e

2l
b g

n

|

d teatute
{Or Tiear

SEeNSOr exiierne edge

]
)

e

-y o e &
e e 2R,
s —

L 1. e = R LNk 7 A . o SR
&% 3 ET e & i .\.;,...K; g E T R 7 -JW T,QAMN

Neura

Drocessing wit

MI-1NSP
0
Elorentma Dobrita

|

NEeTWorks

Al

exandras

exiraciion

Sra

>

Brain-inspired feature

extraction for near sensor
extreme edge processing with

Spiking Neural Networks

by

Alexandra-Florentina Dobrita

to obtain the degree of Master of Science in Computer Engineering
at the Delft University of Technology,
to be defended publicly on Friday March 29th, 2024 at 11:00 AM.

Student number: 5373301

Project duration: May, 2022 — March, 2024

Thesis committee: Prof. Dr. S. Hamdioui, TU Delft, main supervisor
Dr. C. Frenkel, TU Delft
Dr. M. Sifalakis, IMEC the Netherlands
Dr. A. Yousefzadeh, IMEC the Netherlands
Prof. Dr. S. Thorpe, CNRS Toulouse
Dr. A. Gebregiorgis, TU Delft, daily supervisor

This thesis is confidential and cannot be made public until March 29, 2025.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

umec

The work in this thesis was supported by IMEC the Netherlands. Their cooperation is hereby grate-
fully acknowledged.

o]
TUDelft

Copyright ©2024 Alexandra-Florentina Dobrita
All rights reserved.

Abstract

Motivated by the desire to bring intelligent processing at the Edge, enabling online learning on resource-
and latency-constrained embedded devices has become increasingly appealing, as it has the potential
to tackle a wide range of challenges: on the one hand, it can deal with on-the-fly adaptation to fast
sensor-generated streams of data under changing environments and on the other hand, it can address
a variety of challenges associated with offline training in the cloud, such as incurred energy consumption
of sensor data transfers and extra memory storage for the training samples, but also data privacy and
security concerns. Concurrently, maintaining low-latency and power-efficient inference is paramount
for edge Al computing systems, and thus learning/adapting online with minimal incurred overhead is
crucial.

In this work, we propose EON-1, an Edge ONline Learning SCNN (Spiking Convolutional Neural
Network) processor with 1-bit synaptic weights, 1-spike per neuron and 1-neuron updated per input,
which we have benchmarked for both ASIC and FPGA platforms. Our key contribution is proposing a
binary and stochastic SDTP rule which, benchmarked in an ASIC node, achieves less than 1% energy
overhead for inference. To our knowledge, our solution incurs the least energy overhead for inference,
compared to state-of-the-art solutions, showing a better efficiency by at least a factor of 10x. We
also report 94% and 77.65% accuracy on the MNIST and Fashion-MNIST classification tasks, and
we achieve 0.09pJ/SOP and 1.5pJ/SOP energy efficiency during inference and learning, respectively.
We extend our solution to demonstrate a practical use-case of performing inference in real-time UHD
videos while coping with streaming data and we showcase 60 FPS UHD video processing.

Alexandra-Florentina Dobrita
Delft, April 2025

11

Acknowledgements

| would like to begin this section by thanking my IMEC supervisors, Dr. Manolis Sifalakis and Dr. Amir-
reza Yousefzadeh. Throughout this thesis journey, they have been exceptional mentors, highly shaping
my professional and research development. Despite their seniority and tremendously higher expertise,
| always felt my ideas were equally valued, although | had much less knowledge and experience than
them, and they have been encouraging and understanding even at times where | was stubborn or
shortsighted about the bigger picture. They have always made time in their incredibly busy schedule,
whenever | needed their input or advice. | started with very little knowledge about the Neuromorphic
field, but nevertheless, they have been patient with my learning pace, and they have allowed me to feel
comfortable about making mistakes and speaking out my mind, which has enabled me to learn and
grow even more. For all the valuable lessons, | deeply thank them, | could not have wished for better
mentors.

I would like to extend this appreciation to all my Neuromorphic team colleagues: Kanishkan, Guang-
zhi, Kevin, Gert-Jan, Paul and Yingfu for being an amazing team and for encouranging me with my
thesis work and offering advice whenever | needed it.

Without saying, this thesis work would not have been possible without prof. Simon Thorpe, who
has initiated this project. | have learned a lot from him and his contagious enthusiasm for this project
has been extremely encouraging. | am very honoured for having the opportunity to collaborate with
someone who's life work on rapid processing in the visual system has been pivotal in the field of Spiking
Neural Networks.

| would also like to thank prof. Said Hamdioui and Dr. Anteneh Gebregiorgis, for helping me shape
my work for quality scientific output.

| would like to extend my thanks to colleagues from the QCE department, Mahdi, Michael, Troya,
Moritz, Arne, Abdullah, Asmae. They have made my master thesis journey much more fun, especially
with epic karaoke sessions or gezellig lunches.

And lastly, | would like to thank my parents and siblings, my aunt, Cristina, and my friends, for their
encouragement and patiently listening to my thesis ups and downs: Lili and Andrei, Garazi, Aniket,
Varshiny, Alex, Prithvish, Luiza, Cristina, Emilio.

Alexandra-Florentina Dobrita
Delft, April 2025

11

1.1

2.1

2.2

2.3
24

2.5
2.6

2.7

2.8
3.1

3.2
3.3

3.4

3.5

3.6

4.1
4.2
4.3

List of Figures

Functions and features of Edge Al at the intersection of edge-devices constraints with
smart applications requirements L L

A.) Biological neuron. B.) Artificial neuron in a ANN. C.) Spiking neuron in a SNN. D.)
Membrane potential of a spiking post-synaptic neuron as a function of time: incoming
spikes from a pre-synaptic neuron are accumulated. When the membrane potential
reaches a threshold V;,, the post-synaptic neuron fires a spike. Figure has been adapted
from[1],[2]and [3]. e e e
Rank-order-coding among a population of 10 neurons annotated A - J. Based on the or-

der of the first spike fired every time window At, the rank-order code is C>B>D>A>E>F>G>J>H>|.

Copyright: [4]. e
A typical CNN architecture. Adapted from [5],[6]
Depiction of intensity-to-latency conversion in the retinal ganglion cells: a) shows how
stronger neuron activations result in earlier spikes. b) For a prototypical spatial stimulus,
the neurons firing time based on the intensity at each pixel position is depicted. Figure
used from [7] with the authors approval.
Two-layer feedforward architecture emulating the retina in [8]. Figure copyright: [9].

Multiply-and-accumulate pipeline for a convolution window flattened to 1D. For simplicity,
a window with 5 elements is depicted. The convolution operation needs 5 pointwise
multiplications and an acumulator that needs five stages for adding the 5terms
Typical hardware implementation flow for convolution via systolic array composed of a
datapath of PEs. Left: data is loaded and stored to-and-from on-chip memory, which can
be in turn communicating with a higher-density off-chip memory or directly to sensors
interfaces. Middle: a datapath of PEs array. Right: A basic PE architecture.
A 4-bit LFSRwithtapsonbits2and3

The SCNN architecture for this work. It includes a layer of edge-filtering convolutions, a
lateral inhibition layer, and a layer of fully connected neurons equipped with binary STDP
training. L e
The 5 x 5 convolution kernels used in thiswork
Depiction of rank-order-encoding method for N = 1 out of M = 8. A. A window of pixels
is convolved with four edge filters, and the result is mapped to a orientation index based
on the sign of the convolution output and the maximum convolution in absolute value. B.
The neuron cell corresponding to orientation at index 3 spikes first.
The lateral inhibition layer produces binary spikes that can be compressed into a spike
vector. Each element of the vector corresponds to the source edge filter that generated
the spike. e
Example of a spike vector and four weight vectors. Each weight vector contains four ac-
tive synaptic connections. Bold elements in the weight vectors are the one that matches
the spike vector.
Example of the binary STDP algorithm. The learning algorithm applies to neurons whose
membrane potential reaches a pre-defined threshold (neuron 3 here).

Proposed hardware architecture for the SCNN processor.
Inference array for M inputs and N neurons in the trained model.
To increase the parallelism and, therefore, performance, we can use many I&F process-
ing elements (P) in parallel. Each processing element can process one neuron in every
clock cycle. When having N neurons in the system, each input image takes N /P clock

v

11

23

List of Figures \

4.4 Spike encoding implementation: 4 x D units perform the 2D-C (2D-Convolution) of each
pixel window with each kernel window in parallel. A LI (Lateral Inhibiton) unit generates
the 4-bit spike vector at each position (R,C), where R is the row index and C - the col-
umn index. The pixels for the convolution units are read from the shift-register and the

convolution weights from a Register File. D spike vectors are generated in parallel . . . 33
4.5 Match unit finite state machine L. 35
4.6 Stochastic STDP unit toplevel. All data channels are complemented by ready and valid
handshake signals. L 36
4.7 Example random learningforN=10,andswap N=3 37
5.1 Example of samples from the used datasets: a.) UTKFace [10], b.) CIFAR10 [11], c.)
MNIST [12], d.) Fashion-MNIST[13] e 40
5.2 Plot of accuracy evolution with the number of neurons in the training layer, for a fixed
trainsetsize. 41
5.3 Plot of accuracy evolution with the number of training inputs, for a fixed number of 1000
NEUIONS. o it e i e et e e e e e e e e e 41
5.4 Cost/performance trade-off with various input image resolution. The cost refers to com-
putational burden, that scales up with the input image resolution. 42

5.5 Plot of accuracy evolution with each adaptation iteration. Adaptation starts with a pre-
trained network. The accuracy of the pre-trained network is for iteration 0 on the abscissa 42

5.6 Plot of network capacity to learn new features after each adaptation iteration 43
5.7 Plot of accuracy evolution on the MNIST dataset with increasing the number of neurons 44
5.8 MNIST confusion matrix for 30000 neurons and 60000 trainingdata 45
5.9 Plot of accuracy evolution on the MNIST dataset with increasing the trainset size 45
5.10 Evolution of network learning dynamics with number of training samples 46
5.11 Network robustness to rotation variations inthetestset 46

5.12 One quarter of one processed UHD frame. Some faces have thicker circles around
due to multiple neighbouring positions triggering the population of neurons, due to the

algorithm robustness to shift-invariance 48
5.13 LUT utilization scalability with input resolutions for the Edge Filters and Lateral Inhibition

Unit . . e 50
5.14 LUT utilization scalability with input resolutions for the I&F Unit 51

5.15 Processing an UHD frame using a shifting window. P =400 I&F units available in parallel. 51

5.16 Processing time of one UHD frame based on different memory types and number of
neurons,if P=P Sx P W =400ismaximized 52

5.17 Performance/cost trade-off when scaling the learning layer from 1000 neurons to 30000
neurons for the MNIST digit classificationtask 54

3.1

4.1
4.2

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

6.1
6.2

List of Tables

Parameters for I&F Neuron layers and synaptic plasticity 20
Spikes and synaptic weights encoding 8-bits to 4-bits correspondence table 29
Table with shared constant parameters used in this hardware implementation. 31
Experiments parameters 39
FPGA resource utilization at 100Mhz, on the VU37P-HBM target platform 49
Inference latency and throughput of the digit classification task on the FPGA 49
Scaling up the learning layer 51
ASIC GF22 areaandcellcount 53
ASIC energy consumption perblock, 53
Energy consumption for inference and learningin GF22 55
Latency and throughput of the digit classification task on the ASICnode 55
Comparison of EON-1 with other FPGA solutions benchmarked on MNIST 60
Comparison of EON-1 with other ASIC solutions benchmarked on MNIST 61

vi

contents

Abstract

Acknowledgements

1

Introduction

1.1 Motivation e e e
1.1.1 The pillars behind Al's popularity
1.1.2 Edge Al e
1.1.3 Brain-inspired computing and neuromorphic hardware
Problem statement L
Projectgoals
State-of-the-art
Contributions L
1.6 Thesisoutline e

-
abrwON

Background and related work

2.1 Spiking Neural Networks
211 Introduction
2.1.2 |Information encodingtospikeso oL
21.3 Neuronmodel
214 Learningin SNNs

2.2 Retina models based on Spiking Convolutional Neural Networks (SCNNs)
2.2.1 Preliminary: Convolutional Neural Networks (CNNs)
2.2.2 Rapid Recognition based on Time-to-first-spike (TTFS)
223 Intermezzo
2.2.4 Previous SCNN architectures simulating rapid recognition in the visual cortex . .
2.2.5 Learning in previously proposed SCNN for rapid recognition in the visual cortex

2.3 Considerations for hardware implementation
2.3.1 Algorithm-hardware co-optimization of 2D convolutions
2.3.2 Linear-Feedback-Shift-Register o 0oL
2.3.3 MemoryBlocks

Methodology - Algorithms

3.1 Proposed SCNN architecture
3.2 Spikeencoding
3.3 Inference: neuron and synapticmodel Lo
3.4 Learningrule
3.5 Supervised clustering for classification

Methodology - Hardware architecture and implementation

4.1 Proposed hardware architecture Lo
4.1.1 Enhancement of system performance L.
4.1.2 Design choices and optimizations for overall chip architecture

4.2 Edge filters and Lateral Inhibitionunit
4.2.1 Module implementation objectives and constraints
4.2.2 Implementatonmethod
4.2.3 Performancemetrics

4.3 |&F neuron implementation
4.3.1 Module implementation objectives and constraints
4.3.2 Implementaton method
4.3.3 Sequential Learning Process implementation

vii

O OWOW ONOOTWWN - -

Contents viil

4.3.4 Performancemetrics 38

5 Experimental setup 39
51 Tasksanddatasets L 39
5.2 Algorithm benchmarkinginsoftware 40
5.2.1 Task 1: Unsupervised binary classification for face/noface 40
5.2.1.1 Experiment 1: Evolution of accuracy with number of neurons 43

5.2.1.2 Experiment 2: Evolution of accuracy with number of training samples . 43

5.2.1.3 Experiment 3: Evolution of accuracy with input down-sampling 43

5.2.2 Task 2: Online adaptation starting from a pre-trained network 43
5.2.2.1 Experiment 1: Evolution of accuracy with online adaptation 44

5.2.3 Task 3: Multi-class classification using supervised clustering 44
5.2.3.1 Experiment 1: Evolution of accuracy with number of neurons 44

5.2.3.2 Experiment 2: Evolution of accuracy with number of training samples . 47
5.2.3.3 Experiment 3: Evolution of network learning dynamics with number of

trainingsamples 47
5.2.3.4 Experiment 4: Robustness to rotation variations ininput 47
5.2.3.5 Validation of algorithm on Fashion-MNIST 47
5.2.4 Task 4: Benchmarking for UHD frame processing 47
5.3 Hardware implementation benchmarking 48
5.3.1 Benchmarkingon FPGA 48
5.3.1.1 Resource utilizationin FPGA oL 49
5.3.1.2 Latency and throughputin FPGA 49
5.3.1.3 MNIST accuracy in hardware versus software 49

5.3.2 Design space exploration for system scalability and performance enhancement
oNFPGA . . . 49

5.3.2.1 Experiment 1: Resource utilization scalability with various input resolu-
tions 50
5.3.2.2 Experiment 2: Learning layer scalability 50
5.3.2.3 Experiment 3: Processing UHD frames in real-time on the FPGA 52
5.3.3 Benchmarkingon ASIC 53
5.3.311 Areaandcellcountin ASIC. 53
5.3.3.2 Energy consumptionin ASIC, 53
6 Results discussion and benchmarking 56
6.1 Performance of the proposed online learningrule 56
6.2 Online adaptation with the proposedrule 57
6.3 Hardware results and benchmarking against similarwork 58
6.3.1 General hardwareresults 58
6.3.2 Benchmarking against similar FPGA solutions 58
6.3.3 Benchmarking against similar ASIC solutions 59
6.4 Benchmarking proposed solution for UHD frame processing 59
7 Conclusions and future work 62
7.1 Overview and summaryofresultso 62
7.1.1 Online learningrule performance 62
7.1.2 Hardware results and benchmarking oo . 63
7.2 Future work e 63

A Appendix - Paper draft 7

|

Introduction

1.1. Motivation

1.1.1. The pillars behind AI's popularity

Everyday, artificial intelligence (Al) significantly influences our lives, by enhancing our digital ex-
periences through various interactions with our smart portable-devices connected to the internet: from
queries we make to our virtual assistants, navigation apps and language translation engines to receiving
personalized social media content and recommendations for online shopping or streaming entertain-
ment. On a less than daily basis but also at a fast-paced rate, our life quality increases exponentially
through Al-powered medical advancements, smart home devices and autonomous driving. Needless
to say, in our society today, Al continuously contributes to and generates wealth and progress, all of
which is attributed to it's high performance in a wide range of tasks: from object detection and image
classification to speech and language recognition.

Al's tremendous success, however, would not have been possible without a combination of more
training data with Al networks that are deeper and have more parameters. Combining the two was
propelled by a surge in computational power over the last two decades [14]. The key aspect in which
massive computational power has enabled Al progress is in the reduced latency for exploration and
training of the Al models. This reduction in latency comes as a result of much of the industry and
research focus in the past years having been on creating or extending powerful hardware exhibiting high
level of parallelism and tailored for accelerating neural networks operations (i.e., matrix multiplications).
These efforts have facilitated newer and better Al models being generated at an incredibly fast rate.

Set on these pillars (i.e., more training data, higher number of parameters and more available com-
putational power), the state-of-the-art models in Al today, Deep Neural Networks (DNNs), took-off. This
is illustrated through the example of AlexNet [15], the DNN model that won the 1000-category image
classification challenge, ImageNet [16]. It's performance surpassing all previous models was attributed
to the depth of its network, which, in turn, was made feasible by the available computational power
for training, e.g., at that time, AlexNet distributed it's model across two GPUs (Graphical Processing
Units). Their achievement gave rise to the hype of DNNs, where the relation between performance and
the network’s depth and number of parameters, actuated by massive computational power, has been
demonstrated via a number of powerful DNN models developed in the past 10 years [17], [18]. An ex-
treme example of an ultra-powerful DNN model is the conversational agent, GPT-3, which features an
impressive depth of 96 layers and has 175 billion trainable parameters [19], running on 10000 Nvidia
GPUs (Graphical Processing Unit) and 285000 CPUs (Central Processing Unit) cores [20].

However, even by a layman’s crunching of these numbers, it is easy to notice that current state-
of-the-art Al models that we interact-with daily are large Big Data-driven networks that do not run on
ordinary modern personal computers (PCs), but instead they distribute their workload over thousands
of processing units clustered in supercomputers. Due to high cost and specific power and cooling
requirements for using big clusters of such computing units, they can only be hosted in specialized
data centers. For this reason, most Al models nowadays run in the Cloud, which is an infrastructure
of software and hardware tools that facilitate access to supercomputing-rich data centers. Cloud Al,
however, comes at huge costs in terms of power consumption and environmental impact. For instance,
training the previously mentioned GPT-3 language model emits 27.8 times more CO2 than an average
American consumes in one year [21], [22].

1.1. Motivation 2

1.1.2. Edge Al

Concurrent to Cloud Al growth, the advancements in semiconductors have enabled rapid developments
in sensor-based environments such as autonomous driving, wearable devices and loT (Internet-of-
things) systems, where the need to bring Al smart decisioning next to the state-of-the art sensor systems
has triggered the emergence of a new type of Al deployment, named Edge Al. For these applications,
data transfers between Edge devices and Cloud are infeasible or undesired, on the one hand due to
stringent real-time response necessary for some embedded systems and on the other hand due to
data privacy and security concerns. For instance, a practical scenario where Al inference response in
real-time is critical is found in autonomous vehicles, where vast amounts of multiple sensors data need
to be processed almost instantly by the Al system, as any incurred delay can result in fatal accidents or
missed opportunities for safe maneuvering. An example of critical data privacy and security concerns
is in medical applications, an everyday scenario being wearable health monitoring devices. Another
interesting example where Al can have tremendous impact but is still used with limitation due to privacy
concerns is in Organs-on-Chips (OoCs) [23]. One way in which OoCs are revolutionizing the medical
world is true more accurate drug discovery and research, however since OoCs often use human-derived
data, integrating Al in a private and secure way is crucial. There is, therefore, ample reason to address
these problems, in order to harvest the benefits of Al in sensor-based environments.

Requirements

Perform under
resource constraints
and low-power
budget

Constraints

Edge Al

Energy-efficient
storage and
computation

On-

devi)
Ensure SVice Fast Provide

learnin . :
privacy and security on (; g Edge Al inference [real-time response

inference

Continuous adaptation
and robustness to data
invariance

Operate under
continuous streams of
sensor data in a
dynamic environment

Figure 1.1: Functions and features of Edge Al at the intersection of edge-devices constraints with
smart applications requirements

While the latency restrictions have been addressed to an extent for Al inference by a number of
accelerators [24], [25], [26] and optimization techniques such as quantization or reducing the precision
of the data [27], [28], these solutions are still not power-efficient enough for most Edge Al platforms.

1.2. Problem statement 3

Moreover, fast inference while coping with streaming data still remains a challenge, for instance in
high-resolution real-time videos. At the other pole, addressing the data privacy and security concerns
calls for both training and inference to be ran locally, on-device and in close proximity to data sensors.
However, training on-device is not an easy task due to limited storage and computational resources
and low energy consumption budget that are inherent to edge devices. Thus, batch-training over long
period of times using backpropagation, the standard training flavour for DNNs, is often not feasible
at the edge. Moreover, as edge devices operate in dynamic surroundings, input data distribution and
user behaviour changes rapidly over-time, which brings an extra challenge to Al at the edge, i.e., that of
featuring a degree of adaptation on-the-fly (i.e., during and without disturbing inference) to environment
changes.

With these constraints in mind, and as emphasised in subsection 1.1.1, the current state-of-the-
art DNN models, although highly performing, are heavily relying on high amounts of training data and
computational power. Moreover, DNNs training flavour, backpropagation, requires intensive computa-
tions due to many gradient updates, that use floating-point parameters and complex memory require-
ments for storing intermediate gradient values [29], [30], which limits it's deployment for on-device
learning. These DNN features renders them unsuitable for edge deployment, which calls for a diver-
gent Al roadmap [31] in terms of methods and algorithms suitable for Edge requirements, as compared
to the well-established, high-accuracy techniques used in Cloud Al.

1.1.3. Brain-inspired computing and neuromorphic hardware

At the twilight of Moore’s law [32] and motivated by the high carbon footprint of conventional Al [33], [34],
[22], brain-inspired computing, also referred-to as neuromorphic computing in literature, is a promising
alternative to DNNs, as they aim to emulate the power-efficient learning and inference behaviour ob-
served in the biological brain. For instance, it is estimated that the brain performs about 1 exaflop of
computations per second, within 20W of power, which is 20 millions less than what one of the biggest
supercomputers today, Oak Ridge Frontier [35], consumes for the same throughput [36].

The low-power consumption ability of the brain is attributed to it's neural communication via spikes
in an event-driven processing manner (i.e., neurons get activated only for specific events) [37], which
enables spatio-temporal sparsity. Another feature of brain-inspired computing is that memory and
computation are co-located for each neuron cell, behaviour which, if emulated at a digital circuit level,
addresses the memory bottleneck present in state-of-the-art computational platforms based on Von-
Neumann architectures. Moreover, in brain-inspired neural networks, learning and adaptation occur
online, as opposed to batch-training in DNNs. These features render brain-inspired computing a promis-
ing solution for bringing intelligence at the Edge.

To explore the brain efficiency in hardware, two main approaches have emerged [38]: one is a
bottom-up approach, where authors replicate neurons and synapses with a high-level of bio-plausibility
in general purpose neuromorphic hardware [39], [40], [41], [42], while the other is a top-down ap-
proach, where custom neuromorphic processors are proposed with fixed learning rules that are less
bio-plausible, but borrow brain-inspired concepts to solve specific tasks with the best trade-off between
accuracy and energy efficiency [43], [44], [45], [46]. The latter approach is a better fit for extreme Edge
applications with specific requirements.

1.2. Problem statement

At the intersection of hard constraints of embedded devices with the desired requirements of smart
sensor-based applications, seamlessly incorporating intelligence at the Edge is equivalent to a multi-
objective problem, as depicted in Figure 1.1. As a consequence, performing common Al tasks such
as image classification at the Edge brings many challenges for both training and inference. It is also
important to note that for practical edge applications, training data can be scarce, which imposes an
extra challenge on the training aspect, as satisfactory accuracy needs to be reached with a limited
number of training points.

Online and continual learning [47] is an Al training method where the model weights are updated
for each input data sample, as opposed to traditional batch-training which changes model weights after
a number of inputs have been presented to the network. Enabling online and continual learning on

1.2. Problem statement 4

resource- and latency-constrained Edge devices has the potential to tackle a wide range of challenges:
on the one hand, it can deal with on-the-fly adaptation to fast streams of data generated by sensors
under changing environments and on the other hand, it can serve as a low-cost, data-secure, local
and on-device training method that addresses privacy and the incurred energy consumption of data
transfers for off-chip training and extra memory storage for the training samples.

Following brain-inspired computing principles, Spiking Neural Networks (SNNs), also considered
the third generation of neural networks [48], inherently learn and adapt their synaptic weights in an on-
line fashion. Moreover, they are power-efficient, exhibit high-parallelism and neuron co-located mem-
ory and processing, benefiting both training and inference phases. These aspects have made them a
popular choice among researchers for exploring online learning and adaptation at the Edge [49].

In the absence of standard SNN learning rules and hardware platforms, achieving online learning
for Edge devices by methods of brain-inspired computing calls for algorithm-hardware co-design efforts,
where performance and hardware efficiency are intertwined. Thus, across literature, to address online
learning on-chip with SNNs, authors propose SNNs with various flavours for spike encoding, learning
methods and neuron model, accompanied by a custom SNN processor. However, current solutions
present a number of limitations:

1. Spike encoding: For spike encoding, most state-of-the-art still relies on rate-coding methods,
despite it being less bio-plausible and less hardware efficient than temporal coding techniques
[50], [51]. Moreover, many SNNs processors for online learning perform spike encoding off-chip
and don’t account for the incurred energy and latency overhead for the network. This issue is
aggravated by other pre-processing steps applied on the inputs before feeding them into the spike
encoding layer (e.g., image downscaling and conversion to grayscale). Overall, not accounting
for the cost of these steps results in a less transparent benefit of implementing the proposed
solutions in practical applications with commercial impact.

2. Neuron models: To increase accuracy, authors opt for more bio-plausible neuron models, such
as Leaky-Integrate-and-Fire (LIF) or Izhikevich models [52]. These models enable better neuron
behaviour modelling, however, compared to the simpler IF model, which is the least biologically
plausible, they are more computational expensive, due to extra leakage modelling or increased
number of parameters. They also require additional neuron states storing. The impact this has
on energy consumption is exacerbated by the fact that, during inferencing, all fan-out neurons
need to update their membrane potential according to their neuron model.

3. Learning rule: Current solutions based on the Spike Timing-Dependent Plasticity (STDP) rule
(i.e., the conventional learning method for SNNs), while less computationally-complex than back-
propagation-based online learning rules ', still suffer from increased computational complexity
due to exponential terms and high-precision multiplications involved. This can be particularly pro-
hibitive for extreme Edge applications. Moreover, STDP needs to store spike timings for each
synapse, resulting in high memory area overhead [53]. Another synaptic plasticity rule is Spike-
driven Synaptic Plasticity (SDSP) [40], which only utilizes the pre-synaptic spike events for synap-
tic updates and uses only increment/decrement operations. However, similarly to STDP, SDSP
requires a frequent number of updates, for each neuron where there is a spike event. This results
in a variable number of neurons being updated with each new input, incurring a non-deterministic
cost on inference.

4. Synaptic weights and neuron states memory: In most SNN applications, storing synaptic
weights 2 and neuron states occupies more than 50 - 60% of the area and is responsible for
more than 80% of the total energy consumption. Despite this, many state-of-the-art solutions
use high-precision weights such as fixed or floating point values. To address this, authors have
explored optimizing the weights precision to 1-bit [53], [44]. However, binary weights precision has
resulted in poor accuracy for practical tasks such as digit classification, particularly in combination
with stochastic learning [54], which is desirable for robust performance in dynamic, noise- and
variation-prone environments.

A potential solution for exploring fast online learning/adaptation in classification tasks, with low en-
ergy costs for the Edge, is based on the colour-agnostic and noise-robust Ultra-Rapid Visual Cate-

"Note that the quality of STDP being less computationally-expensive than backpropagation-based online learning rules comes
at the cost of less performance
2Note that storing layer weights is a bottleneck in all neural networks and not specific to SNNs

1.3. Project goals 5

gorization (URVC) [55] that takes place in the mammalian visual cortex. In URVC, fast analysis and
classification of images is attributed to neural codes being transmitted from the retinal ganglion cells to
the orientation-selective cells in the visual cortex in the shortest time possible (i.e., with the first emitted
spike) via the optic nerve [56]. This observation enforces a hardware-efficient temporal spike encoding
scheme of visual stimuli, where a high intensity in the stimuli corresponds to a short latency for firing a
spike [57], [50], [58]. Such principles have been applied across literature for object recognition by trying
to replicate the fast temporal coding in the retina via a number of convolutions with edge filters followed
by max-pooling operation [45], [59], [60], [61], which capture the highest orientation-wise intensity that
leads to the aforementioned spike encoding. However, processing speed and energy consumption
in these solutions is still limited for real-time, edge applications, mostly due to high-precision convolu-
tional kernel weights. Additionally, the potential of efficient computation and learning with the spikes
generated by these retina models is not fully leveraged for Edge applications.

Previous work has applied URVC from an extreme computational efficiency view, by simulating
URVC in large networks of Integrate-and-Fire (IF) neurons with binary weights, that completely depress
or potentiate their synapses based on the first pre-synaptic spike fired [8] and has been demonstrated
on simple image recognition and classification tasks such as face identification [62] and natural scene
recognition [63], [7], [61]. However, the merits of these proposals for extreme spike-efficiency lever-
aging in URVC have not been fully explored in terms of performance on more complex tasks such as
MNIST, actual processing speed benefits on modern hardware platforms such as high-end FPGAs, or
energy consumption for extreme edge processing. Consequently, motivated by the previously men-
tioned limitations in current solutions for online learning with SNNs on edge processors and inspired
from the first layers of visual processing in the brain, we define the problem statement of this work as
follows:

Can we leverage an extreme, spike-efficient model of URVC, composed of simple IF neurons, with
1-bit weights and stochastic synaptic updates, to explore the following limitations in Edge Al:

» perform energy-efficient, fast and few-shots online learning and adaptation at the Edge, with
minimum incurred overhead for inference

* maintain inference performance in the presence of data variation due to dynamic environments
(e.g., rotations or noise)

1.3. Project goals

Taking inspiration from URVC in the first layer of the biological visual system, the aim of this project is
to provide a scalable (i.e., the solution can be easily extended to more neurons in the learning layer or
various input resolutions), hardware efficient solution with negligible learning overhead. As such, we
want to find the boundaries of learning locally, in a single trainable layer, with extreme spike-efficiency
(i.e., one spike per neuron), leaving the possibility for future extensions to multiple layers. To this
aim, we explore the benefits of using a SNN of IF neurons with stochastic plasticity, binary spikes and
synaptic weights, coupled with a Time-to-First-Spike encoding scheme and lateral-inhibition among
orientation-selective cells, for Edge Al applications. In particular, we want to explore online learning
and adaptation for typical image classification tasks (e.g., face detection or digit classification) and
we want to evaluate if such an algorithm has practical applications such as object detection in high-
resolution videos (e.g., 4K pixels frames at 60 FPS). We define our main goals as follows:

1. Propose a solution for online learning and adaptation at the Edge that:

* is energy-efficient

* is fast

+ exhibits one or few-shot learning capability

* incurs minimum energy and latency overhead for inference

2. Benchmark and evaluate the proposed solution with respect to:

+ scalability in terms of input resolution and learning layer size
+ dataset-agnosticism

* robustness to input variations in dynamic environments

« fast inference in high-resolution videos

1.4. State-of-the-art 6

1.4. State-of-the-art

As mentioned in section 1.3, the main goal of this project is to perform fast, energy efficient online
learning and adaptation at the Edge, with minimum incurred overhead for inference. The remaining
goals are secondary, as they should reflect the quality and extendability of the solution that achieves
the main goal. For this reason, we consider the state-of-the-art in achieving online synaptic plasticity
at the edge, with custom processors for brain-inspired SNNs. In literature, there are two main streams
for demonstrating the efficiency of a particular SNN with online learning on-chip: one is based on
unsupervised and local (i.e., synaptic updates only require information from neighbouring layers [37])
synaptic plasticity rules, while the other uses a supervised synaptic update approach, inspired from
backpropagation-like learning.

For supervised SNNs, online learning is performed via a surrogate type of gradient descent: since
spikes are non-differentiable [64], updating synaptic weights based on gradient descent is not possible
in a direct manner [65]. Thus, with the aim of addressing the low-accuracy yield in bio-plausible synaptic
plasticity rules such as STDP (spike-driven synaptic plasticity), authors have proposed various methods
for gradient approximations, e.g., with respect to spike firing times [66] or membranes potentials [67],
resulting in supervised BP-STDP (Backpropagation STDP) rules. However, apart from their non-locality,
these methods need multi-precision weights for gradients, they require more training data, and they
are highly-sensitive to any variation in hyper-parameters [68]. As our goal is to achieve local online
learning in dynamic environments, we mainly focus on literature that implements unsupervised STDP
rules, suitable for stochastic learning.

For unsupervised online learning at the edge, the are two main approaches: one implements varia-
tions of STDP or SDSP, where complex computations are optimized [69], [70], [71], [43], [72], [46], while
the other proposes custom synaptic plasticity learning rules that are more hardware-friendly than STDP
or SDSP [44]. Overall, the state-of-the-art SNN processors embed a given online learning rule, with
some processors exhibiting a degree of programmability in terms of neuron models or synaptic weights
precision [40]. The main limitation in state-of-the-art solutions is that learning incurs a high energy over-
head on inference, a typical value being 7 - 10 times overhead. We also make a distinction between
SNN processors meant to be used as IP modules, with an address-event-representation (AER) inter-
face for input and output spikes, versus standalone SNN processors, that can be directly plugged-in to
image sensors, without additional data processing off-chip. For the former, an accurate estimation of
the overall energy consumption is less straightforward. Of particular interest are also works that involve
stochastic plasticity with binary synaptic weights [44], [53], since they have the potential to address the
memory bottleneck presented in section 1.2 and also robustness to dynamic environments. In the fol-
lowing paragraphs, we elaborate on some of the methods proposed in state-of-the-art literature and
their main limitation with regard to our goal.

In [69], the authors propose a SNN processor based on a variation of STDP, where the exponential
is replaced by a constant, and on an adaptive computing scheme that can switch between clock-driven
STDP computation (i.e., at every clock-cycle) and event-driven STDP computation (i.e., only when a
pre-synaptic neuron fires). Their method, however, uses 16bit floating point synapses and multiplica-
tions in order to reach satisfactory accuracy on a common image classification task like MNIST. Despite
several hardware optimizations, and although rate spike encoding and classification are performed off-
chip, due to complex computations in the LIF neuron model and proposed STDP rule, their solutions
results in a low-throughput, high-energy SNN edge processor, where the learning consumes 10 times
more energy than the inference.

The work in [70] optimizes complex multiplications in the standard STDP rule and LIF neuron model
by using approximate multipliers and they reduce inference latency by employing parallel membrane
updates on an FPGA platform. Spike encoding and classification are performed off-chip. While the
learning stage incurs only 12% energy overhead on inference, their method is less efficient than other
solutions that achieve comparable accuracy, due to employing 16-bit fixed point weights and activations.
Several other works propose low-complexity variations of STDP for online learning on chip: [71], [43],
[72], [46].

To obviate the need for extra spike timing buffers, the authors in [40] propose an ASIC SNN pro-
cessor with programmable neuron model (i.e., LIF and 20 Izhikevich models) and a optimized online
learning implementation of SDSP. Spike encoding and classifications are performed off-chip. They
feature very efficient inference when the input spikes are converted using rank-order coding, and the

1.5. Contributions 7

neurons are modelled using LIF. By contrast, inference consumes 27 times more energy when input
spikes are encoded using rate coding. Nevertheless, for the rank-order coding, learning is 7 times more
expensive than inference. A neuromorphic processor with binary-weights and stochastic SDSP online
learning is proposed in [53], however, the solution can not be successfully extended to more complex
datasets such as MNIST, without further exploration.

In [44], the authors propose a SNN with binary synapses and a custom online learning rule, comple-
mented by a specific processor in 65nm ASIC node. Their processor is fixed to 400 excitatory neurons
with 576 synapses each (suitable for images of 24x24 pixels). Spike encoding and classification is
performed off-chip. To address the high cost associated with synaptic memory access and membrane
updates during inferencing, they propose using a simple IF neuron model with 1-bit synapses. This re-
sults in an energy efficient inference, however, without taking into account the spike encoding cost and
the classifier cost. To address the energy consumption incurred by a high number of updates during
learning, they update only the most active neuron for each new incoming input and they propose a low-
complexity learning rule based on pre-synaptic spike counting of rate-coding generated spike-trains.
Using the spike-counts, they define a stochastic weight update rule as follows: firstly, they generate
a stochastic probability for updating weights, which they compare with a random generated number
between [0,1]. Secondly, they generate a random integer that they compare with the number of spike
counts in the input. They combine the two steps to decide when to turn synaptic weights on or off.
While the stochastic probability for weights updated is fixed during learning, the two random numbers
are generated for all the synapses in a neuron (i.e., 576 times). This, combined with the fact that they
need a number of counters equal to the number of input axons (i.e., 576) results in a online learning
scheme that consumes 7 times more than the inference.

1.5. Contributions

In line with the problem statement of this work and the project goals, in this thesis we propose EON-1,
an Edge ONline Learning SCNN (Spiking Convolutional Neural Network) processor with 1-bit synaptic
weights, 1-spike per neuron and 1-neuron updated per input 3, that is inspired from the efficient spike
processing in URVC. Our contributions are as follows:

* Algorithmic contributions:

— propose an online learning and adaptation rule, using 1-bit synaptic weights and stochastic
updates of IF neurons,

— evaluate the quality of the solution in presence of data-variations in the input but also dataset-
agnosticism

» Hardware contributions:

— end-to-end system implementation of the proposed SNN, including spike encoder and clas-
sifier

— minimize synaptic weights memory cost by half, in terms of area and energy, through opti-
mizing the encoding of spikes and weights

— optimize the proposed learning scheme in hardware by proposing a sequential learning pro-
cess with synaptic updates in-place and that leverages the sparsity in input spikes and synap-
tic weights by skipping computations.

— hardware measurements in both FPGA and GF22 ASIC node and energy cost figures for
each architecture component

We emphasize that the main scientific contribution/innovation is an online learning rule suitable for
edge deployment, that has less than 1% energy overhead for inference. To our knowledge, our solution
incurs the least energy overhead for inference, compared to state-of-the-art solutions, showing a better
efficiency by at least a factor of 10x.

Sindependent of the training layer size, the learning cost is fixed, as only one neuron is allowed to learn for each new input

1.6. Thesis outline 8

1.6. Thesis outline

The remainder of this report is organized as follows: Chapter 2 presents a general background and
related work on the report topic, Chapter 3 presents the learning algorithm methodology and the pro-
posed SCNN. Chapter 4 presents the hardware implementation methodology for the proposed SCNN.
Chapter 5 presents the experimental setup for evaluating and benchmarking the proposed method in
software and hardware. Chapter 6 discusses the results obtained during the experiments in the previ-
ous chapter and benchmarks the solution against similar work. Chapter 7 presents conclusions of the
research work and discusses future avenues.

/

Background and related work

2.1. Spiking Neural Networks

2.1.1. Introduction

For several decades, scientists have aimed to apply the learning capabilities of biological neural net-
works to attain intelligent learning in practical world tasks such as image recognition or speech pro-
cessing. To that extent, the biological neuron has been abstracted to computational primitives, such
as synapses and neurons and integrated in a artificial neuron counterpart, which, when replicated in a
structured network, forms an Artificial Neural Network (ANN). A biological neuron and it’s basic artificial
counterpart are depicted in sub-figures A.) and B.) of Figure 2.1. A biological neuron’s cell body, the
soma, integrates synaptic potentials from pre-neurons. The integrated result stimulates the voltage of
the neuron membrane, which, when passing a certain threshold voltage, it releases action potentials
to other neuron cells. These action potentials are carried by a neuron’s axon, which further broadcasts
the electrical signals to all it's fan-out synapses. Synapses are contact structures between a single

pre-synaptic neuron with a single post-synaptic neuron.

A Dendrite D.)

tspike_out

Vmem

[mV]

v .
Synapse rest
t(x) () () t(x;) Wms]
l 1!
B.) AN c) SNN
1
Axon from Axon from "
pre-synaptic neuron pre-synaptic neuron 0
t1(x1) t2(x1) //"

Synapse | [y
X1 Post-s ti \J Synapse
v © nel}/r':i\p € Output axon of X1 10100 Post-synaptic
post-synaptic neuron neuron

Output axon of
post-synaptic neuron

Figure 2.1: A.) Biological neuron. B.) Artificial neuron in a ANN. C.) Spiking neuron in a SNN. D.)
Membrane potential of a spiking post-synaptic neuron as a function of time: incoming spikes from a
pre-synaptic neuron are accumulated. When the membrane potential reaches a threshold V;;, the
post-synaptic neuron fires a spike. Figure has been adapted from [1], [2] and [3].

2.1. Spiking Neural Networks 10

Each synapse has an associated weight value that is activated by a magnitude equal to the input
action potentials. In an artificial neuron counterpart, activations and synaptic weights are typically
represented through floating point-numbers. The artificial neuron also integrates the incoming weighted
inputs, and the result is non-linearized with an activation function, typically a Rectified Linear Unit
(ReLU). The axon value at the output of a postsynaptic neuron in a ANN is given by Equation 2.1.
Typically, a bias value b is added to the weighted sum performed by the neuron.

1=n

y = maz(0, Zwi X x; + b) (2.1)

=1

Spiking Neural Networks (SNNs) are a third generation of neuron networks [48], in which neu-
rons communicate through discrete spikes. Pre-synaptic neurons fire spikes that stimulate weighted
synapses. Similarly to ANNs, synaptic weights can be represented through floating point numbers,
however, by contrast to ANNs, the activation function of spiking neurons behaves more closely to bio-
logical neurons, such that the weighted sum activates a step function, which, based on a post-synaptic
neuron’s threshold potential, it outputs a value 0 or 1, i.e., it fires a discrete spike. The basic axon
function in a spiking neuron is given by Equation 2.2. A visual representation of the spiking neuron
and it’s activation function are depicted in sub-figures C.) and D.) of Figure 2.1. In general, SNNs are
composed of two layers of neurons, where the input layer encodes information to spikes and the output
layer performs learning. SNNs come with several attributes such as the spiking neuron models, the
type of information encoding to generate spikes for the input of the network, different synaptic plasticity
rules (i.e., the method by which a neuron modulates it's synaptic weights). Some popular types of these
attributes are briefly presented in the following subsections.

i =n, . L >
y = L, if 21:1. wi X 23 > Vi (22)
0, otherwise

2.1.2. Information encoding to spikes

Typical tasks for neural networks are image classification or pattern recognition in input images. Input
static images, for instance, are usually represented by a matrix of data-points named pixels, which
indicate the contrast intensity, typically an integer between 0 and 255. However, SNNs only work with
discrete spikes, and thus real input information such as pixels need to be converted to a form of spike
code, in order to be processed by the SNN. There are two main spike encoding techniques used in
literature: one is rate coding, and the other is temporal coding. We briefly describe the two coding
schemes in the following paragraphs.

Rate coding is a spike encoding method based on the mean firing rate within a time window. The

basic rate coding scheme is based on:

Nspik:e
= — 2-
r= ke (2:3)

where N, represents the number of spikes fired within a stimulus time window, 7. To convert pixels
to discrete spikes, a common method is to use Poisson rate coding, where pixels are mapped to a firing
rate that is proportional to the pixel’s intensity [73], [3]. The probability of a pixel with intensity A firing
one spike in given time interval At is given by [3]:

P(Nepire = 1 during At) = AAt(e A1) (2.4)

Temporal coding is a spike encoding scheme that uses the exact spike times to generate spikes.
Multiple temporal coding schemes are used in literature, some of the most common being Time-To-
First-Spike (TTFS) and Rank-Order-Coding [50]. TTFS is inspired from the biological visual system
and relates the relative time of the first spike fired by a neuron cell to the amplitude of the stimuli
intensity. We elaborate more on this scheme in the next section, as it is used as a fundament for the
solution we propose. Rank-Order-Coding is based on the TTFS coding scheme, with the difference that
it captures the order in which neurons across a population fire their first spike. This encoding scheme
is depicted in Figure 2.2.

2.1. Spiking Neural Networks 1

time

At Latency Rank

== 3 4

f

-
.
Py

'
~

~

'
~
w0
(s]

CROMSNORORPROROIOHD,
f
A

Figure 2.2: Rank-order-coding among a population of 10 neurons annotated A - J. Based on the
order of the first spike fired every time window At, the rank-order code is C>B>D>A>E>F>G>J>H>I.
Copyright: [4].

2.1.3. Neuron model

The spiking neuron models refer to the mathematical relation according to which a neuron updates it's
membrane potential. Three of the most popular neuron models used in literature are Integrate-and-
Fire (IF), Leaky-Integrate-and-Fire (LIF) and Izkievich model, all of which are approximations of the
Hodgkin-Huxley (HH model). We briefly describe these models in the following paragraphs.

Hodgkin-Huxley (HH) model is a biologically accurate model, but also the most computationally
expensive. The HH model is based on experiments on the giant axon of a squid [3], and it expresses
that the action potential of the membrane is based on the current of ion channels, K+ and Na™, and
the total synaptic current, as described in Equation 2.5:

‘%tm = Lion(t) + Lyn (1), (2.5)
where C,, is the membrane capacitance in pF', v, is the membrane potential in mV and I;,,(t)) and
Iy, (t) are the total ion channels current and total synaptic current in pA, respectively.

Integrate-and-Fire (IF) is the most computationally efficient and simple neuron model [64], [3].
Compared to the HH model, it does not take into account the ion channel behaviour in the membrane
potential integration. This is described by Equation 2.6

Cm

dv,,
Cm el Loy (), (2.6)
Leaky-Integrate-and-Fire (LIF) is more biologically accurate than IF, by accounting for the leakage
potential of the diffusion of ions in the absence of the cell’s state of equilibrium. Compared to the HH
model, it does not take into account the ion channel behaviour in the membrane potential integration.

This is described by Equation 2.7:

2.2. Retina models based on Spiking Convolutional Neural Networks (SCNNs) 12

dv,
Cm m
dt
where G, represents the leak conductance and Ej, is the leak potential [3]. When the membrane
threshold v is passed, then the post-spike mebrane potential reset to v,...¢; is given by:

= Iéyn(t) - GL(Vm - EL), (27)

if v, > 19, then vy, < Vyeser (2.8)

Izhikevich is a neuron model [52] that maintains the low-computational complexity of LIF, while
being closer the biological plausibility of HH. Several neuron behaviours can be modeled based on
the following two-dimensional system of differential equations, where a, b, ¢ and d are constants that
can model various behaviour based on [52], u is a ionic recovery variable and v, is the instantaneous
threshold potential [3]:

m‘%" = k(v — EL) (W — 4) — i+ Loy (t) (2.9)
dif) = a(b(vym — Ep) —) (2.10)

with post-spike membrane potential resetting based on:

Upp 4 C

2.1
u<—u-+d ()

if Vm > then {

2.1.4. Learning in SNNs

As mentioned in section 1.4, there are two main learning approaches in SNNs: one is based on un-
supervised and local (i.e., synaptic updates only require information from neighbouring layers [37])
synaptic plasticity rules, while the other uses a supervised synaptic update approach, inspired from
backpropagation-like learning. As our goal is to achieve local online learning in dynamic environments,
we only focus on the STDP rule, which is presented in the following paragraph. We mention that STDP
can also be applied offline, in which weights are updated at the end of all forward passed on correlations
between all stored synaptic times [64].

Spike-Time-Dependent-Plasticity (STDP) is an unsupervised, online learning rule in which synap-
tic weights are updated based on the order of the firing times of a pre-synaptic spike and a post-synaptic
spike. When the post-synaptic spike is fired shortly after the pre-synaptic spike, weights are strenght-
ened, also caled Long-Term-Potentiation (LTP), and in the reverse situation, weights are weakened,
also called Long-Term-Depression (LTD). The weight update in STDP is given by:

Aw — {A+€$p(tp';‘rfi(;%) if .tpre S tpost (212)
A—el‘p(_w) if tpre > tpost

where A, are weight scaling factors and .. are time constants for LTP and LTD, respectively [3], [64].
Scaling factors A are defined as:

A (w) = nreap(Winis — w)
{A— (W) = n_exp(w — Winit) (2.13)

where 7. are learning rates and w;,,;; refers to the initial weight value [3].

2.2. Retinamodels based on Spiking Convolutional Neural Networks
(SCNNSs)

2.2.1. Preliminary: Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are neural networks inspired from the hierarchical recognition
in the mammalian visual system, commonly used for image classification and object detection tasks.

2.2. Retina models based on Spiking Convolutional Neural Networks (SCNNs) 13

CNNs are composed of convolutional layers, followed by an activation function, and a sub-sampling or
pooling layer. This structure is the equivalent of complex and simple cells neuron models in the visual
pathway, that date back to the first observation of the receptive fields in the cat’s visual cortex [74]. This
structure is repeated several times, resulting in a hierarchical feature extraction, from simpler features
to more complex features. Due to many such layers, CNNs are a subset of Deep Neural Networks
(DNNSs).

A typical CNN architecture is depicted in Figure 2.3. An input image in grayscale, with dimensions
My x M is fed into the network. A feature extraction process follows, for several iterations composed
of two layers, a convolutional layer and a pooling layer. With each iteration, the complexity of the
extracted features increases. We describe briefly the CNN steps and components.

Repeat i times for different N; convolution channels
with (kg x k) kernels followed by (k,x k;) max-
pooling.

A

L
v
>
o"’&
Output

Full
Convolution Max-pool Max-pool uly Softmax

Input (ks x kg) kernels (kp x k) N,_, @ ftz@n(n;ctei
Mo x My N; @ (M;_y — ks/2) x N; @ (M; x M;) (My_y XM;_;) Mtjx
(M; -1 — ks/2) M; = (M;_1—ks/2)/ky M,_,)
\] | L-1 |
! Y
Feature extraction Classification

Figure 2.3: A typical CNN architecture. Adapted from [5], [6]

Convolutional layers consist of several two-dimensional (2D) convolutions between filter kernels
with size k; x ks and each input channel. Typically, multiple convolution kernels are applied, which we
denote by N;. The kernels weights are learned during the training process. These layers are followed
by an activation function, like ReLU in Equation 2.1. This step ensures the network is more robust to
non-linearity in the features.

Pooling layers, also knows as sub-sampling layers, extract the most relevant features in a neigh-
bourhood of pixels in the convolutional layer, hence reducing the dimensions of the convolution output.

Fully-connected layer is the last layer in a CNN corresponding to the one-dimensional flattened
input of the last pooling layer. This layer is also followed by an activation function, for non-linearity.

Lastly, a Softmax layer is used for predicting the probability of each class, and the class with the
highest probability is the output prediction.

2.2.2. Rapid Recognition based on Time-to-first-spike (TTFS)

In the biological visual system, it has been observed that Ultra-Rapid Visual Categorization (URVC)
occurs at the visual cortex level within a very small time-window (e.g., under 150 ms) for patterns that
are flashed for less than 20 ms in front of the retina [58]. Given that on the path from the retina to the
visual cortex, information is carried through around 10 layers of neurons [7] that fire with a frequency
of roughly 100Hz [75], Thorpe et al. have argued that at most one spike per neuron could be fired in
such a short time-frame, ruling out the possibility of a rate-order encoding scheme [57]. Based on the
assumption that ganglion cells in the retina act as intensity-to-latency converters [76] (Figure 2.4), such
that they emit spikes in the order of the strength of the visual stimulation, Thorpe et al. have proposed
a rank-order-encoding scheme [50], which is a form of temporal coding where the time-to-first-spike

2.2. Retina models based on Spiking Convolutional Neural Networks (SCNNs) 14

(TTES) is related to the highest contrast in a given stimuli. Their assumption caries biological plausibility,
being experimentally proven for the salamander retina [77].

STIMULUS SYSTEM

A A '
|
i et |
Threshold
Y 8 |
|
]

c

§ g

5)

I 8

<

> — 4
Time (-) intensity (+) (late) firing time (early)
(@) (b)

Figure 2.4: Depiction of intensity-to-latency conversion in the retinal ganglion cells: a) shows how
stronger neuron activations result in earlier spikes. b) For a prototypical spatial stimulus, the neurons
firing time based on the intensity at each pixel position is depicted. Figure used from [7] with the authors
approval.

2.2.3. Intermezzo

This subsection presents a short intermezzo into how visual stimuli is roughly transmitted from the
retina to the visual cortex. The retina is organized in three levels of neurons, namely photoreceptors,
bipolar cells and ganglion cells. The flow of information is as follows [56]:

» The contrast of a visual stimuli is firstly sensed by the first-order neurons in the retina, rode and
cone photoreceptors, which hyperpolarize when illuminated and depolarize when light sets off.

» Further-down the retinal organization, the neurotransmitters emitted by the photoreceptors are
sensed by second-order neurons, ON- and OFF- bipolar cells, which behave as follows:

— The OFF-bipolar cells respond to light offset or an increase in darkness, and thus they hy-
perpolarize when illuminated

— The ON-bipolar cells depolarize when illuminated, which results in a sign inversion for the
signal from the photoreceptors

* These ON- and OFF- signals are consequently collected by a subset of ganglion cells, that then
send spikes to the visual cortex through the optic nerve.

» The first layer of the visual cortex encapsulates orientation-selective cells that, based on the
information carried by ON- and OFF-signaling pathways from the ganglion cells, perform high-
level feature outlining and object recognition.

2.2.4. Previous SCNN architectures simulating rapid recognition in the visual
cortex

To model the URVC behaviour observed in the brain, Thorpe et al. [4], [61] have proposed a feed-
forward SCNN that emulates the information processing from the retinal ganglion cells to the orientation-
selective cells in the first layer of the visual cortex.

2.2. Retina models based on Spiking Convolutional Neural Networks (SCNNs) 15

An early network architecture proposed by Thorpe et al. [8] for modelling URVC focuses on simu-
lating a temporal 1-WTA (Winner-Takes-All) lateral inhibition scheme among eight orientation-selective
cells. The basic two-layer architecture is depicted in Figure 2.5. The idea behind this mechanism is that
only the orientation cell with the highest contrast fires a spike, and this spike is sufficient for high-level
feature recognition in the layer that follows. This is artificially implemented for static images using a
series of convolutions with edge filters, and a lateral maxpooling operation (channel-wise) to decide for
which edge filter the convolution output is the highest, at each pixel point. This encoding corresponds
to a N-of-M rank order encoding scheme with N =1 and M = 8, i.e., only one spike out of eight is propa-
gated [78].The authors have implemented and tested their ideas on a large network of asynchronous IF
neurons, named SpikeNet [8]. The network has been demonstrated for a range of image classification
and pattern recognition tasks such as face identification [62], classifying between faces and motorcy-
cles [61] or pattern matching at various scales and in presence of invariance [63]. Rapid unsupervised
recognition of patterns, based on the same ideas, after only 2-5 repetitions was demonstrated in [79].
SpikeNet has also been used commercially for identifying logos in sporting events such as Formula 1
[78]. Moreover, since through a sum of studies it has been shown that URVC in the brain seems to be
achromatic and highly invariant to noise, contrast variation or small rotations of the input [4], [55], [56],
[77], the creators of SpikeNet have demonstrated that such principles keep their validity for the artificial
model they proposed [4].

Visual stimuli Retina

| |
[| [\

Figure 2.5: Two-layer feedforward architecture emulating the retina in [8]. Figure copyright: [9].

2.2.5. Learning in previously proposed SCNN for rapid recognition in the visual
cortex

For learning based on such an encoding scheme, the authors in [8], [9] proposed a STDP rule where IF
neurons act as rank-order decoders, such that their synaptic weights are driven to match the presented
stimulus based on the earliest firing cells among a set of orientation-selective neurons. Thus, in their
proposal, synaptic weights are basically templates of input images, however, thanks to the efficient
encoding scheme based on URVC, these weights are able to infer variations of the patterns they have
learned such as rotations up till £10°, contrast, luminance and noise variation [63]. Recognition is
based on the spike fired by the IF neurons. One direct advantage of this scheme is that both spikes
and synaptic weights can be represented with just one bit. This means that updating the membrane
potential of neurons can be done with a bitwise AND operation followed by a popcount, which is very

2.3. Considerations for hardware implementation 16

efficient for hardware implementation. Another advantage of the template-matching neurons is that
they can keep good inference accuracy even when only a small number of their synaptic weights are
turned ON for instance, the authors propose keeping only 64 weights ON for input patterns with sizes
around 30x30 points is sufficient to detect objects they have seen before, and their variations [78]. This
results in very sparse synaptic weights, and thus have the potential for efficient weights-storage.

This work is further extended in [61] to embed STDP learning with learnable parameters. The
learning rule is described in Equation 2.14. The network architecture consists of two sets of layers of
complex and simple cells is proposed. The network is applied to simple binary classification between
faces and motorcycles. The STDP rule proposed in [61] is extended in [80] to probabilistic STDP.

Aw = {A-l-w(l - w)vtpost - tprf’ > 0 (214)
—A_w(l —w), otherwise

where w € (0,1) and the amplification parameters are kept to 4/3.

After the proposal of [61], several other SCNNs have been proposed based on URVC in the brain
[59], some of which are suitable for edge learning, such as is the case of [45], which uses a supervised
backpropagation-like learning in the spiking layers.

2.3. Considerations for hardware implementation

2.3.1. Algorithm-hardware co-optimization of 2D convolutions

Algorithm 1 2D_conv(img(X, Y, M), w(KX, KY, K))
1: Input data: A dataset with M images of X x Y elements and a set of K kernels with KX x KY

weights.

2: Init: conv_out(X,Y,M,K) =0
3: fori=0toM-1do > For each image in the dataset
4: forx=0to X-1do > For each row in the image
5: fory=0toY-1do > For each column in the image
6: fork=0toK-1do > For each kernel channel
7: for kx = -KX/2 to KX/2 do > For each kernel row
8: for ky = -KY/2 to KY/2 do > For each kernel channel
9: conv_out(x,y,i, k) +=img(ix — kx,x — ky, i) x w(kz, ky, k)

10: end for

11: end for

12 end for

13: end for

14: end for

15: end for

16: return conv_out(X,Y, M, K)

It is often desired, due to the high-level of utilization of the 2D convolution in modern applications,
that the cost of performing it is minimized, while it's computation speed is enhanced. As convolution is
the engine powering Deep Learning networks and modern Computer Vision application, there has been
ample research and previous work on it’s algorithm-hardware co-optimization and well-established tech-
nigues complemented by specialized accelerator chips [24], [25], [26] have been developed. Typically,
in CNN applications, an input image from a given data-set is convolved with multiple kernels, resulting
into a multi-channel convolved output. At an algorithmic level, this is achieved through a number of
nested for-loops with multiply-accumulate. A pseudocode of this implementation in software is pre-
sented in algorithm 1.

Inherently, the 2D convolution is a multiply-and-accumulate operation, which exhibits increased
parallelism that can be easily exploited at a hardware level. The first level of parallelism is deduced
from the dependencies between the data involved in this operation, e.g., to compute one output, for a
kernel with K_SZ x K_SZ size, K_SZ? dot products and one adddition with K_SZ? terms need to be

2.3. Considerations for hardware implementation 17

Inputs Weights

*ﬁ@%

conv_out
>(+) >

Figure 2.6: Multiply-and-accumulate pipeline for a convolution window flattened to 1D. For simplicity,
a window with 5 elements is depicted. The convolution operation needs 5 pointwise multiplications and
an acumulator that needs five stages for adding the 5 terms

performed. Finally, the additions are accumulated to obtain the convolved result. A simple such pipeline
is depicted in Figure 2.6. Provided that all inputs and weights values can be read at once (concept which
also introduces the next level of parallelism), all multiplications can be performed in parallel, however
each addition is dependent on a previous intermediate result, for which reason the final accumulation
needs to be performed sequentially. Nevertheless, in modern hardware fabrics, which incorporate
standard cells with minimum input-output delay, it is possible to "hide” the intermediate additions delay
within one-clock cycle, at the cost of increased computation resources.

The second level of parallelism comes from how the data is made available for the computation
unit. From here, several optimization techniques derive, such as temporal and/or spatial unrolling of
the nested for-loops in algorithm 1. These work as follows:

» Spatial unrolling (parallelization) - refers to performing the computations in the body of a for-
loop in parallel, in one clock cycle. For instance, in algorithm 1, the loop at line 6 can be fully
parallelized, i.e., all K channels can be computed at once.

» Temporal unrolling (data-reuse or stationarity) - part of the data is kept stationary (e.g., the
weights) and part of the data becomes available sequentially at every clock cycle. In terms of
Deep Learning accelerators, two types of data-reuse can be defined in terms of specific station-
arity:

— inputs-stationary - reduces inputs data movement to-and-from memory by keeping them
stationary, while weights are becoming available in parts at each time-step.

— weights-stationary - reduces weights data movement to-and-from memory by keeping them
stationary, while inputs are becoming available sequentially.

A typical digital hardware implementation of a 2D convolution is composed of memory elements
(e.g., SRAM, DRAM or register files for on-chip memory and possibly extra off-chip memory) and a
datapath of Processing Elements, PEs, as depicted in Figure 2.7. The datapath of PEs is also referred
to in literature as a systolic array [81]. Systolic arrays are networks of interconnected processing el-
ements (PEs) that rhythmically produce and pass data through the system, similar to the blood flow
through the heart (hence, the name systolic). They present the advantage of local interconnections,
modularity, pipelinability and concurrency, which renders them excelent candidates for VLSI implemen-
tations, targeting ASIC or FPGA platforms for their realization. Systolic array-based architectures can
be employed in a wide range of applications whose functions can be divided in repetitive components
and that exhibit recursivity in computing the final output (e.g., the multiply-accumulate operation can
be divided into "multiply” components, that can be accumulated recursively to form the final output).A
famous hardware DNN accelerator employing systolic arrays for 2D convolution is Google’s TPU [25].
Since memory reads consume the most energy, maximizing data-reuse in the PE datapath is enabled
by various combinations of temporal and spatial unrolling.

2.3. Considerations for hardware implementation 18

Datapath in array of PE

Processing element

Off-chip memory PE PE PE PE

or .
Sensor interface Reg File PE

'y ¥ ¥ | 4 ¥

. PE —»PE|—PE—PE

On-chip memory

SRAM / DRAM / RF v ¥ ¥ ¥ [_ —] ; »
. Inputs T PE PE PE PE o |

Pariial sum

Weights — }_
Outputs] ¥ ¥ ¥ ¥

¥
h
h 4

h 4
h 4
h J

Figure 2.7: Typical hardware implementation flow for convolution via systolic array composed of a
datapath of PEs. Left: data is loaded and stored to-and-from on-chip memory, which can be in turn
communicating with a higher-density off-chip memory or directly to sensors interfaces. Middle: a data-
path of PEs array. Right: A basic PE architecture.

Complementary to these hardware optimizations, there is also the avenue of reducing data precision
and quantization of weights and inputs, e.g., weights that are floating point numbers are quantized such
that a reduced precision can be used in hardware without significant performance loss [27].

2.3.2. Linear-Feedback-Shift-Register

Generating pseudo-random numbers is used in a wide range of application, some of which are Cryp-
tography, Digital Signal Processing or Machine Learning Modelling. An efficient hardware realiza-
tion of pseudo-random number generators (PRNG) is using a Linear-Feedback Shift Register (LFSR).
LFSR’s are implementing a primitive polynomial linear functions which ensure the LSFR will produce
a maximum-length 2L SE_bits random sequence (i.e., the sequence is deterministic and repeats every
oLFSR bits clock cycles. This is achieved by a simple shift-register and by placing taps at bit positions
corresponding to the degrees of the terms in the feedback polynomial. For illustration, the 4-bit LFSR
in Figure 2.8 implements the primitive polynomial in Equation 2.15. Tap bits for LFSRs up to 168 bits
are compiled in [82].

2t a2t +1=0 (2.15)
Q J
L—1D O D Q (] L] D Q
0 1 2 3
—> o— = o— > o— s a—
CLK

Figure 2.8: A 4-bit LFSR with taps on bits 2 and 3

2.3.3. Memory Blocks

In this subsection we briefly present the RAM choices for the synaptic memory and neuron states in
the target FPGA platform and ASIC node, respectively.

The target FPGA platform used in this project is a Virtex UltraScale+ HBM VCU128 FPGA from
AMD. This platform features various choices for on-chip memory: 70 Mb of Block RAM (BRAM), 270

2.3. Considerations for hardware implementation 19

Mb of Ultra-RAM (URAM), 36.7 Mb of distributed RAM but also 8GB of High-Bandwidth-Memory (HBM).
Each of these blocks can be configured as follows:

* Distributed RAM is dedicated LUTRAM with configurable DEPTH (16 - 65k) and WIDTH (1 -
1024). It also supports various memory types, e.g., Single Port, Simple Dual Port and Dual Port.
It comes with a native interface.

* BRAM: There are 2016 units available with a block size of 36Kb. The default depth is 1024
words and the width is 36 bits, however the bit-width is reconfigurable and the tool can infer the
amount of basic blocks needed for synthesis. BRAM can be configured to work as a Single Port,
Simple Dual Port RAM or True Dual Port RAM (i.e., different addresses for read and write can be
provided). The BRAM can be used with a native interface or an AXl interface.

+ URAM: URAM is a higher density on-chip memory, with a fixed block size of 288Kb. Each block
has a fixed width of 72 bits and depth of 4096. It supports the same configurations as BRAM.

» HBM is a 3D-stacked memory of multiple DRAM Dies, placed on the same interposer with the
FPGA die. The HBM used in this FPGA platform has 8 GB of memory and can be accessed via
an AXI-3 interface. The memory has 32 channels with an independent AXI slave available for
addressing each of them. It is possible to access all AXI channels in parallel, resulting in a width
of 8192 bits and depth of 223 words.

The ASIC node used in this project is GF22FDX. For this node, we use the single port SRAM
memory IPs with a depth of 8192 bits and a width of 32 bits.

3

Methodology - Algorithms

In this section, we describe the the bio-inspired online learning mechanism and the Spiking Convolu-
tional Neural Network architecture used. The network architecture has one trainable and scalable layer
of simple integrate-and-fire (I&F) neurons that embed the proposed local learning rule. All synapses
and activations are binary and for learning, only one neuron is allowed to become selective to an input
pattern.

3.1. Proposed SCNN architecture

Inspired from [9] and [61], the core feed-forward architecture used for pattern recognition is a Spik-
ing Convolutional Neural Network (SCNN) with three layers. A visual representation of the network
architecture is depicted in Figure 3.1. In line with the observation that the cells in the retina are color-
agnostic [4], the network’s input is a grayscale image where the contrast level is in the range (0, 255),
where 0 denotes the lowest intensity —black and 255 the highest intensity —white. Note that the input
to the network can also be a coloured image which can subsequently be converted to grayscale levels.
Additional downsizing of the input can be performed to match the number of synapses available per
neuron in the trainable layer.

The first two layers of the architecture extract the orientation preference at each data point, and
perform lateral inhibition among the eight orientation cells. This is done via four 5 x 5 convolution
kernels, followed by a lateral max-pooling. The output of the Lateral Inhibition layer is mapped to 8-bit
spike trains, while the output layer, which is the only trainable layer in the architecture, updates each
neuron’s state and triggers synaptic plasticity during the learning phase.

The core architecture can be used as stand-alone in an unsupervised manner, or can be adjusted
for classification tasks, by plugging it to a classification layer and performing supervised clustering of
multiple unsupervised networks.

Table 3.1: Parameters for I&F Neuron layers and synaptic plasticity

Name Description

N_neurons Number of neurons

%1% Number of active synaptic connections per neuron

N Maximum number of spikes in the spike vector

M Maximum number of spikes before lateral inhibition

T learn Learning threshold

T learn0 Initial learning threshold

T fire Firing threshold

T fire_rate Firing threshold rate of learning threshold

swap_rate Rate or ratio of ineffective synaptic connections which will SWAP in each
learning phase

K Maximum number of neurons which are allowed to learn an input spike
vector

20

3.2. Spike encoding 21

0000000

3159 | - \\\ W3 :ia ,
RN .
Trainable 1 f I&F
Input Image Edge filters Lateral Inhibition rainable layer of 1&
- neurons
(Spike Output)

(Sparsely connected)

Figure 3.1: The SCNN architecture for this work. It includes a layer of edge-filtering convolutions, a
lateral inhibition layer, and a layer of fully connected neurons equipped with binary STDP training.

3.2. Spike encoding

Inspired from the biological retinal ganglion cells (see subsection 2.2.2), the input layer of the SCNN
maps the intensity levels of each pixel representation to orientation selective ON- and -OFF receptive
fields. This is achieved by means of two-dimensional convolution with four kernels. We consider here
only eight orientation angles, starting from 0° to 315°, however, future experiments can consider using a
wider range of angles. We employ 5 x 5 kernels with fixed weights (Figure 3.2), which resemble Gabor
filters and are based on the work in [61]. Gabor filters are bandpass filters frequently used in image
processing for tasks such as edge detection and feature extraction and are considered to approximate
orientation selectivity in a bio-plausible manner, similar to cells in the visual cortex [83]. The convolution
outputs are subsequently categorized under ON- and OFF- receptive fields based on the sign of the
result at each pixel point: a negative sign corresponds to an OFF-center cell sensing a decrease in
light, while a positive sign corresponds to an ON-center being depolarized at sensing an increase in
light. By means of lateral max-pooling, the maximum absolute value from all orientations is picked
channel-wise. Only the winning orientation propagates a spike, inhibiting all other orientation cells at
each (X, Y) pixel location. Finding the winning kernel for one data-point is depicted in Figure 3.3. The
result is a highly sparse binary spiking output that can be compressed into a spike vector, as shown in
Fig.3.4.

3.3. Inference: neuron and synaptic model 22

o| 1l |Oo|-1|O 00| I 1|0 ofo0|O0f[O0]|0O (U I {00

0|2|0(|-2|0 of2]|2(0]-l 121421 o f2(2]0

0|4 |0|4]|0 1 [20]-2]-l ojo0|O0O|O0fO -2 00 21

0|2|0(|-2|0 1 {of-2]-=2]0 242 -l O f-2|-2(0/1

o| 1 |O(f-I|O O|-l|-l|O|O ofo0jO0f[O0]|0O O[O0 |-l |-I|O
0° 45° 90° 1350

Figure 3.2: The 5 x 5 convolution kernels used in this work

0 32 216 | 124 0
A. b_r B.
0 134 | 238 29 0 2
LN E—
Convolution 2 | 220 - 0 49 4
window 5 I Propagated
116 | 206 3 69 235 6 Spike
7
156 | 122 41 191 | 245 8 I
[
Edge filters . / > \
Convolution
outputs
Absolute value 1203 9 0 365 0 0 46
0° 180° 45° 225° 90° 270° 135° 315°

w0 L, (2 | N, (8
orientation |) 3 4 8 5 Q 6 7 8
Orientation index

at maximum 3

absolute value

Figure 3.3: Depiction of rank-order-encoding method for N = 1 out of M = 8. A. A window of pixels is
convolved with four edge filters, and the result is mapped to a orientation index based on the sign of the
convolution output and the maximum convolution in absolute value. B. The neuron cell corresponding
to orientation at index 3 spikes first.

3.3. Inference: neuron and synaptic model

After spike encoding, the output of the Lateral Inhibition layer (i.e., a spike vector) is then fully connected
to 1&F neurons with M synaptic connections in the third layer. Each neuron is characterized by two
internal thresholds, related to their membrane potential, V_mem: a learning threshold, T'_learn and a
firing threshold, T'_fire. The I&F neuron membrane potential is updated as in Equation 3.1.

i=M-—1
V_mem= > sli] x wli] (3.1)
=0
The synaptic weights of the I&F neurons in our algorithm have three constraints:

1. The synaptic weights are binary, which means they are either connected (active) or disconnected.
2. All neuron has the exact same amount of active synapse (W in Table 3.1).

3.3. Inference: neuron and synaptic model 23

X
=
s
=
& X |
= -
X
X 2
~ |
| x 8
=]
P 2
o —
w
3
. | s| |8
-
£ X X 2|3 _3
P 4 s
[
& 8| I i
x 3 | !
. Compressed format |
L]
L] —
3
X
[ee] —
g x |
i |
ol X
o
w I
Spike Vector

Lateral inhibition layer

Figure 3.4: The lateral inhibition layer produces binary spikes that can be compressed into a spike
vector. Each element of the vector corresponds to the source edge filter that generated the spike.

3. A neuron cannot connect to a unique (X,Y") location of more than one edge filter.

These constraints result in significantly sparse active synaptic weights, which can be compressed in
the same format as the spike vector. Throughout this work we choose W = 64 thus for a scheme with
M = 8192 and W = 64, a sparsity higher than 99% is present in the neuron’s synaptic weights. Fig.3.5
illustrates an example of four weight vectors where each of them has exactly four active synapses
(W = 4).

When the element of the weight vector matches with the element inside the spike vector, the corre-
sponding neurons integrate the incoming spikes. Therefore, a neuron fires if the number of matching
elements exceeds the firing threshold. Each neuron can be trained to recognize a specific feature.
Extending this network is possible by adding more I&F neuron layers or increasing the number of I&F
neurons in one layer. During inference, all neurons in the last layer are updated for an incoming input.

n:r_m Spike Vector
2|7 6 7 Weight Vector |
8|11 [3]5 Weight Vector 2
2 513]|2 Weight Vector 3
I 4 4|8 Weight Vector 4

Figure 3.5: Example of a spike vector and four weight vectors. Each weight vector contains four active
synaptic connections. Bold elements in the weight vectors are the one that matches the spike vector.

If at least a neuron reaches it’s firing threshold, that indicates the network remembers this pattern from
a previous stimulation.

3.4. Learningrule 24

3.4. Learning rule

As mentioned, the binary weights of I&F neurons can be trained. Our training algorithm is a variant
of STDP. It is unsupervised and applies locally and independently to each neuron. However, unlike
conventional STDP algorithms, the weight change is not gradual, as we use binary weights during
the training. Since our vision in designing this system is to perform on-device learning, the previously
mentioned constraints on the weight vectors are valid for both training and inference phases and limit
the freedom of the learning algorithm. Nevertheless, these features make our algorithm a hardware-
friendly option for neuromorphic processing systems.

It is important to mention that the weight sparsity in our algorithm is inherent, meaning that it is not
a result of the training process, but rather it is built into the algorithm itself. Therefore, the network’s
connections are sparse right from the start. This fixed structured sparsity can be utilized to enhance
the efficiency of our hardware, as explained later.

2 (7 6 7 Weight Vector |
1{3]5 Weight Vector 2

2 =5 |3 | 2= Weight Vector 3
I 4 418 Weight Vector 4

Eligible synapses for swapping

2(7 6 7 Weight Vector |
8|1 1[3]5 Weight Vector 2

2 | =5 |3 |2 Weight Vector 3
I 4 418 Weight Vector 4

After applying the STDP

Figure 3.6: Example of the binary STDP algorithm. The learning algorithm applies to neurons whose
membrane potential reaches a pre-defined threshold (neuron 3 here).

In a conventional STDP, the weights for synapses without a pre-synaptic firing would gradually
reduce (Long Term Depression, LTD) while the weights for synapses with a pre-synaptic activity would
gradually increase (Long Term Potentiation, LTP). The gradual change of weights allows a neuron to
slowly adapt to new data patterns without forgetting the already learned patterns. It is possible to
change the learning rate by increasing/decreasing the weight change factor. However, when using
binary weights in our STDP rule, it is impossible to change the weight values gradually. Instead, we
must apply an abrupt disconnection from the inactive pre-synaptic neuron for LTD and a full connection
to the active (fired) pre-synaptic neuron for LTP.

Figure 3.6 illustrates our STDP rule. The learning process starts with assigning W random ON
synaptic weights to each neuron. In the following paragraphs, we explain the STDP rule in detail with
the example used in this figure.

Step 1: Inference of spike vector and integration into the membrane potential: In the first
step, we integrate the input spike vector to all the neurons by counting the number of matches between
the spike vector and the corresponding weight vectors. In Figure 3.6 (top), the membrane potentials
of neurons will be 1, 1, 2 and 0 respectively. Assuming the threshold of 2, the membrane potential of
neurons 3 will reach the threshold and is eligible to learn the input pattern.

Step 2: All the neuron that passes the threshold will go through a random selection process
for learning: It is possible for multiple neurons to reach their learning threshold for one input spike
vector (not the case for our example in Figure 3.6). To account for this, we randomly select K neurons
from all eligible neurons (K in Table 3.1), and only those neurons can learn the input spike vector.

3.5. Supervised clustering for classification 25

Therefore, K affects the learning rate. If the total number of neurons who passed the threshold is less
than K, all of them will be selected. While K is programmable, we use a K = 1 for this implementation,
which results in a very efficient learning rule, as only one neuron needs to be updated.

Step 3: Swapping ineffective weights towards the ineffective input spikes: For each selected
neuron, we need to select a few active synapses that are not connected to the active input spike vector
elements (called ineffective synapses). Similarly, we randomly select the same number of ineffective
spikes from the spike vector. Finally, we swap the selected ineffective synapses toward ineffective
spikes. In Figure 3.6 (top), neuron 3 has two ineffective synapses and three ineffective spikes. In
Figure 3.6 (bottom), we randomly selected one of the eligible synapses and swapped it toward one
of the ineffective spikes. After applying the STDP rule, the weight vector of neuron three matches
even more with the input vector and will reach a higher membrane potential the next time the same
input pattern appears. The number of swapping synapses is dynamic and can be calculated based on
Swap_Ratex the number of ineffective synapses. Swap_Rate is a parameter in Table 3.1 which defines
the learning speed of each neuron. Swapping the position of active synapses allows us to keep the
total number of connections unchanged. Therefore, our STDP rule maintains a constant parameter for
the total number of active synapses per neuron (W in Table 3.1).

Step 4: Increasing the learning threshold: Another important factor in STDP is ensuring that a
neuron remains selective to a specific pattern it learns and does not react and learn other orthogonal
patterns. Therefore, we increase the neuron’s threshold after each learning phase with the amount
of weight swapping. This mechanism is inspired by the homeostasis observed in biological neurons
[84]. As a neuron learns a pattern, it becomes less elastic and unable to learn new patterns. However,
increasing the threshold can also make the neuron less active during inference, which is undesirable.
To address this issue, we have decoupled the learning and firing threshold. The learning threshold
(TLearn in Table 3.1) is initialized with a low value and gradually increases for each neuron. Initially,
when a neuron has not been trained, it is not allowed to fire (Tr;.e = oo in Table 3.1). After the
first learning phase, the firing threshold becomes a factor of the learning threshold. In such a neural
network, a young neuron is initially very plastic, with a high tendency to match with a repeating input
pattern, while an older neuron, which already learned several times, remains reluctant to learn a new
pattern of input spikes.

3.5. Supervised clustering for classification

It is possible to use the principles presented here for classification tasks, by means of supervised
clustering: we allocate a number of C clusters of I&F neurons in the trainable layer, where C is the
number of classes, and during training we use the input label as a cluster selector, such that only the
neurons in that cluster are allowed to learn that input pattern, based on the binary STDP rule presented.
Each cluster of neurons learns in an unsupervised manner.

For measuring the performance during inference, we propose a very light-weight classifier layer,
with a number of neurons equal to the number of classes. Each neuron in the classification layer
computes the total activation of firing neurons in a cluster. The output predicted class is given by the
index of the maximum neuron activation in the classification layer.

/]

Methodology - Hardware architecture
and 1implementation

In this section we present the hardware architecture of the SCNN processor embedding online learning
and the design process for each component.

4.1. Proposed hardware architecture

The top level hardware architecture that implements the neural network in Figure 3.1 is depicted in
Figure 4.1. The main data-flow between the blocks is represented through the relational arrows in
the figure, where each data channel is complemented by two 1-bit handshake signals, data_valid
and data_ready. The implemented hardware architecture is end-to-end compatible with the software
implementation.

Spike Vector
D4 A I&F .
N Edge | g
-+ =5 2 N o
I le filters and P, Match o R Cheriiar ,
o N/ Lateral count "(
inhibition - 2
| v | o
=}
Weight Vector - Trire 2
L o
Number * Synaptic Neuron .
of Weights ®
neurons Memory params
v A y
>
Spike Vectory ~ Weight Vectory g
A
v v A 4
> 3 b
Sequential Learning [3
Process (SLP) ® = R
& o
o 3
—~ Learning event 5] @,
[I TTTTT]] queue 3
Updated Weight Vector

Figure 4.1: Proposed hardware architecture for the SCNN processor.

In brief, the overall hardware architecture has four main computing units, i.e., the Edge filters and
Lateral inhibition unit, the I&F unit, a Sequential Learning Process (SLP) unit and a Classifier unit. The
main memory blocks in the top level are the Synaptic weights memory and the Neuron States Memory.
The latter stores the learning thresholds for each neuron. The firing threshold is computed as a rate of
the learning threshold. The firing threshold rate is common to all neurons and do not need to be stored
separately for each neuron. Not depicted in the diagram are additional buffers for encoded spikes.
The entire training and inference pipeline is orchestrated by an FSM based controller that sends and
receives control signals to all units. The main functionality of each block is described:

26

4.1. Proposed hardware architecture 27

» Edge filters and Lateral inhibition unit corresponds to the first two layers of the network ar-
chitecture in Figure 3.1, i.e., it performs 2D convolution on the input pixels, max-pooling of the
four kernel channels and mapping the maximum to a spike vector. The convolution kernels are
statically reconfigurable. For simplicity, we denote here the input size by (D +4) x (D +4), where
D is the convolution output size, considering zero-padding.

I&F unit updates the membrane potential of each neuron and compares it to a firing threshold.
The outputs of the unit are the membrane potential and a logic signal depicting the firing state. It
embeds a match unit and a comparator.

» SLP unit performs online on-device learning and adaptation. During inference, the SLP unit is
disabled, unless activated from the Control FSM for online adaptation.

Classifier unit is a simple module consisting of 7-bit counters (e.g., for adding membrane poten-
tials) and a comparator that picks the maximum counted value. The classifier works in a pipelined
fashion with the 1&F unit, outputting the prediction one clock cycle later than the last updated neu-
ron. In the absence of supervised clustering for classification, the classifier unit can be disabled,
and the I&F outputs are bypassed to the output interface of the SCNN processor.

Synaptic Weights Memory and Neuron parameters memory: The memory blocks shown in
Figure 4.1 store the weight vectors, and the learning and thresholds of each neuron. The width of
the weight memory is the same as that of the spike vector. The memory used in this study is cre-
ated using either on-chip SRAM memory or on-chip BRAM/URAM or HBM memory technologies,
depending on the number of neurons and bandwidth requirements. Weight memory is either a
true dual-port memory or a simple dual port, depending on the memory technology and system
performance requirements. One read-only port is used for inference (requires a high bandwidth
port) and another independent read/write port can be used for on-device learning.

The two main paths in the processor are the Inference engine and the Learning engine, which can
either operate independently or at the same time (i.e., for adaptation).

4.1.1. Enhancement of system performance

Since our vision is to have fast learning and inference, in one trainable layer with many simple 1&F
neurons, and given that the learning cost is fixed to one neuron per input, where finding the candidate
neuron depends on the previous inference operation, the main bottleneck in our solution is the Inference
phase, which consists of many memory read accesses and neuron updates. In Figure 4.2 we depict
an inference model when M inputs are available per clock cycle and N neurons need to be loaded for
each inference operation. We assume a blue box represents one time step, e.g, one clock cycle. For
each input, there are N |I&F operations that need to be performed.

The number of available M inputs (i.e., spike vectors) is dependant on the input sensor bandwidth,
the speed at which inputs are converted to spikes and also the resource limitations for storing the inputs
on-chip. Maximizing M is important for high-resolution frames that are segmented into small fields of
visions (FoVs), where each field of vision is considered one input which is subsequently fed into the
Inference engine. This case will be benchmarked and evaluated in Chapter 5.

When the neuron update logic is very efficient, minimizing the inference latency will be limited mainly
by memory access (i.e., memory bottleneck). We note, however, that in a system where the memory
bottleneck in reading the trained model could be alleviated or obviated, the input bandwidth can then
easily become a bottleneck, if encoding inputs to spikes is slower than reading weights from memory.

To accelerate the inference time, in Figure 4.2, there are two-main approaches, one is to keep the
inputs stationary and spread reading the neuron weights over multiple time steps, while the other is to
keep weights stationary and apply multiple inputs concurrently to the available weights. A combination
of inputs-stationary and weights-stationary is also possible, for best results.

In this work we evaluate an input-stationary approach, and focus on enhancing the system’s per-
formance in terms of loading the trained weights in less time steps. Our motivation for evaluating the
inputs-stationary approach is that it can be easily extended to more inputs being applied in parallel (i.e.,
combining inputs-stationary with weights-stationary), once the predominant cost of loading weights
model is characterized. To this extent, to enhance the system performance we can utilize multiple I&F
processing units (P) that run in parallel. By employing P processing units (as shown in Fig.4.3), we

4.1. Proposed hardware architecture 28

(Synaptic Weights Memory & Neuron params Memory) BW

Load trained model N time steps
|
_w (1) [Syn_w (2) lISyn_w (3) : Syn_w (4) [lSyn_w (N)
& & & s W & One inference
T_fire (1) T _fire (2) @T_fire (3) | T_fire (4) @@T_fire (N))

One I&F unit

I
- BW — bandwidth
W Input | Input | Syn_w — synaptic weights
1
-1

:
Input 2 Input 2 Input 2 : Input 2 Input 2
|
|
|
Input 3 Input 3 Input 3 : Input 3 Input 3
|
cese veee s 1
1
1

elghts stationary

Figure 4.2: Inference array for M inputs and N neurons in the trained model.

Input sensor BW
+
Input to spikes
BW
+
FPGA/ASIC
resources

M inputs

can process one input spike vector P times faster. The number of clock cycles required to process the
input spike vector depends on the number of neurons, N.

In addition to the logic blocks mentioned in Fig. 4.1, there is also a block that controls the time
multiplexing of the system. This block is called the Control Unit, which is a Finite State Machine that
provides the addresses of the weight memory to process one weight vector in each clock cycle. Due
to the requirements of the learning circuit (as explained in section subsection 4.3.3), the Control Unit
always provides a random number as the starting address of the weight memory. However, it then goes
sequentially over all the weight vectors, until it finds the first neuron that is a candidate for learning.

4.1.2. Design choices and optimizations for overall chip architecture

In this subsection we mention a set of items that affect the overall chip architecture. The first item
concerns a set of parameters which we use in the remainder of this chapter, defined in Table 4.2 and
the second item concerns the manner of encoding spikes and synaptic weights.

In the previous chapter, we describe spike codes (i.e., spike vectors) and synaptic weights as being
represented on 8 bits (one-hot encoding). To recap, each neuron in the trainable layer has 8 x N
binary synapses, which can be stored using a binary vector of equal size (i.e., 8 x N bits). However,
since in any binary neural network processor, even if multiply-accumulate is extremely optimized (e.g.,
multiplication is replaced with XNOR [28]), data movement to and from the synaptic memory, even
when localized on-chip, incurs the highest energy consumption and invariably, latency [85], and given
that all synaptic weights need to be stored physically for both inference and training, we propose using
a more efficient technique, via a 4-bit vector: while, in theory, individual weights and spikes are still 1-
bit, in this encoding optimization they are grouped per cluster of orientation-cells, and we only use the
index information of the first orientation-selective cell to spike, which we represent on 4-bits (Table 4.1).
We note that we use 4 bits to account for the case where no edge filter fires. This optimization reduces
the storage of synaptic weights by a factor of two.

The proposed encoding affects the implementation choice of the same methods from chapter 3 in
hardware, e.g., not only the I&F neuron membrane update, but also the output of the Edge filters and
lateral inhibition and the SLP.

4.1. Proposed hardware architecture

29

One image every N/P clock cycles

(P = number of I&F processing units)

(N = number of neurons)

98ew Indui 10} 10303A |ids Sweg

1&F

Match
count

A

One weight
vector per clock

1&F

Match
count

A

One weight
vector per clock

1&F

Match
count

A

One weight
vector per clock

1&F

Match
count

A

One weight
vector per clock

Y

Y

Y

Y

Figure 4.3: To increase the parallelism and, therefore, performance, we can use many I&F processing
elements (P) in parallel. Each processing element can process one neuron in every clock cycle. When

having N neurons in the system, each input image takes N /P clock cycles.

Table 4.1: Spikes and synaptic weights encoding 8-bits to 4-bits correspondence table

Orientation index

Orientation angle

8-bits encoding 4-bits encoding

1 0° 10000000 0000
2 180° 01000000 0001
3 45° 00100000 0010
4 225° 00010000 0011
5 90° 00001000 0100
6 270° 00000100 0101
7 135° 00000010 0110
8 315° 00000001 0111
- - 00000000 1000

30

4.1. Proposed hardware architecture

JSI| s,uoinau e Jo

syybiam ondeuAs Jo sl ayids |ny e Juasaldal 0} 8zis 19x0ed |eiouag) Slig ON3 - SINIOd Viva Zs Ad ¢l
‘Buiuresy Buunp jndur yoes Joy sassed jo JaquinN L:}Inejep ON SHDOOd3 LI
S1lg ON3.(L+ZS M pow WNIQ HOLvd/
9[040 300|0 Jad papoousd sayids Jo JaqunN LIND NI Xd » d31S 934 HS) Mo d sayids dus ‘Ql
« (242/ZS M - NIQ HO1Vd)
‘uoJnau Jad sasdeuAs pue jsi| ayids e ul Sapod ayids Jo Jaq
-winu 8y} Joj pasn s| uojejuasaidal swes ay| "yojed paAjoAuod ndino (SLINIOd V.LVA)Z9010 sllg xai 6
ue ul JUsWald Yoeas Jo xapul 8y} Juasaidal 0} pasn s}ig JO Jaquinu ay |
'S} ¢ s8sn uolsian paziwnido 8y} Ing ‘sjiq g s!)nejeq — .
‘syybBrom ondeuAs pue sayids Buipoous oy pasn s}ig Jo Jaquinu 8y | gloy Slig ON3 8
"Jlun Japoous ayids ay} jo abew Jad Aousie| sy} sejous _
" POSLIS OXIES Oth & . 151 O S910USP (((HLaIM V1va) - — :
os|e Jaquinu siy] ‘Apeal ale sjndino paAjoAUOD S]I ||B pue papeo| (— =)i109) 1IND 3INOQ 9N avol /
AJIny usaq sey abewl Jndul ue s8j942 ¥20]0 Auew Moy Ul saulwls}a /8« NI HOLVd-NIQ HOLVd)!
‘peaytano Buipeo) Jajsibal Yiys ay) sejousp os|e -
Jaquuinu siy| "j9Ao 300|o Jad paAlgoal sjaxid Jo Jaquinu 8y} uo paseq (|AS._._.@>> .rv_nw Mwm_vv__mww_ d3IS OaIy HS 9
‘papeo| Ajjny s Jo)siBal Yiys sy s[04 %00j0 AuBw MOY Ul Saulwls}a(/8« ZS M.NIA HOLvd)IEsdl
‘Buipped-oiaz - .
ou Buuepisuod ‘Indjno uonNjoAUod ayj ul sjulod ejep Jaquuinu ay | «d S1NIOd Viva s
"8]0A2 000 Jod paweals sjexid Jo JaquINN 8/HALIM IId Xd INONI'Xd ¥
‘anbiuyosy
Bunieyng pue Buipodap 1oxoed aidwis e yim siaxoed aAISaIINS oM} . — — .
ul |oxid e weaJjs 0} a|qissod os|e si }| ‘S)g g J0 a|dijjnw e S| uone) chl HInejsp HALIM 1Xd Xd €
-uswajdwi siyy ul ‘Ayonduis 1oy ‘yoiym ‘1oxoed sjaxid Jndul Jo YIpIAA
[@ulay B Ul uwnjoo/mol Jad sjuswale Jo JaquinN G :)neyep 7S M ¢
‘mopuim Buliplis e ein sayoled ul passadoud s swely
uonnjosal-ybily e alaym uolen)is sy} J9A0D 0O} Pasn S| UoleuILIouUSp 2*2/Z5 +a) WIQ HOlvd I
yoled ay -obewi jndul ue Ul uWNjO/MOoJ Jad SJUBWS|S JO JaquinNN
"Ind}N0 UORIN|OAUOD B} JO UWIN|OI/MOJ Jad Sjuswa|d JO JaquinN 0l :}neyep a o
uonduosaqg anjep sweN Qi

31

4.1. Proposed hardware architecture

‘uonejuswa|duw aiempaey sSiy] Ul pasn sisjaweled JUBISUOD paleys YIm a|qe] :Z'y alqeL

"anjeA sIy} aleys suoinau ||y "ploysalyy Buiuies| sy jo ajel pjoysalyy buLi G0 :}neyep el aly | L2
‘owij jooq je 9 :}nejep 0 ules| 0
an[eA SIYl YlIM pazijeniul 8Je Sa)e)s suoinau ||y "anjeA ules| | [eniu| ' Il 4
"sse|0 Jad suoinaN S3ISSY1O ON/SNOYN3N ON suoinau ssep ‘Gl
‘Jlun Jayisse|D ay) ul pasn Ajuo INBLS - .
s| Jejoweled siy| -uonezuobaleo 109[qo Joj pasn sasse|d Jo JaquINN 0} -inesp S3SSVI0 ON "8l
"Jake| 8|qeulel} 8y} Ul suoInau jo Jaquinu 8y | 0Zlg Inejsp SNOYN3IN ON LI
‘M Jo} uonejusasalidau siig / }nejsp SHg M 9
"0 Wybram
e oAeY sasdeuAs Jayjo ||e aouls ‘uoinau Jad snjea |enuaslod sueiquisw ¥9 :}nejep M Sl
wnuwixew ay} saAlb osje)| ‘uoinau yoea ul sasdeuis NO JO JaquinN
'SJ0}e|NWNOOE d)eIpawlLIaiul BIA
s9]0A0 a|diyjnw ui pandwod s jenuslod sueiquisWw ay} UBY} ‘peal ale
sjyblom |ered J| “|ajjesed ul pandwod si [enusjod sueIquSW suonau ZS IMd/ZS IMd SIHOIIM NAS IMd NI SNOYNAN ON ‘vl
[le uey) ‘peal aie syyblem ondeuAs Jo 1S [|N] S,U0INBU BUO UBY) BJow
J] 0B auo ul peal ale sjybiom onndeuAs suoinau Auew moy saulwis}ag
‘uoJnau auo Jo sybiom
8y} Jo Jed Jo ‘uoinau suo uey} alow Jo siybiom uiejuod ued 1axoed
B ‘suipim ejep Buikien yum ‘sinoney A1owsw SnoLeA 81epowodde o} SL1i9 ON3 « SINIOd V1VA Hnejep 7S IMd SLHOIIM NAS ‘€l
Janemoy ‘S119” ONI.SLINIOd V1va o3 [enba sty ‘Ynejep Ag “8jokd
300|0 yoes papeo) s1ybiam ondeuAs Jo 19)0ed e Jo 8zIs a8y saulwlslaqg
uonduoseq anjep sweN Q|

abed snoinaid woly panuuod Zy a|qer

42. Edge filters and Lateral Inhibition unit 32

4.2. Edge filters and Lateral Inhibition unit

4.2.1. Module implementation objectives and constraints

This module is essential for both online learning and inference, generating spike codes from input im-
ages. Moreover, with the objective of coping with streaming data in mind and since "time-to-first-spike”
is of essence, it is important for the spike encoding step to not represent a major latency bottleneck,
be it during inference or learning; in other words, we try to minimize the time to the first generated
spike in hardware. For this reason, in this implementation we choose to trade-off area and power for
improved latency. However, based on future developments and applications needs, this module can be
reconfigured for the desired trade-off, e.g., less area and power at a higher latency cost or vice-versa.

As described in the previous chapter, generating spike codes consists of three main steps: 2D con-
volution with four 5 x 5 kernels, max-pooling the convolution outputs channel-wise, and mapping the
result to a natural index in the range [1,8]. Out of these three steps, performing the 2D convolution
is the most expensive operation both in terms of resources, latency and throughput, which is why we
focus on optimizing computation resources for maximum achievable throughput. The main avenues
for algorithm-hardware co-optimization have been presented in subsection 2.3.1. In this section, we
present the combination of those methods used for the current implementation, with it's specific con-
straints and objectives.

Firstly, we define the main objectives and their constraints in choosing the architecture of the spike
encoder:

1. The spike encoder should have minimum latency in the presence of streaming data. This will be
constrained by:

» the maximum achievable data rate of the used communication protocol to the edge pixels
source sensor

 achievable clock frequency for maximum parallelization, e.g., for an FPGA platform, we
observe it is hard to go beyond 100MHz if data stationarity in the convolutional PEs is high
(i.e., when we want to convolve too many input pixels with all kernel channels in parallel),
however, this limit can be easily surpassed in ASIC platforms

2. In line with the power efficiency objective, the spike encoder should have minimum resource
utilization for maximum throughput. This is constrained mainly by:

+ the data precision of the used weights

+ the cost of performing multiplications (also in combination with the used data precision)

+ the number of FF used in a single PE

» the complexity of the interconnect between FFs and computational units (multipliers and
adders) on the one hand, and from input/output to PEs datapath

+* not intrinsic to the spike encoder but related to the whole neural network architecture, there
is an extra cost related to the need to buffer the spike codes produces by this unit; this cost
is directly related to the output data width and rate of the spike encoder

3. The spike encoder should be reconfigurable in order to accommodate various input widths and
rates such that the overall network implementation is not dependent on the input interface. This
will allow for easy experimentation in the future and portability of the architecture on various
realization platforms.

Consequently, in the following subsections, we describe how these objectives are addressed in
the current implementation. To approach the first objective, we make use of combined temporal and
spatial unrolling, using a weight-stationary processing fashion, while for the second objective, the main
contribution is in replacing all multiplications with shift operations or skipping multiplications with 0.

4.2.2. Implementation method

This module receives as input data packets representing a group of 8-bit grayscale pixels, streamed in
a row-wise fashion and outputs a 4-bit spike vector for each (X,Y) position in the input image. Since

42. Edge filters and Lateral Inhibition unit 33

D units
Out (R, 0), Kl Out (R, I), Kl Out (R,D - I),KI
I
i=KZ%, i=K2, i=K2,
z piK1; 7 Z piK1;] Z piK1;
i=0 i=0 i=0
2D-C)
2D-C 2D-C L,
L
2 _
c
=
Y| out(R0),K4 Out (R, 1), K4 Out R,D - 1),K4
i=K§Z i=K§Z i=K§Z]
z piK4; Z piK4; Z piK4;
i=0 i=0 o
' 2D-C i1l 2D-C v 2D-C v
Spike vector (R, 0) Spike vector (R, 1) Spike vector (R,D - I)

Figure 4.4: Spike encoding implementation: 4 x D units perform the 2D-C (2D-Convolution) of each
pixel window with each kernel window in parallel. A LI (Lateral Inhibiton) unit generates the 4-bit spike
vector at each position (R,C), where R is the row index and C - the column index. The pixels for the
convolution units are read from the shift-register and the convolution weights from a Register File. D
spike vectors are generated in parallel

the number of grayscale pixels that can be streamed at a time within a given clock frequency depends
on the pixel rate of the interface to the video or image source, the number of received pixels can
be reconfigured to accommodate different interfaces. In this implementation we use an input packet
PX_PKT_WITDH = 112 bits (see Table 4.2), which is the equivalent of one row of PX_IN_CNT = 14 pixels.

The convolution kernels employed here have K_SZ = 5 and are stored locally in a register file. In
order to convolve a streamed input image with a kernel in hardware, at least a number of rows from
the input equal to the number of rows from the kernel need to be buffered, to obtain the first output.
Thus, we buffer at least 5 image lines by using a shift register with a number of elements equal to 5 x
PATCH_DIM elements, where each element has 8 bits.

Once the shift registers are fully loaded, the corresponding registers indexes are multiplied with the
corresponding weights in each of the four kernels (see Figure 4.4) via accumulation units. The four
channels are computed in parallel, and the maximum achievable number of outputs are computed in
one clock cycle, e.g., for this implementation, the spike encoder produces one row of outputs per clock.

Further on, given the set of values that the used weights have, we use a simple weight decoder to
achieve the following computational optimizations (Equation 4.1):

« we replace multiplication with left-shift of the input by logs (k;), where i € [0...K_SZ? — 1] and we
perform 2’s complement conversion in place for negative weights

» we skip multiplications with weights that are 0

accum'Zy + (curr_pz << loga(k;)), if k; € {1,2,4}
partial_conv_out = accum!_} + (not(pzi, << loga(k;)) +1), ifk; € {—1,—2,—4} (4.1)
accumé;é, ifk; =0

Lastly, the convolution outputs are max-pooled channel-wise and depending on the sign of the
winning kernel and it’s index, a 4 bit code is produced. This is performed by the LI unit in Figure 4.4.

4.3. I&F neuron implementation 34

4.2.3. Performance metrics

We summarize here the spike encoder implementation metrics, in terms of overhead, throughput and
latency:

» Overhead: The encoder has an overhead of SH_REG_STEP before producing valid spikes; this is
associated with the clock cycles needed for loading the shift register.

» Throughput: The encoder produces enc_spikes_p_clk / ENC_BITS . The mechanism behind
this number is explained in Table 4.2. For this implementation, it corresponds to one row per clock
cycle.

» Latency: Latency is given by LOAD_IMG_DONE_CNT clock cycles. For this implementation, it is
equal to 14 clock cycles and it includes overhead.

4 3. I&F neuron implementation

4.3.1. Module implementation objectives and constraints

The I&F neuron checks if spike codes match the corresponding synaptic weight at each index position
by accumulating the total number of matches. In line with the URVC concept, the main objectives and
constraints of this module are:

1. The I&F neuron should integrate all incoming spikes in the shortest time possible. In sequen-
tial hardware terms, the minimum achievable time is one clock cycle, which is equivalent with
obtaining a throughput of one output per clock cycle. This is constrained by:

* maximum achievable bandwidth for reading spikes and synaptic weights. This is related to
the available memory resources and differs per off-the-shelf platform (e.g., FPGA, GPU) or
can be customized in ASIC designs based on needs. For this implementation, it is necessary
that at least two lists of 4 x D? bits can be read every clock.

« that the combinational function of the 1&F neuron can meet timing in one clock cycle, i.e., the
logic gates delay combined with hold and setup time is less than the period of the clock

2. The I&F neuron should use minimum amount of resources such that performance can be en-
hanced by maximizing the number of possible parallel updates (i.e., less resources per unit lead
to more units being used in parallel). This is constrained by:

+ available resources

* clock frequency

« routing difficulty or risk of congestion (i.e., interconnecting many units in parallel can be
easier in ASIC nodes, where the designer can influence the placement, however it will be
limited on platforms such as FPGA's that have a pre-defined 2D programmable routing grid)

+ routing added net delay, which can lead to timing violations

4.3.2. Implementation method

Considering the encoding method presented in chapter 3 and the membrane potential formula in Equa-
tion 3.1, the core operation of the IF neuron is essentially a binary multiply-accumulate operation which
can be implemented similarly to [28]. However, since we use a hardware-optimized encoding, we
proposes a different scheme for performing the multiply, based on a 4-bit XNOR operation.

This module receives spikes and weights packets, and a neuron threshold (i.e, for learning or firing).
The spike and weights packets can be of the entire list size DATA_POINTS x ENC_BITS, or less, e.g.,
SYN_WEIGHTS_PXT_SZ. The latter situation accommodates various memory flavours with different word
widths. If less than an entire list is received, then the match unit produces an intermediate result which
is accumulated every clock cycle, to obtain the final membrane potential. The Match unit compares and
accumulates all synaptic weights and spikes in a packet during one clock cycle, via a combinational
for-loop, which generates an index to decode packets’ addresses, and then XNORs the de-muxed

4.3. I&F neuron implementation 35

reset = ‘I’

Reset state

pkt_valid =0’ pkt_valid =‘I’

pkt_valid =‘I’’ && last_pkt =‘0’

pkt_valid =‘1" && last_pkt = ‘I’

pkt_valid =‘I’

pkt_valid =0’

match_unit_free

Figure 4.5: Match unit finite state machine

codes. The result is compared with bit-string "1111” to indicate a match, and added to a pop-counter.
The unit is externally controlled by a simple FSM (Figure 4.5) which has three states, a reset state,
a match_unit_busy state and match_unit_free state. Once a valid packet of spikes and weights is
received, the transition to match_unit_busy occurs. This state is kept until the last packet has been
received. When full lists of weights and spikes are received, match_unit_busy takes one clock cycle.

4.3.3. Sequential Learning Process implementation

We implement online learning using the binary stochastic STDP method described in Chapter 3, with
the difference that we adapt the hardware implementation to the 4-bits encoding proposed here. This
affects how synaptic weights are concentrated on the earliest firing spikes. We enumerate the main
steps in the algorithm and the different approaches in hardware versus software:

Step 1: Computing the membrane potential is necessary in advance to verify if the neuron is eligible for
learning, on the one hand, and to indicate the number of swaps, swap_N, on the other hand.
However, since for this implementation we only allow one neuron to learn/adapt to a new input,
we generate a random synaptic memory weight index, after which we continue reading weights
sequentially from that address, until we found the first neuron for which the membrane potential
reaches the learning threshold.

Step 2: Finding the two lists of ineffective spikes and weights. In software this is a simple bitwise AND
between two vectors, where one of them will be logically negated, which is followed by list traversal
to determine the positions where the two lists are "1”. In software, due to 8-bits encoding, the list
has D x 8 1-bit elements, while in hardware it will have D elements of 4-bit.

Step 3: Generating random indexes to turn weights ON/OFF. In software this can be done via library

4.3. I&F neuron implementation 36

functions, such as randperm in Matlab [86]. In hardware, generating random numbers or permu-
tations via library functions is only available for simulation but not synthesis. Thus, specialized
implementation is necessary. We use a Linear-Feedback-Shift-Register for that.

Step 4: Turn weights ON/OFF: in software, set weight list to binary ”1” or "0” at the random indexes. In
hardware, this will occur at the position of the orientation-cells clusters, and the potentiation/de-
pression is done in a group: at each point, the group of orientation-selective weights are updated
at once.

Step 5: Ensuring that only w ON synapses are preserved after learning. Since the STDP rule concentrates
synapses on the earliest incoming spike lines, we distinguish two situations that can occur:

+ aweightis turned ON at an index that was already ON, hence there is no need to turn another
weight OFF to preserve W

+ aweightis turned ON at an index that was OFF, thus another ineffective weight needs to be
turned OFF to preserve W

Step 6: Updating the learning threshold and storing the new synaptic weights and neuron’s state back to
the memory.

clk
rst

o @ S|ty rn_off cnt
LFSR = swap_cnt

\AA 4

seed

spike_list

weight_list new_weight_list

A 4

swap_N learning_done

Figure 4.6: Stochastic STDP unit toplevel. All data channels are complemented by ready and valid
handshake signals.

We thus define the main objectives and constraints for the stochastic STDP module:

1. The learning module should have minimum latency such that it can cope with online adaptation
for streaming data and incur minimum overhead for inference. This is constrained by:

» The latency for reading the spikes and weights lists

» The latency for traversing the lists of spikes and weights to determine which ones are inef-
fective

+ Latency of generating random indexes

» The latency for updating weights

2. The learning module should be power-efficient, such that it is suitable for learning at the edge.
This is mainly constrained by:

« The complexity of the operations involved, e.g., if there are multiplications/sorting operations
involved.

» Exploring sparsity in spikes and weights capability

» The complexity of the random generator

We combine the objectives such that both resources are optimized and latency is reduced. The
toplevel module of this unit is depicted in Figure 4.6. A LFSR (see subsection 2.3.2) with LF'SR_bits =
clogo(DATA_POINTS) bits generates a new random index every clock cycle. This index is evaluated
by a finite-state-machine, which performs address decoding on the two lists of spikes and weights and

4.3. I&F neuron implementation 37

evaluates whether synapses are updated at that index. The FSM controls when updating a synaptic
list is done by updating and evaluation of two counters, one is swap_cnt, which is incremented up till
swap_N everytime a synaptic weight is potentiated, and the other is turn_off_cnt, which keeps track
of how many synapses need to be depressed to preserve W.

Since LFSR has a fixed number of states it can generate, related to the number of bits of the used
shift register, i.e., 2L7SE bits some of the random outputs generated by it will not be eligible indexes.
Thus, before using the LFSR output as an index, an additional filtering is performed to ensure the index
is in the right range. In the contrary situation, we do not proceed with any learning step and we wait
for a new index to be generated, hence we skip computation. Moreover, to avoid the costs associated
with traversing the full list of weights and spikes to check which ones are ineffective and which ones are
effective, for every randomly generated index, we evaluate, in place (in the same clock cycle) whether
spikes and weights at that index are eligible for learning (i.e., not equal, but input lines are active) and
we either take a series of actions or we skip computations, where sparsity allows it.

In Figure 4.7 we illustrate the hardware implementation of the binary stochastic STDP learning for
a use-case with N = 10 and swap_N = 3. Firstly, a 4-bit LFSR generates a new random index every
clock cycle, however, since it's range will be (0, 15), but only range (0, 9) is a valid index. Thus, for
the first index, 10, further computation is skipped. Next index, 5, is in the valid range, and the FSM
evaluates the spike and weight codes at that position. They are equal, thus the new weight at that index
remains the same. At the next index, 7, the spike is 0, thus it is not a an eligible ineffective spikes and
the new weight stays the same. At the next valid index, the new weight is swapped with the ineffective
spike and the swap counter is incremented. At index 3, a new swap occurs, but since the old weight
was 0 (turned OFF), the turn_off counter is incremented. After all swap_N weights have been moved,
the procedure continues until the turn_off counter is 0 and W is preserved, after which learning_done
signal is asserted and a new pair of spikes and weights can be loaded to the unit. For the example
in Figure 4.7, the procedures stops after 11 clock cycles. This takes one more clock cycle than the it
would have to traverse the lists point-by-point, however, for 4 out of the 11 clock cycles, no computation
(apart from index evaluation and state transition) occurs, and for another 2 clock cycles, no updating is
performed, thus at a higher latency cost, computation is saved. The last random index is fed as seed
for the next LFSR generation.

learning_done i

rand idx 10 X 5 X 7 K13) 4 X 3 X 11X 1 X155 6 f 2
spike X X 7 X0 XXX2X6)X8)YX4XXKXoX 8
weight X X 7 X1 XXX8YXo0o)XsYo}XxxzX 8
newweight X ¥ 7 X1 XX X2X6XX¥4) XX)o) o
swap_cnt 0]'.{1}.'{ 2]'.{ 3
turn_off_cnt 0]'.{ 1]'.{ 2]'.{1}.'{ 0

Figure 4.7: Example random learning for N = 10, and swap_N =3

To summarize the methods used in this module, we explore sparsity in the weights and spikes
lists to skip computation and we use an inexpensive LFSR to generate a random index. We note
that LFSR also has a disadvantage here, since it incurs extra overhead (but no major computations
during the overhead) when it's output is not a valid index. The overhead can be completely reduced
by normalizing the output to the desired range, however, this method will incur extra power since it
needs multiplications and divisions operation every clock cycle. However, this would not be in line with
the hardware-friendly methods we use throughout the architecture and given that our implementation
optimizes all multiplication with shift operations and no division is used (apart from the booting phase,
when constant parameters are computed for the entire chip architecture based on the N-of-M scheme

4.3. I&F neuron implementation 38

used, the number of neurons or the input bandwidth. For this implementation, we trade-off latency
for improved energy consumption, however, as it will be shown in the next chapter, for the average
situation, latency is much less than N.

4.3.4. Performance metrics

The stochastic STDP takes a variable amount of cycles per each input learned, which depends on the
membrane potential of the learning neuron and it's learning threshold. However, in the worst case, the
learning latency takes 2L SE_bits,

O

Experimental setup

In this chapter, we describe the framework used in evaluation and benchmarking of the proposed algo-
rithm. We explore, evaluate the accuracy performance and validate the algorithm in software using the
MATLAB R2020b [86] platform. The end-to-end SCNN (i.e., from input grayscale pixels to the output
predicted class) is then implemented in VHDL RTL, and synthesised for both ASIC and FPGA. The
RTL design is also validated in behavioural simulation using Cadence Xcelium Logic Simulator [87].
For FPGA, performance is evaluated post-layout in Vivado Design Suite [88] for a target VU37P-HBM
FPGA platform [89], at 100 MHz. For ASIC, the RTL design is synthesised at 500 MHz for a typical
corner at 0.8V and 25° C for a GF-22nm FDSOI node using the Cadence Genus [90] tool and time-
based power measurements are generated with Cadence JOULES [91], which reports power with an
accuracy within 15% of signoff.

5.1. Tasks and datasets

The algorithm performance is evaluated on both new and conventional image classification tasks, to
showcase the unique features of our algorithm.

The first task is binary classification between faces and any other objects. For faces, we use the
UTKFace dataset [10] and for the "no face” class we use the CIFAR10 dataset [11], which we present
to the network only during inference.

The second task is to demonstrate online adaptation starting from a pre-trained network. We build
this starting from the previous task.

The third task is digit classification using the well-established MNIST dataset [12] to demonstrate
and benchmark the performance of our algorithm using a common basis recognized in the research
world. To enforce the dataset-agnosticism of the proposed algorithm, we also report the accuracy
obtained on the Fashion-MNIST dataset.

The fourth task/benchmark is also built upon the first task and evaluates fast inference while
coping with streaming data in UHD frames.

Table 5.1: Experiments parameters

Name Description Value
trainset_sz number of inputs fed to the network during training varied
testset_sz number of inputs fed to the network during inference 10000
N_neurons Number of learning neurons denoting the network capacity varied
im_res Working resolution of input images after downscaling varied
N and M Maximum N = im_res? input spikes active out of M = N x 8 varied
W Number of active synaptic weights 64
T_learn0 initial learning threshold of neurons that have not learned 6
T_fire_rate firing threshold used for inference 0.5
swap_rate Ratio of connections that are moved to active input during learning 1
K Number of neurons allowed to learn a pattern during training 1
N_classes Number of unsupervised clusters for classification tasks varied

For all experiments, the parameters in Table 5.1 are used. In line with dataset-agnosticism, we
keep learning specific parameters fixed for all datasets. We also employ the same convolutional kernel
weights for the initial edge detection across all tasks and datasets.

39

5.2. Algorithm benchmarking in software 40

The publicly available datasets (Figure 5.1) used for measuring the performance of the proposed
learning algorithm and neural network are:

* UTK Large Scale Face Dataset [10]: This dataset contains over 20000 distinct faces in the wild,
of people with ages from 0 to 116 years old and of various gender and ethnicity. The dataset has
a cropped and centered version consisting of 9778 samples, which we subsequently use in our
experiments. The initial resolution of the cropped images is 200x200 RGB pixels. The images
are stored in the order of age, gender, race and date and time of the image collection. For our
tests, we randomize the samples such that our network captures a range of features variations.

» CIFAR10 dataset [11]: This dataset contains 60000 labeled images of 32x32 RGB pixels from
10 classes (i.e., airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck). The dataset
in split into 50000 images for training and 10000 images for testing. We only employ the testset
in our experiments.

* MNIST handwritten digit database [12]: This labeled dataset contains 60000 training images
and 10000 test images from 10 classes of digits (i.e., 0 to 9). The images are grayscale and have
a resolution of 28x28 pixels.

» Fashion-MNIST [13]: This dataset has the same configuration as MNIST, with the difference that
it depicts fashion items for each class.

Figure 5.1: Example of samples from the used datasets: a.) UTKFace [10], b.) CIFAR10 [11], c.)
MNIST [12], d.) Fashion-MNIST [13]

5.2. Algorithm benchmarking in software

5.2.1. Task 1: Unsupervised binary classification for face/no face

For this experiments, we split the faces dataset in a 5000 set for testing and 4778 set for training. During
learning, we train a population of neurons in an unsupervised manner with only faces. During evaluation,
we present a testset of 10000 samples consisting of 50% non-faces images from the CIFAR10 dataset
and 50% images from the faces dataset. The faces presented during inference are different from
the ones used for training. Since we perform binary classification, only one class is needed for this
experiment, while the other class should not stimulate the population of neurons.

We measure accuracy as:

(TP +TN)
(TP+TN + FP+ FN)

(5.1)

Accuracy =

where:

* True Positive (T'P) occurs when at least one neuron fires for the correct input data, i.e., a face

» False Positive (F'P) occurs when at least one neuron fires for the incorrect input data, i.e., a
no-face

» True Negative (T'N) occurs when no neuron fires for an incorrect input data, i.e., no-face
» False Negative (/' IV) occurs when no neuron fires for the correct input data, i.e., a face

Following subsections present a set of experiments ran for this dataset and task.

5.2. Algorithm benchmarking in software

41

99

98 r

o
-]

o
(=]

Accuracy [%]

o
L

o
PJ

91

90

Accuracy evolution with numb

er of neurons

[Fal
Ln

wo
5

1500 training samples L

200 400 600 800 1000 1200

Number of neurons

Figure 5.2: Plot of accuracy evolution with the number of neurons in the training layer, for a fixed
trainset size.

99

98

o
|

Accuracy [%]
W
=3}

wo
L

o
fsd

9lr

90

Accuracy with trainset size

o
L

o
<

1000 neurons

100 200 3200 400 500 600
Trainset size

700 800 900 1000

Figure 5.3: Plot of accuracy evolution with the number of training inputs, for a fixed number of 1000

neurons.

5.2. Algorithm benchmarking in software 42

Cost/performance trade-off with various im_res

98.2 .

98.1 .

[fa}
ca
I

o
]
o

W
=~
oo
I

Accuracy [%]

o
=
|
1

97.67 1

97.57T 1

14 16 18 20 22 24 26 28 30 32
Im_res (downscaled)

Figure 5.4: Cost/performance trade-off with various input image resolution. The cost refers to compu-
tational burden, that scales up with the input image resolution.

a7 Online adaptation of pre-trained network

96

Accuracy [%]
W W o o W
= = d L Fcy

s
o

88

8? 1 1 1 1
0 2 4 6 8 10

Online adaptation iteration number

Figure 5.5: Plot of accuracy evolution with each adaptation iteration. Adaptation starts with a pre-
trained network. The accuracy of the pre-trained network is for iteration 0 on the abscissa

5.2. Algorithm benchmarking in software 43

Network remaining learning capacity

900 T T
| Initial capacity - 1000 neurons
800 r .

700 .

600 1

500 1

400 .

300 .

Mumber of neurons

200 1

100 1

O 1 1 1 1
0 2 4 6 3 10

Adaptation iteration number

Figure 5.6: Plot of network capacity to learn new features after each adaptation iteration

Experiment 1: Evolution of accuracy with number of neurons

In this experiment, we evaluate how the accuracy of the network evolves when the trainset size is fixed,
but the number of neurons in the training layer increases. After each test, we measure accuracy on the
same testset. Here, we vary the number of neurons from 100 to 1000, with a step of 100, and we keep
the trainset size fixed to 1500 samples. The im_res is kept to 32. The result is plotted in Figure 5.2
and shows that accuracy increases with the number of neurons available in the network. The plot also
shows that after approximately 1000 neurons, the accuracy does not improve with more neurons.

Experiment 2: Evolution of accuracy with number of training samples

This experiment is similar to the previous one, with the difference that the number of neurons is kept
fixed, while the trainset size is varied from 100 to 1000, with a step of 100. The result is plotted in
Figure 5.3. The plot shows that the accuracy increases with the number of training samples.

Experiment 3: Evolution of accuracy with input down-sampling

In this experiment, 1000 neurons are trained using 1000 faces, for inputs being down-scaled to various
im_res. The resultis depicted in Figure 5.4. For each im_res on the abscissa, the same 1000 samples
are used for training and the same testset for accuracy evaluation. The result is depicted in Figure 5.4
and it shows that the accuracy negligibly increases from im_res between 14 and 18, but then oscillates
until 32.

5.2.2. Task 2: Online adaptation starting from a pre-trained network

For this task we employ the same use case as in the previous task: for binary classification between
faces and no-faces, we show online adaptation starting from a pre-trained network.

5.2. Algorithm benchmarking in software 44

Experiment 1: Evolution of accuracy with online adaptation

For this experiment, we pre-train a network with a maximum learning capacity of 1000 neurons with only
faces. To be able to see the network adaptation ability, we pre-train until a reasonably-high accuracy is
reached. After 100 samples, the network reaches an accuracy of over 87%. After this step we present,
for 10 iterations a set of 200 samples, where the first 100 samples are faces and the next 100 samples
are non-faces. If at least one neuron fires for each sample, learning is triggered, and the network
adapts to the new input. If the network fires for a non-face, the wrong class will be learned. After each
iteration, we measure accuracy again, according to Equation 5.1 on the same test set. Each time a
neuron’s synaptic weights are updated, it’s firing threshold is also updated accordingly. The results can
be seen in Figure 5.5. The plot shows that the the accuracy increases the first 8 adaptation iterations
(equivalent to extra 800 faces samples being presented), after which it saturates.

Conversely, to showcase that new features are learned by neurons that have not learned anything
before, we plot the remaining number of neurons that have not learned anything (i.e., their initial learning
threshold is unchanged), after each iteration, in Figure 5.6. The plot shows that after pre-training on
the 100 samples (i.e., at iteration 0), the network capacity is 900 neurons, and it decreases linearly with
each training samples that the network adapts to.

5.2.3. Task 3: Multi-class classification using supervised clustering

For this task, we employ the MNIST dataset. We use the split of 60000 samples for training and 10000
samples for testing. All experiments are evaluated on the same testset, while for training the number of
used samples varies per experiment. For all experiments, we use a im_res of 14, however, comparable
accuracy is reached for im_res of 28.

Accuracy evolution with number of neurons

94 ———

60k training samples

92

90

88

Accuracy [%]

84 r .

82t y

8 D 1 1 1 1 1
0 1 2 3 4 5 6

Number of neurons «10%

Figure 5.7: Plot of accuracy evolution on the MNIST dataset with increasing the number of neurons

Experiment 1. Evolution of accuracy with number of neurons

This experiment is similar to the one in subsubsection 5.2.1.1. Here, the trainset size is kept fixed to
60000, while the number of neurons are varied between 1000 and 60000 with a step of 1000. The

5.2. Algorithm benchmarking in software 45

MNIST software training accuracy = 93.51%

1.2%

0.6%

61%

6.2%

il 14 2%

True Class
o oo | o (8} F ey L) M = [

00.1% O4.7% 975% 96.2% 9O7.0% O4.4% O5.7H 03.7%W 95.9%

99% | 53% | 25% | 3.B8% | Z1% | S6% | 43% | 6.3% | 4.1% | 16.9%

0 1 2 3 4 5 5] 7 8 9
Predicted Class

Figure 5.8: MNIST confusion matrix for 30000 neurons and 60000 training data

Accuracy with number of neurons
and training samples

94 T ;
92 | g .
90 5k neurons | |
= 10k neurons
& ag| 20k neurons | |
=
(%)
[
0 86 | |
L
<L
84 1
82 r .
EG 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Trainset size «10%

Figure 5.9: Plot of accuracy evolution on the MNIST dataset with increasing the trainset size

result is plotted in Figure 5.7 and it shows that accuracy steeply increases with the number of neurons
until approximately 10000 neurons, and continues growing at a slower rate until around 30000 neurons,
after which it closely oscillates under 94%.

5.2. Algorithm benchmarking in software

46

«10%

Network learning dynamics with number of

presented s

amples in a 30k neur

ons network

2.5

1.5}F

Number of neurons

0.5}

\

\

Learning capacity
Learning elligibility

Figure 5.10

: Evolution of network learning dynamics with number of training samples

Number of presented input samples

5 6
«10%

0.92

09r

0.88 7}

D.8e |

Accuracy [%]

0.84

0.82}

0.8

Performance in presence of rotations in the inputs

Rotation angle in degrees

10

15

Figure 5.11: Network robustness to rotation variations in the test set

In Figure 5.8 we represent the confusion matrix for the case with N_neurons = 30000 and trainset_sz

5.2. Algorithm benchmarking in software 47

= 60000. In the matrix, we can see that the highest accuracy, 99.4% is achieved for digit 1, while the
lowest accuracy is for digit 4, at 85.8%, which is confounded highly with digit 9. Next lowest accuracy
is for digit 8, which also is confounded highly with digit 9.

Experiment 2: Evolution of accuracy with number of training samples

In this experiment, the number of neurons are kept fixed to 5000, 10000 and 20000 respectively, while
the trainset size is varied between 1000 and 30000, with a step of 1000 samples, for each of the three
cases. The result is plotted in Figure 5.9. The plot shows, firstly, that for the same number of trainset
data, the accuracy increases with more neurons. The plot also shows that the accuracy tends to
saturate after a number of training samples equal to the number of neurons have been presented. The
main result is that the accuracy increases with more training data, up till a saturation point is reached.

Experiment 3: Evolution of network learning dynamics with number of training samples

In relation to the previous experiment, this exercise shows how the network learning dynamic changes
with the online learning of more samples. The result is depicted in Figure 5.10 and it shows that, for a
network with initial capacity of 30000 neurons, the learning capacity decreases with each input samples,
reaching 0 after a number of samples equal to the initial network capacity have been presented. Under
the blue line, the learning eligibility is plotted, which shows, for each sample, how many neurons are
passing their learning threshold. This number is less than the entire network capacity at each learning
point.

Experiment 4: Robustness to rotation variations in input

To evaluate the network’s capacity to perform well in dynamic environments, we evaluate the accuracy
of a trained network on rotated versions of the testset. We rotate the testset between 1 and 15 degrees.
The result is depicted in Figure 5.11. The blue curve shows the accuracy evolution when the firing
threshold rate is the same as in previous experiments (i.e., 0.5). However, since, intuitively, the more
rotated the input is, the matching between synaptic weights and the input spikes decreases, we observe
the effect a slight adaptation in the firing rate, at each rotation, has. For instance, we test what happens
when the firing rate is decreased with 0.005 and 0.1, at each step on the abscissa. We notice that a
small decrement for the adaptation incurs a smaller accuracy loss.

Validation of algorithm on Fashion-MNIST
We apply the same network on the Fashion-MNIST dataset. Using 30k neurons, and 30k training
samples, we obtain 77.65% accuracy on Fashion-MNIST.

5.2.4. Task 4: Benchmarking for UHD frame processing

For this experiment, we explore the benefits of the proposed algorithm in the situation of pattern recog-
nition in UHD (Ultra-High-Definition) frames. The goal is to evaluate how many correct full faces our
algorithm predicts in a frame with many small faces. This is inspired by the fact that humans are able
to spot only two known faces in a crowd, at a time [92]. One quarter of a UHD processed frame is
depicted in Figure 5.12. Some faces have thicker circles around due to multiple neighbouring positions
triggering the population of neurons, due to the algorithm robustness to shift-invariance.

The main concept behind this task is to process a high resolution frame using a sliding window
(similar to 2D convolution) with a dimension of im_res x im_res. WWe name each such window one
patch. Each patch is then processed by the SCNN network we proposed: a spike vector is generated
from each patch and then the inference engine is triggered.

The UHD frame processed here is a collage of faces and non-faces, using the same datasets as for
Task 1, and a layer of 400 neurons. If we process an UHD frame in segments of 32 x 32 and a stride of
1, then (2160 — 32) x (3840 — 32) = 8103424 positions need to be computed (i.e., this is the total number
of inference operations).

In this experiment, the UHD frame has 10% faces in the collage, placed at random positions. The
rest are non-faces. A total of 8100 small patterns are present in the collage. Since we process the

5.3. Hardware implementation benchmarking 48

Figure 5.12: One quarter of one processed UHD frame. Some faces have thicker circles around due
to multiple neighbouring positions triggering the population of neurons, due to the algorithm robustness
to shift-invariance

UHD frame using a sliding window, sometimes the field of vision can include both part of a face and a
non-face. We thus do not account for those as wrong predictions.
For this experiment, 720 out of 798 faces were correctly spotted, thus more than 90% of the faces.

5.3. Hardware implementation benchmarking

In this section, we evaluate and benchmark the proposed method in hardware. The main framework
is based on setting up a full learning and inference task on MNIST corresponding end-to-end to the
MATLAB implementation. The neurons are updated in a time-multiplexed manner (i.e., for each spike
list, one neuron is updated per clock cycle, such that results per unit per clock cycle can be reported.
In order to minimize the energy consumption for the memory block, we use a im_res of 14 throughout
the hardware performance measurements and we report metrics for N_neurons = 5120. The results
can however be easily extended to a different configuration of patch size and total number of learning
neurons. For each module in Figure 4.1, we report the following metrics:

* FPGA resource utilization

» ASIC area and cell count

+ latency and throughput in ASIC and FPGA (i.e., these differ per clock frequency)
» energy consumption in ASIC

+ online training accuracy on-chip for the MNIST dataset

We extend these results to report the achievable throughout in FPS for UHD video processing, along
with it's impact on hardware resources.

5.3.1. Benchmarking on FPGA

The RTL code is synthesised and implemented for the VU37P-HBM target FPGA platform [93]. The
choice of memory uses BRAM. The reported BRAM results refer to 36Kb blocks. One CLB consists of
8 LUTs and 16 FFs. The clock frequency at which the design is implemented is 100Mhz.

5.3. Hardware implementation benchmarking 49

Resource utilization in FPGA

The breakdown of the resource utilization per each unit, reported in Vivado after the post-implementation
of the top level module which encapsulates the end-to-end SCNN architecture is compiled in Table 5.2.

Table 5.2: FPGA resource utilization at 100Mhz, on the VU37P-HBM target platform

Module name LUT CLB BRAM FFs
1303680 162960 2016 2607360
Edge filters and lateral inhibition 6010 969 0 744
I&F unit 449 152 0 7
Sequential learning process (SLP) 1518 447 0 845
Synaptic Weights Mem. 0 0 56 0
Neurons params 0 0 2 0
Classifier 76 20 0 41
Control FSM and global parameters 117 106 0 914
Total 8170 1694 58 2551
% of available resources 0.62% 1.03% 2.87% 0.09%

Latency and throughput in FPGA

In a data streaming situation, the overhead of the spike encoder is hidden after the first encoded spike
list, as the rate at which spikes are encoded compared to the rate at which neurons are updated can
be, in most cases, faster, and thus an intermediate spike buffer can be used. For simplicity, in our
experiments, we use a {data_ready, data_valid} handshake to denote when a new spike packet can
be received. The classifier is pipelined with the I&F unit, thus it will give the prediction one clock cycle
later than the last neuron update. Without parallelization of the number of I&F units during inference
(i.e., P in subsection 4.1.1) is 1), the prediction latency is (LOAD_IMG_DONE_CNT + N_neurons + 1) X
clk_period. Thus, for a 10 ns clock period, and taking into account the spike encoder overhead, the
latency is (14 + 5120 + 1) * 10 = 51350ns and the throughput is 10°\51350 = 19474.19 inferences per
second. Without the spike encoder overhead, the throughput will be 19527.43 inferences per second
(IPS) (Table 5.3).

Table 5.3: Inference latency and throughput of the digit classification task on the FPGA

Metric Value

Latency 51350 ns
Throughput 19474.19 IPS

MNIST accuracy in hardware versus software

For this experiment, we set a full training pipeline with 5120 neurons and 5120 training points, followed
by a full inference on the 10000 images testset. We have behaviourally simulated EON-1 toplevel in
Cadence Xcelium [87]. We processed the accuracy based on the output labels from the hardware
inference in Matlab. We have obtained an accuracy of 91.96% in hardware and 91.75% in software.
The slight difference between the two comes from the fact that different random samples were used for
training.

5.3.2. Design space exploration for system scalability and performance enhance-
ment on FPGA

In this experiment, we perform Design Space Exploraton (DSE) to evaluate the scalability of the pro-
posed network on two axes:

« the first axis is in terms of input patch resolution, i.e., im_res

5.3. Hardware implementation benchmarking 50

+ the second axis is in terms of number of neurons in the learning layer and the parallelization
degree possible when adopting various memory types: on the FPGA chip (i.e., Distributed RAM,
BRAM, URAM) or adjacent to the FPGA chip (HBM).

Experiment 1: Resource utilization scalability with various input resolutions

We evaluate how the FPGA LUT utilization scales up with various patch resolutions, im_res, for two
central units in the proposed SCNN: the Edge Filters and Lateral Inhibition unit and the I&F unit. We
plot the synthesis results for resolutions between 14 and 32 in Figure 5.13 and Figure 5.14. The figures
show that the utilization scales almost linearly with the increased resolution.

LUT utilization with various im_res for
Edge Filters and Lateral Inhibition

16000 T T

14000

12000

10000

8000

LUT count

6000

4000

2000

14 16 18 20 22 24 26 28 30 32
im_res

Figure 5.13: LUT utilization scalability with input resolutions for the Edge Filters and Lateral Inhibition
Unit

Based on synthesis results, a maximum of P = 400 I&F units can be used in parallel, for a resolu-
tion of im_res = 32. This result gives the degree of system performance enhancement described in
subsection 4.1.1.

Experiment 2: Learning layer scalability

For this experiment we explored what is the maximum achievable number of synaptic weights vectors
for each memory type on the FPGA, and also the maximum number of weights vectors, P_W, that can
be accessed every clock cycle for each memory. Since we define in subsection 4.1.1 P as the number
of 1&F units that can be used in parallel, and P_WW < P, achieving maximum system performance for
the target FPGA is possible if P is maximized. Thus, we define P_S = P/P_W the number of spike
vectors that need to be accessed in parallel to maximize P.

The memory types available on-chip on the target FPGA are: Distributed RAM, BRAM, URAM,
including the FPGA-chip adjacent HBM memory '. The on-chip memories reported weights bandwidth
is based on True-Dual-Port mode and two reads per clock cycle. The HBM memory is accessed via

"HBM is placed on the same interposer as the FPGA die and has a theoretical bandwidth of 460GB/s [93]

5.3. Hardware implementation benchmarking 51

3000 LUT utilization with various im_res for I1&F

2500

2000

1500

LUT count

1000

500

14 16 18 20 22 24 26 28 30 32
im_res

Figure 5.14: LUT utilization scalability with input resolutions for the I&F Unit

AXI3 protocol, and thus only one read and one write is possible per request. We compile the DSE
results in Table 5.4.

Table 5.4: Scaling up the learning layer

Memorytype P_W' P_S?2 Max. neurons

Distributed RAM 200 2 3200
BRAM 64 6 16K
URAM 32 12 64K

HBM 1 400 16M

T Weights vectors bandwidth/parallelization factor
2 Spike vectors parallelization factor

3 3840 Spike Vector P = 400
100MHz
Edge
32 | filters and _ ,| Match |
m Lateral count

g -’ inhibition 0
e e One weight
> oo vector per clock

2 positions tested

Figure 5.15: Processing an UHD frame using a shifting window. P = 400 I&F units available in parallel.

5.3. Hardware implementation benchmarking 52

Experiment 3: Processing UHD frames in real-time on the FPGA

We report the processing time per UHD frame 2 and achievable FPS rate on the target FPGA platform,
by segmenting each frame in small Fields of Vision of D? size. This concept is depicted in Figure 5.15.

We explore a combination of input-stationary and weights-stationary approach, to match the maxi-
mum achievable number of I&F units in parallel, i.e., P = 400.

4 Processing time of one UHD frame

L 1 0.01 FPS
303.6ms |---mmrmmmmrmo e o B g 3 EPS
291.4ms fo-mmmmm - ﬂ 3 FPS

—— Dist. RAM
BRAM / URAM : |
HBM 5

76ms f--ommmmmmmommoootmotToooeoog T :L ______________ : I3 FPS

15.2ms | ... Ll R —— N ! 65 FPS

I45m5 7& """""""""""""" é‘ """""""""""""" 15 """"""" i 68 FPS

3.2K 16K 64K I6M N'umber of
neurons

Figure 5.16: Processing time of one UHD frame based on different memory types and number of
neurons, if P = P_S x P_W = 400 is maximized

For the situation in Figure 5.12, in subsection 5.2.4, we can achieve 12 FPS, providing that 8M
positions are tested. However, the UHD frame in Figure 5.12 is an extreme case of high-resolution
frame containing many extremely-small elements. In practical situations, input frames can be highly
downscaled before being fed into pattern recognition engines. The faces that we used in the experiment
are also downscaled from 200 x 200 pixels to 32 x 32 pixels. Moreover, our algorithm is resilient to input
downscaling, as has been shown in subsubsection 5.2.1.3. Thus, if a UHD frame is dowsncaled by
a factor of at least v/5, this reduces the number of positions that need to be tested by 5, and we can
easily achieve inference at 60 FPS.

If we follow the same downscaling factor as for the faces experiment (i.e., 200/32 = 6.25), this will
result in (2160/6.25 — 32) x (3840/6.25 — 32) = 182166 positions that need to be tested per frame. We
evaluate how the processing time per one UHD frame evolves with different numbers of neurons in the
learning layer, in combination with various memory types. We plot the results in Figure 5.16. The plot
shows how the acvhievable throughput decreases with more neurons in the learning layer.

2The reported number is for downscaling the UHD frame by a factor of 6.25

5.3. Hardware implementation benchmarking 53

5.3.3. Benchmarking on ASIC

For ASIC, the RTL design is synthesised at 500 MHz for a typical corner at 0.8V and 25° C for a
GF-22nm FDSOI node using the Cadence Genus [90] tool and time-based power measurements are
generated with Cadence JOULES [91].

Area and cell count in ASIC

Area and cell count are reported by the Cadence Genus synthesis tool and are compiled in Table 5.5.
The Synaptic Memory is implemented with pseudo-dual port SRAM technology.

Table 5.5: ASIC GF22 area and cell count

Module name Cell count Cell area (um?) Net area (um?) Total area (um?)
Edge filters and Lateral Inhibition 9152 8377.24 2768.14 11145.38

I&F unit 631 456.53 115.37 571.91
Sequential learning process (SLP) 11087 6251.84 3074.276 9326.12
Synaptic Weights Mem. 0 535000.64 0 535000.64
Neurons params ' 0 0 0 0

Classifier 227 1441 55.34 199.44

Control FSM and global parameters 1841 1635.04 638.01 2273.05

Total 22938 551465.42 6651.15 558116.57

" The neuron parameters are included in the Synaptic Weights Memory cost

Energy consumption in ASIC

To measure energy consumption for each unit in the proposed SCNN, we use the equation in Equa-
tion 5.2:
Eunit = (Tend - Tstart) X Ptotal/no_runsa (52)

where E,,,,;; is the total energy for one unit, 7., and T.,,4 are the simulation starting time and end-time,
Pyia1 is the average power reported by Joules during the measured time frame, and no_runs is the
number of instances ran back-to-back during that time frame. We detail our measurement framework:

Table 5.6: ASIC energy consumption per block

Module name Energy (pJ)
Edge filters and Lateral Inhibition

Per patch 337.77

Per encoded input 3.37
I&F unit

Per neuron 0.324
Sequential learning process (SLP)

Per swapped weight 18
Synaptic Weights Mem.

Read 400b 72

Write 400b 88
Neurons params

Read 7b 1.26

Write 7b 1.54
Classifier

Per inference 47.54

» to measure the I&F unit cost for one neuron, we divided the averaged energy consumption of 15
inferences back-to-back to the total number of neurons, i.e., 5120.

5.3. Hardware implementation benchmarking 54

« for the Edge Filters and Lateral Inhibiton unit, 512 images are encoded back-to-back and the
average result is reported

« for SLP, 5000 inputs are learned back-to-back in which one swap per neuron is allowed, and the
average is reported

We measure energy consumption per inference® as in Equation 5.3: firstly, the I&F unit is used
N_neurons times, and during that time one spike list and N_neurons weights lists are read, together
with N_neurons neuron states. Thus, for this case, the total energy consumption measured with Joules,
during one inference, is 376.822n.J. If an accuracy error of 15% from the Joules tool reporting is consid-
ered, then the worst case power consumption is 433.345n.J. In Figure 5.17 we report the performance/-
cost trade-off when scaling the learning layer from 1000 neurons to 30000 neurons for the MNIST digit
recognition task.

Einference - N_neurons X (EI&F_unit + Eread_7b) + (N_neurons +]-) X Eread_400b (53)

Online learning energy consumption is computed as the total energy cost for performing one infer-
ence (including the spike encoder and classifier), in order to find the neuron that reaches it's learning
threshold, followed by the energy cost of one neuron learning: the cost of performing the worst case
number of swaps during learning (i.e., W —T_learn_0 = 64 — 6 = 58), the cost of reading one spike list
and one weight list and also writing back one weight list and updating one neuron state. The formula
is given in Equation 5.4. Thus, the total energy consumption for one neuron learning is 1.27nJ, and
if the inference cost, the spike encoder cost and the classifier cost is added, the energy consumption
is 378.48n.J per learned patch, or 435.256n.J, if we consider an error margin of 15%. Tabel Table 5.7
compiles the inference and learning energy cost.

Elearning - Einference + 58 X Eone_swap + 2 X Eread_400b + Ewrite_400b + Ewrite_?b (54)

04 Performance/cost trade-off

92 r

90 r

88 r

86 r

Accuracy [%]

84 r

82 r

80

AT T T - BN S YA PR, SOt R
o oV @7 oY o7 AT AT AT RT AR T

Eneray [u]]

Figure 5.17: Performance/cost trade-off when scaling the learning layer from 1000 neurons to 30000
neurons for the MNIST digit classification task

3The classifier and spike encoder can be added to the total inference cost.

5.3. Hardware implementation benchmarking 55

Table 5.7: Energy consumption for inference and learning in GF22

Metric Energy
Inference
W/o spike encoder and classifier =~ 376.82nJ
per SOP ' 0.09pJ
With spike encoder and classifier 377.2
per SOP ' 0.09pJ
Learning
Per neuron 1.27nd
Per SOP ? 1.5pJ
Including inference 378.4nJ

1SOP during inference is computed as total in-
ference energy divided by number of synapses
(5120 x 800 = 2M)

SOP during learning is computed as total learn-
ing energy for one neuron divided by number of
synapses per neuron (800)

Table 5.8: Latency and throughput of the digit classification task on the ASIC node

Metric Value
Inference

Latency 10270 ns

Throughput 95020
Learning

Latency 10526 ns

Throughput 95020

0

Results discussion and benchmarking

In this chapter we summarize and discuss the results obtained during the experiments presented in
chapter 5 and we benchmark them against similar works.

In order to have a fair evaluation of the algorithm behaviour, we established common learning pa-
rameters for all tasks and datasets. The learning parameters of interest are:

* swap_rate = 1, which enforces a fast performance convergence, due to one-shot learning, i.e.,
all the eligible connections are moved to active input lines during learning. As a result of one-
shot and fast learning, only one training epoch is necessary. However, a slower learning rate is
possible by adjusting this parameter to a smaller ratio.

* T learn0 = 6 is the initial learning threshold. We chose these value empirically. Since all synaptic
weights are initially random, this value should be high enough to denote a sufficient degree of
coincidence between the input and a prototypical neuron model, such that learning is triggered,
but small enough to ensure that the salient features are learned.

» T fire_rate is kept to half the learning threshold throughout the experiments. This value has
also been experimentally obtained after exploring a range of rate values, and it should reflect a
sufficient degree of selectivity to salient features such that it indicates a meaningful prototypical
shape. To avoid the situation in which a neuron has not learned anything, i.e., it's T learn =
T learn0, and then the firing threshold would be extremely low and easily achieved, we initialize
the firing threshold to a value that converges to co, meaning we ensure no firing occurs if not input
has been learned. Since, due to the features of our algorithm, at no time can there be more than
W activated lines, we set the initial T'_fire = W + 1.

+ K = 1 represents the number of neurons that are allowed to learn an input. During inference,
many neurons can fire for the same input. However, to avoid that the network over-generalizes
the same few inputs and to decrease the learning cost, we explored the network performance
when allowing only one neuron, randomly chosen from the firing pool, to learn.

6.1. Performance of the proposed online learning rule

With these fixed learning parameters, we evaluated the algorithm firstly on a simpler, binary classifica-
tion task, and then on a more complex task, digit recognition, based on the MNIST dataset. On both
these tasks, we first show how, provided a fixed trainset size, the classification accuracy increases with
the number of neurons in the learning layer, i.e., the higher the network capacity, the better the network
can generalize, until it reaches a saturation point. We demonstrated this in Figure 5.2 and Figure 5.7.
Conversely, we demonstrate the network’s ability to learn and improve continuously with more training
data in Figure 5.3 and Figure 5.9. The results show that once the network reaches it's capacity, it stops
learning. This outcome is expected in all neural networks, but it is worth noting that in this work, the
learning occurs continuously on-device.

Due to the fixed swap_rate used here, it is difficult for neurons to learn new patterns once they
are locked to a specific input. This can be seen in Figure 5.10, where once the number of presented
samples is higher than the network capacity, the network learning capacity reaches 0. Presumably,
this type of algorithm property could indicate that the neurons in our network are overfitting the learned
inputs, acting like template-matching of specific inputs. However, we show that even with a small
amount of training points (i.e., 5000 out of the full trainset of 60000), we reach satisfactory accuracy
of over 90% on the testset. This is achieved as a result of stochasticity in our learning rule, which
also prevents overfitting and allows for satisfactory generalization over the entire testset of previosuly

56

6.2. Online adaptation with the proposed rule 57

unseen inputs. Nevertheless, for future work, our algorithm is flexible to implementing forgetting of
old patterns, by adjusting the learning parameters accordingly, for instance the swap_rate and how
T _learn is updated, or by opting for LIF neurons.

On the binary classification task, we reach over 97% accuracy starting with 400 neurons, up till 98%
accuracy with 900 neurons. While this accuracy is much higher than for the other tasks, it is expected
due to the simpler nature of the task, that of detecting faces and ignoring any other object. Future work,
however, can consider specific identification of different faces. A potential future solution can also be to
extend the current network with a follow-up layer that identifies specific faces, after the previous layer
indicates that a face is present in a natural image.

For the MNIST dataset, we reach over 90% with 4000 neurons (i.e., 400 neurons allocated per
class), and up to 94% accuracy when using 42000 neurons (i.e., 4200 neurons allocated per class).
This accuracy is lower than some state-of-the art local learning rules with STDP [94], [95], since we use
very low-complexity learning, with fully binary activations and weights, however, it still is comparable
with most recent work on local learning with SNNs for the Edge [46], [43]. We elaborate on this com-
parison in section section 6.3. We also report the confusion matrix which shows the accuracy reached
for each digit in Figure 5.8, when 30000 neurons are used to reach 93.51% accuracy. It is noteworthy
to mention that, for MNIST, we noticed more than 5% of the accuracy is lost on the correct prediction
being the second one. This means that, with a better and more complex classifier, our network has the
potential to achieve much higher performance.

We have also reported the accuracy obtained on the Fashion-MNIST dataset, with 30000 neurons,
namely 77.65%, which enforces the dataset-agnosticism property of our algorithm. This result is higher
than in other works, i.e., in [46], the authors propose an online learning rule that achieves 93.54%
accuracy on MNIST, but only 59.46% on Fashion-MNIST. Thus, our network is highly dataset-agnostic
compared to other solutions.

In what concerns the network robustness to variations in the testset input data, we showed in Fig-
ure 5.11 that the network keeps robust accuracy up till 5 degrees rotations, and shows a 1 to 2 % loss
for rotation degrees between 5 and 10.

Another result we report concerns the impact a smaller input size (i.e., image resolution) has on the
network performance. We showcase this result in Figure 5.4, which shows a small loss in accuracy
for down-scaling the inputs. This result is relevant particularly for extreme Edge resource-constrained
devices, since the computational cost of our network scales with the input size.

6.2. Online adaptation with the proposed rule

On-device learning could be a critical aspect of EdgeAl systems when there is a shortage of labeled
data to train the network before deployment. However, fully supervised on-device learning experiments
cannot simulate such scenarios. To demonstrate the scenario where the labeled data is too little, but
the network can adapt to new inputs in a unsupervised manner, we carried out an experiment, on
the binary classification task, using a small amount of face data to initially pre-train the network. The
pre-trained network is then used to self-supervise subsequent learning steps. After pre-training, the
network receives a random selection of input data (with and without faces). If the input data is classified
as a face (at least one neuron firing), the self-supervised learning process allows the network to learn
the input data. Figure 5.5 shows how the accuracy of the self-supervised learning process increases
by providing more face data. However, since the input data may be misclassified as a face, the self-
supervised learning results in lower accuracy than the fully-supervised learning result in Figure 5.3.
Therefore, the quality of the pre-trained network significantly affects the final accuracy. This effect
can be exacerbated for more complex classification tasks, such as MNIST, where a mis-prediction will
trigger learning an input by the wrong cluster. However, with this simple example, we demonstrate
that a self-supervised learning mechanism, when combined with on-device learning, can improve the
network’s accuracy during inference time.

6.3. Hardware results and benchmarking against similar work 58

6.3. Hardware results and benchmarking against similar work

6.3.1. General hardware results

For hardware benchmarking and evaluation, we use a training layer with 5120 neurons. This is a trade-
off we choose between algorithm performance and computational cost, in order to better evaluate
against similar solutions. This stems from the fact that our network uses a layer of many simple IF
neurons, and a light-weight training rule, and thus updating all fan-out neurons can lead in a higher
inference time for our solution, while most works use more complex modelling for the neuron and
synaptic updates rule, which allows them to obtain similar or better accuracy with much less neurons
and synapses. However, in Figure 5.17, we show the trade-off between computational cost during
inference and accuracy, which facilitates a more loyal comparison between our work and other solutions,
with respect to the cost needed to achieve the same accuracy.

We note that, in our design, the inference energy cost is the bottleneck, due to the need to up-
date all fan-out neurons. In our work, neuron memory (i.e., synaptic weights and neuron parameters)
reads consume over 99% of memory during inference. However, given that the neuron model can be
implemented with binary MAC, future work can consider alleviating the memory access overhead by
employing Computation-in-memory technologies, which can enable significant energy improvement,
according to results previously reported for BNN architectures [96]. Similarly, in terms of area, neu-
ron memory occupies more than 95% of the area. Future work can consider optimizing the synaptic
weights area and memory access energy by using a more efficient encoding scheme: i.e., since we
only keep W = 64 synaptic connections on, we can use for instance a synaptic encoding based on the
address at which the synaptic connection is on and the orientation. For instance, for the im_res = 32
case, there are 784 output points, each representing a code between 0 and 8. Since we only need
to know at which address there is a valid orientation, we need 10 bits to represent the address and
3 bits to represent the orientation., thus 13 bits per code. We have only W = 64 valid codes, thus
64 x 13 = 832bits. Compared to the current encoding scheme, using 4bits per code, such a scheme
would result in 4 x 784/832 = 3.76 times reduction in neuron area and memory accesses, given a
input im_res = 32. Another possible future avenue for reducing the inference energy consumption is
exploring whether a few random neuron updates per cluster could accurately indicate recognition.

We further compare our hardware results to similar solutions that employ the MNIST dataset for
benchmarking, that are implemented both in ASIC and FPGA. We note that the goal of our algorithm is
not to solve the MNIST task, which has already been solved by classical DNNs with more than 99.84%
accuracy [97]. However, over the past years, for the emerging field of neuromorphic computing, the
MNIST dataset has constituted a common ground for benchmarking the hardware efficiency of various
learning solutions and SNNs networks. Moreover, as we have already demonstrated, our algorithm is
suitable for various datasets.

Without further ado, the key result of these comparisons is the learning overhead for inference.
Since most works do not report whether the learning cost includes the inference cost, we assume it
does, and thus we compute the overhead as (learning energy - inference energy)/inference energy:
compared to all similar solutions, our work achieves the best learning overhead, of under 1%, which is
at least 10x better than other works. In that sense, to our knowledge, our work achieves the state-of-
the-art in SNN processors with online learning on-device that incurs minimum overhead for inference.

6.3.2. Benchmarking against similar FPGA solutions

Table 6.1 compares EON-1 to other similar online learning with SNNs solutions implemented on FPGA
platforms and benchmarked on MNIST. Metrics of interest are the reported accuracy for online learning,
resource utilization and throughput. Overall, EON-1 has the least resource utilization, compared to the
works that report this metric. The LUT utilization of the neuron core in [98] is similar to our work,
however, updating the membrane potential in their proposal is performed over several clock cycles,
as compared to one clock cycle in our work. We compute the learning overhead based on power
consumption reported by these works for learning and inference. The work in [99] has much higher
accuracy compared to our work, however, their learning uses surrogate gradient, and although a much
smaller number of neurons are needed, the resource utilization is more than 2x higher than ours, and

6.4. Benchmarking proposed solution for UHD frame processing 59

the throughput achieved during inference is 16x lower. Overall, our solution achieved the highest
throughput.

6.3.3. Benchmarking against similar ASIC solutions

Table 6.1 compares EON-1 to other similar online learning with SNNs solutions implemented in ASIC
nodes and benchmarked on MNIST. Metrics of interest are the obtained accuracy for online learning,
the core area, energy consumption and achievable throughput. The total core area we report includes
the cost of spike encoding and classification on-device. Since similar works are benchmarked using
various ASIC nodes, we use the method in [100] to normalize area and energy to our node. However, we
note that due to complex differences between various technology nodes, e.g., variety of short-channel
effects, the scaling in [100] is not an accurate predictor [101], however, for the purpose of this project,
they help in providing an overall comparison estimation. Our design does not include I/O power and it is
measured post-synthesis using time-based power analysis within 15% signoff. By far, our design is not
the most energy or area efficient, however, it achieves comparable cost with state-of-the-art, provided
that we have the best learning overhead for inference, and we use stochastic learning with fully binary
weights and activations.

In terms of energy consumption, similar work also report the SOP (synaptic operation) energy during
inference and learning. Since SOP cost depends on the synaptic rate in a proposed design, which can
vary greatly from one work to another, the SOP energy is not a good estimate of the energy efficiency
of a proposed custom SNN processor following a top-down approach, however it is useful for bottom-
up neuromorphic hardware architectures which can be used for a higher variety of tasks. Moreover,
authors do not use a standard method for providing this method. However, since our design fits within
the top-down design approach for neuromorphic processors, reporting SOP here can offer a good
indication of the computational complexity of a proposed method.

The work in [44] is the most similar to ours, in terms of using a stochastic and binary weights
online learning rule. They also update only one neuron per learned input. In terms of area and energy
efficiency, they outperform our solution, however, this comes at the cost of less on-device accuracy
and higher learning cost and overhead for inference. A similar situation occurs compared to [40]: the
energy consumption during inference is much less than ours, based on a rank order encoding scheme,
however, the reported accuracy is much less. We note that we could reach a similar accuracy with
1500 neurons, which would cut our energy consumption during inference by a factor of 3.4x.

Overall, the SOP energy we achieve is more efficient than all similar works, except for the work in
[44], i.e., they have 7x and 3x energy efficiency for SOP during learning and inference, respectively.
We note, however, that for reaching a similar accuracy, we could use a network of 2000 neurons, which
results in a similar energy per SOP during inference. Our learning cost is however fixed, independent
of the learning layer size.

6.4. Benchmarking proposed solution for UHD frame processing

To demonstrate the benefits of our solution, we proposed a test case where we evaluate fast inference
while coping with streaming data in UHD videos. Starting from the binary classification experiment, we
created a collage of many small faces and Images from the CIFAR-10 dataset, randomly placed in a
UHD frame. We first evaluated the performance of our recognition engine, showing that our algorithm
correctly spots 720 out of 798 the faces, while our EON-1 processor takes less than 84ms to process
the full frame of small faces, without any downscaling. By contrast, humans can only spot 2 faces in a
crowd, at a time [92].

We then evaluated the achievable frame rate for practical UHD applications, where with a down-
scaling factor of at least 6.25 we can easily process UHD videos in real-time, at 68 FPS. This result
demonstrates the unique features of our solution, showing that we can achieve fast inference while
coping with streaming data in real-time UHD videos, at the Edge. For future work, we plan to extend
this benchmark to a real-time pattern recognition demonstrator.

Table 6.1: Comparison of EON-1 with other FPGA solutions benchmarked on MNIST

TCSI’21 TCSIT’21 Neuro’17 ICTA23 EON-1
[69] [98] [70] [99]
Accuracy 85.28 % 90.58% 89.1% 95.49 % 91.96%
Learning
Online yes yes yes NR yes
On-chip yes no yes yes yes
Rule STDP var. STDP var. STDP SG! S-BSP 2
Neurons
Model LIF LIF LIF LIF IF
Number 300 2304 1591 320 5120
Synapses 176800 NR 638208 NR 4M
Precision 16bit float 2bit 16bit fixed 8bit 1-bit
Encoding rate rate rate rate TTFS
on-chip no yes no no yes
Chipset (*) Virtex-7 7ZCU102 Virtex-6 VCr07 VU37P HBM
Clock Frequency 100MHz 200MHz 120MHz 115MHz 100MHz
LUT 22779
Spike encoder - 113 - - 6010
Neuron core NR 455 69781 NR 449
Learning NR - 1817 NR 1518
Classifier NR 1641 - - 76
FF 15072
Spike encoder - 84 - - 744
Neuron core NR 85 50771 NR 7
Learning NR - 134 NR 845
Classifier NR 278 - - 41
CLB
Spike encoder - NR NR NR 969
Neuron core NR NR NR NR 152
Learning NR NR NR NR 447
Classifier NR NR NR NR 20
BRAM
Spike encoder - 1 - NR 0
Neuron core NR - - NR 58
Syn. mem. NR 431.5 68
. NR 0
Learning NR - 136 NR 0
Classifier NR 20 -
Energy
Learning 26.32mJ - 1.33J 0.67mJ -
Inference 5.04mJ 17mJ 1.12J 0.21mJ -
Throughput (FPS)
Learning 61 - 0.05 NR 19.1K
Inference 285 46.44 0.11 1183 19.4K
Learning overhead
for inference 5.22 - 0.18 2.19 <0.01

NR

- Not Reported

! Surrogate gradient

60

2 Stochastic Binary STDP

Table 6.2: Comparison of EON-1 with other ASIC solutions benchmarked on MNIST

TCSI’22 TBCAS”19 TBCAS’19 TCSIT23 ISCAS’20 EON-1
[43] [44] [40] [46] [45]
Accuracy 93% 87.4% 84.5% 93.54 % 92.8% - 95.3% 2 91.96%
Learning
Online yes yes yes yes yes yes
On-chip yes yes yes yes yes yes
Rule STDP var. spike count SDSP add-STDP ' DRTP * S-BSP ¢4
Neurons
Model LIF IF LIF /Izk. LIF NR IF
Number 384 400 256 2048 128 5120
Synapses 176800 230400 64000 2M NR 4M
Precision 9-bit fixed 1-bit 4-bit 8-bit 8-bit 1-bit
Encoding temporal rate rate & rank 7 temporal TTFS TTFS
on-chip yes no no NR yes yes
ASIC Node 28nm 65nm 28nm 28nm 28nm 22nm
Clock Frequency 333MHz 384MHz 75MHz 500MHz 150MHz 500MHz
Voltage 0.9V 1.2V 0.55V 0.81V 0.6V 0.8V
Area (mm?) 1 0.39 0.086 6.22 0.26 0.558
Norm. area %(mm?) 0.617 0.044 0.053 3.83 0.16 0.558
Energy
Learning 660nJ 2630nJ 105nJ NR NR 378.4nJ
SOP NR 1.42pJ NR 4.99pJ/SOP NR 1.5pJ
Inference 500nJ 310nJ 15nJ-404nJ NR 313nJ 377.2nJ
SOP NR 0.26pJ 12.7pJ 1.28pJ/SOP NR 0.09pJ
Norm. energy ©
Learning 409.7nJ 395.62nJ 174nJ NR NR 378.4nJ
SOP NR 0.21pJ NR 3.82pJ/SOP NR 1.5pJ
Inference 310.4nJ 46.6nJ 24.93nJ-671.58nJ NR 437.2nJ 377.2nJ
SOP NR 0.03pJ 21.11pJ 0.98pJ/SOP NR 0.09pJ
Throughput (FPS)
Learning 211.77k NR NR 22.8GSOPS NR 95K
Inference 277.78k NR NR 81.92GSOPS 8.5K 97.6K
Learning overhead
for inference ° 0.32 7.5 7& 0257 2.89 0.16 ® <0.01

NR - Not Reported
reaches 95.3% [45].
for online and local learning
6 Normalized energy = Energy x (22/Node) x (0.8/voltage)?

! Additive STDP

2 Reported accuracy for one epoch is 92.8%, and after 100 epochs it

3 Direct Random Target Projection [45] - a modified back-propagation version, suitable

4 Stochastic Binary STDP

® Normalized area = Area x (22/Node)?
" The neuromorphic processor in [40] supports

both rate coding and temporal, rank-order coding for input spikes. Reported inference energy and learning
overhead is for rank and rate coding, respectively. Reported learning energy excludes inference cost.
8 Learning overhead is obtained from reported power.
9 Energy overhead computed as (learning energy - inference energy)/inference energy
TCSI'22 [43], TBCAS”19 [44] report area/energy results post-layout and they do not include I/O area/energy

cost;

61

TBCAS’19 [40], TCSII'23 [46], ISCAS’20 [45] report area/energy results post-tapeout.

v

Conclusions and future work

7.1. Overview and summary of results

Motivated by the desire to bring intelligent processing at the Edge, particularly to perform online learning
and adaptation with minimum incurred overhead for inference, in this work we have proposed EON-1,
an Edge ONline Learning SCNN (Spiking Convolutional Neural Network) processor with 1-bit synaptic
weights, 1-spike per neuron and 1-neuron updated per input, which we have benchmarked for both
ASIC and FPGA platforms. To this aim, taking inspiration from URVC in the biological visual system,
we have explored the benefits of using a SNN of IF neurons with stochastic plasticity, binary spikes and
synaptic weights, coupled with a Time-to-First-Spike encoding scheme and lateral-inhibition among
orientation-selective cells, for Edge Al applications. Our key contribution is proposing a binary and
stochastic SDTP rule which, benchmarked in an ASIC node, achieves less than 1% energy overhead
for inference. To our knowledge, our solution incurs the least energy overhead for inference, compared
to state-of-the-art solutions, showing a better efficiency by at least a factor of 10x. We also report
94% and 77.65% accuracy on the MNIST and Fashion-MNIST classification tasks, and we achieve
0.09pJ/SOP and 1.5pJ/SOP during inference and learning, respectively. We extend our results to
demonstrate how we can achieve 60 FPS UHD video processing. Following, we discuss and conclude
on the main results achieved by our work.

7.1.1. Online learning rule performance

Through our experiments, we have explored the boundaries of learning locally, in a single trainable
layer, with extreme spike-efficiency. To that extent, we have evaluated our proposed method on a
series of tasks and datasets, demonstrating 94% accuracy on MNIST, 77.65% on Fashion-MNIST, and
98% accuracy on a binary classification task between faces and no-faces. We first showed that our
network is able to improve continuously with more training data being presented online, and that the
network performance increases with more neurons in the training layer. We have also demonstrated
that with limited training data, and through one-shot learning, our network reaches satisfactory accuracy.
As a result of stochasticity in the proposed learning rule, our solution is resilient to overfitting, however,
no forgetting of old-patterns is implemented at this point; the neurons, however, are able to detect
slight changes in the input patterns (e.g., we demonstrate this through presenting rotated versions of
the trainset during the MNIST classification task) and future work can consider implementing tracking
these changes.

Based on a face/no face binary classification example, we have demonstrated that a self-supervised
learning mechanism, when combined with on-device learning, can improve the network’s accuracy
during inference time, thus showing the online adaptation capability of our network. We note, however,
that inaccurate predictions can lead to false positives being learned by neurons (i.e., the inference
prediction is subsequently used as a label), which can result in a decrease in accuracy for more complex
tasks (e.g., multi-class classification tasks).

In terms of scalability, we have shown that our network is scalable in terms of learning layer size
and input resolution. To that extent, we have provided an analysis of what the benefits and disadvan-
tages of scaling are: for scaling the learning layer size, we have shown that the network performance
increases with the network capacity. However, this comes at the cost of higher energy and latency dur-
ing inference. In what concerns the input resolution, our algorithm is suitable for extreme down-scaling,
benefiting the overall computational cost of the network, however, this comes at the cost of a couple of
percentiles accuracy loss.

62

7.2. Future work 63

7.1.2. Hardware results and benchmarking

To evaluate the hardware efficiency benefits for Edge Al applications, we have benchmarked our solu-
tion in a GF22 ASIC node, and a VU37 HBM FPGA platform. The ASIC harwdare results show that our
processor consumes 0.09pJ/SOP and 1.5pJ/SOP, during inference and learning respectively. Based
on 5120 neurons and 4M synapses, our processor occupies 0.558 mm?, and consumes 377.2nJ during
inference and only 1.2nJ for learning.

Based on end-to-end network implementation, our solution achieves the best throughput and re-
source utilization compared to similar works benchmarked on FPGA platforms. Compared to similar
works benchmarked in ASIC, although we have the highest number of neurons and synapses, and we
use only 1-bit synaptic weights, we achieve comparable accuracy and energy efficiency to state-of-the-
art, while maintaining the best learning energy overhead for inference, which is at least 10x better than
other works.

To demonstrate the unique features of our solutions, we have shown that our network is suitable for
fast inference while coping with streaming data in UHD video, being able of achieving standard 60FPS
processing. Since the number of neurons in the network is correlated to the number of different classes
and patterns that can be learned/recognized by our engine, we provided an in-depth analysis of the
trade-off between achievable UHD frames throughput and network size on a high-end FPGA platform,
VU37 HBM. In less than 84ms, our engine spots 720 out of 798 faces in a UHD collage frame of 8100
small patterns.

7.2. Future work

In this work, we have explored the boundaries of learning locally with a single layer of simple IF neu-
rons, with binary synaptic weights and activations, while enforcing one-shot learning and only 64 active
synaptic weights per neuron. While our current algorithm version demonstrates dataset-agnosticism,
robustness to variations in the input, fast and energy efficient learning and inference and can be ex-
tended to practical applications such as real-time inference on UHD streams, there are multiple avenues
for future improvement.

Firstly, our current algorithm version locks neurons to a specific input, due to fast, one-shot learning.
For future work, we want to explore using a smaller swap rate, such that one neuron can become
selective to more inputs that are highly-correlated. A slower learning rate could also result in our network
behaving like an associative memory, e.g., our network could better recall patterns that are degraded or
only partially resemble learned inputs [102]. Moreover, since we currently concentrate a fixed number
of weights to random active input lines, future work can consider exploring performance when swapping
weights only to the most salient features, which we could obtain by sorting the convolution values of
the edge filters.

Another aspect of our current algorithm is that we do not implement any forgetting of old patterns.
For future work, we consider exploring decaying the learning threshold such that forgetting is facilitated
and neurons can be reused to learn new patterns or track changing versions of the old patterns (e.g.,
detect an aging face or other slight variations with time of learned inputs).

In our current design implementation, synaptic memory access is responsible for more than 99%
of the energy consumption during inference and more than 95% of the total processor area. We con-
sider three main avenues that could alleviate the dominating energy consumption incurred by memory
accesses and improve area for future work:

+ Since the main operation during our network’s inference is a binary multiply-and-accumulate, the
first avenue is employing emerging technologies such as computation-in-memory (CIM). Previous
work has shown that compared to conventional row-by-row SRAM access, CIM can achieve more
than 30x energy improvement for inference of BNNs [103].

+ the second avenue is to optimize the synaptic weights encoding scheme: since we only keep
W = 64 synaptic connections active, we can use for instance a synaptic encoding based on the
address at which the synaptic connection is active, followed by the orientation at that address.
For instance, for the im_res = 32 case, there are 784 output points, each representing a code
between 0 and 8. Since we only need to know at which address there is a valid orientation, we
need 10 bits to represent the address and 3 bits to represent the orientation, thus 13 bits per code.

7.2. Future work 64

We have only W = 64 valid codes, thus 64 x 13 = 832bits. Compared to the current encoding
scheme, using 4bits per code, such a scheme would result in 4 x 784/832 = 3.76 times reduction
in neuron area and memory accesses, given an input im_res = 32. This encoding scheme would
however need extra decoding logic of the neuron synaptic weights.

the third future avenue for reducing the inference energy consumption is exploring whether a few
random neuron updates per cluster could accurately indicate recognition, i.e., we can explore
the trade-off between less energy consumption (and invariably, less latency) and the prediction
confidence.

In terms of improving the network accuracy on typical classification benchmarks (e.g., MNIST,
Fashion-MNIST), future work can explore either improving the classifier or exploring in depth the situ-
ations where the correct prediction is precisely the second. Another possible avenue is to explore the
benefits of extending our solutions to multiple learning layers.

Lastly, future work considers building an FPGA-based demonstrator for the real-time UHD video
inference.

Bibliography

[1]1 H. Paugam-Moisy and S. M. Bohte, “Computing with spiking neuron networks.” Handbook of
natural computing, vol. 1, pp. 1-47, 2012.

[2] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and E. Beigne,
“Spiking neural networks hardware implementations and challenges: A survey,” ACM Journal
on Emerging Technologies in Computing Systems, vol. 15, no. 2, p. 1-35, Apr. 2019. [Online].
Available: http://dx.doi.org/10.1145/3304103

[3] K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural networks and their applications:
A review,” Brain Sciences, vol. 12, no. 7, p. 863, 2022.

[4] S. J. Thorpe, A. Delorme, and R. VanRullen, “Spike-based strategies for rapid processing,” Neu-
ral Networks, vol. 14, pp. 715-726, 2001.

[5] S. Saha. (2018) A comprehensive guide to convolutional neu-
ral networks. [Online]. Available: https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[6] Z. Keita. (2023) An introduction to convolutional neural networks (cnns). [Online]. Available:
https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-cnns

[7]1 T. Masquelier and S. J. Thorpe, “Learning to recognize objects using waves of spikes and spike
timing-dependent plasticity,” in The 2010 International Joint Conference on Neural Networks
(IJCNN), 2010, pp. 1-8.

[8] A. Delorme, J. Gautrais, R. van Rullen, and S. Thorpe, “Spikenet: A simulator for modeling large
networks of integrate and fire neurons,” Neurocomputing, vol. 26-27, pp. 989-996, 1999.

[9] A. Delorme, L. Perrinet, and S. Thorpe, “Networks of integrate-and-fire neurons using rank order
coding b: Spike timing dependent plasticity and emergence of orientation selectivity,” Neurocom-
puting, vol. 38, pp. 539-545, 06 2001.

[10] (2017) Utkface - large scale face dataset. [Online]. Available: https://susanqq.github.io/UTKFace/
[11] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, 2009.

[12] L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.

[13] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms,” 2017.

[14] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep
learning,” 2022.

[15] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neu-
ral networks,” Neural Information Processing Systems, vol. 25, 01 2012.

[16] ImageNet. (2023) Imagenet. [Online]. Available: https://www.image-net.org/about.php
[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” 2014.

65

http://dx.doi.org/10.1145/3304103
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-cnns
https://susanqq.github.io/UTKFace/
https://www.image-net.org/about.php

Bibliography 66

[19] N. Alarcon. (2020) Openai presents gpt-3, a 175 billion param-
eters language mode. [Online]. Available: https://developer.nvidia.com/blog/
openai-presents-gpt-3-a-175-billion-parameters-language-model

[20] J. Langston. (2020) Microsoft announces new supercomputer, lays out vision for fu-
ture ai work. [Online]. Available: https://news.microsoft.com/source/features/innovation/
openai-azure-supercomputer

[21] L. F. e. a. N. Maslej, “The ai index 2023 annual report,” Institute for Human-Centered Al,Stanford
University, Stanford, CA, Tech. Rep., 2023.

[22] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the carbon footprint of bloom, a 176b
parameter language model,” 2022.

[23] J. Li, J. Chen, H. Bai, H. Wang, S. Hao, Y. Ding, B. Peng, J. Zhang, L. Li, and W. Huang, “An
overview of organs-on-chips based on deep learning,” Research, vol. 2022, 2022.

[24] K. Ueyoshi, I. A. Papistas, P. Houshmand, G. M. Sarda, V. Jain, M. Shi, Q. Zheng, S. Giraldo,
P. Vrancx, J. Doevenspeck, D. Bhattacharjee, S. Cosemans, A. Mallik, P. Debacker, D. Verkest,
and M. Verhelst, “Diana: An end-to-end energy-efficient digital and analog hybrid neural network
soc,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1-3.

[25] N. P. Jouppi and e. a. Cliff Young, “In-datacenter performance analysis of a tensor processing
unit,” 2017.

[26] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend: a scalable and unified
architecture for ubiquitous deep neural network computing : Industry track paper,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), 2021, pp. 789—
801.

[27] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for deep neural
network acceleration: A survey,” Neurocomputing, vol. 461, pp. 370-403, 2021.

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” 2016.

[29] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-device training under 256kb
memory,” 2022.

[30] Y. Yang, G. Li, and R. Marculescu, “Efficient on-device training via gradient filtering,” 2023.

[31] e. a. Jan M. Rabaey, Marian Verhelst, “Ai at the edge - a roadmap. technical report,” IMEC, KU
Leuven, Ghent University, VUB, EPFL, ETH Zurich and UC Berkeley, Tech. Rep., 2019.

[32] J. Shalf, “The future of computing beyond moore’s law,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2166, p. 20190061, 2020.

[33] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep
learning,” arXiv preprint arXiv:2007.05558, 2020.

[34] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. A.
Behram, J. Huang, C. Bai, M. Gschwind, A. Gupta, M. Ott, A. Melnikov, S. Candido, D. Brooks,
G. Chauhan, B. Lee, H.-H. S. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, and
K. Hazelwood, “Sustainable ai: Environmental implications, challenges and opportunities,” 2022.

[35] O. R. N. Laboratory. (2023) Oak ridge national laboratory - frontier. [Online]. Available:
https://www.olcf.ornl.gov/frontier/

[36] A. Madhavan. (2023) Brain-inspired computing can help us create faster, more energy-
efficient devices — if we win the race. [Online]. Available: https://www.nist.gov/blogs/
taking-measure/brain-inspired-computing-can-help-us-create-faster-more-energy-efficient#:~:
text=The%20human%20brain%20is%20an,just%2020%20watts%200f%20power

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model
https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model
https://news.microsoft.com/source/features/innovation/openai-azure-supercomputer
https://news.microsoft.com/source/features/innovation/openai-azure-supercomputer
https://www.olcf.ornl.gov/frontier/
https://www.nist.gov/blogs/taking-measure/brain-inspired-computing-can-help-us-create-faster-more-energy-efficient#:~:text=The%20human%20brain%20is%20an,just%2020%20watts%20of%20power
https://www.nist.gov/blogs/taking-measure/brain-inspired-computing-can-help-us-create-faster-more-energy-efficient#:~:text=The%20human%20brain%20is%20an,just%2020%20watts%20of%20power
https://www.nist.gov/blogs/taking-measure/brain-inspired-computing-can-help-us-create-faster-more-energy-efficient#:~:text=The%20human%20brain%20is%20an,just%2020%20watts%20of%20power

Bibliography 67

[37] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with neuromorphic
computing,” Nature, vol. 575, no. 7784, pp. 607-617, 2019.

[38] C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up and top-down approaches for the design of neuro-
morphic processing systems: Tradeoffs and synergies between natural and artificial intelligence,”
Proceedings of the IEEE, vol. 111, no. 6, pp. 623-652, 2023.

[39] J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “pubrain: An event-driven and fully synthe-
sizable architecture for spiking neural networks,” Frontiers in Neuroscience, vol. 15, 2021.

[40] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm? 12.7-pj/sop 64k-synapse 256-
neuron online-learning digital spiking neuromorphic processor in 28-nm cmos,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 13, no. 1, pp. 145-158, 2019.

[41] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester, A. D.
Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural
network simulation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943-1953, 2013.

[42] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Naka-
mura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk,
B. Jackson, and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 10, pp. 1537-1557, 2015.

[43] C. Sun, H. Sun, J. Xu, J. Han, X. Wang, X. Wang, Q. Chen, Y. Fu, and L. Li, “An energy efficient
stdp-based snn architecture with on-chip learning,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 69, no. 12, pp. 5147-5158, 2022.

[44] H. Tang, H. Kim, H. Kim, and J. Park, “Spike counts based low complexity snn architecture
with binary synapse,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp.
1664-1677, 2019.

[45] C. Frenkel, J.-D. Legat, and D. Bol, “A 28-nm convolutional neuromorphic processor enabling
online learning with spike-based retinas,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), 2020, pp. 1-5.

[46] Y. Zhong, Z. Wang, X. Cui, J. Cao, and Y. Wang, “An efficient neuromorphic implementation of
temporal coding-based on-chip stdp learning,” IEEE Transactions on Circuits and Systems II:
Express Beriefs, vol. 70, no. 11, pp. 4241-4245, 2023.

[47] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online continual learning in image
classification: An empirical survey,” 2021.

[48] W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural
networks, vol. 10, no. 9, pp. 1659-1671, 1997.

[49] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking neural networks and online learning: An
overview and perspectives,” Neural Networks, vol. 121, pp. 88—100, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608019302655

[50] S. J. Thorpe and J. Gautrais, “Rank order coding,” Computational Neuroscience: Trends in Re-
search, pp. 113-118, 1998.

[51] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural coding in spiking neural networks:
A comparative study for robust neuromorphic systems,” Frontiers in Neuroscience, vol. 15, 2021.

[52] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural Networks, vol. 14,
no. 6, pp. 1569-1572, 2003.

[563] C. Frenkel, J.-D. Legat, and D. Bol, “Morphic: A 65-nm 738k-synapse/mm? quad-core binary-
weight digital neuromorphic processor with stochastic spike-driven online learning,” IEEE Trans-
actions on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 999-1010, 2019.

https://www.sciencedirect.com/science/article/pii/S0893608019302655

Bibliography 68

[54] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco,
“‘On practical issues for stochastic stdp hardware with 1-bit synaptic weights,” Frontiers
in Neuroscience, vol. 12, 2018. [Online]. Available: https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.2018.00665

[55] M. Fabre-Thorpe, “The characteristics and limits of rapid visual categorization,” Frontiers in Psy-
chology, vol. 2, 2011.

[56] I. Tomomi and H. Samar, “On and off signaling pathways in the retina and the visual system,”
Frontiers in Ophthalmology, vol. 2, 2022.

[57] S. Thorpe and R. V. Rullen, “Rate coding versus temporal order coding: What the retinal ganglion
cells tell the visual cortex,” Neural computation, vol. 13, no. 6, pp. 1255-1283, 2001.

[58] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system,” nature, vol.
381, no. 6582, pp. 520-522, 1996.

[59] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benosman, “Hfirst: A
temporal approach to object recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 10, pp. 2028-2040, 2015.

[60] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust object recognition
with cortex-like mechanisms,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 3, pp. 411-426, 2007.

[61] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features through spike timing
dependent plasticity,” PLoS computational biology, vol. 3, no. 2, p. €31, 2007.

[62] R.Rullen, J. Gautrais, A. Delorme, and S. Thorpe, “Face processing using one spike per neuron,”
Biosystems, vol. 48, pp. 229-239, 1998.

[63] S. Thorpe, “Ultra-rapid scene categorization with a wave of spikes,” in Biologically Motivated
Computer Vision. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 1-15.

[64] P. Pietrzak, S. Szczesny, D. Huderek, and (1. Przyborowski, “Overview of spiking neural network
learning approaches and their computational complexities,” Sensors, vol. 23, no. 6, 2023.

[65] H. Wu, Y. Zhang, W. Weng, Y. Zhang, Z. Xiong, Z.-J. Zha, X. Sun, and F. Wu, “Training spik-
ing neural networks with accumulated spiking flow,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 35, no. 12, 2021, pp. 10 320-10 328.

[66] S. M. Bohte, J. N. Kok, and J. A. La Poutré, “Spikeprop: backpropagation for networks of spiking
neurons.” in ESANN, vol. 48. Bruges, 2000, pp. 419-424.

[67] A. Tavanaei and A. Maida, “Bp-stdp: Approximating backpropagation using spike timing depen-
dent plasticity,” Neurocomputing, vol. 330, pp. 39-47, 2019.

[68] F. Liu, W. Zhao, Y. Chen, Z. Wang, T. Yang, and L. Jiang, “Sstdp: Supervised spike timing
dependent plasticity for efficient spiking neural network training,” Frontiers in Neuroscience,
vol. 15, 2021. [Online]. Available: https://www.frontiersin.org/journals/neuroscience/articles/10.
3389/fnins.2021.756876

[69] S.Li, Z.Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast and energy-efficient snn processor
with adaptive clock/event-driven computation scheme and online learning,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp. 1543-1552, 2021.

[70] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient parallel neuromorphic architectures
with approximate arithmetic on fpga,” Neurocomputing, vol. 221, pp. 146-158, 2017. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0925231216311213

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00665
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00665
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.756876
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.756876
https://www.sciencedirect.com/science/article/pii/S0925231216311213

Bibliography 69

[71] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains in the nano-cmos
era: Spiking neurons, learning synapses and neural architecture optimization,” Neural Networks,
vol. 45, pp. 4-26, 2013, neuromorphic Engineering: From Neural Systems to Brain-Like Engi-
neered Systems.

[72] Y. Zhong, X. Cui, Y. Kuang, K. Liu, Y. Wang, and R. Huang, “A spike-event-based neuromor-
phic processor with enhanced on-chip stdp learning in 28nm cmos,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5.

[73] J. D. Nunes, M. Carvalho, D. Carneiro, and J. S. Cardoso, “Spiking neural networks: A survey,”
IEEE Access, vol. 10, pp. 60 738-60 764, 2022.

[74] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, p. 106, 1962.

[75] S. J. Thorpe and M. Imbert, “Biological constraints on connectionist modelling,” Connectionism
in perspective, pp. 63-92, 1989.

[76] T.J.Gawne, T. W. Kjaer, and B. J. Richmond, “Latency: another potential code for feature binding
in striate cortex,” Journal of neurophysiology, vol. 76, no. 2, pp. 1356—1360, 1996.

[77] T. Gollisch and M. Meister, “Rapid neural coding in the retina with relative spike latencies,” Sci-
ence, vol. 319, no. 5866, pp. 1108-1111, 2008.

[78] S. Thorpe, "Timing, spikes, and the brain” in Time and Science (In 3 Volumes): Volume 2: Life
Sciences, ser. G - Reference,Information and Interdisciplinary Subjects Series. World Scientific
Publishing (UK)Limited, 2023.

[79] S. Thorpe, A. Yousefzadeh, T. Masquelier, and J. Martin, “Unsupervised learning of repeating
patterns using a novel stdp based algorithm,” Journal of Vision, vol. 17, no. 10, pp. 1079-1079,
2017.

[80] A. Tavanaei, T. Masquelier, and A. S. Maida, “Acquisition of visual features through probabilistic
spike-timing-dependent plasticity,” in 2016 International Joint Conference on Neural Networks
(IJCNN). |EEE, 2016. [Online]. Available: http://dx.doi.org/10.1109/IJCNN.2016.7727213

[81] H.-K. Kwan and T. Okullo-Oballa, “2-d systolic arrays for realization of 2-d convolution,” IEEE
Transactions on Circuits and Systems, vol. 37, no. 2, pp. 267—233, 1990.

[82] P. Alfke. (1996) Efficient shift registers, Ifsrcounters, and long pseudorandom sequence
generators. [Online]. Available: https://docs.xilinx.com/v/u/en-US/xapp052

[83] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning
a sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607-609, 1996.

[84] J. Yin and Q. Yuan, “Structural homeostasis in the nervous system: a balancing act for wiring
plasticity and stability,” Frontiers in cellular neuroscience, vol. 8, p. 439, 2015.

[85] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “Binareye: An always-on energy-
accuracy-scalable binary cnn processor with all memory on chip in 28nm cmos,” 2018.

[86] T. M. Inc. (2022) Matlab (r2022b). [Online]. Available: https://nl.mathworks.com/products/new__
products/release2020b.html

[87] Cadence. Cadence xcelium logic simulator. [Online]. Available: https://www.cadence.
com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/
xcelium-simulator.html

[88] Xilinx. (2020) Vivado design suite user guide. [Online]. Avail-
able: https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/
ug973-vivado-release-notes-install-license.pdf

http://dx.doi.org/10.1109/IJCNN.2016.7727213
https://docs.xilinx.com/v/u/en-US/xapp052
https://nl.mathworks.com/products/new_products/release2020b.html
https://nl.mathworks.com/products/new_products/release2020b.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug973-vivado-release-notes-install-license.pdf

Bibliography 70

[89] AMD. Virtex ultrascale+ hbm vcu128 fpga evaluation kit. [Online]. Available: https:
/Iwww .xilinx.com/products/boards-and-kits/vcu128.htmlf

[90] Cadence. Genus synthesis solutions. [Online]. Available: https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

[91] ——. Joules rtl power solution. [Online]. Available: https://www.cadence.com/en_US/home/
tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html

[92] V. Thoma, “Face-specific capacity limits under perceptual load do not depend on holistic process-
ing,” Psychonomic bulletin & review, vol. 21, pp. 1473-1480, 2014.

[93] AMD. (2022) Vcu128 evaluation board user guide (ug1302). [Online]. Available: https:
/l[docs.xilinx.com/r/en-US/ug1302-vcu128-eval-bd

[94] P. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-dependent
plasticity,” Frontiers in Computational Neuroscience, vol. 9, 2015.

[95] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural network with spike-
driven synaptic dynamics,” Neural computation, vol. 19, no. 11, pp. 2881-2912, 2007.

[96] T. Wang and W. Shan, “An energy-efficient in-memory bnn architecture with time-domain analog
and digital mixed-signal processing,” in 2019 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2019, pp. 1-6.

[97] A. Byerly, T. Kalganova, and |. Dear, “No routing needed between capsules,” Neurocomputing,
vol. 463, pp. 545-553, 2021.

[98] H. Zheng, Y. Guo, X. Yang, S. Xiao, and Z. Yu, “Balancing the cost and performance trade-offs
in snn processors,” IEEE Transactions on Circuits and Systems IlI: Express Briefs, vol. 68, no. 9,
pp. 3172-3176, 2021.

[99] K. Huang, W. Liu, Y. Liu, S. Xiao, and Z. Yu, “Towards efficient on-chip learning for spiking
neural networks accelerator with surrogate gradient,” in 2023 IEEE International Conference on
Integrated Circuits, Technologies and Applications (ICTA), 2023, pp. 89-90.

[100] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits. Prentice hall Engle-
wood Cliffs, 2002, vol. 2.

[101] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction of cmos device
performance from 180nm to 7nm,” Integration, vol. 58, pp. 74-81, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926017300755

[102] G. for Geeks. (2023) Associative memory. [Online]. Available: https://www.geeksforgeeks.org/
associative-memory/

[103] X. Sun, R. Liu, X. Peng, and S. Yu, “Computing-in-memory with sram and rram for binary neural
networks,” in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT), 2018, pp. 1-4.

https://www.xilinx.com/products/boards-and-kits/vcu128.html f
https://www.xilinx.com/products/boards-and-kits/vcu128.html f
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://docs.xilinx.com/r/en-US/ug1302-vcu128-eval-bd
https://docs.xilinx.com/r/en-US/ug1302-vcu128-eval-bd
https://www.sciencedirect.com/science/article/pii/S0167926017300755
https://www.geeksforgeeks.org/associative-memory/
https://www.geeksforgeeks.org/associative-memory/

A

Appendix - Paper draft

71

EON-1: A Brain-Inspired Processor for Near-Sensor
Extreme Edge Online Feature Extraction

1%t Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

4™ Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff-)
City, Country
email address or ORCID

Abstract—Edge Al applications require online learning and
adaptation on resource-constrained embedded devices to deal
with fast sensor-generated streams of data in changing envi-
ronments. This can address the challenges of learning from
limited training points and alleviate the hindering factors of
offline training. However, maintaining low-latency and power-
efficient inference is crucial for Edge AI computing systems, and
thus online learning and adaptation on the device with minimal
incurred overhead for inference is crucial. In this paper, we
explore energy-efficient learning and adaptation on-device for
Edge AI applications using Spiking Neural Networks (SNNs),
which follow the principles of brain-inspired computing, such
as high-parallelism, neuron co-located memory and processing,
and event-driven processing. We propose EON-1, a brain-inspired
processor for near-sensor extreme edge online feature extraction,
which can enable online feature extraction and incremental
learning on resource-constrained devices. We evaluate EON-1’s
performance on benchmark datasets and show that it achieves
high accuracy while maintaining low power consumption and
latency.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

With the emergence of Edge Al {AstifietalIntelligenee)

applications, enabling on-device learning and adaptation on
resource- and latency-constrained embedded devices is becom-
ing increasingly appealing, as it has the potential to tackle
a wide range of challenges: firstly, it can deal with on-the-
fly adaptation to fast sensor-generated streams of data under
changing environments. Secondly, it could address learning
from limited amounts of training points and thirdly, it can
alleviate a variety of hindering factors associated with offline
training in the Cloud, such as incurred energy consumption
of sensor data transfers and extra memory storage for the
training samples, but also data privacy and security concerns.
Concurrently, maintaining low-latency and power-efficient in-
ference is paramount for Edge AI computing systems, and

Identify applicable funding agency here. If none, delete this.

2" Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

5 Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

3" Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

6™ Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

thus learning/adapting on the device with minimal incurred
overhead for inference is crucial.

Quantized and binary neural networks (QNNs/BNNs) and
their neuromorphic recurrent sibblings spiking neural networks
(SNNs) are currently the main genres of neural models for
accelerated low-latency low-power inference. When it comes
to online on-device learning/adaptation of such models there
is no mainstream approach established due to the inherent
difficulties of making back-propagation scalable or efficient
for this purpose [1], [2]. Thus the topic is subject of active
research with a small handful of custom processors that embed
some sort of limited online learning or adaptation capability
already proposed in the literature [4], [3], [5], [6], [29].
The key differentiators among them is typically energy, area
efficiency, speed of learning, and supported learning rule.

In this paper we explore the merits of the process of Ultra-
Rapid Visual Categorization (URVC) [7] that takes place in
the mammalian visual cortex, for online hardware-assisted on-
device learning and adaptation. In URVC, fast analysis and
classification of images is attributed to efficient encoding and
transmittion of information from the retinal ganglion cells
to the orientation-selective cells in the visual cortex in the
shortest time possible (i.e., with the first emitted spike) via
the optic nerve [8], [9]. Past work has defended the efficiency
of URVC with binary STDP [10] in networks of integrate-and-
fire (IF) neurons for tasks such as face identification [11] and
natural scene recognition [12], [13], [14].

Building upon these past ideas, we introduce EON-1, an
energy and latency efficient edge-Al neural accelerator for
spiking and binary convolutional neural networks, that uses
1-spike per neuron and 1-bit synaptic weights. EON-1 em-
beds a hardware-assisted very fast on-device online learning
algorithm (amortizable for one-shot or few-shot) founded on
binary stochastic STDP, which when benchmarked in an ASIC
node, achieves less than 1% energy overhead for on device
learning (relative to the inference). To our knowledge, our

solution incurs the least energy overhead for learning on
device, compared to state-of-the-art solutions, showing a better
efficiency by at least a factor of 10x. We also report 94%
and 77.65% accuracy on the MNIST and Fashion-MNIST
classification tasks, and we achieve 0.09pJ/SOP and 1.5pJ/SOP
energy efficiency during inference and learning, respectively.
We extend our solution to demonstrate a practical use-case of
performing inference in real-time UHD videos while coping
with streaming data and we showcase 60 FPS UHD video
processing.

In the remaining of this paper Section II presents the
main background and describes our methodology, Section III
presents the experimental setup and results, while Section IV
presents a short discussion and conclusion of our work.

II. BACKGROUND AND METHODS

A. Overview of ultra-rapid feature extraction in the visual
cortex

In the biological visual system, it has been observed
that ultra-rapid high-level feature extraction occurs in the
orientation-selective first layer of the visual cortex based on the
first spike emitted by ganglion cells in the retina [15]. In order
to generate the first spike that carries sufficient information for
high-level recognition, the ganglion cells in the retina act as
intensity-to-latency converters [16], such that they emit spikes
in the order of the strength of the visual stimulation.

This behavior can be modelled in a convolutional network
(CNN) with orientation selective edge filters in the first layer
[17], followed by a temporal 1-winner-take-all (1-WTA) cir-
cuit of applying lateral inhibition [10], that allows only the
dominant edge filters to propagation information downstream
(max-pooling channel-wise).

B. Learning algorithm and refinementsmethodotogy

The hardware-optimized algorithm developed for this work
is partially inspired by [18], [13] and [14]. Instead of using
complex neuron models, our vision in this work is to use
millions of simplified neurons with a hardware-friendly learn-
ing algorithm. In this section, we will explain the inference
and learning processes in the proposed algorithm. Although
we explain inference first, it’s important to note that just
like the biological brain, learning and inference will run
simultaneously in the proposed hardware platform (Section
II-C) and are not separated.

1) Low-latency 1-spike—based inference: The network
structure is depicted in Fig.1. It starts with processing input
images with (pre-defined) edge filters in the first layer, fol-
lowed by a lateral inhibition layer. Lateral inhibition ensures
that for every (X, Y") location, only one spike is fired from all
the edge filtering orientations (i.e. one edge filter is selected
as in channel-wise max-pooling). The result is a highly sparse
binary spiking output that can be encoded in a spike vector
representation, and compressed as shown in Fig.2.

The output of the lateral inhibition layer is then connected
to a layer of IF neurons. Each IF neuron is fully connected
to the output of the lateral inhibition layer through a weight

0° 7
0o O
i 4
= 00 | = = == Q
& .
! = O
: : @)
L] L]
L] L]
L]
- .
3150 | = o o -
Ry O
Input Image Edge filters Lateral Inhibition Trainable layer of I&F

neurons

(Spike Output) (Sparsely connected)

Fig. 1: The neural network structure for this work. It includes
a layer of edge-filtering convolution, a lateral inhibition layer,
and a layer of fully connected neurons equipped with binary
STDP training.

TABLE I:. Parameters for IF Neuron layers and synaptic
plasticity

Name Description

Nip Number of IF neurons in learning layer

w Number of active synaptic connections per neuron

TrLearn|0] Initial learning threshold

Trire Firing threshold. Can be fixed, or variable (fraction of
T earnbut 0o at the beginning).

Swap_Rate Fraction of ineffective active synapses per neuron
that get inactive (swapped) during learning to permit
activation of effective synapses (on which spikes are
received).

K Maximum number of neurons which are allowed to
learn (an input spike vector)

vector. The synaptic weights of each of the IF neurons in our
algorithm have three constraints:

« The synaptic weights are binary, which means they either
connect (activate) or disconnect (deactivate) synapses.

o All neurons have the exact same amount of active
synapses (W parameter in Table I).

o For every neuron the synaptic connection to only one
edge filter is active at each (X,Y") location in the input
image.

These constraints result in very sparse synaptic weights
vectors (Fig.1), which can be encoded in the same (sparse)
vector format as the spike vector (see example in Fig.3 for
W = 4 active synapses per neuron).

When elements of the weight vector of a downstream IF
neuron align in index position (pixel position) and value (edge-
filter) with corresponding elements of a spike vector, the
respective IF neurons integrate the incoming spikes from the
edge-filters layer. Thereafter, a neuron fires if the number of
matching elements exceeds the firing threshold 7F;... Each
neuron in this process is trained to recognize a specific abstract

Edge Filter |
X

X 2]
5l x 8
s, 2
& 12]
3
. | 28] 8]
P 3
k: x x BRI EINE
¥ 4K » s
X 3 | L

Compressed format

[«]

Edge Filter 8

Spike Vector

Lateral inhibition layer

Fig. 2: The lateral inhibition layer produces binary spikes that
can be compressed into a spike vector. Each element of the
vector designates the source edge filter-id that generated the
spike for the respective pixel position.

2 (7 6 7 Weight Vector Neuron |
8|1|3]|5 Weight Vector Neuron 2
2 5132 Weight Vector Neuron 3
I 4 4|8 Weight Vector Neuron 4

Fig. 3: Example of a spike vector and four weight vectors.
Each weight vector contains four active synaptic connections.
Bold elements in the weight vectors are the one that matches
the spike vector.

pattern as a composition of base features. It is possible to
extend the network depth with more IF neuron layers, or the IF
layer width by increasing the number of IF neurons. However,
given the theoretical equivalence [20]-[22] between arbitrary
deep versus wide neural networks (with up to two hidden
layers), for reasons of hardware parallelization, latency and
learning simplicity with a local rule (discussed in the following
section), we have favored in this work a single very wide
output layer.

2) Fast learning (one/few-shots): The binary synaptic
weights of IF neurons downstream from the lateral inhibition
layer can be trained by swapping the active synaptic connec-
tions during the learning process. The training rule that we use
is a variant of STDP, namely stochastic binary STDP [19],
and is triggered independently for each neuron. By contrast
to gradient-based learning with a global signal (like in back-
propagation), here the choice of a local rule like STDP and
its particularly simple and lean variant of binary STDP, (a)
is functionally justified by the shallow nature of the network
architecture (i.e. a global signal is not required to traverse a

ﬂ::m Spike Vector Ineffective spikes
2|7 6 7 Weight Vector Neuron | Inactive weights
8|1]|3]|5 Weight Vector Neuron 2
2 5/3|29 Weight Vector Neuron 3
| 4 418 | Weight Vector Neuron 4

Eligible synapses (inactive weights) for swapping before STDP

n]: Spike Vector
2|7 6 7 Weight Vector Neuron |
8|1]|3]|5 Weight Vector Neuron 2
2 I ﬂ-- 3|2 Weight Vector Neuron 3
1] (4] [4]s Weight Vector Neuron 4

Synapses after applying the STDP

Fig. 4: We use the example in Fig.3 to explain the update
processes of the binary STDP algorithm. The learning algo-
rithm applies to neurons whose membrane potential reaches a
pre-defined T7cqrn (neuron 3 here). [Top] Neuron 3 has two
ineffective synapses (turquoise) that it can swap with inactive
ones to align with three ineffective spikes in the spike vector
(yellow). [Bottom] One of them is randomly selected and
swapped with the ineffective spike.

deep model structure); and (b) is architecturally well suited
for efficient hardware implementation given its parallelization
potential and sparse independent application on each neuron:
each IF neuron can learn independently of all other, when
the learning threshold (77 cq.n, in Table I) is exceeded. After
each update this threshold increases gradually, to reduce the
neuron plasticity and increase its selectivity for a specific
pattern. Optionally if forgetting needs to be incorporated in
the algorithm for out-dated patterns and non-stationary input
distributions the learning threshold may slowly decay.

Moreover, in ‘“conventional” STDP where the real-valued
weights for synapses without a pre-synaptic firing would grad-
ually reduce (Long Term Depression, LTD) and the weights for
synapses with a pre-synaptic activity would gradually increase
(Long Term Potentiation, LTP), a neuron can slowly adapt
to new data patterns without forgetting the already learned
patterns. By contrast here, with the use of binary weights in
our STDP rule, it is impossible to adapt the weight values grad-
ually. Nevertheless, by increasing/decreasing the maximum
number of neurons K that are allowed to update their weights
during learning and the max number of synapses per neuron
that can be swapped during an update step (Swap_Rate), we
can control the learning rate (or equivalently forgetting rate)
even under such an extremely low weight precision regime.

The previously mentioned constraints on the weight vectors
result in features that make our algorithm a hardware-friendly
option for neuromorphic processing systems. Specifically, the
weight sparsity is inherent in our algorithm due to the con-
straints we apply (parameter W), rather than a result of the
training process. The network’s connections are sparse right
from the start and remain sparse. This constraint-enforced
sparsity is utilized to enhance the efficiency in our hardware,

and constrain a-priori the resources needed.

Algorithm 1 Stochastic STDP(s[M-1:0],w[M-1:0],
T_learn, swap_rate)

0: Input data: An M-bit spike vector, s, an M-bit synaptic
weights vector, w, its corresponding learning threshold,
T _learn, and swapping rate, swap_rate.

0: Init: V_mem = 0

0: fori = 0 to M - 1do

0 V_mem = V_mem + s[i] A w[i]

0: if V_mem > T_learn then

0 swap_N = swap_rate X (W — V_mem)

0: fors = 0 to swap_N - 1 do

0: ineff_s = find((s A(= w)) # 0)

0 inact_w = find((— s A w) # 0

0 rand_ON_idx = randperm(ineff_s, 1)

0 rand_OFF_idx = randperm(inact_w, 1)

0 wl[rand_ON_idx] = 1’bl

0 wlrand_OFF_idx] = 1"b0

0 T_learn = T_learn + swap_N

0:

return w, T_learn =0

Finally learning progresses according to the steps described
in the algorithm in 1 and exemplified in 1):

i. Perform inference: Generate spike vector, match against
matrix of weight vectors of IF neurons, update membrane
potentials, and prepare to evaluate Tr;re and Treqrn. In
Fig.4 (top), the membrane potentials of neurons 1-4 will
then be 1, 1, 2 and 0 respectively.

ii. Select (up to) K neurons to learn: For all neurons
that exceeded Trcqrn, select randomly up to max K
for updating their weights based on the input pattern.
Assuming Treqarn = 2, in Fig.4 (top) neuron 3 will be
eligible to update its weights.

iii. Swap active synapses (bit-flip weights): For each of the
K selected neurons, de-activate (reset) up to V- < W
ineffective synapses, and for each of them activate (set)
an inactive synapse to align with one of the unmatched
entries of the spike vector. The swap processes of ineffec-
tive synapses is based on Swap_Rate '. In Fig.4, neuron
3 chooses one of the two ineffective synapses (turquoise)
to swap it with an inactive one that it aligns with one of
the three unmatched spikes in the spike vector (yellow).
So next time a variant of the same input pattern appears,
neuron 3 will have higher probability of firing. Note that
the max number of active synapses (related to sparsity)
per neuron in this swapping process remains fixed.

iv. Increase T7..r,; by an amount that equals the number
of synapses swapped. This mechanism is inspired by
the homeostasis observed in biological neurons [27] for
selectivity towards frequently seen patterns. The firing
threshold 7., may be a function of the learning

IEither with probability Swap_Rate for all ineffective synapses, or by
randomly selecting Swap_Rate of all ineffective synapses

Spike Vector
D+4 1&F
< - Edge
A

1 i filters and D7 | Match
25 > — =

D' ~r Lateral count
inhibition T

wegnvector [T TLTTT]

3

Classifier

Number*
of
neurons
v

Synaptic
Weights
Memory

auiua aduadju|

Neuron
params

Spike Vector: Weight Vector

HENENERNEEREEE

Sequential Learning
Process (SLP)

:
(e (T TL T
Updated Weight Vector

Fig. 5: Base block-architecture of the main components of
the hardware implementation of the EON-1 neural accelerator,
equipped an inference engine and a learning engine with
our STDP-based learning algorithm. This architecture can be
flexibly and trivially scaled-out by vectorizing either of: the
IF units, the edge-filter units, and/or the sequential-learning
processes (depending on design-space requirements)

Updated Threshold
auidua Suluiea

Learning event
queue

threshold (thus being adaptive) or can also be fixed and
independent.

C. Hardware architecture methodology

Fig.5 illustrates the hardware architecture of the EON-1
neural accelerator that implements the algorithm discussed
in II-B. Notice that the inference and learning parts are
intertwined highlighting the fact that on-device learnng is not
an add-on but rather and embedded feature of the accelerator.
At the same time as we discuss next, the two parts operate
asynchronously and fully in-parallel, and without imposing
any inter-dependencies or bottlenecks to each other.

1) Inference engine: The key building blocks of the infer-
ence engine (top part of Figure 5) implementing the algorithm
functionality described in Section II-B1 are the following:

« Edge-Filters and Lateral-Inhibition block(s) implement
the convolutional layer(s) of the algorithm (edge filtering)
with lateral inhibition (Figure 1), and generate the “spike
output” in the compressed representation of the spike
vector (i.e. indexes of the top-scoring edge filters for each
pixel position (X,Y") — see Figure 2). Every row of the
input image is processed by applying all edge detectors
simultaneously, in a single clock cycle. Therefore, for an
input image of size D x D, a spike vector (of equal size)
will be ready in D clock cycles. For 8 edge filters (in
this work) we need 4b resolution in the spike vactor to
represent the 9 possibilities (zero represents the no-firing
case).

o Weight Memory and neuron parameters memory
blocks in Figure 5 store the weight vectors and parame-
ters/state of the IF neurons in the trainable layer. In this
work the parameters (Table I) are shared among all neu-
rons and thus need not to be stored per neuron. The width
of the weight memory is the same as that of the spike

One image every N/P clock cycles
(N = number of neurons)
(P = number of I&F processing units)

1&F

Match
count

X

ry

One weight
vector per clock

1&F

Match
count

kv

T

One weight
vector per clock

Match
N
count

|
!

ry
One weight
vector per clock

a8ew Indui 10y 101094)ids dweg

1&F

Match
N
count

R/

vector pr clck

Fig. 6: To increase parallelism, and therefore latency for
inference with very large output layers, we can spawn several
IF processing elements in a P-wide vector pipeline. Each
processing element contains only a match count a comparator
and local memory for one weight vector, and can process one
neuron per clock cycle. With N neurons in the system, each
input image takes N/P clock cycles.

vector. We have used on-chip dual-port SRAM memory
or off-chip pseudo-dual-port HBM memory, depending
on the number of neurons and bandwidth requirements.
One read-only port is used for inference (requires a high
bandwidth port) and another independent read/write port
is used for on-device learning.

« Match Counter and Firing-threshold Comparator.
The match counter counts the number of matching index
positions between spike and weight vectors, and the
result is compared with the firing threshold. The counting
happens in a single clock cycle, based on a pipeline with
a number stages that is determined by the size of the
two vectors. We refer to these two blocks together as
a neuron unit since they essentially implement the IF
neuron functionality.

Multiple IF neuron units can process a spike vector in
parallel for vectorized processing as shown in Fig.6. Assuming
that each IF unit has access to local memory, the number of
clock cycles required to process the input spike vector in the
general case for a layer of IV IF neurons and a parallel circuit
of P IF units is N/P.

2) Learning engine: The lower half of the hardware ar-
chitecture shown in Fig.5 contains the building blocks for
implementing an event-driven on-device learning functionality.
This architecture decouples the inference from the learning
temporally and yet allows them to take place concurrently

or simultaneously. Typically, learning takes place slower than
inference, but this can be partly controlled by the maximum
number of neurons K (Table I) allowed to learn at a time.

o Learning-threshold Comparator and Learning Event
Queue. During inference, in addition to comparing an IF
neuron state (output of the match count block) against
the firing threshold, it is also compared against the
learning threshold. If this is exceeded, the address of the
corresponding weight vector is pushed to the learning
event queue. The active capacity of this queue limits the
maximum number of neurons that can undergo learning
triggered by one input sample (image) and is thus set by
the parameter K mentioned earlier.

« Sequential Learning Process (SLP) is an FSM that
consumes the learning event queue. At each clock cycle,
SLP examines one element of a weight vector. If it en-
counters an inactive synapse, it disconnects and replaces
it with an ineffective spike location. The order in which
the weight vector elements are inspected is randomly
generated using an LFSR unit [?]. The sequential learning
process stops after a sufficient number of swaps has been
reached. Since learning is a slower process than inference
sequential processing is a more area-efficient solution.
The exact time it takes for each weight vector to be
updated depends on the weight vector dimension (D?)
and the number of swap operations. For a worst-case
scenario where a weight vector update takes always D?
clock-cycles, the learning process for N neuron takes
K x D?. To ensure that the learning process never lags
behind inference, X x D? should remain smaller than N .
Multiple SLPs can be instantiated in parallel, if necessary
(similar to IF neuron units).

Note that since only up to K << N neurons will be
scheduled in for learning at every input inference, a question of
bias strategy arises as to which neurons should be prioritised.
Plausible strategies can be to select the top-K least-recently
fired neurons (i.e. least recently seen pattern), or highest mem-
brane state (most likely pattern). However, these are costly
solutions that require sorting and imply latency cost. Selecting
the first-K is by far the fastest and cheapest solution, yet erratic
(likely only a small subset of neurons only participating in
learning) if the neurons are always sequenced in the same
order. To warrant thus that all IF neurons have the same fair
chance of being scheduled-in for learning, during inference a
random number generator produces a different start address
every time for sequencing the IF neurons, thus providing a
cheap arbitration.

III. RESULTS

A. Experimental setup

We evaluated two instantiations of EON-1, one on FPGA,
using a Xilinx VU37P HBM chip, and one using gate-level
ASIC simulation % for GF 22nm FDSOI technology node.

2Cadence Genus [?] and Cadence JOULES [?]

The results are based on two tasks. A multiclass classifi-
cation task based on MNIST (which despite its simplicity)

TABLE II: Comparison of EON-1 with other FPGA solutions
benchmarked on MNIST

allowed us to compare against other state of the art botH

for the FPGA and ASIC instantiations, in terms of hardware-
related metrics. Then a binary class face detection task base

on the FACES [?] and CIFAR-10 [?] datasets enabled ug
to evaluate the suitability of EON-1 for real-time adaptation]
and processing of streaming high-definition (UHD) data. W¢

present results that validate both the algorithm effective

ness/performance for on-line adaptation and the hardwarg
efficiency (primary goal) of our system.

For consistent algorithm behaviour across all tests, we kep

the same learning parameters throughout, and set for very fast
one-shot, learning. All accuracies were measured using the tes

set with deactivated on-device learning.
e Swap_rate =1, i.e., all eligible connections are moved

to active input lines during learning. Thus, only ong

TCSI’21 | TCSI’21 | Neuro’l7 | ICTA’23 | EON-1
[23] [24] [25] [26] this work
Accuracy 85.28% 90.58% 89.1% 95.49% 91.96%
Neur. model | LIF LIF LIF LIF IF
Neuron 300 2304 1591 320 5120
Synapses 176800 NR 638208 NR 4M
Weight Prec. | 16b float | 2b 16b fixed | 8b 1b
Encoding rate rate rate rate rank-1
Learning spec

Online yes yes yes NR yes

On-chip yes no yes yes yes

Rule STDP STDP STDP BP binSTDP

Hardware spec
FPGA Chip Virtex-7 ZCU102 Virtex-6 VC707 VU37P
Clock Freq. 100MHz | 200MHz 120MHz 115MHz | 100MHz
Throughput (fps)

Learning 61 NR 0.05 NR 19.1K

Inference | 285 46.44 0.11 1183 19.4K
?ea,m’ ovh | 522 NA 0.18 2.19 <0.01

nfer.

training epoch is sufficient to memorize a pattern (one-
shot). Please note that the resulting weight vector won’t
necessarily match the spike vector completely since there
are possibly more active input lines than W.

e TLearn|0] = 6 is the initial learning threshold. We chose
this value empirically to allow the triggering of learning
early-on but not too often since the learning subsystem is
sequential and can become a bottleneck at the beginning.

o Trire = Trearn/2- Recall that Tg;,..[0] = oo to force the
inference circuit to be silent before any learning has taken
place. After the first learning event for an IF neuron, its
Trire is set to this value, activating it for inference. This
value has also been experimentally obtained to give an
optimal ratio of time that the inference circuit is active
compared to the learning circuit (taking into account that
the latter is slower).

o« K =1 to allow only one neuron, randomly chosen among
all the eligible neurons, to adapt its weights every time
learning is triggered. For one-shot learning, it is important
to avoid wasting model memory when multiple neurons
learn and lock in the same pattern, while K > 1 allows
better generalization (lower selectivity) with slower few-
shot learning (Swap_rate < 1).

B. Hardware measurements and comparison with SoA —
multiclass classification task

Tables II and III list various characteristics and performance
metrics achieved by EON-1 and compared to other FPGA and
ASIC based solutions in the recent literature; that claim sup-
port on-device leanrning/adaptation. These results are based
on the MNIST task. To obtain the hardware measurements we
have divided each experiment in (a) an initial “training” or
“adaptation” phase during which 5120 samples are streamed
through and while both inference and learning engines are
active, followed (b) by an “inference-only” phase, where the
learning engine is disabled, during which an additional 10000
samples are streamed through. The image resolution is 14 x 14.
The IF neuron layer comprises of 5120 neurons and the

NR: Not Reported, BP: Back Propagation,
binSTDP: Stochastic Binary STDP, HBM: High Bandwidth Memory

classifier circuit is clustering model that groups subsets of IF
neurons to clusters for each of the 10 digits. The classifier is
pipelined with the IF units, thus it will give the prediction one
clock cycle later than the last neuron processing. The spike-
encoding is likewise pipelined with the IF neuron processing
and therefore the overhead of the spike encoding is hidden
after the first encoded spike vector, and averaged out (as
insignificant) after all data-samples are processed.

In the measurements we did not use parallelization of the
IF neuron processing, and therefore the latency reported is
measured as (SpikeVecGen+ Nrp+1) X clk_period. Thus,
e.g. for a 10 ns clock period (FPGA), and taking into account
the spike encoder overhead, the latency is (14 + 5120 4 1) x
10 = 51350ms and the throughput is 10°/51350 = 19474.19
inferences (frames’) per second.

For the energy consumption (ASIC) per inference/learning
we used the equations

Einf :NIF X (EIFeacec + Erdmem(7b))
+ (N1F + 1) X Erdmem(4000)

(H
Elearn :Eznf + 58E1_swapop

+2X Erdmem(400b) + Ewrmem(400b)
+ Ewrmem(?b)

where E..q/wrmem (7b) Tefers to the energy to read/write 7bit
neuron state from memory and E,.q/yrmem(400p) 18 the energy
to read/write a 400bit spike vector or weight vector from
memory. Online learning energy consumption is computed as
the total energy cost for performing one inference (including
the spike encoder and classifier), in order to find the neuron
that reaches it’s learning threshold, followed by the energy
cost of the neuron learning updating its weights. Based on

31 inference is 1 input digit frame for these measurements

Accuracy [%]

TABLE III: Comparison of EON-1 with other ASIC solutions benchmarked on MNIST

TCSI22 TBCAS’19 | TBCAS’19 TCSII’23 ISCAS’20 EON-1
[29] (41 (31 [5] [28]
Accuracy 93% 87.4% 84.5% 93.54 % 92.8% - 95.3%' | 91.96%
Neuron Model LIF IF LIF/1zk. LIF NR IF
Neuron 384 400 256 2048 128 5120
Synapses 176800 230400 64000 2M NR 4M
Weight Precision 9b fixed 1b 4b 8b 8b 1b
Encoding temporal rate rate* temporal TTES rank-1
Learning spec
Online yes yes yes yes yes yes
On-chip yes yes yes yes yes yes
Rule STDP var. | spike cnt SDSP addSTDP DRTP binSTDP
Hardware spec
ASIC Node 28nm 65nm 28nm 28nm 28nm 22nm
Clock Frequency 333MHz 384MHz 75MHz 500MHz 150MHz 500MHz
Voltage 0.9V 1.2V 0.55V 0.81V 0.6V 0.8V
Area (mm?) 1 0.39 0.086 6.22 0.26 0.558
Norm. area mm?) | 0.617 0.044 0.053 3.83 0.16 0.558
Energy
Learning 660nJ 2630nJ 105n] NR 313n] 378.4nJ
per SOP NR 1.42pJ NR 4.99p] NR 1.5pJ
Inference 500n] 310nJ 15nJ-404n] NR NR 377.2n]
per SOP NR 0.26pJ 12.7p] 1.28p] NR 0.09pJ
Norm. Energy’
Learning 409.7nJ 395.62nJ 174n) NR 437.2n) 378.4n]
per SOP NR 0.21pJ NR 3.82pJ NR 1.5pJ
Inference 310.4nJ 46.6nJ 24.93nJ-671.58n] | NR NR 377.2n]
per SOP NR 0.03pJ 21.11pJ 0.98pJ NR 0.09pJ
Throughput (fps)
Learning 211.77k NR NR 22.8GSOPS NR 95K
Inference 277.78k NR NR 81.92GSOPS | 8.5K 97.6K
Feart overhead” | 0.32 7.5 7& 0257 2.89 0.16 <0.01

NR: Not Reported, BP: Back Propagation, addSTDP: Additive STDP, binSTDP: Stochastic Binary STDP, DTRP:

Direct Random Target Projection

[4], [29] report area/energy results post-layout and they do not include I/O area/energy cost; [3], [5], [28] report
area/energy results post-tapeout.

! Reported accuracy for one epoch is 92.8%, and after 100 epochs it reaches 95.3%.
2 Area x (22/Node)?
3 Energy x (22/Node) x (0.8/voltage)?
4 [3] supports both rate coding and temporal, rank-order coding for input spikes. Reported inference energy and learning
overhead is for rank and rate coding, respectively. Reported learning energy excludes inference cost.
3 Learning overhead is obtained from reported power.

Accuracy with number of neurons
and training samples

e AN e

1

05 1 15 2 25
Trainset size

(a)

<10

Accuracy [%]

Accuracy evolution with number of neurons

o~
;
/

60K training samples

1 2 3 4
Number of neurons

(d)

10

trade-off

S

o

A IS
o K)b) OV P AN &Q’ \% A% Y

Energy [1J]

©

Fig. 7: On-line on-device learning evolution on MNIST digit classification task. (a) Accuracy as a function of data samples
presentation for 3 IF layer sizes. (b) Accuracy as a function of the IF layer size for 60K samples. (c) Accuracy versus energy
while scaling the IF layer from 1K neurons to 30K neurons.

these energy costs we compute the learning overhead as
(Eicarn — Eins)/Eing. Finally, as the total energy consump-
tion measured with Joules, have an error tolerance of 15%
from tool reporting we report the worst case numbers.

What stands out from these comparisons is that EON-
1, while in the same league with the SoA it is (a) the
most efficient solution in terms of overhead introduced for
supporting online on-device learning; (b) it has one of the
highest throughputs; and (c) it is the only one that supports
very fast (one-shot) learning(!); both in FPGA and ASIC.

Last, Fig. 7 reveals how the algorithm performs as we as
expose it to more training data samples (Fig. 7a) or add more
resources to it in terms of IF neurons, namely increasing
its capacity (Fig. 7b), and how that impacts the energy cost
(Fig.7c).

C. Streaming data processing — binary classification

One of the main motivations of this exploration has been to
see if on an small edge device we can facilitate fast learning
and processing of continuous streaming data from a sensor. In
this experiment we aimed to test just that. We combined face
images from the UTK Face Dataset [?] with non-face images
from the CIFAR-10 [?] dataset to create high-resolution/size
(UHD) collage images such as the one shown in Fig.9a. The
task here is to detect faces in the UHD image. Moreover, this
image cannot be processed in one go as a single patch residing
in memory, but rather a rolling window needs to parse the
image with a stride and load a patch-at-a-time in memory. So
the challenge here is to see if the speed of processing of these
images with EON-1 is acceptable for real-time video playback.

The results are reported in Fig. ?? for the FPGA-based
instantiation of EON-1. At full UHD resolution we were able
to process 12 UHD images per second. This is about half
the baseline framerate for real-time motion video (25fps) and
about 1/6 of UHD video (60fps). Operating the circuit at the
ASIC clock frequency (S00MHz) would make real-time UHD
video processing indeed possible(!).

Finally in Fig.8 we report how the on-line learning affects
the performance of the algorithm (accuracy) for this task over
time, as a function of the data points seen in the training
phase (Fig. 8a) and how the memory capacity is drained-
up as we present the same data points over and over across
multiple iterations. Notice that although the capacity reaches 0
after a few iterations, the accuracy never gets to 100%, which
means that even with “aggressive” one-shot learning regime,
the algorithm does learn the input patterns exactly (i.e. does
not overfitting on the training data).

REFERENCES

[1] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-
device training under 256kb memory,” arXiv:2206.15472[cs.CV], 2022

[2] Y. Yang, G. Li, and R. Marculescu, “Efficient on-device training via
gradient filtering,”, arXiv:2301.00330v2[cs.CV], 2023

[3] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm2 12.7-
pj/sop 64k-synapse 256- neuron online-learning digital spiking neuro-
morphic processor in 28-nm cmos,” IEEE Transac- tions on Biomedical
Circuits and Systems, vol. 13, no. 1, pp. 145-158, 2019

Accuracy with trainset size

1000

Network remaining learning capacity

Accuracy [%]

100 200 300 400 500 600 700 800 900 1000 o

4 6
Trainset size Adaptation iteration number

(a) (b)

Fig. 8: On-line on-device learning evolution on face detection
task. (a) Accuracy as a function of data samples presentation
(IF layer 1000neu) (b) IF layer memory capacity as a function
of iterations of dataset presentations. More and more neurons
end up learning the same patterns, until after about 10 iter-
ations the capacity is reduced to zero. Allowing the T7cqrn
to decay would allow the network to continue learning while
forgetting older patterns.

and Images from the CIFAR-10
dataset, randomly placed in one UHD frame. The collage contains

(a) Coll

790 faces.

resolution latency | fps
2160x3840 (UHD) | 84ms | 12
345x614 15ms | 68

(b) Face detection accuracy achieved with pre-trained network:
90.2%. One entire UHD frame can be processed in full resolution
with our FPGA implementation in just under 85ms. With a down-
scaling factor of 6.25 we were able to follow-up real-time UHD video
playback (>60fps).

Fig. 9: Face detection in UHD video.

[4] H. Tang, H. Kim, H. Kim, and J. Park, “Spike counts based low
complexity snn architecture with binary synapse,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1664-1677,
2019

[51 Y. Zhong, Z. Wang, X. Cui, J. Cao, and Y. Wang, “An efficient
neuromorphic implementation of temporal coding-based on-chip stdp
learning,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 70, no. 11, pp. 42414245, 2023

[6] C. Frenkel, J.-D. Legat, and D. Bol, “Morphic: A 65-nm 738k-
synapse/mm2 quad-core binary- weight digital neuromorphic processor
with stochastic spike-driven online learning,” IEEE Trans- actions on
Biomedical Circuits and Systems, vol. 13, no. 5, pp. 999-1010, 2019.

[71 M. Fabre-Thorpe, “The characteristics and limits of rapid visual cate-

(8

[

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]
(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

gorization,” Frontiers in Psy- chology, vol. 2, 2011

Tim Gollisch and Markus Meister. “Rapid Neural Coding in the Retina
with Relative Spike Laten- cies”. In: Science 319.5866 (2008), pp.
1108-1111

I. Tomomi and H. Samar, “On and off signaling pathways in the retina
and the visual system,” Frontiers in Ophthalmology, vol. 2, 2022

T. Masquelier and S. J. Thorpe, "Learning to recognize objects using
waves of spikes and Spike Timing-Dependent Plasticity,” The 2010
International Joint Conference on Neural Networks (IICNN), pp. 1-8,
Barcelona, 2010

R. Rullen, J. Gautrais, A. Delorme, and S. Thorpe, “Face processing
using one spike per neuron,” Biosystems, vol. 48, pp. 229-239, 1998
S. Thorpe, “Ultra-rapid scene categorization with a wave of spikes,” in
Biologically Motivated Computer Vision. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 1-15, 2002

T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” PLoS computational
biology, vol. 3, no. 2, p. €31, 2007

A. Delorme, J. Gautrais, R. van Rullen, and S. Thorpe, “Spikenet: A
simulator for modeling large networks of integrate and fire neurons,”
Neurocomputing, vol. 26-27, pp. 989-996, 1999

S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” nature, vol. 381, no. 6582, pp. 520-522, 1996

.J. Gawne, T. W. Kjaer, and B. J. Richmond, “Latency: another potential
code for feature binding in striate cortex,” Journal of neurophysiology,
vol. 76, no. 2, pp. 1356-1360, 1996

S. J. Thorpe, A. Delorme, and R. VanRullen, “Spike-based strategies for
rapid processing,” Neural Networks, vol. 14, pp. 715-726, 2001

S. Thorpe, et al. "Method, digital electronic circuit and system for
unsupervised detection of repeating patterns in a series of events.” U.S.
Patent No. 11,853,862. 26 Dec. 2023

A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and
B. Linares-Barranco, “On practical issues for stochastic stdp hardware
with 1-bit synaptic weights,” Frontiers in Neuroscience, vol. 12, 2018
G. Cybenko. Approximation by superpositions of a sigmoidal function.
Math. Control Signals Syst., 2(4):303-314, 1989

K. Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Netw., 4(2): 251-257, 1991

A. Pinkus. Approximation theory of the MLP model in neural networks.
Acta Numer., 8:143-195, 1999

S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast
and energy-efficient snn processor with adaptive clock/event-driven
computation scheme and online learning,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 68, no. 4, pp. 1543-1552, 2021

. Zheng, Y. Guo, X. Yang, S. Xiao, and Z. Yu, “Balancing the cost
and performance trade-offs in snn processors,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3172-3176,
2021

Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient paral-
lel neuromorphic architectures with approximate arithmetic on fpga,”
Neurocomputing, vol. 221, pp. 146-158, 2017.

K. Huang, W. Liu, Y. Liu, S. Xiao, and Z. Yu, “Towards efficient on-
chip learning for spiking neural networks accelerator with surrogate
gradient,” in 2023 IEEE International Conference on Integrated Circuits,
Technologies and Applications (ICTA), 2023

Y. Jun, Y. Quan, “Structural homeostasis in the nervous system: a
balancing act for wiring plasticity and stability”, in Frontiers in cellular
neuroscience, vol. 8, pp. 439, 2015.

C. Frenkel, J.-D. Legat, and D. Bol, “A 28-nm convolutional neuromor-
phic processor enabling online learning with spike-based retinas,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS),
2020, pp. 1-5

C. Sun, H. Sun, J. Xu, J. Han, X. Wang, X. Wang, Q. Chen, Y. Fu,
and L. Li, “An energy efficient stdp-based snn architecture with on-chip
learning,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 69, no. 12, pp. 5147-5158, 2022

	Abstract
	Acknowledgements
	Introduction
	Motivation
	The pillars behind AI's popularity
	Edge AI
	Brain-inspired computing and neuromorphic hardware

	Problem statement
	Project goals
	State-of-the-art
	Contributions
	Thesis outline

	Background and related work
	Spiking Neural Networks
	Introduction
	Information encoding to spikes
	Neuron model
	Learning in SNNs

	Retina models based on Spiking Convolutional Neural Networks (SCNNs)
	Preliminary: Convolutional Neural Networks (CNNs)
	Rapid Recognition based on Time-to-first-spike (TTFS)
	Intermezzo
	Previous SCNN architectures simulating rapid recognition in the visual cortex
	Learning in previously proposed SCNN for rapid recognition in the visual cortex

	Considerations for hardware implementation
	 Algorithm-hardware co-optimization of 2D convolutions
	Linear-Feedback-Shift-Register
	Memory Blocks

	Methodology - Algorithms
	Proposed SCNN architecture
	Spike encoding
	Inference: neuron and synaptic model
	Learning rule
	Supervised clustering for classification

	Methodology - Hardware architecture and implementation
	Proposed hardware architecture
	Enhancement of system performance
	Design choices and optimizations for overall chip architecture

	Edge filters and Lateral Inhibition unit
	Module implementation objectives and constraints
	Implementation method
	Performance metrics

	I&F neuron implementation
	Module implementation objectives and constraints
	Implementation method
	Sequential Learning Process implementation
	Performance metrics

	Experimental setup
	Tasks and datasets
	Algorithm benchmarking in software
	Task 1: Unsupervised binary classification for face/no face
	Experiment 1: Evolution of accuracy with number of neurons
	Experiment 2: Evolution of accuracy with number of training samples
	Experiment 3: Evolution of accuracy with input down-sampling

	Task 2: Online adaptation starting from a pre-trained network
	Experiment 1: Evolution of accuracy with online adaptation

	Task 3: Multi-class classification using supervised clustering
	Experiment 1: Evolution of accuracy with number of neurons
	Experiment 2: Evolution of accuracy with number of training samples
	Experiment 3: Evolution of network learning dynamics with number of training samples
	Experiment 4: Robustness to rotation variations in input
	Validation of algorithm on Fashion-MNIST

	Task 4: Benchmarking for UHD frame processing

	Hardware implementation benchmarking
	Benchmarking on FPGA
	Resource utilization in FPGA
	Latency and throughput in FPGA
	MNIST accuracy in hardware versus software

	Design space exploration for system scalability and performance enhancement on FPGA
	Experiment 1: Resource utilization scalability with various input resolutions
	Experiment 2: Learning layer scalability
	Experiment 3: Processing UHD frames in real-time on the FPGA

	Benchmarking on ASIC
	Area and cell count in ASIC
	Energy consumption in ASIC

	Results discussion and benchmarking
	Performance of the proposed online learning rule
	Online adaptation with the proposed rule
	Hardware results and benchmarking against similar work
	General hardware results
	Benchmarking against similar FPGA solutions
	Benchmarking against similar ASIC solutions

	Benchmarking proposed solution for UHD frame processing

	Conclusions and future work
	Overview and summary of results
	Online learning rule performance
	Hardware results and benchmarking

	Future work

	Appendix - Paper draft

