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Propositions

accompanying the dissertation

FINITE ELEMENT METHODS FOR SEISMIC MODELLING
DEFECT CORRECTION FOR COMPUTE COST REDUCTION USING MASS MATRIX

PRECONDITIONING

by

Ranjani SHAMASUNDAR

1. The computational cost of finite element methods cannot compete with that of
finite differences; however, with suitable cost reducing methods, their additional
expense can pay off when high accuracy is required. (This thesis)

2. When representing the wave equation with separate motion and material equa-
tions, shorter wavelengths lead to null vectors, which means that the second-order
representation performs better. (This thesis)

3. For the acoustic wave equation, assembling the mass matrices locally is more effi-
cient than global assembly for finite element basis functions of degree greater than
one. (This thesis)

4. Hermite elements with a bubble function offer good dispersion properties for the
first-order wave equation, but need to be modified to include material inhomo-
geneities and continuity of the tangential component of the pressure gradient across
edges of elements. (This thesis)

5. Proclamations about the end of oil industry should be dismissed—the industry
will survive as long as population grows.

6. Things we own beyond basic needs of food, water and shelter (and WiFi in 2019)
are an imposition on someone else’s basic needs.

7. Being born in a rich country is a privilege, yet many people fail to realise this and
live lives of resentment because of closed-mindedness.

8. The role of family in traditional eastern societies is taken over by the government
in the welfare societies of the west.

9. Cultural stereotypes are not wrong in themselves, they are often statistically true.
However, they are dangerous because they become sole representations of indi-
viduals.

10. Modern-day slavery comes in the form of mental shackles instead of physical labour.
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These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor Prof. dr. W.A. Mulder.
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SUMMARY

Demand for hydrocarbon fuel is predicted to keep increasing in the coming decades in

spite of easily accessible alternative fuels due to shifting geopolitical and economic situ-

ations. In order to find new hydrocarbon pockets, we need sharper images of earth’s sub-

surface. Also, the exploration of other sources of energy like geothermal will benefit from

better models of the what lies underneath the surface. One way to obtain better images

is to use superior numerical methods for forward modelling - Finite-element methods

(FEM) are one such method, but their accuracy comes at the cost of increased compute

expense. This thesis explores means to reduce this cost and adapt FEM to large-scale

problems in geophysics.

The Finite Difference (FD) method is the most popular numerical approximation

scheme used in subsurface imaging problems. Representing the wave as the solution

of individual motion and material equations is advantageous in terms of accuracy and

stability and leads to the natural inclusion of density variations in the medium. This

representation is referred to as the first-order formulation of the wave equation in this

document. Finite Element (FE) methods are commonly derived for second-order equa-

tions because of the nature of variational formulation.

Finite-element discretisations of the acoustic wave equation in the time domain of-

ten employ mass lumping to avoid the cost of inverting a large sparse mass matrix.

Unfortunately, for a first-order system of equations, mass lumping destroys the super-

convergence of numerical dispersion for odd-degree polynomials. In chapter 3 of this

thesis, we consider defect correction as a means to restore the convergence. We adapt

the defect correction method to FEM by solving the consistent mass matrix with the

lumped one as preconditioner. For the lowest-degree element, fourth-order accuracy

in 1D can be obtained with just a single iteration of defect correction. In this chapter,

we analyse the behaviour of the error in eigenvectors as a function of the normalized

wavenumber in the form of leading terms in its series expansion and find that this error

xi
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xii SUMMARY

exceeds the dispersion error, except for the lowest degree where the eigenvector error is

zero. We also present results of numerical experiments that confirm this analysis.

Chapter 3 concluded that defect correction can improve the convergence property

of finite-elements in the first-order system of acoustic equations in 1D; the inexpen-

sive linear elements showed the same performance as a fourth-order scheme. However,

for realistic problems we need to ensure that the same improvement holds in higher

dimensions. Based on the results of the earlier chapter, we conjecture that defect cor-

rection should work for 2D problems. In the first half of chapter 4, we analyze the 2-D

case. Theoretical results imply that the lowest-degree polynomial provides fourth-order

accuracy with defect correction, if the grid of squares or triangles is highly regular and

material properties constant. But numerical results converge more slowly than theoret-

ical predictions. Further investigation demonstrates that this is due to the activation of

error-inducing wavenumbers in the delta-source representation. In the second half of

the chapter, we provide a solution to this problem in the form of a tapered-sinc source

function.

In chapter 5, we consider isotropic elastic wave propagation with continuous mass-

lumped finite elements on tetrahedra with explicit time stepping. These elements re-

quire higher-order polynomials in their interior to preserve accuracy after mass lumping

and are recently discovered up to degree 4. Global assembly of the symmetric stiffness

matrix is a natural approach but requires large memory. Local assembly on the fly, in

the form of matrix-vector products per element at each time step, has a much smaller

memory footprint. With dedicated expressions for local assembly, our code ran about

1.3 times faster for degree 2 and 1.9 times for degree 3 on a simple homogeneous test

problem, using 24 cores. This is similar to the acoustic case. For a more realistic prob-

lem, the gain in efficiency was a factor 2.5 for degree 2 and 3 for degree 3. For the lowest

degree, the linear element, the expressions for both the global and local assembly can

be further simplified. In that case, global assembly is more efficient than local assem-

bly. Among the three degrees, the element of degree 3 is the most efficient in terms of

accuracy at a given cost.

In chapter 6, we consider cubic Hermite elements as interpolants in place of Legen-

dre polynomials. By nature of their C 1 continuity, they might offer a solution to the prob-

lems of ‘spurious’ wavenumbers seen in earlier chapters with conventional interpolation
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SUMMARY xiii

schemes. Results show acceptable convergence properties on homogeneous media, but

the representation needs to be altered to suit discontinuities in density, which makes

interesting future work.
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SAMENVATTING

Ondanks gemakkelijk toegankelijke alternatieve brandstoffen wordt verwacht dat de

vraag naar koolwaterstofbrandstof in de komende decennia zal blijven toenemen als

gevolg van veranderende geopolitieke en economische situaties. Om nieuwe koolwater-

stofvoorkomens te vinden, hebben we scherpere afbeeldingen van de ondergrond van de

aarde nodig. Ook de verkenning van andere energiebronnen zoals geothermie zal profi-

teren van betere modellen van wat zich onder het oppervlak bevindt. Eén manier om be-

tere afbeeldingen te verkrijgen is om superieure numerieke methoden te gebruiken voor

voorwaarts modelleren. Eindige-elementenmethoden (EEM) zijn een voorbeeld, maar

hun nauwkeurigheid gaat ten koste van een hogere rekeninspanning. Dit proefschrift

onderzoekt middelen om deze kosten te verminderen en zo de EEM beter geschikt te

maken voor grootschalige geofysische problemen.

De eindige-differentiemethode (EDM) is het meest populaire numerieke benade-

ringsschema dat wordt gebruikt voor ondergrondse beeldvormingsproblemen. Om een

golf voor te stellen als de oplossing van individuele bewegings- en materiaalvergelij-

kingen, heeft voordelen in termen van nauwkeurigheid en stabiliteit en staat op na-

tuurlijke wijze het meenemen van dichtheidsvariaties in het medium toe. Deze repre-

sentatie wordt de eerste-ordeformulering van de golfvergelijking genoemd in dit proef-

schrift. Eindige-elementenmethoden worden gewoonlijk afgeleid voor vergelijkingen

van de tweede orde omdat dit het meest voor de hand ligt in de zwakke formulering.

De eindige-elementendiscretisatie van de akoestische golfvergelijking in het tijds-

domein maakt vaak gebruik van massaklontering om de kosten van het inverteren van

een grote ijle massamatrix te vermijden. Jammer genoeg vernietigt massaklontering,

voor een eerste-ordesysteem van vergelijkingen, de superconvergentie van de nume-

rieke dispersie voor polynomen van oneven graad. In hoofdstuk 3 van dit proefschrift

beschouwen we defectcorrectie als een manier om de convergentie te herstellen. We

passen defectcorrectie toe op de EEM door de vergelijkingen voor de consistente mas-

xv
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samatrix op te lossen met de geklonterde massamatrix als preconditioner. Voor het ele-

ment met de laagste graad kan een nauwkeurigheid van de vierde orde in één dimensie

worden verkregen door slechts een enkele iteratie met defectcorrectie. In dit hoofdstuk

analyseren we het gedrag van de fout in de eigenvectoren als een functie van het ge-

normaliseerd golfgetal in de vorm van de dominante termen in de reeksontwikkeling en

vinden dat deze fout de dispersiefout overschrijdt, behalve voor de laagste orde waar de

eigenvectorfout nul is. We presenteren ook resultaten van numerieke experimenten die

deze analyse bevestigen.

Hoofdstuk 3 concludeert dat, voor het eerste orde systeem van akoestische vergelij-

kingen in 1D, defectcorrectie de convergentie van eindige elementen kan verbeteren. De

goedkope lineaire elementen vertonen dezelfde prestaties als een vierde-ordeschema.

Echter, voor realistische problemen moeten we ervoor zorgen dat dezelfde verbetering

geldt in hogere dimensies. Gebaseerd op de resultaten van het eerdere hoofdstuk, ver-

moeden we dat defectcorrectie zou moeten werken voor 2-D problemen. In de eerste

helft van hoofdstuk 4 analyseren we het 2-D geval. Theoretische resultaten laten zien

dat het polynoom van de laagste graad vierde-orde nauwkeurigheid oplevert met de-

fectcorrectie, als het rekenrooster van vierkanten of driehoeken zeer regelmatig is en de

materiaaleigenschappen constant. Maar numerieke resultaten convergeren langzamer

dan de theoretische voorspellingen. Nader onderzoek toont aan dat dit te wijten is aan

de activering van fouten veroorzakende golfgetallen ten gevolge van de representatie

van de puntbron als deltafunctie. In de tweede helft van het hoofdstuk bieden we een

oplossing voor dit probleem in de vorm van een ‘tapered-sinc’ als bron.

In hoofdstuk 5 beschouwen we isotrope elastische golfvoortplanting met continue

massageklonterde eindige elementen op tetraëders met expliciete tijdstappen. Deze ele-

menten vereisen polynomen van hogere graad in hun binnenste om de nauwkeurigheid

te behouden na massaklontering en waren bij het schrijven bekend tot en met graad 3.

Onlangs zijn er nieuwe gevonden tot en met graad 4. Globale assemblage van de symme-

trische stijfheidsmatrix is een natuurlijke benadering, maar vereist wel veel computer-

geheugen. Assemblage ter plekke, in de vorm van matrix-vectorproducten per element

in elke tijdstap, vraagt veel minder geheugen. Met speciale uitdrukkingen voor lokale

assemblage liep onze code rond 1,3 keer sneller voor graad 2 en 1,9 keer voor graad 3

op een eenvoudig homogeen testprobleem, gebruikmakend van 24 rekenkernen. Dit is
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vergelijkbaar met het akoestisch geval. Voor een realistischer probleem was de winst in

efficiëntie een factor 2,5 voor graad 2 en 3 voor graad 3. Voor de laagste graad, het line-

aire element, kunnen de uitdrukkingen voor zowel de globale als de lokale assemblage

verder worden vereenvoudigd. In dat geval is globale assemblage efficiënter dan lokale.

Van de drie polynoomgraden is het element van graad 3 het meest efficiënt in termen

van nauwkeurigheid voor gegeven rekenkosten.

In hoofdstuk 6 beschouwen we kubieke Hermite polynomen als interpolanten in

plaats van Legendre veeltermen. Door hun C 1 continuïteit kunnen zij een oplossing bie-

den voor de problemen van ‘valse’ golfgetallen die we in eerdere hoofdstukken hebben

gezien bij conventionele interpolatieschema’s. Resultaten laten acceptabel convergen-

tiegedrag zien voor homogene media, maar de representatie schiet tekort bij discontinu-

ïteiten in dichtheid die samenvallen met de zijden van de driehoeken. Aanpassing van

de methode daarvoor is interessant toekomstig werk.
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With the still high demand for oil and gas, new reserves need to be found. In order to find

new hydrocarbon pockets, we need sharper images of the subsurface. One way to do this

is to use better numerical methods for forward modelling. Finite-element methods (FEM)

are one such method, but their accuracy comes at the cost of increased compute expense.

How is it possible to reduce this cost and adapt FEM to large scale problems of geophysics?
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3

What will the energy scenario of the world look like, 100 years from now? Or, even

in the year 2050? With increasing population that can afford amenities that require fuel,

the demand for hydrocarbons is going to keep rising. Experts predict that despite the

rise of renewable energies, hydrocarbon-based fuels are going to constitute 40-60 % of

the energy supply until the year 2060, based on various geopolitical scenarios (Shell-

scenarios, 2017).

However, most of the hydrocarbon reserves that can be discovered using existing

methods have been found. The next step in exploration geophysics towards finding new

reserves is to obtain sharper images of the subsurface of our planet. The process of sub-

surface imaging with reflection seismology uses seismic waves that travel through the

earth. Thus, a numerical method that accurately approximates the equation that gov-

erns the physical motion of waves becomes important.

Seismic waves can be generated in the subsurface by an explosive device such as

dynamite or a vibroseis on land, or an air gun when the experiment is being conducted

in a marine environment as sketched in figure 1.1. As the signal travels through the earth,

each layer reflects a portion of the energy and transmits and/or refracts the remaining

portion of the signal. The signal is then picked up by a series of receivers, known as

geophones or hydrophones depending on whether the experiment is being conducted

on land or water. These receivers translate the energy from the seismic signal into an

electric signal, which is then recorded as a seismic trace.

Figure 1.1: Seismic acquisition in a marine environment. Mechanical properties of the layers in the
subsurface vary with depth. In this example, ρ is the property that leads to different velocities of the layers.
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To convert the traces into information that can be used by interpreters who can iden-

tify the location of hydrocarbon reserves, mechanical properties such as elasticity and

velocity have to be gleaned from the available experimental outputs. In order to do this,

first an approximate velocity is made on which a numerical representation of the phys-

ical experiment is reproduced. The velocity model is then continuously updated until

the difference between the outputs of the physical experiment and the numerical exper-

iment are reduced to an acceptable tolerance limit. The process of seismic inversion has

been schematically represented in figure 1.2

Figure 1.2: Process of seismic inversion. Forward modelling is the focus of this thesis.

Today, the finite-difference method is most popularly used in the industry because

of ease of coding and avalability of legacy codes in the industry. This method is rela-

tively easy to implement and parallelize. High-order differencing is often used to im-

prove both computational and memory efficiency. For problems with sharp velocity

contrasts, however, the finite-difference method is less attractive, because the solution

is not sufficiently smooth across these contrasts and sharp interfaces between different

materials cannot be easily represented on a finite-difference grid. In numerical simu-

lations of wave propagation, this produces stair-casing, as for instance shown in figure

1 of (Mulder, 1996), reproduced here as figure 1.3. This may be a serious drawback for

seismic applications in complex geologies (Zhebel et al., 2014).

Finite-element methods offer a remedy to these problems, since they can follow the

boundary of sharply contrasting geological features (Marfurt, 1984). However, they are
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Figure 1.3: Seismic reflection traces for an interface dipped at 10◦. The representation of the contrast in
sound speed in a finite-difference code generates a crosshatches pattern.

not in popular use because of the additional cost of compute, and complications in par-

alellizing the code. This thesis focuses on trying to reduce the cost of finite-element

methods so that they may applied to large scale problems of geophysical imaging.

Earlier works in this regard have looked at cost reduction by using efficient algo-

rithms (Babuska et al., 1991; Farhat and Roux, 1991) and by using methods to reduce

grid dispersion (De Basabe and Sen, 2007; Yue and Guddati, 2005). Quicker and auto-

mated mesh generation would also be one approach to make FE more suitable for seis-

mic imaging, since the mesh may have to be updated in the inversion loop to follow the

iterative updates of the model. Cost-efficient auto-mesh generation has been suggested

by (Loge et al., 2007), although for the case of metals. Alternative finite-element methods

such as discontinuous Galerkin (Favorskaya et al., 2016; Marcus J. Grote and Schotzau,

2006), XFEM (Julien Yvonnet, 2008; Wang et al., 2017; Yazid et al., 2009) and spectral

finite-element methods (Patera, 1984; Seriani and Priolo, 1994) have been proposed for

other applications. However, these were mainly designed for smaller problems in dif-
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ferent fields and may not scale up properly for the larger problems of geophysics. The

spectral-element method with Legendre-Gauss-Lobatto nodes on hexahedra does scale

up and has become popular in the seismological community (Komatitsch and Tromp,

1999). Tetrahedra offer better meshing flexibility than hexahedra, but the construction

of spectral elements is not as straightforward as for hexahedra. Elements of this type are

considered in Chapter 5.

To avoid the cost of inverting the mass matrix and enable explicit time stepping, mass

lumping is a common practice in FEM. This is done by performing row-summing oper-

ations that convert the fully populated mass matrix into a diagonal form. This operation

is schematically depicted for a simple example that uses two triangular elements in fig-

ure 1.4. It has been proven that mass lumping with conventional FEM methods does not

reduce the accuracy; it may even behoove the method for certain applications. In geo-

physical imaging, under certain circumstances, the first-order form of the wave equation

ρ−1c−2∂t p = ∂x vx +∂z vz + f , ρ∂t vx = ∂x p, ρ∂t vz = ∂z p,

is more advantageous compute-wise, than the commonly used second-order formula-

tion

ρ−1c−2∂t t p = ∂x (ρ−1∂x p)+∂z (ρ−1∂z p)+ f ′.

In the above equations, ρ(x, z) and c(x, z) are density and speed of sound and define

the material at a position (x, z). At a given instance, the waveform can be described

by particle velocities in the x- and z-directions, vx (t , x, z) and vz (t , x, z), and pressure

p(t , x, z) at time t . The source term is denoted by f (t , x, z) or its time derivative f ′(t , x, z).

The first-order form has been explored for the finite-difference case by (Virieux, 1986)

and (Virieux, 1984), and examined in further detail for FEM by (Ainsworth, 2014a,b).

However, the first-order system of equations present a drawback: mass lumping cannot

be used without a loss of accuracy.

In this thesis we explore different means by which this loss of accuracy can be ad-

dressed. The organisation of the thesis is as follows.

Chapter 2 gives an overview of the methods used in this thesis, specifically defect

correction. It gives the generic form of how defect correction can be adapted as a pre-

conditioner and how approximation errors are calculated.
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(a)

(b) (c)

Figure 1.4: Mass lumping is used to reduce a fully populated mass matrix into a diagonal matrix in order to
reduce the cost of inversion, which is a computationally expensive process. (a) Two triangular elements (b)

The assembled mass matrix of these two elements. In this figure, each cell represents one entry in the
assembled mass matrix (c) The elements in (b) are collapsed into the diagonal by using the row-summing

method.

Chapter 3 presents a dispersion and eigenvector analysis of various 1-D schemes.

The numerical dispersion curve describes the error in the eigenvalues of the discrete set

of equations. However, the error in the eigenvectors also play a role. For polynomial

degrees above one and when considering a 1-D mesh with constant element size and

constant material properties, a number of modes, equal to the maximum polynomial

degree, are coupled. One of these is the correct physical mode that should approxi-

mate the true eigenfunction of the operator, the other are spurious and should have a

small amplitude when the true eigenfunction is projected onto them. We analyze the

behaviour of this error as a function of the normalized wave number in the form of the

leading terms in its series expansion and find that this error exceeds the dispersion error,

except for the lowest degree where the eigenvector error is zero.

The main observation in this chapter is that the simplest linear element in the first-

order form has a fourth-order error. If this would generalize to 2 and 3 dimensions, it

could potentially lead to a much faster modelling scheme. The price paid is that this ac-

curacy is reduced to only second order after mass lumping. To avoid the cost of inverting
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the mass matrix but still preserve accuracy, defect correction is explored as a means to

restore the accuracy. Then, the consistent mass matrix is approximately inverted with

the lumped one as preconditioner. For the lowest-degree element on a uniform mesh,

fourth-order accuracy in 1D can indeed be obtained with just a single iteration of defect

correction. This doubling of the computational cost per time step is partly compen-

sated by the larger allowable time step. Numerical 1-D tests confirm this behaviour. We

briefly analyze the 2-D case, where the lowest-degree polynomial also appears to pro-

vide fourth-order accuracy with defect correction, if the mesh is structured in the form

of squares divided into pairs of triangles and if material properties are constant.

Chapter 4 investigates the method in 2 space dimensions. In spite of the theoretical

estimate of fourth-order accuracy with linear elements in first-order form, the practi-

cal implementation brought forth certain issues: the method did not show the expected

convergence rates. The solution was extremely noisy when the conventional delta func-

tion was used to represent a point source. Masking the dispersive wavelengths is ex-

plored as a possible solution. First, a Gaussian function is attempted as the spatial

smearing function for the source. This masks the unwanted wavelengths but also in-

creases the error. Next, a tapered-sinc forcing function is designed as an alternative for

the Gaussian mask. This reduces the noise in the solution while keeping the increase of

the error small. Although the theoretical estimates of fourth-order are not achieved, con-

vergence is recovered to higher levels than the mass lumped scheme. Unfortunately, the

improved accuracy and larger allowable time step are not sufficient to compensate the

additional cost when comparing to existing continuous mass-lumped finite elements in

second-order form.

Chapter 5 considers continuous mass-lumped finite elements on tetrahedra with ex-

plicit time stepping for simulating isotropic elastic wave propagation. These elements

require higher-order polynomials in their interior to preserve accuracy after mass lump-

ing and were only known up to degree 3 at the time. Only recently have they been ex-

tended to degree 4 as well as simplified (Geevers et al., 2018). Global assembly of the

symmetric stiffness matrix is a natural approach but requires large memory. Local as-

sembly on the fly, in the form of matrix-vector products per element at each time step,

has a much smaller memory footprint. In this chapter, the computational efficiency of

the two approaches is compared.
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In Chapter 6 we employ Hermite shape functions as a substitute for the hitherto-used

Lagrangian basis functions. They strongly resemble the first-order form but avoid their

instability in more than one space dimension by having an additional bubble function.

They are tested on 1-D and 2-D problems. It is surmised that the higher-order restriction

imposed by the C1 continuity of the Hermite shape functions will improve the conver-

gence properties. Whereas the method can deal with discontinuous material properties

in 1D, assuming that the discontinuities occur at the element vertices, this is not true in

more than one space dimension. In 2D, for instance, a discontinuity in density across

the edge of a triangular element will cause the tangential velocity component to be dis-

continuous whereas the cubic Hermite elements will impose their continuity. This will

cause some loss of accuracy, although this still may be acceptable in practice.

The thesis concludes with the final chapter, giving an outlook into the future direc-

tion this research might take.
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In this chapter, existing methods of mathematically approximating the wave equation are

briefly reviewed, and concepts used in the thesis are explained in greater detail.

What is the ’defect’ we are correcting in defect correction? How can we use Fourier analysis

to derive the error behaviour of an approximation? These are some questions that will be

answered in this chapter. It is written to aid a better understanding of the forthcoming

chapters.
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2.1. FINITE-ELEMENT METHODS

2

15

The finite-difference (FD) method is the most popular numerical approximation

scheme used in subsurface imaging problems. They are relatively easy to code up and

parallelize and provide fairly accurate results. Over the last decade, they have become

the main tool for seismic imaging in complex geological models, in spite of their sub-

stantial computational cost.

Finite-elements are computationally more costly but their superior accuracy in the

presence of complex topography can make them more efficient than finite differences.

Finite-element (FE) methods are commonly derived for wave equation in second-order

form, involving a mass matrix and stiffness matrix. In some cases, the first-order form

may be more advantageous in terms of accuracy or in directly providing observable

quantities.

Both the second- and first-order form lead to a mass matrix that has to be inverted

at each time step. To avoid that cost, it can be replace by a diagonal mass matrix, with

entries proportional to numerical quadrature weights. If this leads to an unacceptable

loss of accuracy, an iterative method can be considered. The defect-correction principle

shows that one iteration with a lumped mass matrix as preconditioner may suffice in

some cases.

Dispersion analysis is a common tool for estimating numerical phase errors in finite-

difference codes, but can also be used for finite elements to enable a quick comparison

between the expected performance of various schemes.

FINITE-ELEMENT METHODS

Finite-elements methods employ the weak form of the differential equation. To focus

the discussion, consider the acoustic wave equation in one space dimension:

1

ρc2

∂2p

∂t 2 = ∂

∂x

(
1

ρ

∂p

∂x

)
, (2.1)

with sound speed c(x) and density ρ(x). The pressure p(t , x) is a function of time t ∈
(0,T ), between zero and maximum time T , and position x ∈Ω, in a given domain Ω with

suitable conditions on the boundary ∂Ω, for instance, zero Dirichlet boundary condi-

tions p(x) = 0 for x ∈ ∂Ω.

For the weak formulation, we assume that p belongs to the usual function space U =
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H 1
0 (Ω), the Sobolev space of functions with square-integrable derivatives and zero on

∂Ω, and multiply equation (2.1) by a test function q(x) belonging to a function space

V = L2(Ω), the space of square-integrable functions on Ω. The test function is assumed

to vanish on the boundary ∂Ω. We ignore the descretization in time and for brevity also

drop the dependence on t . Multiplying the wave equation by q and integrating by parts

then produces the weak form

∫
Ω

1

ρc2 q
∂2p

∂t 2 dx =−
∫
Ω

(
∂q

∂x

)
1

ρ

(
∂p

∂x

)
dx, (2.2)

to be satisfied for all q(x) ∈ L2(Ω).

Equation (2.1) is called the second-order form of the wave equation. Its first-order

form is
1

ρc2

∂p

∂t
= ∂v

∂x
, ρ

∂v

∂t
= ∂p

∂x
, (2.3)

with velocity v(t , x). Although the second- and first-order form are the same, this is no

longer true after discretization (Brezzi and Fortin, 1991; Joly, 2003). A weak form (2.3) is

∫
Ω

1

ρc2 q
∂p

∂t
dx =−

∫
Ω

v
∂q

∂x
dx,

∫
Ω
ρu

∂v

∂t
=
∫
Ω

u
∂p

∂x
dx,

with p ∈U = H 1
0 (Ω) and v ∈V = L2(Ω). and test functions q(x) ∈U and u(x) ∈V . This is

the primal formulation. The dual formulation

∫
Ω

1

ρc2 q
∂p

∂t
dx =

∫
Ω

q
∂v

∂x
dx,

∫
Ω
ρu

∂v

∂t
=−

∫
Ω

p
∂u

∂x
dx,

basically swaps the spaces U and V and involves different regularity requirements.

The finite-element discretization proceeds with a discrete approximation U h of U

and also V h of V for the first-order form. The domain Ω is partitioned into elements,

intervals of finite length in the 1-D case. Common choices are triangles or quadrilaterals

in two dimensions and tetrahedra or hexahedra in three dimensions. The simplexes offer

more meshing flexibility than the blocks. Piecewise polynomials are often chosen for the

basis and test functions. The Galerkin approach uses the same for both but they can be

different, as in the Petrov-Galerkin method required for the first-order formulation.
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Given an expansion of the solution into basis functions,

p(x) =
N∑

j=1
p jφ j (x),

and a similar expansion for the test functions

q(x) =
N∑

j=1
q jφ j (x),

substitution into equation (2.2) and stationarity for all q j leads to

M
∂2p

∂t 2 =−K p,

with a vector p containing the degree of freedom p j and with mass matrix M and stiffness

matrix K having entries

Mi , j =
∫
Ω

1

ρc2 φi (x)φ j (x)dx, Ki , j =
∫
Ω

1

ρ

(
∂φi (x)

∂x

)(
∂φ j (x)

∂x

)
dx.

Likewise, for the first-order form, we can consider expansions into basis functions

p(x) =
Np∑
j=1

p jφ j (x), v(x) =
Nv∑
j=1

v jψ j (x),

where φ j (x) and ψ j (x) are generally different. The latter are vectors in more than one

dimension. With similar expansions

q(x) =
Np∑
j=1

q jφ j (x), u(x) =
Nv∑
j=1

u jψ j (x),

for the test functions, we obtain for the primal mixed formulation

Mp ∂p

∂t
=−(Dp)T v, Mv ∂v

∂t
= Dp p.

The two mass matrices have elements

M p
i , j =

∫
Ω

1

ρc2 φi (x)φ j (x)dx, M v
i , j =

∫
Ω
ρψi (x)ψ j (x)dx.
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The derivative operator has entries

Dp
i , j =

∫
Ω
ψi (x)

∂

∂x
φ j (x)dx,

and the superscript (·)T denotes the transpose. A natural choice for the space V contain-

ing ψ is the space of derivatives of U .

In general, the first-order form provides a discretization that is different from the one

obtained with the second-order form. An interesting exception is the spectral-element

method for polynomial basis functions up to degree p with mass lumping on Legendre-

Gauss-Lobatto nodes. The latter make the diagonal values of the lumped mass matrix

agree with numerical quadrature weights, up to a constant factor. If the first-order form

has U as the space of piecewise continuous polynomials of degree p and V the space of

piecewise discontinuous polynomials of the same degree, then the discrete versions for

the first- and second-order form are numerically the same (Cohen, 2002). This is a sim-

ple consequence from the fact that the numerical quadrature weights are exact for poly-

nomials up to degree 2p −1. Numerical quadrature for the derivative matrix is therefore

exact and involves basis functions evaluated at nodes. If Lagrange interpolants are used,

they are either one or zero over there and only the derivatives at the nodes remain. The

lumped mass matrix for the velocities is decoupled from the neighbouring elements by

assumption and readily inverted. Elimination from the velocities in an element leads to

an expression that equals the result of numerical quadrature applied to the contribution

to the stiffness matrix of that element and the latter is exact. Therefore, the first- and

second-order form are numerically the same. This result also holds in more than one

space dimension on rectangular elements if the Cartesian product of the 1-D polynomi-

als is used for the basis functions. It also is valid for the degree-1 mass-lumped finite

element on triangles and tetrahedra.

An example of the dual mixed formulation is the lowest-order Raviart-Thomas el-

ement RT0 (Raviart and Thomas, 1977) on the triangle for the fluxes across the edges,

which are the normal components of the velocity v in our case, and the piecewise con-

stant element P0 for the pressure p. The velocities are piecewise linear per triangle, con-

stant on the edges and continuous across the edges. This follows the natural choice for

the dual formulation of φ ∈V and ψ ∈U with V the space of derivatives of U .

In this thesis, a primal formulation will be investigated with a deliberately wrong
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choice for the space V . When only the spatial part is considered in more than one space

dimension, this results in an unstable discretization of the corresponding elliptic oper-

ator. Also, the scheme imposes continuity of the tangential velocity component across

elements, which should not hold if the density is discontinuous across an element edge.

The motivation lies in the observation that the lowest-degree element with contin-

uous piecewise linear elements for both pressure and velocity has fourth-order accu-

racy in 1D, as shown in Chapter 3. This would potentially offer a far less costly alter-

native to the existing fourth-order mass-lumped scheme on tetrahedra (Chin-Joe-Kong

et al., 1999), also considered in Chapter 5. One could argue that a similar violation of

(dis)continuity requirements is made in the higher-order finite-difference methods that

are widely used for seismic modelling and could be acceptable if it pays off in terms of

overall accuracy at a given compute cost. Unfortunately, that is not case, as turns out in

Chapter 4.

Stable versions of this element are the MINI element (Arnold et al., 1984), with adds

bubble functions to the velocity components, and the cubic Hermite element, which is

the subject of Chapter 6.

MASS LUMPING AND NUMERICAL QUADRATURE

Piecewise polynomials are a common choice for finite-element basis functions. Mass

lumping, in which the full mass matrix is replaced by a diagonal matrix obtained from

its row sums, is attractive for explicit time stepping schemes, as it avoids the inversion of

a large sparse matrix. The Legendre-Gauss-Lobatto nodes lead to a mass matrix proper-

tional to numerical quadrature weights. For polynomials of degree p, these are exact up

to degree 2p−1, whereas only 2p−2 is required in the second-order form (Ciarlet, 1978).

Cartesian products can be used for block-type elements in more than one space dimen-

sion. This forms the basis of the spectral-element method, which has found widespread

use in the seismological community for the modelling and inversion of seismic waves

(Komatitsch and Tromp, 1999). Another option are the Chebyshev-Gauss-Lobatto nodes

without (Patera, 1984; Seriani et al., 1992) or with a weighted scalar product, further ex-

amined in Chapter 3.

Mass lumping for triangles and tetrahedra is less straightforward. To avoid zero or

negative weights, which will lead to an unstable time stepping scheme, polynomials of
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higher degrees have to be added (Cohen et al., 2001, 1995; Tordjman, 1995) to the interior.

For triangles, elements up to degree 9 have been found, for tetrahedra up to degree 4

(Chin-Joe-Kong et al., 1999; Cohen et al., 1995; Cui et al., 2017; Geevers et al., 2018a, 2019,

2018b; Liu et al., 2017; Mulder, 1996, 2001, 2013). The disadvantage of this approach is

that no general recipe for the construction of elements of arbitrary degrees has been

found. Xu (2011), building on earlier work of Helenbrook (2009), actually established the

non-existence of a strict Gauss-Lobatto cubature rule for the unit triangle and also that

a minimum number of nodes are required for such a rule.

A systematic approach does exist for Discontinuous Galerkin methods. These natu-

rally lead to a block-diagonal mass matrix that is easily inverted. There computational

cost, however, is similar to the older mass-lumped elements on tetrahedra and far higher

than the newer ones (Geevers et al., 2018a, 2019).

Another route to a systematic construction of arbitrary-order spectral elements on

the triangle, is to map the rectangle, on which such elements are known, to the trian-

gle (Dubiner, 1991; Koornwinder, 1975; Samson et al., 2012). Additional steps need to

be introduced to get rid of certain artefacts arising from the use of tensorial Legendre-

Gauss-Lobatto points on a square. Similar work has been done in 3D by Li and Wang

(2010) where they used a collapsed coordinate transform between a cube and a tetra-

hederon. They use tensor products of 1D polynomials on the cube. To get around the

singularity in this transform, they use Gauss-Lobatto in one direction and Gauss-Radau

in the other two directions. It remains to be seen if these methods can be used for the

efficient simulation of 3-D wave propagation.

An alternative is the work of Li et al. (2008), who study problems of trigonometric

approximation on a hexagon and a triangle using the discrete Fourier transform and or-

thogonal polynomials of two variables. They deduce the analysis on a triangle based

on the discrete Fourier analysis of a regular hexagon. Interestingly, a trigonometric La-

grange interpolation on a triangle is shown to satisfy an explicit compact formula, which

is equivalent to the polynomial interpolation on a planer region bounded by a Steiner

hypocycloid or deltoid, i.e., similar to a higher-order interpolation. They also derive a

Gauss cubature on the deltoid, using the first two Chebyshev polynomials as the orthog-

onal bases. Building on these results, Munthe-Kaas (2006); Ryland and Munthe-Kaas

(2011) and Munthe-Kaas et al. (2012) explore the use of multivariate Chebyshev poly-
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nomials for spectral elements on triangles, but they end up with deltoids rather than

triangles. These can be deformed to triangles by a non-linear map. Alternatively, one

can keep the deltoids an patch them together with an overlap, using the edges of the in-

scribed triangle to connect neighbouring elements. The generalization to spectral meth-

ods on tetrahedra should be feasible, but would require a generalization of the fast dis-

crete triangle transform (Püschel and Rötteler, 2004) to the tetrahedron.

DEFECT CORRECTION

In some cases, mass lumping leads to a less accurate method than with the full or con-

sistent mass matrix. Then, an iterative approach for the inversion of the mass matrix can

be considered, preconditioned with its mass-lumped version, as will be done in Chap-

ters 3 and 4. The number of iterations can be small, as shown by the defect correction

principle (Stetter, 1978) reviewed next.

Consider the linear problem Lu = f , with a linear operator L acting on the solution u

and producing a right-hand side f . An approximation L̃ of L is assumed to be more easy

to invert and provides an approximate solution u0 = L̃−1 f . Defect correction defines the

defect d0 = Lu0 − f as the error in the equation. The corresponding error in the solution

can be estimated from d0 = Lu0 − f = L(u0 −u) by

u0 −u = L−1d0 � L̃−1d0.

The approximate correction for the defect leads to the solution u1 = u0− L̃−1d0. Iterative

application of the procedure gives

ui+1 = ui − L̃−1di , i = 0,1, . . . ,

with defect di = Lui − f . We can rewrite the expression as

ui+1 = (I − L̃−1L)ui + L̃−1 f =G ui +u0 =
i+1∑
k=0

Gk u0,

where G = I − L̃−1L. Then,

lim
i→∞

ui = (I −G)−1u0 = L−1L̃L̃−1 f = L−1 f = u,
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if the spectral radius of G is less than one, demonstrating convergence.

The method is the same as the classic iterative scheme

ui+1 = ui + L̃−1ri , i =−1,0,1, . . .

with residuals ri = f −Lui and u−1 = 0. Note that ri = −di for i ≥ 0. From this point of

view, there seems to be no reason to consider defect correction as a separate notion. That

changes if the operators L̃h and Lh are lower- and higher-order discrete approximations

of the same operator L.

Let Lh produce a solution uh of order p, with an error of O(hp ) in a discretization

parameter h, for instance, a time step in a discretization of an ordinary differential equa-

tion or a grid spacing in a partial differential equation such as the wave equation in the

frequency domain. The discrete operator L̃h has a lower order p̃ < p. Then, Stetter (1978)

shows that the error in the iterates behaves as

‖uh
i − I hu‖ =O

(
hmin((i+1)p̃,p)

)
.

Here, I h projects the continuum solution u on to the discrete solution uh . This expres-

sion provides the number of iterations required to obtain a solution with an iteration

error of the order of the discretisation error.

First of all the discretised problem is defined as Lhuh = f h . Next, functions I h and

Ih map the continuous domain to the discretised and vice-versa respectively. Then, the

defect has to be defined in the h domain. This can be done as: d h = I hL̃Ih f h . in other

words, d h = L̃h f h . It is then possible to proceed with iterations in the discretised domain

similar to the continuous domain as described before.

DISPERSION ANALYSIS

The dispersion caused by a numerical scheme can be quantified by the errors in eigen-

values. (Lele, 1992) evaluates the performance of the scheme in terms of resolving effi-

ciency. On a periodic grid defined as x = x0+ j h, the Fourier symbol of the nodal variable

can be written as

f (x) =
k=N /2∑

k=−N /2+1
f̂k exp

(
2πi kx

L

)
. (2.4)
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It is convenient to define a scaled wavenumber w = 2πkh/L = 2πk/N with domain

[−π,π], which would scale the coordinate as s = x/h. The exact first derivative of eq.

2.4 with respect to the scaled coordinates would be f̂ ′
k = i w f̂k . This can be compared

against the Fourier coefficients from the numerical method. For example, a central dif-

ference scheme would have a Fourier symbol ( f̂ ′
k ) f d = i w ′ f̂k . The range of wavenumbers

over which the modified wavenumber approximates the exact differentiation within an

acceptable limit of tolerance will be the set of well-resolved waves. The shortest resolved

wave w f is sensitive to the scheme. The factor r1 = 1−w f /π represents the fraction of

poorly resolved waves; e1 = 1− r1 can be regarded as the resolving efficiency.

While finite differencing techniques and their errors have been studied extensively,

the dispersion behaviour of finite-element approximations has received less attention

(Ainsworth and Wajid, 2009; Marfurt, 1990; Mulder, 1999). Dispersion analysis shows

that the dispersion in a mass lumped FE scheme leads to a phase lag, as opposed to a

full mass matrix that leads to a phase lead. (Ainsworth, 2014) compare the propagation

of physical and various discrete waves for one-way wave equation. Results show that

the spectral, Galerkin and discrete Galerkin (DG) methods all have spurious modes. Un-

like the second-order case, the spectral-element method performs worse than Galerkin

methods. There is a two order difference in accuracy between Galerkin methods in com-

parison to DG — it is better for odd and worse for even orders of interpolation.

However, (Mulder, 1999) shows that the proper way to evaluate errors in higher-order

schemes should not only include eigenvalues, but also take into account the eigenvec-

tors associated with each mode. Waves that are generally viewed as spurious or non-

physical modes in higher-order approximations are given a new perspective. It is shown

that for elements of degree M , each block of M modes has M eigenvectors, leading to

N M distinct wavenumbers for N element), and each eigenpair can be matched to one

eigenpair of the exact operator. This is important in order to properly understand the

arrangement of eigenvalues to avoid "branches" in the dispersion curves. Some of these

results are used for comparison in Chapter 3, where dispersion as well as eigenvector

errors for the first-order form are studied, and in Chapter 6.
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CONCLUSIONS

Numerical Green functions based on the acoustic or elastic wave equation have become

a standard tool in industrial seismic processing and imaging, in spite of their cost. Finite-

difference methods are the most common in exploration seismics, whereas the spectral-

element method has gained wide popularity in the seismological community, not in the

least because of freely available software. The finite-element method is less common

in exploration seismics, because if problems with automatic meshing of complex geo-

logical structures and because of its perceived computational cost. That motivates the

search for more efficient finite-element schemes.
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3
DEFECT CORRECTION AND FEM :

IMPROVED ACCURACY WITH

REDUCED COST IN 1D

Parts of this chapter have been published in Journal of Computational Physics, 322, pp.689-707 (Shamasundar
and Mulder, 2016)
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As explained briefly in the introduction, finite-element discretisations of the acoustic wave

equation in the time domain often employ mass lumping to avoid the cost of inverting a

large sparse mass matrix. Unfortunately, for a first-order system of equations, mass lump-

ing destroys the super-convergence of numerical dispersion for odd-degree polynomials. In

this chapter, we consider defect correction as a means to restore the accuracy. We adapt the

defect correction method to FEM by solving the consistent mass matrix with the lumped

one as preconditioner. For the lowest-degree element, fourth-order accuracy in 1D can be

obtained with just a single iteration of defect correction. In this chapter, we analyse the

behaviour of the error in eigenvectors as a function of the normalized wavenumber in the

form of leading terms in its series expansion and find that this error exceeds the disper-

sion error, except for the lowest degree where the eigenvector error is zero. We also present

results of numerical experiments that confirm this analysis.
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INTRODUCTION

Numerical simulation of the wave equation in the time domain can be accomplished by

a suitable finite-difference method. This method is relatively easy to implement and par-

allelize. High-order differencing is often used to improve both computational and mem-

ory efficiency. For problems with sharp velocity contrasts, however, the finite-difference

method is less attractive, because the solution is not sufficiently smooth across these

contrasts and sharp interfaces between different materials cannot be easily represented

on a finite-difference grid. In numerical simulations of wave propagation, this produces

stair-casing, as shown in figure 1 of (Mulder, 1996). This may be a serious drawback for

seismic applications in complex geologies (Zhebel et al., 2014).

The finite-element method can, in principle, overcome these difficulties if element

faces follow sharp contrasts. Mass lumping is usually applied to avoid the cost of invert-

ing a large sparse consistent mass matrix. However, mass lumping may cause a loss of

spatial accuracy. This is not true for the second-order formulation of the wave equation.

The choice of Legendre polynomials and Gauss-Lobatto points actually leads to better

accuracy after mass lumping, as proven in the Appendix of (Mulder, 1999). These results

were confirmed later in (Ainsworth, 2004) and (Ainsworth and Wajid, 2009).

For variable-density acoustics as well as the elastic system of wave equations, a first-

order formulation can sometimes be more convenient. In the 1-D acoustic case, this

provides a pair of equations in the pressure and in the particle velocity. The usual finite-

element discretization involves different spaces for each, for instance, H 1 and L2. If the

solution is represented by polynomials with and without continuity across elements, the

first-order formulation can be made identical to the second-order one (Cohen, 2002,

section 13.4.2). Here, we adopt the naive approach of discretizing each of the pair of

first-order equations for pressure and velocity with the same spectral-element method.

Unfortunately, the application of mass lumping to first-order differentiation with

Legendre-Gauss-Lobatto (LGL) points leads to a decrease of accuracy (Ainsworth, 2014).

In this paper, we propose to use defect correction (Stetter, 1978) to compensate for this

loss of accuracy. Defect correction employs a lower-order discretization of a problem as

a preconditioner for a higher-order discretization. The gain in accuracy per iteration is

the same as that of the lower order (Stetter, 1978, section 7). If, for instance, an opera-

tor with fourth-order accuracy is preconditioned by one with second-order accuracy, the
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first step provides an approximate solution with second-order accuracy. One additional

iteration already leads to fourth-order accuracy if the numerical solution is sufficiently

well resolved by the discretization to lie in the asymptotic regime where it converges.

In the work of (Wathen, 1987), the diagonal of the mass matrix was used as a pre-

conditioner to the consistent mass matrix. Here, we will show that method to be less

effective.

To investigate the properties of the proposed scheme, we perform the same type of

dispersion analysis as in (Mulder, 1999), but now on a discrete operator that represents

the first instead of the second derivative in space. If the polynomial basis has degree

M , a discrete Fourier transform of the discrete operator results in a matrix with small

M ×M blocks, for which eigenvalues and eigenvectors can be determined, numerically

or symbolically or as a series approximation for small wavenumbers. Each of the M

eigenmodes deals with one separate point on the dispersion curve. Their interaction can

be characterized as ‘spurious’ and was quantified in (Mulder, 1999) by considering the

eigenvector errors. An alternative approach was followed by (Ainsworth, 2004; Cohen,

2002; Thompson and Pinsky, 1994), where the eigenvectors were constructed directly

and then the eigenvalues that constitute the dispersion curve were determined.

We examined the numerical dispersion curves and error behaviour for four schemes

with polynomial basis functions: the standard elements with equidistant nodes (EQUI),

the Legendre-Gauss-Lobatto points (LGL), the Chebyshev-Gauss-Lobatto nodes with-

out a weighting function (Patera, 1984) (CGL) and with (CGLw). Section 5.2 describes

the various discretizations and how we apply defect correction and analyze the numer-

ical dispersion. Section 5.3 lists the leading error terms in the dispersion curves for the

consistent mass matrix, for the lumped one, and after one iteration of defect correction.

It includes estimates of the error in the eigenvectors. Numerical experiments for sim-

ple differentiation as well as for 1-D wave propagation on a periodic mesh are included.

In Section 3.4, we apply Fourier analysis on a periodic grid to obtain error estimates for

the 2-D case, both for square bilinear elements and for squares cut onto half to obtain a

regular mesh of triangles. Section 3.5 summarizes our findings.
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METHOD

ELEMENTS

A first-order formulation of the acoustic wave equation is

ρ
∂v

∂t
= ∂p

∂x
,

1

ρc2

∂p

∂t
= ∂v

∂x
,

with particle velocity v(t , x) and pressure p(x, t ), here without the usual minus sign, as a

function of time t and position x. The density ρ(x) and sound speed c(x) will be taken as

constant for the purpose of analysis. We will not consider time stepping errors and only

concentrate on the spatial discretization. Consider N elements bounded by positions

x j = x0 + j h j , j = 0, . . . , N . Each element has M + 1 nodes at relative positions ζk , k =
0, . . . , M , with ζ0 = −1 and ζM = 1. Their corresponding global positions are x j ,k = x j +
1
2 (ζk +1) j h j . In the periodic case, the solution on xN is the same as on x0. The number

of degrees of freedom is Ndof = M N on a periodic grid both for the particle velocity and

pressure.

For the finite-element basis functions φk (ζ), we take the Lagrange interpolating poly-

nomials of degree M relative to the nodes, so φk (ζl ) = δk,l , the Kronecker delta. In each

element, we have a local mass matrix A and first-derivative matrix D , each with entries

Ak,l =
∫1

−1
ω(ζ)φk (ζ)φl (ζ)dζ, Dk,l =

∫1

−1
ω(ζ)φk (ζ)

d

dζ
φl (ζ)dζ.

The local lumped mass matrix, AL
k,l = δk,l

∑M
l=0 Ak,l is a diagonal matrix with values pro-

portional to quadrature weights. We consider four choices for the nodes: the standard

element with equidistant nodes xk = k/M , k = 0,1, . . . , M (EQUI); the Legendre-Gauss-

Lobatto points (LGL) that are the zeros of (1− ζ2)P ′
M (ζ), the Chebyshev-Gauss-Lobatto

points ζk =−cos(πk/M) with an unweighted scalar product (CGL) and with the weight-

ing function ω(ζ) = 1/
√

1−ζ2 (CGLw). Except for CGLw, the weighting function ω(ζ) = 1.

Numerical quadrature with weights AL
k,k /

∑M
k=0 AL

k,k is exact for polynomials up to degree

q = 1+2 floor{M/2} for CGL and EQUI and degree q = 2M −1 for LGL and CGLw.
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MASS MATRIX AND DEFECT CORRECTION

With the local mass and first-derivative matrices A and D defined in the previous sub-

section, we can assemble the global mass matrix M and derivative matrix D. Using these

in the acoustic wave equation (described in the beginning of section 3.2.1), a leap-frog

time discretization of with time step Δt is

1

Δt
Mv (vn+1 −vn) =Dp pn+1/2,

1

Δt
Mp (pn+3/2 −pn+1/2) =Dv vn+1. (3.1)

Here, the material properties are absorbed into the mass matrices and the superscript

n denotes the solution at time t n = t0 +nΔt . Note that we have made a distinction be-

tween the first-derivative operators Dp and Dv , but for the periodic problems consid-

ered later on in the analysis and numerical tests, they will be taken the same. As shown

in ??, the time-stepping stability limit for a leap-frog scheme is given by the CFL number

2ρ−1/2(L̃ ), with L̃ =−M−1
p Dv M−1

v Dp and where ρ(·) now denotes the spectral radius.

For time stepping, we want to avoid the cost of inverting the consistent mass matrix and

replace it by its lumped version. Depending on the choice of nodes, this may or may not

harm the spatial accuracy. Formally, the lumped version should be exact for numerical

quadrature of polynomials up to a degree of at least 2M − 2 for the second-order form

of the wave equation and 2M −1 for the first-order form. If its accuracy is less, we can

iterate with the lumped mass matrix as preconditioner. This approach resembles de-

fect correction (Stetter, 1978), which has the following convenient property. Consider

two operators L1 and L2 where Lk has an order of accuracy pk (k = 1,2) and p1 > p2.

We can try to solve L1u = f with the iterative scheme u−1 = 0, u j+1 = u j +L −1
2 (f−L1u j ),

where j = 0,1, . . . denotes the iteration count, not the time step. Convergence is obtained

if the operator G =I −L −1
2 L1 has a spectral radius ρ(G ) < 1. In a finite-difference con-

text, the order of accuracy of u j is min(p2, ( j +1)p1), which suggests that a few iterations

will often suffice to get a sufficiently accurate though not necessarily fully converged re-

sult (Stetter, 1978). In our case, we can take the lumped mass matrix for L2 = M L and

the consistent mass matrix as L1 =M .
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DISPERSION

The numerical dispersion of the finite-element scheme can be analyzed by consider-

ing the eigenvalues of the first-order operator M−1D or (M L)−1D when discretized on a

sufficiently fine periodic mesh with constant material properties and a constant element

size h. Alternatively, we can use the fact that the elements are translation-invariant for

constant material properties and element size and perform a Fourier transform on the

solution. We then have to take the M degrees of freedom inside an element as a vec-

tor and do a transform on each component over the N elements. This results in a small

M ×M matrix in the Fourier domain. However, we can go one step further and also in-

volve the M individual components. These are aliased but still can be considered sepa-

rately by looking at the eigenvalues of the M ×M block and unwrapping the result (Mul-

der, 1999). This produces a discrete approximation iκ to the exact operator iξ, where

ξ = k(xN − x0)/(N M) = kh/M ∈ [−π,π] is scaled version of the wavenumber k. The rel-

ative dispersion error can than be characterized by κ/ξ− 1. Note that the error in the

dispersion curve does not tell the full story, because errors in the eigenvectors also play

a role.

Table 3.1: Leading error terms in the dispersion curves for a polynomial basis of degree M and various sets of
nodes, using the consistent or lumped mass matrix or lumped with one iteration based on G . Its spectral

radius ρ(G ) is given, as well as the CFL number without and with mass lumping.

M nodes consistent lumped 1 iteration ρ(G ) CFL (consist.) CFL (lumped) CFL (1 iter.)

1 LGL − 1
180 ξ

4 − 1
6 ξ

2 − 1
30 ξ

4 2/3 2/



3 = 1.155 2 1.457

2 1
270 ξ

4 − 4
270 ξ

4 − 4
945 ξ

4 3/5



2/3 = 0.471 2/3 = 0.667 0.535

3 − 81
39200 ξ

8 − 27
2800 ξ

6 − 3
1400 ξ

6 4/7 0.278 0.365 0.308

4 128
496125 ξ

8 − 1024
496125 ξ

8 − 4096
6449625 ξ

8 5/9 0.188 0.239 0.208

5 −9765625
19179224064 ξ

12 −78125
67060224 ξ

10 − 15625
50295168 ξ

10 6/11 0.138 0.171 0.151

3 CGL see LGL − 333
10240 ξ

4 − 21
1460 ξ

2 3/5 see LGL 0.311 0.342

4 8
1395 ξ

4 − 1042
35397 ξ

4 5/7 0.198 0.247

5 − 231125
134217728 ξ

4 5115
4502764 ξ

2 0.966 0.132 0.203

1 CGLw − 1
24 ξ

2 − 1
6 ξ

2 − 1
24 ξ

2 1/2 1.414 2 1.570

2 CGLw 1
30 ξ

2 − 2
135 ξ

4 1
48 ξ

2 1/2 0.426 2/3 = 0.667 0.541

3 CGLw 9
1280 ξ

4 − 9
320 ξ

4 − 9
5120 ξ

4 1/2 0.213 0.354 0.297

4 CGLw − 1
405 ξ

4 − 32
4725 ξ

6 − 1
630 ξ

4 1/2 0.132 0.224 0.192

5 CGLw − 625
344064 ξ

6 625
258048 ξ

6 −625
1032192 ξ

6 1/2 0.0909 0.155 0.135

3 EQUI see LGL − 61
1080 ξ

4 − 42
295 ξ

2 0.651 see LGL 0.369 0.329

4 40
1137 ξ

4 56825
157068 ξ

4 (1.72) 0.184 (0.173)

5 −92807
312500 ξ4 33740850

26406233 ξ
2 (1.96) 0.125 (0.117)
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Figure 3.1: Dispersion curves for Legendre-Gauss-Lobatto points without and with mass lumping and after
one iteration, for degree M = 1 (a), 2 (b), and 3 (c). The blue curve corresponds to a consistent mass matrix,

the red to a lumped one, and the green is the result after one defect-correction step.
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Figure 3.2: Dispersion curves for CGLw without and with mass lumping and after one iteration, for degree
M = 1 (a), 2 (b), and 3 (c).

RESULTS

DISPERSION ANALYSIS

We compared the various spatial discretizations in terms of their dispersion curves, ob-

tained by Fourier analysis, as well by set of numerical experiments. As an example, fig-

ure 3.1 shows dispersion curves for polynomials of degrees 1 to 3 on Legendre-Gauss-

Lobatto points (LGL). Each graph shows the result without and with mass lumping as

well as with 1 iteration of defect correction. The jumps in figure 3.1c are caused by the

fact that in the Fourier analysis, M modes are considered simultaneously. Each of them

corresponds to a particular root of the eigenvalue equation and can be assigned to a

different wavenumber in the spectrum, according to how well the corresponding eigen-

vector matches the Fourier mode for that wavenumber (Mulder, 1999).

With lumping, the deviation from the exact dispersion curve, the straight line, in-

creases, but not so much at the smaller values of ξ. With one iteration of G = I −
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(M L)−1M , the result is improved. For the smaller wavenumbers, we have analytically

determined the asymptotic error behaviour by taking the leading term in the series ex-

pansion of κ/ξ−1 for the eigenvalue that is valid at small ξ. The results are listed in ta-

ble 3.1 for various cases. For degree M = 1 and M = 2, the standard element (EQUI), the

Legendre-Gauss-Lobatto points (LGL) and the unweighted Chebyshev-Gauss-Lobatto

(CGL) points lead to the same discretization and, therefore, all provide the same results.

The same is true when the consistent mass matrix is used. Then, the choice of nodes

does not matter. The exception is the weighted scheme with Chebyshev-Gauss-Lobatto

nodes (CGLw), where the weighting functions changes the outcome. Note that for the

latter, the error analysis did not involve a weighted norm. Figure 3.2 show dispersion

curves for degrees up to 3.

Interestingly, the LGL scheme without mass lumping has a fourth-order error instead

of the usual second-order. The same behaviour is known in the finite-difference world

(Lele, 1992). Without lumping and just a single step of defect correction, this fourth-

order behaviour is recovered, albeit with a larger error constant.

With LGL and higher but odd degrees, 1 iteration reduces the size of the error but

does not suffice to recover the super-convergence obtained with a consistent mass ma-

trix. This appears to contradict the expected behaviour of the defect correction method.

An explanation might be that for M > 1, there are M coupled modes, each representing a

different point on the dispersion curve. This coupling is responsible for what are known

as ‘spurious’ modes and could have a negative effect on the performance of the defect

correction method.

For even degrees, the error constant changes after lumping but not the exponent.

The error can be reduced by one or more iterations. Appendix A shows that the spectral

radius of the iteration matrix obeys ρ(G ) = (M +1)/(2M +1).

The CFL number that dictates the maximum allowable time step is listed in the last

two columns. For degree 1, it is nearly twice as large after lumping. This will amply offset

the cost of one iteration if the time stepping error does not dominate the problem. For

higher degrees, the increase in CFL is not as dramatic.

A closed-form expression for the leading dispersion error with the consistent mass

matrix and LGL points was found by (Ainsworth, 2014) and is quoted in Appendix B. A

conjecture for the lumped case is included. For odd M , the error is completely due to the
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Table 3.2: Exponents of the leading error in the dispersion curve and in the eigenvectors with LGL points and
polynomials up to degree 5. The first of each pair corresponds to the relative error in the eigenvalue iκ for the

first-order formulation or in the square root of the eigenvalue κ2 for the second-order formulation. The
second corresponds to the exponent of ξ in the leading error of the matrix S describing the eigenvector errors.

This error is zero for M = 1. The last column shows expressions for the trend for M > 1, suggested by these
results, where p(M) = 2floor{(M +1)/2}, that is, p(M) = M if M is even and p(M) = M +1 if M is odd.

order mass matrix M = 1 2 3 4 5 trend (M > 1)
1 consistent 4, – 4, 2 8, 4 8, 4 12, 6 2p(M), p(M)

lumped 2, – 4, 2 6, 4 8, 4 10, 6 2M , p(M)
2 consistent 2, – 4, 4 6, 5 8, 6 10, 7 2M , M +2

lumped 2, – 4, 4 6, 5 8, 6 10, 7 2M , M +2

mass lumping and the related expression for the leading error can be found in (Mulder,

1999).

With Patera’s scheme (CGL), we do expect the mass lumping to lower the accuracy,

as the choice of nodes for the unweighted case is not related to any type of accurate

numerical quadrature. The application of a single iteration may completely ruin the

formal accuracy and more iterations are required to repair the harm. The same happens

in the standard case (EQUI).

The behaviour of CGLw follows a regular pattern. Note that the weighted norm was

not used in the analysis. Overall, errors are larger than with LGL. If M is odd, the lumping

increases the error, but if M is even, lumping improves it and iterations will only increase

the error. The spectral radius of the defect correction matrix does not depend on the

degree of the element: ρ(G ) = 1/2, as shown in Appendix A.

One may wonder if diagonal preconditioning (Wathen, 1987, e.g.) would perform

in a similar way. As an example, we consider LGL for degree M = 3 and let H = I −
(diag{M L})−1M . In the Fourier domain, we obtain eigenvalues between − 1

6 and 1
2 . Af-

ter one iteration, the dispersion curve for small ξ behaves as ξ(1− 1
36 − 9

1120ξ
8). The term

with 1
36 actually destroys the formal accuracy, which needs to be repaired with subse-

quent iterations. We therefore expect diagonal preconditioning to be far less efficient

than preconditioning with the mass-lumped mass matrix.

ERROR IN THE EIGENVECTORS

The dispersion curves describe the errors in the eigenvalues. For M > 1, the error in

eigenvectors also plays a role. To obtain that error, we compare to the exact eigenfunc-
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tion q, which is of the form q j = e2πimx j , with x j the node positions as defined above.

The discrete problem has eigenvectors ql . We can express q as a the unique linear com-

binations of these eigenvectors by q =∑M−1
l=0 φl ql . The error in the eigenvectors is given

by the vectors rl = φl ql −qδl=lref , l = 0,1, . . . , M −1. Here, δl=lref is the Kronecker delta,

which is zero except for l = lref, the index that corresponds to the ‘physical’ eigenvalue

that approximates iMξ. The other indices correspond to the ‘spurious’ modes. Instead of

an absolute error, we can determine a relative error by dividing each vector rl element-

wise by q to obtain r̃l with r̃l , j = rl , j /q j . The vectors r̃l can be combined into a matrix S,

which has them as columns. This matrix describes the error in approximating the exact

eigenfunction as well as the energy that is leaked into the ‘spurious’ modes.

In (Mulder, 1999), the matrix S was determined in the Fourier domain, followed by an

inverse Fourier transform. We can obtain the same results by working in the spatial do-

main, using the eigenvectors obtained by static condensation. Given the fact that these

vectors are completely defined by their first M values for j1 = 0,1, . . . , M −1 at j0 = 0, the

matrix S will have size M ×M .

In Appendix B.1, we have listed the eigenvalue and eigenvector errors for polyno-

mials up to degree M = 5 and LGL points, both for the first-order formulation that is the

subject of this paper and for the second-order formulation discussed elsewhere (Mulder,

1999).

Table 3.2 summarizes the exponents of the leading errors in the eigenvalues and

eigenvectors. The last column contains the suggested trends for M > 1, where it should

be noted that exponents for the dispersion error in the second-order case were proven in

(Mulder, 1999) and later also in (Ainsworth, 2004) and (Ainsworth and Wajid, 2009). For

the first-order case with a consistent mass matrix, a proof can be found in (Ainsworth,

2014).

NUMERICAL EXPERIMENTS

Before turning to the first-order formulation of the wave equation, we consider simple

differentiation with the consistent mass matrix to verify the eigenvalue and eigenvector

estimates. We consider the function p(x) = 1
2πm sin(2πmx) with m = 3 on the periodic

interval ξ ∈ [0,1). The mesh is either uniform with constant h = 1/N for N elements or

with two different spacings hL and hR . In the last case, we set h j = hL for j = 0, . . . , 1
2 N −1
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Table 3.3: Numerical results for the L∞- and L2-errors when taking the first derivative using Legendre
polynomials and a consistent mass matrix. Listed are the exponents p of a power-law fit of the form chp ,

where h ∝ 1/Ndof, to the L∞- or L2-errors shown in figure 3.3. The second and third column were obtained
for a uniform grid. The fourth and fifth columns were obtained for a mesh with an abrupt jump in mesh size
halfway the domain. Columns six to ten show similar results, but with projection instead of sampling of the

initial data and the exact solution. The sixth column, for L∞ on a uniform mesh, now agrees with the first row
of results in table 3.2. On the non-uniform mesh, the convergence rates are worse.

sampling projection
mesh uniform non-uniform uniform non-uniform

M L∞ L2 L∞ L2 L∞ L2 L∞ L2

1 4.0 4.5 1.0 2.0 4.0 4.5 1.0 2.0
2 2.0 2.5 2.0 2.5 2.0 2.5 1.9 2.5
3 3.0 3.5 3.0 3.5 4.0 4.6 3.0 4.2
4 4.0 4.5 3.9 4.5 3.9 4.4 3.9 4.4
5 5.0 5.5 5.0 5.5 6.1 6.6 5.1 6.3

Table 3.4: As table 3.3, but for the weighted Chebyshev polynomials. See also figure 3.4.

sampling projection
mesh uniform non-uniform uniform non-uniform

M L∞ L2 L∞ L2 L∞ L2 L∞ L2

1 2.0 2.5 1.0 2.1 2.0 2.5 1.0 2.1
2 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5
3 3.0 3.5 3.0 3.5 4.0 4.5 2.9 4.3
4 4.0 4.5 4.0 4.5 3.9 4.5 3.9 4.4
5 5.0 5.5 5.0 5.5 6.0 6.5 5.1 6.3
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Figure 3.3: Maximum differentiation error for a simple test problem using Legendre polynomials as a function
of the number of degrees of freedom, Ndof, for polynomial degrees 1 to 5. The grid spacing is either constant

(a) or has an abrupt jump halfway the periodic domain (b).
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Figure 3.4: As figure 3.3, but for weighted Chebyshev polynomials (CGLw).

and h j = hR for j = 1
2 N , . . . , N −1, with N chosen even and hL = 0.8hR . Figure 3.3 shows

the maximum error as a function of the reciprocal of the number of degrees of freedom,

Ndof, for polynomial degrees 1 to 5. Power-law fits to the results provide the powers listed

in table 3.3. With point-wise sampling of the input function and the exact solution, the

error behaviour is worse than the estimates of table 3.2. With a proper projection on the

basis function and a uniform mesh, the same powers are found for the L∞ estimates.

With the non-uniform mesh, the maximum error appears to behave as hM and error

cancellation and super-convergence are lost.

Similar results with weighted Chebyshev polynomials (CGLw) are shown in figure 3.4

and table 3.4. Again, the odd degrees lead to a better performance.

These numerical results confirm that dispersion error analysis by itself is insufficient

and that the eigenvector errors have to be included as well.

In addition to the above dispersion-curve analysis, we have performed a set of nu-

merical experiments on the first-order formulation of the acoustic wave equation. We
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consider a Ricker pulse, the second time derivative of a Gaussian, travelling around once

on a periodic domain.

We ran at a fraction of 10−3 times the maximum time step dictated by the CFL condi-

tion to avoid too much imprint of the time stepping error. A less costly alternative would

be to perform higher-order time stepping (Dablain, 1986; Gilbert and Joly, 2008; Lax and

Wendroff, 1960; Shubin and Bell, 1987) or dispersion correction (Anderson et al., 2015;

Stork, 2013; Wang and Xu, 2015).

As before, we used two difference spacing hL and hR . The standard deviation of the

Ricker pulse was 0.0375 times the length of the domain. The initial and final position

of its centre was at 0.74 of the length of the domain, in the part to the right that has the

larger spacing.

Figure 3.5 a–c plot the maximum errors in the particle velocity v(tmax, x) after one

round trip for a varying number of degrees of freedom without and with mass lumping

and with one extra iteration for polynomial degrees M = 1 to 5. One iteration clearly

pays off for the lowest degree, M = 1, and also for the higher degrees when the number

of degrees of freedom is small and the error large. Overall, the effect of the eigenvector

errors, summarized in table 3.2, dominates the results for degrees larger than one. The

improvement with defect correction is the largest for the lowest degree, M = 1. Although

the fourth-order super-convergence for this degree is lost on a non-uniform mesh, the

accuracy after 1 iteration is still considerably better than with just mass lumping.

In addition to the above runs, a few additional experiments were conducted to inves-

tigate how a larger number of iterations affect the result and if a diagonal matrix would

be a better preconditioner, as suggested by (Wathen, 1987). Figure 3.5 e–f show the result

of increasing the number of iterations with the operator G , without attempting to obtain

some acceleration with the conjugate gradient method. We observe a slight improve-

ment, but the increase in computational costs hardly pays off.

Figure 3.6 shows results after using the diagonal of the mass matrix instead of the

lumped mass matrix as preconditioner. It can be seen that in order for the diag(M ) to

behave similar to M L, at least 20 iterations are required, showing that the lumped mass

matrix is superior as preconditioner.

Finally, figure 3.7 displays the error behaviour for CGLw. Note that the dispersion

curves are based on the usual norm and do not involve weighting. Again, one iteration
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helps to improve the accuracy, as for LGL.

GENERALIZATION TO 2D
We can quickly analyze the performance in 2D by considering Fourier analysis on a pe-

riodic grid with square elements, both for bilinear elements and for linear elements on

triangles.

We start with bilinear elements on squares. Let Tx denote a shift operator in the x-

direction, such that Tx pk,l = pk+1,l . Here, pk,l denotes the discrete pressure in the point

(xk , yl ) with xk = x0 + khx and yl = y0 + lhy and grid spacings hx and hy . Its Fourier

symbol is T̂x = exp(iξ1) with |ξ1| ≤π, where ξ1 is related to the wavenumber kx in the x-

direction by ξ1 = kx hx . Likewise, Ty pk,l = pk,l+1 with symbol T̂y = exp(iξ2) and |ξ2| ≤ π.

One row of the assembled mass matrix in a single node, relative to the others, is

M = 1
36

[
16+4(T −1

x +Tx +T −1
y +Ty )+T −1

x T −1
y +Tx T −1

y +T −1
x Ty +Tx Ty

]
.

Its symbol is

M̂ = 1
36 (T̂ −1

x +4+ T̂x )(T̂ −1
y +4+ T̂y ) = 1

9 (2+cosξ1)(2+cosξ2).

One row of the derivative matrix in x is

D(1) = 1
12 (Tx −T −1

x )(T −1
y +4+Ty ),

with symbol

D̂(1) = 2
3 i(2+cosξ2)sinξ1.

For D(2), we can swap ξ1 and ξ2. Then,

M̂−1D̂(1) = 3isinξ1

2+cosξ1
� iξ1(1− 1

180ξ
4
1),

showing that we have fourth-order accuracy with bilinear elements and a consistent

mass matrix. With mass lumping, the result has only second-order accuracy:

M̂ L
−1

D̂(1) = 1
3 i(2+cosξ1)sinξ1 � iξ1

[
1− 1

6 (ξ2
1 +ξ2

2)
]

.
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The expressions can be used to estimate the eigenvalues of G by noting that

Ĝ = 1− 1
9 (2+cosξ1)(2+cosξ2) ∈ [0, 8

9 ].

After one iteration with Ĝ , the error becomes

− 1
180

(
6ξ4

1 +10ξ2
1ξ

2
2 +5ξ4

2

)
,

restoring the fourth-order accuracy.

We can repeat this analysis for linear elements on triangles and a regular mesh con-

sisting of squares cut in half across the diagonal, from the left upper to the right lower

corner. With unit spacing, the first triangle has vertices (0,0), (1,0), (0,1) with basis func-

tions {1 − x − y, x, y} and the second has (1,1), (1,0), (0,1) with basis functions {−(1 −
x − y),1− y,1− x}. For the Fourier analysis, we select 8 triangles contained inside the 4

squares surrounding one node and assemble the matrices. Then, one row of the mass

matrix is given by

M = 1
12 (6+T −1

x +Tx +T −1
y +Ty +Tx T −1

y +T −1
x Ty ),

with corresponding symbol

M̂ = 1
6 (3+cosξ1 +cosξ2 +cos(ξ1 −ξ2)).

A row of the x-derivative matrix is

D(1) = 1
6

[
2(Tx −T −1

x )+Ty (1−T −1
x )+T −1

y (1−Tx )
]

,

with symbol

D̂(1) = 1
3 i[2sinξ1 + sinξ2 + sin(ξ1 −ξ2)].

Now,

M̂−1D̂(1) � iξ1
[
1− 1

360ξ
2
1

{
2ξ2

1 −5ξ2(ξ1 −ξ2)
}]

,

revealing fourth-order behaviour of the error. The results for the derivative in the y-

direction are the same after swapping Tx and Ty or ξ1 and ξ2. With mass lumping, the
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operator becomes

(
M̂ L

)−1
D̂(1) = D̂(1) � iξ1

[
1− 1

6 (ξ2
1 +ξ2

2 −ξ1ξ2)
]

,

providing only second-order accuracy. These expressions also provide an estimate of the

eigenvalue range of G :

Ĝ = 1
6 [3−cosξ1 −cosξ2 −cos(ξ1 −ξ2)] ∈ [0, 3

4 ].

One iteration with Ĝ reduces the relative error to

− 1
360

(
12ξ4

1 −25ξ3
1ξ2 +35ξ2

1ξ
2
2 −20ξ1ξ

3
2 +10ξ4

2

)
,

again restoring the fourth-order accuracy.

It remains to be seen if this accuracy can actually be obtained in numerical experi-

ments. A practical problem in seismic applications is the need to sample the wave field

in arbitrary points of the computational domain. To reach a sufficiently high interpola-

tion degree, the polynomials that represent the solution are not suited. Essentially non-

oscillatory interpolation may provide a solution in that case (Harten et al., 1987; Putti

et al., 1990).

CONCLUSIONS

We have compared four finite-element schemes with polynomial basis functions for the

first-order formulation of the acoustic wave equation, using Legendre-Gauss-Lobatto

nodes, Chebyshev-Gauss-Lobatto without and with weighting function or the standard

element. Mass lumping, desired for numerical efficiency since it allows for explicit time

stepping, tends to decrease the spatial accuracy. The remaining accuracy in the numer-

ical dispersion is best for the Legendre-Gauss-Lobatto nodes and, for polynomials of

odd degrees, exceeds that that of the second-order formulation of the wave equation. In

some cases, the accuracy can be improved by applying one iteration on the consistent

mass matrix, preconditioned by its lumped version. For polynomials of degree one, this

improves the accuracy from second to fourth order in the element size. In other cases,

the improvement in accuracy is less dramatic.



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

3

46 REFERENCES

The error in the eigenvectors for the first-order formulation, however, is worse than

obtained for the second-order formulation, without and with mass lumping. Because

the eigenvector error is zero for the lowest-degree scheme, with linear polynomials, our

iterative approach appears to be most attractive for just that case.

Fourier analysis in two space dimensions suggests that the fourth-order error be-

haviour should be obtained for the lowest-order scheme, either with bilinear elements

on quadrilaterals or with linear elements on triangles, at least on very regular meshes

and with constant material properties. Whether or not this still holds on general un-

structured meshes remains to be seen.
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Figure 3.5: Maximum error in the particle velocity, v , as function of the inverse number of degree of freedom,
1/Ndof, for the Legendre-Gauss-Lobatto nodes (LGL) with (a) the consistent mass matrix, (b) the lumped

mass matrix, and after 1 (c), 2 (d), 3 (e) or 5 (f) iterations with the defect correction operator G .
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(c) 20 iterations

Figure 3.6: Maximum error in the particle velocity, v , as function of the inverse number of degree of freedom,
1/Ndof, for the Legendre-Gauss-Lobatto nodes (LGL) using the diagonal of the mass matrix as preconditioner,

after 1 (a), 10 (b), or 20 (c) iterations.
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(c) 1 iteration

Figure 3.7: Maximum error in the particle velocity, v , as function of the inverse number of degree of freedom,
1/Ndof, for the Chebyshev-Gauss-Lobatto nodes with weighting (CGLw) with the consistent mass matrix (a),

its lumped version (b), or with one iteration (c).
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Chapter 3 concluded that defect correction can improve the convergence property of finite-

elements in the first-order system of acoustic equations in 1D; the inexpensive linear ele-

ments showed the same performance as a fourth-order scheme. However, for real world

problems we need to ensure that the same improvement holds in higher dimensions. Based

on the results of the earlier chapter, we conjecture that defect correction should work for

2D problems. In the first half of this chapter, we analyze the 2-D case. Theoretical re-

sults imply that the lowest-degree polynomial provides fourth-order accuracy with defect

correction, if the grid of squares or triangles is highly regular and material properties con-

stant. But numerical results converge more slowly than theoretical predictions. Further

investigation demonstrates that this is due to the activation of error-inducing wavenum-

bers in the delta-source representation. In the second half of the chapter, we provide a

solution to this problem in the form of a tapered-sinc source function.
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INTRODUCTION

Modelling of seismic data requires substantial computational resources. The finite-

difference method is widely used in the oil industry because it is relatively easy to code

up and optimize. The finite-element method is computationally more demanding but

may offer better accuracy at a given cost in the presence of topography and large impedance

contrast, but only if the mesh follows the interfaces between different rock types (Kononov

et al., 2012; Zhebel et al., 2014).

A typical finite-element discretization of the wave equation in its second-order form

involves a stiffness matrix, related to the spatial derivatives, and a mass matrix, related

to the second derivatives in time. Because inverting the large sparse mass matrix at each

time step is costly, it is replaced by its mass-lumped version, a diagonal matrix obtained

by taking its row sums. The resulting weights are equivalent to those of a numerical

quadrature rule. For rectangular types of elements, quadrangles in 2D and hexahedra

in 3D, Legendre-Gauss-Lobatto quadrature produces the well-known spectral elements

(Komatitsch and Tromp, 1999).

Spectral elements for simplicial elements, triangles in 2D and tetrahedra in 3D, are

more difficult to construct. Mass lumping results in a loss of spatial accuracy, which can

be recovered by augmenting the basis function with higher-degree polynomials that are

the product of a bubble function and a polynomial (Fried and Malkus, 1975). A bubble

function is a polynomial that vanishes on all the edges of the triangle. At present, trian-

gular elements are known up to degree 9 (Chin-Joe-Kong et al., 1999; Cohen et al., 2001,

1995; Cui et al., 2017; Fried and Malkus, 1975; Liu et al., 2017; Mulder, 1996, 2013). In

3D on tetrahedra, two kinds of bubble functions are required: face bubbles that vanish

on the edges of the faces and interior bubbles that are zero on all edges and faces of the

tetrahedron Mulder (1996). Tetrahedral elements are known up to degree 3 Chin-Joe-

Kong et al. (1999). Mulder and Shamasundar (2016) considered their performance for

elastic wave propagation.

Discontinuous Galerkin methods offer an alternative to diagonal mass lumping by

giving up conformity and restoring it by penalty terms leading to additional fluxes in the

discretization Basabe and Sen (2007); Diaz and Grote (2009); Grote et al. (2006); Käser

and Dumbser (2006); Riviere and Wheeler (2003). The resulting mass matrix is block

diagonal and easy to invert.
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Finite-element schemes for the acoustic and elastic wave equation are commonly

based on the second-order form of the partial differential equations. Dispersion anal-

ysis by Ainsworth (2014) showed that the first-order form provides an accuracy that is

better by 2 orders for the odd-degree Legendre-Gauss-Lobatto elements. However, if the

error in the eigenvectors is included, as it should Mulder (1999), the full error only shows

this improvement for the lowest-degree elements Shamasundar and Mulder (2016): a

first-order formulation with linear elements in 1D has fourth-order spatial accuracy, but

this requires a consistent, or full, mass matrix. With mass lumping, required to avoid the

inversion of the mass matrix, the accuracy drops to second order. However, by invoking

the defect-correction principle Stetter (1978), we could show that iterative inversion of

the mass matrix requires only one iteration when using the lumped mass matrix as pre-

conditioner, at least on equidistant grids. This result motivated us to consider the first-

order formulation of the wave equation with continuous linear elements in 2D. Note that

the first-order formulation with the discontinuous Galerkin method is less uncommon

(Chung and Engquist, 2009; Delcourte et al., 2009; Etienne et al., 2010; Hesthaven and

Warburton, 2002, 2007; Modave et al., 2015; Wilcox et al., 2010, e.g.).

In seismic simulations, the source term is typically much smaller in size than a wave-

length and can therefore be represented by a delta function. In the finite-element for-

mulation of the wave equation, be it in second- or first-order form, integration of the

delta function against the basis functions offers a natural way to obtain its discrete rep-

resentation. Nevertheless, an imprint of the triangular shape of the element may appear

in the solution and a ‘rounder’ representation might provide a better accuracy. Then, a

gaussian is an option.

Another reason to choose a gaussian is the odd-even or checker-board decoupling

that may occur for some discrete schemes in first-order form Brossier et al. (2008). This

decoupling is related to the shortest wavelengths that happen to lie in the null-space of

the discrete spatial operator. Once excited, they will not disappear if the scheme is not

dissipative. A gaussian source with sufficiently large standard deviation will avoid the

excitation of such waves.

An alternative to a gaussian is a tapered sinc Hicks (2002), proposed for finite-difference

schemes. A sinc function is the spatial equivalent of a band-limited delta function and

the tapering keeps it localized. Walden (1999) presented piecewise polynomial approxi-
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mations of the delta function, both for finite-element and for finite-difference schemes.

Petersson et al. (2016) applied these ideas to finite-difference scheme for the wave equa-

tion in first-order form.

We will examine the performance of three source representations, delta function,

gaussian and tapered sinc, with finite elements. For testing purposes, we consider the

standard second-order finite-element discretization of the acoustic wave equation with

linear elements on a triangular mesh using mass lumping. We also look at the first-order

formulation with linear elements and defect correction. Since for the latter, the disper-

sion curve in 1D returns to zero at the highest spatial frequency, we expect that odd-even

decoupling will play a role, as with the scheme of Brossier et al. (2008).

The next section contains a description of the second-order and first-order formula-

tion of the acoustic wave equation, the source term representations, and Fourier analysis

of the schemes for a simple structured 2D periodic mesh, offering some insight in what

to expect. The following section presents results for a series of numerical experiments

that asses the performance of the various schemes. It ends with a non-trivial example.

The last section summarizes the main conclusions.

METHOD

FINITE ELEMENTS

The examples further on will involve both the first- and second-order form of the 2-D

acoustic wave equation. We start with the latter:

1

ρc2

∂2p

∂t 2 = ∂

∂x

1

ρ

∂p

∂x
+ ∂

∂z

1

ρ

∂p

∂z
+ f . (4.1)

Here, p(t ,x) is the pressure as a function of time t and position x = (x, z), f = w(t )s(x) is

the source term with wavelet w(t ) and spatial distribution s(x), typically taken as a delta

function s(x) = δ(x − xs , z − zs ) for a source position (xs , zs ). The sound speed c(x) and

density ρ(x) characterize the material through which the waves propagate.

The first-order form is given by the system

1

ρc2

∂p

∂t
= ∂u

∂x
+ ∂v

∂z
+ g , (4.2a)
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ρ
∂u

∂t
= ∂p

∂x
, (4.2b)

ρ
∂v

∂t
= ∂p

∂z
, (4.2c)

where the particle velocity in the x-direction is denoted by u and in the z-direction by v .

The source term g =W (t )s(x), with ∂
∂t W (t ) = w(t ). An intermediate representation is

1

ρc2

∂2p

∂t 2 = ∂a

∂x
+ ∂b

∂z
+ f , (4.3a)

ρa = ∂p

∂x
, (4.3b)

ρb = ∂p

∂z
, (4.3c)

with accelerations a and b. At the level of the partial differential equations, these are

equivalent. After discretisation, they may yield solutions with different numerical errors.

For the finite-element discretization in second-order form, we consider a triangular

mesh with N nodes and expand the pressure as

p =
N∑

j=1
p jφ j (x), (4.4)

where the basis functions φ j (x) are piecewise linear on those triangles that have x j as

one of their vertices and φ j (xk ) = δ j ,k for all vertices xk . The mass matrix M and stiffness

matrix K on the computational domain Ω have elements

M j ,k =
∫
Ω

1

ρc2 φ jφk dx, K j ,k =
∫
Ω

1

ρ

(∇φ j
) · (∇φk

)
dx, (4.5)

respectively. The lumped mass matrix L is obtained from the row sum of M: L j ,k =
δ j ,k

∑N
k=1 M j ,k . The discrete scheme becomes

pn+1 = 2pn −pn−1 + (Δt )2L−1 (fn −K pn) , (4.6)

where pn contains the pressures p j on the nodes at time tn = t0 +nΔt . The size of the

time step Δt should not exceed 2/
√

λmax
(
L−1K

)
, where λmax(·) denotes the spectral ra-
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dius or maximum eigenvalue. We will discuss the source term vector fn later on.

The pressure should be zero at the free surface. This condition can be imposed on

the mass matrix by simply eliminating the entries that correspond to the free-surface

boundary. Alternatively, one can set those entries to zero in the inverse lumped mass

matrix L−1. For the other boundaries, sponge boundary conditions are used Cerjan et al.

(1985) together with a zero pressure on the boundary.

For the first-order formulation, we expand u and v into the same basis function as

the pressure p and define derivative matrices D(x) and D(z) with elements

D(x)
j ,k =

∫
Ω
φ j

∂

∂x
φk dx, D(z)

j ,k =
∫
Ω
φ j

∂

∂z
φk dx. (4.7)

Now there are three mass matrices, M(p), M(u) and M(v). The first is the same as in equa-

tion (4.5). The other two mass matrices have entries

M(u)
j ,k = M(v)

j ,k =
∫
Ω
ρφ jφk dx. (4.8)

Zero-pressure boundary values can be eliminated from M(p). Doing the same for the

differentiation matrices, we obtain non-square matrices. More precisely, we have

∫
Ω
ψ ·∇φdx =

∫
δΩ

φ (ψ ·n)dx−
∫
Ω
φ∇·ψdx, (4.9)

where δΩ denotes the boundary of the domain Ω and n the outward normal on that

boundary. Here, the scalar field φ = φ(p)(x) and the vector ψ = (
φ(u)(x),φ(v)(x)

)T. If we

set φ= 0 everywhere on the boundary δΩ, the first term on the right-hand side vanishes.

We can let the earlier matrix D(x) act on p and drop the columns that correspond to zero

pressure values on the boundary and do the same with D(z). For the velocities, minus

the transpose matrices can then be used. Note that in this way, the condition of zero

transverse velocity is not explicitly imposed.

With a leap-frog time stepping scheme, the discrete system becomes

1

Δt
M(p)(pn+1 −pn)=

gn+1/2 − (D(x))Tun+1/2 − (D(z))Tvn+1/2, (4.10a)
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1

Δt
M(u)(un+1/2 −un−1/2)= D(x)pn , (4.10b)

1

Δt
M(v)(vn+1/2 −vn−1/2)= D(z)pn . (4.10c)

The superscripts with n denote the solution at time t n = t 0+Δt . The time step Δt should

not exceed

2λ−1/2
max

((
M(p))−1[(D(x))T(M(u))−1D(x)+ (

D(z))T(M(v))−1D(z)]) (4.11)

In 2D, the inversion of the mass matrices can be accomplished by a sparse Cholesky

decomposition, but is costly. One or two iterations preconditioned by the lumped mass

matrix should suffice. As the lumped mass matrix provides second-order accuracy and

the consistent one fourth-order, at least in 1D on a uniform mesh, the defect-correction

principle states that one extra iteration on top of the initial step should suffice. On non-

uniform meshes and in the presence of odd-even decoupling, we do not expect fourth-

order convergence but still hope for some improvement in accuracy.

To describe the method, define iteration matrices

G(p) = I− (L(p))−1M(p),

G(u) = I− (L(u))−1M(u), (4.12)

G(v) = I− (L(v))−1M(v).

and let

A(x) = (
L(u))−1D(x), A(z) = (

L(v))−1D(z), (4.13)

B(x) =−(L(p))−1(D(x))T, B(z) =−(L(p))−1(D(z))T, (4.14)

and

g = (
L(p))−1g. (4.15)

The Ni iterations proceed as

d0 = B(x)un−1/2 +B(z)vn−1/2 +gn−1/2, (4.16a)
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dm = G(p)dm−1, m > 0, (4.16b)

pn −pn−1 =Δt
Ni∑

m=0
dm . (4.16c)

Likewise, following the same pattern but written in a concise form:

un+1/2 −un−1/2 =Δt
Ni∑

m=0

(
G(u))m A(x)pn , (4.17)

vn+1/2 −vn−1/2 =Δt
Ni∑

m=0

(
G(v))m A(z)pn . (4.18)

The factor Δt may be absorbed into A(x), A(z), B(x), B(z) and g for efficiency.

Higher-order time stepping for equation (4.6) can be accomplished by the Cauchy-

Kowalevsky or Lax-Wendroff or Dablain or modified equation method Dablain (1986);

Lax and Wendroff (1960); Shubin and Bell (1987); von Kowalevsky (1875), which are all

the same. Higher-order time stepping for equations (4.16) to (4.18) is easier to imple-

ment for the discrete form of the intermediate representation (4.3). The second-order

time stepping discretization of the latter is

an =
Ni∑

m=0

(
G(u))m A(x)pn , bn =

Ni∑
m=0

(
G(v))m A(z)pn , (4.19a)

pn+1 −2pn +pn−1 =

(Δt )2
Ni∑

m=0

(
G(p))m[

B(x)an +B(z)bn + f
n]

, (4.19b)

Note that higher-order time stepping can be avoided altogether by suitable post-

processing of the recorded time series at the receivers, using Stork’s dispersion correction

method Anderson et al. (2015); Qin et al. (2017); Stork (2013); Wang and Xu (2015).

Some elements next to the surface topography may end up with zero pressures on all

three vertices. If a receiver happens to be located inside that element, linear interpola-

tion to its position will result in a dead trace. Higher-order mass-lumped or discontinu-

ous Galerkin finite elements do not suffer from that nuisance.
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SOURCE TERM REPRESENTATIONS

We consider three different ways to discretize the source term, all in weak form. The

delta function is the most straightforward, leading to a source term vector

s =
∫
Ω
φ(x)δ(x−xs )dx. (4.20)

Almost all entries are zero except for s j = φ j (xs ) on the three vertices x j of the triangle

that contains xs .

For a gaussian with standard deviation σ, we have

s =Cσ

∫
Ω
φ(x)e−(x−xs )·(x−xs )/(2σ2) dx. (4.21)

The normalization constant Cσ ensures that
∑N

j=1 s j = 1 when summed over all vertices,

similar to integration of the delta function over the domain.

The tapered-sinc function in 2D reads

s(x, z) = 1

2

[
1+cos

(
πζ

nw +1

)]
sinπζ

πζ
,

for ζ= 1

rs

√
x2 + z2 ≤ (1+nw ), (4.22)

and zero otherwise. The integer nw , typically 2 or 3, controls the length of the taper in

terms of a number of extra loops of the sinc function and and (1+nw )rs defines its actual

radius. The corresponding source term vector is

s =Cs

∫
Ω
φ(x)s(x−xs )dx, (4.23)

with normalization constant Cs .

COERCIVITY AND THE FIRST-ORDER FORMULATION

To obtain some insight in the properties of the chain of first-order operators in (4.19),

we consider its Fourier representation on a simple mesh (c.f. Shamasundar and Mul-

der, 2016). The mesh is assumed to consist of squares with sides of length h, each one

divided in two triangles with relative positions (0,0), (h,0) and (0,h) for one and (h,0),

(h,h), (0,h) for the other. The pressure pi , j is defined on vertices (i h, j h). Shift opera-
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tors are defined by Tx pi , j = pi+1, j and Tz pi , j = pi , j+1. The mass matrix M and derivative

operators Dx and Dz can then be expressed as

M = h2

12

[
6+Tx +T −1

x +Tz +T −1
z +Tx T −1

z +T −1
x Tz

]
, (4.24a)

Dx = h
6

[
2(Tx −T −1

x )+Tz −T −1
z +T −1

z Tx −T −1
x Tz

]
, (4.24b)

Dz = h
6

[
2(Tz −T −1

z )+Tx −T −1
x +T −1

x Tz −T −1
z Tx

]
, (4.24c)

with Fourier symbols

M̂ = h2

6 [3+cosξ+cosη+cos(ξ−η)], (4.25a)

D̂x = ih
3 [2sinξ+ sinη+ sin(ξ−η)], (4.25b)

D̂z = ih
3 [2sinη+ sinξ+ sin(η−ξ)]. (4.25c)

The scaled wavenumbers in x and z are ξ= kx hx and η= kz hz , where hx = hz = h denote

the lengths of the sides of the squares and kx and kz the wavenumbers.

The corresponding second-order spatial operator is

B = M−1Dx M−1Dx +M−1Dz M−1Dz , (4.26)

with symbol

B̂ = 4

h2 [3+cosξ+cosη+cos(ξ−η)]−2{5(sin2 ξ+ sin2η)+

8sinξsinη+2sin(ξ−η)[sinξ− sinη+ sin(ξ−η)]
}
. (4.27)

Near the origin of the wavenumber domain,

B̂ � 1
h2 (ξ2 +η2)− 1

180h2

[
2(ξ6 +η6)

−5ξη(ξ−η)2(ξ2 +ξη+η2)
]
. (4.28)

The first term represent the exact operator, k2
x +k2

z , the second the discretization error,

which is clearly of order four relative to the exact operator.
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Figure 4.1: Symbol of minus the discrete laplace operator for the first-order form as a functions of the scaled
horizontal and vertical wavenumber for a specific structured periodic mesh. Near the centre, the operator

follows the exact one, ξ2 +η2. Further away, the error is of order four, but still further away, the operator
becomes zero in a number of points, marked by crosses. The zero at the centre, indicated by a circle, should

be present, but the other cause a violation of coercivity.
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Figure 4.1 displays B̂ over the whole wavenumber domain. The bowl near the origin

shows the term ξ2 +η2. At higher wavenumbers, the errors start to grow. Unfortunately,

coercivity is not satisfied. The symbol B̂ should vanish only at the origin, but it is also

zero at the points (ξ,η) = (m1π,m2π), with integer m1 and m2, and at η = −ξ = ± 2
3π.

This means that, viewed as an elliptic operator, B is unstable. For the wave equation,

there are certain waves that are not seen by the spatial operator. Once excited, they

will start to live a life of their own and not disappear, except perhaps at an absorbing

boundary. The net effect will be a noisy pressure wavefield. We therefore either have

to abandon the first-order formulation altogether or ensure that such waves are not ex-

cited. A sufficiently band-limited source function can accomplish that. For the chosen

structured periodic mesh, figure 4.1 suggests that wavenumbers for
√
ξ2 +η2 � 1

2π or√
k2

x +k2
z � 1

2π/h should not be excited.

If we require the gaussian to have half its maximum amplitude in the wavenumber

domain halfway the spectrum, this leads to a standard deviation σ/h = (2/π)
√

2log2 =
0.75. In the weak form of equation (4.23) and with an inverse mass matrix, this is not

expected to be very different.

A similar consideration can guide the choice of parameters for the tapered sinc. Fig-

ure 4.2 shows a number of dispersion curves for the first-order formulation in the 1-D

case, taken from Shamasundar and Mulder (2016). For the first-derivative operator with

a consistent mass matrix, the dispersion curve is given by 3sin(ξ)/(2+cosξ) and is shown

in red. With mass lumping, it is given by sinξ, shown in red, and its accuracy reduces to

second order. One iteration produces the green curve, described by 1
3 (4−cosξ)sinξ, and

restores fourth-order accuracy. To obtain the spectra for the tapered sinc, we choose

a 1-D uniform periodic grid with element size h, placed a source at 0.2h from a ver-

tex, evaluated equation (4.23), applied the inverse mass matrix and performed a Fourier

transform. The precise position of the source inside an element does not seem to matter

for the results shown in figure 4.2, obtained for nw = 3 and rs = 2h or rs = 3h. Larger

values of nw will make the transition from 1 to 0 steeper, at the expense of increasing

the spatial source size, which will complicate matters when close to the free surface. We

expect that parameters in this range will be close to optimal in the 2-D case.

In the weak form, the spatial part of the source function will be multiplied by the

basis functions, after which it will be multiplied by the inverse of the mass matrix or its
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iterative approximation. The effect of this will be another second-order error, as can be

seen easily by considering the same Fourier analysis as before. If the integration against

the basis functions is denoted by a linear operator Φ, its Fourier symbol on the earlier

structured mesh becomes

Φ̂= 2h2 sinη− sinξ+ sin(ξ−η)

ξη(ξ−η)
. (4.29)

For small ξ,

h−2Φ̂� 1− 1
12 (ξ2 +η2 −ξη), (4.30)

showing its second-order error. The inverse mass matrix does not compensate for that:

M̂−1Φ̂� 1+ 1
12 (ξ2 +η2 −ξη). (4.31)

This suggests that we cannot obtain fourth-order convergence with the first-order for-

mulation.

One may wonder if the second-order error term can be removed by adjusting the

spatial source distribution. An attempt to recover fourth-order accuracy is presented in

the appendix, for an equidistant mesh in 1D. The idea is to compensate the second-order

impact of the discretization, M̂−1Φ̂, in the source function. In the 1D equidistant case,

that can be accomplished easily. However, it is not clear how to generalize this idea to an

unstructured 2-D mesh.

Finally, we remark that the symbol for the laplace operator in the second-order for-

mulation on the chosen structured periodic mesh is

1
h2

[
sin2(ξ/2)+ sin2(η/2)

]� 1
h2

[
(ξ2 +η2)− 1

12 (ξ4 +η4)
]
. (4.32)

It does not have coercivity problems but is only second-order accurate.

RESULTS

We examine the performance of the two discretizations, in first- or second-order form,

and three source terms, delta function, gaussian, or tapered sinc. The test problem is ho-

mogeneous with a constant sound speed c = 1.5km/s and constant density ρ = 1g/cm3.
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Figure 4.2: Dispersion curves for the first derivative and two tapered-sinc source window functions with
nw = 3 and rs = 2h or 3h that should suppress high wavenumbers towards the right, where the dispersion

curves deviate strongly from the exact κ= iξ and coercivity is lost at the highest wavenumber.

The rectangular domain has a size of 3 by 1.5km. A point source is located at xs = 1.5km

and zs = 0.5km. The compactly supported wavelet is

w(t ) =

⎧⎪⎨
⎪⎩
−(Tw /8)2 d

dt [1− (2t/Tw )2]8, if |t | < 1
2 Tw ,

0 , otherwise.
(4.33)

The length of the wavelet, Tw , is related to peak frequency by Tw = 0.934129/ fpeak and

we chose fpeak = 3Hz. The simulations run from a time − 1
2 Tw =−0.156 to tmax = 0.45s.

At that time the wave has reflected once against the free surface but has not yet reached

the other boundaries, which we all take as zero dirichlet. The error in the pressure at tmax

is measured at all vertices. The coordinates and velocities were rotated by 30◦ for testing

purposes.

Figure 4.3a illustrates what happens if the violation of coercivity in the first-order

formulation is ignored. The delta function as source generates short wavelengths that

dominate the solution. With the tapered sinc, we obtain the result in figure 4.3b. For

these examples, we used the consistent mass matrix and fourth-order time stepping with
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(a)

(b)

Figure 4.3: Wavefield at 0.45 s for a delta function source (a) and for a tapered sinc (b). Positive pressures are
red, negative blue.
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Figure 4.4: Scan over the source size r scaled by the element size h. The RMS error for a gaussian is smallest
for a standard deviation around 1. For the tapered sinc, nw = 3 performs best with r /h = rs /h between 2 and

3 for the current test problem.

a time step close to the stability limit. The unstructured mesh had 52412 vertices.

To find good parameters for the gaussian and tapered sinc, we computed the RMS

error for the above problem over a range of source sizes, using the consistent mass matrix

and a fourth-order time stepping method based on equation (4.19). The time step was

chosen close to the stability limit. For the latter, we use Δt ≤ C min j (dinner, j /c j ) where

dinner/c is the ratio of the diameter of the inscribed circle over the sound speed and the

minimum is taken over all triangles j . The constant C is estimated to be 1.36 with the

consistent mass matrix in equation (4.19), C = 2.41 with mass lumping, C = 1.76 with

one iteration and C = 1.56 with two. With fourth-order time stepping, these constants

can be increased by a factor



3.

Figure 4.4 plots the RMS error as a function of the source size r scaled by the ele-

ment size h, defined by the longest edge of the element that contains the source. The

consistent mass matrix was used, despite its higher cost. For a gaussian, r is its standard

deviation scaled by element size and the smallest error is obtained at r /h = σ/h = 1.04.

The graphs for the tapered sinc are less smooth. The smallest error occurs for nw = 3 and

r /h = rs /h = 1.91. The result is better than for a gaussian source. Here, h is the maximum
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edge length of the element that contains the source position.

Next, we study convergence on a range of meshes, from coarse to fine, both struc-

tured and unstructured. We use fourth-order time stepping and a source based on the

tapered sinc with nw = 3 and r /h = rs /h = 2. Figure 4.5 shows the RMS error as a function

of the square root of the number of degrees of freedom, N . The element size behaves as

N−1/2. The errors for an unstructured mesh in figure 4.5 a start out with fourth-order be-

haviour on the coarser grids but degrade to second-order on finer ones. Given the results

of the 2-D Fourier analysis in the previous section, we cannot expect to do better than

second-order. The results for the consistent or full mass matrix are included as a refer-

ence but are costly to compute. With mass lumping, the accuracy drops to second-order

but one iteration provides a significant improvement in accuracy, as expected. With un-

structured meshes, the errors are more erratic. Nevertheless, our defect-correction ap-

proach appears to pay off.

We repeated the exercise for the second-order formulation in equation (4.6), but now

with second-order time stepping and mass lumping without iterations. With a gaussian

source distribution, the smallest RMS error was obtained at r /h = σ/h = 0.31, but was

only 4% smaller than with a delta function source. For the tapered sinc, the best result

was found for r /h = rs /h = 0.92 and also only 4% smaller than with a delta function

source. Given the simplicity of latter, there seems to be no reason to replace it.

Comparing the errors for the second-order and first-order formulation, the latter is

more accurate but requires more matrix-vector multiplications per time step. Its better

accuracy and larger allowable time step are not sufficient to compensate for its higher

cost, resulting in a lower efficiency than the simple second-order formulation. Although

we observed this in our Matlab� implementations of both schemes, which is not re-

ally suited for measuring performance, we believe this will carry over to implemen-

tations in a compiled language like C or C++. Given the fact that higher-order mass-

lumped schemes in second-order form are even more efficient Mulder (1996); Mulder

and Shamasundar (2016), this makes the first-order formulation less attractive, although

an acoustic fourth-order scheme in 3D requires 50 degrees of freedom per element Chin-

Joe-Kong et al. (1999), considerably more than a first-order formulation with linear ele-

ments and 4 unknowns per vertex.

As an application, figure 4.6 a displays an inhomogeneous sound speed model. A
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Figure 4.5: RMS error as a function of the square root of the number of degrees of freedom for the tapered sinc
with nw = 3 and r /h = rs /h = 2 on structured (a) and unstructured (b) meshes. Results are shown for the

consistent or full mass matrix (F) and for mass lumping with no (0), 1 or 2 additional iterations. The triangles
indicate the slopes for second- and fourth-order convergence.
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source at xs = 2468.36 and zs = 410.351m with a 12-Hz Ricker wavelet generated the

wavefield displayed in figure 4.6 b, using the first-order formulation with fourth-order

time stepping. The tapered-sinc source had nw = 3 and rs /h = 3. The mesh contained

800466 elements and 401764 vertices. The computations started at −0.17s to let the

Ricker wavelet peak at zero time.

CONCLUSIONS

We have examined the performance of three source distributions, the delta function, a

gaussian and a tapered sinc, in a finite-element formulation of the acoustic wave equa-

tion. In the standard second-order form, the gaussian and tapered sinc hardly improve

the accuracy and a delta function appears to be the most attractive choice, given its sim-

plicity.

Because the discrete first-order form of the wave equation is not coercive, it requires

a cut-off of the short wavelengths. This disqualifies the delta function as source distri-

bution. We have performed numerical experiments to find suitable parameters for the

gaussian and for the tapered sinc. The latter provided the most accurate results.

The first-order form has a much better accuracy than the second-order form, but

that does not appear sufficient to compensate for its higher cost, at least not in our 2-D

Matlab� implementations.
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(a)

(b)

Figure 4.6: (a) Velocity model for an inhomogeneous sound speed model, including topography. The orange
star marks the source position. (b) Pressure wavefield at 0.5s.
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We consider isotropic elastic wave propagation with continuous mass-lumped finite el-

ements on tetrahedra with explicit time stepping. These elements require higher-order

polynomials in their interior to preserve accuracy after mass lumping and are only known

up to degree 3. Global assembly of the symmetric stiffness matrix is a natural approach

but requires large memory. Local assembly on the fly, in the form of matrix-vector prod-

ucts per element at each time step, has a much smaller memory footprint. With dedicated

expressions for local assembly, our code ran about 1.3 times faster for degree 2 and 1.9

times for degree 3 on a simple homogeneous test problem, using 24 cores. This is similar

to the acoustic case. For a more realistic problem, the gain in efficiency was a factor 2.5 for

degree 2 and 3 for degree 3. For the lowest degree, the linear element, the expressions for

both the global and local assembly can be further simplified. In that case, global assembly

is more efficient than local assembly. Among the three degrees, the element of degree 3 is

the most efficient in terms of accuracy at a given cost.
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INTRODUCTION

Finite-difference modelling of seismic wave propagation has become the workhorse of

the industry for imaging hydrocarbon reservoirs. The spectral finite-element method

plays a similar rôle in seismology. Higher-order finite-difference methods have prob-

lems with sharp material contrasts and topography, because they assume differentia-

bility where it does not hold. Modifications can alleviate the decrease in accuracy, but

at a cost in terms of complexity and compute time. Finite-element methods have an

inherently larger computational cost, but do not suffer from a loss of accuracy if the

mesh follows the interfaces between different materials and the topography. Because of

their better accuracy, they may outperform the finite-difference method in some cases

(Moczo et al., 2011; Mulder, 1996; Wang et al., 2010; Zhebel et al., 2014, e.g.). However,

mesh generation can sometimes be difficult.

Spectral finite elements (Komatitsch and Tromp, 1999; Maday and Ronquist, 1990;

Orszag, 1980; Patera, 1984; Seriani et al., 1992) require hexahedral meshes. Tetrahe-

dral elements offer more flexibility in gridding, for instance, near pinch-outs. Suitable

schemes are discontinuous Galerkin (DG) methods (Dumbser and Käser, 2006; Etienne

et al., 2010; Käser and Dumbser, 2006; Riviere and Wheeler, 2003; Wilcox et al., 2010, e.g.),

rectangular spectral elements mapped to triangles or tetrahedra (Mercerat et al., 2006;

Sherwin and Karniadakis, 1995), hybridized versions (Cockburn et al., 2009; Giorgiani

et al., 2013), finite-volume methods (Brossier et al., 2008; Dumbser et al., 2007), mixed

methods (Bécache et al., 2002; Cohen and Fauqueux, 2005) or continuous mass-lumped

finite elements, which we will consider here. DG methods offer the advantage that they

can mix orders and types of elements on, for instance, hexahedra, tetrahedra and prisms,

and also can work on non-conforming meshes. However, the fluxes required to impose

continuity increase the computational cost. Since the mass matrix is block diagonal, its

inversion is not costly.

Continuous mass-lumped triangular or tetrahedral finite elements avoid the cost of

inverting a large sparse mass matrix by lumping the mass matrix into a diagonal one.

(Fried and Malkus, 1975) noted, however, that with quadratic 2-D triangular elements,

the lumping decreases the order of accuracy. They considered the heat equation, but

the same holds for the acoustic and elastic wave equations in second-order form. Aug-

menting the element with polynomials of a higher degree in the interior can repair this
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deficiency (Fried and Malkus, 1975). For the element of degree 2 in 2D, a bubble function

that vanishes on the edges suffices. (Tordjman, 1995) and (Cohen et al., 1995) used this

idea to construct a 2-D element of degree 3 on the edges and a bubble function times a

polynomial of degree 1 in the interior, leading to an interior degree of 4. (Cohen et al.,

2001) provides error estimates. (Mulder, 1996) found an element of degree 4 and interior

degree 5. (Chin-Joe-Kong et al., 1999) found several elements of degree 5. The highest

degree for mass-lumped triangular elements known so far is 6 (Mulder, 2013).

(Mulder, 1996) made the generalization to tetrahedral elements with an element of

degree 2 on the edges, 4 on the faces as product of a cubic bubble function and polyno-

mial of degree 1, and degree 4 in the interior as a product of a quartic bubble function

and constant polynomial. (Lesage et al., 2010) and (Zhebel et al., 2011) applied that ele-

ment to acoustic wave propagation modelling. (Chin-Joe-Kong et al., 1999) constructed

2 elements of degree 3. The second one allows for a larger time step than the first (Zhebel

et al., 2011, 2014) and will be used in the current paper. Elements of higher degree have

not been found so far. (Mulder et al., 2014) list stability estimates for the known tetra-

hedral lumped elements of degrees 1 to 3 as well as for the symmetric interior-penalty

discontinuous Galerkin method up to degree 4.

(Bao et al., 1998) worked with the classic linear tetrahedral mass-lumped elements

for elastic wave propagation modelling. Here, we will also include elements of degree 2

and 3.

With explicit time stepping, we can consider two approaches for assembling the

stiffness and diagonal, lumped mass matrix: global assembly or local assembly on the

fly. Global assembly is a standard approach with finite elements. The elements of the

lumped mass matrix or its inverse can be represented by one value per node. For the

symmetric global stiffness matrix, we store the symmetric block diagonal and the block

upper triangular part separately, the latter in Block Compressed Sparse Row format. With

local assembly on the fly, the contribution of each element to the solution update is

treated independently. The displacement components on the nodes of one element are

copied from a global vector and multiplied by precomputed stiffness matrices on the

reference element, nine in total. The results are then combined by geometrical factors

that handle the map from the reference element to the actual element, multiplied by the

inverse mass matrix, and used to increment the global solution vector for the new time
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level.

One might expect global assembly to produce results quicker than local assembly, at

the expense of considerably larger storage, but as it turns out, this does not appear to be

the case for the acoustic wave equation. The main question we address here is if a similar

results also holds in the elastic case. To obtain performance figures within the same or-

der of magnitude, we derive dedicated expressions for the matrix-vector multiplications

that are part of the local assembly on the fly.

In Section 5.2, we describe the discretization and provide expressions for global as-

sembly and local assembly for the general case. Simpler expressions are provided for

linear elements. Section 5.3 presents results for global and local assembly on 24 cores.

We start with the linear element. Then, we briefly consider the acoustic case, where local

assembly outperforms global assembly for degree 3, before turning towards degree 2 and

3 for the isotropic elastic case. The section ends with a slightly more realistic example.

Section 3.5 summarizes the main conclusions.

METHOD

DISCRETIZATION

The elastic system of wave equations for an isotropic medium in second-order form is

ρ
∂2um

∂t 2 =
3∑

j=1

[
∂

∂xm

(
λ
∂u j

∂x j

)
+ ∂

∂x j

{
μ

(
∂um

∂x j
+ ∂u j

∂xm

)}]
+ sm .

The displacement in coordinate direction xm , m = 1,2,3, is um(t ,x) as a function of

time, t , and position, x. The material properties are density ρ(x) and Lamé parameters

μ(x) = ρv2
s and λ(x) = ρv2

p−2μ, with P-wave velocity vp (x) and S-wave velocity vs (x). The

forcing source function is typically of the form sm(t ,x) = fm w(t )δ(x− xs ), with wavelet

w(t ) and force amplitude fm at a source position xs . The domain consists of a subset of

the Earth, bounded by a free surface. In exploration geophysics, absorbing boundaries

are usually implemented on the sides where the domain is truncated.

The domain is meshed by tetrahedra, preferably such that the element size scales

with the shear velocity, vs (Kononov et al., 2012; Mulder et al., 2014). As wavelength

scales with velocity, this provides a more or less uniform resolution over the entire mesh.

Here, the material parameters are assumed to be constant per element.
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Next, we define the geometrical components (Zienkiewicz and Taylor, 2000, Chapter

9, e.g.). Let the four vertices of the tetrahedron be denoted by xk , k = 0,1,2,3. In terms of

reference element, x =∑3
k=0 xkφk (x) with the basis functions, φk , of the linear element.

The natural coordinates on the tetrahedron are ξk = φk for k = 1,2,3, augmented with

φ0 = ξ0 = 1−ξ1 −ξ2 −ξ3. The coordinate transformation is x = x0 +ξ1(x1 −x0)+ξ2(x2 −
x0)+ξ3(x3 −x0) =∑3

k=0 ξk xk with Jacobian matrix J = dx
dξ = (xa ,xb ,xc ). It is convenient to

define relative vertex positions

xa = x1 −x0, xb = x2 −x0, xc = x3 −x0,

and the cross products

g1 = xb ×xc , g2 = xc ×xa , g3 = xa ×xb .

Note that

g1 ×g2 = J0xc , g2 ×g3 = J0xa , g3 ×g1 = J0xb .

Then, detJ = J0 = xa ·g1 = 6V , with V the volume of the tetrahedron. The matrix F = J0J−T

has gk , k = 1,2,3, as columns.

The mass matrix A on the reference element has elements

A j ,k =
∫1

0
dξ1

∫1−ξ1

0
dξ2

∫1−ξ1−ξ2

0
dξ3 φ j (ξ)φk (ξ),

for j ,k = 0,1,2,3. Mass lumping replaces this matrix by a diagonal one with the row sums

as the diagonal elements: AL
j ,k = δ j ,k

∑3
k=0 A j ,k .

The nine stiffness matrices Bm,n on the reference element are

B m,n
j ,k =

∫1

0
dξ1

∫1−ξ1

0
dξ2

∫1−ξ1−ξ2

0
dξ3

∂φ j

∂ξm

∂φk

∂ξn
.

They are symmetric: Bn,m = (Bm,n)T. For the higher order mass-lumped finite elements,

the coordinate permutations listed in Appendix D can simplify the implementation. Then,

the code only has to define two arrays with pre-computed values on the reference ele-

ment, for instance, B1,1 and B1,2, and the other 7 follow from permutations and symme-

tries.
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The stiffness matrix B for the isotropic elastic system of equations per element can

be constructed from the above Bm,n . To obtain a matrix, the displacement components

are taken as fastest index and the nodes as slowest. Then, the matrix elements are

J0 B m+3 j ,n+3k =
3∑

p,q=1
Fm,p Fn,q

(
λB p,q

j ,k +μB p,q
k, j

)
+

μδm,n

3∑
p,q,r=1

Fr,p Fr,q B p,q
k, j . (5.1)

Here m and n run over the 3 components of the displacement, whereas j and k run over

the nodes of the element: m,n = 1,2,3 and j ,k = 0,1, . . . , Np −1. The number of nodes

for the mass-lumped elements is Np = 4 for degree 1, 23 for degree 2 and 50 for degree 3.

The global stiffness matrix follows from the contributions of B per element.

The upper triangular part of the sparse symmetric block matrix is stored in Block

Compressed Sparse Row format, with 3 × 3 full blocks. The block diagonal is treated

separately, as the small 3×3 blocks are symmetric and only 6 values need to be stored

per element. Somewhat to our surprise, we found that our code, using OpenMP, out-

performed the Intel® Math Kernel Library routine mkl_cspblas_scsrsymv() that also

uses OpenMP.

With local assembly, we can exploit the fact that the stiffness matrices Bm,n on the

reference element have a zero row sum and, since they are symmetric, also a zero column

sum. The zero row sum implies that the application of a stiffness matrix to a constant

produces zero. We therefore define

vm
k = um

k −um
0 , (5.2)

for nodes k = 1, . . . , Np −1 and components m = 1,2,3, subtracting the values of the dis-

placement components at the first vertex that corresponds to k = 0. Note that any node

of the element can be selected here, with the first or last as a convenient choice. Let

r = Bu = Bv per element. The zero column sum of the stiffness matrix implies

r m
0 =−

Np−1∑
k=1

r m
k , m = 1,2,3. (5.3)
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This means that we can drop the first three rows and columns of the local elastic stiff-

ness matrix B, work with vm
k for k = 1, . . . , Np −1 and m = 1,2,3, and reconstruct the first

three entries of r m
k by equation (5.3). The result has to be multiplied by the precom-

puted inverse of the diagonal global mass matrix and can then be used to increment the

solution. Repeating this for all tetrahedra accomplishes the time step, together with the

source term and interpolation to obtain the receiver traces at selected positions.

We can further simplify the evaluation of Bv. Let Fλ = λ
J0

F, Fμ = μ
J0

F and define the

symmetric 3× 3 matrix Cμ = μ
J0

FTF = FTFμ. Define a set of 9 vectors for p = 1,2,3 and

q = 1,2,3 with elements

σ
p,q ;n
j =

Np−1∑
k=1

B p,q
j ,k (un

k −un
0 ) =

Np−1∑
k=1

B p,q
j ,k vn

k ,

for components n = 1,2,3 and nodes j = 1, . . . , Np −1, ignoring node 0. Compute

α
p
j =

3∑
n,q=1

(
Fλ

n,qσ
p,q ;n
j +Fμ

n,qσ
q,p;n
j

)
.

Then,

r m
j =

3∑
p=1

Fm,pα
p
j +

3∑
p,q=1

Cμ
p,qσ

q,p;m
j .

for nodes j = 1, . . . , Np − 1 and components m = 1,2,3. Finally, use equation (5.3) to

obtain the values at node j = 0, multiply by the subset of the global inverse matrix on the

element and update the solution. For degrees higher than one, the main computational

effort consists in the 9 matrix-vector products between the matrices Bp,q of the reference

element and the vector v.

The standard second-order time stepping scheme reads

un+1 = 2un −un−1 + (Δt )2M−1(f−Kun),

with global stiffness matrix K and diagonal global mass matrix M. The inverse of mass

matrix can in principle be avoided by considering the diagonal scaling

D =ΔtM−1/2, ũ =D−1u, f̃ =Df,
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and the symmetric matrix

K̃=DKD,

leading to

ũn+1 = 2ũn − ũn−1 + f̃−K̃ũn .

However, we have not used this approach for the numerical experiments reported fur-

ther on as it complicates reading off receiver data. The required storage then consists

in the solution at two time instances, which requires 3 times the number of nodes, the

inverse mass matrix multiplied by (Δt )2, also with a size equal to the number of nodes,

and either the globally assembled sparse matrix or, with local assembly, the average of λ

and of μ per element.

LINEAR ELEMENT

The above expressions hold for any degree. For the linear element, we derive simpler

expressions that will speed up the code. Let g0 = −g1 − g2 − g3 and define a linear ar-

ray gm+3k = g m
k , with nodes k = 0,1,2,3 and components m = 1,2,3. Note that g m

k =
Fm,k for k = 1,2,3. Let gλ = λ/(6J0)g and gμ = μ/(6J0)g. Table 5.1 lists pseudo-code in

Matlab® style for the evaluation of the local stiffness matrix, B. When recoded in a lan-

guage like C or C++, this code is more efficient than that of (Alberty et al., 2002), which is

geared towards use with Matlab® .

For local assembly, let

sm =
3∑

k=1
Fm,k vm

k , wm,m = 2
μ

6J0
sm ,

and

wm,n = wn,m = μ

6J0

3∑
k=1

(
Fm,k vn

k +Fn,k vm
k

)
,

for m < n. Then, a simpler expression is

r m
k = Fm,k

(
wm,m + λ

6J0

3∑
n=1

sn

)
+

3∑
n=1
n �=m

Fn,k wm,n ,

for nodes k = 1,2,3 and components m = 1,2,3. Equation (5.3) provides the values at



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

5

86 5. TETRAHEDRAL ELEMENTS FOR ELASTIC WAVE PROPAGATION

Table 5.1: Pseudocode in Matlab® style for the evaluation of the stiffness matrix B per element for linear basis
functions on a tetrahedron, with glamba as gλ and gmu as gμ, defined in the text. Unknowns are taken as

triples of displacements on vertices 0 to 3.

glamba = ( lambda/(6* J0 ) ) * g ; gmu = (mu/(6* J0 ) ) * g ;
B = zeros ( 1 2 , 1 2 ) ;
for k1 = 0 : 3 : 9 ,

for k2 = 0 : 3 : k1 ,
s = 0 ;
for m2=1:3 ,

for m1=1:3 ,
h1 = gla ( k1+m1) * g ( k2+m2) ;
h2 = gmu( k1+m1) * g ( k2+m2) ;
B( k1+m1, k2+m2) = h1+h2 ;
i f (m1 == m2) , s = s+h2 ; end

end
end
for m=1:3 ,

B( k1+m, k2+m) = B( k1+m, k2+m)+ s ;
end
% copy symmetric elements
i f ( k2 < k1 ) ,

for m2=1:3 ,
for m1=1:3 ,

B( k2+m2, k1+m1) = B( k1+m1, k2+m2) ;
end

end
end

end
end
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node k = 0.

ACOUSTICS

For the acoustic case, which we will briefly consider later on, it is convenient to define

symmetric matrices

C = J0J−1J−T = J−1
0 FTF,

and

B̃p,q = Bp,q +Bq,p = Bp,q + (Bp,q )T.

The contribution of an element to the stiffness matrix is

B
acou =

3∑
p=1

(
C p,p Bp,p +

3∑
q=p+1

C p,q B̃p,q

)
, (5.4)

where Bp,p and B̃p,q are symmetric matrices on the reference element, containing pre-

determined numerical values only, and C deals with the geometry of the actual tetra-

hedron. For the linear element, the simplified expressions presented by (Zhebel et al.,

2014) are more efficient. For degree 2 and 3 and with local assembly, the evaluation of

B
acou

u per element was implemented as 6 matrix-vector multiplications, namely Bp,p u

and B̃p,q u. The vector u contains the pressure values on the nodes of the element. The

matrices correspond to those in (5.4) and were hardcoded from numerical values com-

puted with Mathematica® .

RESULTS

LINEAR ELEMENT

As a test problem, we chose a homogeneous problem for which the exact solution is

readily available. The constant material properties were a density ρ = 2g/cm3, a P-wave

velocity vp = 2km/s and an S-wave velocity vs = 1.2km/s. The domain had a size [−2,2]×
[−1,1]×[0,2]km3 and was divided into cubes with an edge length of 20m. Each cube was

partitioned into 6 tetrahedra, leading to 12,000,000 tetrahedra and 2,050,401 vertices.

The cube has six possible tetrahedral decompositions. We used the periodic one, with

matching diagonals on opposite faces and one diagonal to the cube’s centre.

A vertical force source was placed at the centre of the domain. A line of receivers
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Table 5.2: Performance on linear elements with global assembly of the stiffness matrix and with local
assembly. For the latter, the wall-clock time with 24 threads is doubled in this particular example but less

storage is needed.

assembly threads assembly stepping total storage
global 24 7.9 s 9.2 s 17.0 s 3.0 GByte

12 7.9 s 10.7 s 18.6 s
6 8.2 s 16.8 s 25.1 s

local 24 30.0 s 30.0 s 2.1 GByte
12 57.8 s 57.8 s

6 114 s 114 s

10
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1/3

0.4
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ti
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Figure 5.1: Ratios for compute time (drawn line) and storage (dashed) with linear elements as a function of
N 1/3, where N is the number of nodes on the mesh. The results for the globally assembled case were divided
by those for locally assembled stiffness matrices. The latter requires less storage, but is slower. The obtained

reduction in storage does not seem to justify the larger compute times with linear elements.
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was located at a depth of 800m with y = 0m and x between −1925 and +1925m, using

a 50-m interval. The time steps started at −0.3875s to let the 3.5-Hz Ricker wavelet peak

at zero time. The time step, Δt = 0.003125s, corresponded to 0.77% of CFL-limit. Data

were recorded up to 0.6s at a 5-ms interval. We used the natural (free-surface) boundary

conditions all around for simplicity.

Table 5.2 lists the timings and storage requirements using 24, 12 or 6 threads, all for

the same mesh described earlier. Throughout this paper, reported timings are the aver-

age of 5 runs. The table shows that a smaller number of threads does not lead to a severe

performance drop with global assembly, because memory access is the limiting factor.

For local assembly on the fly, the performance is limited by the available compute power,

at least up to the available 24 cores. OpenMP directives handled the multi-threading.

The hardware consisted of a single board with two 12 core Intel® Xeon® CPU E5-2680 v3

processors running at 2.50 GHz and had hyper-threading disabled.

Figure 5.1 shows the ratios between the runs with global assembly and those with

local assembly, in terms of the required compute time and the maximum required stor-

age, for a range of mesh sizes. Global assembly requires about 40% more storage, but the

gain in performance appears to amply justify that. Table 5.2 suggests that we could have

used less than 24 threads for local assembly, as the computations are bound by memory

access.

Note that the performance data should be taken as a rough indication, since the re-

sults strongly depend on code implementation, optimization and compiler. We did not

put a lot of effort in code tuning for the specific compiler and hardware, but instead

relied on the basic formulation of the method and the optimization capabilities of the

Intel® compiler and OpenMP. The use of templated functions in terms of the number of

nodes per element improved the performance of our C++ code.

THE ACOUSTIC WAVE EQUATION

Before going to the higher-order elements for elastics, we briefly review the acoustic case,

which can serve as a point of reference for the elastic problem. We consider the same test

problem as before for degrees M = 1, 2 and 3. Table 5.3 lists the ratios of the compute

time and of the required storage with and without global assembly, using 24 threads. The

same tetrahedral mesh, derived from cubes with an edge length of 20m, was used for
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Table 5.3: Ratio of compute time and memory with and without global assembly for the acoustic case on 24
cores.

M time storage
1 0.38 1.2
2 1.0 11
3 1.9 26

each degree. For the linear element of degree 1, assembly of the global stiffness matrix

reduces the required time significantly with only a 20% increase of storage. For degree 2,

there is no performance gain and the required storage is much larger. For degree 3, the

scheme runs slower than with local assembly on the fly and requires a lot more memory.

For that reason, (Zhebel et al., 2011, 2014) only mentioned local assembly.

HIGHER ORDERS

We now turn to the elastic case with discretizations of degree 2 and 3, using the same

homogeneous problem on meshes of different size.

Figure 5.2 a plots the maximum observed error in the receiver data for the vertical

displacement component, scaled by the maximum amplitude over all traces, as a func-

tion of the number of scalar degrees of freedom or number of nodes. Figure 5.2 b de-

picts the same errors as a function of the required compute time with 24 cores. The

actual number of degrees of freedom is 3N and equals the size of the numerical dis-

placement vector u. The element size scales with N−1/3. The error is expected to behave

as N−(M+1)/3 for degree M . The numerical experiments more or less follow the expected

trend. The compute time only includes the wall-clock time for sparse matrix assembly

and time stepping, not the time spent on reading and checking the mesh, setting up the

nodes, the local-to-global map, and locating source and receivers on the mesh. Because

the scheme for degree M = 1 was treated in a different way, it performs quite well even

with a large number of elements. If errors around 10% are acceptable, it can be a viable

alternative for the scheme of degree 3.

Figure 5.2 c is similar to 5.2 b, but with the product of the element stiffness ma-

trix and element displacements evaluated on the fly during each time step. To better

illustrate the differences in performance and memory usage, figure 5.3 plots the ratio in

observed compute time as well as required storage between global assembly and local
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Figure 5.2: Maximum error in the vertical displacement, scaled by the maximum amplitude, for elements of
degree 1, 2 or 3, as a function of (a) N 1/3, where N is the number of degrees of scalar degrees of freedom, (b)

compute time with global assembly, and (c) with local assembly. The extra set of 3 short lines in (a) depicts the
theoretical asymptotic error behaviour.
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Figure 5.3: Ratios between compute time (drawn lines) and required storage (dashed lines) for global
assembly and local assembly on the fly with elements of degree 1, 2 or 3. Global assembly is faster for degree 1

at 40% more storage. For degrees 2 and 3, local assembly is faster and requires substantially less storage.

assembly for elements of degree 1, 2 and 3. For degree 1, repeated from figure 5.1, the

differences are not that large. Global assembly takes about 40% more storage but runs

more quickly. For degree 2, local assembly is faster by a factor of about 1.3 on 24 cores.

For degree 3, it is about 1.9 times as fast. The savings in storage compared to global

assembly are substantial. Therefore, global assembly may only be attractive for degree 1.

A MORE REALISTIC EXAMPLE

We ran the code on the non-trivial model shown in figure 10 of (Zhebel et al., 2014),

which is slightly more realistic than a homogeneous problem. The material properties

are constant per layer and listed in Table 5.4. Figure 5.4 a displays a vertical cross section

of the P-wave velocity. The source, indicated by a red star, is a vertical force at the sur-

face, and has the signature of a Ricker wavelet with an 8-Hz peak frequency. The vertical

displacement after 1 second in figure 5.4 b shows strong Rayleigh waves. The tetrahedral

mesh has 1,528,595 vertices and 8,826,636 elements of degree 3. The time step was about

75% of the maximum value dictated by the CFL condition. Figure 5.4 c shows the vertical

displacement, measured at the surface along a line corresponding to the earlier vertical

cross section. The computation ran up till a time of 2s.

Figure 5.5 plots the observed ratios between compute time and memory require-

ments with global and with local assembly on different meshes using 24 cores. The be-

haviour is similar to that of figure 5.3. Again, global assembly is only faster for the linear
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Table 5.4: Isotropic elastic properties: P- and S-wave velocities and densities are constant per layer.

vp (km/s) vs (km/s) ρ (g/cm3)
2.000 1.200 2.046
5.000 3.000 2.602
3.000 1.800 2.290
4.400 2.640 2.250
6.000 3.600 2.723
5.500 3.300 2.665

elements, whereas local assembly on the fly wins for degree 2 and 3. For the latter, the

performance gain now is about 2.5 and 3 times, respectively.

CONCLUSIONS

We have compared the performance of mass-lumped tetrahedral finite elements on isotropic

elastic wave propagation without and with global assembly of the stiffness matrix. To

preserve their accuracy after mass lumping, the higher-order elements are augmented

with higher-degree polynomials in the interior of the faces and the tetrahedron. For the

lowest degree, the linear elements, this is not necessary. For that case, we simplified the

expression for the stiffness matrix.

We ran performance tests on a homogeneous problem. The parallelization of the

most compute intensive loops was performed by OpenMP directives. With global as-

sembly, this involved symmetric sparse matrix assembly and the matrix-vector product

during the time stepping. With assembly on the fly, the local assembly and local matrix-

vector multiplication per element were parallelized in a single OpenMP loop. Further

code optimizations were left to the compiler.

In the acoustic case, local assembly is more efficient than global assembly, except for

the lowest-order case with linear elements. In the elastic case, the same appears to be

true. For degree 1, the code with global assembly ran faster and used about 40% more

storage than with local assembly. For degree 2, the numerical experiments with local

assembly on the fly on 24 cores were about 1.4 times faster than with global assembly in

one experiment and about 2 times in another. For degree 3, the gain was a factor 1.9 in

one and 3 in the other. At the same time, the memory requirements were smaller by at

least on order of magnitude for degree 2 and 3.



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

5

94 5. TETRAHEDRAL ELEMENTS FOR ELASTIC WAVE PROPAGATION

t]

Velocity (km/s) at y = 2150 m

0 0.5 1 1.5 2 2.5 3 3.5 4

x(km)

-0.5

0

0.5

1

1.5

2

2.5

3

z
(k

m
)

2

2.5

3

3.5

4

4.5

5

5.5

6

(a)

  1.000 s

0 0.5 1 1.5 2 2.5 3 3.5 4

x (km)

-0.5

0

0.5

1

1.5

2

2.5

3

z
 (

k
m

)

(b)

-1.5 -1 -0.5 0 0.5 1 1.5

Offset (km)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e
 (

s
)

(c)

Figure 5.4: (a) P-wave velocities in km/s. The red star denotes the source positions and the yellow inverted
triangles the receivers. (b) Vertical-displacement wavefield after 1 second. (c) Seismogram with vertical

displacement.
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Figure 5.5: Ratios between compute time (drawn lines) and required storage (dashed lines) for global
assembly and local assembly on the fly with elements of degree 1, 2 or 3. As in figure 5.3, global assembly is

faster for degree 1 at 30 to 40% more storage, whereas for degrees 2 and 3, local assembly is faster and requires
substantially less storage.

We observed in a simple test problem that, for high accuracy, augmented cubic ele-

ments performed best in terms of compute time for a given accuracy. For low accuracy,

the linear element may still be attractive. In that case, its efficiency compensates the

need for a much finer mesh.
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Previous chapters have used Legendre polynomials for interpolation in the finite element

scheme. The performance of LGL schemes was promising for first-order problems in com-

bination with defect correction in 1D, but fell short for 2D problems. In this chapter we

look into Hermite polynomials as an alternative, since they are C1 continuous, they of-

fer better representation of derivatives of pressure on triangles. They display fourth order

accuracy in 2 dimensions, for homogenous models, but need to be modified for variable

densities.
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INTRODUCTION

The first-order form with pressure and velocities on the element’s vertices has some re-

semblance to elements based on cubic Hermite interpolating polynomials (Ciarlet and

Raviart, 1972). Felippa (Wall et al., 2001) presents a 1-D application of these polyno-

mials to bending elements and includes dispersion curves that include a physical and a

spurious mode (Park and Flaggs, 1984). The latter is also called ‘optical’ (Cottrell et al.,

2006).

Here, we will present Fourier analysis for the homogeneous acoustic wave equation.

We examine the errors in the eigenvalues, representing the dispersion curves, and the

error in the eigenvectors, which show how much energy ends in the physical and how

much in the spurious modes as a function of wavenumber.

In 1D, the cubic polynomials per element are represented by the pressure and its

derivatives on the vertices or nodes. In 2D on the triangle, the element is defined by

cubic polynomials with pressure and its two derivatives on the vertices. To obtain the

ten degrees of freedom required to represent a cubic polynomial, a bubble function for

the pressure is added to the interior of the triangle and represented by a pressure value

at its centroid. In 3D on tetrahedra, the element is defined by the pressure and its three

derivatives on the vertices and bubble functions for the pressure on each of the four

faces, providing the 20 degrees of freedom that determine a 3-D cubic polynomial.

Unfortunately, the continuity of these elements across element boundaries makes

them unsuited for problems with discontinuities across element interfaces. The reason

is that the velocity, defined as the gradient of the pressure divided by the local density,

has a normal component that is continuous across element boundaries, but this not true

for the tangential component(s) if the density has a jump across the element boundary.

This means these elements are only suited for smoothly varying media as are often used

in the initial stages of seismic full-waveform inversion.

Here, we will make the additional assumption that the material parameters, den-

sity and sound speed, are homogeneous. This simplifies the finite-element method but

limits its applicability. In the next section, we will consider the 1-D case. Then, a 2-D

example will be presented. The last section summarizes the conclusions.
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1D

FINITE-ELEMENT DISCRETIZATION FOR THE HOMOGENEOUS CASE

The acoustic wave equation in 1D reads

1

ρc2

∂2p

∂t 2 = ∂a

∂x
, ρa = ∂p

∂x
.

The pressure p(t , x) and particle acceleration a(t , x) are continuous. The sound speed

c(x) and density ρ(x) depend on position. For the dispersion analysis and numerical

tests, we will only consider the homogeneous problem with constant coefficients, which

greatly simplifies the construction of the finite elements.

For the finite-element discretization, we choose N +1 vertices xk , k = 0, . . . , N , that

define elements of size h� = x�− x�−1, � = 1, . . . , N . The basis functions φi (ξ) and φ′
i (ξ),

with normalized coordinate ξ ∈ [0,1] inside the element, should obey

φi ( j ) = δi j ,
dφi

dξ
( j ) = 0, for i , j = 0,1,

and

φ′
i ( j ) = 0, h−1 dφ′

i

dξ
( j ) = δi j , for i , j = 0,1.

In the cubic case, this leads to

φ0(ξ) = (1−ξ)2(1+2ξ), φ′
0(ξ) = h(1−ξ)2ξ, φ1(ξ) = ξ2(3−2ξ), φ′

1(ξ) =−h(1−ξ)ξ2.

Here, h is the length of the element. Note that φ1(ξ) =φ0(1−ξ) and φ′
1(ξ) =−φ′

0(1−ξ).

The discretization is straight-forward if the material properties are homogeneous.

The contribution to the mass matrix per element is

A = hQ ĀQ, Ā = 1

420

⎛
⎜⎜⎜⎜⎜⎜⎝

156 22 54 13

22 4 13 3

54 13 156 22

13 3 22 4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

Q = diag{1,h,1,−h}.
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Here, the degrees of freedom are paired as p and ∂x p on the left and on the right side

of the element. Note that h may vary from element to element. The contribution to the

stiffness matrix is

B = 1

h
QB̄Q, B̄ = 1

30

⎛
⎜⎜⎜⎜⎜⎜⎝

36 3 −36 −3

3 4 −3 1

−36 −3 36 3

−3 1 3 4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that the resulting A differs from the one in equation (8) of (Wall et al., 2001) with

μ1 =μ2 =μ3 = 1, but agrees if the last matrix in that equation is replaced by

μ3

2800

⎛
⎜⎜⎜⎜⎜⎜⎝

4 2 −4 2

2 1 −2 1

−4 −2 4 −2

2 1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The entries at positions 1,3 and 3,1 should have a minus sign. Our matrix B agrees if

γ1 = γ2 = 1 in equation (13) of (Wall et al., 2001).

DISPERSION ANALYSIS

For the dispersion analysis, the mesh is assumed to be equidistant and periodic. Then,

the mass matrix M and stiffness matrix K become

M = h

420

⎛
⎜⎜⎜⎝

6[52+9(T +T −1)] −13h(T −T −1)

13h(T −T −1) h2[2+3(2−T −T −1)]

⎞
⎟⎟⎟⎠ ,

K =

⎛
⎜⎜⎜⎝

6
5h (2−T −T −1) 1

10 (T −T −1)

− 1
10 (T −T −1) h

30 [6+2−T −T −1)

⎞
⎟⎟⎟⎠ .

Here T is a shift operator defined by T n pm = pm+n , where pm approximates the pressure

at xm . We also have T m p ′
n = p ′

m+n for the derivative p ′
n that approximates ∂p

∂x (xm). The
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matrices operate on vectors (pm p ′
m)T.

The Fourier symbol of T is T̂ = e ikh for wavenumber k. The dispersion curve follows

from the eigenvalues of L̂ = M̂−1K̂ , which is now a 2×2 system. Here, M̂ represents the

Fourier symbol of the mass matrix and K̂ that of the stiffness matrix. The eigenvalues

are

κ2
± = 6

h2

141−4ζ(8+ζ)±√13056+ζ(3856+ζ(−7524+ (1656−19ζ)ζ))

65+ζ(ζ−36)
,

where ζ= cos(kh). For small k,

(κ−/k)2 � 1+ (kh)6

30240
,

demonstrating sixth-order behaviour of the dispersion error, relative to the exact wavenum-

ber k.

Figure 6.1(a) plots the eigenvalues κ± as a function of the normalized wavenum-

ber η = kh/(2π). Note that Nyquist-Shannon sampling theorem requires |kh| ≤ π in

the scalar case. Here, with both p and ∂p
∂x , we have |kh| ≤ 2π. The results for negative

wavenumbers follow by symmetry and are not plotted.

Had we only shown the results for |kh| ≤π, then one eigenvalue, κ− would be physi-

cal and the other spurious or ‘optical’ (Cottrell et al., 2006; Wall et al., 2001). By enlarging

the domain to |kh| ≤ 2π, we can unwrap the two eigenvalues: κ−/(2πη) for η ∈ [0, 1
2 ] and

κ+/(2πη) for η ∈ [ 1
2 ,1]. The other ones, κ+/(2πη) for η ∈ [0, 1

2 ] and κ−/(2πη) for η ∈ [ 1
2 ,1]

then remain as spurious modes. Because the eigenvalues depend on ζ, there is The sym-

metry κ2
±(1−η) = κ2

±(η) follows from the dependence of the eigenvalues on ζ= cos(2πη).

Figure 6.1(b) shows the physical eigenvalues after scaling by the exact eigenvalue.

The two values near the discontinuity at η = 1/2 are κh =

168/17 and



10, both close

to π. If all the energy could be restricted to these modes, there would be no spurious

modes. For instance, if k is small, all wave energy should be confined to the eigenvector

of κ−. In practice, some energy may end up in the eigenvector of κ+ for small k. Next,

we will study this in more detail by considering the error in the eigenvectors.

To determine the error in the eigenvectors, we follow (Mulder, 1999) and express the

Fourier symbol of the spatial operator as L̂ = QΛQ−1, where the columns of Q are the

eigenvectors of L̂ and the diagonal matrix Λ contains the eigenvalues κ2
± on its diagonal.

The exact eigenvector corresponding to the mode e ikx in the Fourier domain is ê0 =
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(1 ik)T. The second spatial derivative turns this into k2ê0, whereas the numerical ap-

proximation produces L̂ê0. The error in the eigenvector is then something like k−2L̂ê0 −
ê0. To separate the dispersion error from the error in the eigenvectors, we can replace

the numerical eigenvalues κ2 in Λ by the exact k2, evaluate the effect of the modified op-

erator L̂ on the exact eigenvector ê0, divide by k2 afterwards, and compare the result to

the same exact eigenvector. We can also do that for each of the eigenvectors separately

by setting the eigenvalues to zero except for the one of interest. Assuming that the first

eigenvector corresponds to κ− and the second to κ+, we can focus on κ− for small k. We

define vectors

ŝ1 = k−2Q diag{k2,0}Q−1ê0

and

ŝ2 = k−2Q diag{0,k2}Q−1ê0.

These describe the following steps: project the exact eigenvector on the numerical ones,

propagate with the exact wavenumber, project back, rescale by the squared the wavenum-

ber, and compare to the input. The matrix Ŝ = (ŝ1 ŝ2)T has these vectors as its first and

second column. Then,

Ŝ �

⎛
⎜⎜⎜⎝

1− 2
4725 (kh)6 2

4725 (kh)6

ik
[
1+ 2

315 (kh)4
]

ik
[− 2

315 (kh)4
]
⎞
⎟⎟⎟⎠ .

The first column approximates the exact eigenvector ê0, the second column describes

how much of it ends up in the other mode and should be classified as spurious energy.

This column has the opposite sign of the error, s1−ê0, in the first column, that is, s1+s2 =
ê0. The matrix shows that the first row, corresponding to p, has a sixth-order error and

the second row, corresponding to the derivative of p, has a fourth-order error. The last

determines the overall error behaviour of the scheme.

To study the eigenvector error over the whole domain, we first rescale the eigenvec-

tor to obtain relative errors, by dividing out the factor ik. Let D = diag{1,(ik)−1}. The

normalized exact eigenvector becomes ê1 = D ê0 = (1 1)T and the numerical ones the
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columns of Q̃ = DQ:

Q̃ =

⎛
⎜⎜⎜⎝

a+w
d

a−w
d

sinξ
ξ

sinξ
ξ

⎞
⎟⎟⎟⎠ ,

with ξ= kh = 2πη, ζ= cos(ξ), d = 6(52−17ζ), a = 80+ζ(52−27ζ) and

w =
√

13056+ζ(3856+ζ(−7524+ζ(1656−19ζ))).

We then consider the vectors

r̂1 = Q̃ diag{1,0}Q̃−1ê1,

r̂2 = Q̃ diag{0,1}Q̃−1ê1.

In the present example, we happen to have r̂1 + r̂2 = 1. The vectors r1 and r2 contain 4

components that describe the eigenvector error. The drawn line in figure 6.2 consists in

r̂1,1 −1 for η < 1
2 and r̂2,2 −1 for η > 1

2 , with 0 at η→ 1
2 . The dashed line follows r̂1,2 −1

for η< 1
2 and r̂2,1 −1 for η> 1

2 , with −1 at η→ 1
2 . These represent the relative difference

between the approximate and exact eigenvectors. The missing components represent

the spurious modes and just have the opposite sign, because r̂1+r̂2 = 1, and are therefore

not shown.

Figure 6.2 seems to suggests that we should stay at some distance below the Nyquist

limit of η = 1
2 , since one if the branches shoots off to −1 around η = 1

2 . This may be

too pessimistic as around η = 1
2 , the two eigenvalues κ2

± are nearly equal. However, the

amplitude of the dashed curve rapidly increases for η above 1
2 , so having |η| ≤ ηmax with

ηmax just below 1
2 is advisable.

2D
We have tested the method on a 2-D standing-wave problem in a homogeneous constant-

density acoustic model. The partial differential equation is

1

c2

∂2p

∂t 2 = ∂a1

∂x1
+ ∂a2

∂x2
, a1 = ∂p

∂x1
, a2 = ∂p

∂x2
.
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The finite-element discretization starts with the reference triangle with barycentric co-

ordinates ξ0 = 1 − ξ1 − ξ2, ξ1 and ξ2. The true coordinates inside a triangle with ver-

tices (x1,k , x2,k ), k = 0,1,2, are x j = ∑2
k=0 ξk x j ,k for j = 1,2. Let α j = x j ,1 − x j ,0 and

β j = x j ,2 − x j ,0 for j = 1,2. The 10 degrees of freedom are the pressure values pk and

their derivatives v1,k and v2,k in x1 and x2, respectively, on the three vertices indexed by

k = 0,1,2, as well as the pressure pc at the centroid.

We order them as {p0, a1,0, a2,0, p1, a1,1, a2,1, p2, a1,2, a2,2, pc } per element. The correspond-

ing basis functions are

φ1 = ξ0[(3−2ξ0)ξ0 −7ξ1ξ2],

φ2 = ξ0[α1(ξ0 −ξ2)ξ1 +β1(ξ0 −ξ1)ξ2],

φ3 = ξ0[α2(ξ0 −ξ2)ξ1 +β2(ξ0 −ξ1)ξ2],

φ4 = ξ1[(3−2ξ1)ξ1 −7ξ0ξ2],

φ5 = ξ1[α1(2ξ2ξ0 −ξ1(1−ξ1))−β1(ξ0 −ξ1)ξ2],

φ6 = ξ1[α2(2ξ2ξ0 −ξ1(1−ξ1))−β2(ξ0 −ξ1)ξ2],

φ7 = ξ2[(3−2ξ2)ξ2 −7ξ0ξ1],

φ8 = ξ2[β1(2ξ1ξ0 −ξ2(1−ξ2))−α1(ξ0 −ξ2)ξ1],

φ9 = ξ2[β2(2ξ1ξ0 −ξ2(1−ξ2))−α2(ξ0 −ξ2)ξ1],

φ10 = 27ξ0ξ1ξ2.

The last is the bubble function. The mass and stiffness matrix per element follow from

exact integration over the triangle and serve as input for the global assembly. Note that

α j , β j and β j −α j in the basis functions are related to projections on the edges of the

acceleration vectors defined by the pressure gradient.

The time stepping scheme is

qn+1 = 2qn −qn−1 − (Δt )2M−1K qn ,

where the superscript denotes time t n = t 0 +nΔt . The vector q denotes the degrees of

freedom. The time step Δt should be chosen such that 0 ≤ (Δt )2L ≤ 4, with L =M−1K .

The domain for the test problem has a size [0,2]× [0,1] in dimensionless units. We
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choose a unit sound speed c and density ρ, also in dimensionless units. The exact solu-

tion is a standing wave of the form p = sin(α1x)sin(α2z)cos(ωt ), with ω = c(α2
1 +α2

2)1/2

and αk = 2πmk for k = 1,2. The solution obeys zero Dirichlet boundary conditions The

initial-value problem is started at time zero and runs until tmax = 2π/ω. The mesh was

generated by taking a uniform background mesh with squares cells, perturbing internal

vertices randomly by at most 10% to make it more irregular and applying a Delaunay

triangulation. Figure 6.3 shows a fairly coarse mesh and the initial pressure. For drawing

purposes, the latter was interpolated from the given degrees of freedom on the mesh to

a much finer Cartesian grid, using the cubic Hermite polynomial representation.

The root-mean-square (RMS) errors in the pressure p at the vertices, pc at the el-

ement centroids, and in the horizontal and vertical velocities a1 = ∂p
∂x1

and a2 = ∂p
∂x2

at

the vertices was measured at a time tmax. Figure 6.4 plots the results as a function of

the square-root of the number of vertices N , which is proportional to the inverse of the

average element size. Power-law fits provide an error of order 4 for p and pc and order

3 for a1 and a2, as expected for a cubic-polynomial representation of the pressure. The

second-order time-stepping scheme ran at about half the maximum allowable value,

which appears to be small enough to prevent it from showing up in the graphs.

CONCLUSIONS

We have analyzed the dispersion properties of finite elements based on cubic Hermite

polynomials applied to the constant-density acoustic wave equation with a constant ve-

locity. The dispersion curve has a sixth-order error, whereas the eigenvector error that

describes the cross talk with the spurious mode has an error of order six for the pressure

and of order four for its gradient. The accuracy at higher wavenumbers is reasonable up

to a value somewhat below the Nyquist limit for the scalar case. A numerical test in two

space dimensions shows fourth-order accuracy for the pressure and one order lower for

its gradient.

In 1D, the current approach can be easily generalised to inhomogeneous problems

with piecewise constant sound speed and density per element by storing the pressure

gradient divided by the density on the nodes and multiply it by the density in the element

during matrix assembly.

In 2D, the bubble function generates a discontinuity in the normal component of
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the pressure gradient across the edges, except at the vertices, whereas the PDE requires

its continuity, although in the homogeneous case, this does not pose a real problem.

Unfortunately, if the solution in 2D is represented in terms of pressure and derivatives of

pressure scaled by a density, the tangential component of the pressure gradient along the

edge becomes discontinuous if the density is discontinous across that edge. This violates

the continuity of the pressure across edges. It seems that the Hermite representation is

not able to meet all these requirements.
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Figure 6.1: (a) The positive square-roots of the two eigenvalues, scaled by 2π, as a function of the normalized
wavenumber η. The spurious modes are shown as dashed lines. (b) Unwrapped normalized dispersion curve

for the 1-D element based on cubic Hermite polynomials, showing the numerical approximation κ of the
wavenumber normalized by the exact one, 2πη. The dotted line is the exact result, the drawn and dashed lines

mark the two eigenvalue branches.
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Figure 6.2: Error in the eigenvectors. Only two of the four components are shown, since the other two have
just the opposite sign. (b) Detail of (a).
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Figure 6.3: Mesh with the initial pressure as backdrop.
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Figure 6.4: Convergence with cubic Hermite polynomials as basis functions for a 2-D test problem. The
root-mean-square error as a function of the square-root of the number of vertices, N , shows fourth-order

convergence, indicated by the dotted line, for the pressure p (black line) at the nodes and pc (red line) at the
centroids, whereas the horizontal velocity v1 (blue) and vertical velocity v2 (green) have third-order

convergence.
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CONCLUSIONS

In chapter 1 of this thesis, we identify the need for sharper imaging techniques for geo-

physical exploration. In chapter 2, we examine existing methods that facilitate more ac-

curate numerical modelling of wave propagation, which will contribute to more detailed

images of the earth’s subsurface. In chapter 3, we have compared four finite-element

schemes with polynomial basis functions for the first-order formulation of the acoustic

wave equation, using Legendre-Gauss-Lobatto nodes, Chebyshev-Gauss-Lobatto with-

out and with weighting function or the standard element. The first-order formulation

of the wave equations is commonly used for finite-difference modelling of the wave

equation because of its lower memory requirements. For finite-element methods, it is

more common to use the second-order formulation, since it allows mass lumping with

no loss in accuracy. Mass lumping avoid the inversion the mass matrix and allows for

explicit time stepping. For the first-order formulation of the wave equation, however,

mass lumping tends to decrease the spatial accuracy. Of the four interpolation schemes

chosen, numerical dispersion is least for Legendre-Gauss-Lobatto nodes. For polyno-

mials of odd degree, they are more accurate than the second-order formulation of the

wave equation but this gain is lost after mass lumping. We have shown that accuracy

can be restored by defect correction, applying one iteration on the consistent mass ma-
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trix, preconditioned by its lumped version. For polynomials of degree one, this improves

the accuracy from second to fourth order in the element size. In other cases, the im-

provement in accuracy is less dramatic. The error in the eigenvectors for the first-order

formulation, however, is worse than obtained for the second-order formulation, with-

out and with mass lumping. Because the eigenvector error is zero for the lowest-degree

scheme, with linear polynomials, our iterative approach appears to be most attractive

for just that case.

Fourier analysis in two space dimensions suggests that the fourth-order error be-

haviour should be obtained for the lowest-order scheme, either with bilinear elements

on quadrilaterals or with linear elements on triangles, at least on very regular meshes

and with constant material properties. In chapter 4, we test whether this holds in un-

structured meshes. It turns out that the spatial operator in the discrete first-order form

of the wave equation may have short-wavelength null-vectors. The corresponding waves

are therefore not seen by the spatial operator and persist on their own once excited. The

result is a noisy solution that can be avoided by suppressing these short wavelengths.

One approach is to replace the delta-function source in the weak form by a source of

wider extent. We have performed numerical experiments to find suitable parameters

for the Gaussian, for the tapered sinc and for a polynomial approximation of the delta

function. The tapered sinc provided the most accurate results.

In the standard second-order form, the Gaussian and tapered sinc hardly improve

the accuracy and a delta function appears to be the most attractive choice, given its

simplicity. The first-order form with one iteration may have a better accuracy than the

second-order form, but that does not appear sufficient to compensate for its higher cost,

at least not in our 2-D Matlab implementations. The second-order form and in particu-

lar its higher-order mass-lumped versions appears to be more attractive.

In chapter 5, we have compared the performance of mass-lumped tetrahedral finite

elements on isotropic elastic wave propagation without and with global assembly of the

stiffness matrix. To preserve their accuracy after mass lumping, the higher-order ele-

ments are augmented with higher-degree polynomials in the interior of the faces and

the tetrahedron. For the lowest degree, the linear elements, this is not necessary. For

that case, we simplified the expression for the stiffness matrix.

We ran performance tests on a homogeneous problem. The parallelization of the
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most compute intensive loops was performed by OpenMP directives. With global as-

sembly, this involved symmetric sparse matrix assembly and the matrix-vector product

during the time stepping. With assembly on the fly, the local assembly and local matrix-

vector multiplication per element were parallelized in a single OpenMP loop. Further

code optimizations were left to the compiler.

In the acoustic case, local assembly is more efficient than global assembly, except

for the lowest-order case with linear elements. In the elastic case, the same appears to

be true. For degree 1, the code with global assembly ran faster and used about 40 per

cent more storage than with local assembly. For degree 2, the numerical experiments

with local assembly on the fly on 24 cores were about 1.4 times faster than with global

assembly in one experiment and about two times in another. For degree 3, the gain was

a factor 1.9 in one and 3 in the other. At the same time, the memory requirements were

smaller by at least on order of magnitude for degrees 2 and 3.

We observed in a simple test problem that, for high accuracy, augmented cubic ele-

ments performed best in terms of compute time for a given accuracy. For low accuracy,

the linear element may still be attractive. In that case, its efficiency compensates the

need for a much finer mesh.

In chapter 6, we have analyzed the dispersion properties of finite elements based on

cubic Hermite polynomials applied to the constant-density acoustic wave equation with

a constant velocity. The dispersion curve has a sixth-order error, whereas the eigenvec-

tor error that describes the cross talk with the spurious mode has a error of order six for

the pressure and of order four for its gradient. The accuracy at higher wavenumbers is

reasonable up to a value somewhat below the Nyquist limit for the scalar case. A numer-

ical test in two space dimensions shows fourth-order accuracy for the pressure and one

order lower for its gradient.

The current, straightforward approach cannot be extended to problems with a dis-

continuous density in more than one space dimension. In the variable-density case,

the pressure and the normal velocity or acceleration component should be continuous

across the edges. One could think of a representation in terms of pressure and deriva-

tives of pressure scaled by a piecewise constant density per element. But then, the tan-

gential component of the pressure gradient along the edge may become discontinuous,

which violates the continuity of the pressure across edges. Additional complications are
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the fact that bubble function generates a discontinuity in the normal component of the

pressure gradient across the edges, except at the vertices, whereas the PDE requires its

continuity, although in the homogeneous case, this does not pose a real problem.

While FEM has proven to be a great tool for seismic modeling, several areas remain to

be explored by future researchers. One is to exploit the continuity of the normal velocity

and not only the pressure in heterogeneous media with discontinuous material proper-

ties. Another is the use of curved elements. Automatic mesh generation for geophysical

applications is highly needed. Unlike applications in manifacturing, where edges need

to be represented with high accuracy, the mesh needs to follow the topography, seismic

horizons and outlines of geological bodies like salt diapirs only with a fraction of a seis-

mic wavelength.

The acoustic equation is a simplification of the elastodynamic wave equation. To

capture more phenomena accurately, one include anisotropic and viscous effects. Such

work has been done extensively for the static case in the mechanics of elasticity for var-

ious applications (Castaings et al., 2004; Hilton and Yi, 1993; Moresi et al., 2003; Puso

and Weiss, 1998; Taylor et al., 2009). In seismics, it is less common, mainly because of

the associated compute cost (Komatitsch et al., 2000). (Dumont et al., 2018) presents

interesting work to reduce the cost of mesh regeneration in the form of 4D remeshing.

Applying this technique in combination with the visco-elastic model for seismic prob-

lems might help to more strongly affirm a place for FEM in geophysics.
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The spectral radius of G = I−(M L)−1M , with mass matrix M and its lumped version

M L, should be smaller than 1 for convergence. Here, we provide estimates on a periodic

domain with Nx elements, each with size h j , j = 0, . . . , Nx −1. The basis functions have

degree M .

We start with some simple observations. The vector consisting of all ones is an eigen-

vector of G with eigenvalue 0. This follows immediately from the fact that M L is a diag-

onal matrix obtained from the row sums of M . The eigenvalues of G do not change

under the similarity transform (M L)1/2G (M L)−1/2. Since this is a symmetric matrix, its

eigenvalues should be non-negative. Note that M L has positive entries on the diagonal.

For the lowest degree, M = 1, the mass matrix per element is

A = 1
6

⎛
⎜⎜⎜⎝

2 1

1 2

⎞
⎟⎟⎟⎠ ,

and the assembled mass matrix is of the form M j , j−1 = 1
6 h j−1, M j , j = 1

3 (h j−1 + h j ),

M j , j+1 = 1
6 h j , and zero otherwise. In the periodic case, the j should be interpreted as j

mod Nx . Then,

G j , j−1 =− 1
3

h j−1

h j−1 +h j
, G j , j = 1

3 , G j , j+1 =− 1
3

h j

h j−1 +h j
,

and zero otherwise. In the equidistant case with constant h j , the eigenfunctions are qk ,

k = 0, . . . , Nx −1, with qk,l = exp(2πikl/Nx ), l = 0, . . . , Nx −1. The corresponding eigenval-

ues are 1
3 [1−cos(2πk/Nx )]. Therefore, the eigenvalues of G lie in the interval [0,2/3].

In the non-equidistant case, Gershgorin’s theorem S.Gerhsgorin (1931) can be ap-

plied: |λ− gi ,i | ≤∑
j �=i |gi , j | leads to |λ− 1

3 | = 1
3 , implying 0 ≤λ≤ 2/3, which are the same

bounds as in the equidistant case.

LEGENDRE POLYNOMIALS

We now turn to the general case, M ≥ 1. The mass matrix for a single element in modal

form is defined by Am
k,l =

∫1
−1 w(ζ)ψk (ζ)ψl (ζ) with a weighting function w(x) and model

basis functions ψk (ζ), k = 0, . . . , M . The lumped mass matrix in nodal form is 2W , where

W = diag{w0, w1, . . . , wM } is diagonal with w0 = wM = 1/(M(M +1)) and w j = 1/(M(M +
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1)PM (x j )2) for j = 1, . . . , M −1.

For Legendre polynomials, this results in a diagonal matrix with Am
j , j = 1/( j + 1

2 ), j =
0, . . . , M . To obtain its nodal representation An = F n Am, we take the Legendre-Gauss-

Lobotto (LGL) points ζ j that are the roots of (1−ζ2) d
dζPM (ζ) = 0.

The modal-to-nodal map F n = (F m)−1 with F m
k,l =ψk (ζl ), for k, l = 0, . . . , M . This can

be expressed in closed form as (Teukolsky, 2015, e.g.)

F n
j ,k = 2w j

γk
ψk (ζ j ), 2w j = AL

j , j , γk = 2
M∑

j=0
w jψ

2
k (ζ j ).

Here, γk = 1/(k + 1
2 ) for k = 0, . . . , M −1 and γM = 2/M with the LGL nodes. Note that the

numerical quadrature weights w j should not be confused with the weighting function

w(ζ).

The nodal form of the basis functions is φ= F nψ. We have φk (ζl ) = δk,l by definition

and ψk (ζ) =∑M
l=0ψk (ζl )φl (ζ). This is the same as the earlier F mφ.

The lumped version of An is AL, a diagonal matrix obtained from the row sums:

AL
k,k =∑M

l=0 An
k,l . The latter are proportional to the LGL quadrature weights:

wk = 1

2
AL

k,k = [
M(M +1)(PM (ζk ))2]−1

.

The difference between the mass matrices is expressed by

(AL − An) j ,k =
(

2

γM

)2
(
γM − 1

M + 1
2

)
w j wk PM (ζ j )PM (ζk ),

where γM = 2/M , so

(AL − An) j ,k = 2M(1+M)

2M +1
w j wk PM (ζ j )PM (ζk ).

Define a vector f with fk = wk PM (ζk ). Then AL − An = 2M(1+M)
2M+1 f fT. We immediately

obtain an eigenvector f. Since

f · f =
M∑

k=0
[wk PM (ζk )]2 =

M∑
k=0

(
PM (ζk )

M(M +1)[PM (ζk )]2

)2

=
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= 1

M(M +1)

M∑
k=0

wk = 1

M(M +1)
,

the corresponding eigenvalue is 2
2M+1 . The other eigenvalues are zero because the ma-

trix has rank 1.

Next, consider the matrix G = (AL)−1(AL − An) = 2M(1+M)
2M+1 (AL)−1f fT. As

fT(AL)−1f = 1

2

M∑
k=0

wk (PM (ζk ))2 = 1

2M
,

the matrix has an eigenvector q = 2(AL)−1f with entries qk = PM (ζk ) and the correspond-

ing eigenvalue is λmax = (M +1)/(2M +1). The other eigenvalues are zero, as before.

To go from this result to the assembled case, we follow Wathen (1987). The bounds

of the eigenvalues, λ, obey

min
x�=0

xT(M L −M )x

xTM Lx
≤λ≤ max

x�=0

xT(M L −M )x

xTM Lx
,

For boolean matrix L represents the local-to-global map that take (M +1) unknowns on

the Nx elements to the global M Nx unknows. Then,

min
x�=0

xTLT(AL −A)Lx

xTLT ALLx
≤λ≤ max

x�=0

xTLT(AL −A)Lx

xTLT ALLx
,

which after setting y = Lx, results in

min
y�=0

yT(AL −A)y

yT ALy
≤λ≤ max

y�=0

yT(AL −A)y

yT ALy
.

Let y′ = (AL)1/2y, using the fact that AL is diagonal with positive entries on the diagonal.

Then,

min
y′ �=0

(y′)T(AL)−1/2(AL −A)(AL)−1/2y′

(y′)Ty′
≤λ≤

max
y′ �=0

(y′)T(AL)−1/2(AL −A)(AL)−1/2y′

(y′)Ty′
.

The bounds follow from the smallest and largest eigenvalues of (AL)−1/2(AL−A)(AL)−1/2,

which by a similarity transform based on (AL)1/2 are the same as those of (AL)−1(AL−A),

namely zero and λmax = (M +1)/(2M +1).



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

A

125

Note that G has Nx (M −1) zero and Nx non-zero eigenvalues, reflecting the fact that

the element matrix AL − An has rank 1.

For even M , the maximum eigenvalue is obtained for a vector v obtained from chain-

ing the highest modal function PM (ζ) over the nodes. Consider an indexing function

q( j ,k) = (M j +k) mod M Nx that enumerates the M Nx degrees of freedom on a periodic

grid with elements j = 0, . . . , Nx − 1 and nodes per element k = 0, . . . , M . The vector v

has elements vq( j ,k) = PM (ζLGL
k ), the highest degree Legendre polynomial evaluated at

the LGL nodes ζLGL
k . Recall that G refers to a single element and does not contain the

element size. Therefore, the subset Gq( j ,k1),q( j ,k2) =Gk1,k2 , corresponding to the interior

nodes with k1 = 1, . . . , M −1 and k2 = 0, . . . , M , does not depend on the element size h j .

At the endpoints, we have Gq( j ,0),q( j ,0)−l = h j−1

h j−1+h j
G0,l and Gq( j ,0),q( j ,0)+l = h j

h j−1+h j
G0,l for

l = 1, . . . , M , whereas Gq( j ,0),q( j ,0) =G0,0. Since for even values of M , the corresponding v

is symmetric according to vq( j ,l ) = vq( j ,−l ), for l = 1, . . . , M , we find that G v =λmaxv.

For M odd but Nx even, we can do the same, but since PM (−1) =−1 in that case, a mi-

nus sign needs to be applied in alternating elements: vq( j ,k) = (−1) j PM (ζLGL
k ). Note that

application of a minus sign has the effect of reversal of the order: PM (ζLGL
M−k ) =−PM (ζLGL

k )

for k = 0, . . . , M . With this vector, the same approach as above leads to G v =λmaxv.

CHEBYCHEV POLYNOMIALS

The weighting function can be taken as w(ζ) = 2
π (1−ζ2)−1/2, with an extra factor 2/π to

integrate a unit constant to 2, as in the case of the Legendre polynomials. The modal ba-

sis functions are ψk (ζ) = Tk (ζ) = cos(k arccosζ), k = 0, . . . , M , and the Chebychev-Gauss-

Lobotto (CGL) nodes ζl =−cos(πl/M), l = 0, . . . , M . The modal-to-nodal map has entries

F n
j ,k = (−1)k 2M w j wk cos(π j k/M),

with w j = 1/M , for j = 1, . . . , M −1 and w0 = wM = 1/(2M) (Funaro, 1992, eq. 3.5.6). The

mass matrix in model form is Am = diag{2,1, . . . ,1}, which represents the orthogonality

of the Chebyshev polynomials. For its lumped version, we can show that F m AL(F m)T =
diag{2,1, . . . ,1,2}. Knowing that numerical quadrature with the CGL nodes is exact for

polynomials up to degree 2M −1, we expect that the non-zero eigenvector can be repre-

sented by the modal basis function of highest degree, evaluated at the CGL nodes. If this

is expressed as q with entries q j = TM (ζ j ) = (−1)M− j , j = 0, . . . , M , then (F nq) j = δ j ,M .
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From this, it follows that (AL−An)q = F ndiag{0,0, . . . ,0,1}F nq = 1
2 F ndiag{2,1, . . . ,1,2}F nq =

1
2 ALq. Using the same approach of Wathen (1987) as before, this implies that the eigen-

values of G lie between 0 and 1/2.
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The leading error term in the dispersion curve for the Legendre polynomials without

lumping can be found in (Ainsworth, 2014, eq. (14)). In our notation and after division

by iMξ, this provides

εC ∼ 1
2 (−1)M

(
M !

(2M +1)!

)2

⎧⎪⎪⎨
⎪⎪⎩

M+1
2M+3 (Mξ)2(M+1) if M odd,

2M+1
M+1 (Mξ)2M if M even.

(B.1)

With mass lumping and the Legendre-Gauss-Lobatto (LGL) points, we conjecture that

the leading error term is

εL ∼− (Mξ)2M

2M +1

(
M !

(2M)!

)2( M

M +1

)(−1)M

. (B.2)

We have verified this last result up to M = 10. For odd M , this matches the very last

equation in Mulder (1999), which describes the error caused by replacing the consistent

mass matrix by its lumped version. For even M , εL =−2M εC.

LEADING EIGENVECTOR ERRORS

In the following, we will present expressions for the discrete dispersion and for eigenvec-

tor errors. For the mass matrix, the consistent and lumped versions are considered. We

only consider Legendre polynomials up to degree M = 5 and Legendre-Gauss-Lobatto

(LGL) nodes. For reference, results for the second-order formulation of the wave equa-

tions are included, for which some can be also found elsewhere Mulder (1999). For the

first-order case, the eigenvalues of the discrete operator are iMκ. For the second-order

case, they are κ2 and we list only the non-negative values of κ. Because the analytic ex-

pressions rapidly become quite complicated, only results in the form of leading terms

in a series representation in terms of the normalized wavenumber ξ ∈ [−π,π] are given.

Since for polynomials of degree M , M modes are coupled if elements of constant size and

constant material parameters are considered, the eigenvalues come in groups of M ele-

ments and the corresponding eigenvector errors can be represented by the M columns

of the matrix S, as explained in Section 3.3.2. Among the M eigenvalues, one corre-

sponds to the ‘physical’ eigenvalue that approximates iMξ in the first-order or (Mξ)2 in

the second-order formulation. The eigenvector error is absent and therefore zero for de-
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gree M = 1. For the higher degrees, a zero entry in the matrix should be read as o(ξp ),

with p the power of ξ pulled out in front of the matrix.

M = 1, LGL, first-order, consistent mass matrix:

κ= 3sinξ

2+cosξ
∼ ξ

(
1− 1

180ξ
4) , S = 0.

M = 1, LGL, first-order, lumped mass matrix:

κ= sinξ∼ ξ
(
1− 1

6ξ
2) , S = 0.

M = 1, LGL, second-order, consistent mass matrix:

κ=
√

6(1−cosξ)

2+cosξ
∼ ξ

(
1+ 1

24ξ
2) , S = 0.

M = 1, LGL, second-order, lumped mass matrix:

κ=
√

2(1−cosξ) ∼ ξ
(
1− 1

24ξ
2) , S = 0.

M = 2, LGL, first-order, consistent mass matrix:

κ=−
sin(ξ)

(
2cosξ∓

√
10−cos2 ξ

)
2−cos2 ξ

∼ {−5ξ,ξ
(
1+ 1

270ξ
4)} , S = SF2C ∼ ξ2

36

⎛
⎜⎜⎜⎝
−2 2

1 −1

⎞
⎟⎟⎟⎠ .

M = 2, LGL, first-order, lumped mass matrix:

κ=− 1
2 sinξ

(
cosξ∓

√
8+ sin2 ξ

)
∼ {−2ξ,ξ

(
1− 2

135ξ
4)} , S = SF2L ∼ 2SF2C.

M = 2, LGL, second-order, consistent mass matrix:

κ∼
{
ξ
(
1+ 1

90ξ
4) ,



15
}

, S = SS2C ∼− ξ4

360

⎛
⎜⎜⎜⎝
−2 2

1 −1

⎞
⎟⎟⎟⎠ .
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M = 2, LGL, second-order, lumped mass matrix:

κ∼
{
ξ
(
1− 1

180ξ
4) ,



6
}

, S = SS2L ∼−5SS2C.

M = 3, LGL, first-order, consistent mass matrix:

κ∼
{
−
√

14
3 ,ξ

(
1− 81

39200ξ
8) ,

√
14
3

}
,

S = SF3C ∼ 27
28000ξ

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

25 −50 25

−5− i



210 10 −5+ i



210

−5+ i



210 10 −5− i



210

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

M = 3, LGL, first-order, lumped mass matrix:

κ∼
{
−
√

10
3 ,ξ

(
1− 27

2800ξ
6) ,

√
10
3

}
,

S ∼ 9
800ξ

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 −10 5

−1− i



6 2 −1+ i



6

−1+ i



6 2 −1− i



6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

M = 3, LGL, second-order, consistent mass matrix:

κ∼
{
ξ
(
1+ 81

22400ξ
6) ,

√
14
3 ,
√

20
3

}
, S = SS3C ∼ i 81



5

35000ξ
5

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 −1 0

−1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

M = 3, LGL, second-order, lumped mass matrix:

κ∼
{
ξ
(
1− 27

22400ξ
6) ,

√
10
3 ,
√

20
3

}
, S = SS3L ∼− 7

3 SS4C.
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M = 4, LGL, first-order, consistent mass matrix:

κ∼
{
−
√

21
8 ,−9ξ,ξ

(
1+ 128

496125ξ
8) ,

√
21
8

}
, S = SF4C ∼ 1

3675ξ
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 56 −56 0

0 −24 24 0

0 21 −21 0

0 −24 24 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

M = 4, LGL, first-order, lumped mass matrix:

κ∼
{
−
√

21
8 ,−4ξ,ξ(1− 1024

496125ξ
8),
√

21
8

}
, S = SF4L ∼ 2SF4C.

M = 4, LGL, second-order, consistent mass matrix:

κ∼
{
ξ(1+ 128

99225ξ
8), 1

4

√
210−6



805, 1

4



42, 1

4

√
210+6



805

}
,

S ∼ 2ξ6

5325075

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −336



805 0 336



805

7360 −16
(
230+


805
)

0 −16
(
230−


805
)

−11270 7
(
805+17



805

)
0 7

(
805−17



805

)
7360 −16

(
230+


805
)

0 −16
(
230−


805
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

M = 4, LGL, second-order, lumped mass matrix:

κ∼
{
ξ(1− 32

99225ξ
8),
√

1
8 (55−


1345),



21/8,
√

1
8 (55+


1345)

}
,

S ∼ ξ6

20760075

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3136



1345 0 −3136



1345

−86080 32
(
1345+13



1345

)
0 32

(
1345−13



1345

)
131810 −49

(
1345+31



1345

)
0 −49

(
1345−31



1345

)
−86080 32

(
1345+13



1345

)
0 32

(
1345−13



1345

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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M = 5, LGL, first-order, consistent mass matrix:

κ∼
{
− 2

5

√
3(10+3



5),− 2

5

√
3(10−3



5),ξ(1− 9765625

19179224064ξ
12), 2

5

√
3(10−3



5), 2

5

√
3(10+3



5)

}
,

S ∼ 3125ξ6

133056

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
36

(
9+5



5
) − 1

36
(
9−5



5
)

1 − 1
36

(
9−5



5
) − 1

36
(
9+5



5
)

0.1118+0.2522i 0.04879−0.04359i − 1
63

(
7+5



7
)

0.04879+0.04359i 0.1118−0.2522i

−0.008881−0.1704i −0.04055−0.04945i − 1
63

(
7−5



7
) −0.04055+0.04945i −0.008881+0.1704i

−0.008881+0.1704i −0.04055+0.04945i − 1
63

(
7−5



7
) −0.04055−0.04945i −0.008881−0.1704i

0.1118−0.2522i 0.04879+0.04359i − 1
63

(
7+5



7
)

0.04879−0.04359i 0.1118+0.2522i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The closed-form expressions for the numerical entries are a bit lengthy. Let S = s1,3H .

Then,

h2,1 = 1
756 (21+8



5+15



7+


35)+ i
1764

√
77(980+399



5+130



7+60



35),

h2,2 = 1
756 (21−8



5+15



7−


35)− i
1764

√
77(980−399



5+130



7−60



35),

and

hk,5 = h∗
k,1, hk,4 = h∗

k,2, h5,k = h∗
2,k , h4,k = h∗

3,k , k = 1, . . . ,5.

M = 5, LGL, first-order, lumped mass matrix:

κ∼
{
− 2

5

√
3(7+


14),− 2
5

√
3(7−


14),ξ(1− 78125
67060224ξ

10), 2
5

√
3(7−


14), 2
5

√
3(7+


14)

}
,

S ∼ 625ξ6

12096

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.5618 0.0618 1 0.0618 −0.5618

0.1025+0.2115i 0.058−0.04849i −0.3211 0.058+0.04849i 0.1025−0.2115i

−0.002446−0.1207i −0.04699−0.05795i 0.09887 −0.04699+0.05795i −0.002446+0.1207i

−0.002446+0.1207i −0.04699+0.05795i 0.09887 −0.04699−0.05795i −0.002446−0.1207i

0.1025−0.2115i 0.058+0.04849i −0.3211 0.058−0.04849i 0.1025+0.2115i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Again, with S = s1,3H , we have

h1,1 =− 1
12 (3+



14), h1,2 =− 1

12 (3−



14),

h2,1 = 1
504 (14+10



7+3



14)+ i

504

√
70(59+20



2+10



7+13



14),

h2,2 = 1
504 (14+10



7−3



14)− i

504

√
70(59−20



2+10



7−13



14),

h3,1 = 1
504 (14−10



7+3



14)− i

504

√
70(59−20



2−10



7+13



14),

h3,2 = 1
504 (14−10



7−3



14)− i

504

√
70(59+20



2−10



7−13



14),

h2,3 =−(7+5



7)/63, h3,3 =−(7−5



7)/63,

and the other entries follow the same symmetry pattern as in the previous case. M = 5,

LGL, second-order, consistent mass matrix:

κ∼
{
ξ
(
1+ 390625

804722688ξ
10) , 2

5

√
3(10−3



5), 1

5

√
6(35−


805), 2
5

√
3(10+3



5), 1

5

√
6(35+


805)

}
,

S ∼ i 15625ξ7

58677696

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

− 2
3

√
3
(
49−10



7
) −

√
1

21 (763−210



5−2
√

35
(
761−336



5
)
) 0

√
1

21 (763+210



5+2
√

35
(
761−336



5
)
) 0

2
3

√
3
(
49+10



7
) −

√
1

21 (763−210



5+2
√

35
(
761−336



5
)
) 0 −

√
1

21 (763+210



5−2
√

35
(
761−336



5
)
) 0

− 2
3

√
3
(
49+10



7
) √

1
21 (763−210



5+2

√
35
(
761−336



5
)
) 0

√
1

21 (763+210



5−2
√

35
(
761−336



5
)
) 0

2
3

√
3
(
49−10



7
) √

1
21 (763−210



5−2

√
35
(
761−336



5
)
) 0 −

√
1

21 (763+210



5+2
√

35
(
761−336



5
)
) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ i 15625ξ7

58677696

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

−5.48 −3.50 0 8.98 0

10.03 −3.97 0 −6.06 0

−10.03 3.97 0 6.06 0

5.48 3.50 0 −8.98 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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M = 5, LGL, second-order, lumped mass matrix:

κ∼
{
ξ
(
1− 78125

804722688ξ
10) , 2

5

√
3(7−



14), 1

5

√
6(35−


805), 2
5

√
3(7+



14), 1

5

√
6(35+


805)

}
,

S ∼ i 3125ξ7

32006016

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

2
√

3
(
49−10



7
) √

3
2

(
231−32



14−10

√
7
(
23−6



14
))

0 −
√

3
2

(
231+32



14+10

√
7
(
23+6



14
))

0

−2
√

3
(
49+10



7
) √

3
2

(
231−32



14+10

√
7
(
23−6



14
))

0

√
3
2

(
231+32



14−10

√
7
(
23+6



14
))

0

2
√

3
(
49+10



7
) −

√
3
2

(
231−32



14+10

√
7
(
23−6



14
))

0 −
√

3
2

(
231+32



14−10

√
7
(
23+6



14
))

0

−2
√

3
(
49−10



7
) −

√
3
2

(
231−32



14−10

√
7
(
23−6



14
))

0

√
3
2

(
231+32



14+10

√
7
(
23+6



14
))

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ i 3125ξ7

32006016

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

16.45 11.72 0 −28.17 0

−30.09 14.01 0 16.08 0

30.09 −14.01 0 −16.08 0

−16.45 −11.72 0 28.17 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

REFERENCES

Ainsworth, M., 2014. Dispersive behaviour of high order finite element schemes for the

one-way wave equation. Journal of Computational Physics 259, 1–10.

Mulder, W., 1999. Spurious modes in finite-element discretizations of the wave equation

may not be all that bad. Applied Numerical Mathematics 30 (4), 425–445.
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We examine a method that possibly may compensate for the second-order impact of

the discretization. Consider a periodic equidistant 1-D mesh with x j = j h, j = 0,1, . . . , Nx−
1. The mass matrix has a Fourier symbol M̂ = h

[
1− 2

3 sin2(ξ/2)
]

with ξ= kh and wavenum-

ber k. Integration against the basis function has an operator symbol Φ̂= h
[

sin(ξ/2)/(ξ/2)
]2,

corresponding to the linear operator Φ having (Φ f) j =
∫
Ωφ j (x) f (x)dx.

We choose a window function with Fourier symbol

ŵ =
[

sin(ξ/2)

(ξ/2)

]6 [
1+α sin2(ξ/2)

]
. (C.1)

The motivation for this choice is the finite-difference fourth-order polynomial approxi-

mation of the delta function (Petersson et al., 2016, eq. (8)), given by

w4(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
32 (16−4|ζ|−4ζ2 +|ζ|3), |ζ| < 2,

1
96 (48−44|ζ|+12ζ2 −|ζ|3), 2 ≤ |ζ| < 4,

0, |ζ| ≥ 4,

(C.2)

which has a Fourier symbol ŵ4 = [
sin(ξ/2)/(ξ/2)

]4(1 + 1
6ξ

2) � 1 − 11
720ξ

4, revealing its

fourth-order behaviour. To undo the effect of Φ̂, we increase the power for the sinc func-

tion from 4 to 6 to obtain ŵ . Its Fourier transform back to the spatial domain becomes

simpler if ξ2 is replaced by sin2(ξ/2). The expansion ŵ � 1+ 1
4 (α−1)ξ2 + 1

240 (7−20α)ξ4,

provides a fourth-order approximation for α = 1. The inverse Fourier transform to the

spatial domain leads to

w(ζ) = 1

π

∫∞

0
Φ̂−1M̂ ŵ cos(ξζ)dξ, (C.3)

with ζ = x/h. We have included the mass matrix and the inverse of Φ. The result is the

compact function

w(ζ) = 1

288

[
114|ζ|3 −70

(|ζ−1|3 +|ζ+1|3)+8
(|ζ−2|3 +|ζ+2|3)+

6
(|ζ−3|3 +|ζ+3|3)− (|ζ−4|3 +|ζ+4|3)], (C.4)
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or

w(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
144 (92−3ζ2(40−19|ζ|)), |ζ| < 1,

1
144 (162−|ζ|(210−|ζ|(90−13|ζ|))), 1 ≤ |ζ| < 2,

1
144 (98−|ζ|(114−|ζ|(42−5|ζ|))), 2 ≤ |ζ| < 3,

1
144 (4−|ζ|)3, 3 ≤ |ζ| < 4,

0, |ζ| ≥ 4.

(C.5)

REFERENCES

Petersson, N. A., O’Reilly, O., Bj, 2016. Discretizing singular point sources in hyperbolic

wave propagation problems. Journal of Computational Physics 321, 532–555.
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Given the symmetries of the node positions, we can define various permutation ar-

rays and their corresponding matrices. Let the Np nodes of the element be xk , k =
0, . . . , Np − 1. The permutation array p2,1 swaps their x and y coordinates with xp2,1(k)

as result. Likewise, p3,1 swaps x and z and p3,2 interchanges y and z.

To these arrays correspond matrices Pm,n with elements Pm,n
k,pm,n

k

= 1 and zero other-

wise. The inverse and transpose of the permutation matrix equal the matrix itself:

(
Pm,n)−1 = (

Pm,n)T = Pm,n .

With these matrices, the stiffness matrices obey

B2,2 = P2,1B1,1P2,1, B3,3 = P3,1B1,1P3,1,

B1,3 = P3,2B1,2P3,2, B3,2 = P3,1B1,2P3,1.

Because (Bm1,m2 )T = Bm2,m1 , we have

B3,1 = P3,2B2,1P3,2, B2,3 = P3,1B2,1P3,1.

Also,

B1,2 = P2,1B2,1P2,1, B2,1 = P2,1B1,2P2,1,

B1,3 = P3,1B3,1P3,1, B3,1 = P3,1B1,3P3,1,

B3,2 = P3,2B2,3P3,2, B2,3 = P3,2B3,2P3,2.

In summary: with 2 matrices B1,1 and B1,2, computed on the reference element, and

3 permutation vectors, p2,1, p3,1, and p3,2, all 9 element stiffness matrices Bp,q can be

determined.



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 159PDF page: 159PDF page: 159PDF page: 159

CURRICULUM VITÆ

Ranjani Shamasundar

30-09-1989 Born in Mysore, India.

EDUCATION

2003–2007 Secondary school

S. Cadambi Vidya Kendra, Bangalore (2003–2005)

Kendriya Vidyalaya Malleswaram, Bangalore (2005–2007)

2007–2011 Undergraduate in Mechanical Engineering

PES Institute of Technology, Bangalore

2011–2014 Postgraduate in Mechanical Engineering

Indian Institute of Science, Bangalore

2014–2018 PhD. Geophysics

Delft University of Technology, The Netherlands

AWARDS

2018 Best Poster Award at Annual Research Symposium, Science Center, Delft

2017 SEG Student Education Program Travel Grant

141



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 160PDF page: 160PDF page: 160PDF page: 160



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

LIST OF PUBLICATIONS

• Shamasundar, R. & Mulder, W. A., 2018. Numerical noise suppression for wave propagation

with finite elements in first-order form by an extended source term, Geophysics Journal

International, 215(2), 1231–1240.

• Mulder, W. A. & Shamasundar, R., 2016. Performance of continuous mass-lumped tetrahe-

dral elements for elastic wave propagation with and without global assembly, Geophysical

Journal International, 207(1), 414 – 421.

• Shamasundar, R. & Mulder, W. A., 2016. Improving the accuracy of mass-lumped finite-

elements in the first-order formulation of the wave equation by defect correction, Journal

of Computational Physics, 322, 689–707.

• Shamasundar, R. and Mulder, W.A., 2017 An Improved Source Term for Finite-element Mod-

elling with the Stress-velocity Formulation of the Wave Equation. Extended Abstract, 79th

EAGE Conference & Exhibition, Paris, France, 2017.

• Shamasundar, R. and Mulder, W.A., 2016 Should we use the first- or second-order formula-

tion with spectral elements for seismic modelling? Extended Abstract, 78th EAGE Confer-

ence & Exhibition, Vienna, Austria, 2016.

• Shamasundar, R., Khoury, R.A. and Mulder, W.A. [2015] Dispersion analysis of finite-element

schemes for a first-order formulation of the wave equation. Extended Abstract, 77th EAGE

Conference & Exhibition, 2015.

143



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 162PDF page: 162PDF page: 162PDF page: 162



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 163PDF page: 163PDF page: 163PDF page: 163

ACKNOWLEDGEMENTS

My time as a PhD in Delft has been memorable thanks to many people. I would like to take this

opportunity to express my gratitude to them.

First and foremost, I would like to thank my supervisor Prof. Wim Mulder for his support in

every aspect towards the completion of this thesis. It would have been impossible to start, con-

tinue or finish my thesis without his encouragement and backing. Besides supporting me in his

capacity as an erudite scientist and a seasoned programmer, he has also helped me brace myself

in stressful patches. His sincerity and perseverance kept me inspired through my PhD. Thank you,

Wim

I would like to thank Jeroen Goudswaard for organising my internship at Shell, and for all the

help during my stay there. Suhas Phadke taught me how to use many of the tools and Alok Soni lent

me the initial velocity model, besides his valuable time and inputs during this internship. Thanks

to all my colleagues from the Shell, Bangalore team for enriching my journey in geophysics.

The time at TU Delft was interesting because of many more activities besides my PhD. I en-

joyed tutoring bachelors students of Applied Earth Sciences, and I thank Dominique Ngard-Tillard

and Timo Heimovaara for giving me an opportunity and necessary training to teach groups of

young students. I picked up a lot of essential transferable skills, and also got an opportunity to

improve my Dutch doing this.

Activities for Delft Organisation for Geophysics Students were fun because of my fellow board

members during two years - Matteo, Sixue, Reuben, Max, Boris - I enjoyed working together with

you to organise student activities at conferences, DOGS drinks, dinners, and lectures. Gil, Diego,

Joeri - I enjoyed organising the numerical methods in geophysics symposium with you.

Some of the most cherished memories at the TU come from the social activities with my col-

leagues. My first geo-girls dinner started with Asiya, Iris, Helena and Sixue. This blossomed into a

close friendship, and the dinners continue to this day. Gradually, with more women, activities got

diverse. Lisanne, Karlien, Myrna - thank you for teaching me to knit, I hope to finish a scarf one

day. Lunches and coffee breaks were filled with interesting conversation, and conferences were

fun thanks to my colleagues Aayush, Alex, Aparajita, Apostolos, Carlos, Chris, Florencia, Giovanni,

Jan-Willem, Lele, Martha, Neils, Nicolas, Pawan, Remi, Runhai, Siddharth, Shan, and Youwei in

addition to those mentioned above.

145



531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar531910-L-bw-Shamasundar
Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019Processed on: 6-6-2019 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

146 ACKNOWLEDGEMENTS

A set of friends that made Delft home away from home is my Indian community - Amy, Anand,

Anjana, Arun J, Arun M, Arvind, Bharadwaj, Chandrakanta, Dharamjeet, Freddy, Gautham, Ka-

makshi, Karthik, Jaikishen, JK, Lakshmi Ashok, Lakshmi Nagarajan, Manu, Nirupa, Pramoda, Prashanth,

Rajesh, Seshanji, Sneha, Sriram Raghav, Sriram Shankar, Shyam and Vasu. I have very special

memories with each one of you, which can fill a book - so I will reserve them for regaling later.

My parents, M.R.Geethamalini and Dr. S.Shamasundar are my constants. I will forever be

grateful to them for guiding me till here and always trying their best to ensure that I have the right

environment. Growing up with their pursuit of spirituality taught me to find emotional strength,

courage and open mindedness. Baju, my closest ally, thanks for your love and support. My in-

laws, Latha, Venu and Saru, thanks for your loving care in the past four years. I have reserved a

very important one for the end. My lovely husband Syam, it would have been a herculean task to

finish this alone. You helped me in the most practical ways, true to your pragmatic nature; it goes

without saying that there are many more things to thank you for, which I will do spending the rest

of my life with you.





531910-L-os-Shamasundar531910-L-os-Shamasundar531910-L-os-Shamasundar531910-L-os-Shamasundar Processed on: 12-6-2019Processed on: 12-6-2019Processed on: 12-6-2019Processed on: 12-6-2019

FIN
IT

E ELEM
EN

T
 M

ET
H

O
D

S FO
R

 SEISM
IC

 M
O

D
ELLIN

G
        R

anjani Sham
asundar

Finite Element Methods
in seismic modelling 

Invitation

You are cordially invited 
to the defense of my 

PhD thesis

on Monday, July 1st

at 12:30 
in the Senaatszaal of 

Aula  Auditorium TU 
Del� Mekelweg 5, Del�.

Prior to the defense at 
12:00, I will give a short 
presentation about my 

thesis.

FINITE ELEMENT 
METHODS

FOR 
SEISMIC MODELLING

COST REDUCTION THROUGH 
MASS MATRIX PRECONDITIONING 

BY DEFECT CORRECTION

Ranjani ShamasundarRANJANI SHAMASUNDAR

FIN
IT

E ELEM
EN

T
 M

ET
H

O
D

S FO
R

 SEISM
IC

 M
O

D
ELLIN

G
        R

anjani Sham
asundar

Finite Element Methods
in seismic modelling 

Invitation

You are cordially invited 
to the defense of my 

PhD thesis

on Monday, July 1st

at 12:30 
in the Senaatszaal of 

Aula  Auditorium TU 
Del� Mekelweg 5, Del�.

Prior to the defense at 
12:00, I will give a short 
presentation about my 

thesis.

FINITE ELEMENT 
METHODS

FOR 
SEISMIC MODELLING

COST REDUCTION THROUGH 
MASS MATRIX PRECONDITIONING 

BY DEFECT CORRECTION

Ranjani ShamasundarRANJANI SHAMASUNDAR

FIN
IT

E ELEM
EN

T
 M

ET
H

O
D

S FO
R

 SEISM
IC

 M
O

D
ELLIN

G
        R

anjani Sham
asundar

Finite Element Methods
in seismic modelling 

Invitation

You are cordially invited 
to the defense of my 

PhD thesis

on Monday, July 1st

at 12:30 
in the Senaatszaal of 

Aula  Auditorium TU 
Del� Mekelweg 5, Del�.

Prior to the defense at 
12:00, I will give a short 
presentation about my 

thesis.

FINITE ELEMENT 
METHODS

FOR 
SEISMIC MODELLING

COST REDUCTION THROUGH 
MASS MATRIX PRECONDITIONING 

BY DEFECT CORRECTION

Ranjani ShamasundarRANJANI SHAMASUNDAR

FIN
IT

E ELEM
EN

T
 M

ET
H

O
D

S FO
R

 SEISM
IC

 M
O

D
ELLIN

G
        R

anjani Sham
asundar

Finite Element Methods
in seismic modelling 

Invitation

You are cordially invited 
to the defense of my 

PhD thesis

on Monday, July 1st

at 12:30 
in the Senaatszaal of 

Aula  Auditorium TU 
Del� Mekelweg 5, Del�.

Prior to the defense at 
12:00, I will give a short 
presentation about my 

thesis.

FINITE ELEMENT 
METHODS

FOR 
SEISMIC MODELLING

COST REDUCTION THROUGH 
MASS MATRIX PRECONDITIONING 

BY DEFECT CORRECTION

Ranjani ShamasundarRANJANI SHAMASUNDAR


