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Abstract

Peer-to-peer networks rely on gossip algorithms to spread information about the
peer activity and the network status. State-of-the-art gossip algorithms are not
sufficient to spread the information widely, as the size and the complexity of the
unmanaged networks grow. They suffer from high bandwidth utilization and lack
mechanisms to verify the validity of the transferred information.

We set the following questions for research: How can we achieve high coverage
ratio for all the peers in the network while using as little bandwidth as possible?
How can such a mechanism scale to millions of nodes? How can we reduce the
effects of high churn rates? And finally, how we secure that the data transmitted
are genuine?

We develop Splash, a data synchronization algorithm with emphasis on high data
coverage and efficient bandwidth usage. Our solution is based on Bloom filters
and allows both partial and full synchronizations while avoiding the transmission
of duplicate information.

We propose two schemes to synchronize current and historical data between
peers, over unmanaged and untrusted peer-to-peer networks. We use a SyncLog to
keep the state of the synchronization algorithm to a minimum. For scalability we
categorize data based on their origin, as local or global, and we investigate the use
of different synchronization policies. Finally we discuss mechanisms that validate
data to prevent the spread to invalid information. Through a series of experiments
we present the effectiveness of this solution in networks with different sizes and
churn effects.

In simulation Splash achieves 95% data coverage for all the peers in the network,
which is 5 times more compared to BarterCast. Additionally Splash uses 107 times
less bandwidth compared to BarterCast to achieve the same data coverage.
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Chapter 1

Introduction

A peer-to-peer architecture is any distributed network architecture composed of
participants that share portion of their resources directly to the rest peers of the
network, without the need for a central server. In a peer-to-peer network all partic-
ipants are both clients and servers at the same time, as opposed to a client-server
network where nodes have distinct roles. The shared resource can be either band-
width, storage space or computing power in any combination.

Peer-to-peer networks often implement application level overlays that provide
additional functionality such as message routing and resource searching. Overlays
can be divided into two categories, unstructured and structured. In the former con-
nections between peers are established in an arbitrary way, usually based on peer
responsiveness and discovery through other peers. Peers use flooding to locate
resources, namely they sent a message to all their neighbors that is sequentially
forwarded to the neighbors of the neighbors and so on. Flooding is resource de-
manding and peers may fail to locate a resource.

On the other hand structured overlays use sophisticated indexing mechanisms,
such as the distributed hash table (DHT) [1], to create connections with others and
to route messages efficiently. Compared to the unstructured overlay this is more
effective, less messages are transmitted and even rare resources can be located.
However structured overlays are more vulnerable to churn and can be practically
destroyed when they is no security mechanism, by injecting invalid information in
the DHT.

Peer-to-peer networks are resource scalable by design. As nodes arrive and the
demand for resources is increased, the total capacity of the network also increases.
The system is more robust compared to a client-server network architecture be-
cause there is no centralized node that can turn into a single point of failure.

Today peer-to-peer networks are used for content delivery, for sharing super
computing power during scientific experiments, for IP communications and most
commonly for file sharing. Peer-to-peer file sharing was revolutionized in early
2000 by Napster [2] and now a large amount of file sharing protocols and networks
exist, such as BitTorrent.
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1.1 BitTorrent

BitTorrent is hybrid peer-to-peer and client-server protocol which is widely used
to distribute files. The downloading and uploading of the actual data is done in
peer-to-peer manner, whereas peer discovery is centralized and relies on a tracker.
It was first introduced in 2001 by Bram Cohen [3]. BitTorrent is currently the most
used peer-to-peer protocol for file exchange and it is estimated that it is responsible
for about 50% of the Internet traffic [4]. Numerous compatible software clients
exist, both proprietary and open source, that can be used to download millions of
files.

1.1.1 BitTorrent Technology

BitTorrent is a simple protocol. A user who wants to share a file or a collection of
files creates a single .torrent file using the appropriate software. The .torrent file
contains information about the files to be shared, such as their size and their hash
values. It additionally includes one or more user-defined IP addresses of trackers.
The tracker is a server used by peers to locate other peers of the network. Once the
.torrent is created the user has to distribute it and connect to the tracker as the first
seeder of the torrent file. A peer is defined as a seeder when it owns 100% of the
data of a .torrent.

Users usually post .torrent files to public web portals, especially designed to
serve that type of file. Other users get .torrent files from the web portal and start
downloading their contents from the peer-to-peer network using the appropriate
software. Peers locate other peers through the tracker. The new peer is called
leecher of a torrent until it completes its downloading and transforms to seeder.

The collection of seeders and leechers of the same torrent form a swarm. To
encourage fair trading of information BitTorrent incorporates a tit-for-tat scheme,
according to which peers favor the ones that have uploaded data to them. This
policy improves the overall speed of the swarm, by creating incentives for users to
cooperate. However it often develops suboptimal situations, for example when a
peer first join the swarm and has no data to exchange. To counter these effects the
BitTorrent protocol uses a mechanism called optimistic unchoking that commits
peers to use part of their upload capacity to help random peers in the swarm.

Later developments in the BitTorrent protocol introduced more advanced tech-
nologies such as the Distributed Hash Table (DHT) [1] to provide decentralized
tracking and the Peer EXchange (PEX) [5] protocol to exchange peer information.
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1.1.2 BitTorrent Communities

A large number of websites provide indexing and searching for torrent files1, a
functionality which is absent from the BitTorrent protocol.

The users who search and download from specific websites formed communities.
Several of these websites were enhanced to provide user management abilities to
administrators, which lead to private communities also known as Darknets [6].
Users need special access authorization to join them, that can be obtained either by
simple form registration, invite code or directly from the community administra-
tors.

As BitTorrent gains popularity the websites continue to grow adding more and
more features for the users, such as the ability to submit descriptions for the tor-
rents they upload, or comments for the torrents uploaded by others. To ensure the
quality of the provided service, elite members of the community obtain moderation
privileges that allow them to remove or star torrents. Respectively the rest of the
users obtain voting rights to rate torrents as good or bad and indirectly determine
the reputation of the torrent uploader.

To achieve better member experience and higher speeds private communities
augmented the user accounts with a metric called sharing ratio. The sharing ratio
represents the cooperation of the user in the community and not only a specific
swarm. It is defined as the percentage of the overall upload traffic over the overall
download traffic of the user. Communities often require that the users have a shar-
ing ratio of over 0.8. Users who fail to follow this rule receive warnings or penalties
and eventually are forced out of the community, by denying tracker access.

Sharing ratio builds in an indirect way memory into the stateless tit-for-tat
scheme and creates incentives for users to seed after they have downloaded the
entire file and to share a file in the first instance. The use of this metric increases
the overall download speeds in private communities as described in [7] and [8].

To summarize the community websites provide fundamental services of the Bit-
Torrent network and create incentives for the users to join and expand the list of
available files. In combination with the tracker software the overall client-server
based communication related to BitTorrent is increasing, despite the latest progress
in decentralizing the protocol.

1.2 Tribler

Tribler2 is a peer-to-peer application designed for the next generation peer-to-peer
networks. Tribler incorporates a number of technologies to provide a fully decen-
tralized solution for file sharing and community management. It provides index-
ing and searching for torrents, fully distributed tracking, content recommendation

1The Pirate Bay (http://www.thepiratebay.org) and isoHunt (http://www.
isohunt.com) are two of the numerous available websites that serve as index and search engines
of torrent files.

2Tribler’s official website is located at http://www.tribler.org.
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based on previous choices, file moderation, RSS feeds, user reputation which de-
fines his sharing ratio as good or poor and other interesting features.

The Tribler team created a family of protocols that form an overlay network and
provide the mentioned functionality: BarterCast is responsible for disseminating
information on peer download and upload activity, VoteCast implements the mod-
eration and voting system, ChannelCast for creating channels and so on. Each
protocol transmits meta-data essential for its operation over the overlay network
using a gossip protocol.

1.3 Contributions

In this thesis we present the design and implementation of a novel data synchro-
nization mechanism, called Splash, which can be used to exchange meta-data in
peer-to-peer networks. We focused on increasing peer coverage, namely the per-
centage of overall available information in the network that a peer knows, in an
effective and bandwidth efficient way. Splash delivers high coverage results even
with high peer churn rate and can be improved with a security mechanism to with-
stand fake information injection from malicious peers.

The contributions of this thesis are the following:

• We research data distribution and set reconciliation solutions and their design
decisions.

• We propose a novel data synchronization mechanism that can deliver large
amount of meta-data, utilizing partial or full synchronizations according to
the needs of the application.

• We simulate and calibrate the parameters of the mechanism to fit the Tribler
network.

• We suggest extensions of the proposed mechanism, to enhance the results of
special conditions such as long absence from the network.

1.4 Document Layout

The remainder of this document is organized as follows: In Chapter 2 we describe
the current data synchronization mechanism employed in Tribler, its performance,
and the research questions that this work was based upon. Chapter 3 focuses on
prior work and known data synchronization techniques. We select methods de-
signed for database synchronization with focus on bandwidth utilization and a data
structure named Bloom Filter, a well known and used method to compress your
inventory of information.

The basic algorithm of Splash along with its improvements and expansions are
described in Chapter 4. Chapter 5 contains information about the simulation of
Splash and BuddyCast and the dataset used. The simulation results and comparison
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graphs are included in Chapter 6 and finally in Chapter 7 we discuss the results of
this work, we compare it against the current implementation and prospect the future
possibilities.
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Chapter 2

Problem Description

In this chapter we discuss in detail the gossip algorithm currently used in Tribler.
We lay down the research questions to be answered by this thesis, after examining
performance results and implementation limitations of the mechanism, as well as
the goals of Tribler.

2.1 Current Tribler Technology

Tribler is moving the activity of the communities away from the web and into the
peer-to-peer network itself. A collection of different components is used to dis-
tribute, collect and process information of the network, from which useful results
can be extracted.

One of the main reasons private communities are so successful in the BitTorrent
world is the sharing ratio mechanism. The mechanism creates incentives for peers
to seed more, which results to higher download speeds for all. BarterCast is a fully
distributed equivalent mechanism that is currently deployed in Tribler.

BarterCast is a protocol for reputation management. In BarterCast real time up-
load and download statistics are broadcasted to other peers with a gossip protocol.
This information can be instantly used to calculate the reputation of a peer, i.e.
how well or bad it has treated others in the same network. Since there is no central
authority to verify that a peer is not lying, like for example a website, BarterCast
employs the MaxFlow [9] algorithm to normalize received information. BarterCast
creates incentives for the users improve their cooperation in the network, limits free
riders and increases the overall download speeds.

For every download or upload that takes place between two Tribler peers a new
BarterCast record is created and saved in their local database, called MegaCache.
Each record contains the unique identifies for the peers called PermIDs, the size
of the uploaded and downloaded data and finally the date and time that the trans-
action took place. Records from the MegaCache are used to construct BarterCast
messages.
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# PermID PermID Data Uploaded Data Downloaded Timestamp
1 MFIwEze...JUNhs MFIZIz...ddfRa 1495297 10507114 1245456594
2 MFIwEze...JUNhs MFIZIz...e3rFs 478956 10507114 1245468791
...

...
...

...
...

...
20 MFIwEze...JUNhs MFIZIz...koJHs 85805 1258 1245862188

Table 2.1: Example records in a BarterCast message

Peers transmit BarterCast messages to inform others about their network experi-
ence. A BarterCast message is send periodically, every 15 seconds, or in response
to a received BarterCast message. The receiver is selected either randomly or from
a list of taste buddies which is generated using a similarity function [10]. To avoid
contacting the same peer too often and therefore transmit duplicate data, a peer is
contacted at most once per cycle of 4 hours.

Each message contains the last 10 transactions of the peer and 10 transactions
with the largest download values. Peers include only information that are positive
to be true, namely transactions that they where part of, due to the lack of a security
mechanism to validate message authenticity. Table 2.1 contains example records
contained in a BarterCast message.

BarterCast can be classified as a gossip exchange protocol since every peer
replies to a BarterCast message with another message. A gossip exchange protocol
effectively doubles the number of messages exchanged in the network. BarterCast
is also a stateless protocol, meaning that peers do not hold knowledge about what
the other peers know or which records were transmitted earlier.

These attributes of BarterCast create a network of peers that exchange a lot of
information however most of it is likely duplicate. Duplicate records are not only
useless but also consume a lot of bandwidth and CPU resources, to be transmitted
and processed accordingly.

We observe, from analysis of the current Tribler network [11], that the big ma-
jority of the peers hold only a fraction of the available records, that is to say that
almost 99% of the peer possess less than 20% of the overall records. Only 0.5% of
the peers have a good view of the activity in the network, i.e. more than 80% cov-
erage, and therefore can make good decisions. The average low coverage delivers
a strong hit on the usefulness and accuracy of the reputation function and overall
in the network operations.

We can additionally draw conclusions on the churn rate of the peers, in other
words how much time a peer stays on-line. The vast majority of the peers stay
on-line for a very short time, practically for as long as a download lasts, behavior
that further throttles the data spreading.

The dataset used to extract this information was collected in the period of June to
September 2009 by the Tribler team and it contains more than 1,3 million records
and 9,000 unique Tribler PermIDs. The same dataset is used to create the graph of
Figure 2.1.
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Figure 2.1: BarterCast graph: Representation of the network activity based on
BarterCast records. Each node represents a peer and each edge a BarterCast trans-
action. Source: [11]

BarterCast protocol is not directly sending data to the network but instead its
payload is attached to BuddyCast messages. Similarly other protocols such as the
VoteCast and ChannelCast, piggyback on BuddyCast, thus equivalent dissemina-
tion results can be expected from all components of Tribler. BuddyCast [12] is a
peer-to-peer epidemic protocol stack, responsible for spreading information in the
Tribler network.

We use BarterCast as a case study throughout this thesis since it is such an im-
portant part of Tribler and it is responsible for a large part of the meta-data moved
in the Tribler network.

2.2 Research Questions

Within the Tribler context we study a new data synchronization mechanism to over-
come the problems and limitations of the current version. We investigate a flexible
design that can introduce new possibilities and allow the further development of
the Tribler network.

We look into a new mechanism that can answer the following research questions:

How can we achieve high coverage ratio for all the peers in the network while
using as little bandwidth as possible? We want to develop a solution that will

9



move the majority of the peers from the 20% information coverage barrier up to
90% or more.

How can such a mechanism scale to millions of nodes? The advantage of peer-
to-peer systems over the client-server model is their scalability. Tribler may have
just a few thousand peers at the moment but the next generation network should
be able to scale to millions. How can we deal with the ever increasing need for
network bandwidth and disk space to move and store all the available network
information?

How can we reduce the effects of high churn rates? Peers join and leave the
network in high rates. This prevents network data synchronize and results in nodes
with not enough knowledge.

How we secure that the data transmitted are genuine? The lack of central
authority in peer-to-peer networks makes it easier for malicious peers to inject fake
data into the network. Any solution must accommodate a set of measures to prevent
spreading invalid data to other peers.

10



Chapter 3

Prior Work and Known
Techniques

The synchronization of data in distributed environments has always been challeng-
ing research topic. Multiple algorithms have been proposed and implemented aim-
ing to achieve minimum bandwidth usage, full data synchronization, minimum
computational complexity or a combination of those. We investigates data struc-
tures which can be used to exchange information about the data sets and on set
reconciliation techniques that efficiently combine databases, with focus on flexible
designs with efficient bandwidth management.

3.1 Bloom Filter

The Bloom filter is a probabilistic data structure formulated by Burton Howard
Bloom in the 1970’s [13]. The structure is used to determine whether an element is
a member of the set represented by the structure, in a fast and space efficient way.
Space efficiency comes with the price of false answers. Bloom filters can trigger
false positives, hence suggest that an element is member of the filter while it is
not. On the other hand false negatives are not possible. In the original Bloom filter
design it is possible only to append elements and impossible to delete. Each and
every addition in the filter increases the rate of false positives.

A Bloom filter is an array of m bits, where k is the filter size. The filter bits
are initialized to zero. A collection of k independent hash functions operate on m

k
positions of the array from which for every input one of them gets activated, with
a uniform random distribution.

To add an element to the filter, first its value has to be hashed using the k func-
tions and then the resulting array positions have to be set to one.

To query an element, first its value has to be hashed using the k functions and
then all the resulting positions have to be checked against the array for their value.
If all the positions have the value of one then the item belongs in the array, other-
wise even if one position has the value of zero item does not belong in the array.
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Figure 3.1: An example of a Bloom filter, representing the set x, y, z. The col-
ored arrows show the positions in the bit array that each set element is mapped to.
The element w is not in the set x, y, z, because it hashes to one bit-array position
containing 0. For this figure, m=18 and k=3. Source [14]

The Bloom filter provides a compressed from of a set representation. Compared
to other data structures for representing sets it uses less space to store the same
number of elements. Moreover the use of a bit array and hash functions yield great
speed both while adding and searching for elements, at the cost of calculating k
hash functions and accessing k bits in an array.

On the contrary the small space requirement of the Bloom filter restricts the ac-
curacy of the solution. Bloom filters are known to raise false positives, declaring
that an element is a member of the set while it is not. Nevertheless the probability
of a false positive, the false positive rate can be estimated precisely in a straight-
forward fashion, using the following formulas:

(1− [1− 1
m ]kn)k

which is almost equal to

(1− e
−kn
m )k

for k being the number of independent hash functions, m the size of the bit array
and n the number of elements in the set. Knowing in advance the maximum number
of elements that can be in the set and the number of hash function to be used, we
can adjust the size m of the array to bound the error rate so that is acceptable for
the application.

The attributes of the Bloom filter, namely the small size and the speed of addition
and query, turns it into a good solution for a wide range of problems. The broad
adaptation of the idea created vast amount of derivative works, which try either to
solve the limitations of the original implementation or add new features.

The Scalable Bloom Filters by Almeida et al [15] overcome the problem of
increasing error rate when adding more elements to a set, by introducing the use
of a collection Bloom filters which adapts dynamically to the number of elements
stored. Their key point is that they guarantee a maximum false positive rate.

12



The Compressed Bloom Filters by Mitzenmacher [16] introduce methods to re-
duce the number of bits required to communicate the Bloom filter among inter-
ested hosts, while maintaining the false positive rate sufficiently low. The reduced
bandwidth usage comes at the cost of higher processing time for compression and
decompression and more memory use at the hosts.

The Counting Bloom Filters [17] address the problem of element removal from
the set. In the original Bloom Filter implementation is impossible to remove a sin-
gle element from the filter by zero-ing the indexes produced by the hash function
for this element, since the same indexes or part of them may represent the existence
of other elements in the array as well. Proceeding with zero-ing indexes will intro-
duce false negative errors and will eventually destroy the filter. Counting Bloom
Filters suggest the replacement of bit array with an array of unsigned integers. On
every addition the corresponding array element is increased by one and on every
deletion is decreased by one, hence each position in the array represents how many
items of the filter use it. Removal comes at the cost of larger space to store and
transfer of the Bloom Filter due to the change of array type.

The above Bloom Filter variations are some of the literally tens available, since
the Bloom Filters have been actively studied and extended for more than 40 years.
We selected and studied the variations that have attributes which would help resolve
our research questions.

The Bloom filters have been adopted to solve numerous problems in the database
field and later in the networking field. It is known that the Bloom filters are used
in Google’s BigTable [18] implementation to reduce the disk look-ups for non-
existent rows and columns, in Squid Web Proxy [17] software to improve the cache
system, in hyphenation [13] and spelling systems [19].

Bloom filters have also been adopted lately in the field of networks, to build
distributed cache system [17] and in peer-to-peer networks, such as the Vistabar
[20] web browsing assistant.

As a result of the wide acceptance, a great number of Bloom filter implementa-
tions exists for many programming languages including C, C++, Java, Python and
others.

3.2 Set Reconciliation

The Set Reconciliation scheme was developed by Minsky et al [21] as an algorithm
to calculate the number of differences between datasets maintained by two hosts,
with low computational and communication complexity. This scheme can synchro-
nize hosts by sending one message in each direction of length |A−B|+ |B −A|,
hence essentially independent of |A| and |B|. The messages exchanged contain
a translation of the data in the set in a certain type of polynomial known as the
characteristic polynomial.

Each host maintains a characteristic polynomial of the elements in its dataset
and sampled values of it. In the event of a synchronization the two hosts exchange
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the sampled values of their characteristic polynomials and sequentially they can
calculate the set of differences by interpolating a rational function.

The algorithm was developed by Minsky et al as an answer to the high compu-
tation complexity required by prior work to calculate the set to differences. Other
set reconciliation methods provide nearly optimal communication complexity, but
the computational complexity is cubic in the number of differences. This version
requires linear computational time while it maintains an acceptable communica-
tion complexity. Furthermore the algorithm provides exact set reconciliation and
guaranties full synchronization of all entries between the communicating hosts.

On the other hand multiple rounds of communication are necessary for the algo-
rithm to operate correctly. It is also demanded that the upper bound on the number
of differences between the hosts is known. In the case of wrong upper bound es-
timation the number of rounds increases while the hosts calculate new values for
it. Both these requirements can be addressed or may be of low importance in con-
trolled networks but in an unmanaged peer-to-peer network, where nodes join and
leave in unpredicted ways the number of rounds must be as low as possible. More-
over the nature and size of the network makes it really difficult easily calculate the
upper bound the number of differences between hosts, thus increasing the number
of rounds.

The algorithm is more efficient when the sets in question contain a large num-
ber of elements but only a few differences exist between them. If that is not the
case Bloom filters and other synchronization methods can achieve faster results
[22]. Finally the algorithm is based on complex mathematical functions, making it
difficult to program, debug and maintain.

Two proof of concept implementations of Set Reconciliation exist, one from the
original authors [23] and one from S. Agarwal et al [22][24][25]. The latter focused
on implementing a real life application that synchronizes data between a PC and a
PalmPilot.

3.3 Approximate Set Reconciliation

The Fast Approximate Set Reconciliation was designed by John Byers et al [26]
as synchronization method for peer-to-peer networks. Primary focus of this algo-
rithm is to synchronize as much data as possible between two hosts using only one
message. Byers compromises the exact reconciliation provided by the algorithm
presented in Section 3.2, with faster computation and less network communication.

To achieve the speed and efficiency Approximate Set Reconciliation utilizes all
three of Bloom filters, Patricia tries and Merkle trees. Bloom filters are used to
provide compact representations of the sets, Patricia tries for structured searching
of subsets and Merkle trees to make comparisons of the subsets practical.

In more detail each host creates a Patricia trie its records. Each node of the trie
holds a subset of the whole dataset. The construction of the the trie makes exact
comparison of nodes in constant time impossible.
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To provide constant time comparison, Merkle trees are build upon the Patricia
tries. Merkle trees make use of hash functions to represent the nodes of the Patricia
trie, in a way that they can be directly used in a set reconciliation algorithm. The
advantage of using Merkle trees is that now we can perform constant time compar-
isons, with the risk of false positive due to hash collisions. Finally Bloom filters
are used to compress the data and to provide fast transfer of Merkle trees between
hosts.

Approximate Set Reconciliation utilizes Bloom filters, Patricia tries and Merkle
trees, using each and every one of them for what they perform best. As a result this
solution provides a fast way to determine the differences between two hosts. The
use of only one message for the communication provides added value, because it
is a key feature for an unmanaged peer-to-peer network with high churn rates.

However to host all the representations of the local set could be of a considerable
size depending on its size .

On the other hand the adoption of many structures all in one algorithm for com-
municating differences between hosts can develop into a considerable issue inde-
pendent of the application. The development of such application will be difficult
to debug and maintain and therefore lead to insufficient implementations. Finally
the use of hash functions and compact representation of the set may results in col-
lisions which will prevent the full reconciliation of the hosts. Incomplete join of
the sets may or may not be a complication depending on the application.

3.4 Optimized Union of Non-disjoint Distributed Data
Sets

The Optimized Union of Non-disjoint Distributed Data Sets is the work of Dar et
al [27] on server planning techniques. The goal of their research is to to develop
efficient algorithms that avoid redundant data transmission of data while synchro-
nizing from distributed databases. The common case in many distributed systems
is that peers hold different sets of elements that partly overlap, therefore the same
records are transmitted more than once, in the cost of network and time resources.
This research provides algorithms for peers to co-operate and simultaneously trans-
mit data to a receiver peer at minimal time.

The algorithm describes three functions, that are used from the peers acting as
data providers to a receiver peer, with which peers communicate theirs datasets
and decide the data flow towards the receiver. The algorithms works in a greedy
manner, constantly checking the bandwidth usage of each peer and recalibrating it
accordingly, to achieve optimal use of the download capacity of the receiver.

The algorithm was designed in the first place to avoid redundant data transmis-
sion and optimally exploit the network bandwidth capabilities. Theoretically one
peer can get a full update on the element missing from the local set by performing
only one action and at the top speed the network allows.

Server planning as described from this research will be more appropriate for a
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network with trusted peers and low churn rates and not for an unmanaged network,
where malicious peers may join and be part of the planning therefore easily in-
jecting false data in the network or causing a performance downgrade or even a
complete failure of the scheme.

Moreover the solution compromises on the accuracy to be bandwidth and time
effective, which results in either hosts with incomplete databases or in duplicate
transmission of records. As in other algorithms this is something to be questioned
harmful or not depending on the application.

Finally to implement the suggested sophisticated ways of optimization prior
knowledge of the bandwidth upload and download rates must be known and be
guaranteed, which is not the case for the Tribler peer-to-peer network where many
heterogeneous peers co-exist.

3.5 Efficient Reconciliation of Unordered Databases

The research paper “Efficient reconciliation of Unordered Databases” is a work of
Trachtenberg and Minsky [28] who also worked together on “Set reconciliation”
[21] described in Section 3.2. Although there are similarities between the two
algorithms, they are independent.

The goal of this research is to determine the mutual difference of two databases
with a minimum communication complexity. The proposed solution uses elemen-
tary symmetric polynomials to encode database records.

Two instances are analyzed by the authors, a client-server model and a more gen-
eral peer-to-peer model. For the latter two simple divide and conquer reconciliation
algorithms are provided.

The basic concept of the algorithm is that two peers recursively compare subsets
of the datasets of the peers using hashes and communicate the elements that appear
missing from each subset. Two solutions for peer-to-peer systems are provided by
the authors which both follow an interactive divide and conquer design but differ
in the method of splitting the data space.

The authors claim that their solution for database reconciliation is known to have
practical computational complexity and almost optimal communication complex-
ity. The peer-to-peer version described earlier is a simple algorithm which requires
only one hash function to operate.

The algorithm it is designed for peer-to-peer systems nevertheless it is interactive
and not single message. It involves multiple rounds, relevant to the number of
differences between the databases of the peers, that for the peer-to-peer system we
study is not a practical solution as we try to limit the rounds as much as possible.
An additional disadvantage of the algorithm is that it targets networks where peers
maintain databases that have at least half of the elements in common.
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Chapter 4

Design and Implementation of
Splash

Splash consists of a basic algorithm based on Bloom filters that can be used to
transfer any kind of information. First we explain the basic implementation and
then we extend and enhance it to limit the bandwidth usage, to enable partial syn-
chronization and to provide scalability.

We discuss a security mechanism for record validation and consecutively, we
introduce multi-hop gossiping which increases drastically the number of records
for synchronization. Finally we explain the use of compression that further reduces
the amount of transferred data.

4.1 Basic Bloom Filter Algorithm

The key point of the basic algorithm is to avoid duplicate information from being
transmitted. Peers can maintain a database of previously synchronized data for
each and every peer they meet with, however this is cannot be done a large scale
peer-to-peer environment.

Instead we use Bloom filters (Section 3.1) to represent previously synchronized
data. The filter is transferred first, at the start of each synchronization and then
used to select records which need to be synchronized.

We choose Bloom filters because they have been studied and used for more than
40 years and we have solid knowledge about their workings and limitations. Mul-
tiple Bloom filter implementations exist, that cover a wide range of programming
languages and offer highly optimized hash functions and data structure implemen-
tations. Using them we can design our data synchronization mechanism in a way
that corresponds exactly to the needs of the project by taking advantage of the
Bloom Filter flexibility.

Bloom filters offer a good balance between computational complexity and band-
width usage. Prior work claims that Bloom filter implementations can be more
efficient under specific circumstances [22], compared to more sophisticated solu-
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tions, like Set Reconciliation (Section 3.2). Last but not least using Bloom filters
we can construct a synchronization algorithm with low implementation complex-
ity. It is always important to keep the code base clean and simple so it can be
debugged and further extended, especially in a project like Tribler which escapes
the academic environment and targets end users and open source developers.

The basic algorithm follows: Peer B creates a filter that contains a compressed
representation of its database and gets transmitted to peer A. The latter checks
which of its entries do not exist in B’s database and send these back. Peer A’s
reply is targeted to Peer B and only contains information that it is not already
known.

The basic algorithm can be inspected in Listing 1 and in the upper left graph of
Figure 4.1.

Listing 1 Basic Bloom Filter Algorithm

1. Peer B sends Bloom filter to Peer A

2. Peer A checks every record in its database against the received Bloom filter

3. Peer A replies with the records that where not included in the Bloom filter

4. Peer B saves the records and updates the Bloom filter

After a few synchronizations as shown in Figure 4.1 all peers hold the same
information. Note that in all three synchronizations only the missing records are
transferred. Especially in the third synchronization the return set is empty, since
peer C already holds all the records of peer A, although this is the first time these
two peers synchronize.

In this basic design every peer maintains a Bloom filter, that contains its entire
database, which is transmitted at the start of every synchronization. For every new
record in the database the Bloom filter has to be updated and at each sync it is
transmitted to the other party.

Each record to be included in the Bloom filter must be unique to avoid false
positives. Currently Tribler stores BarterCast records in the MegaCache, an sqlite
database. A BarterCast record can be uniquely identified among the whole network
by combining the PermIDs and the date and the time of the record creation. To
include a record in the filter we hash a string containing all these values. Similar
combinations and be found for other protocols as well, so this algorithm can we
used to synchronize any type of data.

However the original Bloom filter implementation does not support deletion,
therefore a variation like the Counting Bloom filters1 must be used to delete expired
records. Moreover because we do not know in advance the number of records the

1Counting Bloom filters offer item deletion from the filter. An integer array is used to store the
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Figure 4.1: Example synchronizations using the basic Bloom filter algorithm. Only
the missing records are transferred.

filter will hold, we risk to increase the false positive rate too much if we do not use
a solution like Scalable Bloom Filters2.

Note also that the Bloom filter represents the entire collection therefore it grows
linearly along with the size of the collection and becomes expensive to transmit.
The maintenance of one only filter imposes serious limitations and weaknesses that
motivated us to work further on the design.

We extend the basic design and we suggest that peers create Bloom filters in real-
time, during the synchronization with another peer. These filters will be for a single
use and therefore there is no need for deletions. Also the number of elements to be
included is known beforehand so we can control the error rate with high precision.
Moreover if we intelligently select the records to be included we can produce even
more efficient filters that are smaller in size and contain only information that is
important for that specific transaction.

Real-time Bloom filters (Listing 2) come at the cost of higher CPU utilization,

filter instead of a bit array. For every insertion the value of array elements used is increased by one.
The reverse procedure can be used for deletion. This extension comes at the cost of higher Bloom
filter size. [17]

2Scalable Bloom Filters create a list of plain Bloom Filters which is expanding with new Bloom
Filters when needed to limit the false positives to a predefined number. [15]
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since we have to compute a new filter for each synchronization. We can limit this
effect by using highly optimized hash functions and Bloom filter implementations,
in combination with the limited number of elements in each filter.

Listing 2 Real-time Bloom Filter Algorithm

1. Peer A creates a specific Bloom filter for Peer B

2. Peer A sends Bloom filter to Peer B

3. Peer B checks every of record in its database against the received Bloom
filter

4. Peer B replies with the records that where not included in the Bloom filter

5. Peer A saves the records and deletes the Bloom filter

4.2 SyncLog

We continue our work on the primary research question of reduced traffic by adding
SyncLog to Splash. SyncLog is a database that contains PermID and timestamp
pairs. Each pair is a synchronization point, namely it declares the last successful
synchronization time with a specific PermID.

Using SyncLog we can intelligently select the records to be included in the real-
time Bloom filter. Before generating the Bloom filter peerA will look-up when the
last synchronization with peer B took place and include only records that where
inserted in its local database after that timestamp. This timestamp is sent along
with the Bloom filter to peer B so it can also constrain its activity accordingly.

All the records before the last synchronization point of two peers have been
successfully synchronized in previous contacts. Therefore there is no need for peer
A to include them in the Bloom filter nor for peer B to check them against the
Bloom filter.

SyncLog bounds the number of records and therefore reduces the traffic required
to transmit the filter and the processing time on both hosts. The algorithm is dis-
played in Listing 3.

Furthermore SyncLog enables partial synchronization. Partial synchronization
means that two peers do not synchronize all their data in one communication, in-
stead they set limits on the number of records synchronized. The limits relate
either on the number of records, e.g. only 100 records per synchronization, or a
time-frame, e.g. only records created in 2009.

Partial synchronization provides extra flexibility in the design which can prove
useful in various network deployments. For example in the Tribler network where
most of the peers suffer from limited upload bandwidth and high churn rates, an
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upper bound on the number of records limits the use of the link and reduces the
number of unfinished synchronizations due to peers going off-line.

Partial synchronization is implemented with SyncLog as following: Peer B
lower bounds the return records with timestamp t2. Along with the records peer B
sends a timestamp which represents the record creation date and time of the newest
record in the returned set. Peer A saves in SyncLog the received timestamp instead
of the current date and time. Later peer A can collect the rest of the records by
using the SyncLog during a new synchronization with B.

Listing 3 SyncLog Algorithm using Real-time Bloom Filters

1. Peer A reads the last successful synchronization date and time with peer B
from the SyncLog, t1

2. Peer A creates a Bloom filter with entries newer than t1

3. Peer A sends Bloom filter and timestamp t1 to Peer B

4. Peer B checks every of record with creation time newer than t1 in its
database against the received Bloom filter

5. Peer B replies with (a fraction) the records that where not included in the
Bloom filter and the timestamp t2 of the record from the set with the newest
local creation time.

6. Peer A saves the records, deletes the Bloom filter and stores t2 in SyncLog.

SyncLog records are stored in a database and can grow relatively large. The
more new hosts one peer contacts and synchronizes with, the more entries are
created in the SyncLog. This behavior can potentially create a large database table
with PermID and timestamp pairs which will impact the access speed and consume
a lot of disk space. We can prune records from the database to keep the size of the
database within limits using a well selected deletion policy.

The use of the SyncLog does constrain the number of records under consid-
eration in both sides of the line however it is not optimal for all situations. For
example peer A synchronizes with peer B at t1. Between t1 and t2 where t2 > t1,
both A and B synchronize large amounts of records with other peers. At t2 peer
A requests a synchronization from B and generates a Bloom filter with records
newer than t1. The Bloom filter is relatively large because A obtained a lots of
new records since the last synchronization and similarly the processing time for B
is relatively long. However because both A and B have synchronized with many
others it is highly probable that almost all records ofB all already known byA. As
a result both peers consume a lot of computing power and network bandwidth and
the gain for A, if it exists, is small.
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In a variation of the previous scenario, peer A synchronizes only a few new
records between t1 and t2. The Bloom filter is small and sent with low cost but B
has to compare a large amount of its local records against the Bloom filter to find
that only a few are included, thus consuming a lot of processing power for little
bandwidth benefit.

Another scenario is the following: PeerA, new to network, uses partial synchro-
nization as described in Listing 3 to bootstrap. It will start by receiving records
with older timestamps from each and every peer it meets, until it reaches the point
at which the other party returns records with recent timestamps. Since a synchro-
nization point relates on one PermID, the total of the historical information of each
peer must be traversed before A receives recent information from that peer, thus
creating a long bootstrapping period.

We did consider the introduction of additional parameters such as a date and
time range sent along with the Bloom filter to upper bound the number of records
to be checked, however that resulted in the increase of the protocol complexity and
offered small gain.

Special cases as the ones described are common in a unmanaged, open-to-join
peer-to-peer networks like Tribler. To address these it is needed to further research
and understand the type of data in the network, therefore we investigate the nature
of information being exchanged.

4.3 Live and History Algorithms

We extend our research by examining the type of data we want to synchronize and
the purpose of the network. We categorize data into new and historical according
to their creation time to bootstrap a peer fast and keep it up to date, while raising
its awareness about the past gradually. We suggest a algorithm based on the ones
sketched earlier, that of two parts, the live mode and the history mode.

Tribler wants to be an efficient content delivery network. Users are more inter-
ested in recent content (e.g. today’s news, latest music album) hence a every peer
must be able to learn about new data3 fast. At the same time a peer must expand
its knowledge about past events for the network to operate successfully.

This split of data enables peers to spread hot information faster and therefore to
get access to the interesting content faster. Information about previous transactions
is still valuable for the peer and it can be retrieved gradually from trusted peers.

When a peer joins the network it immediately enters the live mode which uses
for all its lifetime to synchronize new data. The key point of live mode is that
there is no SyncLog, peers agree that all the synchronization data exchanged refer
to events of the past 24 hours4. Bloom filters are in use again to filter out shared

3Note that new data does not imply to new content but rather active content. For example the
Debian Linux distribution swarm will be active and generating new data for around 2 years, until a
new version of Debian will be released and a new torrent created.

4The 24 hour frame was selected taking into consideration that Tribler usage and churn is related
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records.

Listing 4 Live Mode Synchronization

1. PeerA creates a Bloom filter with entries that have local creation time within
the last 24 hours

2. Peer A sends Bloom filter

3. Peer B checks every of record with creation time within the last 24 hours
against the received Bloom filter

4. Peer B replies with all the records that where not included in the Bloom
filter

5. Peer A saves the records, deletes the Bloom filter

Algorithmically ‘live mode’ (Listing 4) is the same as the basic Bloom filter
based method (Listing 1) except that all the peers agree to refer to the same time
frame. This time frame is bonded to the present hence it creates a sliding window
of updates.

Take note that ‘live mode’ implies no limitation on the number of records peerB
returns. Although there is no theoretical upper limit on the number of records that
can be created within a day, practically there is a limited amount of transactions
between nodes and thus new records. Having no limitation causes the news to be
spread fast while at the same time the 24 hour frame we suggest, keeps the number
of records to reasonable numbers. There is however the possibility that peer B
replies with less records than the maximum amount it can offer, which does not
violate the concept of the algorithm but it may impact the A’s coverage, depending
on the application. The specified time frame also keeps the size of the Bloom filter
within acceptable bounds..

The second part of the algorithm is the history mode. History mode co-exists
in parallel with the ‘live mode’. A peer can filter out peers that contain useful
historical data for itself, by examining records already in the database and other
parameters of the network. When a peer is located a transaction is made between
them containing historical records.

The algorithm (Listing 5) uses a SyncLog but instead of moving towards the
present, it moves towards the past. During historical synchronization between A
and B, the former transmits and the last synchronization timestamp with the latter,

to human activity. Different timezones, thus different online times demand for an at least 24 hour
frame, although the number can be easily configured to fit different applications.
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Listing 5 History Mode Synchronization with SyncLog

1. Peer A reads the last successful synchronization date and time with peer B
from the SyncLog t1 and transmits it to B

2. Peer B selects a record with timestamp t2 where t2 < t1 and replies with t2

3. Peer A creates a Bloom filter with entries created between t1 and t2

4. Peer A sends Bloom filter to Peer B

5. Peer B checks every of record with creation time between t1 and t2 in its
database against the received Bloom filter

6. Peer B replies with all the records with timestamp between t2 and t1 that
where not included in the Bloom filter.

7. Peer A saves the records, deletes the Bloom filter and stores t2 in SyncLog.

t1. In case there is no entry forB in the SyncLog, then the timestamp of the running
date and time gets transmitted.

Peer B examines its database of records containing items with creation dates
older than t1 and selects one of them. The selection can be based either on the
maximum number of records B is willing to transmit to A or on the maximum
number of hoursB wants to cover with only one communication. PeerB transmits
the selected timestamp t2, where t2 < t1, back to A.

Peer A generates a Bloom filter with records from its local database between t1
and t2 and transmits it to B where the typical procedure of checking against the
filter and returning rows will be performed. Finally A’s SyncLog will be updated
with the new timestamp sent by B for later synchronizations.

It B does not have any older records than the received timestamp it informs
A accordingly. Then B it is considered fully synced peer by A and it never gets
contacted again regarding historical data. Its entry gets deleted from the SyncLog
and its PermID gets hashed and included in a special Bloom filter which contains
all the fully synced peers. The final historical related message transmitted from
peer B is a local Bloom filter containing its fully synced peers. The received filter
can be appended to A’s using a logical AND function. Using this technique A
learns with which peers B is in full sync and therefore A is in full sync. Hence
A avoids contact with peers that does not have more historical data to share. The
SyncLog table does not grow indefinably as opposed to the algorithm presented
in Section 4.3. However note that the size and type of this Bloom filter must be
chosen carefully to be able to store enough PermIDs. Last but not least peer A
must trust B before adding its fully synced peer to the local Bloom filter.

The history mode can be deactivated or activated by the peers based on various
policies. For example a peer may deactivate it when it is low on disk space or
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alternatively activate when it wants to re-evaluate its similarity with others.

4.4 Scalability

Our second research question describes scalability. For scalability we aim to focus
the synchronization efforts on the most interesting peers. With this enhancement
peers keep track of the most relevant information and limit their traffic and storage
requirements.

We performed data analysis on the current Tribler network and we concluded
that, even for a relatively small sized network, transfer and storage of all the records
is a major issue due to the large amounts of content generated. However Splash is
designed to deliver the maximum amount of data as fast as possible, by randomly
selecting peers for synchronization.

We suggest that peers do not select their synchronization hosts randomly but
instead they select similar peers, i.e. peers with similar download activity. Only in
rare cases a synchronization occurs with other peers.

Since a peer is more likely to contact similar peers to download content, we
assume that the knowledge of meta-data about this peer and other similar peers, is
more important than about the rest of the network. For example it is more important
to be aware of the altruism of the similar peers compared to non-similar peers.
Hence the focus in peers with relevant information shall not interfere with network
experience of a peer.

Tribler incorporates a similarity function that was recently redesigned in [10]
to provide more appropriate results faster. The similarity function tracks the pat-
terns in download history, analyzes network activity and outputs a collection of
similar peers to the local peer. This information is currently used to improve the
keyword search for content in the network and can also be used to select peers for
synchronization.

The occasional synchronization with non-similar peers provides records that can
be processed again with the similarity function, to refine peer’s collection of similar
peers.

With this selection policy peers can transfer relevant information faster and
cheaper and at the same time the disk space requirements are lowered as we prac-
tically limit the number of records to be saved.

4.5 Security

For the forth research question regarding security, a mechanism is required to en-
sure the validity of the data in transport. Although it is out of the scope of this
thesis work to fully explore security, we propose a record validation mechanism
based on public key cryptography.

Public key cryptography provides authentication for data communication. Every
communicating party has a pair of private and public keys. The transmitting party
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signs a message using its private key. The receiving party can verify the message
if it holds the public key of the transmitter. Message verification guaranties that a
message was created by the holder of the private key and that the message has not
been altered in any way during transmission.

Tribler already includes Public Key Infrastructure (P.K.I.) which can be used
to improve Splash. Using this, peers can sign each and every record they generate
with their private key before sending it to others in the network. The record spreads
through the network using Splash and now always carries along the signature of the
original creator.

Taking advantage of P.K.I. peers can now identify and drop spoofed messages or
messages not properly signed and therefore prevent the spread of invalid data. The
public key required to verify each message can be retrieved using Splash itself from
network-wide trusted peers. The latter can be located using the Betweenness Cen-
trality [29] functions, currently under design by the Tribler team. These functions
examine the network formation and locate the central nodes, namely the nodes
connected to the most other peers which can be trusted with the task of public key
spreading.

However with P.K.I. we cannot determine whether a message has been created
using false values in the first place. Tribler already includes a function to normalize
the trust of peers towards unknown peers based on the MaxFlow [9] algorithm.
This function can not locate fake messages, but it can limit their effect and thus
turn them worthless.

4.6 Multi-Hop Gossiping

We further work on coverage and churn questions as posed in the problem descrip-
tion chapter by introducing Multi-Hop Gossiping. Peers can use Splash to syn-
chronize all records in their database, both the ones created locally and the ones
collected from other peers. The intelligent selection of records done by Splash
combined with a security mechanism on record level, as explained in Section 4.5,
introduce the possibility of multi-hop gossiping without the drawbacks of network
flooding or invalid information spreading.

The gossip mechanism currently deployed in Tribler does not allow multi-hop
gossiping due to security issues and also, it cannot exploit its full potential due to
the limited number of records in every message. On the other hand Splash can take
full advantage of multi-hop gossiping and increase the number of records available
for synchronization in orders of magnitude.

Multi-hop gossiping enables peers to receive more records with less synchro-
nizations and helps effectively to reduce the effects of churn, since the spreading
of records continues whether a peer is online or not.
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4.7 Compression

The final optimization of the Splash is the compression of the returned records dur-
ing a synchronization. Compression can further reduce the amount traffic required
for synchronization.

Compression algorithms are known to work better on larger text than on smaller.
Splash can send a large number of records on every synchronization, taking advan-
tage of multi-hop gossiping and its limitless design. Therefore the combination of
Splash with a compression algorithm results in savings in both traffic used and in
time spend.

Compression in Splash is meaningful only for the returned records and not for
the Bloom filters, which already contain data in a compressed form.

The addition of compression comes at the cost for higher need of computing
power but the use of well known and optimized algorithms provide an acceptable
trade-off to extreme traffic savings. We suggest the use the well known compres-
sion algorithms such as GZIP [30] or ZIP [31].
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Chapter 5

Experimental Setup

Our experimental setup consists of a simplified event simulator with plugable ar-
chitecture. We developed plugins to simulate both BarterCast and Splash protocols.
A second memory optimized simulator with Splash support was also developed, to
simulate larger networks with more configuration options. With both simulators
use a dataset created from real BarterCast records, crawled from the Tribler net-
work. The dataset contains more than 1,3 million records and 9 thousand PermIDs.

5.1 Simulator

In order to evaluate our design and to understand the performance characteristics
of Splash and BarterCast we created a simplified event simulator. We focus on
simplicity to provide initial quantitative performance results. However the syn-
chronization algorithms themselves are a full featured implementations instead of
simulations.

The simulator executes a series of events in the order of their timestamp. We
translate the actions of the network into series of steps. Each step contains a num-
ber of commands that normally are executed in real-time in the network, but the
simulator executes them sequentially. Once a step is complete the simulator moves
to the next time step. We choose to build a simplified event simulator to overcome
the hardware requirements of a real deployment in 200, 400 and 600 systems.

The simulator was built using the Python programming language [32] and the
Twisted Python asynchronous framework [33] and consists of two parts, the core
and protocol. The core provides all the functionality that is essential for the sim-
ulator to work, whereas the protocol instructs the simulator how to complete the
data exchange between two peers.

The core is responsible for the initializations and the management of the events.
At start parses the input parameters and creates sqlite [34] databases in memory,
each one representing the MegaCache of a peer. The total number of databases is
equal to the total number of peers that are being simulated.
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After the initializations of memory and of other essential parameters, the simula-
tor starts parsing the event file. Event files contain a series of space separated fields
defined as follows: time, perm-id-from, perm-id-to, downloaded and
uploaded. The first field defines the exact time the BarterCast record appeared
in the network and the following fields define the BarterCast record itself. Multiple
lines in the event file can start with the same time field and are considered to be a
step of the event simulator.

For every step, the simulator reads the actions to be taken from the event file. For
every line in the event file it injects into one database a BarterCast record with the
corresponding values. The database to receive the records is not chosen randomly
but it is the database owned by the peer with PermID equal to the perm-id-from
field of the line. This way we simulate the generation of BarterCast records in the
real network, using real data.

Before executing to the next step the simulator calculates how much time has
passed since the last synchronization of the peers. Note that since we are not using
real time but rather virtual time steps, the time that passed is equal to the difference
of the current action time stamp minus the last synchronization time stamp. If the
time passed is larger or equal to the user configurable synchronization interval,
then a synchronization round starts.

During a synchronization round the simulator instructs every peer sequentially,
in random order, to synchronize with another peer selected randomly from the list.
Once a peer receives the instruction to synchronize, it follows the steps defined in
the protocol section of the simulator. In some cases, instructed by simulator config-
uration parameters, where peers commit multiple synchronizations per round the
simulator ensures that all peers have completed one synchronization before mov-
ing to the next. As soon as the round is complete, simulator continues processing
the next time event.

A synchronization round is a time point that the all the peers synchronize, how-
ever the simulator executes the synchronizations in sequence and not in parallel and
chooses the pairs randomly thus faking the spread of synchronizations throughout
the whole time span between the current and the previous round. This design
decision for the simulator allows for better control of the number of the synchro-
nizations and time of their execution and also leads to simple dataset structure.
Experiments with the BarterCast protocol proved that the results of this simulator
are similar to values collected from a real network.

The synchronization interval (flag sync-interval), namely how often the
simulator enters a synchronization round, can be defined in seconds from the com-
mand line. The same holds for the number of synchronizations per round (flag
syncs-per-round) which represents how many synchronizations will a be
conduct during each round.

The simulation ends when the simulator completes with the execution of the
actions defined in the event file. Before exiting the simulator prints detailed infor-
mation about the number of records owned per peer and calculates the coverage
percentage for each peer and the average value for the network. The report also
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includes statistics about the total number of bytes transmitted and received by the
peers during the synchronization as global sum and as per peer average.

The protocol defines the series of steps a peer must do to complete a synchro-
nization. Both the ‘server’ and ‘client’ sides are programmed as Twisted Protocols,
defined in the Twisted Framework1. Each simulated synchronization does not dif-
fer from a real synchronization, as peers have to connect to each other through the
network, initialize the procedure, exchange data and cleanly close the connection.

The simulator architecture allows for pluggable protocols thus, multiple differ-
ent implementations can be tested using the same core. For our testing proposes
we programmed two protocols, the original BarterCast and Splash. The former
was created according to [35] and [12], whereas the latter according to the ‘live
mode’ algorithm described in Section 4.3. We focused on implementing the ‘live
mode’ algorithm to make fair comparisons with BarterCast which does not support
exchange of historical data.

The core defines two Factories1, one to be used as server and one as client dur-
ing a synchronization. The factories are created at the start of the execution of the
simulator and persist in memory until the end. We change the peer a factory rep-
resents by redefining the PermID and database it is connected before simulating a
synchronization.

The use of Factories and Protocols, and the Twisted Framework in general, as-
sist in the implementation of a full featured synchronization instead of a simulated
synchronization. This design allows the researcher to take into consideration pa-
rameters as such the protocol overhead, link bandwidth and others.

The simulator was used to produce results for the initial tests of the Splash pro-
tocol, as well as to simulate the BarterCast protocol in terms of coverage and band-
width usage. Due to the limitations imposed by its design, we constructed a mem-
ory optimized simulator (Chapter 5.2) to further investigate the attributes of Splash,
in larger networks and considering other parameters such as churn.

5.2 Memory Optimized Simulator

To increase the accuracy of our simulations and to study Splash performance better
we wanted to simulate networks with more than 200 peers. However the fully fea-
tured algorithm implementation and the use of separate databases per peer proved
to be a bottleneck while increasing the number of simulated peers. Therefore we
constructed a memory optimized simulator, especially designed for Splash, to con-
duct experiments in more depth.

By profiling the initial simulator we understood that having a unique sqlite
database for each peer, although it can help to study the size and the performance

1More information on the Twisted Framework exists on the official webpage http://www.
twistedmatrix.com. Detailed description of the Protocols and the Factories can be found at
http://twistedmatrix.com/documents/current/core/howto/index.html
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of each peer individually, limits the number of peers to the number of available
RAM. A sqlite database grows up to 50 MiB for 15.000 BarterCast records result-
ing in a demand for more than 10 GiB of RAM during simulation of 200 peers and
more than 30 GiB for 600 peers. Moving the database storage to hard disk to over-
come the RAM limitation issues, caused significant slowdown of the simulation.
Moreover the overhead of real sockets throttled the performance.

For the memory optimized simulator we completely removed the Twisted
Framework and the real sockets used in communication. We also removed the mul-
tiple database instances and replaced them with one database. This one database
aggregates all the BarterCast records into one big table and the peer PermIDs into
another table. The ownership of a BarterCast record is now defined as a foreign key
relationship between a row in the PermID table and a row in the BarterCast table.

This version of the simulator requires a fraction of the memory compared to its
predecessor. The linking of the records instead of copying increases dramatically
the speed of the simulation. As a result the memory optimized version of the
simulator allows the simulation of bigger datasets and larger networks in acceptable
amount of time.

We further extended this version to support churn simulation. Through
the command line interface we can define the churn-middle parameter.
Churn-middle defines the number of hours per day that a peer is active in the
network. On every day change, as instructed by the step timestamps and not the
real clock, the simulator randomly chooses for each peer the part of the a day
that it will be online. Both the time that a peer joins the network and the time
that a peer stays connected are selected for each peer individually. The amount of
time a peer stays online gets selected using a normal distribution with parameters
µ = churn-middle and σ = 1.

The last extension of the simulator is the semantic clustering support, used to
simulate the preference of a peer to synchronize similar peers instead random peers.
Again using command line parameters, specifically the semantic-groups flag,
we can define the number of semantic groups to be created from the simulator. Be-
fore the simulation begins peers get randomly distributed into groups, with one
peer belonging to only one group. During the synchronization round the peer
pairs to communicate are selected randomly but belong to the same group. The
semantic-random flag instructs the number of synchronization for which the
peers are selected randomly from the whole set and not only from the group, and
can be used in combination with the semantic-groups.

To summarize, the experimental infrastructure consists of two simulators, with
different design and capabilities, which can be used to simulate networks of 600
or more peers in a reasonable amount of time. We used the first simulator to mea-
sure BarterCast and Splash performance for small networks and datasets and the
memory optimized version to further explore Splash properties. The simulation pa-
rameters include the time interval between two synchronization rounds, the number
of synchronizations per peer per round, the amount of time a peer is online per day
and finally the number of semantic groups including the percentage of group syn-

32



chronizations over the overall network synchronizations. Multiple combinations of
all the parameter where used during the experiments presented in Chapter 6.

5.3 Dataset

An important part of the evaluation infrastructure is the dataset. It is a common
mistake, when investigating the behavior of a network, to use a dataset that does
not represent the actual activity of the network. For our experiments we used a
dataset of BarterCast records collected from the Tribler network using a crawler,
within the period June to September 2009. The dataset contains more than 1.3
million records that refer to more than 9 thousand PermIDs.

BitTorrent networks and therefore Tribler can be crawled to collected informa-
tion about the network, its health and to identify possible failures. Tribler has
integrated some additional support for crawling to augment the crawled informa-
tion. Despite the Tribler crawler connecting to each and every one Tribler client
it can locate and requesting records about its activity, none of the data collected
contains personal information about the user, the files exchanged or anything else
which could potentially evade his privacy.

Among other useful data the crawler collects the BarterCast records each peer
stores in its MegaCache. Using these records we can visualize the knowledge of a
peer about the rest of the network, as done for example in Figure 2.1. Furthermore
if we process the timestamps of a BarterCast record and the timestamps generated
when the crawler receives data we can calculate the moment a record first appeared
in the network.

Each BarterCast record in our dataset contains the following fields: peerid,
the PermID of the peer to which the record belongs, peer-id-from and
peer-id-to which contain the PermIDs of the peers involved in the Barter-
Cast transaction, downloaded and uploaded carry the number of bytes ex-
changed. Finally three timestamps last-seen, remote-peer-time and
crawler-time correspond to the time the peer was last seen, the local time
of the peer and the local time of the crawler accordingly. If we combine the
last-seen, remote-peer-time and crawler-time with the following
formula we can calculate the time record first pushed to the peer.

pushedtime = lastseen + crawlertime − remotepeertime

If the perm-id-from is the same as the peerid then the pushed time variable
represents the time a BarterCast record was created.

We extracted from the crawler database a list of all the BarterCast records.
We filtered the records keeping only the ones where peerid is equal to
peer-id-from and we calculated the time a record was originally created using
the function above.

Subsequently we sorted the peers by network activity in descending order,
namely how many records they generated in the period of 4 months and we pro-
duced three sets of 200, 400 and 600 peers accordingly.
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Figure 5.1: Visualization of the BarterCast dataset of one week (168 hours) with
600 peers and 20.000 records. The bars represent the number of records created
within the last 24 hours, namely the number of records available for synchroniza-
tion at each hour of the week using the ‘live mode’ algorithm.

For each of the three sets we generated three databases containing the BarterCast
records in which the peer-id-to value belongs to the set. The three different
sets and databases will be later used to simulate networks of different sizes. The
distribution of the records in the datasets is visualized in Figure 5.1.

34



Chapter 6

Experimental Results

In this chapter we present multiple simulations we perform for both the BarterCast
and Splash algorithms covering a wide range of cases. The BarterCast simulator
is run foremost using the crawler collected records. We examine the bandwidth
usage and data coverage of the BarterCast algorithm currently used in Tribler and
we verify that our results are similar to the results measured in the real network.

Subsequently we confirm that the Bloom filters can be used successfully to syn-
chronize data in a peer-to-peer networks by simulating small networks of 200 peers
with 8 hours of BarterCast records. During these tests we calibrate the false posi-
tive rate of our Bloom filter to 5% which provides a good balance between the size
of the Bloom filter and the false positive faults and ultimately we compare Splash
against BarterCast.

By taking advantage of the simulator’s configuration options, described in Sec-
tion 5.2, we measure the coverage and traffic of Splash while varying the number
of synchronizations per round, the round interval, the churn rate and the group-
ing of the peers.Finally we investigate the effects of churn on Splash by gradually
decreasing the peer uptime.

Each network experiment is repeated 10 times to confirm that the results are
always the same with minimal, less than 2%, standard deviation.

6.1 Basic Experiments

We used the first version of our simulator to get BarterCast simulation statistics re-
lated to coverage and traffic. The BarterCast column in Table 6.1 shows the results
of coverage, inbound and outbound traffic and the number of synchronizations for
a network of 200 nodes exchanging 8 hours of BarterCast records. The ‘synchro-
nizations’ metric represents the number of BarterCast messages transmitted, either
as a new message or as a reply to a received message.

BarterCast simulation results are in agreement with the image of the network
as sketched in problem description (Chapter 2.1) using data collected from the
crawler. The peers hold on average less than 20% of the total available information
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in the network while each peer performs a total of 398 synchronizations.
Since BarterCast is a push protocol, meaning that peers forward records of the

network, we expect the outbound traffic to be larger than the inbound traffic. The
former number corresponds to the protocol overhead and the actual record transfer
while the latter corresponds only to the protocol overhead.

We carry out the same experiment using Splash in ‘live mode’ with a time frame
of 24 hours. We select the configuration of Splash to be one synchronization per
4 hours, a total of 2 synchronizations for the 8 hour dataset of this experiment.
Respectively to BarterCast experiment, the ‘synchronizations’ metric counts the
number of messages received containing records. We aim to produce similar cov-
erage results to BarterCast so we can reasonably compare the bandwidth usage and
number of synchronizations of the two implementations.

BarterCast Splash Splash with Compression
Synchronizations (#) 398 2 2
Coverage (%) 18.92 20.10 20.10
Inbound Traffic (KiB) 2.66 1.83 0.33
Outbound Traffic (KiB) 46.55 0.13 0.13

Table 6.1: BarterCast and Splash simulation results for 200 peers for 8 hours of
BarterCast records. Numbers represent the peer average in coverage and traffic
and the total number of synchronizations per peer.

During these experiments we also measure the impact of data compression as
explained in Section 4.7 . The inbound traffic of Splash stands for the protocol
overhead and the size of the records received, compressed or uncompressed, while
the outbound metric counts the transmission of the Bloom filters and the protocol
overhead.

A total of 2 synchronizations per peer is enough for Splash to reach 20% average
coverage which is close to the 18.9% of BarterCast that uses an average of 398
synchronizations. Since BarterCast is pushing records whereas Splash is pulling
records from the network it is more fair to compare one’s inbound traffic statistics
with the outbound statistics of the other and the other way around.

The uncompressed version of Splash consumes 25 times less traffic, only 1.83
KiB compared to the 46.55 KiB of BarterCast. This difference is due to BarterCast
committing 200 times more synchronizations than Splash which translates in traffic
consumption due to payload and protocol overhead.

Furthermore the compressed version uses 5.5 times or 140 times less bandwidth
compared to the uncompressed Splash and BarterCast accordingly, demonstrating
large gains from its usage. At the same time the comparison of the inbound traffic
of BarterCast with the outbound traffic of Splash follows the same trend, with
the latter requiring 20 times less resources. Adding up inbound and outbound
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traffic and comparing again, results in Splash using 107 times less bandwidth than
BarterCast.

It is clear that Splash outperforms BarterCast. We have to take into consideration
that Splash is not superior only because it performs targeted data synchronization
using Bloom filters but also because it does not limit the number of records trans-
mitted on every synchronization as BarterCast does. Despite the lack of a limit
Splash uses only a fraction of the traffic BarterCast uses, both inbound and out-
bound, and does not saturate the resources of the peers.

6.2 Detailed Splash Experiments

We examine the abilities of Splash in more detail by extending the size of the
dataset to one week of 15.048 BarterCast records and the number of configurations
to six covering 3, 6, 12, 15, 30 and 60 synchronizations per peer per day. These
results are obtained from the memory-optimized simulator that has only Splash
support.

During the first experiments we executed different simulations with a different
combinations of how many peers are contacted per synchronization round and how
often rounds occur. That results in a different number of synchronizations per day
per peer for each experiment.

Some combinations yield the same number of synchronizations per day, for ex-
ample when contacting one peer but repeat 24 rounds times a day and when con-
tacting 24 peers all at the same round of a day. Experiments demonstrate that dif-
ferent configurations with the equal number of synchronizations per day produce
the same coverage results1. To better express the results and to avoid duplicates
we selected only one configuration for each number of synchronizations per day
favoring, when there was a choice, the configuration with the lowest time interval
between the rounds to help the faster spreading of information.

The results of the detailed experiments are visualized in Figure 6.1 and Fig-
ure 6.2. According to Figure 6.1 Splash reaches the average coverage status of
95% for every peer using only 12 synchronizations per day. Increasing the number
of synchronizations even further to 15, 30 or 60 per day results in coverage ratio
that reaches 100%.

The larger the coverage the more the inbound traffic for every peer. Inbound
traffic represents the size of the data received during synchronizations and include
both the compressed records and the protocol overhead. We conclude from the
left graph of Figure 6.2 that there is an trend of increasing traffic until we reach
12 synchronizations per day or about 95% coverage. Beyond that point although

1Most of the configurations with the same number of synchronizations per day produced exactly
the same coverage results. In rare cases the difference in the results was not larger than 1%.
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Figure 6.1: Simulation of peer data coverage for 200 peers using over 15.000
BarterCast records spread over a period of a week. The more synchronizations
per peer per day the higher the coverage.

the number of synchronizations increases the algorithm does not consume signif-
icantly more bandwidth, except for the last configuration, since almost everything
is already in the database of every peer. The increase of traffic for the last config-
uration is due to the protocol overhead which is 2-5 times more than in the other
configurations. This graph provides a proof that Bloom filters can prevent dupli-
cate information from being transmitted and therefore limit the bandwidth usage to
the minimum.

On the contrary the outbound traffic, shown in the right graph of Figure 6.2, is
increasing approximately linearly with the number of syncs per day, which is to be
expected. This metric counts the bytes required to transmit the Bloom filter and
the protocol overhead. The higher the coverage for each peer the bigger the Bloom
filter is, therefore more bandwidth is used to transmit it.

It is important to note that although it may be bandwidth inexpensive to reach
average coverage of 95%, it is very costly to reach 100% since it is needed for
each peer to perform five times more synchronizations that translates to five times
more transmissions of the Bloom filter. This 5% is related to the false positive
error rate of Bloom filter that we configured to 5%. Lower error rate would result
in larger Bloom filters that would increase the bandwidth use per synchronization
but also the coverage. The choice of Bloom filter error rate and synchronizations
per day can be configured to fit the application. For our experiments 95% fulfills
our demands and therefore we choose to maintain Bloom filter size small.
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Figure 6.2: Inbound and outbound traffic during the simulation of 200 peers ex-
changing 15.000 BarterCast records spread over a period of a week. The dashed
line represents the average peer data coverage and the bars represent the average
data transferred per node.

6.3 Network Size Experiments

To evaluate the scalability of Splash we split the network into groups and we later
increase the number of peers and the number of records gradually. We take ad-
vantage of the semantic clustering functionality of the advanced simulator that can
split the 200 peer network into 4 groups of 50 randomly selected peers. Each and
every peer belongs into only one group only and during the simulation synchro-
nizes data only with others within the same group thus increasing its local group
coverage. In rare cases, configured to happen once in every hundred synchroniza-
tions for this experiment, a peer randomly chooses another peer from the whole
network to synchronize thus increasing its global coverage, meaning records that
refer to peers outside the local group.

In Figure 6.3 the solid line represents the average local coverage, namely how
many of the records regarding the cluster peers are known on average to every peer
of the group. The dashed line represents the average number of records that where
not created by peer of the same group, every peer holds.

We observe in Figure 6.3 that peers can synchronize more important local in-
formation with fewer synchronizations, 6 synchronizations are required to reach
80% local coverage while for the same number of synchronizations without the
semantic clustering peers hold 60% of the overall information (Figure 6.1). This is
due to the peers synchronizing mostly within a group containing less peers than the
whole network and the possibilities to contact the same peer in different periods to
get new records is higher. The local coverage line trend is similar to the that of
Figure 6.1.

The global coverage line is increasing linearly with the number of synchroniza-
tions per day, since peers randomly select a pair from the whole network every
hundred synchronizations. Hence having more synchronizations will increase the
number of times peer synchronize with the whole network and therefore increase
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Figure 6.3: Simulation of 200 peers split over 4 groups of 50 peers each with a
possibility of 1% for each peer to connect randomly to another peer not in the same
group. The solid line represents the peer average local group data coverage and the
dotted line represents the peer average global data coverage. There is a possibility
one per one hundred synchronizations for each and every peer to contact a peer
chosen randomly from the whole network and not only from the local group.

the global coverage. It is important to note that we don’t aim for total local and
global coverage of 100% since that would practically eliminate the use of semantic
clusters. Instead we want to achieve good local coverage and coarse global cover-
age so peers hold all the important information while they are still aware about the
rest of the network.

Twelve or fifteen synchronizations per day fulfill this requirement for the net-
work and dataset under simulation, according to Figure 6.3, by providing around
95% local coverage and between 20% and 30% of global coverage. Note that the
global coverage metric represents the number of records a peer holds in the network
that do not originate from peers of the same group.

Semantic clustering was added in the design process of Splash in Section 4.4
to provide scalability for the algorithm in terms of bandwidth and storage require-
ments. The inbound and outbound graphs in Figure 6.4 show a significant drop in
traffic especially for the configurations of 12 and 15 synchronizations per day. The
inbound traffic drops from the 360 KiB and 355 KiB of the non-clustered exper-
iment (Figure 6.2) down to 160 KiB to 180 KiB per peer accordingly. The same
holds for the outbound traffic which drops from 130 KiB and 200 KiB down to 40
KiB and 60 KiB accordingly.

The next item in our experiment list is to study the behavior of Splash while
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Figure 6.4: Inbound and outbound traffic during the simulation of 200 peers split
over 4 semantic groups of 50 peers each, exchanging 15.000 BarterCast records
spread over a period of a week. The dashed line represents the average local data
coverage, the dotted line represents the average global data coverage and the bars
represent the average data transferred per node.

increasing the overall number of peer in the system. We use datasets with 400 and
600 peers which contain 18.000 and 20.000 BarterCast records accordingly spread
over the period of one week. The network gets split once more into groups of 50,
thus 8 groups for the 400 peer network and 12 groups of the 600 peer network. We
simulate these new datasets for 12 and 15 synchronizations per day, configurations
that provided good results during the 200 peer network simulations.

In Figures 6.5 and 6.6 we observe that despite the increasing number of peers
and records to be transmitted, local group coverage is preserved to the same levels.
The constancy of the local coverage proves that the mechanism is not affected by
the increase in number of records if we maintain a constant size of group.

However the percentage for global coverage is dropping, since the information
is now spread over more groups and therefore every peer needs to complete more
global synchronizations to collect the same percentage of records.

6.4 Churn Experiments

To further increase the accuracy of our results we execute a number of experiments
simulating the churn effects that take place in a real peer-to-peer network. We
perform three experiments where we gradually increase the time each and every
peer stays off-line per day starting from 6 hours, to 12 hours and finally 18 hours in
a network 200 peers. In Figure 6.7 we compare the average data coverage coverage
with the results from the previous experiments without peer downtime (Figure 6.1).
It is clear that downtime affects the coverage of the peers. The more downtime the
worse the coverage for the same number of synchronizations.

Note that since peers are offline during a period of the day they do not execute
the full number of synchronizations but only the synchronizations that happen dur-
ing their online time. However the x-axis of the graphs in this section represents
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Figure 6.5: Simulation of 200 and 400 peers split over 4 and 8 semantic groups
accordingly, of 50 peers each. Along with the size of the network the number
of BarterCast records grows from 15.000 up to 18.000. The 400 peer network
simulation was conducted for 12 and 15 synchronizations per day.

the total synchronizations a peer would have if it was online all the time so we
can fairly compare the results against the previous experiment. For example in a
simulation with 12 synchronizations per day per peer and peer downtime of 50%
the latter will perform only 6 synchronizations per day and during the other 6 will
be disconnected form the network.

We continue the experiments raising the number of synchronizations per day in
an attempt to fight the churn of the peers. We use 8, 10, 30, 36, 72, 84, 96, 108 and
120 synchronizations per day per peer a total of 9 different configurations to locate
the limitations of the system.

In the upper left graph of Figure 6.8 we observe that for a network with average
75% uptime for each peer the algorithm comes close to 90% local coverage with
10 synchronizations and exceeds 95% with 30 synchronizations, therefore it can
fight the low churn rate effectively.

In the upper right graph of Figure 6.8 the peer uptime is reduced to 50%, namely
to 12 hours per day. Although the coverage percentage drops, peers still hold 90%
of the local records with 30 synchronizations per day and are able to reach 95%
with a total of 72 or more synchronizations.

Finally in the bottom left graph the peer uptime is only 25% therefore around 6
hours per day. Despite the peers being mostly offline, Splash manages to transfer
a considerable amount of information, more than 80% to every peer of the net-
work by performing only 72 synchronizations. It is clear though that performing
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Figure 6.6: Simulation of 200 and 600 peers split over 4 and 12 semantic groups
accordingly, of 50 peers each. Along with the size of the network the number
of BarterCast records grows from 15.000 up to 20.000. The 600 peer network
simulation was conducted for 12 and 15 synchronizations per day.

more than 72 synchronizations per day will not help the peer reach 95% cover-
age or more, since even 120 synchronizations do not overcome the 90% barrier.
This behavior is expected because of the peers being offline a long time they miss
the synchronization window of some records and therefore are enable to get these
records no matter how many synchronizations they perform during online.

This limitation of the ‘live mode’ motivates the existence of the ‘history mode’
that peers can use to synchronize records that did not obtain while online.

We performed the same experiment in the 400 and 600 peer networks for 72
synchronizations and uptime of 6 hours per day per peer and we found similar
results. For the 400 peer network the local coverage is 81% (83% for the 200 peer
network) and the global coverage is 31% (32% for the 200 peer network). Similarly
for the 600 peer network the local coverage is 82% and the global coverage is 30%.

In all cases Splash can deliver a good data coverage, above 80%, for each and
every peer in spite of the churn rate, by configuring the number of synchronizations
per day.
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Figure 6.7: Simulation of data coverage for 200 peer network split over 4 semantic
groups of 50 peers each, exchanging a more than 15.000 records. The solid and
dotted lines represent the average local and global data coverage for each peer in the
network when there is 100% uptime per day for each and every peer. The dashed
and dotted-dashed lines represent the local and global data coverage accordingly
for each peer with 75% uptime per day for each and every peer for the top left graph
and 50% and 25% uptime for the top right and bottom left graphs accordingly. It
is clear that downtime decreases both global and local coverage.
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Figure 6.8: Simulation of data coverage for 200 peer network split over 4 semantic
groups of 50 peers each, exchanging a more than 15.000 records. The graphs
represent 9 different configurations of the simulator with varying synchronizations
per day ranging from 8 up to 120.

45



46



Chapter 7

Conclusions and Future Work

In this chapter we revisit the research questions as posed in Chapter 2, we summa-
rize the results of our experiments and we present the strengths and weaknesses of
using our implementation compared to BarterCast. Finally we discuss the future
development of Splash.

7.1 Conclusions

During this thesis work we designed and implemented a new data synchroniza-
tion algorithm with powerful features. The gossiping algorithm currently used by
Tribler has proved incapable to spread information widely and efficiently, both dur-
ing simulation and from real network measurements. This functional weakness in
combination with its design inflexibility motivated us to design new ways to syn-
chronize data throughout the network.

We set four research questions regarding data coverage per peer, network scal-
ability, churn and security and we designed Splash to resolve them. Splash uses
Bloom filters to intelligently choose which records to synchronize with each peer
and selects the records depending on their existence in other peer’s databases, con-
trary to BarterCast which selects the latest records or the records with the highest
values. This way all records have equal probability to be transmitted over the net-
work resulting in a high data-coverage ratio per peer. According to the simulation
experiments of Chapter 6, Splash can achieve on average more than 95% cover-
age per peer with only a few synchronizations per day, which is 5 times more
than BarterCast. Additionally Splash uses 107 times less bandwidth compared to
BarterCast to achieve the same data coverage.

Splash can scale along with the network and dataset and provide high data cover-
age with acceptable bandwidth and storage usage by taking advantage of its partial
data synchronization capabilities. Peers do not have to have the same set to syn-
chronize, nor have to synchronize all their entries. Using Splash in combination
peer similarity in Tribler, data synchronization can be restricted on records with
specific origin or be completely unrestricted on demand.
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Despite the heavy churn rates a peer-to-peer network may suffer Splash can ef-
fectively keep the high average data coverage per peer by letting peers pull as
much information as offered in a few synchronizations that take place while they
are online. The lack of a limit for the number of records synchronized per transac-
tion, combined with the use of an effective compression scheme enables each peer
to synchronize hundreds of records in every transaction in a bandwidth-efficient
manner.

For peers that have been offline for a long period of time and lost the ‘live’ win-
dow of opportunity to synchronize some records, a ‘history’ algorithm is described
which can be used to synchronize records that where created in the past efficiently
once again with the use of Bloom filters.

Last but not least we discuss a security mechanism on record level that can en-
hance Splash performance by increasing the number of records available for syn-
chronization per peer. The described security mechanism which is based on the
public key infrastructure, that is already available in Tribler, enables peers to verify
record validity and effectively reduce the spreading of invalid or malicious data.

Splash is definitely of higher complexity than the current algorithm in use to
spread BarterCast records. The latter constructs simple self-contained messages
with a number of records selected using simple criteria and instructs peers to for-
ward them to each and every of their connections. On the contrary Splash requires
a round of communication, and not just a message, to select the records to forward
to each peer individually.

To summarize, Splash has proved to be a practical solution to synchronize data
in untrusted and unmanaged networks and its flexible design provides adaptability
to number of different networks having different requirements, including Tribler.

7.2 Future work

During the design and development of Splash the following the following exten-
sions and modifications of the algorithm have been left for future work:

• Implementation and integration of a security mechanism operating on the
record level, to validate data and prevent fake information from spreading.
A possible implementation was described in Section 4.5 using public key
cryptography that is known to provide the needed functionality using strong
cryptography.

• Simulation of the ‘history’ mode. This mode is based on the same principle
of operation as the ‘live’ mode which was implemented and tested with this
work but it is designed to synchronize older records.

• Deployment of Splash in a network of thousands of peers to rate its perfor-
mance.

• Design of a policy regarding the synchronization interval and the number of
synchronizations per day. A sophisticated algorithm can be used by peers to
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determine the amount of data available in the network and therefore increase
or decrease the number of synchronizations accordingly.

• Integration and deployment of Splash into Tribler by gradually using it to
serve the needs of protocols like ChannelCast, VoteCast, BarterCast and
others. Ultimately Splash can replace the whole BuddyCast layer and be
responsible for the meta data transport within the Tribler network.
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