-
picts a series of imaginary steps that allow for computing
the displacements in and around the expanding inclusion
as first described by Eshelby (1957):

1) Isolate the inclusion from its surroundings.

2) Allow the inclusion to expand freely.

3) Restore the inclusion to its original shape by apply-
ing distributed forces at its boundaries.

4) Re-attach the inclusion to its surroundings and re-
move the forces, i.e. apply the forces in opposite
direction to the entire infinite solid.

The strains resulting from step 2) are known as ‘eigen-
strains’; they have a finite value inside the inclusion, are
zero outside it. The strains resulting from step 4) are called
the ‘elastic strains’ or ‘poroelastic strains’; they have a fi-
nite value in the entire domain. To achieve step 4), use is
made of Greens functions that define the shear and normal
strains in any point of the domain as a result of a unit nor-
mal force in a point at the boundary. The elastic strain field
can then be obtained in the form of a line integral along the
boundary. The total strains follow from the superposition
of the eigenstrains and the elastic strains. The correspond-
ing stresses can be computed using Hooke’s law.

Fig. 16: Imaginary steps involved in computing the displacements in
and around an expanding inclusion in an infinite solid.

Jansen et al. (2019) used this method to derive closed-form
expressions for the depletion-induced or injection-induced
stresses in an inclined displaced fault, i.e. a fault with a
nonzero offset. Similar expressions were published con-
currently by Lehner (2019) and later by Wu et al. (2021).

D.2 Cauchy Integrals and Chebyshev Polynomials
Inclusion theory (or, alternatively, numerical techniques)
can be used to compute the pre-slip Coulomb stress in a
fault, defined as

Σ𝐶 = Σ∥ −Σ𝑠𝑙

= Σ∥ + 𝜇Σ′
⊥, (52)

where Σ∥ is the shear stress, Σ𝑠𝑙 the slip threshold, Σ′
⊥

the effective normal stress and 𝜇 the friction coefficient.

Note that we use a sign convention where positive stresses
correspond to tension.

The sharp ‘internal’ and ‘external’ reservoir-fault corners
in the reservoir models displayed in Figs. 5 and 7 result
in positive-valued peaks in the pre-slip Coulomb stress at
𝑦 = ±𝑎 and negative-valued peaks at 𝑦 = ±𝑏, see Figs. 6
and 8. These peaks are, mathematically, of infinite mag-
nitude. In reality, physical effects such as more rounded
corners, a finite fault width and pore pressure diffusion be-
tween the reservoir and the surrounding rock will some-
what smoothen the stress profile. However, peaks in the
pre-slip Coulomb stress profile remain a typical character-
istic of displaced faults that experience depletion or injec-
tion where it should be noted that as opposed to the peak
configuration during depletion, injection results in posi-
tive peaks at the external corners and negative peaks at the
internal ones (Jansen et al., 2019).

In areas where the pre-slip Coulomb stress is positive,
fault slip will occur. However, once slip occurs the stress
field in and around the fault changes. In particular, slip-
induced shear stresses in the fault occur, which can be
shown to have magnitude (Bilby and Eshelby, 1968)

�̆�∥ (𝑦) = −Σ𝐶 (𝑦) = 𝐴
∫ ∞

−∞

∇𝛿(𝜉)
𝜉 − 𝑦 𝑑𝜉

= 𝐴

(∫ �̃�2

�̃�1

∇𝛿(𝜉)
𝜉 − 𝑦 𝑑𝜉 +

∫ �̃�4

�̃�3

∇𝛿(𝜉)
𝜉 − 𝑦 𝑑𝜉

)
,

(53)

where, for plane-strain conditions,

𝐴 =
𝐺

2𝜋(1− 𝜈) , (54)

with 𝐺 representing the shear modulus and 𝜈 Poisson’s
ratio, and

∇𝛿(𝜉) = 𝜕𝛿(𝑦)
𝜕𝑦

����
𝑦=𝜉

, (55)

with 𝛿 representing the slip and ∇𝛿(𝑦) the slip gradient
along the fault. The variables �̃�𝑖 , 𝑖 = 1, ...,4, in equation
(53) are horizontal projections on the 𝑦 axis of the lower
and upper slip patch boundaries.

The integrands in equation (53) become singular when
𝜉 = 𝑦. The integrals are therefore Cauchy-type singular
integrals which implies that they have to be interpreted in
a principal value sense.

For a known pre-slip Coulomb stress distribution Σ𝐶 , both
the slip gradient ∇𝛿(𝑦) and the patch boundaries �̃�𝑖 are
unknowns that have to be determined from the inverse of
equation (53) and additional conditions. Muskhelishvili
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(1953) proved that an analytical inversion of singular inte-
gral equations can be obtained provided the known func-
tion in the integrand is Hölder continuous, which is a
stricter form of continuity than regular continuity as ap-
plied in mathematical analysis. The closed-form expres-
sions for induced pre-slip Coulomb stresses in a displaced
fault contain jump discontinuities at coordinate values
𝑦 = {−𝑏, −𝑎, 𝑎, 𝑏} in addition to singularities in the form
of infinite stress peaks. The jump discontinuities clearly
violate the regular and Hölder continuity conditions. An
effective way to overcome this difficulty is to regularize
the expressions for the shear and normal stresses in the
fault, an approach that was followed by Jansen and Meu-
lenbroek (2022).

Cauchy integrals and their corresponding inverse ex-
pressions can often be manipulated efficiently with the
aid of Chebyshev polynomials (Mason and Handscomb,
2003). Applications in aerodynamics, contact mechan-
ics and fracture mechanics involve both semi-analytical
approaches, and numerical methods that strongly rely on
the underlying analytical properties of Chebyshev poly-
nomials. Semi-analytical solutions have been applied
to model fault slip by Uenishi and Rice (2003), Segall
(2010), Van Wees et al. (2019) and Jansen and Meulen-
broek (2022).

Using these semi-analytical techniques the development
of fault slip can be determined as a function of increasing
injection or depletion. Fault slip, which initiates around
the peaks in the pre-slip Coulomb stresses, may trigger
seismicity in a critically stressed fault, but may also be
aseismic, a situation corresponding to the patch growth in
Fig. 12. Depending on the friction characteristics of the
fault, continuing depletion may result in a gradual aseis-
mic growth of the two slip patches possibly leading to
merging. Alternatively, increasing depletion may lead to
an unstable situation resulting in a seismic event, see, e.g.
Van den Bogert (2015, 2018); Buijze et al. (2017, 2019)
and Van Wees et al. (2017) who performed numerical stud-
ies into depletion-induced seismicity in displaced faults.
A detailed semi-analytical treatment of this phenomenon
was reported by Jansen and Meulenbroek (2022).

The semi-analytical benchmark data used to generate the
figures in this paper are available in the form of an Ex-
cel file uploaded to the 4TU Data Repository with DOI
10.4121/22240309.
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