
 
 

Delft University of Technology

Exploiting Approximate Computing for implementing Low Cost Fault Tolerance
Mechanisms

Bosio, A.; O'Connor, I.; Rodrigues, G. S.; Lima, F. K.; Hamdioui, S.

DOI
10.1109/DTIS48698.2020.9081268
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings - 2020 15th IEEE International Conference on Design and Technology of Integrated Systems
in Nanoscale Era, DTIS 2020

Citation (APA)
Bosio, A., O'Connor, I., Rodrigues, G. S., Lima, F. K., & Hamdioui, S. (2020). Exploiting Approximate
Computing for implementing Low Cost Fault Tolerance Mechanisms. In Proceedings - 2020 15th IEEE
International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2020
Article 9081268 IEEE. https://doi.org/10.1109/DTIS48698.2020.9081268
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DTIS48698.2020.9081268
https://doi.org/10.1109/DTIS48698.2020.9081268


Exploiting Approximate Computing for
implementing Low Cost Fault Tolerance

Mechanisms
A. Bosio1, I. O’Connor1, G. S. Rodrigues2, F. K. Lima2, S. Hamdioui3

1INL - École Centrale de Lyon, France – Email: alberto.bosio@ec-lyon.fr
2Instituto de Informatica, PGMicro - Universidade Federal do Rio Grande do Sul, Brazil – Email: gsrodrigues@inf.ufrgs.br

3Computer Engineering Lab, Delft University of Technology, The Netherlands – Email: S.Hamdioui@tudelft.nl

Abstract—Today’s computer architectures and semiconductor
technologies are facing major challenges making them incapable
to deliver the required features (such as computer efficiency) for
emerging applications. Alternative architectures are being under
investigation in order to continue deliver sustainable benefits for
the foreseeable future society at affordable cost. These architec-
tures are not only changing the traditional computing paradigm
(e.g., in terms of programming models, compilers, circuit design),
but also setting up new challenges and opportunities concerning
the test and reliability. This tutorial targets the challenges and
opportunities of using approximate computing for achieving low
cost fault tolerance mechanisms.

Index Terms—Approximate computing, fault model, test, reli-
ability

I. INTRODUCTION

Energy and computer efficiency is undoubtedly one of the ma-
jor driving forces of current computer industry, which is relevant
not only for supercomputers, but also for small portable personal
electronics and sensors. However, today’s computing architectures
(mainly based on the CMOS technology) are facing major chal-
lenges making them unable to meet the requirements. Such chal-
lenges are: power wall, memory wall and Instruction Level Par-
allelism wall [1]–[3]. For example, the memory wall is due to
the increasing gap between processor and memory speeds, which
limits the data transfer time and leads to significant energy con-
sumption during the data transfer varying from 70% up to 90% of
the overall energy spent by the computing system [4]. Moreover,
even the dominating CMOS technology (which made manufactur-
ing of computers feasible) is suffering, especially nodes below 20
nm. At this level the physical characteristics of such devices are
leading to high static power consumption, reduced reliability; not
to mention increased cost [5]. All of these have led to saturated
computer performance and the slowdown of the traditional device
scaling, making today’s computing systems unable to deliver the
required computing and energy efficiency. For example, artificial
intelligence is ready to provide solutions in many domains; however,
the resource and power demands of the underlying algorithms and
implementations are way too high for the target applications. For
instance, the amazing performance of AlphaGo [6] required 4 to 6
weeks of training executed on 2000 CPUs and 250 GPUs for a total
of about 600kW of power consumption (while the human brain of a
go player requires about 20W).

A new design and programming paradigm, Approximate Com-
puting (AxC), has been proposed as a means to make computing
systems more energy efficient, faster, and less complex. Intuitively,
instead of performing exact computation and, consequently, requir-
ing a high amount of resources, AxC aims at selectively violation of

the specifications, trading accuracy for efficiency. The effectiveness
of imprecise computation for both software and hardware compo-
nents implementing inexact algorithms has been demonstrated in the
literature, showing an inherent resiliency to errors [7]–[9].

This tutorial focuses on the safety critical systems and it further
discusses the impact of Approximate Computing on the system
reliability [10]. More in particular, it aims at showing that it is
possible to use Approximate Computing to implement efficient fault
tolerant architectures. The ultimate goal is to determine the trade-off
between the degree of the approximation VS the reliability to finally
increase the system lifetime.

Approximate computing has been proposed to achieve energy
efficient computation at the cost of accuracy reduction [11]. Hard-
ware designs can profit from approximation to generate circuits with
smaller area, thus reducing energy consumption and delay. Software
projects use approximation mainly to reduce memory footprint
and execution time. Approximation also impacts the system fault
tolerance due to its nature [12]. Approximate computing algorithms
already handle small inaccuracies generated by the approximation.
Thus, very small data corruption errors might not even be noticed by
the system as a whole. Some approximation strategies are also inher-
ently fault tolerant. Such is the case of successive approximation: an
approximation method that consists of loop executions generating an
ever-improving output. This approximation method can also work as
a fault tolerance mechanism by itself, given that an error affecting
one iteration of the loop can be corrected on the following ones
[13]. A designer can use loop perforation to balance execution time
and accuracy on successive approximation algorithms, which also
impacts the fault tolerance of the system [13]. Another very common
approximation method is data size reduction [9], which consists of
representing data with less bits than usual. This method has little-
to-none impact on software execution time but can highly reduce
memory footprint.

Numerical and mathematical properties can also be used to pro-
vide valid functional approximation. Taylor series, for example, are
used in mathematics to represent a function as a sum of previously
calculated terms. The more terms are used, the more accurate the
approximation. This type of method can be applied both to software
and hardware designs, with different costs [14]. On hardware, the
price to pay for more accuracy is either more hardware area or
a higher delay: a designer might choose an implementation with
pipelines to make it faster (and bigger) or a smaller, loop-execution
circuit with a higher delay. On software, the price to pay for this
type of approximation is always the execution time. Even on parallel
systems, where multiple terms could be executed concurrently, this
execution would take processing resources that could otherwise be
used to improve the system’s performance. Naturally, this approxi-
mation method also has a high impact on the system fault tolerance:

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



Fig. 1. Approximate TMR diagram.

using bigger hardware increases the probability of a fault, due to
a higher number of critical bits. Algorithms with higher execution
times are also known to have a higher susceptibility to errors [15],
given that they are exposed to more faults per second (in a real use-
case scenario of the system execution in a hazardous environment).

Approximate computing can also be used to reduce the costs
of traditional fault tolerance methods. Triple modular redundancy
(TMR) is one of the most studied fault tolerance and error masking
methods in the literature [15]. In its more traditional form, it consists
of triplicating a circuit or software code and implementing a checker
to verify the consistency of the three execution outputs. If one of the
outputs is different from the other two, it shall contain an error that
can be masked by the method by accepting the output from the other
redundancies as the correct one. Triplicating a whole portion of the
system, however, has a high cost (at least 300% area overhead, or
execution time for non-parallel software). Approximate computing
can be used to provide approximate low-cost redundancies, thus
reducing the fault tolerance method costs.

Approximate TMR (ATMR) consists of implementing a TMR
with approximate redundancies. It can be applied to both hardware
and software projects. Nevertheless, ATMR has to deal with the
accuracy loss inherent to approximation. On a traditional TMR
approach, the three output values can be compared and checked for
errors by a simple bitwise operation. However, an ATMR method
needs to handle a possible accuracy difference between the three
redundancies. One way of dealing with approximation on ATMR
is defining design spaces and assuring that, even in the absence
of faults, at least two results will always have the same output
[16]. This technique assures that a possible difference caused by
the approximation will not turn into an error in the absence of
faults. Another way of dealing with the approximation issue on the
ATMR checker is with difference thresholds. In this case, the ATMR
checker shall only consider an error if the difference between the
redundancies outputs is higher than a given threshold. This threshold
is defined by the system inaccuracy acceptance. Fig. 1 depicts an
example of ATMR compared to the TMR. It can be noticed that
ATMR will execute tasks R1’ and R2’ that are approximate version
of the task R0. In this way the overall execution time (t5) will be
lower than the TMR execution time (t7).

Some safety-critical systems, in special real-time systems, might
not need error masking. Real-time systems deal with data freshness
requirements, which define time intervals on which data is consid-
ered to be updated and valid. A navigation system, for example,
might present an error in the data that comes from a radar scan, but
because new data coming from a new scan will be generated soon the
erroneous data will be overwritten (or even become useless) shortly.
In those cases, error masking might be not only unnecessary but
also impracticable due to the short data freshness time interval. It is,
however, important for the user to know if the current data is to be
trusted or not. In an avionics system, for instance, a pilot must know
if the date he sees in a panel is trustworthy or not, and take safety
measures if needed. Approximation can be used to provide cheap
redundancy to mathematically predict if a certain data is inside a
possible window of value, and warn the user in the case where the

data is absurd [17]. ACKNOWLEDGMENT

This work has been partially founded by CNRS PICS07968
project.

REFERENCES

[1] B. Hoefflinger, “Chips 2020,” The Frontiers Collection, 2012. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-23096-7

[2] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS
Annual Research Symposium (BEARS), College of Engineering, UC
Berkeley, US, 2006.

[3] A. Bosio et al., “Rebooting computing: The challenges for test and
reliability,” in 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2019, pp.
8138–8143.

[4] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2015, pp. 1718–1725.

[5] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
Proc. Conf. Des. Autom. Test Eur. European Design and Automation
Association, 2017, pp. 722–731.

[6] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[7] Q. Xu et al., “Approximate computing: A survey,” IEEE Design Test,
vol. 33, no. 1, pp. 8–22, 2016.

[8] L. Anghel et al., “Test and reliability in approximate computing,”
Journal of Electronic Testing, vol. 34, no. 4, pp. 375–387, Aug 2018.
[Online]. Available: https://doi.org/10.1007/s10836-018-5734-9

[9] S. Rehman et al., Heterogeneous Approximate Multipliers: Architectures
and Design Methodologies. Springer International Publishing, 2019,
pp. 45–66.

[10] G. Rodrigues et al., “Approximate tmr based on successive approx-
imation and loop perforation in microprocessors,” Microelectronics
Reliability, vol. 100-101, p. 113385, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0026271419304706

[11] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium
(ETS), May 2013, pp. 1–6.

[12] G. S. Rodrigues et al., “Evaluating the behavior of successive approxi-
mation algorithms under soft errors,” in 2017 18th IEEE Latin American
Test Symposium (LATS), March 2017, pp. 1–6.

[13] G. S. Rodrigues et al., “Exploring the inherent fault tolerance of
successive approximation algorithms under laser fault injection,” in 2018
IEEE 19th Latin-American Test Symposium (LATS), March 2018, pp. 1–
6.

[14] G. S. Rodrigues et al., “Analyzing the use of taylor series approximation
in hardware and embedded software for good cost-accuracy tradeoffs,”
in Applied Reconfigurable Computing. Architectures, Tools, and Appli-
cations, N. Voros et al., Eds. Cham: Springer International Publishing,
2018, pp. 647–658.

[15] ——, “Performances vs reliability: how to exploit approximate com-
puting for safety-critical applications,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), July
2018, pp. 291–294.

[16] I. A. Gomes et al., “Exploring the use of approximate tmr
to mask transient faults in logic with low area overhead,”
Microelectronics Reliability, vol. 55, no. 9, pp. 2072 – 2076,
2015, proceedings of the 26th European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0026271415300676

[17] G. S. Rodrigues et al., “Arft: An approximative redundant technique for
fault tolerance,” in 2018 Conference on Design of Circuits and Integrated
Systems (DCIS), Nov 2018, pp. 1–6.


