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Abstract—Today’s computer architectures and semiconductor
technologies are facing major challenges making them incapable
to deliver the required features (such as computer efficiency) for
emerging applications. Alternative architectures are being under
investigation in order to continue deliver sustainable benefits for
the foreseeable future society at affordable cost. These architec-
tures are not only changing the traditional computing paradigm
(e.g., in terms of programming models, compilers, circuit design),
but also setting up new challenges and opportunities concerning
the test and reliability. This tutorial targets the challenges and
opportunities of using approximate computing for achieving low
cost fault tolerance mechanisms.

Index Terms—Approximate computing, fault model, test, reli-
ability

I. INTRODUCTION

Energy and computer efficiency is undoubtedly one of the ma-
jor driving forces of current computer industry, which is relevant
not only for supercomputers, but also for small portable personal
electronics and sensors. However, today’s computing architectures
(mainly based on the CMOS technology) are facing major chal-
lenges making them unable to meet the requirements. Such chal-
lenges are: power wall, memory wall and Instruction Level Par-
allelism wall [1]–[3]. For example, the memory wall is due to
the increasing gap between processor and memory speeds, which
limits the data transfer time and leads to significant energy con-
sumption during the data transfer varying from 70% up to 90% of
the overall energy spent by the computing system [4]. Moreover,
even the dominating CMOS technology (which made manufactur-
ing of computers feasible) is suffering, especially nodes below 20
nm. At this level the physical characteristics of such devices are
leading to high static power consumption, reduced reliability; not
to mention increased cost [5]. All of these have led to saturated
computer performance and the slowdown of the traditional device
scaling, making today’s computing systems unable to deliver the
required computing and energy efficiency. For example, artificial
intelligence is ready to provide solutions in many domains; however,
the resource and power demands of the underlying algorithms and
implementations are way too high for the target applications. For
instance, the amazing performance of AlphaGo [6] required 4 to 6
weeks of training executed on 2000 CPUs and 250 GPUs for a total
of about 600kW of power consumption (while the human brain of a
go player requires about 20W).

A new design and programming paradigm, Approximate Com-
puting (AxC), has been proposed as a means to make computing
systems more energy efficient, faster, and less complex. Intuitively,
instead of performing exact computation and, consequently, requir-
ing a high amount of resources, AxC aims at selectively violation of

the specifications, trading accuracy for efficiency. The effectiveness
of imprecise computation for both software and hardware compo-
nents implementing inexact algorithms has been demonstrated in the
literature, showing an inherent resiliency to errors [7]–[9].

This tutorial focuses on the safety critical systems and it further
discusses the impact of Approximate Computing on the system
reliability [10]. More in particular, it aims at showing that it is
possible to use Approximate Computing to implement efficient fault
tolerant architectures. The ultimate goal is to determine the trade-off
between the degree of the approximation VS the reliability to finally
increase the system lifetime.

Approximate computing has been proposed to achieve energy
efficient computation at the cost of accuracy reduction [11]. Hard-
ware designs can profit from approximation to generate circuits with
smaller area, thus reducing energy consumption and delay. Software
projects use approximation mainly to reduce memory footprint
and execution time. Approximation also impacts the system fault
tolerance due to its nature [12]. Approximate computing algorithms
already handle small inaccuracies generated by the approximation.
Thus, very small data corruption errors might not even be noticed by
the system as a whole. Some approximation strategies are also inher-
ently fault tolerant. Such is the case of successive approximation: an
approximation method that consists of loop executions generating an
ever-improving output. This approximation method can also work as
a fault tolerance mechanism by itself, given that an error affecting
one iteration of the loop can be corrected on the following ones
[13]. A designer can use loop perforation to balance execution time
and accuracy on successive approximation algorithms, which also
impacts the fault tolerance of the system [13]. Another very common
approximation method is data size reduction [9], which consists of
representing data with less bits than usual. This method has little-
to-none impact on software execution time but can highly reduce
memory footprint.

Numerical and mathematical properties can also be used to pro-
vide valid functional approximation. Taylor series, for example, are
used in mathematics to represent a function as a sum of previously
calculated terms. The more terms are used, the more accurate the
approximation. This type of method can be applied both to software
and hardware designs, with different costs [14]. On hardware, the
price to pay for more accuracy is either more hardware area or
a higher delay: a designer might choose an implementation with
pipelines to make it faster (and bigger) or a smaller, loop-execution
circuit with a higher delay. On software, the price to pay for this
type of approximation is always the execution time. Even on parallel
systems, where multiple terms could be executed concurrently, this
execution would take processing resources that could otherwise be
used to improve the system’s performance. Naturally, this approxi-
mation method also has a high impact on the system fault tolerance:
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Fig. 1. Approximate TMR diagram.

using bigger hardware increases the probability of a fault, due to
a higher number of critical bits. Algorithms with higher execution
times are also known to have a higher susceptibility to errors [15],
given that they are exposed to more faults per second (in a real use-
case scenario of the system execution in a hazardous environment).

Approximate computing can also be used to reduce the costs
of traditional fault tolerance methods. Triple modular redundancy
(TMR) is one of the most studied fault tolerance and error masking
methods in the literature [15]. In its more traditional form, it consists
of triplicating a circuit or software code and implementing a checker
to verify the consistency of the three execution outputs. If one of the
outputs is different from the other two, it shall contain an error that
can be masked by the method by accepting the output from the other
redundancies as the correct one. Triplicating a whole portion of the
system, however, has a high cost (at least 300% area overhead, or
execution time for non-parallel software). Approximate computing
can be used to provide approximate low-cost redundancies, thus
reducing the fault tolerance method costs.

Approximate TMR (ATMR) consists of implementing a TMR
with approximate redundancies. It can be applied to both hardware
and software projects. Nevertheless, ATMR has to deal with the
accuracy loss inherent to approximation. On a traditional TMR
approach, the three output values can be compared and checked for
errors by a simple bitwise operation. However, an ATMR method
needs to handle a possible accuracy difference between the three
redundancies. One way of dealing with approximation on ATMR
is defining design spaces and assuring that, even in the absence
of faults, at least two results will always have the same output
[16]. This technique assures that a possible difference caused by
the approximation will not turn into an error in the absence of
faults. Another way of dealing with the approximation issue on the
ATMR checker is with difference thresholds. In this case, the ATMR
checker shall only consider an error if the difference between the
redundancies outputs is higher than a given threshold. This threshold
is defined by the system inaccuracy acceptance. Fig. 1 depicts an
example of ATMR compared to the TMR. It can be noticed that
ATMR will execute tasks R1’ and R2’ that are approximate version
of the task R0. In this way the overall execution time (t5) will be
lower than the TMR execution time (t7).

Some safety-critical systems, in special real-time systems, might
not need error masking. Real-time systems deal with data freshness
requirements, which define time intervals on which data is consid-
ered to be updated and valid. A navigation system, for example,
might present an error in the data that comes from a radar scan, but
because new data coming from a new scan will be generated soon the
erroneous data will be overwritten (or even become useless) shortly.
In those cases, error masking might be not only unnecessary but
also impracticable due to the short data freshness time interval. It is,
however, important for the user to know if the current data is to be
trusted or not. In an avionics system, for instance, a pilot must know
if the date he sees in a panel is trustworthy or not, and take safety
measures if needed. Approximation can be used to provide cheap
redundancy to mathematically predict if a certain data is inside a
possible window of value, and warn the user in the case where the
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