Learning Generalizable Robot Manipulation Skills
with Object Hierarchy

Rafagl Beckers
Supervisors: Zlatan Ajanovié, Jens Kober
TU Delft, department of Cognitive Robotics

Abstract—Previous work has shown that state abstraction can
be an efficient way to plan in robotic environments with con-
tinuous actions and long task horizons. Although some of these
works learn predicates for state abstractions, they often neglect
an important part needed for generalization. Namely objects and
their properties, our work shows that object properties can be
exploited to increase the generalizability of learned models. We
do this by extending a framework based on predicates for state
abstraction and introducing affordances. Affordances allow us
to group objects in a way that also considers possible actions.
In order to learn affordance interpretations we make use of
querying. First, the agent is tasked with solving a task made
to test a specific affordance, then based on its uncertainty about
an object’s affordance interpretation it may query an expert.
For example, when presented with a task where it needs to pick
up an object it may query the expert on whether the object is
actually grippable. We compare our approach with a baseline
without affordances and show that our approach needs fewer
operators to plan and that our approach is able to generalize to
novel objects.

I. INTRODUCTION

The work described in this paper is a continuation of the
work performed in [1]], which itself is an extension of the
Bilevel planning series of papers [2], [3l], [4]. This series
of papers focuses on learning all aspects of STRIPS-style
symbolic planning. Where it is currently possible to learn
entire STRIPS style operators, predicate groundings, as well
as samplers used by a controller. The assumption is still made
that crude controllers are supplied as well as a deterministic
simulator. We however found that object similarities are under-
exploited and that a higher degree of generalization can
be achieved by exploiting similarities between objects. We
propose to extend the approach found in [1]] with affordances.
In our approach, affordances are used to group objects to be
able to plan with these groups instead of object instances. We
also combine STRIPS style operators based on affordances
and symbolic effects in order to plan more efficiently. We
show that our approach indeed needs fewer operators to be
able to solve a task and that our approach allows for easy
integration with novel objects. In this report, we will first
give a brief introduction to Task and motion planning (TAMP)
and the concept of affordances. Afterward, we will describe
our problem formally in Section [[, and the method will be
explained in Section Experimental details are provided in
Section and finally the results are displayed and discussed
in Section [V

A. Robot Task and Motion Planning Problem

In order for robots to be deployable in unstructured environ-
ments such as homes, restaurants, and hospitals they need to
know what actions to take in order to achieve their goal. These
goals are often highly abstract in nature. For example, tasking
a robot to retrieve an item from a drawer. Such tasks are not
easy to solve using motion planning alone, as the robot will
require different behaviors for moving to the drawer, opening
it, and picking the object from the drawer. This problem led
to the invention of Task And Motion Planning (TAMP). In
TAMP task planning and motion planning are integrated with
each other. Task planning is done in a discretized space often
through the use of symbols that map to a collection of states.
These symbols can then be used in STRIPS-style planning
to go from an initial abstract space to an abstract goal state.
Such a sequence of abstract states can be thought of as a task
plan or plan skeleton, this plan then needs to be refined into
low-level continuous states in order to create a full plan. This
refinement however is now made much easier as the planner
needs to only consider the states within the symbols. In short,
the abstract/symbolic plan serves as a guide for the continuous
plan. A visual example of such an approach is displayed in

Fig. [T}

1 1
== 13
e |
== U@
NSRT 1 (place on target) w Q
7".!‘"— < l&‘
Fig. 1: Overview of the TAMP approach used in [2], note

NSRTs are STRIPS operators with neural components such
as samplers.

g Final State

Plan found!
No further planning required.

- onl
~Holdi ng1'1

We also make use of TAMP style planning where the
abstract space is induced through a set of predicates, previous
work has shown that these predicates can be learned [5], how-
ever, we keep to a given set of predicates for our experiment.
Since state abstractions using predicates are often lossy we
decided to introduce the concept of affordances to TAMP. In
robotics, affordances are defined as a tuple containing: (object,
action, effect). To give an example say a robot can pick up a
cup, and can also pick up a bottle then these two objects are

said to share the pickable affordance. This is because picking
up these objects both resulted in them being picked up. By
utilizing affordances together with TAMP it becomes easier to
plan with object properties in mind, as during planning in the
abstract space it is often beneficial to also consider an object’s
affordances. For example, say we want a robot to clean a table
and it has access to two objects a bottle and a dishcloth it needs
to figure out which of the two objects to use. Now provide
the robot with the object’s affordances and it becomes much
more clear which object it should use.

II. PROBLEM STATEMENT

In this section, we will formalize our problem and give some
details about our problem setting in general in Section [[I-A]
and afterward give more details on predicates and affordances
in Section

A. General problem

We consider a fully observable environment with
deterministic transitions in which a robot must solve a
manipulation task. A state x € X is defined by a set of
objects O and a feature vector for each object. The size of
these feature vectors is defined by the object’s type A € A.
An object’s type can be thought of as an object class, a type
can additionally contain multiple parent types. Thus a type A
is a tuple containing name, feature vector, and parent types.
In order to solve the task the agent must take an action v € U
which is a controller with discrete and continuous parameters.
We also have access to a discrete physics-based simulator
[+ X xU — X that predicts the next state given a state and
action. The simulator is also available to the agent and can
be used for planning.

B. Predicates and affordances

A predicate 1) is characterized by a name e.g. Holding and
a tuple of types. A predicate also contains a classifier ¢y, : X' X
O — {true, false}. Predicates can be lifted or grounded, in
the case of a lifted predicate the predicate is defined for typed
variables and in the case of a ground atom the predicate is de-
fined for specific objects. For example Holding (block1l)
is a ground atom and Holding (?block) is a lifted atom.
An affordance 0 is very similar to a predicate in that they
can both be grounded or lifted and they also contain a binary
classifier: ¢y : X x O — {true, false}. In addition to this,
an affordance also contains a set of controllers which is
defined as a low-level controller that can take in continuous
parameters. Predicates can be defined for an arbitrary number
of objects larger than one, affordances are always defined for
one object. The reason for this is that affordances describe
what actions can be applied to a specific object.

III. METHOD

Our method focuses on the reuse of learned concepts such as
STRIPS operators. In this section, the method that was used
to achieve higher reusability of concepts will be explained.

First, the different phases of our approach will be discussed in
Section afterward the bilevel planning/TAMP approach
will be discussed in more detail in Section Lastly, we
will discuss how and why we learn affordances, as well as how
learn to group objects and STRIPS operators in Section [[II-C

and Section respectively.

A. Approach outline

As can be seen in Fig. 2] the agent is first initialized in
an environment where it is provided with demonstrations
which consist of a fask and a plan. A task contains an initial
state 9 € X and a goal g. The goal is a set of ground
atoms that are satisfied in state x if cj(z) = true for all
ground atoms ¢ € g, where cj, is the oracle’s classifier
for 1. The agent also has access to a set of grounded
examples for the predicates i) and affordances 6 it needs
to learn, where the responses [, and [y contain the truth
values of the grounded predicates and affordances respectively.

The Exploration phase follows the initialization phase in
which the agent is initialized in an environment where it can
take action. According to an exploration policy 7. the agent
will select an action and alter the state. The agent can also
query an oracle that has ground truth information of predicate
and affordance classifiers for seen and unseen objects. In our
experiments, the oracle serves as a stand-in for a human expert.
The queries Q made to the oracle can be in the form of ground
atom queries or ground affordance queries. Where the response
is a set of the form: (¢,1,) or (6,lp) in the case of a ground
affordance query. The Dataset D will be updated with each
response and attached state, thus D < D U (z, 9,1y, 0, lp).
The updated dataset will then be used for learning affordance
and predicate classifiers, as well as operators, samplers, and
object classes. In order to judge the agent’s performance it
is periodically tested on held-out tasks which include unseen
states or entirely novel objects.

B. Learning abstractions for bilevel planning

Bilevel planning is a variation of TAMP where planning
is performed in an abstract space and in a continuous state.
Where the main idea is to plan in an abstract space first to
guide the search in the continuous space. In [1] the authors
state two key takeaways these being: predicates induce abstract
states, and abstract actions provide transitions between abstract
states. Thus we can create an abstract state by applying a set
of predicates ¥ to a state x. A formal definition of this is
provided in adapted from [1]].

s(z,) := {1 : cy(x) = true} (D)

The s in is the abstract state and can be described as
a set of ground atoms that are either true or false. It should
be mentioned that the abstract state tends to lose information,
this is due to the lossy nature of the predicates themselves
[S]. An abstract action is characterized by an operator and
a sampler. Operators contain arguments, preconditions, add
effects, delete effects and a controller. Preconditions are sets

v

Initialization

Exploration

Cracle

Response

Initial demonstrations:
{{task, plan)}

Grounded examples:
{(z, 1, 10, lg)}

Evaluation

responses

Transitions &
Learning

‘ Agenl's Affordances, Predicates,
dataset Operators, Samplers,

Held out tasks
T Object classes

Fig. 2: Approach overview, first the agent is initialized with a small number of expert demonstrations from which it can learn
affordances, predicates, operators, samplers, and object classes. It then uses these learned models to explore its environment
and query an oracle through which it acquires additional data, improving the models. Expansion on the approach taken in [[]]

of lifted atoms over the arguments that must be true for the
operator to be applicable. Add effects are lifted atoms that
will become true after applying the operator. The inverse is
true for the delete effects. The controller serves to connect
the abstract action to the action space in the environment,
such as joint angles or position, the discrete parameters of
the controller are provided by the operator itself. Samplers
provide a way to fill in the continuous parameters of the
controllers such as grasping pose. With these two key concepts
an abstract state space s can be created and planned using
abstract actions which are created by grounding the operators
by substituting their arguments for objects of the correct type.
The objects are then passed to the sampler as well as the
continuous state x. The ground operators can then be used to
generate low-level actions through the values returned by the
sampler. An abstract plan can thus be created by applying the
ground operators to the abstract state: F'(s,a) — s’ yielding
a new abstract state s’. This abstract plan, or plan skeleton in
the TAMP terminology, can then be refined into continuous
actions through the use of the controllers and samplers. As
previously mentioned there tends to be a loss of information
when going from continuous state x to an abstract state s. This
can be alleviated by creating or learning additional predicates,
however, predicates should provide information beneficial to
solving the task. Otherwise, additional learning needs to take
place for little to no benefit. The learning of predicates and
what makes good predicates is discussed in more detail in
[5]. We instead focus on another area of abstractions, that of
object properties, since simple type information is not enough
information to create a generalizable plan. For instance, a
block the size of 5 cm affords totally different actions than
a block of 1 m. In the previous work by Silver et al. these
object properties have largely been neglected. Therefore we
introduced the concept of affordances in order to capture the
object properties and be able to plan with object properties in
mind. Additionally, we attempt to classify objects based on
affordances and data in order to be able to plan with groups
of objects in mind instead of object instances.

1) Object and Skill Hierarchy: In order to plan more
efficiently use can be made of an object hierarchy or an
ontology-like database that includes object relationships. Pre-
vious research such as [6] and [7] have shown that using
object affordances can help generalization, especially in the
case of objects not seen during training. Our approach utilizes
affordances to create new object classes based on shared object

affordances. As previously mentioned object types can have
one or multiple parent types, thus we can create a new type
and add to another type’s parents. This allows us to plan with
the new parent type, additionally, when a novel object shares
an affordance with known objects we can add the novel object
to the class. An example of this can be found in Fig.

‘ Cylinder ‘ ‘ IsGrippable ‘ IsGrippable ‘

Cylinder has IsGrippable

affordance | ; ‘li .

‘ ok ‘ ‘

Block ‘ ‘ Cylinder ‘

Fig. 3: Figure showing how object classes are detected using
affordances.

In the previous papers by Silver et al. STRIPS operators
are learned for each object type individually and not for a
group of objects at a time. So when presented with a picking
demonstration for two similar but different objects, such as
a block and a cylinder the agent will learn two separate
picking operators. This process is redundant in the case that
the operators only differ in object types. In other words, when
faced with a set of n objects with m different types, m
different operators will be learned. What we propose is to first
group similar objects as described in the previous paragraph
and to learn an operator for the shared parent class, so instead
of learning an operator for the block type we learn it for the
IsGrippable type. An example of these operators can be
found in Fig.]

Pick operator-block: Pick operator-IsGrippable:
[?b - block, [?g - IsGrippable,
?r - robot] ?r - robot]
{GripperOpen(?r), {GripperOpen(?r),
HandEmpty(?b)} HandEmpty(?g)}
{Holding(?b)} {Holding(?g)}
{GripperOpen(?r), {GripperOpen(?r),
HandEmpty(?r)} HandEmpty(?r)}

Controller: Pick(?b, ?r, 6) Controller: Pick(?g, ?r, 6)

Fig. 4: Examples of simplified STRIPS operators for the block
type (left) and for the IsGrippable type (right).

As can be seen in Fig.] we have replaced the block
type with the IsGrippable type, which can also be found
in Fig. This means that we can now plan with the
IsGrippable variant of the operator for both the block
and cylinder types. This decreased the number of operators
we need to learn for effective planning. Additionally by taking
an affordance approach to grouping objects a skill hierarchy
is created implicitly. This is due to the nature of affordances
as they relate to objects, actions, and effects.

C. Learning affordances

As previously mentioned affordances are very similar to
predicates, therefore learning affordances can also be done
in largely the same manner. When referring to affordance
learning we mean the affordance classifier ¢y, we assume for
now that affordance symbols and a ground truth classifier are
given for now. While this is a limiting assumption previous
work by [S] has shown that predicates can be learned from
the ground up, meaning a similar approach can likely be
taken for affordances in the future. Affordances can be viewed
as extensions of an object’s properties indicating whether it
affords a certain action, in this way affordances act in a similar
way as the precondition predicates in an operator. These extra
preconditions are required since not every object in the object
type necessarily has the same affordances. For example, a mug
with a diameter of 6 cm in diameter would be graspable by a
robot with a gripper 8 cm in width, but a mug with a diameter
of 12 cm would not be graspable. Therefore despite the two
objects being of a similar type this being a mug, they do
not have the same affordances. In order to plan effectively
in a varied environment these intricacies need to be taken into
account as well. An important part of anything learning-related
is data collection, as the data in large part shapes how learning
can take place. Recall that we intend to learn the affordance’s
classifier cy, for this, we will need grounded examples of an
affordance and its truth value, together with the state that
produced it. This is the same way predicates are learned in
previous works [1]]. In the initialization, the agent only gets to
see a limited set of objects for which it will get the affordances
and the truth values for those affordances. The exploration
phase in our implementation is different from that found in
[1]]. Instead of simply running the current models on training
tasks as is done in [[1] we opt to generate new tasks that are
specifically constructed such that an affordance can be tested.
For example when we are trying to test an affordance related
to grasping we generate a grasping task. This difference is
because affordances are closely related to actions, so in order
to discover an object’s affordances it will need to attempt it
first. This type of exploration is typically referred to as play
and actually mirrors the way babies and children learn. In
our experiments, we emulate play by generating a task made
to test a specific affordance. In order to collect additional
information about object affordances queries are made to the
oracle on whether a certain affordance holds. The agent will
first query until it has both positive and negative examples
for its affordances. Afterward, it will query based on entropy.
This is done so the agent will only query about objects it is
uncertain about.

D. Grouping objects and operators

In our experiments a group of operators is first extracted
that can explain the underlying abstract state transitions, this
process is described in detail in [3]; note in this paper operators
are referred to as NSRTs. We have extended this method
by also making it include affordances. The set of operators
that is extracted using the aforementioned method contains
duplicate operators for each object type seen in the data.
In our new algorithm we go through the set of operators
and when we detect they have different object types but the
same effects, preconditions, and affordances we create a new
object type including the object types from the reference
operators, and then create a new operator with the same
preconditions, effects, and affordances as the references but
with the new object type. An overview of this algorithm is
given in Algorithm [I} For clarity, a visual example is also
provided in Fig. [}

Algorithm 1: Combine: algorithm for combining
operators and generating a new set of operators for
new shared super types based on shared affordances,
takes a set of operators Op and the current types 7 as
input.
input : Op, T
1 begin
2 Op/e—g
3 T o
4 foreach 01 € Op, 02 € Op do
// Check similarity between operators
if ISSimilar(Ol,Dz) and o0; # o3 then
T CreateType(01,02)
Op/ “— Opl U CreateOp(ol,OQ,T/)
T« TUT
| return Op/, T

// initialization

® N o w»n

e

As can be seen in Fig. [5] a new type IsGrippable is
created based on the shared affordance. This new object type
can also be planned with and additional object types can be
added when the object is found to have the same affordance.
This has the potential to speed up learning as we need only
find out an object’s affordance in order to be able what learned
operators are applicable to it.

IV. EXPERIMENTS AND IMPLEMENTATION

In this section, we will discuss our experiments and give
more details on our implementation of the approach discussed
in the method. In Section we will first go over the
simulator used, next we will discuss the used affordances
and how they affect operators in Section After this,
we will discuss the objects used during the experiments in
Section Finally, we discuss the experimental details
for the exploration phase and the experiment as a whole in
Section and Section respectively.

A. Simulation environment

For our experiments, we used a 7 DOF panda robotic arm
simulated in pybullet[8]], a physics-based simulator accessible

Pick operator-block:

Pick operator-cylinder:

IArguments [?b - block, IArguments: [?c - cylinder,
?r - robot] ?r - robot]
{IsGrippable(?b)} {IsGrippable(?c)}
{GripperOpen(?r), {GripperOpen(?r),

HandEmpty(?b)}

HandEmpty(?c)}

Add effects: {Holding(?b)}

Add effects: {Holding(?c)}

Delete effects: {GripperOpen(?r),

HandEmpty(?r)}

Delete effects: {GripperOpen(?r),
HandEmpty(?r)}

Controller: Pick(?b, r, 6)

Controller: Pick(?c, ?r,)

Types
: Block ‘ Robot
Algorithm1:
Combine B =
v Cylinder ‘ Table
Create new
IsGrippabIe‘ G
‘ Block ‘ Cylinder “—{lsenppame‘
New
Operator

Pick operator-IsGrippable:

‘ Table ‘ Robot |

Arguments. [?g - IsGrippable,

?r - robot]

{IsGrippable(?g)}

{GripperOpen(?r),
HandEmpty(?9)}

Add effects: {Holding(?g)}

Delete effects: {GripperOpen(?r),
HandEmpty(?r)}

Controller: Pick(?g, ?r, 6)

Fig. 5: Visual example of Algorithm

from Python. This approach is different than the previous
papers by Silver et al. where the authors used a fully deter-
ministic hand-crafted simulator for each domain. Removing
the need for such a simulator makes our approach easier to
integrate with new domains, however, we also found that the
simulator can be somewhat unreliable from time to time. An
example scene from one of the test tasks is displayed in Fig. [6]

B. Extended operators and affordances

In order to be able to use affordances from a planning stand-
point they need to be included in the operators. This was done
by treating them as extra preconditions on the manipulated
objects. An example of the extended operators used can be
seen in Fig.[7] In our experiments, we used three affordances:
IsGrippable, IsStackable, and IsPlacealbe repre-
senting whether an object is grippable, can be stacked, or can
be placed respectively. Each of the affordances also contains a
ground truth classifier given to the oracle, in order for the agent
to be able to get accurate queries on the actual affordance. An
object is said to be grippable or placeable when it is under a
certain size, and an object is said to be stackable when the top
of the object is flat.

C. Object Hierarchy

As mentioned in the method we will focus more on object
properties and grouping objects to be able to generate more

Fig. 6: Example scene from the test tasks.

Pick operator-block:

Arguments: [?b - block,

?r - robot]

{IsGrippable(?b)}

{GripperOpen(?r),
HandEmpty(?b)}

Addeffects: {Holding(?b)}

Delete effects: {GripperOpen(?r),
HandEmpty(?r)}

Controller: Pick(?b, 2, &)

Fig. 7: Example of our extended operators including affor-
dances.

general plans. In order to do this we work with three different
manipulable object types, these being: block, cylinder,
and bottle.

As seen in Fig. [§] block type objects have a square cross-
section, cylinder type objects have a circular cross-section.
The bottle type objects are similar to the cylinder type
but also have a smaller cylinder on top to represent the bottle
cap. All the objects have the same dimension feature vector,
the features of which are displayed in Table[I]

As can be seen in Table [the objects have features important
for manipulation, such as position, orientation, and size. But
they also contain more abstract features such as Shape and
concavity. These features are there to help the samplers and
affordance classifiers to differentiate between the different
object types, as these do not get access to the type information
directly.

Fig. 8: Image showing the panda robot arm and the three object
types block(left), bottle(middle), and cylinder(right) on a table.

Feature name Description
Position X,y, and z position in Cartesian
coordinates.
Orientation Quaternion
Size Bounding box size in the three
principal directions.
Color RGB color data.
Shape Information about the number of
sides on an object, 4 for a block,
-1 for cylindrical shaped objects.
Bottle-like Binary flag indicating whether an
object is bottle-like.
Constant Binary flag indicating if the
object’s cross-section is constant.
Concavity Feature indicating the shape of
the top of the object, -1 for
convex, 0 for flat, and 1 for
concave.

TABLE I: Breakdown of manipulable object features and their
meanings.

D. Exploration

The exploration phase of learning is used to learn the affor-
dance classifiers ¢y (). The classifiers are learned as an ensem-
ble of binary classifiers each with different initial weights in
order to be able to use entropy as a metric for when to query.
For our experiment, we used 10 members for the ensemble
and 50000 training iterations for each member. To learn an
object’s affordance a specific task related to that affordance is
generated, for example, to test the IsGrippable affordance
a picking task is generated where the robot must attempt to
pick up the object. These tasks are short horizon involving
only the bare minimum of objects. This approach is taken as
to not provide full-length demonstrations in order to show that
generalizability can be improved by only considering part of
a task and refining it. The task is then solved by a bilevel
planner, which is the same algorithm used to solve full tasks.
This approach is different than the one found in [[1I], where the
authors instead try to find states the agent is uncertain about.
Since we are only concerned about the affordance of the object
this is not important to us. Currently, the task generation is
hard-coded, however, this could be done automatically in the
future by using the add and delete effects of operators the
affordance appears in and constructing an initial and goal state
based on these predicates.

E. Experimental details

Our Experimental domain consists of an object rearranging
task in a restricted 3D environment, the robot can only place
the object in a line on the table but it is free to move in the
entire space. The objects in the scene consist of the robot
itself, a table, and the three objects described previously.
Where the actions present in the demonstrations are: picking
an object from the table, placing an object on the table,
unstacking an object, and stacking an object. An initial set
of 50 demonstrations is given from which the agent can
learn an initial set of operators and affordance classifiers.
The set of objects in the demonstrations is limited to the
block and cylinder types of limited dimensions such
that they can always fit in the robot’s gripper. During the
exploration phase, the full object set is used without the
restriction on object size. For each of the three different
affordances, we generate ten exploration tasks designed to test
that specific affordance. After the exploration phase, the agent
is tested on 30 held-out tasks and the cycle of exploration
and evaluation repeats, we limit the number of cycles to 10.
The test tasks are similar to the test tasks, but they can also
involve objects with different dimensions than those seen in
the initial demonstrations, additionally, there is a 50 percent
chance of also including bottle type objects. The agent
has access to the following set of predicates and their respec-
tive ground truth classifiers: {Clear (x1), Holding (x1),
On(x1,x2),0nStatic (x1), GripperOpen (x1) }. The
hyperparameters for the learned models are unchanged from
those found in [1], except for the number of maximum
iterations for the affordance classifiers which is limited to
50000.

V. RESULTS & DISCUSSION

In this section, we will highlight the results of the ex-
periments we performed and discuss them. The results will
be compared to a baseline. First, the baseline approach will
be highlighted in Section [V-A] afterward the difference in
the learned operators will be displayed and discussed in
Section [V-B| and finally the generalizability of our approach
will be highlighted in Section [V-C}

A. Baseline comparison

In order to show the benefits of our approach we compare
it with a baseline. The baseline chosen was an approach that
does not use affordances, and can therefore not make use of
our operator combining algorithm (T). Because the approach
does not use affordances there is also no point in having an
exploration phase. Thus the baseline approach is an approach
without affordances, and without an exploration phase. All
other aspects of the approach remain the same, such as the
predicates, the objects, and the training and test tasks. A quick
overview of the two approaches and their features can be found
below:

e Main Our full approach with affordances, extended op-
erators, dynamic object types, and the learning loop
displayed in Fig. 2}

« Baseline A stripped-down approach without affordances,
dynamic object types, and also without an exploration
phase.

B. Learned operators

In order to highlight the difference between our approach
and the baseline we will show the number of learned oper-
ators required for solving the training tasks. The number of
operators required to solve the tasks can be found in Table

Main Baseline
4 12

TABLE II: Number of operators required for solving the
training tasks per approach.

As can be seen in Table [lI| the number of operators required
for our approach is half that of the baseline. This is due to the
fact that our approach combines operators that have the same
symbolic effect. It should be mentioned that in our approach
operators are only combined when a shared affordance is also
part of the operator. This is not strictly necessary but this
approach made creating new types easier. Not only does our
approach use fewer operators but the operators are also more
general, using high-level classes that contain multiple object
types instead of object types. Our approach also does not
contain duplicate operators that achieve the same symbolic
result but for different object combinations. An example of
this can be found in Fig. 9]

As can be seen in Fig. [] the baseline approach requires
an operator for stacking a block unto a cylinder and another
operator for stacking a cylinder unto a block, whereas our
approach only needs one for any combination of stackable
objects. The reduction in the number of operators has two
key benefits, namely less sampler learning needed, and more
general applicability of existing operators.

C. Generalization to novel objects

Since our operators are learned for groups of objects we
can transfer learned behaviors to novel objects. Recall that
the bottle type was not present in the training data, and
therefore the agent has not learned an operator for it. How-
ever, the agent has encountered the bottle type during the
exploration phase, when it does the agent is likely to query as
it has not seen this object before leading to a high uncertainty.
After the agent is done with the exploration phase it will
review its query responses and check the object types present
for each affordance. If it detects a previously unseen object
type in the affordance’s related object type it will add the
missing type to that object type. For example, when the agent
finds that an object of the bottle type has the affordance
IsGrippable it will add the bottle type to the group
of grippable types. This means that all operators that can be
applied to objects of the IsGrippable type now also apply
to the previously unseen bottle type. The results of our
experiments are displayed in Fig.

As can be seen in Fig. the baseline is able to solve 14
out of the 30 tasks. This is due to the fact that the baseline

Baseline:
Stack operator-block-cylinder: Stack operator-cylinder-block:
[?b - block, [?¢c - cylinder,
?¢ - cylinder, ?b - block,
?r - robot] ?r - robot]
{} {
{Holding(?b), {Holding(?c),
Clear(?c)} Clear(?b)}
{On(?b, ?c), {On(?c, ?b),
Clear(?b), Clear(?c),
GripperOpen(?r)} GripperOpen(?r)}
{Holding(?b), {Holding(?c),
Clear(?c)} Clear(?b)}
Controller: Stack(?b, ?c, 7, 6) Controller: Stack(?c, ?b, 7r, 6)

Ours:

Stack operator-stackable:

[?s1 - stackable,

?s2 - stackable,

?r - robot]
{IsStackable(?s1),
IsStackable(?s1)}

{Holding(?s1),
Clear(?s2)}
{On(?s1, ?s2),
Clear(?s2),
GripperOpen(?r)}
{Holding(?s1),
Clear(?s2)}

Controller: Stack(?s1, ?s2, 7r, 6)

Fig. 9: Image showing an example of the duplicate operators
found in the baseline approach versus our approach.

Test task performance Total queries made

28 4 6200 |
264 6100
24
3 % 6000 |
g
S5 22 —— Main E
0) W
] Baseline L 5900
Wi o
8 20 2
15 4 5800 -
16 5700
147 5600 |
2 4 6 8 10 2 4 6 8 10

Online learning cycle Online learning cycle

Fig. 10: Results of our experiments, showing our approach can
solve tasks including unseen objects during training (left), and
number of queries made over time (right).

approach can not solve tasks with novel objects, meaning
it is only able to solve about half of the test tasks. Our
approach initially fails to solve tasks including bottles as it
is still gathering affordance data on the objects. At online
learning cycle 2 however our approach has learned the bottle’s
affordances sufficiently and is able to plan with them as well.
The deviation in performance seen in Fig. [I0|can be attributed

to either faults in the simulator or bad samplers. The controller
for the robot can also sometimes get stuck and this can cause
issues when refining the plan. These factors lead to some
variability in the number of tasks that can be refined into a
full plan and successfully executed. Our approach however
is able to find an abstract plan for every task from online
learning cycle going forward. Meaning with a more reliable
simulator and controller it should be able to solve every
test task. In Fig. [T0] we can also see that initially the agent
makes many queries, this is because it is only initialized with
one positive example for each affordance and is trying to
get negative examples as well. When finally presented with
negative examples the agent starts querying based on entropy
and we see that the number of queries made decreases by a
factor 10. The number of queries also tends to decrease as
the number of cycles continuous, indicating that the agent’s
uncertainty about the affordances is decreasing as it is exposed
to a wider set of object variations. It also becomes clear from
Fig. [[1] that the agent starts querying objects with features it
hasn’t seen before more often.

Queries for cycle 1

1788.0
1750 4

1500 4

1250 1

1000 +

750 A

500 -

250 A

49.0

0l 0.0 0.0 289 0020 10 00 1.0 1.0 1.0
0.06 0.08 0.10 0.12 0.14 0.16 0.18
Object width

Queries for cycle 10

2000 A

1929.0

1750 4

1500 4

1250 1

1000 4

750 A

500 -

250 A

.0 63.0 80.0
o 0.0 G20 S50 30 2.0 40 10 10 2.0
T T T
0.06 0.08 0.10 0.12 0.14 0.16 0.18
Object width

Fig. 11: Graph displaying the number of IsGrippable
affordance queries made for objects of a certain width.
Where the blue line indicates past which object width
IsGrippable no longer holds. Green indicates positive
responses and red indicates negative responses.

We can see in Fig. [T]] that as the agent acquires experience
it starts to query objects with larger widths more often. This
indicates that it is more uncertain about these objects and is
trying to refine its classifier. It should be mentioned that the
large number of queries for the first bin is due to the fact that
many queries are made until the agent has at least one negative
example of each affordance.

VI. CONCLUSION AND FUTURE WORK

In this paper we showed that our approach can handle
novel objects, without having to relearn its operators. This
was made possible by leveraging an affordance class-based
approach to the objects used for experimentation. With this
approach, it is possible to plan with affordance classes instead
of object instances. Additionally, we can detect which objects
are suitable for a given action without the need for additional
predicates. This means that with our approach an agent can
reuse its learned operators/skills more easily and does not
require much new data for transferring its learned skills.

A. Future Work

In our experiments we assumed a set of affordances is given,
however, this means that an expert still needs to reason about
an object’s affordance from the agent’s point of view. While
not as hard as designing good predicates it still requires care
and may not always be intuitive. In the future similarities
between objects and possible affordances should be discovered
from data. This could be done by evaluating the similarity
of learned operators for each object type, similar to our
Algorithm [T} Additionally, during exploration, the agent is
simply provided with an object’s affordance labels if it queries
the oracle. In the future, the agent should not have to query
but should be able to discover affordances based on changes
in the symbolic states.

VIL

I would first of all like to thank my supervisor Zlatan
Ajanovi¢ and Professor Jens Kober for their patience and
invaluable feedback. Writing this thesis would not have been
possible without your guidance. I would also like to thank my
family and friends for believing in me throughout this journey.

ACKNOWLEDGMENTS

REFERENCES
[1

—

A. Li and T. Silver, “Embodied active learning of relational state abstrac-
tions for bilevel planning,” arXiv preprint arXiv:2303.04912, 2023.

T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning symbolic operators for task and motion planning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 3182-3189.

R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kael-
bling, “Learning neuro-symbolic relational transition models for bilevel
planning,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2022, pp. 4166-4173.

T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P.
Kaelbling, “Learning neuro-symbolic skills for bilevel planning,” arXiv
preprint arXiv:2206.10680, 2022.

T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kael-
bling, and J. B. Tenenbaum, “Predicate invention for bilevel planning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
no. 10, 2023, pp. 12120-12129.

[2

—

3

—

[4

=

[5

—_

(6]

(71

(8]

J. Borja-Diaz, O. Mees, G. Kalweit, L. Hermann, J. Boedecker, and
W. Burgard, “Affordance learning from play for sample-efficient policy
learning,” in 2022 International Conference on Robotics and Automation
(ICRA). 1EEE, 2022, pp. 6372-6378.

P. Mandikal and K. Grauman, “Learning dexterous grasping with object-
centric visual affordances,” in 2021 IEEE international conference on
robotics and automation (ICRA). 1EEE, 2021, pp. 6169-6176.

E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation
for games, robotics and machine learning,” http://pybullet.org, 2016—
2023.

http://pybullet.org

	Introduction
	Robot Task and Motion Planning Problem

	Problem statement
	General problem
	Predicates and affordances

	Method
	Approach outline
	Learning abstractions for bilevel planning
	Object and Skill Hierarchy

	Learning affordances
	Grouping objects and operators

	Experiments and Implementation
	Simulation environment
	Extended operators and affordances
	Object Hierarchy
	Exploration
	Experimental details

	Results & Discussion
	Baseline comparison
	Learned operators
	Generalization to novel objects

	Conclusion and Future Work
	Future Work

	 Acknowledgments
	References

