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Abstract
Neural signals exhibit a 1/𝑓𝑛 spectrum, spanning low-frequency local field potentials (LFPs) and higher-
frequency action potentials (APs), which imposes tight constraints on noise, power, area, and tolerance
to electrode DC offsets. This thesis presents a second-order Δ–ΔΣ analog front end (AFE) that performs
spectrum equalization for direct digitization of neural signals. A state-space methodology separates the
design into transfer-function specification, topology selection, and circuit implementation; an orthonor-
mal ladder representation provides intrinsic state scaling and maximizes dynamic range. At the circuit
level, a dynamic translinear (log-domain) equalization loop removes the need for a multi-bit DAC, re-
ducing digital overhead.

Implemented in TSMC 180nm BCD technology, the AFE occupies an estimated 0.00505mm2 per
channel and consumes 41.12 𝜇W in total (7.11 𝜇W in the 𝐺𝑚–C integrators, with the remainder in the
quantizer, DACs, and DTL block). The measured input-referred noise is 3.45 𝜇Vrms in the AP band
(300–10 kHz) and 14.08 𝜇Vrms in the LFP band (0.5–1 kHz), with a peak SNDR ≈ 69.8dB for a 20mVpp
input.These results validate that spectrum-equalized Δ–ΔΣ AFEs, when designed with structured state-
space methods and 𝑔𝑚/𝐼𝐷-guided sizing, offer an efficient and scalable solution for large-scale neural
recording systems.
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1
Introduction

CMOS high-density neural recording probes have become indispensable tools in neuroscience re-
search, enabling massive recordings of single-cell neural activity across different brain regions [1]–[3].
Over the past decade, there has been tremendous progress in the engineering of tools designed to
interact with the nervous system, from signal detection and processing to restoration and functional
enhancement [4]. While conventional extracellular probes provide excellent spatial and temporal res-
olution, they are limited to recordings from only a few dozen neurons per shank [4]. In contrast, CMOS
neural probes allow large-scale recordings at single-cell resolution across multiple brain regions, es-
tablishing a new standard in electrophysiology [5].

The high spatial resolution of these probes also drives the development of implantable brain–computer
interfaces (BCIs), which enable direct communication between the brain and external devices. Beyond
unidirectional control, bidirectional BCIs open opportunities for closed-loop neuromodulation [6], po-
tentially transforming the way neural disorders are studied and treated [7].

Despite these advances, developing readout circuitry to interface with high-density neural probes in-
troduces several challenges [8]. These include area and power efficiency, signal characteristics, noise
management, input impedance and biasing, connectivity, data handling, biocompatibility, and non-
idealities. Achieving higher channel density requires minimizing per-channel area. In addition to the
total power density, while maintaining low-noise performance. Neural signals are inherently weak,
ranging from tens of microvolts to millivolts [4], which demands low-noise amplification while rejecting
large and drifting electrode DC offsets (EDOs).

EDOs arise from the electrode–tissue interface, where electrochemical reactions generate a DC po-
tential difference. At the microscopic level, each electrode in contact with the ionic medium of brain
tissue develops a half-cell potential, which is necessary to enable the conversion between ionic and
electronic currents [4], [8]. Since the recording and reference electrodes are typically fabricated from
different materials and exhibit variations in geometry, surface properties, and local ionic concentrations,
their half-cell potentials do not cancel each other out. The difference between them manifests as the
electrode DC offset. These offsets can reach tens of millivolts, which poses a significant challenge to
low-dynamic-range analog front-ends. Moreover, EDOs are not constant but drift over time due to slow
electrochemical processes at the electrode–electrolyte boundary, further complicating stable signal ac-
quisition [4].

Noise from intrinsic device sources, digital coupling, and the electrode-tissue interface can further de-
grade recording quality. In addition, the high impedance of small electrodes necessitates careful input
bias network design to avoid signal attenuation while maintaining stability. Thus, a robust readout archi-
tecture must simultaneously tolerate large, drifting EDOs and preserve sensitivity to the microvolt-scale
neural signals. Moreover, power consumption must remain strictly limited to prevent excessive heat
dissipation into the surrounding tissue, as even small temperature increases (typically constrained to
less than 1∘𝐶) can cause irreversible neuronal damage [9].
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2 1. Introduction

This chapter is organized as follows. Section 1.1 introduces the concept of systematic design method-
ologies and explains how they can be applied at both the system and circuit levels. The state-space
approach for ΔΣ converter design is presented in Section 1.1.1, illustrating how the design problem can
be separated into transfer function, topology, and circuit phases. Section 1.1.2 introduces the 𝑔𝑚/𝐼𝐷
design methodology for circuit design, which provides a structured means of transistor sizing and bias-
ing. Section 1.2 outlines the overall organization of the thesis, and Section 1.3 concludes the chapter
by summarizing the motivation and stating the research question.

1.1. Systematic Design Methodology
The previous section highlighted that designing Analog Front Ends (AFEs) for neural signal acquisition
is challenging due to the difficulty in balancing power, area, EDO, and noise. This work suggests that
using systematic design methods at different levels of abstraction can lead to designs that are easier
to replicate, adapt to different technology nodes, and achieve high performance with fewer design
iterations. To support this, two systematic approaches will be introduced, one at the system level [10],
[11], and one at the circuit level [12].

1.1.1. State Space Approach for Optimal Design of ΔΣ Converters
As previously stated, the power and noise specifications pose a major design challenge. Hence, it is
interesting to investigate if further system-level optimizations could be performed to yield better spec-
ifications.Past work [13] [10] suggest that a state space-based approach could be used to design an
AFE with arbitrary transfer characteristics.

The state space approach reported in [10] (based on [11]) relies on separating the design problem
into three phases:

1. the filter transfer function design phase,

2. the filter topology design phase

3. the filter circuit design phase.

During the first design phase, a set of requirements is used to derive a transfer function whose Laplace
transform can be expressed in a proper rational function of low order. In the second phase, the transfer
function will be mapped to a specific topology, or an optimal one could be mathematically derived [11].
Finally, low-level implementation of the filter’s blocks on the transistor level is carried out.

Applying this separation to the design of an AFE for cardiac signal monitoring, Rout [13] demonstrated
the effectiveness of the three-phase methodology introduced in [11]. By systematically deriving the
transfer function and mapping it to an orthonormal high-pass ΣΔ topology, the design showed signifi-
cant improvements compared to canonical forms, including reduced sensitivity to coefficient variations,
improved dynamic range, and a better overall figure of merit. These results illustrate how the method-
ology can translate a complex analog design problem into structured phases, a principle that will be
extended in this thesis to the neural signal acquisition domain.

With regards to the second design phase, multiple different state space representations can be used to
realize the loop filter. Common options include the observer canonical form, the bi-quad form, and the
orthonormal-ladder filter form. Among these, the orthonormal ladder filter topology [14] provides dis-
tinct advantages, as also emphasized in [11]. A key property of this representation is that it is inherently
state-scaled: each state variable is normalized such that its maximum amplitude is bounded, leading
to optimal use of the available signal range in the circuit implementation. In other words, the avail-
able dynamic range is distributed evenly across all states. This intrinsic scaling not only improves the
achievable dynamic range, but also ensures that no single state dominates the internal node voltages
or currents, thereby enhancing robustness. Furthermore, the orthonormal representation exhibits re-
duced sensitivity to coefficient variations, making it less susceptible to process and mismatch-induced
errors, and it allows for straightforward implementation of high-order, arbitrary filter transfer functions.
When this form was compared to the observer canonical form in the design of a third-order high-pass
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ΣΔ modulator [10], it demonstrated superior performance, particularly in terms of noise reduction. For
these reasons, the orthonormal ladder filter topology described in [10] is of particular interest for adop-
tion in the design of an AFE for neural signal acquisition.

1.1.2. The 𝑔𝑚/𝐼𝐷 Design Methodology for Circuit Design
Analog front ends are typically constructed from common building blocks such as amplifiers, filters,
and analog-to-digital converters. The components used to build these blocks are mostly transistors,
resistors, and capacitors. Achieving state-of-the-art specifications requires proper sizing and biasing
of the transistors within these blocks, which in turn demands a design methodology that can systemat-
ically manage the trade-offs between noise, power, and area. While many designers rely on intuition
and iterative refinement, such approaches do not guarantee optimality. A structured methodology is
therefore necessary.

Historically, transistor sizing relied on the square-law model, which offered simple analytical relations
but became increasingly inaccurate with modern CMOS technologies. As scaling progressed, second-
order effects such as velocity saturation, mobility degradation, and drain-induced barrier lowering in-
troduced large errors in strong inversion, while moderate and weak inversion were not captured at all
[12], [15]. This led to a situation where design points derived from the square-law model frequently
failed to meet specifications, requiring extensive iterative tuning in simulation [12], [16]. Although such
an approach can succeed when guided by experience, it is unstructured, difficult to port across tech-
nologies, and exposes too many design knobs simultaneously [17].

A more systematic alternative is the 𝑔𝑚/𝐼𝐷 methodology, first proposed in [18] and further refined
in [12]. The key idea is to characterize device behavior using precomputed lookup tables (LUTs) ob-
tained from simulation sweeps. These tables map normalized small-signal parameters and figures of
merit to the transconductance efficiency 𝑔𝑚/𝐼𝐷, which serves as the primary design variable. Unlike
overdrive-based sizing, this approach is valid across all inversion regions and directly reflects modern
device models. The LUTs also provide normalized current density (𝐼𝐷/𝑊), intrinsic gain, and output re-
sistance, enabling straightforward calculation of transistor width and bias conditions once the inversion
level and channel length are chosen. In practice, this reduces the analog design problem to selecting
three main knobs: inversion level (𝑔𝑚/𝐼𝐷), channel length (𝐿), and current budget (or a derived figure
of merit).

In this thesis, the 𝑔𝑚/𝐼𝐷 methodology will be used in Chapter 4 to design the key circuit blocks of the
neural AFE. By providing a structured link between high-level performance requirements and transistor-
level implementation, it ensures that the architectures derived in Chapter 3 can be systematically real-
ized while minimizing design iterations and maintaining portability across technology nodes.

1.2. Conclusion
This chapter introduced the motivation for designing analog front ends for neural recording and high-
lighted the main challenges associated with such designs, including power, area, noise, and electrode
DC offset tolerance. To address these challenges, this work adopts a systematic methodology at both
the system and circuit levels. At the system level, the state-space approach provides a structured
means of deriving transfer functions and mapping them to optimal topologies. At the circuit level, the
𝑔𝑚/𝐼𝐷 methodology enables systematic transistor sizing and biasing to realize the required building
blocks while maintaining consistency across technology nodes.

Based on this context, the central research question of this thesis is formulated as follows:

How can systematic design approaches be applied to develop a spectrum-shaping analog
front end for neural signal acquisition at the transfer function, topology, and circuit levels?

The remainder of this thesis builds on this question by first reviewing the state of the art, then applying
the chosen methodologies to high-level modeling, circuit design, and implementation.
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1.3. Thesis Organization
This thesis is structured as follows. Chapter 2 presents a literature review on analog front ends (AFEs)
for neural recording systems. Chapter 3 develops a high-level model of a direct-digitization analog
front end based on a Δ − ΔΣ topology, including architectural considerations, state-space design, and
modeling. Chapter 4 details the transistor-level implementation of the key circuit blocks using the
𝑔𝑚/𝐼𝐷 design methodology and precomputed lookup tables. Finally, Chapter 5 reports the simulation
results and evaluates the performance of the proposed design against state-of-the-art requirements,
and Chapter 6 concludes the thesis, highlighting the main contributions and recommendations.



2
Literature Survey

2.1. Introduction
This chapter reviews state-of-the-art analog front ends (AFEs) for neural signal acquisition. While
CMOS neural probes have enabled large-scale, high-resolution recordings, the readout circuitry must
address stringent constraints on area, power, and noise. In addition, AFEs must tolerate large elec-
trode DC offsets (EDOs), handle both local field potentials (LFPs, 0.5–100 Hz) and action potentials
(APs, 0.3–10 kHz), and provide sufficient dynamic range to accommodate artifacts from stimulation or
movement [4], [8].

To meet these requirements, several AFE architectures have been proposed. The conventional ap-
proach [1] combines an AC coupled instrumentation amplifier (IA) with a low-resolution successive
approximation register ADC (IA+ADC ). The IA+ADC approach relies on analog-intensive techniques
to implement the front-end IA and, in some cases, the bandpass filter to separate LFP and AP bands,
which makes their scalability with technology difficult [8].More recent approaches employ direct digiti-
zation utilizing moderate-resolution ADCs ( 8-11 bits) to directly digitize raw neural signals [19], [20].).
The large EDOs can be either compensated through mixed-signal DC-Servo loops (DSLs) or filtered
by conventional AC-coupling.

This chapter highlights these architectures, discusses input coupling strategies (AC vs. DC), and com-
pares recent designs in terms of noise, power, and area efficiency. The goal is to derive state-of-the-art
requirements that motivate the design methodology explored in the following chapters.

2.2. State of the art AFE for Neural signal Acquisition
With the rapid scaling of neural probes discussed in Chapter 1, there is a growing demand for analog
front-ends (AFEs) that balance noise, power, and area efficiency. A widely adopted solution in the
literature is the IA+ADC architecture, where a high-gain instrumentation amplifier (IA) drives a low-
resolution, power-efficient ADC [3], [21]–[26]. The IA ensures that neural signals in the 𝜇V range are
boosted before further processing, so that downstream ADCs and filters don’t need to meet extreme
noise requirements[1].

However, this benefit comes with significant drawbacks. First, the IA is highly susceptible to saturation
from electrode DC offsets (EDOs) and stimulation artifacts, which degrades the overall signal-to-noise-
and-distortion ratio (SNDR). While DC servo loops [21] and AC coupling [24] have been proposed to
mitigate this issue, they add complexity and overhead. Second, the IA’s limited input impedance (𝑍𝑖𝑛)
interacts with the high electrode impedance, leading to signal attenuation [4]. Finally, the reliance on
complex analog circuitry limits scalability, making it increasingly difficult to meet area and power bud-
gets as the number of channels grows.

5
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Figure 2.1: Spectrum equalization scheme used in Δ2Σ AFEs

To address the short comings of the IA+ADC architecture, direct digitization architectures were pro-
posed in literature [27] [19] [20] [28] [6] [29] [30] [31]. These architectures typically utilize a ΔΣ or ΔΣ-like
modulators to exploit the oversampling nature of ΔΣ-like modulators and noise shaping techniques to
achieve good noise performance. By eliminating the IA from the design, impressive area gains could
be achieved. However, due to the absence of a gain stage, the ADC would require a high dynamic
range specification to process the 𝜇𝑉 range neural signals. The high dynamic range (DR) specification
requires a lower noise budget, which can only be reduced by increasing power consumption. Hence,
designing a power-efficient AFE is highly dependent on the ability to reduce the input signal’s DR [28].

Thus, recent literature [27][20][19] has proposed the so-called Δ − ΔΣ (Δ2Σ) architecture for spectrum
equalization. These architectures take advantage of the fact that neural signals possess a 1/𝑓𝑛 spec-
trum (where 𝑛 = 1−2) at low frequencies. By taking the temporal difference of samples (differentiation),
the spectrum is equalized; this process also serves as high-pass filtering of the signal, which effectively
eliminates EDOs and relaxes the DR specification for the ADC. This, in turn, leads to the relaxation
of the resolution requirement of the ADC. Figure 2.1 shows the process of spectrum equalization; as
aforementioned, the original signal is first differentiated and then used as the input for a ΔΣ modulator.
Hence, the output of the AFE is the derivative of the signal. Then, by integrating the signal in the digital
domain, the original signal could be reconstructed while minimizing the DR of the ADC itself [27].

A critical design choice for neural AFEs is the method of input coupling. Many designs favor AC cou-
pling [19], [20], [23], [25], [27], [31], where a coupling capacitor provides rail-to-rail electrode DC offset
(EDO) rejection. To avoid low-frequency signal loss, the 3-dB corner of the resulting high-pass filter
must be below 1 Hz, requiring capacitors in the order of 10 pF. The area penalty can be mitigated in
processes with dense MIM capacitors, since capacitors can be stacked above active circuitry [27].

However, AC coupling introduces other challenges. First, setting the DC bias requires ultra-high-value
resistors, typically implemented as pseudo-resistors. These elements suffer from strong non-linearity
under large-signal artifacts (e.g., stimulation) [30], [32]. Alternatives such as duty-cycled resistors [8],
[33] improve robustness, but their effectiveness is limited by parasitic capacitance, which limits the
maximum achievable resistance while still requiring high-value AC-coupling capacitors. Second, AC
coupling is incompatible with flicker-noise reduction by chopping, as for AC coupling, chopping results
in noise multiplication and degradation of the input impedance [32].

An alternative to AC coupling is DC coupling, where no coupling capacitor is used and, instead, DSLs
are used to eliminate the effect of EDOs. For example, Δ2Σ modulation Designs utilizing DC coupling
[21] [28] [20] [29] [30] show impressive power consumption specification. For instance, [28] reports
less than 1𝜇𝑊 per channel while utilizing DC-coupling. Additionally, DC coupling allows the use of
chopping for flicker noise mitigation[20].

Recognizing the multitude of design choices associated with AFE design for neural signals, the re-
mainder of this section will be dedicated to comparing state-of-the-art designs. This will be done with
the goal of deriving state-of-the-art matching requirements for future design. Table 2.1 shows the afore-
mentioned comparison. It should be noted that Δ2Σ based designs show impressive Area/Ch specifica-
tions with [19] especially reporting impressive channel area. Moreover, this topology could offer sub-1
𝜇𝑊 power consumption.
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Table 2.1: Comparison of State-of-the-Art Direct Digitization AFEs for Neural Signal Acquisition

Metric [19] [20] [27] [31] [28] [26] [6] [30]
Application AP+LFP AP+LFP AP+LFP AP+LFP Closed

Loop Stim-
ulation
(LFP)

AP+LFP Closed-
Loop Neu-
rostimula-
tor

Closed-
Loop Neu-
rostimula-
tor

Tech [nm] 22 55 180 110 130 40 130 130
Supply [V] 0.8 1.2 0.5/1.0 1 0.6/1.2/3.3 1.2 1.2/2.5 1.2
Area/Ch
[mm2]

0.0045 0.0077 0.058 0.078 0.011 0.113 0.013 0.023

AP Noise
[µVrms]

7.71± 0.36 5.53 ±0.36 3.32 9.5 2.6 (LFP) 6.35 1.13 1.13 (LFP)

LFP Noise
[µVrms]

11.9±1.13 2.88± 0.18 1.8

Power per
Channel [𝜇
W]

6.02 61.2 3.05 6.50 0.99 7.30 0.630 1.70

BW Low [Hz] 0.1 0.5 0.5 1 1 1 0.1 1
BW High
[kHz]

10 10 10.9 10 0.5 5 0.5 0.5

BW [kHz] 10 10 10.9 10 0.499 5 0.4999 0.499
Power/BW
[nW/Hz]

0.602 6.12 0.280 0.650 1.98 1.46 1.26 3.41

Zin [Ω] Inf @ DC 663M@
10Hz

inf @ DC inf @ DC 2960M 1520M 0.99-
1.02M

1456M

AC In-
put Range
[mVpp]

43 148 - 300 - 200 - -

EDO Toler-
ance [mVpp]

Rail-to-
Rail

±70 Rail-to-
Rail

±70 ±1500 ±100 Rail-to-
Rail

±500

Topology AC Cou-
pled 1st
order Δ2Σ

DC Cou-
pled 2snd
order Δ2Σ

IA+1st
order Δ2Σ

DC Cou-
pled 2nd
order ΔΣ

DC Cou-
pled
OpAmp-
less Δ
modulated

CCIA+ΔΣ AC cou-
pled Δ−ΔΣ

Track and
Zoom ΔΣ
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2.3. Conclusion
In conclusion, analog front ends (AFEs) for neural signal acquisition have evolved to address vari-
ous trade-offs in power, area, and noise performance. The IA+ADC architecture, while popular for its
simplicity and efficient power consumption, faces limitations in area. Direct digitization architectures,
particularly those utilizing ΔΣ modulators, offer an alternative by eliminating the need for high-gain am-
plifiers, though they require ADCs with high dynamic range.

Recent advancements, such as the Δ2Σ architecture, provide promising solutions by leveraging spec-
tral equalization and noise shaping to manage the unique low-frequency spectrum of neural signals,
ultimately relaxing ADC requirements and improving overall performance. Table 2.1 presented in
this chapter provides a comparative analysis of state-of-the-art AFE designs, highlighting the different
topologies developed to balance performance specifications for diverse neural recording applications.



3
Modeling

3.1. Introduction
This chapter presents the high-level design of an AFE for neural signal processing applications. The
design aims to address the area and power consumption demands of AFEs while efficiently digitizing
both LFPs and APs. Moreover, as previously mentioned in Chapter 2 of this work, AFEs designed for
neural signal processing need to address a few key challenges, including: electrode-DC offset, wide
input range, low noise requirements [19][27][20][8].

To address these challenges, this thesis chapter presents a high-level model of an AFE based on
a Δ-ΔΣ topology. This design is based on approaches such as those proposed by [27], [3], and [19].
It was noted that the Δ − ΔΣ topology has key similarities with the work of [10], which presents an
orthonormal High-pass ΣΔ (HPΣΔ) front end for cardiac signal acquisition. This similarity is rooted in
the shared introduction of an extra feedback loop with an integrator of the ΣΔ modulator, effectively
setting a high-pass pole. This enables the design to specifically address crucial challenges like input
DC offset (EDO) and unwanted low-frequency components, such as baseline wandering, which are
prevalent in biopotential recordings across similar bandwidths (e.g., 0.5-200 Hz for ECG [10]). The
key difference between the two approaches is that in the Δ − ΔΣ proposed in [20], the core ΣΔ loop
employs an observer-canonical structure (as shown in Figure 3.1a), while in [10] an orthonormal topol-
ogy (as shown in figure 3.1b) was utilized. The orthonormal topology will be favored in this work, as
previously mentioned in Chapter 2, [10] shows that the use of an orthonormal topology yields superior
performance. Another key difference between the AFEs is the implementation of the state 𝑥3 integra-
tor. where [10] implements a low-frequency high-pass pole with a continuous time integrator, while
the AFE reported in [20] introduces a frequency equalization loop utilizing a digital integrator, which
requires conversion back to the continuous time domain.

This chapter is organized as follows. Section 3.2 discusses the architectural considerations and moti-
vates a direct-digitization, DC-coupled topology for the AFE. Section 3.3 outlines the state-space ap-
proach for Δ−ΔΣ ADC design, specifying the STF/NTF requirements and mapping them to an orthonor-
mal ladder representation. Section 3.4 presents the modeling and simulation flow: a discrete-time
MATLAB model, its validation, and an impulse-invariant transformation to an equivalent continuous-
time Verilog-A implementation, followed by spectral comparisons. Section 3.5 concludes the chapter.

3.2. Architectural Considerations
The first design choice with regard to topology is the AFE architecture. As previously stated in Chapter
2, the two main architectures utilized in literature are IA+ADC and direct digitization. In this design,
a direct-digitization topology will be favored, as these architectures are particularly advantageous for
their ability to significantly reduce readout area [19].

The second design choice is the input coupling type. As stated in Chapter 2, there are two main
design choices, which are, AC coupling and DC coupling. AC coupling presents several advantages.

9
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Figure 3.1: Two state-space representations of the Δ-ΔΣ AFE:(a) observer-canonical representation [20]. 𝐼(𝑧) = 1
𝑧−1 (b) or-

thonormal representation [10] with the addition of a reconstruction integrator in the digital domain;
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One of the most important advantages is rail-to-rail EDO cancellation. This is typically achieved us-
ing a high-pass filter at the input stage, composed of capacitors and pseudo-resistors. By filtering out
large DC components early in the chain, the circuit avoids saturating subsequent stages and allows
the modulator to solely digitize the desired AC signal components [8], [19]. Another key advantage
of AC coupling is the decoupling of circuit design from electrode performance. Because the input is
capacitively coupled, the system can accommodate a variety of electrode types without imposing tight
constraints on input impedance or biasing.

However, AC coupling comes with notable limitations. To set low-frequency cutoff points (e.g., sub-
Hz for LFPs) using small on-chip capacitors (in the pF range), extremely high resistances (on the order
of tera-ohms) are required. This is usually achieved with pseudo-resistors, which are compact but suf-
fer from strong process variation, nonlinearity, and sensitivity to light and leakage currents [8].

However, DC coupling, when combined with DC-servo loops (DSLs), offers an alternative approach
for handling EDO. Mixed-signal DSLs, in particular, offer the advantage of improved area efficiency by
eliminating the requirement for large analog time constants [8], [19], [20]. Hence, by employing DSLs.
The literature shows that area efficiency improvements could be achieved. Hence, a DC-coupled direct
digitization topology will be favored in this design.

3.3. State-Space Approach for ΣΔ ADC Design
This section is primarily based on the structured design methodology presented in [11], where the state
space approach separates the design process into three distinct phases: transfer function specification,
topology selection, and circuit-level implementation. In the context of this work (as is also the case
in [10]), the topology is predetermined to be an orthonormal ladder structure reflected in Figure 3.1b.
This choice is motivated by the advantages discussed in the previous chapter and reported in [10]. The
remainder of this chapter is therefore devoted to the transfer function design phase and its mapping
onto the orthonormal ladder structure.

3.3.1. Transfer function design phase
The desired transfer function of the modulator must have the following characteristics for the signal
transfer function (STF) and noise transfer function (NTF).

• For STF: inclusion of an extra pole which performs Δ − ΔΣ spectrum equalization.

• For NTF: Noise transfer function (NTF): a high-pass filter characteristic with all real zeros at the
origin, leading to a 40 dB/dec slope in the signal band (second order ΔΣ noise shaping).

In [10] it was shown that the orthonormal state space representation shown in Figure 3.1b satisfies
these requirements. The STF and NTF of the said topology are expressed as

𝑆𝑇𝐹(𝑠) =
𝑘1 𝑏1 𝑘𝑞 𝑐1 𝑠2 + 𝑘1 𝑏1 𝑘𝑞 𝑘2 𝑐2 𝑠

𝑠3 + 𝑘𝑞 𝑘1 𝑐1 𝑎𝑓𝑏 𝑠2 + 𝑘𝑞 𝑘1(𝑘2 𝑐2 𝑎𝑓𝑏 + 𝑏1 𝑘3 𝑐ℎ𝑝 𝑐1) 𝑠 + 𝑏1 𝑘𝑞 𝑘1 𝑘2 𝑘3 𝑐2 𝑐ℎ𝑝
(3.1)

𝑁𝑇𝐹(𝑠) = 𝑠3
𝑠3 + 𝑘𝑞 𝑘1 𝑐1 𝑎𝑓𝑏 𝑠2 + 𝑘𝑞 𝑘1(𝑘2 𝑐2 𝑎𝑓𝑏 + 𝑏1 𝑘3 𝑐ℎ𝑝 𝑐1) 𝑠 + 𝑏1 𝑘𝑞 𝑘1 𝑘2 𝑘3 𝑐2 𝑐ℎ𝑝

. (3.2)

where 𝑘𝑞 is the gain of the quantizer, and 𝑘𝑖 is the gain of the integrator corresponding to the 𝑖𝑡ℎ state.
Moreover, from the STF and for a low frequency approximation (𝑓 << 𝑓𝑠), the characteristic equation
can be approximated as a first-order polynomial [10] where:

𝑘𝑞𝑘1[𝑠(𝑘2𝑐2𝑎𝑓𝑏) + 𝑘2𝑘3𝑐2𝑐ℎ𝑝] = 0 (3.3)

assuming 𝑐ℎ𝑝𝑘3 is small, the high-pass pole can be approximated as equation 3.4.

𝑠 ≈
−𝑐ℎ𝑝𝑘3
𝑎𝑓𝑏

. (3.4)
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3.4. Modeling and Simulation
3.4.1. DT Modeling
The modeling of the modulator is carried out in two sequential phases. In the first phase, a DT model
is developed to enable design space exploration in MATLAB. In the second phase, the validated DT
model is converted into an equivalent CT representation and implemented in Verilog-A. The resulting
Verilog-A model then serves as the starting point for the subsequent low-level hardware design and
verification.
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Figure 3.2: DT-AFE model used for Numerical simulations in MATLAB

From the block diagram of Fig. 3.1b the discrete-time state equations for 𝑥1(𝑧), 𝑥2(𝑧) and 𝑥3(𝑧) read

𝑥3(𝑧) = 𝑘3 ∗ 𝑦𝑑(𝑧) + 𝑥3(𝑧 − 1), (3.5)
𝑥1(𝑧) = 𝑘1[𝑏1(𝑢𝑖𝑛(𝑧)) − 𝑎fb 𝑦𝑑(𝑧) − 𝑐hp 𝑥3(𝑧)] + 𝑥1(𝑧 − 1), (3.6)
𝑥2(𝑧) = 𝑘2 𝑥1(𝑧) + 𝑥2(𝑧 − 1). (3.7)

The summer and 1-bit quantizer generating the output 𝑦𝑑(𝑧) are described by

𝑤(𝑧) = 𝑐1 𝑥1(𝑧) + 𝑐2 𝑥2(𝑧), (3.8)
𝑦𝑑(𝑧) = 𝑄[𝑤(𝑧)] = sgn[𝑤(𝑧)] = 2 [𝑤(𝑧) ≥ 0 ] − 1. (3.9)

where 𝑤(𝑧) is the quantizer input while 𝑦𝑑(𝑧) is the quntizer output.

Equations (3.5)–(3.9) constitute the complete set of difference relations that model the orthonormal
ΣΔ modulator of Fig. 3.1b. For small-signal analysis, the hard sign non-linearity in (3.9) is commonly
replaced by an additive white quantization-noise source, i.e. 𝑦(𝑧) = 𝑤(𝑧) + 𝑒𝑞(𝑧) with 𝑒𝑞(𝑧) assumed
uncorrelated with the state variables [34]. However, in behavioral transient time simulations, the exact
form of (3.9) is retained to capture the modulator’s large signal dynamics.

The loop constants were chosen such that the frequency-equalization loop pole defined in equation
3.4 is placed at 𝑓𝑝 = 15.9 kHz, to ensure the full signal full signal bandwidth(10𝑘𝐻𝑧) is covered. This
resulted in a value of 𝑐ℎ𝑝 = 0.0098 for 𝑘3 = 1, and 𝑎𝑓𝑏 = 1. The integrator gains, 𝑘1 and 𝑘2, and 𝑎𝑓𝑏,
were chosen to ensure modulator stability via transient time parametric sweeps over the DT model in
MATLAB, while relying on state scaling (applied in later design steps) to further optimize their values.

Additionally, Figure 3.3 confirms the second transfer function design requirement outlined in Subsec-
tion 3.3.1, as it demonstrates a noise-shaping response with a slope of approximately 40 dB/decade.
To verify the first design requirement, Figure 3.4 presents the SQNR of the Δ–ΔΣmodulator before and
after reconstruction. The figure clearly shows the presence of 𝑓2 spectrum equalization, indicating that
the shaping requirement in the low-frequency region has been satisfied.
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Figure 3.3: Normalized output spectrum of the second-order ΔΣ modulator with oversampling ratio OSR = 512, sampling
frequency 𝑓𝑠 = 10.24 MHz, and FFT length 𝑁 = 102,000. The input signal has amplitude 𝑉in = 21.5 mV and frequency
𝑓in = 100.3 Hz. The main tone and in-band noise bins are highlighted.

Table 3.1: Loop filter coefficients used in the discrete-time simulation model.

Parameter Value
𝑘1 0.5
𝑘2 0.5
𝑐hp 0.0098
𝑐1 1
𝑐2 1
𝑎fb 1
𝑏1 1
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Figure 3.4: Coherent log–spaced SNR sweep of the orthonormal second-order Δ − ΔΣ modulator. Each tone (0.1 Hz ≤ 𝑓in ≤
9.93 kHz) is simulated for 𝑁FFT = 224 samples and evaluated with a rectangular window.𝑓𝑠 = 10.24 MHz,and OSR = 512.
Signal power is taken from the ±7 FFT bins around the coherent main-tone.The blue trace shows the in-band SNR of the raw
1-bit output 𝑦[𝑛], whereas the red trace corresponds to the reconstructed output 𝑦out[𝑛].

3.4.2. DT-to-CT Transformation
An additional step required to map the DT model to CT implementation involves applying the trans-
formation proposed in [34]. As a first step, the continuous-time model is abstracted as shown in Fig-
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ure 3.1b. To insure that both the DT model in Figure 3.2 and the CT implementation exhibit equivalent
behavior, they must produce identical noise shaping and output bitstreams at the sampling instants
[34].To insure this, [34] proposes an Impulse-Invariant Transformation (IIT), where the input to both the
DT quantizer, 𝑢𝑖𝑛(𝑛), and the CT quantizer, 𝑢𝑖𝑛(𝑡), is the same at the sampling instants. This implies
that the output bitstreams of both modulators, and therefore their noise performance, will be identical.

However, it should be noted that in the CT modulator, the digital-to-analog converter in the feedback
loop acts as a discrete-to-continuous converter. Its input is a DT sample, 𝑦(𝑛), but its output is a
continuous waveform, 𝑦(𝑡), whose shape depends on the DAC transfer function, 𝑟𝐷𝐴𝐶(𝑠). expressed
mathematically, the condition for loop filter equivalence is expressed in the time domain as a convolu-
tion, where the impulse response of the DT loop filter ℎ(𝑛) is equal to the sampled convolution of the
DAC impulse response 𝑟𝐷𝐴𝐶(𝑡) and the CT loop filter ℎ(𝑡): ℎ(𝑛) = [𝑟𝐷𝐴𝐶(𝜏) ∗ ℎ(𝑡 − 𝜏)]|𝑡=𝑛𝑇𝑆 .
Assuming a Non-Return-to-Zero DAC, [34] proposes a set of partial transformations shown in Table 3.2.
These transformations, when applied to the DT loop gain 𝐿(𝑧), yield a CT loop gain 𝐿(𝑠) that satisfies
the condition for loop filter equivalence.

From the structure shown in Figure 3.1b, the loop gain expression in (3.10a) is derived. Given that

for a DT system 𝐼(𝑧) ≡ 𝑧−1
1 − 𝑧−1 , and using the substitutions provided in Table 3.2, the resulting CT

loop gain 𝐿(𝑠) is expressed in (3.10b).

𝐿(𝑧) = −(𝑎fb1 + 𝑐hp ⋅ 𝐼(𝑧)) ⋅ (𝑐1𝑘1𝐼(𝑧) + 𝑐2𝑘1𝑘2𝐼(𝑧)2) (3.10a)

𝐿(𝑠) = −(𝑎fb1 + 𝑐hp ⋅
𝑓𝑠
𝑠 ) ⋅ (

𝑓𝑠
𝑠 (𝑐1𝑘1 +

𝑐2𝑘1𝑘2
2 ) + 𝑓

2
𝑠
𝑠2 ⋅ 𝑐2𝑘1𝑘2) (3.10b)

Table 3.2: Mapping between DT and CT transfer function elements [34].

Discrete-Time (DT) Continuous-Time (CT) Equivalent
1

𝑧 − 1
𝑓𝑠
𝑠

1
(𝑧 − 1)2

1
2𝑓𝑠𝑠 + 𝑓

2
𝑠

𝑠2

Similarly, the CT loop gain 𝐿(𝑠) was derived from Figure 3.1b and is shown in equation 3.11.

𝐿(𝑠) = −(𝑎fb + 𝐼(𝑠) ⋅ 𝑐hp) ⋅ (𝐾𝐶1_𝑠 ⋅ 𝐼(𝑠) + 𝐾𝐶2_𝑠 ⋅ 𝐼(𝑠)2) (3.11)

Moreover, by substituting 𝐼(𝑠) = 𝑘𝑠𝑖𝑓𝑠
𝑠 results in Equation 3.12.

𝐿(𝑠) = −(𝑎fb + 𝑘𝑠3
𝑓𝑠
𝑠 ⋅ 𝑐hp) ⋅ (𝑘𝑠1𝑐1𝑠 ⋅

𝑓𝑠
𝑠 + 𝑘𝑠1𝑘𝑠2𝑐2𝑠 ⋅ (

𝑓𝑠
𝑠 )

2) (3.12)

3.4.3. CT-Model
The CT Δ–ΔΣ modulator in Fig. 3.5 consists of two ideal 𝐺𝑚 − 𝐶 integrators (𝐺𝑚1, 𝐶1) and (𝐺𝑚2, 𝐶2).
where the transfer function 𝐼(𝑠) is defined as 𝐼(𝑠) = 𝐺𝑚

𝑆𝐶 and 𝑘𝑖 is set by the ratio between 𝐺𝑚 and 𝐶.
Hence, for the first integrator 𝑉𝑥1 corresponding to the state 𝑥1 is defined as 𝑉𝑥1 =

𝐺𝑚1𝑉𝑖𝑛−𝐼𝑓𝑏
𝑆𝐶1

. while

the second state variable is generated by the second integrator as 𝑉𝑥2 =
𝐺𝑚2𝑉𝑥1
𝑆𝐶2

. These states are
summed according to Eq. (3.8) inside a 1-bit comparator that performs the quantization process. The
feedback factor 𝑎fb1 is provided by current-mode DAC1, while DAC2 together with a current-mode in-
tegrator (CMI) realises the inner Δ path, and produces 𝑉𝑥3.
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All CT constants follow the impulse-invariant rules of Section 3.4.2, so that the CT loop gain 𝐿(𝑠)
matches the discrete-time prototype 𝐿(𝑧) at every sampling instant. The continuous-time modulator
was implemented with behavioral Verilog-A blocks and simulated in Cadence Spectre. To validate the
impulse-invariant design, its 1-bit output spectrum was compared with that of the discrete-time model.
the two spectra are shown in Fig. 3.6. The two models demonstrate close alignment in mapping, ex-
hibiting the expected behavior in terms of tone and noise-shaping order. However, the higher noise
observed in the CT FFT remains unclear and may require further investigation to identify the underlying
cause.
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Figure 3.5: Behavioral CT Δ–ΔΣ modulator used in the simulations using the loop constants listed in Table 3.3.

3.5. Conclusion
This chapter presented the high-level design of a neural-signal analog front end based on a second-
orderΔ–ΔΣ architecture. A direct-digitisation, DC-coupled topology was selected to meet the area,
power, and offset requirements identified in earlier chapters.

A discrete-time orthonormal model was first derived and simulated in MATLAB. The results confirmed
the required 40 dB per decade noise-shaping slope and the intended 𝑓2 spectrum equalization across
the entire neural band from 0.5hz to 10 kHz. Using impulse-invariant mapping, the discrete-time loop
gain was translated into an equivalent continuous-time implementation.

The continuous-time modulator was realized in Verilog-A with ideal 𝐺𝑚 − 𝐶 integrators, two current-
mode DACs, a one-bit quantizer, and a current-mode integrator. The modulator was then simulated in
Cadence Spectre. A Point-by-point FFT comparison showed agreement between the continuous-time
and discrete-time spectra. These results validate the transfer function and topology design phases (as
categorized in [11]) and provide a behavioral baseline for the next design phase, where ideal blocks
will be replaced by transistor-level circuits while preserving verified loop dynamics.
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Figure 3.6: Raw 1-bit output spectra of the 2nd-order Δ−ΔΣ modulator. The discrete-time (solid black) and continuous-time
(dashed red) models are analysed with a 𝑁FFT = 131072-point Kaiser window. Input tone: 𝑓in = 1.953kHz, and the sampling
frequency 𝑓s = 10.24MHz (OSR = 512).

Table 3.3: Simulation constants for the DT prototype and the CT Verilog-A model used in Fig. 3.6.

Global simulation settings

Sampling frequency 𝑓s 10.24MHz
Signal bandwidth 𝑓b 10 kHz
Oversampling ratio OSR 512
FFT length 𝑁FFT 131072 (217)

Discrete-time coefficients

Feed-forward zero 𝑏1 1
Integrator gains 𝑘1 = 𝑘2 0.5
Third integrator gain 𝑘3 1
Summer weights 𝑐1 = 𝑐2 1
Global feedback 𝑎fb 1
HP cancellation 𝑐hp 0.01

Continuous-time parameters

Capacitors 𝐶1 = 𝐶2 1pF
Scaling 𝐶1𝑠 1.25
Scaling 𝐶2𝑠 1.00
Transconductances 𝐺𝑚1 = 𝐺𝑚2 0.5 𝐶1𝑓s



4
Circuit Design

4.1. Introduction
This chapter presents the third and final design phase of the AFE, where all functional blocks are
implemented at the transistor level. The design procedure is based on pre-generated device lookup
tables (LUTs) following the 𝑔𝑚/𝐼𝐷 design methodology [12].
The AFE employs 𝑔𝑚–C integrators. In general, four types of integrators can be distinguished [11]:

(a) conductance–capacitance integrators,

(b) conductance–transcapacitance integrators,

(c) transconductance–capacitance (𝐺𝑚–C) integrators, and

(d) transconductance–transcapacitance integrators.

Types (b) and (c) are commonly used in filter transfer function implementations. Type (a) cannot realize
complex poles as it consists of two passive components, while type (d) requires two active components
(a transconductance and a transcapacitance element). In this design, type (c) was chosen over type
(b). The reason is that with type (c), parasitic capacitances appear in parallel with the signal path,
allowing operation at higher frequencies, albeit with a reduced input dynamic range [11]. Furthermore,
the feedback signal is processed in the current domain, which simplifies the implementation since cur-
rent summation is more straightforward than voltage summation. Hence, current steering DACs will be
utilized for the main feedback path and the Δ-path.

For the summer and quantizer, a multi-input strongARM latch [10] will be utilized as the StrongARM
[35] latch combines low static power consumption, rail-to-rail outputs, and high sensitivity in a compact
topology, However, its operation introduces kickback noise, and supply transients, while offset, 𝑘𝑇/𝐶
noise, and metastability limit accuracy for small input signals. These trade-offs require careful sizing
and often the addition of buffers or latches to ensure reliable system-level performance.

In recent Δ–ΔΣ AFEs reported in literature [19], [20], [36], the frequency equalization loop is often
implemented in the digital domain using a digital counter, then converting the output back to the analog
domain using a multibit DAC to generate the feedback quantity.In these implementations, the maximum
input amplitude the loop can encode without saturation is set by the DAC full-scale. Following [20], the
effective input full-scale is

𝑉FS = 2𝑁DAC 𝐿𝑆𝐵𝑖𝑛 (4.1)

where 𝑁DAC is the DAC resolution, 𝐿𝑆𝐵𝑖𝑛 is the input-referred least significant bit defined as
𝐼𝑙𝑠𝑏2
𝐺𝑚1

. This
full-scale defines the numerator 𝑃signal,max in the SQNR ratio,

SQNR = 10 log10(
𝑃signal,max
𝑃q,noise

) , (4.2)

17
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Hence, for fixed loop order and OSR (which sets 𝑃q,noise), increasing 𝑉FS raises the maximum achiev-
able SQNR. However, larger 𝐿𝑆𝐵𝑖𝑛 that boost 𝑉FS also inflate the number of bits needed for the DAC.
Consequently, requiring higher power consumption and area [20]. This work works around this trade-
off by implementing the frequency equation loop using a dynamic translinear integrator.

This chapter is organized as follows. Section 4.2 presents the design of the two 𝑔𝑚–C integrators
based on the flipped-voltage-follower topology. Section 4.4 describes the implementation of the one-
bit current-steering DAC cells. Section 4.5 covers the synthesis and design of the dynamic translinear
integrator, including its fully differential extension. Finally, Section 4.6 details the design of the Stron-
gARM comparator used as the quantizer.

4.2. First 𝐺𝑚–𝐶 integrator
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Figure 4.1: FVF based 𝑔𝑚–C integrator presented in [19]

The first transconductance stage adopts the flipped-voltage-follower (FVF) [37] 𝐺𝑚 − 𝐶 integrator re-
ported in [19]. In Fig. 4.1, the input differential pair 𝑀1 senses the voltages 𝑉𝐼𝑁𝑃 and 𝑉𝐼𝑁𝑁, while their
sources are driven by the feedback transistor 𝑀3, which enforces the flipped-voltage follower action.
The drain of transistor𝑀2 drives the gate of𝑀3 and acts as a cascode device, thus increasing the loop
gain. The tail device 𝑀5 defines the bias current and is series-degenerated by 𝑅𝑠 to suppress flicker
noise. A small auxiliary bias current (about 𝐼bias/10) is provided by 𝑀4 for the second branch, while
𝑀6 steers the signal current into the integrating capacitor 𝐶𝐼𝑁𝑇,𝐷𝑀.

The ideal transfer of the 𝐺𝑚 stage from 𝑉𝐼𝑁 to 𝑉𝑠𝑎,𝑏 is approximately 1/𝑅𝑇𝐶. The loop gain of transistors
𝑀1−3 can be expressed as

𝐿𝐺 ≈ 𝑔𝑚1𝑟𝑜1 𝑔𝑚2𝑟𝑜2 𝑔𝑚3𝑅𝑇𝐶 . (4.3)

To first order, the open-loop (𝑉𝑠𝑎,𝑏𝑉𝐼𝑁
) gain is therefore

𝐴𝑂𝐿 ≈ 𝑔𝑚1𝑟𝑜1 𝑔𝑚2𝑟𝑜2 𝑔𝑚3𝑅𝑇𝐶 , (4.4)

and the closed-loop voltage gain approaches unity. From this, it follows that the output impedance at
node 𝑉𝑠 remains low due to the high loop gain, which leads to the voltage fluctuations at the drain of
𝑀1 being small. Moreover, the effective transconductance of the stage can be approximated as

𝐺𝑚 ≈
1
𝑅𝑇𝐶

, (4.5)

with a small error introduced by the finite output resistance of 𝑀3.
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The sensing resistor 𝑅𝑇𝐶 thus sees the exact differential input voltage, producing the signal current; the
low output impedance allows for the subtraction of the feedback currents from the total current flowing
through 𝑅𝑇𝐶, where 𝑉𝑖𝑛/𝑅𝑇𝐶−𝐼𝑓𝑏. And the value was 𝑅𝑇𝐶 was chosen as

1
𝑅𝑇𝐶

= 𝐺𝑚 = 𝑘1 ∗𝐶𝐼𝑁𝑇,𝐷𝑀 ∗𝐹𝑠,
where 𝐾 is the integrator gain as in Table 3.3.
On the output side, unity current mirrors 𝑀6 ∶ 𝑀3 steer 𝐼𝐼𝑁 into the integrating capacitor 𝐶𝐼𝑁𝑇,𝐷𝑀. With
finite output resistance 𝑅𝑜𝑢𝑡,𝐺𝑚 ≈

1
𝑔𝑑𝑠6

+ 1
𝑔𝑑𝑠7,6

. and the transfer function is

𝑉𝑜(𝑠)
𝑉𝑖𝑑(𝑠)

= 𝐺eff𝑚
𝐶𝐼𝑁𝑇,𝐷𝑀

⋅ 1
𝑠 + 1

𝑅𝑜𝑢𝑡,𝐺𝑚𝐶𝐼𝑁𝑇,𝐷𝑀

. (4.6)

while the finite 𝑅out,GM and capacitance at the output node introduce a secondary pole at

𝑓𝑝 =
1

2𝜋𝑅out,GM𝐶out,tot
(4.7)

A further non-dominant pole arises at the drain of 𝑀4 due to its parasitics, constraining stability.
From a noise perspective, flicker noise remains the dominant limitation [19], [20]. Tail degeneration
(𝑅𝑠 in series with 𝑀5) suppresses flicker noise from the bias source but introduces additional thermal
noise 4𝑘𝑇/𝑅𝑠. This leads to the following design trade-off: The tail path (𝑀5 + 𝑅𝑠) balances flicker
suppression against 4𝑘𝑇/𝑅𝑠; 𝑅𝑠 must be chosen using 𝑔𝑚/𝐼𝐷 and noise targets rather than minimized
arbitrarily.
At the device level, 𝑔𝑚/𝐼𝐷 analysis suggests:

• 𝑀1 should be biased in weak inversion, as its noise contribution directly adds to the input-referred
noise.

• Current-source devices such as𝑀4,𝑀5, and𝑀3,6 were biased in moderate inversion. This choice
was made to reduce their flicker-noise contribution, which requires relatively large device areas
as flicker noise scales with device area. device LUTs showed that, for a fixed area𝑊𝐿, increasing
the channel length 𝐿 improves the output resistance 𝑟0. However, to further suppress flicker noise,
the minimum channel width was avoided for these devices, which required biasing these devices
in moderate inversion, as it provided a balance between flicker noise reduction while maintaining
sufficiently high 𝑟0, whereas biasing deeper into weak inversion would have severely degraded
𝑟0, and for strong inversion, the flicker noise would increase. .

The feedback currents 𝐼𝑓𝑏+ and 𝐼𝑓𝑏− are injected into 𝑉𝑆𝑎 and 𝑉𝑆𝑏, respectively. The peak feedback
current sets the minimum bias current through 𝑀5 via |𝐼𝑓𝑏| < 𝐼𝐷5 − 𝐼𝐷4 .

Using the previously generated LUTs, the bias point of each transistor was set under the following
constraints. The low-frequency pole is placed below 𝑓BW/√3 as suggested in [19]. The unity-gain fre-
quency is kept above 0.5MHz. To account for the feedback currents, the minimum bias current of 𝑀5
was set to 𝐼𝐷5 = 0.5 𝜇A. While the transconductance 𝐺𝑚1 = 0.5 × 𝐶1𝐹𝑠 Is as in Chapter 3.

The dimensions that meet these conditions are reported in Table 4.1. The corresponding AC anal-
ysis is shown in Fig. 4.2, with 𝐶𝐼𝑁𝑇,𝐷𝑀 = 200 fF, giving 𝑓𝑝𝑜𝑙𝑒 = 5.8 kHz and 𝑓𝑈𝐺𝐹 = 500 kHz.

4.3. Second 𝐺𝑚–𝐶 integrator
The second integrator reuses the same FVF 𝐺𝑚–C topology as in Section 4.2 (Fig. 4.1), with identical
device roles and sizing. No architectural changes are introduced. The only difference is the tail bias
current of 𝑀5, which is set to one quarter of the first integrator’s bias to reduce static power:

𝐼𝐷5 =
𝐼𝐷5,GM–C1

4 = 0.5 𝜇A
4 = 0.125 𝜇A.

All other parameters, including 𝑅𝑇𝐶 and 𝐶𝐼𝑁𝑇,𝐷𝑀, are kept the same as in the first stage. Consequently,
the small-signal relations for 𝐼𝐼𝑁, the effective transconductance 𝐺𝑚 ≈ 1/𝑅𝑇𝐶, the transfer function, and
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Table 4.1: First integrator sizing.

Device Type 𝑊 [𝜇m] 𝐿 [𝜇m] 𝐴gate [𝜇m2]

M1 pch 100.000 1.800 180.0000
M3 pch 5.000 5.000 25.0000
M6 pch 5.000 5.000 25.0000
M7 nch 5.000 5.000 25.0000
M4 pch 5.000 5.000 25.0000
M5 nch 5.000 5.000 25.0000
M2 nch 0.220 0.180 0.0396
M8 nch 5.000 5.000 25.0000
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Figure 4.2: AC response of the first 𝑔𝑚–C integrator (𝑓𝑝𝑜𝑙𝑒 = 5.8 kHz, 𝑓𝑈𝐺𝐹 = 0.5 MHz).

the unity-gain frequency

𝑓𝑈𝐺𝐹 ≈
1

2𝜋𝑅𝑇𝐶𝐶𝐼𝑁𝑇,𝐷𝑀
Given in Section 4.2 apply unchanged to this integrator as well.

4.4. DAC Cell
The AFE requires two one-bit current-domain DACs. The current-steering topology in Fig. 4.3 employs
𝑀tail to set the unit current 𝐼lsb, while 𝑀0 and 𝑀1 steer the current to the outputs. Cascode devices 𝑀2
and 𝑀3 are added to enhance the output impedance. The DAC cells were sized with a relatively long
channel length of 𝐿 = 2 𝜇m while maintaining the minimum width to ensure strong inversion, thereby
reducing noise and improving device matching.

Fig. 4.4 shows the simulated total current noise of a pMOS device as a function of channel length,
obtained using precomputed gm/ID lookup tables. As expected, longer channel lengths significantly
reduce device noise, justifying the chosen sizing strategy for the DAC cells in this design.

4.5. Dynamic trans-linear log-domain integrator
4.5.1. Trans-linear principles
As previously stated, the frequency equalization loop is implemented in the analog domain using a
dynamic translinear integrator. To motivate this class of circuits, the static and dynamic translinear
principles [38] are reviewed in the context of weak-inversion MOS devices.
Consider first the static translinear (STL) principle. In weak inversion, the drain current of a MOS
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Figure 4.3: One-bit current-steering DAC cell. 𝑀tail defines the unit current, 𝑀0–𝑀1 act as switches, and 𝑀2–𝑀3 provide cas-
coding.
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Figure 4.4: Total current noise of a pMOS device versus channel length, extracted from precomputed gm/ID lookup tables (TSMC
180nm BCD) at a constant 𝑔𝑚𝐼𝐷
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transistor is given by

𝑖𝐷 = 𝐼0 exp(
𝑉𝐺𝑆 − 𝑉𝑇𝐻
𝑛𝑉𝑇

) , (4.8)

where 𝑛 is the slope factor and 𝑉𝑇 is the thermal voltage. In a closed four-transistor loop, shown in
Fig. 4.5a, application of KVL around the loop yields

𝑉𝐺𝑆1 + 𝑉𝐺𝑆3 = 𝑉𝐺𝑆2 + 𝑉𝐺𝑆4. (4.9)

Substituting (4.8) into (4.9) leads to the product-of-currents identity

𝐼1 𝐼3 = 𝐼2 𝐼4. (4.10)

This result illustrates the static translinear principle: the product of device currents in the clockwise
direction is equal to that of devices in the counterclockwise direction. Such a relation enables direct
implementation of algebraic functions, e.g., multiplication, division, and square rooting, in the current
domain.
The dynamic translinear (DTL) principle extends this concept by including capacitors in the loop to add
time dependence. The circuit shown in Fig. 4.5b demonstrates this principle, as in the current domain
this circuit is described in terms of the drain current 𝐼𝑑 and the capacitance current 𝐼𝐶. It should be
noted that the DC-voltage source does not affect 𝐼𝐶. 𝐼𝐶 could be derived from the derivative of the drain
current as [38]:

𝐼𝑐 = 𝐶𝑛𝑉𝑇
𝑑𝐼𝑑
𝑑𝑡 . (4.11)

Equation 4.11 shows that 𝐼𝐶 is a non-linear function of 𝐼𝑑 and its time derivative. A better understanding
of equation 4.11 is obtained by rewriting it as equation 4.12.

𝐼𝑑 𝐼𝑐 = 𝐶𝑛𝑉𝑇
𝑑𝐼𝑑
𝑑𝑡 . (4.12)

Equation (4.11) shows that time derivatives of currents are mapped into current products, which allows
direct realization of differential equations in the current domain. This provides the basis for log-domain
integrators and filters, as illustrated in Fig. 4.5b.

I1 I2 I3 I4

(a)

IdIc

VGS

(b)

Figure 4.5: Translinear principles in weak inversion: (a) static translinear loop for demonstrating the static transistor principle
𝐼1𝐼3 = 𝐼2𝐼4., (b) dynamic extension with a capacitor. A capacitor with voltage 𝑣𝑐 = 𝑛𝑉𝑇 ln(𝑖𝑑/𝐼0) produces current 𝑖𝑐 = 𝐶𝑑𝑣𝑐/𝑑𝑡,
leading to 𝑖𝑑𝑖𝑐 = 𝐶𝑛𝑉𝑇 𝑑𝑖𝑑/𝑑𝑡.

4.5.2. Dynamic translinear integrator synthesis
The synthesis of a dynamic translinear integrator follows a sequence of steps based on the STL and
DTL principles [38], illustrated in Fig. 4.6.
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The process begins with the dimensionless polynomial differential equation

𝑦̇ = 𝑥, (4.13)

where 𝑦̇ = 𝑑𝑦/𝑑𝜏 is defined with respect to mathematical time 𝜏. To relate this to real time, the derivative
is scaled as

𝑑
𝑑𝜏 =

𝐶𝑉𝑇
𝐼0

𝑑
𝑑𝑡 , (4.14)

and the variables are expressed in terms of normalized currents,

𝑥 = 𝐼𝑖𝑛
𝐼0
, 𝑦 = 𝐼𝑜𝑢𝑡

𝐼0
. (4.15)

Substitution into (4.13) gives
̇𝐼𝑜𝑢𝑡
𝐶𝑉𝑇
𝐼20

= 𝐼𝑖𝑛
𝐼0

⇒ ̇𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
𝐼0
𝐶𝑉𝑇

. (4.16)

In order to express this relation in a form suitable for current-mode implementation, the capacitor current
is introduced as

𝐼𝑐𝑎𝑝 = 𝐶𝑉𝑇
̇𝐼𝑜𝑢𝑡

𝐼𝑜𝑢𝑡 + 𝐼0
, (4.17)

where 𝐼0 is added to the output current to ensure that the capacitor current is unipolar. This leads to

(𝐼𝑜𝑢𝑡 + 𝐼0)𝐼𝑐𝑎𝑝 = 𝐼𝑖𝑛𝐼0. (4.18)

Defining 𝐼′𝑜𝑢𝑡 = 𝐼𝑜𝑢𝑡 + 𝐼0, the required behavior can then be realized with two translinear loops. The
static loop implements

𝐼′𝑜𝑢𝑡𝐼𝑐𝑎𝑝 = 𝐼𝑖𝑛𝐼0, (4.19)

while the dynamic loop provides

𝐼′𝑜𝑢𝑡𝐼𝑐 = 𝐶𝑉𝑇
𝑑𝐼′𝑜𝑢𝑡
𝑑𝑡 . (4.20)

Finally, the equations in (4.19) and (4.20) can be mapped directly into the log-domain prototype circuit
of Fig. 4.7, completing the synthesis procedure summarized in Fig. 4.6.

1. Dimensionless
polynomial
differential
Equation  

2. Translinear
differential 

equation

3. Current mode
polynomial

4. Translinear
loop equations

5. Prototype 
circuit

Figure 4.6: Synthesis procedure of a dynamic translinear integrator: (1) dimensionless equation, (2) translinear differential
equation, (3) current-mode polynomial, (4) translinear loop equations, and (5) prototype circuit.

For use in the AFE the integrator must operate in fully differential manner. This is achieved by employing
two copies of the prototype integrator, providing the positive and negative signal paths, together with
a current-mode common-mode feedback (CMFB) circuit to regulate the output common-mode level.
This is shown in Fig. 4.8.

4.6. Comparator
The StrongARM comparator [35] shown in Figure 4.9 is composed of two main parts: the pre-amplifier
made up of the split differential pair 𝑀1−4 and the cross-coupled devices 𝑀5−8, while devices 𝑀9−12
act as reset switches for all internal nodes. The circuit operation can be divided into a pre-charge
phase (CLK = 0) and an amplification phase (CLK = VDD) [39]. During the pre-charge phase, the
reset switches pull all internal nodes to VDD, thus eliminating any stored capacitor voltages and con-
sequently suppressing dynamic offsets. In addition, the pre-charge switches keep the cross-coupled
devices initially off, which reduces their offset contribution. When the clock rises and the circuit enters
the amplification phase, the tail transistor 𝑀𝑡𝑎𝑖𝑙 turns on, establishing a discharge path for the capaci-
tances at the drains of the input devices. In this split-input configuration, transistors 𝑀1/𝑀3 and𝑀2/𝑀4
form two parallel input branches, and the discharge currents through each branch are modulated by
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Figure 4.7: Prototype dynamic translinear integrator circuit.
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Figure 4.8: Fully differential dynamic translinear integrator with current-mode CMFB.
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the applied differential input voltages 𝑉𝑖𝑛1 and 𝑉𝑖𝑛2. Even a small difference between the inputs results
in unequal discharge rates at the internal nodes, causing their voltages to diverge. As these voltages
fall toward 𝑉𝐷𝐷 −𝑉𝑇𝐻𝑁, the cross-coupled NMOS pair (𝑀6 and 𝑀8) begins to turn on, providing positive
feedback and further amplifying the voltage difference. This regeneration continues until one side is
pulled strongly low, while the opposite side is reinforced toward VDD. Finally, the PMOS pair (𝑀5 and
𝑀7) restores the high output level, ensuring rail-to-rail logic levels at the outputs.

The main practical limitation of this topology is the kickback noise that arises at the input nodes due
to rapid switching of internal nodes [39]. A common mitigation technique is to boost the width of the
tail current transistor, which reduces the relative impact of kickback at the expense of higher power
consumption.

M1 M2 M4Vip1Vip2 M3 Vip1 Vip1

M6 M8

M5
M9

M11

M7

M10

M12Clk

Clk Clk

Vdd

Clk

Clk Mtail

Figure 4.9: Two input dynamic StrongARM comparator

4.7. Conclusion
This chapter has detailed the transistor-level design of the AFE functional blocks using the 𝑔𝑚/𝐼𝐷
methodology and precomputed LUTs for the TSMC 180nm BCD process. Two 𝑔𝑚–C integrators
based on the flipped-voltage-follower topology were implemented, with the first stage dimensioned to
accommodate feedback current swings and the second optimized for low-power operation. The one-
bit current-steering DACs were designed with cascoded devices to suppress INL errors, while device
noise considerations led to the adoption of long-channel devices for the current source.

To realize the frequency equalization loop, a dynamic translinear log-domain integrator was synthe-
sized and extended to a fully differential implementation with current-mode CMFB for compatibility with
the AFE architecture. Finally, a StrongARM comparator was selected as the quantizer due to its low
static power and high sensitivity, despite kickback noise trade-offs.

Together, these design choices ensure that the AFE achieves its required bandwidth, noise, and linear-
ity specifications while maintaining compact area and low power consumption. The next chapter will
tackle optimization and evaluate the performance of the complete system





5
Results

5.1. Introduction
This chapter presents the simulation results and performance evaluation of the proposed orthonormal
Δ−ΔΣ AFE. The aim is to demonstrate how architectural choices such as state scaling, and the use of a
DTL integrator contribute to improvements in power efficiency, dynamic range, and noise performance
compared to state-of-the-art designs.

First, the effect of state scaling optimization on the internal integrator states is examined, showing
its role in maximizing the dynamic range without affecting the signal transfer. Next, the loop con-
stants derived from post-scaling are summarized. Finally, detailed transistor-level simulation results
are presented, including area, power, input-referred noise, and spectral performance, followed by a
benchmark comparison against other direct digitization AFEs reported in the literature.

5.2. State scaling optimization
State scaling was applied to the orthonormal ΣΔ modulator to maximize its dynamic range. In this con-
text, state scaling refers to adjusting the output amplitude of the internal integrator states such that they
fully utilize the available output range 𝑀 without clipping [10], [11], By scaling the dominant integrator
outputs 𝑥1 and 𝑥2, the effective output swing is increased. This directly improves SNDR, as the useful
signal power is maximized relative to the noise floor. The third state 𝑥3 is multiplied by a small constant
and therefore has a negligible effect on the dynamic range. In the implemented design, this scaling
strategy resulted in a peak SNDR of 70dB, compared to 52dB before state scaling.

Recalling the topology shown in Figure 3.5, the following loop constants were used after state scaling
of 𝑥1 and 𝑥2. It should be noted that 𝐶1𝑠 and 𝐶2𝑠 represent the internal scaling factors of the quan-
tizer (Figure 4.9) corresponding to states 𝑥1 and 𝑥2, respectively, while 𝐶int3 denotes the integration
capacitor DTL integrator shown in Figure 4.7.

Table 5.1: Loop Constants After State Scaling

Symbol Description Value
𝐶1𝑠 scaling factor for state 𝑥1 0.9851
𝐶2𝑠 scaling factor for state 𝑥2 0.3292

𝐶1 = 𝐶2 Integration capacitors 200 fF
𝐶int3 Third integrator capacitor 500 fF
𝐼LSB2 LSB current of DAC2 50 nA
𝐼LSB1 LSB current of DAC1 0.3072 µA
𝐺𝑚1 Transconductance (First integrator) 1.949 µS
𝐺𝑚2 Transconductance (Second integrator) 0.8 µS

27
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Figure 5.1: Measured SINAD versus differential input amplitude for the orthonormal ΣΔ modulator, over an input dynamic range
from 10𝜇V to 140,mV. The state-scaled design achieves the full input range, whereas the non–state-scaled design falls short,
with the minimum recoverable input for SINAD > 0 dB occurring at approximately 0.3mV.

5.3. Results
All results in this section are obtained from transistor-level simulations in a TSMC 180nm BCD process.
The channel area is 0.005 05mm2, with the distribution shown in Fig. 5.2a. The two GM-C integrators
(including their associated passives) dominate the silicon cost, while the Quantizer, DACs, and com-
parator contribute a small fraction.

At 1.8V supply, the simulated total power is 41.12µW, broken down as 22.44µW (Quantizer), 1.30µW
(DACs), 7.11µW (GM–C), and 10.27µW (DTL), as summarized in Fig. 5.2b. The power consump-
tion is dominated by the quantizer (54.6% of the total) this is due the strongARM topology being more
susceptible to higher dynamic power consumption due to the charging and discharging of parasitic ca-
pacitance. However,the optimization of the quantizer design was left as an avenue for future work.

Fig.5.3 shows the power spectral density (PSD) for both the output bit stream post-quantization. The
input referred noise spectrum was calculated as follows: First, the output was reconstructed using an
ideal digital integrator. Then, the digital integrator output was referred to the input. The input referred
noise in the AP band (300–10 kHz) and in the LFP band (0.5–1 kHz) was calculated as, 3.45𝑉 in the
AP band (300–10 kHz) and 14.08𝑉 in the LFP band (0.5–1 kHz). Additionally, for a 20mVpp differential
input, the modulator achieves a peak SNDR of 69.8dB (ENOB = 11.3), and total harmonic distortion
= 0.001428%@20𝑚𝑉𝑝𝑘−𝑝𝑘 , 𝑓𝑖𝑛 = 122𝐻𝑧.

The noise analysis performed shows that flicker noise is the main noise contribution. Moreover, the
EDO tolerance range was tested by a small sinusoidal input with the worst case amplitude of 20𝑚𝑉𝑝𝑝,
while sweeping the DC-offset [20], and it was found to be ±1.23V, while the input impedance is infinite
at DC.

The comparison in Table 5.2 highlights several trade-offs between this work and prior state-of-the-art
AFEs. Although the reported channel area of 0.005 05mm2 is an estimate derived from device area
rather than a finalized layout, it is still competitive, with designs utilizing first-order noise shaping (i.e,
[19]) presenting lower area AFEs. While, the utilization of the orthonormal topology and state-scale
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Area Breakdown (Total = 0.00505 mm2)
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GM-C2 (incl. passives) — 2441.5 µm2 (48.4%)

DTL integrator — 1119.1 µm2 (22.2%)
Other — 4.2 µm2 (0.1%)

(a)

Power Breakdown (Total = 41.12 µW)

54.6%

3.2%

17.3%

25.0%

Quantizer — 22.44 µW (54.6%)
DACs — 1.30 µW (3.2%)
GM--C — 7.11 µW (17.3%)
DTL — 10.27 µW (25.0%)

(b)

Figure 5.2: (a) Simulated power breakdown at 𝑉DD = 1.8V. Total power = 41.12µW. (b) Estimated area breakdown of the
proposed AFE. Total area = 0.00505mm2.

optimization lead to a lower power consumption for the analog integrators (7.11𝜇𝑊) than what was
reported in [20] (17𝜇𝑊) In terms of noise, the proposed AFE achieves an LFP noise of 14.08µVrms,
which is in line with the first order AC coupled Δ−ΔΣ reported in [19], where degradation resistors were
used to mitigate flicker noise, similar to the approach adopted in this work. However, it remains higher
than the 2.88µVrms reported by [20], which benefits from chopping. The absence of chopping in this
design avoids the associated penalty of reduced effective input impedance and EDO tolerance. As a
result, this work demonstrates both high input impedance (infinite at DC) and a wide EDO tolerance of
±1.23V. While the EDO range is not rail-to-rail, this is a direct consequence of avoiding an input high-
pass filter. Importantly, not employing such a filter eliminates the need for pseudo-resistors, which often
suffer from leakage currents and nonlinearity, thereby improving system linearity while also eliminating
the need for large-value high-pass capacitors (such as the capacitors used in [19]).
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Figure 5.3: Post-quantization (output) PSD in bit/√Hz. Results shown for a coherent tone at 𝑓in = 9155.273438 Hz with input
amplitude 𝑉pk = 20mV.



5.3.R
esults

31

Table 5.2: Comparison of State-of-the-Art Direct Digitization AFEs for Neural Signal Acquisition

Metric [19] [20] [27] [31] [28] [6] This Work
Application AP+LFP AP+LFP AP+LFP AP+LFP Closed Loop

Stimulation
(LFP)

Closed-Loop
Neurostimu-
lator

AP+LFP

Tech [nm] 22 55 180 110 130 130 180
Supply [V] 0.8 1.2 0.5/1.0 1 0.6/1.2/3.3 1.2/2.5 1.8
Area/Ch [mm2] 0.0045 0.0077 0.058 0.078 0.011 0.013 0.00505 (es-

timate)
AP Noise [µVrms] 7.71 5.53 3.32 9.5 2.6 (LFP) 1.13 3.45
LFP Noise [µVrms] 11.9 2.88 14.08
Power per Channel
[𝜇 W]

6.02 61.2 3.05 6.50 0.99 0.630 41.12

BW Low [Hz] 0.1 0.5 0.5 1 1 0.1 0.5
BW High [kHz] 10 10 10.9 10 0.5 0.5 10
BW [kHz] 10 10 10.9 10 0.499 0.499 10
Power/BW [nW/Hz] 0.602 6.12 0.280 0.650 1.98 1.26 4.12
Zin [Ω] Inf @ DC 663M@

10Hz
inf @ DC inf @ DC 2960M 0.99-1.02M inf @ DC

AC Input Range
[mVpp]

43 148 - 300 - - 140

EDO Tolerance
[mVpp]

Rail-to-Rail ±70 Rail-to-Rail ±70 Rail-to-Rail Rail-to-Rail ±1230

Topology AC Coupled
1st order Δ2Σ

DC Coupled
2nd order
Δ2Σ

IA+1st order
Δ2Σ

DC Coupled
2nd order ΔΣ

DC Coupled
OpAmp-less
Δ modulated

Δ2Σ Δ2Σ
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5.4. Conclusion
This chapter has demonstrated the effectiveness of systematic design approaches in developing a
spectrum-shaping Δ2Σ AFE for neural signal acquisition. State scaling optimization successfully ex-
panded the dynamic range, improving the peak SNDR from 52dB to 70dB, and enabling robust
recording across both AP and LFP bands. Transistor-level simulations in a TSMC 180,nm BCD process
confirmed the feasibility of the proposed design, achieving a total estimated area of only 0.005 05mm2,
low analog power consumption of 7.11µW, and noise performance of 3.45µVrms (AP) and 14.08µVrms
(LFP).

A benchmark comparison against recent AFE designs highlighted the design’s advantages in area
efficiency, input impedance, and extended EDO tolerance, while also revealing trade-offs in LFP noise
performance compared to chopping-based implementations. Crucially, the avoidance of input HPFs
and pseudo-resistors eliminates leakage and non-linearity issues, ensuring long-term signal stability.

Overall, the results validate the central research question: systematic methodologies—including state-
space representation at the transfer function level, orthonormal topology, DTL integrator synthesis, and
𝐺𝑚/𝐼𝐷-based transistor design—can be effectively combined to realize a power-efficient, spectrum-
shaping AFE suitable for neural signal acquisition.
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6.1. Conclusion
The proposed orthonormal-ladder Δ–ΔΣAFE demonstrates promising performance, particularly in terms
of power efficiency, when compared to similar state-of-the-art designs. For example, while the analog
integrators in the second-order DC-coupled Δ–ΔΣ AFE reported in [20] consume 17 𝜇W, the integra-
tors in this work require only 7.11 𝜇W. The total power consumption is 41.1 𝜇W, dominated by the
quantizer, yet the design maintains comparable noise performance. A key enabler is the use of a dy-
namic translinear integrator to implement the frequency-equalization Δ loop, which eliminates the need
for complex digital circuits employed in prior works and thereby reduces both area and power con-
sumption. In addition, state-scaling techniques expand the available dynamic range, enabling robust
acquisition of low-amplitude, low-frequency LFP signals alongside higher-frequency AP signals. The
design was developed using systematic methodologies at multiple abstraction levels: the state-space
approach at the transfer-function level, dynamic translinear synthesis and the 𝑔𝑚/𝐼𝐷 methodology at
the circuit level, and an orthonormal-ladder representation at the topology level. In doing so, this thesis
directly addresses its central research question: how systematic design approaches can be applied to
realize a spectrum-shaping analog front end for neural signal acquisition.

6.2. Contributions
This work contributes to the design of spectrum-shaping analog front ends for neural signal acquisition
by applying a systematic methodology that divides the design process into transfer function design,
topology selection, and circuit-level implementation. Within this framework, the following contributions
were made:

• At the topology selection stage, the orthonormal ladder topology was adopted for the Δ–ΔΣ AFE.
This choice ensured intrinsic state scaling, leading to optimal use of dynamic range and robust
operation across both low-amplitude LFPs and higher-frequency APs.

• At the circuit level, the frequency equalization loop was realized in the analog domain using a
dynamic translinear integrator. By synthesizing this block systematically, the design eliminated
the need for a conventional multi-bit DAC in the feedback path, avoiding the overhead of large
digital decoders and DWA circuits. This led to improvements in both power and area efficiency.

This work demonstrates how systematic approaches can translate high-level performance require-
ments into practical architectures and transistor-level implementations for neural AFEs.

6.3. Recommendations
Future work recommendations include carrying out the physical layout and post-layout extraction to ob-
tain more accurate performance estimates, as well as implementing a decimation filter to complete the

33
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system-level design. Porting the architecture to a down-scaled technology node could further reduce
power consumption and area. In addition, optimization of the quantizer implementation is needed to
improve energy efficiency. Another point for future improvement is the correction of the conversion er-
ror identified between the DT and CT models. Finally, while the loop constants for the DT model in this
work were based on an initial design point to insure stablity, further optimization of these parameters
could enhance overall modulator performance.
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