

Delft University of Technology

Investigation into the extrudability of a new Mg-Al-Zn-RE alloy with large amounts of alloying elements

Bai, Sheng Wen; Fang, Gang; Zhou, Jie

DOI 10.1007/s11661-019-05242-9

Publication date 2019 **Document Version** Accepted author manuscript

Published in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Citation (APA)

Bai, S. W., Fang, G., & Zhou, J. (2019). Investigation into the extrudability of a new Mg-Al-Zn-RE alloy with large amounts of alloying elements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 50(7), 3246-3264. https://doi.org/10.1007/s11661-019-05242-9

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

1	Investigation into the extrudability of a new Mg-Al-Zn-RE
2	alloy with large amounts of alloying elements
3	Sheng-Wen Bai ¹ , Gang Fang ^{1, *} , Jie Zhou ²
4	¹ State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua
5	University, Beijing 100084, China
6 7	² Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
8	*Corresponding author, Gang Fang: Tel: +86-10-6278 2694, E-mail: fangg@tsinghua.edu.cn
9	
10	Abstract
11	The present study was aimed to determine the extrudability of a newly developed
12	Mg-Al-Zn-RE magnesium alloy with large amounts of alloying elements. The
13	experimental and numerical investigation clearly showed that the extrudate
14	temperature was a crucial factor deciding if a critical temperature between 754 K and
15	768 K (481 °C and 495 °C) was reached during extrusion, above which hot shortness
16	occurred. Under the extrusion conditions applied, dynamic recrystallization (DRX)
17	occurred, leading to grain refinement from a mean grain size of 165 μm in the
18	as-solid-solution-treated billet to 8.0-10.9 μ m in the extruded rods. Second-phase
19	particles, such as $Mg_{17}Al_{12}$ and $Al_{11}La_3$, were found to distribute on grain boundaries
20	and aid in grain refinement. The mechanical properties of the extrudate were greatly
21	influenced by the as-extruded microstructure and extrusion condition. As the initial

22	billet temperature decreased, the ultimate tensile strength (UTS) and elongation of the
23	alloy increased, while yield strength (YS) remained almost unchanged. At an initial
24	billet temperature of 523 K (250 $^{\circ}$ C), a stem speed of 3.93 mm/s and a reduction ratio
25	of 29.8, the extruded magnesium alloy had a mean grain size of 8.0 $\mu\text{m}.$ Its YS, UTS
26	and elongation reached 217 \pm 3 MPa, 397 \pm 7 MPa and 20 \pm 1.3%, respectively.
27	Keywords: magnesium; extrusion; microstructure; mechanical property; hot shortness

29 **1. Introduction**

28

30 Since the beginning of this century, magnesium alloys, the lightest structural metallic 31 materials, have attracted great attention for applications in 3-C (computers, 32 communications and consumer electronics) products, automobiles and aerospace in 33 order to realize weight reduction [1-6]. Cast magnesium alloy parts made by using a 34 variety of casting techniques have been widely accepted for these applications [7]. 35 However, the applications of wrought magnesium alloys have been rather limited, 36 although in general wrought magnesium alloys possess better mechanical properties 37 than the cast counterpart and are thus more suitable for structural applications [8-9]. 38 Extruded magnesium alloy products, for example, accounted for less than 3% of the 39 annual output of magnesium production in 2013 [10]. The limited applications of 40 extruded products are mainly due to the low extrudability of magnesium alloys, 41 compared to aluminum alloys, leading to low productivity and low cost-effectiveness.

42	The limited use of extruded magnesium alloy products is also due to the achievable
43	mechanical properties that are not substantially better than those of the cast
44	counterpart. In recent years, a lot of research efforts have been made to improve the
45	mechanical properties and extrudability of magnesium alloys.
46	
47	Basically, there are two ways to improve the mechanical properties of extruded
48	magnesium alloys. Alloying is effective in enhancing the mechanical properties of
49	magnesium, but at the same time imposes limitations to applicable extrusion speed, as
50	a result of raised resistance to hot deformation, increased temperature rise during the
51	process and lowered incipient melting point. Microstructure control throughout
52	materials processing from casting to extrusion is also effective, especially the control
53	of grain structure within an applicable extrusion process window by applying an
54	optimum combination of extrusion process parameters. Obviously, it is the best if
55	alloying and microstructure control are combined to achieve optimum mechanical
56	properties from a refined grain structure and from the distribution of fine precipitates
57	at a minimum loss in extrusion speed.
58	
59	The effect of alloying on the microstructure, extrudability and mechanical properties
60	of extruded magnesium alloy products depends on the amount of a chosen element

- 61 and its solubility in the magnesium matrix. When its content is low, it stays dissolved
- 62 in the magnesium matrix even at room temperature, creating a solid solution

63	strengthening effect. However, when the content exceeds its solubility in the
64	magnesium matrix, second-phase particles precipitate as temperature decreases,
65	creating a precipitation strengthening effect and possibly contributing to a refined
66	grain structure as well by pinning grain boundaries, which in turn strengthens the
67	alloy further. These strengthening mechanisms may operate individually or in
68	combination. The mechanical properties of extruded magnesium were, for example,
69	shown to be improved through the addition of Al and Zn by a combination of
70	strengthening mechanisms, depending on the contents of these elements [11]. Yin et al.
71	[12] found that the addition of Zn refined the grain structure of an extruded
72	Mg-Zn-Mn alloy and led to an improved yield strength. In Mg-5Sn- x Zn alloys (x =1,
73	2, 4), the amounts of Mg_2Sn and $MgZn$ particles increased with increasing Zn content,
74	which contributed to the mechanical properties of the extruded magnesium alloys
75	through precipitation strengthening [13]. Small amounts of Ca were found to be able
76	to refine the grain structure and improve both the tensile strength and elongation of
77	Mg-Al-Zn and Mg-Zn alloys [14, 15]. Rare earth (RE) elements, such as Gd, Y and
78	Ce, were added to different extruded magnesium alloys to enhance their mechanical
79	properties [16-21]. For example, Y improved the mechanical properties of Mg-Zn-Zr
80	alloys through grain refinement and the formation of the I-phase (Mg ₃ Zn ₆ Y).
81	However, an excessive addition of Y to the alloys led to the formation of the W-phase
82	(Mg ₃ Zn ₃ Y ₂), which decreased the strengths. Actually, it is the ratio of Y to Zn (wt. %)
83	that determines the volume fraction of the I-phase and its strengthening effect [18].

84	Zeng et al. [22] also demonstrated that the polygon-shaped Mg ₃ Zn ₆ Y phase played an
85	important role in strengthening the extruded magnesium alloy Mg-6Zn-1.5Y-0.5Zr.
86	Stanford et al. [23] found that the strength of magnesium was greatly improved by
87	adding 0.22-4.65% Gd, owing to the mechanisms of recrystallized grain refinement
88	and solution strengthening. Zhang et al. [24] revealed that the synthetic additions of
89	Ca, Ce and La to the Mg-6.0Zn alloy resulted in the refinement of secondary phases
90	and precipitates, promoting the pining effect to restrict grain growth and the
91	dispersion strengthening effect. Homma et al. [25] developed a high-strength
92	magnesium alloy Mg-1.8Gd-1.8Y-0.7Zn-0.2Zr with an ultimate tensile strength (UTS)
93	of 542 MPa and a 0.2% proof stress of 473 MPa. The high strengths were achieved
94	thanks to fine precipitates formed during aging subsequent to hot extrusion. Yamasaki
95	et al. [26] found that the yield strength of the warm-extruded magnesium alloy
96	Mg-Zn-2.5Gd reached a high level of 345 MPa, because of the refinement of grains
97	and the dispersion of a precipitate with a long period ordered (LPO) structure. Chen et
98	al. [27] investigated the effect of Nd addition on the microstructures and mechanical
99	properties of the Mg-6Al-2Ca-xNd (x=0, 1, 2, 3, 4 and 5 wt.%) alloys. With
100	increasing content of Nd, the amounts of Al2Nd and Al3Nd phases increased, while
101	the amount of Mg ₁₇ Al ₁₂ decreased. The presence of the Al-Nd compounds contributed
102	to the refinement of the recrystallized grain structure formed during hot extrusion,
103	leading to an enhanced yield strength. Therefore, it is critically important to

104 understand the strengthening phase formed in RE-containing magnesium alloys and105 its sizes, volume fraction and distribution.

106

107	On the other hand, as mentioned earlier, with the addition of alloying elements to
108	magnesium, the extrudability usually decreases [11]. Luo et al. [28], for example,
109	found that the incipient melting point of the magnesium alloy AZ31 was 371 K (98 °C)
110	lower than that of AM30 due to the presence of Zn in the former. It means that AZ31
111	is more susceptible to hot shortness. To prevent hot shortness from occurring, a lower
112	initial billet temperature must be considered, if extrusion speed and reduction ratio are
113	desired to be fixed. As a result, the extrusion pressure required for the process will be
114	higher. If the force capacity of the available extrusion press is not enough, extrusion
115	speed or reduction ratio must be reduced in order to lower the pressure requirement,
116	leading to sacrifice in extrusion productivity. In the case of high-strength magnesium
117	alloys with large amounts of alloying elements, more severe limitations are imposed
118	on the applicable extrusion conditions. For each alloy, its extrusion window must be
119	specifically defined in order to avoid hot shortness and achieve the highest possible
120	extrusion productivity in combination with the consideration on the microstructure
121	and mechanical properties desired to achieve.
122	

123 During hot extrusion, the main process parameters, i.e., initial billet temperature,

124 extrusion speed and reduction ratio, may all influence the microstructure of an

125	extruded magnesium alloy. The mechanical properties of the alloy depend on its
126	microstructural characteristics, such as grain size, the intensity of texture and the
127	distribution of second-phase particles [29-33]. Murai et al. [29] found that fine grains
128	in the extruded magnesium alloy AZ31 were obtained at a low initial billet
129	temperature and a low extrusion speed, resulting in high mechanical properties of the
130	extrudate. Ishihara et al. [30] reported that at a given initial billet temperature of 693
131	K (420 °C) and extrusion speed of 5 m/min, the mean grain size of the extruded
132	magnesium alloy AZ31 increased from 30 to 170 μ m, when reduction ratio was
133	increased from 10 to 100. Zhang et al. [31] investigated the effect of the initial billet
134	temperature on the microstructure and mechanical properties of the extruded
135	Mg-1.0Zn-0.5Ca alloy. They found that with decreasing initial billet temperature from
136	673 K to 603 K (400 °C to 330 °C), the mean grain size decreased from 25 to 2.5 μm
137	and the ultimate tensile strength (UTS) increased from 201 to 300 MPa. Tong et al.
138	[32] found that the basal texture of the Mg-5.3Zn-0.6Ca alloy was weakened at a
139	higher extrusion speed, which resulted in a lower tensile yield strength. Park et al. [33]
140	demonstrated that the temperature rise occurring during extrusion increased the
141	solubility of Sn in the magnesium matrix and thereby reduced the volume fraction of
142	Mg ₂ Sn precipitates in the Mg-Sn-Al-Zn extrudate, resulting in a low strength.
143	Therefore, the choice of extrusion parameters is of critical importance for the
144	achievable mechanical properties of an extruded magnesium alloy.

146	Indeed, many of recent research efforts have aimed at achieving the highest possible
147	strength through optimizing extrusion condition, often in combination with
148	modification of alloy composition. By performing extrusion at an extrusion ratio of 44,
149	a ram speed of 60 mm/min and billet temperature of 623 K (350 °C), for example,
150	Shahzad et al. [34] obtained the ultimate tensile strength (UTS) of 328 MPa for the
151	magnesium alloy AZ80. Chen et al. [35] found that the UTS of the extruded
152	magnesium alloy Mg-5.3Zn-1.13Nd-0.51La-0.28Pr-0.79Zr could reach 325-350 MPa,
153	when the billet temperature applied was 523 K (250 °C). Singh et al. [36] developed
154	the extruded magnesium alloys Mg-6xZn-xY (x=0.2, 0.35 and 0.5 at. %) with UTS
155	varying from 397.8 to 418.6 MPa and elongation values over 12%. Park et al. [37]
156	reported that the UTS of the Mg-9Al-0.6Zn alloy reached 375 MPa after extrusion at a
157	billet temperature of 523 K (250 $^{\circ}$ C), extrusion speed of 1 mm/s and a reduction ratio of
158	7.35. Bu et al. [38] developed a new magnesium alloy containing large amounts of
159	alloying elements, including La and Gd (Mg-Al-Zn-RE). The effects of La and Gd on
160	the microstructure and mechanical properties of the extruded alloy were extensively
161	investigated. The results showed that, as a result of La and Gd additions, the Al ₁₁ La ₃ ,
162	Al ₈ Mn ₄ Gd and Al ₃ Gd phases were present in the extruded alloy in addition to the
163	Mg ₁₇ Al ₁₂ phase. During extrusion, particle stimulated nucleation (PSN) occurred due to
164	the presence of abundant second-phase particles, leading to the formation of fine,
165	recrystallized grains. The alloy had a UTS of 397 MPa, being higher than that of the
166	traditional magnesium alloy AZ80, owing to a combination of grain refinement

167	strengthening, precipitation strengthening, solid-solution strengthening, dislocation
168	strengthening and subgrain strengthening. Therefore, the alloy was considered to be
169	highly promising for aircraft applications. However, the effects of extrusion process
170	parameters on the microstructure and mechanical properties of the alloy were not
171	investigated. As microstructural changes, such as dynamic recrystallization and
172	precipitation, are largely governed by the local thermomechanical conditions during
173	hot extrusion, it was hypothesized that the as-extruded microstructure and resultant
174	mechanical properties, especially elongation (10%) [38], would be optimized through
175	optimizing the extrusion condition.
176	
177	The present work concerned a case study on the extrudability, microstructure evolution
178	during extrusion and the resulting mechanical properties of the newly developed
179	magnesium alloy Mg-Al-Zn-RE. It was intended to serve as an example to show how to
180	determine the extrudability of a new magnesium alloy and understand the effect of
181	extrusion condition on its microstructure and mechanical properties through a
182	combination of experimental research and numerical simulation using the finite
183	element (FE) method. The extrusion experiments were performed by using a
184	tailor-designed die setup. Different combinations of extrusion parameters, namely
185	initial billet temperature, extrusion speed and reduction ratio, were employed. FE
186	simulations of hot extrusion were carried out to predict the extrudate temperature that
187	was hard to measure accurately in real extrusion operation. In addition, the effects of

extrusion parameters on the microstructure evolution and mechanical properties of the
alloy were investigated through microstructure observation and tensile tests of the
extrudate.

2. Material, extrusion experiments and numerical simulations

2.1 Material

194	The nominal chemical composition of the newly developed Mg-Al-Zn-RE alloy is					
195	given in Table 1. The alloy was designed on the basis of AZ81 [38], which is known					
196	for having a very narrow range of applicable deformation conditions [39]. The					
197	addition of the rare earth elements (i.e., La and Gd) tended to lower its workability					
198	further. Hot compression tests indeed showed that this alloy was extraordinarily prone					
199	to hot shortness; hot cracking occurred at temperatures higher than 693 K (420 $^{\circ}$ C).					
200	To push the temperature limit upwards, the as-cast alloy was solid-solution-treated at					
201	693 K (420 °C) for 24 h, following by water quenching, in order to dissolve					
202	second-phase particles, such as $Mg_{17}Al_{12}$ that has an incipient melting point of 710 K					
203	(437 °C) [40]. The solution treatment was also intended to homogenize the as-cast					
204	microstructure and improve its extrudability. Cylindrical billets with a diameter of 29					
205	mm and lengths of 23 and 15 mm were prepared for extrusion experiments.					
206	Table 1. Chemical composition (wt. %) of the Mg-Al-Zn-RE alloy.					

Element Al Zn Mn La Gd	Mg
------------------------	----

208 2.2 Hot compression tests

A constitutive model of the magnesium alloy is needed for the FE simulations of 209 extrusion. To determine the constitutive constants, uniaxial compression tests of 210 cylindrical specimens with sizes of $\phi 8 \times 12$ mm were performed by using a Gleeble 211 1500 thermomechanical simulator. Test temperatures from 573 K to 693 K (300 °C to 212 420 °C) and with an interval of 30 K (30 °C) were chosen. Strain rates selected were 213 0.001, 0.01, 0.1, 1 and 10 s⁻¹. The flow stress-strain curves obtained at different 214 215 temperatures and strain rates are shown in Fig. 1. The hyperbolic sine-type equation 216 (Eq. 1), proposed by Sellars and McTegart [41], was adopted to describe the

Fig. 1. Flow stress-strain curves of the magnesium alloy at temperatures from 573 K to 693 K (300 °C to 420 °C) and strain rates (a) 0.001 s⁻¹, (b) 0.01 s⁻¹, (c) 0.1 s⁻¹, (d) 1 s⁻¹ and (e) 10 s⁻¹.

224
$$\dot{\varepsilon} = A[\sinh(\alpha\sigma)]^n \exp\left(\frac{-Q}{RT}\right) \tag{1}$$

225 where, A, α and n are material constants, Q is the activation energy for hot

deformation, and R is the gas constant. The constitutive constants obtained were used

as material constants in the model for the FE simulations of extrusion (Table 2).

228

220

Table 2. Constitutive constants of the magnesium alloy (Mg-Al-Zn-RE).

С	constitutive constant	A	α	п	Q (kJ/mol)
	Value	2.3188e+10	1.721e-2	4.5164	141.329

231 **2.3 Extrusion tooling setup**

232 The tooling setup, specially designed for this research, consisted of a structural

supporting framework, a heating system, a die with a round opening, a container, a

- stem and a stem holder (Fig. 2). The supporting framework included a fastening plate,
- supporting rods and a supporting plate, which were used to fix the die setup on the
- 236 platform of a press driven by a hydraulic system. The stem holder was connected to

237	the crosshead of the hydraulic press. Four resistance-heating elements with a total
238	power of 2000 W were employed to heat the container, extrusion die and billet.
239	Heating was controlled by a PID (Proportion Integration Differentiation) controller
240	based on the feedback temperature measured by Thermocouple 1. Thermocouple 2
241	was inserted into the die to measure the temperature near the die orifice during
242	extrusion. The measuring point was 2 mm away from the die bearing (Fig. 2b).
243	

Two extrusion dies with orifice diameters of 5.5 and 4.2 mm were employed for

extrusion at reduction ratios of 29.8 and 51.0, respectively, while the diameter of the

container liner stayed unchanged (30 mm). For each die, the inlet angle was 60° and

the length of straight die bearing was 1 mm.

251 **2.4 Extrusion experiments**

252 Extrusion experiments were performed by using the tooling setup mounted on a 253 hydraulic press with a force capacity of 2 MN. Before extrusion, the billet was heated 254 to a preset temperature at a rate of 8 K/min (8 °C/min) and socked for 15 min. The container and die were heated to the same temperature as the billet. During extrusion, 255 256 the temperature near the die orifice was measured by Thermocouple 2. After extrusion, 257 the extruded rod was cut off from the discard and air-cooled. Initial billet temperature, 258 extrusion speed and reduction ratio were taken as the main process variables. Initial billet temperature was set at 523, 573, 623, 673 and 713 K (250, 300, 350, 400 and 259 260 440 °C). Stem speed increased from 0.48 mm/s to 8.24 mm/s. Reduction ratios were 261 29.8 and 51.0, as mentioned in Subsection 2.3.

262 **2.5 Microstructure observation**

263	Samples were cut from the extruded rods along the longitudinal extrusion direction
264	(Fig. 3). The exposed surfaces were ground and mechanically polished. An etchant
265	composed of 5 g picric acid, 10 ml acetic acid, 10 ml deionized water and 100 ml
266	absolute ethyl alcohol was used to etch the samples. The microstructures of the
267	samples were observed using an optical microscope (Zeiss Axio Scope.A1) and a
268	scanning electron microscope (SEM, FEI Quanta 200 FEG) equipped with an energy
269	dispersive x-ray spectroscope (EDS). The grain sizes of the extrudate were
270	determined by using the linear intercept method. The sizes and volume fractions of

- 271 second-phase particles were measured by using the commercial software Image-Pro
- 272 Plus on the basis of SEM micrographs.

273

Fig. 3. Schematic of the longitudinal section of an extruded rod for microstructure observation.

275 **2.6 Tensile tests**

- 276 Tensile specimens were prepared by machining from the extruded rods. They had a
- total length of 90 mm, a gauge length of 25 mm and a gauge diameter of 4 mm,
- 278 conforming to the standard GB/T 228.1-2010. Tensile tests were conducted using a
- 279 universal material testing machine (AG-X, Shimadzu) at a crosshead speed of 1
- 280 mm/min. Tensile force was applied in the direction being the same as the extrusion
- 281 direction. The test of the specimen processed under each condition was repeated at
- least twice to ensure the reproducibility of the data.
- 283

284 **2.7 Finite element simulations**

FE simulations were performed to predict the temperature of the extrudate at the die

orifice, as affected by the extrusion variables. An axisymmetric FE model (Fig. 4) was

287	built by using the commercial software package DEFORM. The billet, extrusion die,
288	stem and container were all meshed to be composed of quadrilateral elements. The
289	billet was defined as a thermo-rigid-plastic material, and the thermomechanical effect
290	occurring during extrusion was taken into account. The extrusion tools were
291	considered to be rigid objects and heat transfer was allowed. The constitutive equation
292	(Eq. 1) was applied in the FE simulations. The initial temperatures of the container
293	and die were set to be the same as those used in the extrusion experiments, while the
294	stem was set at an initial temperature of 293 K (20 °C). Heat exchanges between the
295	billet, extrusion tooling and surrounding environment were taken into consideration. A
296	shear friction model was adopted at the interfaces between the billet and extrusion
297	tooling and the friction coefficient was set at 1.0 [42]. The physical properties of the
298	magnesium alloy and tooling material (H13 tool steel) are listed in Table 3 [43].

300

Fig. 4. Axisymmetric FE model to simulate the extrusion process to produce rods.

Table 3. Physical properties of the billet and extrusion tooling.

Physical property	Magnesium alloy	H13 tool steel

Thermal conductivity (W/(m °C))	96	28.4
Heat capacity (N/(mm ² °C))	2.097at 600 K (327°C)	5.6
	2.275 at 800 K (527°C)	
Heat transfer coefficient between tooling and	11	11
workpiece (N/(°C s mm ²))		
Heat transfer coefficient between	0.02	0.02
tooling/workpiece and air (N/(°C s mm ²))		
Emissivity	0.7	0.7

302 **3. Results and discussion**

303 3.1 Extrudate temperature

304 The extrudate temperature at the die exit, the most important process parameter that 305 strongly influences the surface quality and microstructure of the extrudate, depends on 306 the initial billet temperature, extrusion speed and reduction ratio. It is however 307 difficult to measure directly and accurately. To verify the extrudate temperature 308 predicted from FE simulations, comparisons with the temperatures near the die 309 bearing, measured by inserted Thermocouple 2, were made. Fig. 5a shows an example 310 of the predicted temperature distribution inside the extruded billet, rod, and extrusion tooling, when the initial billet temperature was 573 K (300 °C), reduction ratio 51.0 311 312 and stem speed 1.92 mm/s. The temperature predicted at point P1 inside the die 313 reached a peak value of 600 K (327 °C) at a stem displacement of 15 mm. It was very 314 close to the value of 598 K (325 °C) measured by Thermocouple 2. In addition, the calculated and measured temperature evolutions at point P1 during extrusion were 315

316	compared. The results (Fig. 5b) showed that the simulated temperatures were in
317	agreement with the experimentally measured values. The differences between
318	simulated and measured temperatures were negligible. It indicated that the present FE
319	model of extrusion was reliable in temperature calculation. Based on this fact, we
320	considered the calculated temperature at point P2 to be the exact temperature of the
321	extrudate surface. In addition, a large difference in temperature between the extrudate
322	surface (678 K, i.e., 405 °C at point P2) and measuring point (600 K, i.e., 327 °C at
323	point P1) was found, even though there was a distance of only 2 mm between these
324	two points. It confirmed that the measured die temperature could not be used as the
325	temperature of the extrudate directly.

Fig. 5. Predicted temperature distribution inside the billet, extrudate and extrusion tooling (a) andcomparison between the measured and predicted temperatures at P1 along with stem displacement

- 330 (b).
- 331

Fig. 6 shows the FE simulated temperature evolutions at point P2 under different extrusion conditions. At the initial stage of extrusion, the temperature at point P2 rose significantly, which was attributed to heat generation from both plastic deformation and severe friction between the billet and tooling. The temperature rise due to deformation heating can be described by using Eq. 2, where η is the adiabatic factor with a value between 0.9 and 0.95, and ρ is the specific density and C_p is the specific heat [44].

339
$$\Delta T = \frac{\eta \int \sigma d\varepsilon}{\rho C_{\rm P}}$$
(2)

340

341 Eq. 3 gives the shear-type friction model employed during the simulations, where τ is 342 the shear stress, and m is the friction factor [45]. The friction factor was set to be 1, 343 considering the severe friction between the tooling and billet [42]. The frictional 344 heating contributed to temperature rise during the extrusion process. In the meantime, 345 heat was transferred between the billet and tooling and dissipated into the atmosphere. With rising extrudate temperature, more heat was transferred from the extrudate to the 346 347 tooling. Heat generation and dissipation to the die competed with each other, and then 348 the extrudate temperature reached a steady state.

349
$$\tau = \frac{m\sigma}{\sqrt{3}} \tag{3}$$

Fig. 7 shows the simulated temperatures at point P2, when two different friction factorvalues of 0 and 1 were applied. The same reduction ratio of 29.8, extrusion speed of

3.93 mm/s and initial billet temperature 523 K (250 °C) were employed in these
simulations. When the fraction factor values were 0 and 1, the temperature increments
of extrudate were 124 K and 179 K (124 °C and 179 °C), respectively. The result was
consistent with the above statement that the temperature increment during extrusion
was partially attributed to the heat generation from severe friction between the billet
and tooling.

- 359
- 360
- 361
- 700 700 V=0.96 mm/s Tbillet=initial temperature of the billet - Tbillet=250°C V- velocity of extrusion stem Tbillet=300°C V=1.92 mm/s Tbillet=350°C V=3.93 mm/s 600 600 FE simulated temperature (°C) FE simulated temperature (°C) Tbillet=400°C V=6.48 mm/s Tbillet=440°C V=8.24 mm/s 500 500 400 400 Reduction ratio=29.8 Stem speed=3.93 mm/s Reduction ratio=29.8 Initial billet temperature=350 °C 300 300 200 200 0 5 10 15 20 25 0 5 10 15 20 25 Stroke of extrusion stem (mm) Stroke of extrusion stem (mm) 362 363 (a) (b) 700 V=0.96 mm/s V- Velocity of the extrusion stem

Fig. 6. FE simulated temperature evolutions at point P2 during extrusion: (a) at a reduction ratio of
29.8, stem speed of 3.93 mm/s and different initial billet temperatures, (b) at a reduction ratio of
29.8, initial billet temperature of 623 K (350 °C) and different stem speeds, and (c) at a reduction
ratio of 51.0, initial billet temperature of 623 K (350 °C) and different stem speeds.

Fig. 7. Simulated temperatures at point P2 with friction factor values of 0 and 1.

384	Fig. 6b shows the temperature evolutions at a reduction ratio of 29.8, initial billet
385	temperature of 623 K (350 °C) and stem speeds of 0.96, 1.92, 3.93, 6.48 and 8.24
386	mm/s. The maximum temperature increments were 61, 89, 126, 145 and 154 K (61,
387	89, 126, 145 and 154 $^{\circ}$ C), respectively. With increasing extrusion speed, the
388	maximum temperature of the extrudate grew. There are two factors that lead to the
389	increases in extrudate temperature. On the one hand, the enhanced flow stress of the
390	billet material at a higher extrusion speed leads to more heat generation than that at a
391	lower extrusion speed. On the other hand, heat generation at a higher extrusion speed
392	is less dissipated to the die.
393	
394	When reduction ratio increased to 51.0 and the initial billet temperature remained
395	unchanged (623 K, i.e., 350 °C), the maximum temperature increments were 67, 110,
396	131, 206 and 213 K (67, 110, 131, 206 and 213 °C), at stem speeds of 0.96, 1.92, 3.07,
397	3.93 and 5.39 mm/s, respectively (Fig. 6c). Comparison between the extrudate
398	temperatures at these two reduction ratios (Fig. 6b and c) showed that a larger
399	temperature increment appeared at a higher reduction ratio, but at the same initial
400	billet temperature and extrusion speed. It can be explained by the fact that a higher
401	strain rate at a larger reduction ratio contributes to the temperature increase of the
402	extrudate.
403	

3.2 Surface quality

405	The surface quality of an extruded magnesium alloy rod is negatively influenced by
406	the defect of hot shortness. In general, the tendency for hot shortness to occur
407	increases with increasing initial billet temperature, reduction ratio and extrusion speed.
408	It is caused by an excessively high temperature due to heat generation inside the
409	magnesium alloy undergoing large plastic deformation during extrusion. Figs. 8-10
410	show three groups of extruded magnesium alloy rods, which are arranged in a
411	convenient way to demonstrate the influences of the initial billet temperature,
412	extrusion speed and reduction ratio on the surface quality of the extruded rods.
413	
414	Fig. 8 shows the magnesium alloy rods extruded at a reduction ratio of 29.8, stem
415	speed of 3.93 mm/s and different initial billet temperatures. Defect-free surfaces of
416	the extruded rods were obtained, when the initial billet temperatures were lower than
417	673 K (400 °C) (Fig. 8a-c). When the initial billet temperature increased to 673 K
418	(400 °C), however, hot shortness occurred on the surface of the extruded rod (Fig. 8d).
419	With a further increase in initial billet temperature to 713 K (440 °C), large and deep
420	cracks on the surface of the extruded rod became visible to the naked eye (Fig. 8e).
421	For the rods extruded under these conditions, FE simulation predicted the maximum
422	extrudate temperatures $T_{\rm e}~$ of 769 K and 793 K (496 °C and 520 °C). It could be
423	inferred that the critical temperature for hot shortness to occur lay from 749 K to 769
424	K (476 °C to 496 °C). It was thus the initial billet temperature that influenced the

425	surface quality of the extrudate [46, 47]. At the die bearing, tensile stresses due to
426	severe friction exceeded the tensile strength of the material at the surface and
427	consequently tearing occurred (Fig. 8d). If the heat generated from friction and hot
428	deformation led to further temperature increases at the die bearing to the incipient
429	melting point, localized melting took place, which would cause severe cracking on the
430	surface (Fig. 8e).

431

Fig. 8. Magnesium alloy rods extruded at a reduction ratio of 29.8, stem speed of 3.93 mm/s and
different billet temperatures. *T_e* is the maximum extrudate temperature. (a) T=523 K (250 °C) and
T_e=702 K (429 °C); (b) T=573 K (300 °C) and T_e=723 K (450 °C); (c) T=623 K (350 °C) and
T_e=749 K (476 °C); (d) T=673 K (400 °C) and T_e=769 K (496 °C); (e) T=713 K (440 °C) and
T_e=793 K (520 °C).
Extrusion speed is another factor influencing the surface quality of the extrudate,

- 438 which embodies heat generation and dissipation during extrusion. It is obvious that
- 439 heat generation increases with increasing extrusion speed, because a higher strain rate
- 440 corresponds to more dynamic plastic deformation, and less heat is dissipated to the

441	surrounding as a result of shortened process time, as shown in Fig. 6b. It is the raised
442	extrudate temperature that limits the applicable extrusion speed. In the present
443	research, at the same initial billet temperature of 623 K (350 $^{\circ}$ C) and reduction ratio
444	of 29.8, the rods extruded at different stem speeds had different surface features (Fig.
445	9). When stem speeds were lower than 3.93 mm/s, the extruded magnesium alloy rods
446	had smooth surface finish (Fig. 9a-c). When stem speed increased to 6.48 mm/s,
447	however, minor cracks appeared on the surface of the extruded rod (Fig. 9d). Severe
448	hot shortness occurred at the stem speed of 8.24 mm/s (Fig. 9e). FE simulations
449	indicated the extrudate surface temperatures of 749, 768 and 787 K (476, 495 and
450	514 °C), at stem speeds of 3.93, 6.48 and 8.24 mm/s, respectively (Fig. 6b). In
451	combination with the results shown earlier in Fig. 8d, the critical temperature for hot
452	shortness to occur would be in the range of 749 K and 768 K (476 °C and 495 °C).

454 Fig. 9. Magnesium alloy rods extruded at a reduction ratio of 29.8, initial billet temperature of 623 455 K (350 °C) and different stem speeds. (a) v= 0.96 mm/s and $T_e=674$ K (401 °C); (b) v=1.92 mm/s

456	and $T_e=712$ K (439 °C); (c) v=3.93 mm/s and $T_e=749$ K (476 °C); (d) v=6.48 mm/s and $T_e=768$ K
457	(495 °C); (e) v=8.24 mm/s and T _e =787 K (514 °C). T _e is the maximum extrudate temperature.
458	As mentioned earlier, heat generated from the plastic deformation of the billet
459	material leads to the temperature rise of the extrudate. Reduction ratio is a process
460	parameter that is directly related to the amount of plastic deformation. The extrusion
461	experiments performed at a higher reduction ratio of 51.0 clearly depicted the effect
462	of reduction ratio on extrudate surface quality (compare Fig. 10 and Fig. 9). When
463	reduction ratio was 51.0, initial billet temperature 623 K (350 °C) and stem speed
464	3.93 mm/s, the maximum extrudate temperature reached 779 K (506 $^{\circ}$ C) and hot
465	shortness occurred. At the lower reduction ratio of 29.8, however, the extrudate
466	exhibited sound surface (Fig. 9c) and under this extrusion condition the maximum
467	extrudate temperature was only 749 K (476 °C). It clearly indicated that the high
468	reduction ratio increased the tendency of hot shortness. Fig. 10c shows the good
469	surface of the extrudate at a stem speed of 3.07 mm/s and under this extrusion
470	condition the extrudate temperature was 754 K (481 $^{\circ}$ C). By combining the results
471	shown in Figs. 8, 9 and 10, one may infer the critical temperature for hot shortness to
472	occur to be in the range of 754 K and 768 K (481 °C to 495 °C). The extrudate
473	temperature of 754 K (481 °C) can be taken as a conservative critical temperature to
474	avoid hot shortness.

Fig. 10. Magnesium alloy rods extruded at a reduction ratio of 51.0, initial billet temperature of 623 K (350 °C) and different stem speeds. (a) v= 0.96 mm/s and T_e=987 K (417 °C); (b) v=1.92 mm/s and T_e=733 K (460 °C); (c) v=3.07 mm/s and T_e=754 K (481 °C); (d) v=3.93 mm/s and T_e=779 K (506 °C); (e) v=5.39 mm/s and T_e=786 K (513 °C). T_e is the maximum extrudate temperature.

481

482

483 **3.3 Microstructures**

484 Fig. 11 shows the microstructures of the as-cast and the as-solid-solution-treated

485 Mg-Al-Zn-RE alloy. The as-cast alloy had a dendritic magnesium matrix and

486 interdendritic second-phase particles (Fig. 11a). Morphology and composition

487 analyses indicated the presence of four kinds of second-phase particles in the as-cast

- 488 alloy, namely reticulate phase $Mg_{17}Al_{12}$, needle-like or lamellar phase $Al_{11}La_3$, and
- 489 block-shaped phases Al₈Mn₅ and Al₂Gd (Figs. 11c, e-h and Table 4). Mg₁₇Al₁₂ and
- 490 Al₈Mn₅ were the common intermetallic compounds in commercial Mg-Al-Zn alloys

491	with a high Al content [48, 49]. Al ₁₁ La ₃ and Al ₂ Gd were the compounds whose
492	formation was due to the addition of rare earth elements of La and Ga [38, 50-51] to
493	the Mg-Al-Zn base alloy. The volume fraction of second-phase particles in the SEM
494	micrograph of the as-cast alloy was 7.3% (Fig. 11c). After the solid-solution treatment
495	at 693 K (420 °C) for 24 h, the Mg ₁₇ Al ₁₂ phase with a melting point of 701 K (437 °C)
496	[40] disappeared due to its dissolution into the Mg matrix. The volume fraction of
497	second-phase particles decreased significantly to 2.1% (Fig. 11d). During the heat
498	treatment, the as-cast dendritic structure changed to an equiaxed grain structure; the
499	mean grain size determined by using the linear intercept method [52] was 165 (± 5)
500	μm (Fig. 11b).

Fig. 11. Microstructures of the Mg-Al-Zn-RE alloy: (a) dendritic structure of the as-cast alloy; (b)
equiaxed grain structure of the solid-solution-treated alloy; (c) SEM micrograph of the as-cast
alloy; (d) SEM micrograph of the solid-solution treated alloy; (e-h) EDS element maps of Al₂Gd,
Al₁₁La₃, Mg₁₇Al₁₂ and Al₈Mn₅ phases.

Table 4. EDS analysis of second-phase particles in the as-cast alloy.

Phases	Al ₂ Gd	Al ₁₁ La ₃	Mg ₁₇ Al ₁₂	Al ₈ Mn ₅
Mg (at. %)		49.84	69.06	1.99
Al (at. %)	68.08	37.25	29.24	64.92
Zn (at. %)		0.78	1.70	
Mn (at. %)		0.41		25.70
La (at. %)	2.90	9.58		
Gd (at. %)	29.03	2.14		6.62

511	The optical microstructures of the magnesium alloy rods extruded at temperatures of
512	523-713 K (250-440 $^{\circ}$ C), a reduction ratio of 29.8 and stem speed of 3.93 mm/s are
513	shown in Fig. 12. Apparently, dynamic recrystallization (DRX) occurred during
514	extrusion under these conditions, and the mean grain sizes of the extruded magnesium
515	alloy rods reduced significantly from the mean value of the as-solid-solution-treated
516	alloy. The mean grain sizes of the rods extruded at 523, 573, 623, 673, 673 and 713 K
517	(250, 300, 350, 400 and 440 °C) were 8.0 (±0.3), 8.5 (±0.5), 9.5 (±0.3), 10.9 (±
518	0.3) and 12.4 (\pm 0.4) μ m, respectively, showing an increasing trend with rising initial

519 billet temperature.

527	along the extrusion direction (Fig. 13). The needle-like or lamellar phase $Al_{11}La_3$ in
528	the as-solid-solution-treated alloy was broken up and became block-shaped particles
529	during extrusion. The sizes of second-phase particles increased, but their volume
530	fraction decreased with increasing initial billet temperature. At the initial billet
531	temperature of 523 K (250 °C), the maximum temperature of the extrudate reached
532	702 K (429 °C) and a lot of fine second-phase particles with sizes smaller than 1,000
533	nm were distributed on recrystallized grain boundaries (Figs.13a and c). The mean
534	size of second-phase particles was 397 nm, and the volume fraction was 5.4%. At an
535	increased initial billet temperature of 623 K (350 $^{\circ}$ C), the maximum temperature of
536	the extrudate increased to 749 K (476 $^{\circ}$ C), the volume fraction of second-phase
537	particles with sizes of 1,000 nm and larger increased and the mean size of
538	second-phase particles increased to 492 nm. However, the overall volume fraction of
539	second-phase particles decreased to 2.8% (Figs. 13b and d) as a result of higher
540	solubility of the alloying elements in the magnesium matrix at a higher temperature.
541	This phenomenon also was found in other magnesium alloys with high Al contents
542	during extrusion [53, 54]. In addition to the dissolution of small particles, the alloying
543	elements diffused and became accumulated at existing, larger particles, which resulted
544	in particle growth.

558 extrudate temperature increased with increasing extrusion speed; the maximum

559	extrudate temperature reached 674-787 K (401-514 °C) when stem speed increased
560	from 0.96 to 8.24 mm/s (Fig. 6b). A high extrudate temperature would normally
561	promote the growth of DRX grains. But on the other hand, the equivalent strain rate
562	increased with increasing extrusion speed and a high strain rate would contribute to
563	grain refinement during the hot deformation of magnesium alloys [55]. In addition,
564	with increasing extrusion speed, the sizes and volume fraction of second-phase
565	particles changed, which would affect grain sizes. Fig. 15 presents an SEM
566	micrograph and a size distribution of second-phase particles in the magnesium alloy
567	rod extruded at a reduction ratio of 29.8, initial billet temperature of 623 K (350 °C)
568	and stem speed of 0.96 mm/s. The data could be compared with those obtained from
569	the magnesium rod extruded at a higher stem speed of 3.93 mm/s, but at the same
570	reduction ratio and initial billet temperature (Figs. 13b and d). With an increase in
571	stem speed from 0.96 to 3.93 mm/s, the volume fraction of second-phase particles
572	decreased from 3.6% to 2.8%, and the mean size decreased from 577 to 492 nm. The
573	maximum extrudate temperature at stem speeds of 0.96 mm/s and 3.93 mm/s rose to
574	674 K to 745 K (401 °C and 472 °C), respectively. Clearly, it was the lower extrudate
575	temperature at a lower extrusion speed that resulted in more and larger dynamically
576	precipitated second-phase particles, as a result of longer time given for particle
577	precipitation and growth. Comparison between Fig. 13d and Fig. 15b showed large
578	volume fractions of second-phase particles smaller than 400 nm in the rods extruded

at a higher extrusion speed, which would be highly effective to pin grain boundaries

580 to retard grain growth.

582 Fig. 14. Optical micrographs of the magnesium alloy rods extruded at a reduction ratio of 29.8,

20um

- 583 initial billet temperature of 623 K (350 °C) and stem speeds of (a) 0.96, (b) 1.92, (c) 3.93, (d) 6.48
- 584 and (e) 8.24 mm/s.
- 585

Fig. 15 SEM micrograph (a) and distribution of the size of second-phase particles (b) in the rods
extruded at a reduction ratio of 29.8, stem speed of 0.96 mm/s and initial billet temperature of 623
K (350 °C).

591 The micrographs of the alloy extruded at the high reduction ratio of 51.0, presented in Fig. 16, were used to analyze the effect of reduction ratio on the microstructure of the 592 593 extruded alloy. The initial billet temperature was 623 K (350 °C) and the stem speed was 0.96 mm/s. Comparison of the mean grain size obtained from Fig. 16a with that 594 from Fig. 14a indicated a mild effect of reduction ratio from 29.8 to 51.0 on the mean 595 grain size (from 8.6 to 9.4 µm). In addition, after extrusion at reduction ratios of 29.8 596 and 51.0, the volume fractions of second-phase particles were 3.6% and 2.9%, 597 598 respectively, as a result of an increase in extrudate temperature.

Fig. 16. Microstructures of the magnesium alloy rods extruded at an initial billet temperature of

602 623 K (350 °C), stem speed of 0.96 mm/s and reduction ratio of 51.0: (a) optical micrograph; (b)

603 SEM micrograph; (c) distribution of the sizes of second-phase particles.

The size distributions and volume fractions of second-phase particles in Figs. 13, 15

and 16 were determined by using the software Image-Pro Plus on the basis of SEM

606 micrographs at 2,000X magnification. With this method, nanoscale particles in the

- range of 1 and 100 nm were ignored, due to too low resolution. Fig. 17 presents a
- 608 SEM micrograph at 20,000X magnification. The observed sample was extruded at an
- 609 initial billet temperature of 623 K (250 °C), extrusion speed of 3.93 mm/s and a
- 610 reduction ratio of 29.8. Nanoscale particles between 1 and 100 nm marked with

- 611 arrows are clearly discernible. These tiny particles must have contributed to the
- 612 improved strength of the extruded magnesium alloy as well, owing to precipitation
- 613 strengthening.

Fig. 17 SEM micrograph (20,000X) of the magnesium alloy rod extruded at an initial billet
temperature of 523 K (250 °C), extrusion speed of 3.93 mm/s and a reduction ratio of 29.8.

618	In the present research, the mean grain sizes of the magnesium rods extruded under all
619	the conditions ranged from 7 to 14 μ m. The extrusion condition could influence the
620	mean grain size of the magnesium alloy Mg-Al-Zn-RE to a certain extent, but the
621	influence was quite moderate, in comparison with other magnesium alloys with low
622	alloying contents. Zhang et al. [31], for example, reported that at a reduction ratio of
623	16 and extrusion speed of 4 mm/s, with an increase in billet temperature from 603 K
624	to 673 K (330 °C to 400 °C), the mean grain size of the extruded Mg-1.0Zn-0.5Ca
625	alloy increased from 2.5 μm to 25 μm . The main mechanism governing grain
626	refinement during the hot deformation of a magnesium alloy is dynamic
627	recrystallization (DRX), including the continuous DRX (CDRX) and discontinuous

628	DRX (DDRX) [55, 56]. DDRX, involving the nucleation and growth of new grains,
629	was found to be the predominant mechanism in the magnesium alloy AZ31 [57].
630	Wang et al. [58] demonstrated that a larger value of the Zener-Hollomon parameter
631	resulted in a higher ratio of nucleation rate to growth rate of new grains in the
632	magnesium alloy ZM21, which was helpful for grain refinement. For these
633	magnesium alloys with relatively low alloying contents, extrusion condition was
634	found to influence the grain size of the extrudate strongly.
635	
636	For the present magnesium alloy, abundant precipitates were present due to high
637	contents of alloying elements added to magnesium. In addition to extrusion condition,
638	precipitates would influence the DRX behavior of the alloy during extrusion. The
639	precipitated Mg17Al12 phase and crushed Al11La3 phase would promote
640	particle-stimulated nucleation (PSN) for DRX. These phases were mostly distributed
641	on grain boundaries to exert the Smith-Zener pinning effect and restrict the growth of
642	DRX grains [38]. Robson et al. [59] demonstrated that coarse, hard second-phase
643	particles in Mg-Mn alloys, which promoted rapid sub-boundary migration during
644	deformation, were necessary for the subsequent occurrence of PSN. Deng et al. [60]
645	found that SiC particles of larger sizes (in the micrometer range) were more effective
646	in promoting PSN of AZ91-SiC composites and refining grains than SiC particles of
647	smaller sizes (in the sub-micrometer range). In the present investigation, second-phase
648	particle sizes increased with increasing initial billet temperature and DRX via PSN

649	would be more important. However, a higher temperature would weaken the
650	nucleation via DDRX. The competition between these two effects made the mean
651	grain size of the present alloy appear to be less sensitive to the initial billet
652	temperature than that of the magnesium alloy Mg-1.0Zn-0.5Ca with low alloying
653	contents [31].
654	
655	As reported earlier, extrusion speed appeared to have a mild influence on the mean
656	grain size of the present magnesium alloy. With increasing extrusion speed, the strain
657	rate of the deforming billet and the extrudate temperature increased. A higher
658	extrudate temperature would promote DRX grain growth, while a high strain rate
659	would restrain DRX grain growth by increasing nucleation rates. As a net result, the
660	direct influence of extrusion speed on the mean grain size became nearly invisible.
661	

662 **3.4 Mechanical properties**

Fig. 18 shows the tensile stress-strain curves of the magnesium alloy rods extruded at

different initial billet temperatures and extrusion speeds. Table 5 lists the tensile

properties of the magnesium rods extruded at a reduction ratio of 29.8, together with

mean grain sizes. After extrusion at initial billet temperatures of 523, 573, 623 and

667 673 K (250, 300, 350 and 400 °C) and a given stem speed of 3.93 mm/s, the extruded

rods had ultimate tensile strengths (UTSs) of 397 ± 7 , 387 ± 1 , 384 ± 3 and 367 ± 7

MPa, 0.2% offset yield strengths (YSs) of 217 ± 3 , 220 ± 5 , 221 ± 1 and 221 ± 6 MPa,

670	and elongation values of $20.8 \pm 1.3\%$, $18.2 \pm 0.4\%$, $15.8 \pm 0.4\%$ and $13.6 \pm 0.4\%$,
671	respectively. Clearly, both the UTS and the elongation decreased with rising initial
672	billet temperature, which could be attributed to finer DRX grains at a lower initial
673	billet temperature (Fig. 12 and Table 5). Precipitation strengthening, solid-solution
674	strengthening, dislocation strengthening and subgrain strengthening might have
675	contributed to the strength of the material extruded at a low temperature in addition to
676	fine grain strengthening [38].
677	
678	YS, UTS and elongation were only slightly improved by extrusion at a lower
679	extrusion speed. At a given initial billet temperature of 623 K (350 °C), the material
680	extruded at stem speeds of 0.96, 1.92 and 3.93 mm/s had the UTS values of 387 ± 1 ,
681	386 ± 4 and 384 ± 3 MPa, the YS values of 226 ± 4 , 225 ± 8 and 221 ± 1 MPa, and
682	elongation values of 17.0 \pm 1.4%, 16.6 \pm 0.5% and 15.8 \pm 0.4%, respectively (Table 5).
683	The trends were consistent with the trend of the mean grain size varying with
684	extrusion speed. It means that the scope to control the mean grain size and mechanical
685	properties by varying extrusion speed appeared to be quite limited, which would give
686	freedom to choosing extrusion speed for a higher production rate with only a little
687	effect on the mechanical properties.
688	

692

693 Table 5. Mechanical properties of the rods extruded at a reduction ratio of 29.8.

Stem Billet		UTS	YS	Elongation	Mean grain
speed	temperature	(MPa)	(MPa)	(%)	size
(mm/s)	(°C)				(µm)
	250	397 ± 7	217±3	20.8 ± 1.3	8.0 ± 0.3
2.02	300	387 ± 1	220 ± 5	18.2 ± 0.4	8.5 ± 0.5
3.93	350	384±3	$221\pm\!1$	15.8 ± 0.4	9.5 ± 0.3
	400	367 ± 7	221±6	13.6 ± 0.4	10.9 ± 0.3
1.92	350	386±4	225±8	16.6±0.5	8.9 ± 0.4
0.96	350	387 ± 1	226±4	17.0 ± 1.4	8.6 ± 0.5

695 The ultimate tensile strengths (UTS), yield strengths (YSs) and mean grain sizes of

selected Mg alloys are listed in Table 6 for comparison. It can be seen that the present 696

alloy has a mean grain size similar to the mean grain sizes of the magnesium alloys 697

AZ80 [34] and AZ80-1.52La-1.10Gd [61]. However, the present alloy has a higher 698

699 UTS value than the other magnesium alloys of similar compositions. First of all, an

700 optimized extrusion condition (reduction ratio: 29.8, initial billet temperature: 523 K

701	(250 °C) and ram speed: 3.93 mm/s) was employed to extrude the present alloy.
702	Moreover, the addition of the rare earth elements raises the strengths of magnesium
703	alloys. For example, Jiang et al. [50] found that over a Gd content range of 0.3% to
704	4%, the magnesium alloy AZ80 added with 0.9% Gd exhibited optimum mechanical
705	properties. This was because coarse second phase particles were formed when
706	excessive Gd was added to the magnesium alloy, thereby becoming detrimental to the
707	mechanical properties. Over all, the magnesium alloy with high mechanical properties,
708	both in UTS, YS and elongation, were obtained through adding rare earth elements to
709	AZ80 and extrusion at the optimized condition.
710	
711	Magnesium alloys with even finer grains and higher mechanical properties can be
712	prepared through severe plastic deformation (SPD) [62, 63]. For example, Razavi et al.
713	[63] demonstrated that via the multi-temperature (398 K to 473 K, i.e., 125 °C to
714	200 °C) equal-channel angular processing (ECAP) the magnesium alloy AZ31
715	exhibited extraordinarily high mechanical properties (YS = 385 ± 6 MPa, UTS = $455 \pm$
716	4 MPa, elongation=12.7%), owing to the ultra-fine grains (mean grain size= $0.35 \pm$
717	0.10 um) formed during SPD. While the SPD process can significantly improve the
718	mechanical properties of magnesium alloys, this process is only suitable for
719	small-scale material preparation. With the industrial application taken into
720	consideration, the commercial extrusion process may be more advantageous than the
721	SPD process.

723

Table 6. Yield strengths, ultimate tensile strengths and mean grain sizes of selected
 Mg alloys for comparison.

Alloy (wt%)	UTS	YS	Mean	Extrusion condition		
	(MPa)	(MPa)	grain size	Reduction	Initial billet	Ram
			(uiii)	Tutio	(°C)	(mm/s)
AZ80 [34]	317-328	200-225	6-8	44	250-350	1
AZ80-1.52La-1.10Gd [61]	304-311	180-225	8.2-13.1	33.6	240-380	2
Mg-3Al-1Zn [63] *	455±4	385±6	0.35 ± 0.10	-	-	-
AZ80-0.2Y-0.2Gd-0.1La [64]	306	264	12 ±2	10	380	-
AZ80-1.2Gd-0.8Nd [65]	325	262	-	10	-	-
AZ91-1Ca-0.5Si-0.1La-0.1Ce	318	278	3	30	360	1.45
[66]						
AZ91-0.3La [67]	330	180	-	17.4	350	1.7
Mg [68]	165	71	33	16.4	350	1.83
Mg-0.2Ce [68]	200-210	-	8	16.4	350	1.83
Mg-3Al [68]	226	105	23	16.4	350	1.83
AZ31 [69]	247	203	23	-	370	-
AM-EX1 [69]	259	184	7	-	370	-
Mg-(0.88-0.96) Mn-(0.32-2.11) Sr [70]	220-250	140-210	35-45	7	350	8
Present alloy (AZ80-1La-0.5Gd)	397±7	217 ± 3	8.0±0.3	29.8	250	3.93

726 * The values were achieved through severe plastic deformation.

728 **4. Conclusions**

The extrudability and the effects of extrusion process parameters on the

730 microstructure and mechanical properties of a new Mg-Al-Zn-RE alloy with large

amounts of alloying elements were investigated by means of extrusion experiments

and FE simulations. The following conclusions could be drawn.

⁷²⁷

733 (1) Hot shortness was the main defect negatively affecting the surface quality of the extruded magnesium alloy. The tendency for hot shortness to occur increased 734 735 with increasing initial billet temperature, extrusion speed and reduction ratio. The 736 critical temperature for hot shortness to occur was found to be between 754 K and 768 737 K (481 °C and 495 °C). 738 (2) DRX occurred during hot extrusion and grains were significantly refined. 739 The mean grain size of the extruded alloy decreased with decreasing initial billet temperature. An increase in extrusion speed and reduction ratio only slightly 740 741 promoted DRX grain growth. Fine grains with a mean size of 8.0 (± 0.3) µm were 742 present in the alloy extruded at an initial billet temperature of 523 K (250 °C), stem speed of 3.93 mm/s and reduction ratio of 29.8. 743 744 (3) The Mg₁₇Al₁₂ phase dynamically precipitated during extrusion from the 745 supersaturated magnesium matrix after the solid solution treatment. The Al₁₁La₃ phase 746 was crushed during extrusion. A large number of second-phase particles with sizes 747 smaller than 1.0 µm were distributed on grain boundaries. The volume fraction of 748 second-phase particles decreased with rising extrudate temperature. These particles aided in DRX grain refinement through particle-stimulated nucleation and grain 749 750 boundary pinning. 751 (4) The UTS and elongation of the extruded rod increased with decreasing initial billet temperature and extrusion speed. The extruded rod with an optimum 752 combination of mechanical properties (YS= 217 ± 3 MPa, UTS= 397 ± 7 MPa and

45

elongation=20.8% (±1.3%)) was obtained at an initial billet temperature of 523 K
(250 °C), stem speed of 3.93 mm/s and reduction ratio of 29.8 mainly as a result of a
refined grain structure.

757

758 Acknowledgements

- 759 The authors (Gang Fang and Sheng-Wen Bai) greatly appreciate the financial support
- 760 of the National Natural Science Foundation of China (Project No.51675300).

761

762 **References**

- 763 [1] M.K. Kulekci, Int. J. Adv. Manuf. Tech., 2008, vol. 39, pp. 851-865.
- 764 [2] A.A. Luo, Int. Mater. Rev., 2004, vol. 49, pp. 13-30.
- 765 [3] E.F. Volkova, Met. Sci. Heat Treat., 2006, vol. 48, pp. 473-478
- 766 [4] S. Yao, Y.F. Li, Sci. Total Environ., 2015, vol. 44, pp. 89-96.
- 767 [5] H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloy. Compd., 2016,
- vol. 663, pp. 321-331.
- 769 [6] D. Letzig, J. Swiostek, J. Bohlen, P. A. Beaven, K.U. Kainer, Metal Science J.,
- 770 2013, vol. 24, pp. 991-996.
- 771 [7] A.A. Luo, J. Magn. Alloy., 2013, vol. 1, pp. 2-22.

- [8] W. A. Monteiro, S. J. Buso, L. V. da Silva, Application of magnesium alloys in
 transport, in: W.A. Monteiro (Ed.), New Features on Magnesium Alloys, InTech,
 Rijeka, 2012, pp. 1-14.
- 775 [9] S. You, Y. Huang, K.U. Kainer, N. Hort, J. Magn. Alloys, 2017, vol. 5, pp.
 776 239-253.
- [10]Z. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, N. Birbilis, Int. Mater. Rev., 2018,
 vol. 2, pp. 1-36.
- [11]C. Bettles, M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of
- Processing, Properties and Applications, Woodhead Publishing, Philadelphia, PA,
 USA, 2012, pp. 304-322.
- [12] D.S. Yin, E.L. Zhang, S.Y. Zeng, Trans. Nonferr Metal. Soc., 2008, vol. 18, pp.
 763-768.
- 784 [13] W.N. Tang, S.S. Park, B.S. You, Mater. Des., 2011, vol. 32, pp. 3537-3543.
- 785 [14] S. M. Masoudpanah, R. Mahmudi, Mater. Sci. Eng., 2009, vol. A526, pp. 22-30.
- 786 [15]B. Zhang, Y. Wang, L. Geng, C. Lu, Mater. Sci. Eng. A, 2012, vol. 539, pp. 56-60.
- [16] J. Bohlen, S. Yi, D. Letzig, K.U. Kainer, Mater. Sci. Eng. A, 2010, vol. 527, pp.
 788 7092-7098.
- [17] D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han, J. Alloy. Compd., 2007, vol. 432,
 pp. 129-134.
- 791 [18] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, J. Alloy. Compd., 2006, vol. 426, pp. 155-161.
- 792 [19] N. Stanford, M. R. Barnett, Mater. Sci. Eng. A, 2008, vol. 496, pp. 399-408.

- [20] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater., 2011, vol.
 59, pp. 3646-3658.
- 795 [21]X. Li, W. Qi, K. Zheng, N. Zhou, J. Magn. Alloys, 2013, vol. 1, pp. 54-63.
- 796 [22] X. Zeng, Y. Zhang, C. Lu, W. Ding, Y. Wang, Y. Zhu, J. Alloy. Compd., 2005, vol.
- 797 395, pp. 213-219.
- 798 [23] N. Stanford, D. Atwell, M. R. Barnett, Acta Mater., 2010, vol. 58, pp. 6773-6783.
- 799 [24] J.B. Zhang, L.B. Tong, C. Xu, Z.H. Jiang, L.R. Cheng, S. Kamado, H.J. Zhang,
- 800 Mater. Sci. Eng. A, 2017, vol. 708, pp. 11-20.
- 801 [25] T. Homma, N. Kunito, S. Kamado, Scripta Mater., 2009, vol. 61, pp. 644-647.
- 802 [26] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Scripta Mater., 2005, vol. 53,
 803 pp. 799-803.
- 804 [27] Y. Chen, L. Hao, Y. Ruiyu, G. Liu, T. Xia, Mater. Sci. Technol., 2014, vol. 30, pp.
 805 495-500.
- 806 [28] A. A. Luo, C. Zhang, A. K. Sachdev, Scripta Mater., 2012, vol. 66, pp. 491-494.
- 807 [29] T. Murai, S.I. Matsuoka, S. Miyamoto, Y. Oki, J. Mater. Process. Technol., 2001,
- 808 vol. 141, pp. 207-212.
- [30] S. Ishihara, H. Shibata, K. Komano, T. Goshima, Z.Y. Nan, Key Eng. Mater., 2007,
- 810 vol. 353, pp. 291-294.
- 811 [31] B.P. Zhang, L. Geng, L.J. Huang, X.X Zhang, C.C. Dong, Scripta Mater., 2010, vol.
- 812 63, pp. 1024-1027.

- 813 [32] L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, H.J. Zhang,
- 814 Mater. Charact., 2015, vol. 104, pp. 66-72.
- 815 [33] S.H. Park, J.G. Jung, Y.M. Kim, B.S. You, Mater. Lett., 2015, vol. 139, pp. 35-38.
- 816 [34] M. Shahzad, L. Wagner, Mater. Sci. Eng. A, 2009, vol. 506, pp. 141-147.
- 817 [35]Q. Chen, D. Shu, Z. Zhao, Z. Zhao, Y. Wang, B. Yuan, Mater. Des., 2012, vol. 40,
- 818 pp. 488-496.
- 819 [36] A. Singh, Y. Osawa, H. Somekawa, H. Somekawa, T. Mukai, C.J. Parrish, D.S.
- 820 Shih, Metall. Mater. Trans. A, 2014, vol. 45, pp. 3232-3240.
- [37] S.H. Park, J.H. Bae, S.H. Kim, J. Yoon, B.S. You, Metall. Mater. Trans. A, 2015,
 vol. 46, pp. 5482-5488.
- [38] F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, W. Sun, J. Alloy. Compd., 2016, vol.
 688, pp. 1241-1250.
- 825 [39]X. Luo, S. Dang, L. Kang, Adv. Mater. Sci. Eng., 2014, vol. 2014, pp. 1-7.
- 826 [40] J. Mohammadi, M. Ghoreishi, Y. Behnamian, Mater. Res., 2014, vol. 17, pp.
- 827 **994-1002**.
- 828 [41] C.M. Sellars, W.J. McTegart, Acta Metall., 1966, vol. 14, pp. 1136–38
- 829 [42] L. Li, H. Zhang, J. Zhou, J. Duszczyk, G. Li, Z.H. Zhong, Mater. Des., 2008, vol.
- 830 29, pp. 1190-1198.
- 831 [43]G. Liu, J. Zhou, J. Duszczyk, J. Mater. Process. Technol., 2008, vol. 200, pp.
- 832 185-198.

- [44] L. Li, J. Zhou, and J. Duszczyk, J. Mater. Process. Technol., 2006, vol. 172, pp.
 372–80.
- 835 [45]J. Zhou, L. Li, J. Duszczyk, J. Mater. Process. Technol., 2003, vol. 134, pp.
 836 383-397.
- 837 [46] T. Sheppard, Extrusion of Aluminum Alloys, Kluwer Academic Publishers,
- B38 Dordrecht, The Netherlands, 1999, pp. 227–52.
- 839 [47] M.P. Clade, T. Sheppard, Mater. Sci. Technol., 1993, vol. 9, pp. 313-318.
- 840 [48] W. Wei, C. Xu, J. Zhang, X. Niu, China Foundry, 2014, vol. 11, pp. 157-162.
- 841 [49] Y.S. Yang, J.C. Wang, T. Wang, C.M. Liu, Z.M. Zhang, Trans. Nonferr Metal. Soc.,
- 842 2014, vol. 24, pp. 76-81.
- 843 [50] N. Jiang, L.G. Meng, X.G. Zhang X G, L. Chen, C.F. Fang, H. Hao, Rare Met.,
- 844 2017, pp. 1-7.
- [51]X.D. Wang, W.B. Du, K. Liu, Z.H. Wang, S.B. Li, J. Alloys Comp., 2012, vol. 522,
 pp. 78–84.
- 847 [52] J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc., 1972, vol. 55, pp. 109-109.
- [53]H. Ding, L. Liu, S. Kamado, D. Wang, Y. Kojima, J. Alloy. Compd., 2008, vol. 456,
 pp. 400-406.
- 850 [54] S.W Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Scripta Mater., 2009,
- 851 vol. 61, pp. 249-252.
- 852 [55] S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A, 2007, vol.
- 853 456, pp. 52-57.

- 854 [56]O. Sitdikov, R. Kaibyshev, Mater. Trans., 2001, vol. 42, pp. 1928-1937.
- 855 [57] A.G. Beer, M.R. Barnett, Metall. Mater. Trans. A, 2007, vol. 38, pp. 1856-1867.
- 856 [58]L. Wang, G. Fang, L. Qian, Mater. Sci. Eng. A, 2018, vol. 711, pp. 268-283.
- 857 [59] J.D. Robson, D.T. Henry, B. Davis, Acta Mater., 2009, vol. 57, pp. 2739-2747.
- 858 [60] K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, W.M. Gan, Mater. Sci. Eng. A,
- 859 2012, vol. 543, pp. 158-163.
- 860 [61]Q. Liao, X. Chen, Q. Lan, F. Ning, Q. Le, Mater. Res. Express, 2018, vol. 5, pp.
- 861 1-10.
- 862 [62] D.C. Foley, M. Al-Maharbi, K.T. Hartwig, I. Karaman, L.J. Kecskes, S.N.
- 863 Mathaudhu, Scripta Mater., 2011, vol. 64, pp. 193-196.
- 864 [63] S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes,
- S.N. Mathaudhu, V.H. Hammond, Scripta Mater., 2012, vol. 67, pp. 439-442.
- 866 [64] K. Cai, Z. Gao, Q. Zhu, Y. Jin, Y. Chai, D. Fang, Rare Metal Mater. Eng., 2015, vol.
- 867 44, pp. 1489-1493.
- 868 [65] Q. Zhu, C. Fang, N. Li, L. Meng, Y. Wang, Y. Wu, X. Zhang, Rare Metal Mater.
- 869 Eng., 2013, vol. 42, pp. 771-775.
- [66] C. Che, Z. Cai, X. Yang, L. Cheng, Y. Du, Mater. Sci. Eng. A, 2017, vol. 705, pp.
 282-290.
- 872 [67] L. Fu, X.B. Wang, P.L. Gou, Q.C. Le, W. T. Jia, Y. Tang, Adv. Eng. Mater., 2017,
- 873 vol. 19, pp. 1700230.

- [68] A.A. Luo, W. Wu, R.K. Mishra, L. Jin, A.K. Sachdev, W. Ding, Metall. Mater.
- 875 Trans. A, 2010, vol. 41, pp. 2662-2674.
- 876 [69] M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T.
- 877 Hilditch, P. Beggs, JOM, 2008, vol. 60, pp. 57-62.
- 878 [70]H. Borkar, M. Hoseini, M. Pekguleryuz, Mater. Sci. Eng. A, 2012, vol. 549, pp.

879 168-175.

880 Table and figure captions

- Table 1. Nominal chemical composition (wt.%) of the Mg-Al-Zn-RE alloy.
- Table 2. Constitutive constants of the magnesium alloy (Mg-Al-Zn-RE).
- Table 3. Physical properties of the billet and extrusion tooling.
- Table 4. EDS analysis of second-phase particles in the as-cast alloy.
- Table 5. Mechanical properties of the rods extruded at a reduction ratio of 29.8.
- Table 6. Yield strengths, ultimate tensile strengths and mean grain sizes of selected
- 887 Mg alloys for comparison.

888

Fig. 1. Flow stress curves of the magnesium alloy at temperatures from 773 K to 693

890 K (300 °C to 420 °C) and strain rates (a) 0.001 s⁻¹, (b) 0.01 s⁻¹, (c) 0.1 s⁻¹, (d) 1 s⁻¹ and

891 (e) 10 s^{-1} .

Fig. 2. Tooling set-up to extrude rods: (a) schematic and (b) dimensions of one of theextrusion dies.

Fig. 3. Schematic of the longitudinal section of an extruded rod for microstructureobservation.

Fig. 4. Axisymmetric FE model to simulate the extrusion process to produce rods.

Fig. 5. Predicted temperature distribution inside the billet, extrudate and extrusion

tooling (a) and comparison between the measured and predicted temperatures at P1

- along with stem displacement (b).
- 900 Fig. 6. FE simulated temperature evolutions at point P2 during extrusion: (a) at a

901 reduction ratio of 29.8, stem speed of 3.93 mm/s and different initial billet

902 temperatures, (b) at a reduction ratio of 29.8, initial billet temperature of 623 K

903 (350 °C) and different stem speeds, and (c) at a reduction ratio of 51.0, initial billet

temperature of 623 K (350 °C) and different stem speeds.

Fig. 7. Simulated temperatures at point P2 with friction factor values of 0 and 1.

Fig. 8. Magnesium alloy rods extruded at a reduction ratio of 29.8, stem speed of 3.93

907 mm/s and different billet temperatures. (a) T=523 K (250 °C) and T_e=702 K (429 °C);

908 (b) T=573 K (300 °C) and T_e=723 K (450 °C); (c) T=623 K (350 °C) and T_e=749 K

909 (476 °C); (d) T=673 K (400 °C) and Te=769 K (496 °C); (e) T=713 K (440 °C) and

910 $T_e=793$ K (520 °C). T_e is the maximum extrudate temperature.

911 Fig. 9. Magnesium alloy rods extruded at a reduction ratio of 29.8, initial billet

- 912 temperature of 623 K (350 °C) and different stem speeds. (a) v= 0.96 mm/s and
- 913 $T_e=674$ K (401°C); (b) v=1.92 mm/s and $T_e=712$ K (439 °C); (c) v=3.93 mm/s and
- 914 $T_e=749 \text{ K} (476 \text{ °C}); \text{ (d) } v=6.48 \text{ mm/s} \text{ and } T_e=768 \text{ K} (495 \text{ °C}); \text{ (e) } v=8.24 \text{ mm/s} \text{ and}$
- 915 $T_e=787 \text{ K} (514^{\circ}\text{C})$. T_e is the maximum extrudate temperature.
- 916 Fig. 10. Magnesium alloy rods extruded at a reduction ratio of 51.0, initial billet
- 917 temperature of 623 K (350 °C) and different stem speeds. (a) v= 0.96 mm/s and
- 918 $T_e=690 \text{ K} (417 \text{ °C}); (b) \text{ v}=1.92 \text{ mm/s} \text{ and } T_e=733 \text{ K} (460 \text{ °C}); (c) \text{ v}=3.07 \text{ mm/s} \text{ and}$
- 919 $T_e=754 \text{ K} (481^{\circ}\text{C}); (d) \text{ v}=3.93 \text{ mm/s} \text{ and } T_e=779 \text{ K} (506^{\circ}\text{C}); (e) \text{ v}=5.39 \text{ mm/s} \text{ and}$
- 920 Te=786 K (513 °C). Te is the maximum extrudate temperature.
- 921 Fig. 11. Microstructures of the Mg-Al-Zn-RE alloy: (a) dendritic structure of the
- 922 as-cast alloy; (b) equiaxed grain structure of the solid-solution-treated alloy; (c) SEM
- 923 micrograph of the as-cast alloy; (d) SEM micrograph of the solid-solution treated
- alloy; (e-h) EDS element maps of Al₂Gd, Al₁₁La₃, Mg₁₇Al₁₂ and Al₈Mn₅ phases.
- Fig. 12. Optical micrographs of the magnesium alloy rods extruded at a reduction
- ratio of 29.8, stem speed of 3.93 mm/s and initial billet temperatures of (a) 523, (b)
- 927 573, (c) 623, (d) 673 and (e) 713 K [(a) 250, (b) 300, (c) 350, (d) 400 and (e) 440 °C].
- 928 Fig. 13. SEM micrographs and distributions of the sizes of second-phases particles in
- the rods extruded at a reduction ratio of 29.8, stem speed of 3.93 mm/s and initial
- 930 billet temperatures of (a) (c) 523 K (250 °C) and (b) (d) 623 K (350 °C).

- Fig. 14. Optical micrographs of the magnesium alloy rods extruded at a reduction
- ratio of 29.8, initial billet temperature of 623 K (350 °C) and stem speeds of (a) 0.96,
- 933 (b) 1.92, (c) 3.93, (d) 6.48 and (e) 8.24 mm/s.
- Fig. 15. SEM micrograph (a) and distribution of the size of second-phase particles (b)
- in the rods extruded at a reduction ratio of 29.8, stem speed of 0.96 mm/s and initial
- 936 billet temperature of 623 K (350 °C).
- Fig. 16. Microstructures of the magnesium alloy rods extruded at an initial billet
- temperature of 623 K (350 °C), stem speed of 0.96 mm/s and reduction ratio of 51.0:
- 939 (a) optical micrograph; (b) SEM micrograph; (c) distribution of the sizes of
- 940 second-phase particles.
- Fig. 17. SEM micrograph (20,000X) of the magnesium alloy rod extruded at an initial
- billet temperature of 523 K (250 °C), extrusion speed of 3.93 mm/s and a reduction
- 943 ratio of 29.8.
- Fig. 18. Tensile stress-strain curves of the magnesium alloy rods extruded (a) at
- 945 different billet temperatures and (b) at different extrusion speeds.