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Born-Padé method for scattering by a diffraction grating:
s polarization

Thomas A. van der Sijsa, Omar El Gawharya, and H. Paul Urbacha

aOptics Research Group, Imaging Physics Department, Delft University of Technology, Van
der Waalsweg 8, 2628 CH Delft, The Netherlands

ABSTRACT

We use a rigorous vector Born series to solve electromagnetic scattering by a diffraction grating. To deal with
possible divergence of the Born series, we compute Padé approximants of the Born series to retrieve the solution
regardless. Besides results of the Born-Padé method for an example grating, for which the Born series diverges,
we show analytical expressions for a two-layer grating in the case of s polarization. This gives insight into the
convergence behavior of the Born series as function of the angle of incidence, for instance.
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1. INTRODUCTION

The analysis of periodic structures, such as diffraction gratings, is of interest for many practical applications,
ranging from optical metrology techniques to photovoltaics.1,2 Often, numerical methods such as rigorous
coupled-wave analysis are used,3 where large linear systems are inversed. These methods tend to be ‘black-box‘
methods, as the solution is yielded at once or with numerical optimization strategies that do not give insight
in the physical mechanisms that generate the scattered field. However, a more analytical method that better
reflects the underlying physical mechanisms is the Born series, building the scattered field solution step by step,
each step corresponding to a certain scattering event.

In our recent work,4 we presented a vectorial Born series and its semi-analytical implementation for a diffrac-
tion grating. As is known for the Born series, it converges only in a limited number of cases, which limits its
usefulness. We employed Padé approximation to extract a solution for the electric field from the Born series,
even if it diverges. The results can be calculated on a computer for any kind of one-dimensional (1D) grating,
but analytical results may also be obtained. Here, we show the vectorial Born series for a grating and show the
scalar equations for the case of s polarization (under classical incidence). We derive analytical expressions for
the Born approximation for this case, from which we can obtain an indication of the convergence behavior of the
Born series as function of parameters such as the pitch or permittivity.

2. VECTOR BORN SERIES AND PADÉ APPROXIMATION

We follow the method developed in our recent work.4 We consider time-harmonic fields with time dependence
e−iωt, where ω > 0 is the angular frequency. The scatterer has some (possibly complex) relative permittivity
εr(r) with positive imaginary part, while magnetization is neglected. We develop a Born series for the vector
Helmholtz equation ∇ × ∇ × E(r) − k20εr(r) = 0, with k0 = 2π/λ the wavenumber in vacuum. The problem
becomes a perturbation problem when a perturbation parameter σ is introduced:

∇×∇×E(r)− k20(1 + σ∆εr(r)) = 0, (1)

with ∆εr(r) = εr(r)− 1 the permittivity contrast relative to the background (εr = 1). Both the vector potential
A(r) and electric field E(r) are expanded as a power series in σ:

E(r) =

∞∑
ℓ=0

Eℓ(r)σ
ℓ and A(r) =

∞∑
ℓ=0

Aℓ(r)σ
ℓ. (2)
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Starting from some incident electric field E(i)(r), the higher-order terms of these Born series can be computed
recurrently:

Aℓ+1(r) = −iωε0

∫
r′
G0(r; r

′)∆εr(r
′)Eℓ(r

′) d3r′, (3)

Eℓ+1(r) = iωµ0Aℓ+1(r)−
1

iωε0
∇ (∇ ·Aℓ+1(r)) , (4)

where G0(r; r
′) = eik0|r−r′|/4π|r− r′| is the scalar 3D free-space Green’s function. The recurrence is a two-step

process, where first Aℓ+1 is computed component-wise from Eℓ. Then, Aℓ+1 is used to compute the next electric
field order Eℓ+1, and it is in this step that depolarization effects can take place when taking the gradient of the
divergence of Aℓ+1.

2.1 Padé approximation

The second step of the presented method is the computation of Padé approximants from the terms in the Born
series. As the Born series converges only for a limited number of cases, this allows us to use the Born series
to retrieve a solution even in cases where the series diverges. The region of convergence is determined by the
spectrum of the Lippmann-Schwinger integral operator.5,6 To retrieve a solution for E outside the region of
convergence, the Padé representation is equated to the Born representation within the region of convergence.
The Padé approximants can then also be used outside the Born series’ region of convergence. We consider
symmetric Padé approximants,7 rational functions for which the order of the polynomial in the numerator and
denominator are the same:

PN
N (r, σ) =

∑N
m=0 Am(r)σm

1 +
∑N

n=1 Bn(r)σn
. (5)

Hence, there are in total 2N +1 unknown Padé coefficients Am and Bn that have to be computed from the Born
series. This entails solving a relatively small linear system of 2N +1 equations for every point r on a discretized
grid. In the end, the perturbation parameter σ is set to 1 to obtain the Padé approximant for our problem.

3. APPLICATION TO A DIFFRACTION GRATING

Figure 1. One period of an example of a 1D diffraction grating with the definition of the coordinate system (x, y, z). The
positive y direction points out of the paper. For the case of s polarization, the electric field is perpendicular to the paper,
along the grating grooves.

We consider a 1D periodic scatterer that is p-periodic in x, invariant in y, and bounded in z (between
zmin < z < zmax). See Fig. 1 for a schematic depiction of the problem. Due to the periodicity of the grating
problem, the permittivity distribution can be decomposed into a Fourier series:

∆εr(x, z) =

∞∑
m=−∞

∆ε(m)
r (z)ei2πxm/p. (6)
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Furthermore, the electric field E and its Born series will be pseudo-periodic, i.e.,

Eℓ(r) =

∞∑
m=−∞

E
(m)
ℓ (z) ei2π(q

(i)
x +m/p)x+i2πq(i)y y, (7)

with E
(m)
ℓ (z) the Fourier coefficients of the ℓth Born term, and q

(i)
x = k

(i)
x /2π and q

(i)
y = k

(i)
y /2π the spatial

frequencies of the incident plane wave (having amplitude 1)

E(i)(x, z) = ei2π(q
(i)
x x+q(i)y y+q(i)z z)ê0, (8)

with ê0 the polarization unit vector.

3.1 Method for s polarization

From now on, we will only consider s polarization under classical incidence (q
(i)
y = 0), for which only the

Ey component is nonzero, which we denote by U . The two-step recurrence (Eqs. (3) and (4)) reduces to the
recurrence relation for the scalar Born series,8 i.e., the scalar Lippmann-Schwinger operator:

Uℓ+1(r) = k20

∫
r′
G0(r; r

′)∆εr(r
′)Uℓ(r

′) d3r′. (9)

The implementation of this recurrence relation for the 1D grating problem can be retrieved from our vectorial
result.4 We refer to Appendix A for the general vectorial equation that works for any incidence (classical and
conical) and any polarization. The recurrence starts with the incident field

U (i)(x, z) = ei2π(q
(i)
x x+q(i)z z), (10)

with q
(i)
z =

√
q20 − q

(i)
x and q0 = k0/2π. For computation of the (ℓ+ 1)st Born order, the Fourier coefficients of

the induced current density due to the ℓth order field are used as input:

∆εr(x, z)Uℓ(x, z) =

∞∑
m=−∞

c
(m)
ℓ (z)ei2πqxmx, (11)

with qxm = q
(i)
x +m/p the x-component of the wave vector of the mth diffraction order. The recurrence relation

consists of the computation of two 1D integrals for every Fourier mode m:

U
(m)
ℓ+1 (z) = iπ

q20
qzm

[
C

(m)
ℓ,< (z) + C

(m)
ℓ,> (z)

]
, (12)

with C
(m)
ℓ,< (z) and C

(m)
ℓ,> (z) integrals over z:

C
(m)
ℓ,< (z) =

{∫ z

zmin
c
(m)
ℓ (z′)ei2πqzm(z−z′) dz′ if zmin < z,

0 if zmin > z,
(13)

C
(m)
ℓ,> (z) =

{∫ zmax

z
c
(m)
ℓ (z′)ei2πqzm(z′−z) dz′ if zmax > z,

0 if zmax < z,
(14)

and with qzm defined as

qzm =

{√
q20 − q2xm, q2xm ≤ q20 ,

i
√

q2xm − q20 , q2xm > q20 .
(15)

Note that we are essentially solving a scalar 1D scattering problem for every order m; the two integrals are due
to the absolute value in ei2πqz|z−z′| in the plane wave expansion of the Green’s function. At the end of a iteration,
we obtain the real space field Uℓ+1(x, z) by summing the computed Fourier modes. This then serves as the input
to the next iteration.
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3.2 Analytical first Born order for a simple grating

To get a better insight into how the scattered field is built up using the Born series, we derive analytical
expressions for the first Born order for a simple system. We consider a two-layer grating: a rectangular grating
layer on top of a planar layer (a slab). The grating layer is located in the domain z1 < z ≤ z2 and the slab layer
in z2 < z ≤ z3. Both layers are of the same material with some (possibly complex) permittivity contrast ∆εr.
The grating layer has a rectangular profile with pitch p and linewidth a and is symmetric around x = 0. It can
be derived that its periodic permittivity distribution (see Eq. (6)) has Fourier coefficients

∆ε(m)
r (z) = ∆εr

a

p
sinc

(
πma

p

)
, z1 < z ≤ z2. (16)

When we are to compute the scattered first Born order, the field inside the grating layer will contain a contribution
from the slab and a self-contribution from the grating layer itself. For the scattered first order inside the slab,
it is the other way around. The first-order field at any point is thus the field scattered by the slab plus the field
scattered by the grating, respectively:

U1(x, z) = U1,s(x, z) + U1,g(x, z). (17)

It is possible to consider the contributions from different parts of the structure separately, because the Born
recurrence relation (Eq. (9)) is linear in ∆εr. The contribution from each layer is different depending on whether
it concerns the field inside the layer itself, or the field outside it. The integrals in Eqs. (13) and (14) are namely
only both nonzero inside the considered layer, while one of the two evaluates to 0 outside it. Here, we only show
the results for s polarization, although the expressions for the rigorous vectorial case can also be found.

3.2.1 Field scattered by slab

Since the permittivity of the slab is homogeneous, its Fourier decomposition only has an m = 0 component. The
field scattered by the slab will thus not contain any diffraction orders other than the m = 0 order. The field
scattered by the slab reads, inside the grating layer and inside the slab, respectively:

U1,s(x, z) = iπ
q20

q
(i)
z

∆εre
i2π(q(i)x x−q(i)z z) 1

i4πq
(i)
z

[
ei4πq

(i)
z z3 − ei4πq

(i)
z z2

]
, z1 < z < z2, (18)

U1,s(x, z) = iπ
q20

q
(i)
z

∆εre
i2πq(i)x x

[
ei2πq

(i)
z z(z − z2) +

1

i4πq
(i)
z

e−i2πq(i)z z
(
ei4πq

(i)
z z3 − ei4πq

(i)
z z

)]
, z2 < z < z3. (19)

Inside the grating layer, the field is a plane wave with the same qx and qz as the incident field, only propagating
upwards (−z direction) from the grating, since it originates from the slab (located at larger z). Also, we see that
the self-contribution of the slab consists of an upward and a downward propagating wave, which are modulated
by an amplitude that depends on the location z inside the grating layer. Moreover, note that the expressions
agree at the interface z = z2.

3.2.2 Field scattered by grating

As the permittivity contrast ∆εr of the grating layer has nonzero Fourier components for every m, the field
scattered by the grating layer will be a sum over diffraction orders. The self-contribution of the grating is

U1,g(x, z) =

∞∑
m=−∞

iπ
q20
qzm

∆ε(m)
r ei2πqxmx 1

i2π

[
1

q
(i)
z − qzm

ei2πqzmz
(
ei2π(q

(i)
z −qzm)z − ei2π(q

(i)
z −qzm)z1

)
+

1

q
(i)
z + qzm

e−i2πqzmz
(
ei2π(q

(i)
z +qzm)z2 − ei2π(q

(i)
z +qzm)z

)]
,

for z1 < z < z2.

(20)
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For the m = 0 order, this evaluates to

iπ
q20

q
(i)
z

∆ε(0)r ei2πq
(i)
x x

[
ei2πq

(i)
z z(z − z1)− e−i2πq(i)z z(z2 − z)

]
. (21)

The contribution of the grating to the field inside the slab reads:

U1,g(x, z) =

∞∑
m=−∞

iπ
q20
qzm

∆ε(m)
r ei2π(qxmx+qzmz) 1

i2π(q
(i)
z − qzm)

[
ei2π(q

(i)
z −qzm)z − ei2π(q

(i)
z −qzm)z1

]
, z2 < z < z3

(22)

with qxm = q
(i)
x +m/p. For the m = 0 order, this expression evaluates to

iπ
q20

q
(i)
z

∆ε(0)r ei2π(q
(i)
x x+q(i)z z)(z2 − z1), (23)

where z2 − z1 is the thickness of the grating layer. Note that the scattered field propagates in the +z direction
towards the slab layer.

From these first-order Born expressions, we see that when the slab scatters a plane wave with a certain q
(i)
x ,

only another plane wave with q
(i)
x is generated. In the grating layer however, one plane wave or diffraction order

can generate other diffraction orders, i.e., mixing of diffraction orders does happen there. Only if we are to
calculate the second Born order, the slab layer will scatter multiple diffraction orders, as now the input field
contains the diffraction orders scattered by the grating layer during the single-scattering event of the first Born
order.

3.2.3 Born series convergence

The analytical expressions can give us an indication of the convergence behavior of the Born series. The ex-

pressions share a common factor π∆εrq
2
0/q

(i)
z or π∆ε

(m)
r q20/qzm for the field scattered by the slab or grating,

respectively. The self-contribution of each layer has a complex dependence on z, e.g., Eq. (20), but if we consider
Eq. (23) for instance, we see that also the thickness of the layer pops up. We could thus say that the amplitude of

a diffraction order in the first Born order is approximately π∆ε
(m)
r dq20/qzm, with d the thickness of the structure.

Compared to the unit amplitude of the incident field, this quantity indicates how fast the Born terms grow in
amplitude. This expression moreover agrees with similar results for other scalar scattering problems.8 Most
importantly, the convergence thus seems to be worse for small qzm, i.e., diffraction orders that make a large
angle with z.

From computations of the Born series, we can also estimate the convergence rate numerically. If we have
computed N + 1 terms (up to the Nth Born term), we compute the quantity

ΓBorn =

(
maxr |UN (r)|
maxr |U0(r)|

)1/N

, (24)

which gives an indication at what rate each next term in the Born series grows, compared to the previous term.

4. RESULTS

As an example, we show the case of a weakly scattering grating. The considered wavelength is 633 nm. The
grating material is SiO2 (εr,SiO2

= 2.18 at λ = 633 nm),9 the pitch is p = 600 nm, and the line width is a = p/2.
The thickness of the grating layer and the slab are 200 nm and 150 nm, respectively. Moreover, the incident field

is a plane wave with q
(i)
x /q0 = 0.40 and q

(i)
z /q0 = 0.92.

The results of the Born-Padé method are shown in Fig. 3. The Born series diverges for this case (ΓBorn = 1.60),
but Padé approximation retrieves the electric field regardless. The approximant P 13

13 is the approximant closest
to the result from the finite-element method simulation in COMSOL, with an error in the modulus of the field
of about 2%.
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Figure 2. Grating profile of the simulated SiO2 grating. The permittivity contrast ∆εr(x, z) is shown (εr,SiO2
= 2.18).

b)a)

Figure 3. Electric field computed with the Born-Padé method and with COMSOL for a two-layer grating made of SiO2

(εr,SiO2
= 2.18): a) the modulus of the field, and b) the phase of the field. For each, the Padé approximant P 13

13 , the
COMSOL result, and the difference between the two is shown. The outline of the grating is shown as white dashed.
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In Fig. 4, we show ΓBorn for various values q
(i)
x for the example grating. Besides an increase in ΓBorn towards

q
(i)
x /q0 = 1 as qz of the 0th diffraction order approaches 0, we see a peak around q

(i)
x /q0 = 0.055. This is the

q
(i)
x for which qz becomes 0 for the m = −1 diffraction order. Thus, we see worse convergence around the point
where one of the diffraction orders becomes evanescent. This agrees with the behavior of the quantity discussed
in Section 3.2.3, which depends on qzm as 1/qzm.

��� ��� ��� ��� ��	 ���
q(i)
x /q0

�

�

�

�

�

�

	




��
Γ B

or
n

Figure 4. Convergence of the Born series for the SiO2 grating as function of q
(i)
x of the incident plane wave. At q

(i)
x /q0 =

0.055, qz for the m = −1 diffraction order goes to 0, explaining the peak in ΓBorn.

5. CONCLUSION

We have shown results for electromagnetic scattering by a 1D diffraction grating using the Born-Padé method.
The Padé approximants retrieve the electric field even if the Born series diverges, and the result is accurate
compared to the finite-element result in COMSOL. For the case of s polarization, analytic expressions have
been derived for a simple two-layer system consisting of a grating layer on top of a slab. These expressions
allow us to get an indication on the convergence rate of the Born series as function of various parameters. Most
importantly, the rate is different for different diffraction orders. This is observed in the results of the Born-Padé

method, as the observed convergence rate as function of q
(i)
x increases drastically around the value for which one

of the diffraction orders becomes evanescent.

APPENDIX A. VECTORIAL BORN RECURRENCE RELATION

Here, we include the vectorial equations of the Born recurrence relation for 1D diffraction gratings as derived
in our previous work.4 The input to the iteration is the induced current density ∆εr(x, z)E(x, z), which has a
Fourier series decomposition

∆εr(x, z)Eℓ(x, z) =

∞∑
m=−∞

c
(m)
ℓ (z)ei2π(qxmx+q(i)z z). (25)
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The Fourier coefficients c
(m)
ℓ (z) are used to compute the Fourier coefficients E

(m)
ℓ+1(z) of the next electric field

Born order:

E
(m)
ℓ+1(z) = iπ

q20
qzm

(
C

(m)
ℓ,< (z) +C

(m)
ℓ,> (z)

)
− iπq⊥m

[
1

qzm
q⊥m ·

(
C

(m)
ℓ,< (z) +C

(m)
ℓ,> (z)

)
+ ẑ ·

(
C

(m)
ℓ,< (z)−Cℓ,>(m)(z)

)]
− iπẑ

[
q⊥m ·

(
C

(m)
ℓ,< (z)−C

(m)
ℓ,> (z)

)
+ qzmẑ ·

(
C

(m)
ℓ,< (z) +C

(m)
ℓ,> (z)

)
+

1

iπ
ẑ · c(m)(z)

]
,

(26)

with

C
(m)
ℓ,< (z) =

{∫ z

zmin
c
(m)
ℓ (z′)ei2πqzm(z−z′) dz′ if zmin < z,

0 if zmin > z,
(27)

C
(m)
ℓ,> (z) =

{∫ zmax

z
c
(m)
ℓ (z′)ei2πqzm(z′−z) dz′ if zmax > z,

0 if zmax < z.
(28)
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