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The Design of High Dynamic Range
Continuous-Time Integratable
Bandpass Filters

Gert Groenewold

Abstract —A method to design integratable continuous-time
analog high-Q bandpass filters with a prescribed dynamic range
is developed. The theory accompanying this method shows what
the fundamental restrictions for the dynamic range are. The
theory is meant to determine beforehand if the dynamic range
one wants is realizable. The possibilities of using dynamic range
optimal filter networks are discussed. A design example is
included.

I. INTRODUCTION

INCE integrated circuit technology offers possibilities

to realize integrated continuous-time analog filters,
international interest in this subject is aroused. In the last
ten years many articles about the realization of this kind
of filters have been published; [1]-[6] are just a few
examples.

There is, however, no general design theory available.
In all cases we have met in literature, design is started by
choosing a filter network, realizing this network actively,
and evaluating the performance afterwards. Usually the
only link between the expected performance and the
network established is the remark that the network was
known to behave well in a passive realization. Of course
this is a valid way to design filters, but when it comes to
designing high-performance filters, this method has lim-
ited use. In this article we concentrate on dynamic range
as performance parameter and want to make an attempt
at the establishing of a theory that makes it possible to
design a high-Q (that is, narrow-band) bandpass filter
satisfying a dynamic range demand that is stated before-
hand. Using this theory we also are able to say what the
optimal dynamic range belonging to a certain transfer
function under certain technological constraints is so that
one can say something of the quality of a particular filter
network. This makes a scientifically responsible choice for
a filter network possible. Optimal networks can be found,
but this is not the most important thing, for optimal
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networks are usually too difficult to realize, and more
conventional structures sometimes come close enough to
the optimum.

The dynamic range of integratable continuous-time
analog filters is a serious problem. The reason for this is
that because this kind of filter must be made tunable [4],
nonlinear elements are introduced in their circuits. As all
known realizations of these filters (also, for instance, the
gyrator type and Sallen and Key type filters) can be
viewed as a network of n integrators—where n is the
order of the filter—the dynamic range of a filter, given
the filter transfer function, is dependent on

* the dynamic range of the network elements, that is, of
the integrators used, and
* the filter network architecture.

Many realizations of integratable tunable integrators
have been proposed, having different dynamic range
properties. The realization of the integrators will not be
the subject of this paper. Instead, we will see how the
dynamic range of a filter is dependent on the network
used; the properties of the integrators will be assumed to
be known.

Special attention must be devoted to the subclass of
bandpass filters because most of the effects of the nonide-
alities (such as parasitic poles, inaccuracies, limited dy-
namic range) of the filter components on the filter perfor-
mance are proportional to Q [3]. The dynamic range,
especially, of this class of filters is a problem. Usually, the
noise output of high-Q filters appears to be directly
proportional to Q (3], a fact that has led many authors to
the belief that the dynamic range of a high-Q filter is
inversely proportional to its quality factor [3], [5].

This is an important result that reflects a fundamental
restriction on the possibilities of realizing high-Q band-
pass filters. However, it is not clear that this is really a
fundamental property of this class of filters. For any given
transfer function, an infinite amount of possible realiza-
tions exists, and who knows if all these realizations share
this property? Indeed, a biquad has been reported that
features an output noise level, which is independent of its
quality factor [7]. From this the conclusion was drawn that
in principle it is possible to construct a biquad with a
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quality factor independent dynamic range, a conclusion
that in this paper will be proven wrong.

To formulate the theories involved, we will first point
out how the relatively well-known concept of the state-
space representation for dynamical systems can be used
as a convenient tool for the description and the optimiza-
tion of the architecture of a filter. After that, we will state
a definition of dynamic range. Using this, we tackle the
problem of optimizing high-Q second-order filter struc-
tures (biquads). A general optimization procedure that
has been developed for digital filters [10] will be adapted
for the case of analog continuous-time filters. We will
build upon this theory, with use of our results for biquads,
an optimization theory and method for bandpass filters.
This theory will give valuable insights into the fundamen-
tal limits that exist for the realizability of high-Q band-
pass filters.

Using this theory we develop a design theory for high
dynamic range bandpass filters. In the end we will discuss
the complete design of a practical filter in the light of the
newly developed theories.

In order to save space, most of the lengthy mathemati-
cal proofs are omitted. These are included in an internal
report [8].

II. STATE-SPACE REPRESENTATION

In this paper we will represent the internal structure of
filters by the state-space representation. In this representa-
tion an nth-order filter comprises n integrators. The
output signals x; (1 <i < n) of these integrators are taken
together in the (n X 1) state vector X. The input signal of
the filter is denoted by E; and its output signal by E,. The
state equations that describe the filter are

sX = AX + BE, )]
E,=CX+ DE,. 2)

A, B, and C are matrices; D is a scalar. The transfer
function of the filter is then

of E (s
H(s) o Efs))

=C(sI-A4)"'B+D. 3)

I denotes the proper identity matrix.

Using this model, the internal transfer functions f, and
g; can be computed. The functions f; are the transfer
functions from the input of the filter to the output of
integrator i, that is, x,. The functions g; are the transfer
functions from the input of integrator i, that is, sx;, to the
output of the filter. The functions f; are important for the
calculation of the maximum input signal level of the filter,
while the functions g; are used to calculate the total noise
output of the filter. The noise level and maximum signal
level are needed to calculate the dynamic range of the
filter.
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The functions f; and g; are put together into the
vectors F and G as follows:

fl
F= f 4
fn
G=(81,82""",8,)- (%)
F and G can be easily computed:
F=(sI-A4)"'B (6)
G=C(sI-4)"". (7)

Of considerable importance for the optimization of the
dynamic range are the so-called observability and control-
lability gramian matrices W and K [10], defined as fol-
lows:

1w
W= Ef,f Gdw (8)

1 = . 0
K—-Zf_wFF dw. ( )
The asterisk (*) denotes the adjoint operator, so if M is
an arbitrary matrix, M* is the transpose of the matrix of
complex conjugates of the elements of M: M*= MT. It is
not difficult to prove that K and W are positive definite.

One can also prove that W and K satisfy the following
equations.

ATW+WwW4a=-CTC
AK + KA" = - BBT.

(10)
(11)

These equations have unique solutions if and only if the
filter has not more than one pole on the imaginary axis.

III. Dynamic RANGE

The dynamic range of an arbitrary signal processing
system is the ratio of the maximal and minimal signal
levels that can be processed in that system. The minimum
level is determined by the noise performance of the
system, the maximum level by distortion.

Usually, as maximal signal level the level where 1% or
0.1% total harmonic distortions occurs, or where the
distortion level equals the noise level, is used. This maxi-
mal signal level (at the input or output of the system,
however defined) will be denoted by Upax- If the noise
level at the same point is denoted by U2, (the mean
squared noise voltage) the dynamic range (denoted by
DR) is

2
max

UZ

noise

DR= (12)

To determine the dynamic range of filters we will now
discuss the noise generation of filters, using the state-space
representation.

More — on the OIIE[ﬂC.




Fig. 1. A part of a filter: One integrator with its connections to its
surroundings.
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Fig. 2. Two examples of a practical realization of the structure de-
picted in Fig. 1.

IV. Noise

Fig. 1 shows a part of an nth-order filter. This part
consists of one integrator, the input of which is connected
to the outputs of the n other integrators, including its
own output. From now on, the branch which is denoted
by 1/ in this figure will be called an intrinsic integrator.
The complete structure shown in Fig. 1 (the intrinsic
integrator together with all the branches that are con-
nected to its input) can be seen as a multiple input
integrator and will be called an extrinsic integrator. The
number of the integrator is i, which means that the
output signal of this integrator is x;. The a; ; in this figure
are entries of the matrix 4. The transfer function that
this part of the filter network realizes from x; to x; is
a;;/s, and can be realized in various ways. Fig. 2 shows
two examples. In Fig. 2(a) the time constants are realized
with conductances and capacitors, and in Fig. 2(b) with
transconductances and capacitors.

Here, la;;l=G;; /C,. C, is the capacitance value of the
integrating capacitor. The G; ; are the values of the input
(trans)conductances. The noise voltage spectrum at input
j of extrinsic integrator i is

2kT

Sni,ij(w) = f? =¢
ij

2kT
|ai,'lci )

(13)

The factor ¢ is the noise factor of the (trans)conductances
G,;.

The output referred noise voltage spectrum of integra-
tor i is thus

S
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sno,i(w) = E

a;\? 2kT¢ -
I () suswr =gz Tlal (1)

i j=1

This spectrum can be transformed to the spectrum of a
noise voltage source that adds to the input of the intrinsic
integrator. In that case the spectrum is

2kT¢ =
Sn.i(w) = C ¢ Z Ia,'j‘-

i j=1

(15)

The noise production due to the branch b, (b; is an
clement of B) can be added to this in the same way. Thus
we find for the total input referred noise spectrum of
intrinsic integrator i:

2kT. n
S (@) = Tf(tb,-w _):lla.yl).

1

(16)

The influence of the b; can always be made negligible.
This is done by scaling these entries down until they are
not dominant in the noise production anymore. By (3),
scaling the b, down by a factor means that H is scaled
down by the same factor. This can be compensated for by
additional amplification at the input or output of the
filter (which can always be done with negligible additional
noise production [9]) or by scaling the entries ¢; of C up.
Therefore, for optimization purposes, we will use (15) as
the expression for the noise spectra.

We will not consider 1/ f-noise here. This is not neces-
sary in the case of high-Q bandpass filters because then
the frequencies of interest usually are so high that this
kind of noise has no influence. In the cases that 1/ f-noise
is important, the bandwidth of the filters will be so
narrow that this noise can be considered white and can be
incorporated in the noise factor ¢£.

The expressions for the internal noise sources are used
to find an expression for the dynamic range. Before we do
so we discuss the notion of scaling a filter in order to
improve its dynamic range.

V. ScALING AND NORMS

One way to improve the dynamic range of a filter is
scaling. The purpose of scaling is to make the output
signal levels of all the integrators in the filter equal, so
that there is not a single integrator in the filter that limits
the maximal input signal level. It is not trivial that this
approach yields a maximum dynamic range, because in
the process of scaling the filter the noise spectra are
altered, a fact that must be accounted for. It can, how-
ever, be proved that an optimal filter is scaled.

The information carrying the input signal of the filter is
represented by a white noise signal. In that case the filter
is scaled if the squared ¢,-norms of the internal transfers
f;» defined as

1

=5 [ 1fiGw) [ do (17)

are equal.
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The squares of the <,-norms of the g; are the noise
integrals, so the total noise output of the filter can be
expressed as

__ n 1 =
Uz = — (o)
Ro= LS [ laiio)[ do

- 2
= Z Sn,,-|g,-|2-

i=1

(18)

Here, U,,z'o is the mean square value of the output noise
voltage of the filter and S, ; denotes the noise power
spectrum at the input of integrator i. To emphasize the
fact that this spectrum is assumed to be a constant func-
tion (the spectrum is white), it is denoted by the constant
S

n,i*
We note here that the squares of the ¢,-norms of the f;
and the g; are the diagonal elements of the gramians W

and K:
Wy = |gi|%
ki=I£3 (19)

as can easily be seen from (8) and (9). With this result the
total output noise level (18) can be written as

_ n
2
Un,o - Z sn,iwii'

i=1

(20)

Now suppose that we want to scale the filter, so that all
the squared ¢,-norms of the f; equal . Then the diago-
nal entries of W, expressed in the gramians of the filter
before scaling are [10]

W, = . (21)

W is the observability gramian of the scaled filter.
Using (20) and (21), an expression for the total noise
output of the scaled fjlter can be found:
A Eoa kawy
Un2,0= z Sn,i .
i=1

- (22)
Here, .Sim is the spectrum of the input referred noise
voltage source of intrinsic integrator i in the scaled filter.
The matrices K and W in this equation refer to the filter
before scaling.

Scaling is a method to improve the dynamic range of a
filter without altering the filter network architecture. Be-
fore methods to optimize filter architectures are dis-
cussed, the dynamic range as defined in Section III is
evaluated using results derived thus far.

VI. Dynamic RANGE OF FILTERS

With the results of the previous sections we can find an
expression for the dynamic range of an arbitrary filter.
The dynamic range of a filter is defined as the ratio of the
maximum signal level at the input or output of a filter and
the noise level at the same point. We will use the output
of the filter for our calculations.

841

Suppose that to the input of the filter a white noise
signal (representing an information carrying signal) is
applied. The spectrum of this signal is S, (w). With this
kind of input signal the relevant measure for the signal
level is the ¢,-norm. The mean square of the resulting
output signal of integrator i is

Iﬁ: Sin Kz (23)

(The subscript s stands for signal; n stands for noise.)
Suppose that the maximum allowed mean square of the
output signals of the integrators is U2,,. In that case the
maximum allowed value of S, is:

2
Unax

S —_—.
max; k;;

max,in (24)
The mean square of the corresponding output signal will
be:

1= L N2
Un%ax,out=smax,in2—7;f_ |H(-’w)| dw' (25)

The total noise output of the filter is expressed by (20).
This yields the dynamic range:

1
2 . 2
DR = Un%ax,out _ Umaxzqr ffle(]w)l do
= U2 = =
n,o Z Sn‘iwﬁ man kj}-
i=1

(26)

If we scale the filter such that we make all k; equal «,
max; k;; equals . The output noise level is then given by
(22), so the dynamic range is then

1 =
2 - o
DR = Urrzlax,oux _ Umaxz‘n_ /_wIH(Iw)l do

=~ n
Unz,o Z S k.w

n,i"™i"vii
i=1

(27)

This is the dynamic range of the scaled filter in terms of
the K and W of the filter before scaling. Note that the
dynamic range does not depend on «.

In practical cases we must integrate H to determine
the dynamic range from this equation. It is easy to prove
from (3), (6), (7), (8), and (9) that

1 )
—/ |H(jw)|*da=CKCT=B"WB.  (28)
27

This can offer a handy way to perform this integration.
We proceed on how to optimize expressions (26) and
Q@n.

VII. DynaMic RANGE OF BiouAaps

In this section the dynamic range of high-Q biquads is
evaluated and optimized. In subsequent sections the re-
sults derived here for high-Q biquads are used to evaluate
and optimize the dynamic range of high-Q bandpass fil-
ters.

L
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Fig. 4. The signal flow graph of the filter of Fig. 3.

7.1. Example

An example of a biquad is shown in Fig. 3. This biquad
has been taken from literature [7], where it was claimed
that its output noise voltage was independent of its qual-
ity factor, from which the conclusion was drawn that this
biquad featured a quality factor independent dynamic
range. This statement is interesting enough to induce us
to evaluate the dynamic range of this biquad.

The signal flow graph of this biquad is shown in Fig. 4.
The state matrices are

. oms
e _gm| T i‘ ’
(658 168
C=(0 1), D =0. (29)
From this, by (3):
nggm3
GG, N(s)
Hs) =s2+55"—2s+——g'"1g'"2 - D(s) (30)
G, .G
in which
)
D(s) 2+ Eos + w2 31
S0
gmlgml
= ‘l —_— 32
(o) C1C2 ( )
C2gm1
=4/ == 33
Q Citm (33)

By substituting (29) into (16) we can directly determine
the input referred noise spectra of the intrinsic integra-

— -
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tors:
2kT§ gm3 gml 2kT§( gml + gm3)
i ARl R €O
c, \c, ¢ C?
2kTE ( g,ma 2kTég,,.,
s (€)™ (%)

In the case of S, , the two branches a,, and a,, only give
rise to one noise source because these two branches are
realized with only one transadmittance stage.

The matrix W can be determined by solving (10), which
results in

Cl
2g 0
w=| "™ (36)
0 €
2ng

The total noise output of the filter is determined with (18)
and (19) as

2 _

Uso=Sa Wi+ Sh2wa
1
JR— + —_—

1+@))
C G 8mi '

Now g,,; can be chosen freely because it does not influ-
ence w, or Q. We thus may choose g,,; < g,,,, and the
expression for the output noise voltage is

= kT¢ (37)

— 1 1
U:, kT§( C, + Gl (38)
We see that the output noise level is indeed independent
of Q, and depends only on the noise properties of the
integrators.
To complement the calculation of the dynamic range of
the biquad we determine its maximal output signal level.
Therefore, we determine K by solving (11).

2 2
28,.C: 1 1
Then by (24), (25), and (28), we have
UZ U2
Unzlax,out = —_max—z = L;x . (40)
max(1+Q%1) Q
Now the dynamic range of this biquad can be deter-
mined:

Unzlax,out Un?ax
DR = o = T B (41)
n,o 2 — 4 —
kT£EQ ( c Cz)

This can be optimized by dividing the total capacitance C
available optimally between C,; and C,. The optimum is
found if C,=C,=C /2. This gives us the optimized dy-
namic range for this biquad:

UzC 1

DR = 17 GF

(42)

More — on the OIIE[ﬂC.
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The first conclusion is clear. Even though the noise out-
put of the biquad is independent of its quality factor, the
dynamic range definitely is not. In the next section we will
see that the dynamic range of an optimal biquad is
inversely proportional to its quality factor, while the dy-
namic range of this biquad is even inversely proportional
to the square of its quality factor, so this biquad is a
profoundly bad one.

We might turn to the question why this biquad is so
bad. Basically this is a consequence of the fact that the k;;
(see (39)) differ so much (a factor Q2) from each other,
meaning that the filter is far from being scaled.

From this example it should be clear that careful rea-
soning is necessary. It is a very commonly made mistake
that only the noise output of filters is regarded and that
distortion and inherent maximum signal levels are dis-
carded or, if they are regarded, it is assumed that the
maximal output signal level of the filter equals the maxi-
mal output signal level of the integrators. It should by
now be clear that that is not necessarily true. To be
concrete at this point we refer to (40).

7.2. General

In the previous section we evaluated the dynamic range
of a specific biquad. In this section we will optimize
high-Q biquads in a general way, thus arriving at funda-
mental dynamic range limits.

A biquad is a second-order filter; it therefore has a
second-order set of state matrices:

A=(a“ all)’ B=(b1),
a; ap b,
C=(c1 cz), D=(d). (43)

As we assume that |H| approaches zero for large |s|, we
have d = 0.

Using (43) with d =0 and (3), H can be calculated,
resulting in

(s—ayp)bici+apbyei+aybic, +(s—ay)b,c,

H(s)= D(s)
(44)

D(s)=5%=5(ay, +ay)+a;,ay — 61,0y, (45)
So from (31),

W =y a1,85 — G134y (46)

20— —(ay +ap) (47)

— = —(a, +ay,).

0 ntaxn

If 0> 1 we thus see that |a;, + a,,| < w,. For a stable
biquad Q >0, and so a,; + a,, <0. If the components of
the biquad (i.e., the damped integrators) are also
stable—which will be the case in all practical situa-
tions—a,; <0 and a,, <0, so that for high-Q filters,

843
Therefore, we may assume:
Wo =y —apay (50)
Y 8128y
Q=———""+ (51)

—(ay+ay)’

To determine and optimize the dynamic range we first
determine K by substituting (43) into (11) and solving for
K. This yields

kyy 0 wi+a3 —2apay a, b}
kpl=-=|-anan 2ap0y —apap||bib,
2wy 2 2 2 2
ka2 axn —2aya; wgtaj by
(52)
and
ki =ky. (53)
With (48) and (49) we derive from this:
Qo
k= E“F(w%b% + axzzbg) (54)
0
and
o
ky = 2—(;;(:;5,1;% + w%b%). (55)
0

As told, the dynamic range is optimal if the filter is
scaled, so k;; and k,, should be equal. With (50) as
constraint, we see that this implies that

lag| =lay] = w, (56)
(57)

If these constraints are met, the nondiagonal entries of K
are small compared to the diagonal entries. Therefore,
for our purposes we may approximate K as
0(b3 +b3)
K=———"~
20)0

@2 = —4ay-

L (58)

where I, is the (2X2) identity matrix.
In the same way we derive for W:

L _Qd+ed)

L.
2w, 2

(59)

To calculate the total noise output of the filter we turn
to (15), which gives an expression for the input referred
noise spectrum of the intrinsic integrators. By (48), (49),
and (56), the noise production corresponding to a,; and
a,, is negligible compared to the influence of a,, and a,;.
This gives us the total input referred noise spectrum of
the intrinsic integrators for this particular high-Q biquad
case:

lay] < @, (48) | Tte,
lazl < . (49) Sade)=—¢ (60)
. i
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With (28) we see:

Q(bl2 + b%)(cl2 + c%)
o . (61)

Substituting data from (58), (59), (60), and (61) in (26)
yields an expression for the dynamic range:

1= 2
oo [ _1HG) [ do =

Upnax
DR=;—-1—‘1— (62)
(e +z)

This value is not dependent on b; and ¢;, which simplifies
our problem. The degree of freedom still left to be used
for optimization is the division of the total capacitance C
available. It is easy to see that an optimum is found for
C,=C,=C/2, and the optimal dynamic range of the
biquad is

U2.C 1
Pt 4kTE Q°

This expression gives the optimal dynamic range of a
high-Q biquad as a product of two terms. The first term is
an expression for the dynamic range of one integrator; the
second term is the reciprocal value of the quality factor of
the biquad. This expresses the fundamental quality factor
dependence of the dynamic range of high-Q filters which
has now been shown for the biquad case.

Summarizing this section, we may state that a high-Q
biquad is dynamic range optimal if the following two
conditions are met:

DR (63)

C
C=C=> (64)

(65)
Also, the noise production due to b, and b, must be
made negligible. The optimal dynamic range is then given
by (63).

We will use the optimization results we derived for
high-Q biquads for the more general field of optimization
of high-Q bandpass filters. For this end we first show how
bandpass filters can be designed using frequency transfor-
mations.

lay=layl= .

VIII. FREQUENCY TRANSFORMATION

8.1. Biquadratic

A bandpass filter with central frequency w, and —3-dB
bandwidth o, (all frequencies are in rad/s) can be de-
signed using a so-called low-pass equivalent filter with
bandwidth w,. If we denote the Laplace operator for the
low-pass case by s' and the Laplace operator for the
bandpass case by s, the following frequency transforma-
tion can be used:

2

s'=s5+—. (66)

By this transformation the order of the filter doubles. If

e

this transformation is applied to an integrator with trans-
fer function 1/s, a biquad with transfer function

b 1 s
(V=5 rar (67)
results. This means that we can construct a bandpass
filter by replacing every integrator in an appropriate low-
pass filter by an appropriate biquad. The bandwidth and
the filter characteristics (passband and stopband shape)
of the resulting filter are determined by the properties of
the low-pass equivalent filter, while its central frequency
will be determined by the biquads.

The quality factor of the resulting bandpass filter can
be computed as follows:

Q= (68)

)
w(.‘

8.2. Linear

The low-pass equivalent filter, introduced in the previ-
ous section can, in turn, be derived from a normalized
low-pass equivalent filter. This normalized filter has unity
bandwidth and the non-normalized low-pass equivalent
filter can be derived from it using the frequency transfor-
mation:

§'=—. (69)
[4
s” is the Laplace variable describing the normalized case.

Some properties of these normalized filters related to
the corresponding non-normalized filters must be estab-
lished. If 4', B, C', D', W', and K’ refer to the non-nor-
malized filter, and 4", B", C", D", W’, and K" to the
normalized filter, one can easily prove the following.

%Y

€

A/

A'=— (70)
wC
e

B'=— (71)
wC

c=c (72)

D'=D (73)

W=oW (74)
1

K'=—K'. (75)
w

[4

If a bandpass filter is designed using the two transfor-
mations described here, the dynamic range properties of
the final filter can be stated in terms of the properties of
the normalized low-pass equivalent filter and the trans-
formations.

IX. DynaMic RANGE OPTIMIZATION
9.1. General
To optimize the dynamic range of a scaled filter we will

turn to expression (27) to see how it can be maximized.
There is one method to optimize this expression known.

More — on the OIIE[ﬂC.
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This method has been published by Mullis and Roberts
[10] and assumes that all the internal noise spectra are
equal. As we will see for high-Q bandpass filter this
assumption can be made. We thus state that S, ; = S, for
any i. We now rewrite (27) as

Uty 1H(jw) P do
DR= LA ) (76)
S, X kywy
i=1
H and U,,, are independent of the filter network. Also,
S, is assumed to be known. In this case the dynamic
range is maximal if L7 k,w; is minimal. Mullis and
Roberts have proved that X7 k,w; is minimal if the

i

following two restrictions are met:
D;'KDy'= D WD,
kiw; =k;w,

FiMeT

an
(78)

for some diagonal matrix D, and any i, satisfying 1 <
i, j < n.In that case I}_,k;w; reaches its minimum value

of
(£am)_-2{2|

i=1 i=1

(79

where pu2, 1 <i<n are the eigenvalues of the matrix KW,
which are independent of the realization. The minimum,
reflected by (79) is therefore only dependent on the
transfer function of the filter. A method to design a filter
that reaches this optimum is also known [10]. We will not
discuss this method here, because the filters that are
obtained in this way are too difficult to realize. In an
example to follow we will see that some of the more
conventional filter architectures come close enough to
this optimum.

In our filtering context the numbers u; are called the
second-order modes of the transfer function. If we want to
know what the optimal dynamic range of a filter is we
must determine these values. On a computer the second-
order modes can be determined as the square roots of the
eigenvalues of the product KW of some realization. For
calculations by hand this cannot be deemed practical. We
can, however, give a lower limit for the sum of the
second-order modes directly from the transfer function:

n 1

2 ;> H(0). (80)
i=1 2

(The proof is omitted.) We can now formulate the follow-

ing theorem.

Theorem 1: If the dynamic range of a filter is properly
described by (76) (which implies equal noise spectra) the
dynamic range is never larger than the following value:

1 (= 2
4ng[_mlH(;‘m)| do

—_ 81
n |H(0)|* D

This theorem relates the maximal dynamic range of a
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1 1/s 1
1/s frequency
o——s—o transformation —wy wo
— 1/s

Fig. 5. If a frequency transformation is performed on a filter, every
integrator in the filter is replaced by a biquad. Here a suitable example
of such a biquad is shown.

filter to its noise bandwidth. This theorem is an invalu-
able help to estimate the maximal dynamic range that can
be attained with a filter in a simple way directly from the
transfer function.

9.2. Frequency Transformed Filters

9.2.1. Biquadratic: As pointed out in Section VIII, fre-
quency transformation implies the substitution of a bi-
quad for every integrator in the original filter. This multi-
plies the order of the filter by two. In order to make the
distinction clear, when talking about low-pass to bandpass
transformation we will designate the order of the low-pass
equivalent filter by n and the order of the bandpass filter
by N, so

N=2n. (82)

The biquad must have a suitable transfer function H
(dictated by (67)) and preferably must meet the optimality
criteria (64) and (65). A suitable biquad is depicted in Fig.
5. We see that if a filter is constructed in this way, every
integrator comprising this filter will have one branch a;
for which |a;;l=w, connected to its input. All other
branches (if any) connected to the same input will stem
from the original filter. This filter is assumed to have a
bandwidth , that is much smaller than w,, because we
are dealing with high-Q filters. If the original filter is
designed neatly, all the branches of the original filter have
values of the same order of magnitude as . and have
corresponding noise spectra. Now by (15) the noise pro-
duction of the integrators of the transformed filter are
dominated by the branch having absolute value w,.
Therefore,

2kTéw,N
-

The capacitors C; are chosen equal to a common value
C /N here, to make all noise spectra equal.

For these biquads we can easily prove that (58) and (59)
are no longer approximations but exact. Also, comparing
(67) and (44) we obtain the relations (84):

cbi+cyby,=1

¢,b,—c,b,=0.

Sn,i=Sn (83)

(84)

This property will be used to derive the properties of
frequency transformed filters.

The change of order in the transformation makes it
necessary to renumber the states. State i in the original
filter will be represented by states 2i —1 and 2i (con-
tained in biquad i) in the “image” filter.

.
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With s = jw, s'= jo' and (66) one gets
1 L A 2 1 0 v 2 ,
Ef_le(lw)l dw=—2;}lw|H(1m)| do'. (85)

This means that in order to evaluate the integral of the
squared magnitude of the transfer function of the band-
pass filter, one can evaluate the same integral for the
corresponding (non-normalized) low-pass equivalent fil-
ter.

The gramians of the original filter are denoted by K’
and W’ and the gramians of the image filter by K and W.
So suppose that we have the controllability gramian of the
original filter:

’ ’ ’
kll k12 kln
! ’ .o ’
kll k22 2n
4 Y ce 4
knl n2 knn

then one can prove that the controllability gramian of the
image filter is

ky 0 ki 0 - Ky O
0 ky 0 ki - 0 Kk,
n 0 k» 0 - k3 O
K=(b}+b3)| 0 k% 0 kyp -+ 0 Kk,
i 0 2 0 ek 0
0 n 0 m 0 ko
(86)
Similarly:
wy 0 wih O wi, 0
0 wih 0 wp 0w,
wy 0wy O wh, 0
W=(ci+cH)| 0 wy 0 whp 0wy,
wy, 0 w, O w,, 0
0 w, 0 w, 0w,
(87)

Here, b,, b,, ¢, and c, refer to the biquad. The proof of
these relations is straightforward but long and tedious
and does not contribute to understanding; therefore, it is
omitted.

Suppose that D, = diag(d,,d,, - -,d,) and
bZ

+ dlag(dl,dpdz,dzs : rdn’dn)'

0=
Then it is clear that if (77) and (78) hold for the original
filter,
Dy 'K'Dy ' = DyW'D,
kl W = kl !

i Ji JJ

(8%)
(89)
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for 1<, j <n, we also have for the image filter:
DEIKD(;‘ = D,WD, (90)
kw,=k;w,; (91)

for any 1 < i, j < 2n. This means that if the original filter is
optimal the image filter will also be optimal.

Note that this is also valid if the resulting filter is a
low-Q filter. This also implies that the resulting bandpass
filter is scaled if the original filter was scaled, which is
also directly visible from (86).

9.2.2. Linear: Using (74) and (75) it is straightforward
that a low-pass equivalent filter is optimal (in the sense
that it obeys (77) and (78)) if and only if the correspond-
ing normalized filter is optimal. If this result is combined
with the results concerning biquadratic frequency trans-
formation, the following theorem can be stated.

Theorem 2: If a bandpass filter is derived from a nor-
malized low-pass equivalent filter, using (66) and (69), the
derived filter is optimal in the sense that it obeys (77) and
(78) if the normalized low-pass equivalent filter is optimal
in the same sense and the biquads that are used satisfy
optimality criteria (64) and (65).

This theorem shows how an optimal bandpass filter can
be designed, starting from an optimal normalized low-pass
equivalent filter. We will now determine the dynamic
range properties of these optimal frequency transformed
filters.

9.3. Dynamic Range of Optimal Transformed Filters

Using the gramians of the image filter, as computed in
the previous subsection we will determine the dynamic
range of the image filter. An important thing to notice
first is derived from (84):

(b7 +b3)(ci +c3)= (blc1+b202) +(b1c2—bzcl) =1.
(92)

Here, b; and c; refer to the structure of the biquads used
to replace the integrators in the transformation.
From (82), (86), (87), and (92), we see:

N
Z kiiwu 2 E ku ii (93)
i=1 i=1
and from (74) and (75):
Y kiwj; ): kiwi;. (94)

i=1 i=1

The dynamic range of the image filter is given by (76).
Equations (85) and (69) are then used to rewrite the
dynamic range of the image filter as

1 ® N 2 ”
gf_le"(lw ) do

U2 o
DR = “’;" . (95)
» 2 2 kiwi;
i=1
The dynamic range of the bandpass filter is now ex-
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pressed in terms of the properties of its low-pass equiva-
lent. If this is combined with Theorem 2 the following is
easy to see.

Theorem 3: If a bandpass filter is derived from a low-
pass equivalent filter as described in Theorem 2, the
bandpass filter is just as far from optimum as the corre-
sponding normalized low-pass equivalent is, if it is as-
sumed that the bandpass filter, as well as the low-pass
equivalent, has equal internal noise sources that are inde-
pendent of the network architecture, and the biquads that
are used to substitute the integrators are optimal.

The assumption of equal internal noise sources is in
general not true for low-pass filters, but it is true for
high-Q bandpass filters if they are designed as outlined in
this paper (see (83)). This makes the notion of low-pass
filters with equal internal noise spectra valuable if those
low-pass filters are used as low-pass equivalents of band-
pass filters to be designed.

With (83), (95) can be written as

1 @ " ; " 2 ”
| UhC g IHUwlde
- 4kTENQ 3 K

i=1

DR (96)

According to Theorem 2 the dynamic range of the
bandpass filter is optimal if the dynamic range of the
normalized low-pass equivalent is optimal, that is, if
Lr_ ikiw;; is minimal. Due to (79) this minimum is
n~Y(Tr_ )% Here, u'? represent the eigenvalues of the
product K"W”. The optimal dynamic range for the band-
pass filter is now

1 2
—_ Hﬂ LN ”
c."zwf_w' (jo") |’ do

)
2| T u

i=1

2
3 Ui

DR

7

Now with (80) we can state the following theorem, which
is a variant of Theorem 1.

Theorem 4: If a bandpass filter is designed by perform-
ing the transformations (66) and (69) on a normalized
low-pass equivalent filter, an upper limit for its dynamic
range is given by:

1 o

S T HGeoT .
In the same way as (95), this is rewritten as
1 * we s oy |2 ”
DR, < UuC Ef‘“’lH vl e (99)
T 2kTEQ |1H# (0

Remember that the normalized low-pass equivalent filter
has (double-sided) —3-dB bandwidth 2, so that its noise

N i

847
Fig. 6. A practical MOSFET-C integrator.
bandwidth in most cases approximates the value 1/:
1 e 2
ﬂf_JH(Jw)l do”
=—, (100)

|H"(0)|* ™

So now we have a very simple and crude approximation of
the optimal dynamic range of a high-Q bandpass filter:
Uz c
DR, <———. 101
P = 2wkTEQ (101)
Now in expressions (96), (99), and (101), we have proved
the important fact that the dynamic range of a high-Q
bandpass filter is, even in the optimal case, inversely
proportional to its quality factor. Also, the dependence
on the total capacitance value is shown.

X. A PracrticaL DesiGN EXAMPLE

After all this theory one can wonder if it really can be
applied in a practical situation. Fortunately we can show
that this is indeed the case and in this section we are
therefore designing a real integratable filter. “Real” in
this case means that we worked out the filter to the
transistor level and made it work according to the circuit
simulator SPICE. In this design it will become clear how
we can benefit from the insights the theory in this paper
offers us.

10.1. Design Procedure

We want to design an eighth-order Butterworth band-
pass filter with a central frequency w, of 27(100 kHz)
and a bandwidth w, of 27 (7 kHz), which implies Q = 14.3.
This filter was initially designed as an IF-filter for AM
radio [5] and is now redesigned in a different way to serve
as an example in this context.

We want to realize a dynamic range of 70 dB. This is an
arbitrary number which we use to show how one can
design filters with a dynamic range demand that one
states in advance.

We use as extrinsic integrator the structure depicted in
Fig. 2(a). To make this structure tunable we replace the
resistors by MOSFET’s. To cancel second-order nonlin-
earities the structure is balanced. The structure we arrive
at is depicted in Fig. 6. Only one (differential) input is
shown.

The fact that on basis of this type of integrator one
designs balanced filters causes, although of a minor type,
some difficulties in the design procedure, for the design-
ing is mainly done on one single-ended “half” of the
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filter, while the results are to be calculated differentially.
It is, however, easy to see that a single-ended filter with
maximum integrator output signal level U2, and total
capacity C has the same dynamic range as a correspond-
ing balanced filter with maximum single-ended integrator
output level U2, and total capacity C. The formulas we
derived for the dynamic range therefore remain valid. For
that reason we define for a differential filter U,,fax as well
as noise spectra single ended. The maximum output signal
level of the filter U2, ., and its noise output voltage U,

are defined differentially as those are the relevant output
quantities. This may differ by a factor 2 or 4 in the
formulas for the output noise and the maximum output
signal level, but the formulas for the dynamic range
remain unaltered.

If we have a supply voltage voltage V. of 5 V and a
quiescent balance voltage V., of 2 V (this is the bias
voltage at the inputs and outputs of the integrator) the
control voltage V, applied at the gates of the MOSFET’s
that represent the resistors should be no more than 4.5 V
to retain enough tunability. In this case the maximum
signal level U,,, at the inputs of the integrators for at
most 1% harmonic distortion is 0.7 V rms. As all the
oytputs of integrators are connected to inputs of other
integrators and vice versa, this is also the maximum
output voltage of the integrators.

By general theories concerning amplifier design, it is, in
our context, in principle possible to design the opamp
such that ¢ =1 [9]. It does not make sense to make ¢
extremely close to 1, because that only costs supply power
and does not enlarge the dynamic range appreciably once
the noise factor is close to 1. Therefore, we initially
assume that ¢ = 2. With these data from (101) we see that
to realize a dynamic range of 70 dB we at least need a
total capacitance of 15 pF, which is quite acceptable. So
this equation immediately gives us an idea of the feasibil-
ity of the filter.

As filter architecture we use the symmetrical ladder.
The signal flow graph of the normalized low-pass equiva-
lent filter is shown in Fig. 7. The order n of the low-pass
equivalent is four while the order N of the bandpass filter
is eight. The state matrices are

-1.3065 -0.7107 O 0

qr—| 09950 0 -04192 0
0 06987 0 —0.4855
0 0 1.4564 —1.3065
1.728

" 0

B™=1y
0

C'=(0 0 0 1)

D"=0. (102)

W and K are determined by numerically solving (10) and
(11). The results:
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Fig. 7. The filter network: A symmetrical ladder.

03349 04397 0.1411 -0.0524

._| 04397 07175 04473 -0.0688
W=l o111 omn omrs  ozs7| (1

~0.0524 —0.0688 0.1287  0.3349

1 02626 —0.1404 —0.1566

k| 02626 1 0.6234  0.2878

-0.1404 06234 1 0.8971

-0.1566 02878  0.8971 1

(104)

From (104) one can see that we already have scaled the
filter. As the filter will continue to be scaled after trans-
formation to a bandpass filter we do not have to worry
about scaling anymore.

The dynamic range of the bandpass filter can already
be determined using (96). By (28)

1 o0
oy [_wl H'(jo")|? do"=1. (105)

So by (96)
2

4 ———
DR =0.059 4kT§Q

(106)
The second-order modes are determined as the square
roots of the eigenvalues of KW: u, = 0.02167, u, = 0.2264,
;= 0.8451, u, =1.5151. Therefore, by (97) and (83), the
optimal dynamic range is

2

Us
DR, =0.0735
4kTEQ "

Comparing these two teaches us that the scaled ladder
filter is only 1 dB away from optimum, so the ladder filter
is a nice choice in this situation.

From (106) with U, =.7 V, £ =2, and Q =100/7, we
now can say that in order to realize a dynamic range of 70
dB we need a total capacitance of 163 pF, which is 20 pF
per integrator, or 10 pF per capacitor since each integra-
tor contains two capacitors. So we put C;=10 pF for
i=1,---,8,so that £¥_,C;=(1/2)C.

Now the filter is denormalized. The state matrices of
the denormalized low-pass equivalent filter are given by
(70) to (72). A bandpass filter is realized by substituting in
this filter a biquad for each integrator. The signal flow
diagram of the biquad we use is shown in Fig. 5. Fig. 8
shows a realization of such a biquad. Here, MOSFET’s
are used as resistors. These resistors should have a value
of 1/C,0, =159 kQ as explained in Section IV. With the
values and parameters we have (ie., Vea =2V, V=45
V, the transconductance parameter 8 =45 pA /V

(107)

LB
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+ ino—

+ out2

0~ out2

Fig. 8. A realization of 4 biquad that can be used as a building block
for a bandpass filter. The capacitors are 10 pF each, and the MOSFET’s
have a length of 21 xwm and a width of 3 pm. In order to compensate for
the parasitic poles in the opamps resistors of 5300 Q had to be
connected in series with C,, and C,,.

threshold Voltage including body effect ¥y, = 1.5 V),! the
MOSFET should have a width of 3 um and a length of 21
pm. Initial simulations on this circuit showed the need to
connect extra damping resistors of 5300 € in series with
C, and C,, to compensate parasitic poles caused by the
opamps. For a really accurate désign these resistors should
be made controllable so that (dpart from the mentioned
wg-tuning loop) an independent automatic Q-tuning loop
can be added to the circuit, as indicated by Chiou et al.
[11] and Vanpeteghem et al. [12].

The connections betweer the biquads should also be
realized with MOSFET’S thit are used as resistors. Then
each pair of resistors repressiits one enitry of the matrix
4" or B: R,;=1/(Cla;) and R,,=1/(C,Ib]. This
looks straightforward enough, but if we try to realize this
filter in this way we encounter one serious problem. The
entries of 4’ and B’ are much smaller than g, SO the
corresponding resistors are much larger than the resistors
in the biquad. To realize these resistors, very long and
narrow MOSFET’s are needed, giving rise to formidably
dominant parasitic poles. One single simulation shows
that for that reason the filter is not realizable in this way.
This problem is a general problem in the realization of
high-Q bandpass filters. It appears that we must look for
another solution.

A very elegant solution is the coupling of the stages by
capacitors instead of resistors. We can do that if we use
the biquad outputs numbered 2 instead of outputs 1 in
Fig. 8. The filter then is realized as depicted in Fig. 9.
The capacitors are determined as C,,; = Cila;; /wol or
Cy1=C,lb, / wyl; they are small compared to the capaci-
tors in the biquad so that the total capacitance used is not
enlarged severely.

The opamp we use originates from Banu et al. [13]. It is
depicted in Fig. 10. It has an internally balanced output
with an adjustable balance level. A SPICE simulation of
one such an opamp shows that it has a noise factor ¢ of
1.32 in our context. This finally enables us to calculate the
dynamic range of this filter using (106):

DR =171.7dB. (108)

The transistor parameters refer to the Philips Bimos Process we use.
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Co1 Ca12 Ca32 Ca3a
1.21pF 0.497pF 0.489pF 0.340pF
+ ino—| {I i} {} —O+ out
- ino—{} it it —— I - out
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in out2 in out2
Cann= == R s = TCaqq
out. n out2 in
0.915pF e s it - 0.915pF
IL 1L 1L |
it it ] it
—— — ik
0.696pF 0.239pF 1.02pF
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Fig. 9. The connection of the biquads with capacitors. Cuij=
’
C,»laij/wol.
Voo
||<J“‘ ||‘J"" I"LA
j = 1
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12/6
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12/6

Fig. 10. A suitable balanced opamp.

This is what we wanted to achieve. To get a better
grasp on the operation of the filter we can also calculate
the noise output and the maximim output signal. This is
done by rewriting the equations for these (i.e., (20) and
(24) with (25)) in terms of the properties of the normal-
ized low-pass equivalent filter, that is, in W” and K". The
differential mode noise output U2, is two times the single
ended noise output. The single ended noise output is
calculated with (1/2)C as total capacitance. We thus
obtain by (20), (74), (83), and (87):

2kT€w,N N
= i Wy
—C i=1
2
2kTéw,N ZEIW“' 2
— =(3.63-107* V)°. (109)
w
_C <
2

The maximum differential mode output signal level
Ugex.out is four times the single ended maximum signal
level, not two times as in the noise case because here the
signals in the two paths are correlated. We had defined

Us,ax single-ended, so the maximal differential output

.
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Date/Time run: 02/14/90 13:40:05

1.5V

1.0V

0.5V

Temperature: 27.0

Frequency
The magnitude of the transfer function of the filter as calculated by SPICE.

Fig. 11.
signal level is, by (24) and (25),

1
Uiy [ |H(j0)I do

max; k;

U2

max,out

4

1 0
2 nge :on 2 ”
T J 1 Gen de

"
w, max; kj;

=402, =(14V). (110)

We used (85), (69), (75), and (86) to do this derivation.

10.2. Results from Simulation

Now the filter is fully designed up to the transistor
level. To validate our design we have simulated it with
SPICE. The results are discussed below.

The transfer function is shown in Fig. 11. The central
frequency is a little lower than 100 kHz, but that is a
matter of tuning. The shape of the transfer function is
accurately what was designed for. The noise output spec-
trum is shown in Fig. 12.2 This noise spectrum was
integrated numerically (over a wider range than shown in
the figure), to yield a total output noise voltage of 3.67-
10~* V. Note how well this fits with our theoretical
outcome in (109).

Fig. 13 shows the f; (the transfers from the input of the
filter to the outputs of the biquads) of the filter. If these
functions are integrated as indicted by (17) and (19) the

2SPICE lacks a correct noise model for MOSFET’s biased in the
triode region. Therefore, the MOS resistors were replaced by ordinary
resistors for this particular simulation. This accounts for the fact that
from Fig. 12 a slightly different central frequency is observed than from
the other figures.

—-

diagonal entries of K can be determined from the simula-

tion.> This we also have done numerically with the follow-
ing results.

kyy = kg = 4.50-10% rad /s (111)
ki3 =kyy=438-10* rad /s (112)
Kos = kg = 4.44-10% rad /s (113)
kyy = kg = 4.44-10* rad /s. (114)

According to (75), (86), and (104), the diagonal entries of
K should have the value w, = 4.40-10* rad/s, so that this
also fits well with theory. We also can see that

1 e )
—[ |H(jo)|" dw = kgs = 4.44-10% rad/s. (115)
277 _

Now at last we can determine the dynamic range of the
filter from the results of the simulation. By (110):

1 = RNT
Upy [ |H(j0)[ do
Upmax,oue = 4 —— =(1.39 V). (116)
’ max; K;;

The dynamic range is:

2
Umax‘out

2
Un,n

DR= =71.6 dB. (117)

This fits quite well with our theoretical outcome in (108).

As the spectra are to be integrated double sided (i.e., also for
negative frequencies) the values obtained are to be multiplied by 2. This
is not to be done to the noise spectrum, for SPICE calculates noise
spectra single sided.

More — on the OIIE[ﬂC.
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Date/Time run: 02/15/90 16:58:18
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Fig. 12. The output noise spectrum of the filter, by SPICE. Along the ordinate the square root of the noise output
spectrum (‘/S,,,m“ ) is plotted.

Date/Time run: 02/14/90 13:40:05
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Fig. 13. The internal transfer functions f; of the filter for i <{2,4,6,8). The corresponding transfers for
ie{1,3,5,7} are identical.

XI. CoNCLUSIONS

We have established a method to design high-Q band-
pass filters with a prescribed dynamic range. From the
theory we have developed it is clear what the fundamen-
tal restrictions for the dynamic range of such a filter are.
Knowing these restrictions and the technology used one
can say beforechand if a filter one wants to design is
feasible. The usefulness of the theories is shown by the
design of a complete bandpass filter, up to the transistor
level, of which it was shown by simulations that it indeed
featured the prescribed dynamic range, not excessively
more, but certainly not less.

—r—

The methods offer prospects of automatically designing
(semi-) optimal filters.
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