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Preface

The subject of this thesis is the mapping of the electrical activity in the human atria, to gain a better under-
standing of the tissue’s conductive properties. More insight into the behaviour of the cardiac tissue will help
better understand the mechanisms that could lead to cardiac arrhythmias.

This research is part of the Medical Delta Cardiac Arrhythmia Lab, a joint project between Erasmus MC,
LUMC and TU Delft. This particular topic was part of a project between two research groups, the Circuits
and Systems (CAS) group from TU Delft and the Department of Cardiology from Erasmus MC. In the the-
sis committee dr.ir. R.C. Hendriks, dr. B. Hunyadi and B. Abdikivanani MSc represent TU Delft and prof.dr.
N.M.S. de Groot represents Erasmus MC.
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1
Introduction

Globally, the number one cause of death is cardiovascular disease [1]. The total direct (medical expenses) and
indirect (loss of productivity) cost to society from cardiovascular diseases is more than any other diagnostic
group [2].

From this group of cardiovascular diseases, a common cardiac arrhythmia is atrial fibrillation (AF). With
increased age, the incidence of AF increases, and AF is associated with a higher overall risk of mortality [3].
Worldwide, atrial fibrillation is becoming more widespread [4]. Currently there is some understanding about
the mechanisms behind AF, however a global consensus is absent which hinders the progress in treatment of
the disease [5]

More than a century ago, tools were first developed for visualizing and recording cardiac activity. The
contraction of the cardiac muscle cells is governed by electrical potentials and currents. To measure this pro-
cess Electrocardiography was developed, which has as a goal to record the electrical activity of the heart. This
was first accurately measured with the string galvanometer developed by Willem Einthoven [6], [7]. Electrical
leads were attached to the limbs of patient and from those leads a current could be measured. Subsequent
discoveries resulted in the now common 12-lead ECG method [8].

Recording the ECG with electrodes on the body surface of a patient gives an impression of the total elec-
trical activity of the heart. Obtaining information about the localized activity in the cardiac tissue is difficult
in this setting. Therefore, invasive mapping studies have been performed where an array of electrodes is
used to record the electrical activity on the heart’s surface during open-chest surgery [9]. From these epicar-
dially recorded signals the depolarization of the tissue can be attempted to be recovered at a higher spatial
resolution.

The recorded electrograms from this invasive approach need to be processed to obtain proper estimates
of the underlying activity. The moment in time when the tissue under an electrode depolarizes, called the
local activation time (LAT), is particularly of interest. This information about the activation times can be
used to reconstruct the propagation pattern of the signal that triggers the tissue to contract. The path that
this "wave" of activations takes can reveal obstructions due to conductivity problems or interfering sources,
resulting in multiple wavefronts being present.

There are multiple methods to estimate the LAT from the epicardial electrogram. Manual annotation can
be done by a physician and has as an advantage that the expert can review and interpret the signals carefully.
These signals can become quite complex in morphology. Multiple automated solutions are also available,
most notable is the so called steepest (negative) deflection [10]. This uses the point of maximum negative
slope (maximum negative derivative) of an electrogram signal as the LAT.

Methods using the cross-correlation have also been applied previously to the epicardial signals [11]. The
cross-correlation is a powerful tool in situations where the delay between two similar signals is sought. The
result from cross-correlating a pair of signals is a spectrum, with a maximum from which the delay can be
derived. Cross-correlation thus does not directly provide LATs for the whole electrode array, only differences
in the LAT of pairs of signals.

In this thesis the application of the cross-correlation for the mapping of atrial signals is investigated.
Specifically the benefits of not only cross-correlating electrode pairs that are close, but also those with a larger
distance between them is of interest. To be more specific,
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2 1. Introduction

• A framework is developed to estimate the LAT based on the cross-correlation between a pair of elec-
trodes. A graph structure is used to define which electrode pairs are considered when calculating the
cross-correlation. These are not only the direct neighbouring electrodes, but also pairs of electrodes
that we define as higher order neighbors, that are, pairs of electrodes where their shortest distance in
terms of electrodes-to-electrode hops in the graph structure is equal to or less than a specific number.

• The inter-electrode delays obtained from cross-correlation are used to estimate the LATs using a least-
squares estimator. Different assumptions for the underlying error model are investigated and estima-
tors are formulated for each model.

• A simulation of a 2D section of atrial tissue with specific patterns of non-conducting cells is used to
generate several data sets. First, a set of artificial shapes of conduction blocking cells is simulated to
magnify the differences between methods. Then a set of more realistic patterns of non-conducting
cells is also simulated.

• The estimation of LATs using cross-correlation over higher order neighbors is shown to improve per-
formance over only using direct neighbors on the simulated data sets.

• The performance of the cross-correlation LAT estimation is shown to be better than other commonly
used methods such as the steepest deflection method when using higher order neighbors, when they
are applied to the range of simulated data sets.

• On real-world signals recorded from patients during open-heart surgery, it is shown that the estimates
of the LATs of the cross-correlation method can deviate significantly from those estimated with a steep-
est deflection method.

• The observed differences when using the real-world signals are illustrated using some examples, to
highlight the possible advantages and disadvantages of the methods.

Outline This thesis is organized as follows: In Chapter 2 first the electrical properties of the cells in the atria
are briefly explained. Then epicardial mapping is introduced and different methods of LAT estimation from
the epicardial electrograms are discussed. In Chapter 3 the simulation that is used to generate the simulated
data is discussed, along with the method with which the data from real-world patients was obtained. In
Chapter 4 the cross-correlation method using higher order neighbors is introduced and the estimation of
LATs from the obtained delays is discussed. In Chapter 5 the methods from Chapter 2 are compared to those
developed in Chapter 4. They are compared on both simulated and real-world clinical data. In Chapter 6 the
conclusions from those results are discussed and future work is considered.



2
Electrical activity of the human atria

In this chapter, the electrical activity of the human atria is discussed. Methods to model and measure the un-
derlying mechanisms of the electrical activity are investigated, as the malfunctioning of these mechanisms is
responsible for cardiac arrhythmias such as atrial fibrillation. In Section 2.1 the electrical conductive proper-
ties of the cells in the human heart are first introduced, followed by a model of the human atrial myocytes. In
Section 2.2 atrial fibrillation is discussed as a malfunctioning of the regular conduction pattern in the atria.
Epicardial mapping can be used to get a better understanding of the processes underlying atrial fibrillation in
the cardiac tissue and is discussed in Section 2.3. Finally in Section 2.4 it is discussed how the recorded data
can be used to obtain the activation pattern of the cells based on the estimated local activation time. This can
be used to determine whether an area of slow or blocked conduction is present. Methods to estimate these
local activation times are also explained.

2.1. Electrical conductivity in the human heart
The human heart has as a function to pump blood around the body. This blood then supplies oxygen and
nutrients to the body and takes waste products with it. An image of the human heart and its key components
is shown in Fig. 2.1.

The human heart consists of four chambers. These are, the left atrium and ventricle and the right atrium
and ventricle. There are four valves in the heart, two between the atria and the ventricles, and two between
the ventricles and the arteries. The upper and lower systemic veins enter the right atrium, the right ventricle
pushes blood originating from those veins to the pulmonary arteries leading to the lungs. The pulmonary
veins then transport oxygen-rich blood to the left atrium. Blood then flows to the left ventricle and is pushed
into the Aorta [13].

2.1.1. Electrical conduction in cardiac cells
The cardiac muscle cells (cardiac myocytes) contract due to an electrical signal propagating through the mus-
cle tissue. Cells that activate (depolarize) then trigger their neighboring cells and as such the signal is con-
ducted. This is regulated by a network of conducting (pacemaker) cells that determine the rate of contraction.

The electrical impulses in the heart normally originate from the sinoatrial node (SA node). The tempo
of contraction governed by the SA node is called sinus rhythm (SR). The impulse from the SA node causes
the atria to contract first. The electrical signal then travels through the network of conducting cells to the
atrioventricular node (AV node) and then to the ventricles through the bundle of His. This conduction is
slower allowing blood to fill the ventricles before it is pumped into the arteries when the ventricles contract
[13].

The conduction velocity (CV) through the cardiac muscle is not equal in all directions (not isotropic) [14].
The anisotropic ratio is defined by the the ratio between the conduction velocity in the primary direction
versus the orthogonal secondary direction of conduction. In the cardiac myocytes the primary direction is
the longitudinal direction of the fibers, and the secondary is the transverse direction.

3



4 2. Electrical activity of the human atria

Figure 2.1: The human heart with the conduction system highlighted (via www.openstax.org, 2013. Accessed 5-9-2018 [12])

2.1.2. The human atrial action potential
The depolarization of a cell manifests electrically by a shift in the electrical potential of the cell when it is
excited by neighboring cells or by another source. The resulting pattern in the potential is called the action
potential (AP). The morphology of the AP depends on the type of excitable cell.

Under normal conditions the AP for the atrial myocytes follows a regular pattern, shown on the right in
Fig. 2.2. The changes in potential are a consequence of multiple ionic current flows during the depolarization
and repolarization process. The AP is believed to be mostly controlled by the inward sodium and calcium
currents and four different potassium currents, among other currents [15].

The action potential of the cells can be modelled as a reaction-diffusion system. The time domain deriva-
tive of the membrane potential Vm in the Courtemanch model is [16]

Cm
dVm

d t
= Itm + Ist i m − Ii on , (2.1)

where Cm is the membrance capacitance. Itm , Ist i m and Ii on are the transmembrane, stimulation and total
ionic current, respectively. The total ionic current is a summation of the multiple ionic processes that take
place in the cell’s membrane. These modelled currents are [16]

Ii on = IN a + IK 1 + Ito + IK ur + IK r + IK s + IC a,L + Ip,C a + IN aK + IN aC a + Ib,N a + Ib,C a (2.2)

The ionic currents themselves are then dependent on the action potential, their specific equilibrium poten-
tials and specific ion conductivities in the model. The transmembrane current Itm can be calculated from the
spatial difference in potential. The Courtemanch model with the electrical propagation included gives [16]

Cm
dVm

d t
= S−1

v ∇·Σ∇Vm + Ist i m − Ii on , (2.3)

where Sv is the cellular surface-to-volume ratio and Σ is the extracellular conductivity tensor. The term Σ

then contains the directional conductivity information due to the anisotropic ratio and information about
areas of lower conductivity in the tissue. The transmembrane current is thus

Itm = S−1
v ∇·Σ∇Vm . (2.4)
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Direction of cellular
depolarizations over time
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Depolarization wavefront

Figure 2.2: A 2-dimensional section of atrial tissue is shown on the left, with a depolarization wavefront indicated. The numbers 1
through 4 in the action potential plot on the right indicate locations on which the cells have a potential corresponding to different parts
in of the standard atrial action potential.

Figure 2.3: The shape of a normal surface ECG. The P-wave, QRS complex and T-wave are indicated.

Later, we will see that the transmembrane current is used to model the electrogram that would be measured
when an electrode is brought near the cardiac tissue. The propagation of a wavefront of depolarizing cells is
schematically shown on the left in Fig. 2.2. The action potential on the right that was mentioned previously,
is shown there in a 2D part of atrial tissue in different locations, relative to a convex wavefront of propagating
cell activations. The wavefront does not have to be convex, it depends on the conduction path taken.

2.1.3. The surface electrocardiogram
The surface electrocardiogram (ECG) is a representation of the electrical activity of the heart, recorded from
the surface of the human body. It was first accurately measured with the string galvanometer by Willem
Einthoven [6], [7]. Electrical leads were attached to limbs of a patient, and a current was measured and
recorded. Before that, the capillary electrometer had been used by Einthoven to derive the shape of the sig-
nal, naming the P wave, QRS complex and T wave [17]. Subsequent discoveries resulted in the now common
12-lead ECG method [8] that uses 10 electrodes. An example of an ECG is shown in Fig. 2.3.

An ECG is normally shown with the vertical axis in (milli)volt and the horizontal axis in (milli)seconds. The
P wave corresponds to the depolarization of the atria, the QRS complex to the depolarization of the ventricles
and the T wave then to the repolarization of the ventricles. Repolarization of the atria is concealed by the QRS
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complex.

2.2. Atrial Fibrillation
Atrial Fibrillation (AF) is the malfunctioning of the regular pattern of cell depolarizations in the atria, resulting
in arrhythmic and chaotic contractions in the atrial muscle tissue. The condition was first described by Lewis
in 1909 as auricular fibrillation [18]. It has been recognized as a common cardiac arrhythmia ever since [3].

The activations of the atria during AF are often chaotic, multiple activation wavelets travel through the
atrium colliding and reexciting the tissue. Atrial flutter (AFL) is another condition that is characterized by
high frequency contractions of the atrium in a less chaotic, more stable way. AFL can be a factor to let the
atrial activations degenerate into AF [19].

2.2.1. Classification of AF
There are multiple systems to classify atrial fibrillation clinically based on different distinguishing properties
[20]. The frequency of occurrence of episodes can be used to classify AF into paroxysmal (sudden/irregular
episodes), persistent (continuous AF) or permanent (continuous and resisting treatment).

The designations paroxysmal, persistent and permanent have widespread use in diagnosis of AF as this
is informative about the severity of the condition on a daily basis. This does not give information about the
type or severity of AF during these episodes. Distinguishing between different types of AF on a beat-to-beat
basis has not seen widespread use of a single classification system [20].

2.2.2. Mechanisms of AF
The mechanisms responsible for and governing the onset and perpetuation of AF are not completely under-
stood [21]. One early theory about the mechanisms underlying AF is Moe’s multiple wavelet hypothesis [22],
which came about supported by a computer model [23]. This hypothesis proposes that above a certain num-
ber of wavelets traveling in the atrium, AF sustains itself. This does not specify the mechanisms that start AF
in the first place.

Areas that block a wave or slow it down have been identified during AF [24], [25]. This could result in an
activation wave "reentering" the atrium. These were not consistently present in the same area, but changed
per activation period. Electric decoupling of side-to-side connections in parallel muscle fibers could explain
the observed areas where conduction is blocked [26]. It was much more prevalent in patients with persistent
AF than it was in patients with artificially induced AF.

With AF patients [27], spontaneous impulses (foci) that did not occur at the same location were observed.
This could be attributed to an impulse from the endocardial layer in the atrium breaking through to the
surface and causes a new impulse.

With paroxysmal AF a discrete source of disturbance was identified [28], coming from inside the pul-
monary veins. A disruptive depolarization wave could originate there and disturb the regular contraction
pattern of the atria. The earliest irregular activity in the pulmonary veins during could be detected 2 to 4 cm
into the vein.

Another mechanism perpetuating AF, electrical "rotors", was known to be present in AF in animal testing
[29]. These rotors are activation waves traveling in a circular motion and reexciting the tissue. They were
shown to be present around an area of non-conducting tissue and thus had a stable center point. Wandering
rotors were also observed, which had centers that moved [30]. Rotors do not appear constantly when the
conditions would exist for them, but could need a certain trigger to start. They then could maintain AF for
prolonged periods of time.

Current consensus The existence or absence of various mechanisms during AF is a difficult subject. It is still
up to debate what mechanisms are exactly responsible for the maintenance of the reentrant waves during AF
[5]. Both rotor and foci based AF have been simulated and activity indicating both their presences has been
observed. However, no consensus has been reached about the mechanisms. It might be very difficult to
pinpoint a single mechanism that initiates or sustains AF as it may vary per patient or per episode of AF, even
in a single patient [21].

2.2.3. Treatment
Both pharmacological and electrical methods are available to treat certain forms of AF. Drugs may be used
to control the ventricular rate and lower the heart rate to safe levels. Spontaneous onset of AF is often first
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PVR

VCI

VCS

RA

LA

Sensor array

Electrograms

PVL

Figure 2.4: A schematic example of epicardial mapping of the atria. An example of an 8×8 array is shown being applied to a schematic
map of the atria on the left, with the left atrium (LA), left and right pulmonary veins (PVL, PVR), superior and inferior vena cava (VCS,
VCI) and right atrium (RA) indicated. Examples of measured signals are shown on the right.

treated with drugs. There are also drugs available for the maintenance of the normal sinus rhythm in patients
with episodes of AF. These can be taken regularly or when an episode occurs [31].

Electrical or cryogenic ablation of AF is usually done by eliminating the origin of the disturbed signal
or the tissue conducting it. Patients with paroxysmal AF caused by impulses originating in the pulmonary
veins can be treated with this technique successfully [28]. Ablation of the tissue is then done with a catheter
applying very high or low temperatures to the area around the pulmonary veins at the atria.

Ablation can also be used on other areas of the atria. For patients with persistent AF, just isolating the
pulmonary veins may have limited success. During surgery, foci (often around connections to veins or ap-
pendages) can be sought and ablated. Linear ablation can also be applied to a certain part of the atria. These
methods can prolong the periods between AF and terminate AF in patients with persistent AF [32].

From the limited (randomly controlled) studies available, it seems ablation of areas of irregular activity
combined with pulmonary vein ablation is more successful than using the methods separately [5], [33].

2.3. Epicardial mapping
Although informative and non-invasive, the ECG is measured on a relatively large distance from the heart.
The spatial resolution is therefore low, only showing spatially averaged behavior. A more invasive, but also
more informative approach, is to use an array of electrodes positioned directly on the heart to obtain infor-
mation about the depolarization occurring in the heart tissue. This can be used to directly map the activity.
A schematic representation of this process can be seen in Fig. 2.4.

The mapping of the atrial activation patterns can give insight into the abnormalities in atrial conductivity
and underlying mechanisms of AF [34]. Precise information about the time and location of electrical activity
is valuable as it can shed more light on the conductive properties of the tissue. The mapping process can be
split into two parts. The first is to acquire the epicardial electrograms using multiple electrodes in an array
structure. The second is to estimate the activation pattern in the tissue from the recorded data. Methods used
to map the atria are discussed here, methods to evaluate the measured signals will be discussed later.

Initial mapping studies [35], [36], [37] were done on canine and human hearts. In these studies, evidence
was found of the existence of large reentry circuits and multiple simultaneous activations. This supported
Moe’s multiple wavelet hypothesis [22] for the sustaining of AF. The human atrium was also mapped with a
higher resolution array, while rapid pacing was used to induce AF in patients with no history of the arrhythmia
[24]. The higher resolution approach showed more complex patterns.

Lower resolution mapping systems [38], [39] (with electrodes placed further apart) were used to record
both human atria concurrently and evaluate AF cycle lengths, as well as the rationale behind surgical inter-
vention for AF. With this approach, surgical isolation of the pulmonary veins and cryogenic ablation along the
atria were evaluated. A basket catheter was also used to map the inside of the left atrium at a low resolution
[30]. In this mapping study it was concluded that both focal sources and rotors were present during human
AF.

In patients with chronic AF, the right atrium was separately mapped [40]. Disorganized activations with
multiple activation waves present at the same time were found there, as well as more organized activity in
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Figure 2.5: A side view is given for a piece of atrial tissue where the numbers 1 through 3 indicate different locations where the maximum
current will be during propagation, and their corresponding location in a recorded electrogram. The action potential at location 2,
directly under the electrode, is also shown.

other patients. It was impossible though to pinpoint if is was driven by reentrant or focal activity.
More recently a high resolution electrode array was used to record atrial activity during SR and during

induced AF [9]. These mapping studies investigated areas of slow conduction or blockage of conduction in
the atria [25]. These high resolution mapping studies were continued and used for the research presented in
this thesis.

2.3.1. The epicardial electrogram
When electrodes are brought to the surface of the heart, they record the electrical activity in the tissue beneath
them. An illustration of the atrial action potential propagating through tissue and generating an electrogram
is given in Fig. 2.5. It can be observed that the propagating depolarization generates a signal which starts with
a positive voltage which turns into a negative voltage as the point of maximum current passes underneath the
electrode. For the atria, the model of the transmembrane current was given in Section 2.4.3. Using a current
source approximation and assuming the extracellular conductivity σe is homogeneous and isotropic [41] the
electrogram φ can be modelled as

φ(y , t ) = 1

4πσe

∫
Itm(x , t )∥∥y −x

∥∥ d x , (2.5)

where x is the location of the cells and y is the electrode location. The result is a signal that depends on the
activation (and as such on the transmembrane current Itm) of a large area of cells, each with its own trans-
membrane current. The contribution of each cell to the overall electrogram depends on the distance

∥∥y −x
∥∥

between the cell and the electrode. The recorded electrogram is sometimes called a unipolar electrogram as
it gives a potential with respect to a reference. Bipolar recordings are sometimes used, where the difference
in potential between two electrodes is taken. In this thesis unipolar recording are considered.

2.4. Local activation times
In Fig. 2.2 an example of a section of atrial tissue was shown where the depolarization of the cells propagates
through the tissue. It is the Local Activation Time (LAT) for a given location that is of particular interest. The
LAT is the exact time at which the cells at one particular location (under an electrode for example) become
active and depolarize. The LATs can be used to calculate the conduction velocity in the tissue and detect
reentrant activity or multiple wavefronts propagating simultaneously. Low conduction velocity can indicate
problems with conduction in the tissue and identifying abnormal wave paths can be of use in the treatment
of AF.

When data is gathered with an epicardial electrode array, it is difficult to determine at what point in time
the cells exactly underneath an electrode depolarize. The activation wave propagates through the tissue,
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Local activation time map - sinus rhythm
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Local activation time map - atrial fibrillation

Figure 2.6: On the left an example is given of an estimated map of local activation times from a recording of regular sinus rhythm. On the
right the same location is recorded on the same patient but with induced atrial fibrillation. Beneath each map the epicardial electrograms
from two electrodes is shown. Black lines indicate isochrones in these maps and arrows indicate the estimate propagation paths.

which implies that the group of cells underneath the electrode do not all depolarize simultaneously.
Two examples of LAT maps are given in Fig. 2.6, with some of the underlying epicardial electrograms

also shown. The maps show estimated LATs in milliseconds for as single beat of SR and for induced atrial
fibrillation (IAF). The SR map shows a clear uniformly propagating wavefront and has electrograms showing
a single activation wave propagating. The map for IAF shows multiple wavefronts and much more chaotic
electrograms.

2.4.1. Local activation time estimation
From Eq. (2.5) it follows that the atrial electrogram φ is generated by the activation of a number of cells
weighted by the distance to the electrode. The local transmembrane currents that make up this signal are
not synchronized if the cells are not activated at the same time. The result is that the electrogram φi for elec-
trode i , with i ∈ 1,2, . . . , M and M the number of electrodes, records a mixture of all of the activation times in
the area.

The goal with the estimation of LATs is then to extract the true local activation time τi of the electrode
location, from the electrogram φi . Because the electrogram is a signal that is comprised of the contributions
from cells with different activation times, this is not trivial.

Several techniques have been proposed to extract LATs for each electrode or for any part of the mapped
area [42]. Apart from the automated methods of LAT estimation it can also be done manually by physicians.
The accuracy of this manual annotation is difficult to determine as the methods of interpretation vary from
expert to expert. The most widely used automated methods will be explained in this section.

2.4.2. Steepest (Negative) deflection
When measuring unipolar electrograms, the steepest negative deflection (point of maximum negative deriva-
tive) was reported to correspond well to the activation time [10], [43]. This steepest deflection (SD) has a
physical relation to the processes in the cells as it relates to the moment of maximum rate of increase of the
sodium current [44]. The activation time of electrode i is calculated by the minimum of the time derivative

τi = argmin
t

dφi (t )

d t
(2.6)

where φi (t ) is the epicardially measured signal from electrode i and τi is the LAT. In practice, φi (t ) is only
available at discrete moments in time as it is sampled during the measurement. The LAT of the discrete time
signal xi (k) is then

τi = argmin
k

φi (k)−φi (k −1). (2.7)

This method has as a disadvantage that it evaluates each electrode signal individually, the data from the sur-
rounding electrodes is not taken into account. Using purely the derivative of the measured signal to estimate
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Figure 2.7: On the left an example of an epicardial electrogram measured on the human atrium is shown. On the right the derivative of
this signal is shown.

the LAT makes is susceptible to spikes added by measurement noise and other noise sources. An example of
the regular atrial electrogram and its derivative is shown in Fig. 2.7. The relation between the derivative and
the action potential has shown to be powerful on a microscopic scale when evaluating the depolarization
of the cells, however using it on a much larger scale, such as in epicardial mapping of the atria, makes the
recorded signal subject to "distant active membrane" [45]. A larger area of tissue is influencing the electro-
gram and the derivative may not be a perfect method to obtain information about the depolarization of the
local cells.

2.4.3. Cross-correlation
The cross-correlation of a signal is an excellent method to find a delay between two signals if the signals
are rather similar, except for a time shift, and are thus highly correlated. If the signals differ in morphology,
however, the resulting lag might not be accurate. Existing cross-correlation methods use only the closest
neighboring electrodes to create pairs for which delays are calculated [46]. The resulting delays between the
electrodes then do need to be converted to absolute times.

The data used to cross-correlate is taken from data vector x(k) = [x1(k), x2(k), . . . , xM (k)]T , where xi (k)
can be the electrogram or its derivative (of which an example was shown in Fig. 2.7), and k ∈ 1,2, . . . ,K where
K is the number of samples in the data. The normalized cross-correlation (NCC) function ρi , j of electrode i
and j , where i , j ∈ 1,2, . . . , M is then calculated as a function of the shift is samples s as

ρ(i , j )(s) = 1

N

∑
k
(
xi (k)−µi

)(
x j (k − s)−µ j

)√
σ2

i σ
2
j

. (2.8)

The means µi , µi of the signals from electrode i and j are subtracted and their variances σ2
i , σ2

j are used for

normalization, resulting in values between [−1,+1]. For s 6= 0 the two signals do not completely overlap, so
they are zero-padded to make them of equal length.

All the electrodes are then to be cross-correlated with their neighboring electrodes, if electrode j is a
neighbor of i it is denoted as j ∈ N (i ). The lag between electrode i and j , ∆̂(i , j ), is then estimated as

for j ∈ N (i ), ∆̂(i , j ) =argmax
s

ρ(i , j )(s). (2.9)

The estimated delays ∆̂ between pairs of neighboring signals then have to be converted to LATs for each
electrode [46]. Higher time resolution can be obtained by using the Hilbert transform of the cross-correlation
[11]. Using a (weighted) combination of the maximum negative slope and a cross-correlation estimate can
als potentially improve the result [47].

2.4.4. Deconvolution
A convolution is a mathematical operation defined as

( f ∗h)(t ) =
∫ ∞

−∞
f (τ)h(t −τ)dτ= g (t ). (2.10)
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The functions f (t ) and h(t ) can be input and system response functions.
Deconvolution is then used to try and reverse this process. As this is usually an ill-posed problem some

prior knowledge is needed about the functions that are convolved. For example, if an estimate of one of the
functions, ĥ(t ), is available it can be used. A cost function can be minimized to estimate the other function
f (t ) as

argmin
f

∥∥g (t )− ( f ∗ ĥ)(t )
∥∥ . (2.11)

The difficulty comes from obtaining this accurate prior knowledge about the system and also realizing there
might be noise and other disturbances present in the measured data.

In the context of epicardial mapping, the convolution is relevant as the measured signal from a electrode
can be seen as a convolution of an input signal with the system response of the cardiac tissue. The model
for the epicardial electrogram Eq. (2.5) can be seen as having the properties of a convolution. Deconvolution
methods in epicardial mapping can then be applied to try and recover the system response (the different
conductivities in the tissue) or estimate the input signal and its timing (the LATs).

A deconvolution method was used to estimate the activation time from a single electrogram [48]. The
model used to obtain a system response to use in deconvolution was that of a constant velocity activation
wave traveling through tissue.

A spatial deconvolution method was also applied to estimate current in the tissue and LATs together with
a wavelet filtering approach [49]. This deconvolution method did not assume constant velocity but a known
spatial kernel for the recorded signals.

Abdi et al. (2019) [50] proposed a simplified model for the conduction in the atria. From the model of the
conduction maps, an inverse problem was formulated to estimate the tissue conductivity.

2.4.5. Spatial gradient
Another method to estimate the LAT is to use the spatial gradient (SG) of the data [51], which exploits the high
spatial current density during the propagation an activation wave. The spatial gradient of the electrograms
∇Φ in two dimensions (î and ĵ represent unit vectors in these dimensions) is used, which is

∇Φ= dΦ

d î
+ dΦ

d ĵ
. (2.12)

To implement this, a central difference method is used that calculates the spatial gradient ∇φi (k) for each
electrode i using the four neighboring electrodes. The LAT is then determined from the maximum magnitude
of this spatial gradient

τi = argmax
k

∥∥∇φi (k)
∥∥ , (2.13)

where τi is the estimated LAT for electrodes i and ∇φi (k) is the spatial gradient at sample k for that electrode.

2.4.6. Template matching
Electrograms recordings can also be matched to a library of templates. How these templates are gathered or
defined and how they are matched varies between methods.

A single recording from an electrode can be taken and used as a template for subsequent electrodes.
This was done for ventricular data and the templates were adaptively updated during the matching, trying to
minimize the mean-square error [52].

Template matching was also done specifically for AF to map activation waves traveling through the fib-
rillating tissue [53]. This method used the normalized cross-correlation to estimate the activation time and
obtain a correlation coefficient, similar to the method described in Section 2.4.3.





3
Simulated and recorded atrial electrogram

data

In the research used in this thesis we use both natural and simulated data. In this chapter the methods for
data acquisition (for natural data) and data generation (for simulated data) are explained.

In Section 3.1 we first discuss the simulation of a 2D surface of atrial tissue. Multiple scenarios of different
tissue conditions have been generated. This is a valuable tool as the ground truth of the activation times is
available together with the electrograms that would be measured by an electrode.

In Section 3.2 we describe the clinically recorded natural data. It was recorded at Erasmus MC (Rotterdam,
the Netherlands) using the methods described in [9]. This natural data consists of epicardial electrograms of
the human atria recorded with an array of electrodes.

3.1. Simulated data
3.1.1. Simulation
In this study, we used the approach described in [50] to generate simulated electrograms. It is based on
the monodomain reaction-diffusion model of the atrial action potential [54] together with the Courtemache
model of the human atrial myocytes [16].

The simulated electrograms can be generated based on the transmembrane currents, available in the
monodomain formulation [41]. Based on the compact model for atrial electrograms [50], the simulated elec-
trogram Φm(t ) is then computed as

φm(t ) = 1

4πσe

Nc∑
n=1

Itm(xn , t )

rm,n
∆x2, (3.1)

where the Itm is the transmembrane current at time t , at position xn , with n the cell index with n ∈ 1,2, . . . , Nc .
The total number of cells is Nc and m ∈ 1,2, . . . , M is the electrode index. The cells are assumed to be on a 2D
uniform square grid with a spacing ∆x. The assumption is that the electrode array is located on a plane
parallel to the plane of the cells, at a height of z0. The distance rm,n of a cell to an electrode is then rm,n =√

z2
0 +

∥∥x2
n − y 2

m

∥∥, where ym is the location of the electrode on its plane.

The simulations are started by instigating the propagation from a specified cell. A stimulating current is
simulated at the start to depolarize the first cells. In the simulations shown in this thesis, this will always be
at the bottom-left corner of the simulated tissue.

3.1.2. Data sets
Multiple data sets have been generated using the aforementioned simulation. For each data set a square
grid of 11×11 electrodes was simulated with an inter-electrode distance of 2 mm. This electrode array was
centered on an area of cells with an inter-cell distance ∆x of 2/3 mm. The distance of the array to the tissue
z0 was set to 0.1 mm. The figures that are shown only show the simulated conductivity under the electrode
array, the patterns do extend beyond this visible area (to 89×89 cells in total), to generate accurate signals.

13
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Figure 3.1: The conductivity maps for simulating specific shapes of blocks in the tissue.
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Figure 3.2: Examples of the conductivity maps generated for the different types of fibrosis tissue simulations.

The simulation was ran with a time step size of 0.02 ms. It was then downsampled to 1 ms to match the 1000
Hz sample rate of the clinical data.

For evaluation of LAT estimation methods in this thesis, two categories of data sets were created: Artificial
blocking shapes and fibrosis tissue simulations.

Artificial blocking shapes A set of three simulations was done with specific patterns of blocking or slow
conduction. Their conductivity maps are shown in Fig. 3.1. Simulation T1, T2 and T3 are less realistic, but
used to exaggerate differences between the methods of LAT estimation.

Fibrosis tissue Three more realistic types of patterns were also simulated and shown in Fig. 3.2. These are
examples of the different patterns that mimic decoupling of conduction between areas of atrial tissue [26].
This can be caused by excessive deposition of collagen due to fibrosis in the heart. There is simulation S1 with
spots of no conduction, S2 with lines of no conduction and S3, a combination of both. Multiple realization of
these types can be generated to test consistent performance in the methods.

3.1.3. Example of simulated electrograms
In this section the conduction pattern of T2 will be used to demonstrate the simulation of the electrograms.
In Fig. 3.3 the LATs for each of the electrodes in the 11×11 simulated array are shown, shifted in time so the
first LAT is at 0 ms. These LATs will be used as a ground truth to compare the estimated LATs to.

The underlying simulation uses cells that activate and generate transmembrane current, as was explained
in Section 3.1.1. The true activation times of the cells themselves are shown in Fig. 3.4. Four locations of
electrodes are highlighted. They are on row 7, column number 5 to 8.

The highlighted electrodes do not only detect the signal from the point directly under them. The elec-
trogram is a signal influenced by all the cell currents in the area, which was explained in Section 2.3.1. The
signals simulated from the highlighted electrodes is shown in Fig. 3.5. The multiple excitations shown by the
simulated electrograms can be related to the path the wave takes in this simulation.
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Figure 3.3: The true activation times in milliseconds for each of the simulated electrodes for simulation T2 is shown. They are aligned so
the first electrode’s activation time is at 0 ms.
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Figure 3.4: For the 31×31 cells beneath the electrodes array of T2 the true activation times are shown. The location of four electrodes in

row 7 of the array are highlighted with a red *.
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Figure 3.5: The recorded signals from the four highlighted electrodes from Fig. 3.4 are shown.
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Figure 3.6: The electrode array used in obtaining the real-world data sets. (source: [9])

3.2. Real-world data
The method for gathering natural data in a clinical setting used for this thesis is described in [9]. An electrode
array was used to obtain data from different recording sites on the surface of the human left and right atria.
The electrode array is shown in Fig. 3.6. It is comprised of a flexible printed circuit board with the 192 contact
points. The recording was done during open heart surgery. The array was manually placed on the different
locations on the atria, by hand or with a metal spatula also shown in the bottom part of Fig. 3.6.

3.2.1. Data format
The electrode array used for measurements consisted of 8×24 electrodes with 2 mm of spacing resulting in
192 signal channels. Four electrodes are not used for epicardial measurements, but serve other purposes.
These are the electrodes on the corners of the array. One of channels of a corner electrode is used to measure
the surface ECG. The other three corner signals are not used. The data is stored row after row in one vector per
time sample. The data was preprocessed before it was stored. It was amplified with a gain of 1000, bandpass
filtered (0.5-400 Hz), sampled at 1 kHz and quantized with 16 bits.

3.2.2. Data acquisition
The real-world, natural data that is used in this thesis was recorded at Erasmus MC in Rotterdam, the Nether-
lands using the methods described first in [9]. Hundreds of data sets from patients have been recorded there.
The patients were undergoing cardiac surgery for coronary and/or structural heart disease. Patients were 18
years old and older, with and without histories of AF.

At different recording sites on the atria mapping was performed. The recording sites are shown in Fig. 3.7.
The recordings sites were on the Left Atrium (LA, LAV), between the Pulmonary Veins (PVL, PVR), on Bach-
mann’s bundle (BB) and on the right atrium (RA). At each location 5 seconds of SR and 10 seconds of AF was
recorded. To induce AF rapid pacing using electric stimuli was done. In this thesis the focus will only be on
the SR data.
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Figure 3.7: The different locations used for recording atrial activity shown on a folded-out illustration of the atria.





4
LAT estimation using cross-correlation
estimation over higher order neighbors

In this chapter, the proposed method for LAT estimation is presented, which uses the cross-correlation to
determine the delay between electrodes in an electrode array, based a framework that defines higher order
neighbors in the array. Additional steps are then discussed to obtain absolute time estimates from the delays.

In Section 4.1, a representation of the atrial electrograms is shown where the signal from an electrode is
modelled as a scaled and shifted version of a standard signal of an activation wave propagating in the atria. In
Section 4.2 a grid graph is used to define the connectivity between neighboring electrodes. This is then used
to define the connections between pairs of electrodes when higher order neighbors in that graph are evalu-
ated. In Section 4.3, cross-correlation is discussed for estimation of delays in time for higher order neighbors.
Subsequently, in Section 4.4 a least squares approach to estimate the LATs from the delays obtained using
cross-correlation is discussed. Finally, in Section 4.5 it is explained how a section of data is segmented and
compared, to observe the performance of LAT estimation methods.

4.1. The atrial epicardial electrogram as separate excitation waves
In Section 2.3.1, the model for the atrial electrogram as it would be measured on the heart’s surface was
presented. The model for the electrogram φi of electrode i , with i ∈ 1,2, . . . , M , was shown to be generated
by the transmembrane currents. The model for the transmembrane currents described in Section 2.1.2 was
shown to depend on the tissue conductivity.

Let us then assume a tissue surface is measured with a homogeneous conductivity and let us ignore dif-
ferences in curvature of an activation wavefront. The measured electrogram φi (k) can then be modelled as a
scaled and shifted version of the standard electrogram response from the tissue φ0(k). The standard electro-
gram φ0(k) is assumed to be a "regular" electrogram for an activation wave traveling through homogeneous
tissue below an electrode. A measured electrogram can then be modelled as

φi (k) ≈αiφ0(k −τi )+ni (k) (4.1)

where αi is a scalar determining the amplitude, τi is the time shift with which the signal is measured, and
ni (k) is noise from the measurement. Under these assumptions, different electrodes show comparable sig-
nals as they are scaled and shifted reference responses. The response from another electrode j will then be

φ j (k) ≈ a(i , j )φi (k −∆(i , j ))+n(k) (4.2)

where a(i , j ) is another scaling term, ∆(i , j ) is the difference in activation time between the two electrodes and
n(k) is assumed to be uncorrelated noise. The electrograms would then be scaled and shifted versions of each
other.

When there are sections of tissue that do not conduct, multiple separate activations may be detected
spread out in time. This can then be modelled as

φi (k) ≈αiφ0(k −τi )+
(∑

w
βwφ0(k −τw )

)
+n(k) (4.3)

19
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where the disturbances can then be seen as additional activations at times τw with a scaling βw . An exam-
ple of this structure appearing in the measured signal was given in Section 3.1.3 where the multiple waves
are visible in the electrode signals. These additional activation might be present in one electrode signal at
different time shifts than in another electrode signal, resulting in Eq. (4.2) being less accurate. When cross-
correlation is applied to a pair of electrodes i and j , it is important to keep in mind that the disturbances
at times τw from electrode i can also correlate with the activations present in electrode j , influencing the
resulting cross-correlation values.

4.2. Spatial structure of the data
The array consists of multiple electrodes arranged in a certain pattern, providing spatial information. This
spatial information can and should be somehow exploited to achieve better estimates of the electrical activity
in the atria. The connections between the electrodes will be represented as a graph. A connection represents
that these electrodes are neighbors and should have some spatio-temporal relation.

4.2.1. Graphs
A graph G is defined as a vertex (node) set V and an edge (link) set E , so G = (V ,E ). The graph’s structure
is then a set of nodes connected by links. The links define a spatial structure, indicating some interaction is
possible between the connected nodes. In this section, we assume the size of the vertex set is M (there are M
nodes) and the size of the edge set is L (there are L links).

A graph with non-directional links between nodes is called an undirected graph. When the links between
nodes have directions associated with them, implying some kind of one-way connection between the nodes,
they are called directed graphs. Links can also have a number or weight attached to them. They are then called
weighted graphs. These weights can indicate some metric like distance, delay, bandwidth, etc. Examples of
these types of graphs are shown in Fig. 4.1.

An adjacency matrix, say A ∈ RM×M , is a way to structure the information about the graph connections. If
there is no edge between node i and node j in either direction then Ai , j = A j ,i = 0. If there is an edge from
node i to node j , Ai , j has some non-zero value. An adjacency matrix of an undirected graph, which is shown
on the left in Fig. 4.1, would be

Aundi r ected =


0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0

 . (4.4)

This is a symmetrical matrix, because the graph is undirected, with 1’s indicating the links. The adjacency
matrix of a directed graph, shown in the middle in Fig. 4.1, would look like

Adi r ected =


0 1 1 1 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
1 0 0 1 0

 . (4.5)

Here the matrix is not symmetric anymore as there are one-way connections between nodes. Two way con-
nection can still exist, they are then interpreted as two opposing one-way connections Weights can also be
added to the adjacency matrix. The weighted directed graph shown on the right in Fig. 4.1 would then be

Awei g hted =


0 2 2 4 0
0 0 0 0 3
0 0 0 1 0
0 0 3 0 0
1 0 0 2 0

 (4.6)

where the weights are shown instead of the 1’s for a connection.
Another method to describe the edges present in a graph is the incidence matrix, here called B . This

matrix has a size of M ×L. The rows then correspond to the nodes and every column corresponds to an edge.
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Figure 4.1: Examples of different types of graphs. From left to right an undirected, a directed and a weighted directed graph is shown.

Figure 4.2: Different types of grid graphs. From left to right the square grid graph, the square grid with diagonal connections and the
triangular grid graph are shown.

For a directed graph, in each column there is a -1 placed at the node from which the edge departs and a 1 at
a node where the edge arrives. The incidence matrix of the directed graph shown previously in Fig. 4.1 would
be

Bdi r ected =


−1 −1 −1 0 0 0 1 0
1 0 0 −1 0 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 1 −1 0 1
0 0 0 1 0 0 −1 −1

 . (4.7)

The adjacency and incidence matrices will be used in this section to indicate which electrode pairs have a
link between them. The combined data from the pairs that have such a connection will then be used, and the
electrodes that are paired can be varied to see differences in the performance of the LAT estimation.

4.2.2. Grid graphs
Grid graphs, or lattice graphs, are suited to represent the connections in the data as the electrode array is also
a regularly spaced grid. The simulated and clinical data for this thesis is gathered by an array of electrodes in
a two-dimensional grid. Some examples of two-dimensional grid graphs are given in Fig. 4.2.

For the electrode array that was used to gather data, a square grid graph is adopted. This graph is shown in
Fig. 4.3 for the entire array. The 192 electrodes present are shown as nodes and their connections in the square
grid pattern can be observed. For demonstrative purposes a 8×8 graph is created and shown in Fig. 4.4. This
has the same square grid as the electrode array graph shown in Fig. 4.3 and will be used to explain concepts
more easily in the next section.

4.2.3. Higher order neighbors in the electrode array
The square electrode grid that was defined is then described by adjacency matrix A. This contains informa-
tion about the electrodes and their neighbors as was explained before. It is constructed for electrodes i and
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Figure 4.3: The 24×8 electrode array is shown with the electrodes indices denoted. The array is connected in a square grid.

Figure 4.4: An 8×8 array is shown with the electrodes indices denoted. The array is connected in a square grid and will be used as an
example.
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Figure 4.5: An 8×8 array is shown with the electrodes indices denoted. The square grid is used as a basis. From left to right the first,
second and third order neighbor are connected. So from left to rightΞ(1),Ξ(2) andΞ(3) are shown.

j , where i , j ∈ 1,2, . . . , M , as

Ai , j =
{

1 if j ∈ N (i )

0 otherwise
(4.8)

where N (i ) are the neighboring electrodes of i in the square grid, so the neighbors of electrode number 28 in
Fig. 4.4 for example are electrodes 20, 27, 29 and 36.

Another adjacency matrixΞ is defined to indicate connectivity between electrodes that will be used in the
LAT estimation method introduced later. Matrix A only has the connections from neighboring electrodes, or
one hop away in the grid graph. For a graph where the nodes are connected over P hops of the template grid,
the connectivity graph adjacency matrixΞ(P ) is defined as

Ξ(P ) =
P∑

p=1
Ap . (4.9)

The order P of Ξ(P ) thus determines over what distances the nodes are connected by edges. The entries in
the connectivity graph adjacency matrix Ξ(P ) can have values > 1 for P > 1, this is not an issue as we later
only check if a value > 0 is present or not. An example of increasing P is shown in Fig. 4.5. The 8×8 graph is
shown there for P = 1,2,3. At P = 1 the graph is just the square grid graph. At P = 2 each node is connected
with nodes 2 hops away in the square graph,. The diagonal connections are present as a result, as are the
connections 2 inter-electrode distances away in the column and row direction. At P = 3 the connections 3
hops away are all shown and it can be seen the network becomes even more interwoven.

In Fig. 4.6 the same graph is shown, but only the connections originating in node number 28. This shows
the patterns from the perspective of a single electrode for increasing P . The parameter P and the connectivity
matrix Ξ(P ) can now be used as a framework to determine which nodes are connected. The connectivity of
the electrodes then determines which electrograms will be correlated, which will be explained in the next
section.

4.3. Cross-correlation over higher order neighbors
Where previously the cross-correlation would be used to calculate lags between only neighboring electrodes,
it can also used to calculate the lags between nodes further away. The reasoning for only cross-correlating the
electrodes that are closest to each other could be that these correlate well, while the electrodes become less
correlated over longer distances and the estimated lags would be less informative. An illustration to show the
effect of using higher order neighbors to estimate LATs from the time delays is given in Fig. 4.7.

In this thesis, the performance benefit of cross-correlating nodes that are further away will be evaluated.
The normalized cross-correlation will be reformulated to determine the inter-electrode lags for a set of pairs,
dependent on P . A data vector x(k) of size M (the total amount of electrodes) is used. This is then the time-
series data of the electrograms φ(k) or the derivative of the electrograms,

x(k) =φ(k) or x(k) = φ(k)−φ(k −1)

Ts
(4.10)
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Figure 4.6: An 8×8 array is shown with the electrodes indices denoted. Here only the connections are shown for electrodes number 28
with a square grid basis. From left to right the first, second and third order neighbor are connected. So from left to right Ξ(1), Ξ(2) and
Ξ(3) are shown when looking at the links originating from electrode 28.

Direct neighbors only Higher order neighbors

∆
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∆
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∆
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∆
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Figure 4.7: A schematic example is given of the differences between only using directly neighboring nodes (link (i , j ) and link ( j ,k)) to
calculate delays (∆) in time, and using higher order neighbors. Pairs of nodes are connected over much larger distances in the array,
an example of such a far away node (node z) is shown on the right side. The delays calculated over these distances are used as extra
information in the LAT estimation process.
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where Ts is the sample time. The normalized cross correlation ρ(i , j )(s) for electrodes i , j ∈ 1,2, . . . , M as a
function of the shift in samples between two signals s is then calculated as

ρ(i , j )(s) = 1

N

∑
k
(
xi (k)−µi

)(
x j (k − s)−µ j

)√
σ2

i σ
2
j

(4.11)

where µi ,µ j are the means andσ2
i ,σ2

j are the variances of xi (k) and x j (k). All the electrode pairs up to P hops

apart in this graph are then to be cross-correlated. The lag between electrode i and j , ∆̂i , j , is then estimated
as

for Ξ(P )
i , j 6= 0, ∆̂(i , j ) =argmax

s
ρ(i , j )(s). (4.12)

The resulting lags can be put in a matrix D of size M×M where element i , j is the lag between the correspond-
ing electrodes. This matrix can then be seen as a weighed adjacency matrix for a graph containing the delay
information. This graph contains the same links and nodes as Ξ(P ). If a delay of 0 ms is found between two
electrodes, a minuscule value might need to be added during processing, as a 0 in D indicates no connection
present.

4.3.1. Relation of cross-correlation to maximum likelihood
In Section 4.1 it was proposed that the electrograms from different electrodes can be approximately modelled
as shifted versions of each other. Assuming this is now the true case, the data used for cross correlation would
be

x j (k) = a(i , j )xi (k −∆(i , j ))+n(k) (4.13)

where a(i , j ) is a scalar and ∆(i , j ) is the lag between electrodes i and j . The noise will be modelled as uncorre-
lated zero-mean Gaussian noise with a variance σ2

n , so n(k) ∼N (0,σ2
n). The likelihood L(∆(i , j )) as a function

of the lag is then

L(∆(i , j )) =
∏
k

(
1√

2πσ2
n

)exp

(
−[x j (k)−a(i , j )xi (k −∆(i , j ))]2

2σ2
n

)
. (4.14)

It is often easier to take the logarithm of the likelihood. The logarithm is a monotonically increasing function
so the maximum will be reached at the same value of the parameters. The log-likelihood is then

lnL(∆(i , j )) = K ln(
1√

2πσ2
n

)− 1

2σ2
n

∑
k

[x j (k)−a(i , j )xi (k −∆(i , j ))]2. (4.15)

The terms K and σ2
n are constant in this setting and they will be written as such for ease of notation. The

resulting log-likelihood is then

lnL(∆(i , j )) =− 1

2σ2
n

(∑
k

[x j (k)]2 −∑
k

[a(i , j )x j (k)xi (k −∆(i , j ))]+∑
k

[a(i , j )xi (k −∆(i , j ))]2

)
+constant. (4.16)

The sums of the squared values of xi and x j can also be written as constant terms with respect to the time
shift and can be replaced by the variance of the electrode σ2

i = 1
K

∑
k [xi (k)]2, which does not depend on the

time shift of the signal. This then results in

lnL(∆(i , j )) =− 1

2σ2
n

(
Kσ2

j +a2
(i , j )Kσ2

i −
∑
k

[a(i , j )x j (k)xi (k −∆(i , j ))]

)
+constant. (4.17)

We also assume that a(i , j ) is constant with respect to the time shift, but unknown. It is not dependent on k or
∆(i , j ), so it can be moved outside the summation over k, resulting in

lnL(∆(i , j )) =
a(i , j )

2σ2
n

∑
k

[x j (k)xi (k −∆(i , j ))]+constant (4.18)
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where the summation over the product of the two electrode signals with a time shift is the only term remain-
ing which depends on∆(i , j ). This exact term also appears in the cross-correlation calculation, if the means of
the data are subtracted, and so

argmax
∆(i , j )

lnL(∆(i , j )) = argmax
∆(i , j )

ρ(i , j )(∆(i , j )). (4.19)

Under these strict assumptions the cross-correlation estimate of the lag is equal to the ML estimate.

4.4. From inter-electrode lag to LAT
The cross-correlation method does not provide LATs directly. It provides estimated time differences (lags) ∆̂
between pairs of electrodes. The time differences can be expressed as a linear system of the absolute times τ
as 

∆̂(1,2)

∆̂(1,3)
...

∆̂(i , j )

=


τ2 −τ1

τ3 −τ1
...

τ j −τi

+


ε(1,2)

ε(1,3)
...

ε(i , j )

 (4.20)

where ∆̂(i , j ) is the time difference estimated between electrodes i and j , τi is the true activation time of elec-
trode i and with ε(i , j ) being an error introduced by the estimation of the lag of a pair of electrodes. Rewriting
this system gives



∆̂(1,2)

∆̂(1,3)
...

∆̂(2,3)
...

∆̂(i , j )


=



−1 1 0 0 . . . 0 . . . 0
−1 0 1 0 . . . 0 . . . 0

...
...

...
...

...
...

0 −1 1 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . −1 . . . 1





τ1

τ2

τ3
...
τi
...
τ j


+



ε(1,2)

ε(1,3)
...

ε(2,3)
...

ε(i , j )


. (4.21)

This system can be constructed using the incidence matrix B of the graph ofΞ as the time delays were calcu-
lated for all the links in that graph. The system in vector form then becomes

d = B Tτ+e (4.22)

where d is a length L vector of the lags estimated with a cross-correlation method, it can also be seen as a
list of the weighted links from adjacency matrix D . This is related to the absolute activation times τ by the
incidence matrix B of size M ×L. This is an underdetermined system as it is rank deficient. For a connected
graph, the rank of the incidence matrix B is one less than its maximum rank, in this case the rank is M −1.

4.4.1. Assuming equal noise variances
Information about the error introduced when obtaining the delays between electrodes can help in estimating
the LATs. The mean and variance of the error are properties that, if known, can be used to obtain linear esti-
mators with the lowest variance of the desired parameters [55]. To start, say we want to find the parameters τ
that minimize the square of the error as

τ̂= argmin
τ

‖e‖2
2 = argmin

τ

∥∥d −B Tτ
∥∥2

2 . (4.23)

Let us assume the error is zero-mean, so

E [εi ] = 0, for i ∈ 1,2, . . . ,L. (4.24)

Let us also assume the error is homoscedastic, which means all observation have the same finite variance.
The covariance matrix is then a diagonal matrix

Cov(ε) = c I (4.25)
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with 0 ≤ c <∞. The Gauss-Markov theorem [55] then gives a best linear unbiased estimator (BLUE). This is
also called the ordinary least squares (OLS) estimator, and for the estimate of the absolute times τ̂, that is,

τ̂= (B B T )−1B d . (4.26)

However since B T is not full rank this cannot be directly solved. On option is to add an extra entry to the
linear system, setting one τ to a specific value, making the system not underdetermined anymore. Another
option is using the Moore-Penrose inverse (pseudoinverse) of matrix B T to find a solution to Eq. (4.23), that
is,

τ̂= (B T )†d . (4.27)

This pseudoinverse can be calculated for rank-deficient matrices using the singular value decomposition
(SVD), which is given by

SVD(B T ) =U
[
Σ 0
0 0

]
V T (4.28)

where in reality the smallest singular values will not exactly be 0 but a threshold is adopted. In this case this
will be easy as the rank of matrix B T is known as was previously mentioned. This can then be used to calculate
the pseudoinverse [56]

(B T )† =V
[
Σ−1 0

0 0

]
U T . (4.29)

This solution then has the minimum norm
∥∥τTτ

∥∥ and is sometimes called a minimum length solution.
Another method to estimate the activation times from the lags is by using a regularized least squares

approach with Tikhonov (L2) regularization. The cost function to be minimized is then

τ̂= argmin
τ

∥∥d −B Tτ
∥∥2

2 +λ‖τ‖2
2 (4.30)

The amount of regularization is determined by the parameter λ. The solution to the least squares cost func-
tion is then

τ̂= (B B T +λI )−1B d . (4.31)

This finally leads to a vector of estimated activation times per electrode τ̂. The difference between the pseu-
doinverse and regularization methods shrinks asλ becomes smaller. Eventually they become the same values
as the following limit exists [56],

lim
λ→0

(B B T +λI )−1B = (B T )†. (4.32)

It might be useful to not let λ go to 0 for some cases, to not overfit on large errors.
The estimated absolute times are then distributed around zero, having a common reference time (τ= 0).

This reference can be changed by subtracting the minimum activation time, implying the first activation
happens at time-point 0, so mini τ̂i = 0.

4.4.2. Assuming unequal, unstructured noise variances
It can also be assumed that the noise covariance matrix C is not a scaled version of the identity matrix. For
this generalization the covariance is

Cov(ε) =C , (4.33)

which then is used to estimate the parameters τ. The result is the generalized least squares (GLS) estimator,
which for the LATs would be [57]

τ̂= (BC−1B T )−1BC−1d . (4.34)
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The covariance matrix is most likely not known beforehand. This means it has to be estimated. First let us
assume the errors of different observations are not correlated and can be different, so the observations are
hetroscedastic. The covariance matrix will then be a diagonal matrix of the form

C =



σ2
(1,2) 0 0 0 0 0
0 σ2

(1,3) 0 0 0 0

0 0
. . . 0 0 0

0 0 0 σ2
(2,3) 0 0

0 0 0 0
. . . 0

0 0 0 0 0 σ2
(i , j )


(4.35)

where σ2
(i , j ) is the variance of the estimated lag between electrodes i and j . A method to estimate the vari-

ances is to use the residual r of the OLS solution’s estimates [58]. First the LATs are calculated as in the
homoscedastic example, that is,

τ̂i ni t = (B B T +λI )−1B d . (4.36)

The initial OLS estimates τ̂i ni t are then used to calculate the residuals in a length L vector r as

r = d −B T τ̂i ni t (4.37)

The squares of the residuals are then used as an estimate for the variance. They are thus put on the diagonal of
an L×L matrix. A term for quantization noise is also added. Because the cross-correlation estimates of the lags
can only be multiples of the sample time, this quantization effect can be modelled as an error resulting from
a uniform distribution from −Ts /2 to Ts /2 for every observation. The resulting estimated noise covariance
matrix is

Ĉ = diag([r 2
1 ,r 2

2 , . . . ,r 2
L ])+q I , (4.38)

where r 2
l is the l th squared entry of the residual vector and q is the quantization noise variance.

Having now calculated the estimated correlation matrix Ĉ , the GLS estimate for the LATs can be deter-
mined. Because the matrix B is still rank-deficient, regularization is again applied. The resulting estimate
is

τ̂= (BĈ−1B T +λI )−1BĈ−1d (4.39)

The covariance matrix can be iteratively estimated further [59]. What would be done is that the estimated
covariance matrix for step n, Ĉ(n), would be used to calculate the estimated LATs τ̂(n+1) as

τ̂(n+1) = (BĈ−1
(n)B T +λI )−1BĈ−1

(n)d . (4.40)

These updated LATs are then used to calculate a new residual, which is used to then obtain a new Ĉ(n+1). It
must be noted that for smaller sample sizes there is no guarantee these methods provide better performance
than the OLS method [59].

4.4.3. Assuming unequal, structured noise variances
In the previous section, the variance of each observation (delay) was estimated separately. The errors were
assumed to be independent across all the links in the connectivity graph. The underlying graph structure can
be used to construct a more structured approach to estimating the error covariance matrix.

In this section we assume that the error variances of the links are determined by the nodes in the graph,
not by the links individually. However, for now we also assume the errors are still independent. The reason
this might be an interesting assumption is that when cross-correlating one node with two different connected
nodes, the resulting errors after the cross-correlation process can heavily depend on the morphology of the
signals of those connected nodes. The assumption that these errors are always positively or negatively cor-
related might then be inaccurate. The result will then be an estimated covariance matrix with only entries
on the diagonal, that depend on the parameters from the nodes. In Section 4.4.4 we will investigate what
happens if we do not assume that the errors of the observed delays are independent.
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We assume now that the variance of the error of an observation on link (i , j ) is a summation of the vari-
ances belonging to nodes i and j , so

Var(ε(i , j )) =σ2
i +σ2

j . (4.41)

The covariance between two different links, (i , j ) and ( f , g ) where i , j , g , f ∈ 1,2, . . . , M and (i , j ) 6= (g , f ), is
assumed to be 0, so Cov(ε(i , j ),ε( f ,g )) = 0. The error between of different links are thus still assumed to be
uncorrelated. The resulting covariance matrix C then is assumed to have the structure

Cov(



ε(1,2)

ε(1,3)
...

ε(2,3)
...

ε(i , j )


) =C =



σ2
1 +σ2

2 0 0 0 0 0
0 σ2

1 +σ2
3 0 0 0 0

0 0
. . . 0 0 0

0 0 0 σ2
2 +σ2

3 0 0

0 0 0 0
. . . 0

0 0 0 0 0 σ2
i +σ2

j


(4.42)

where the summation of the variances of the nodes belonging to the links can be seen on the diagonal. In the
same way as was done for the unstructured variance method, the OLS residuals can be used to estimate the
variances. The residual on link (i , j ) would be

r 2
(i , j ) =σ2

i +σ2
j (4.43)

where σ2
i and σ2

j must then be determined. This can be done by putting the residuals in a vector, creating a

linear set of equations


r 2
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r 2
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...

r 2
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...
...

...
...

...
0 0 0 0 . . . 1 . . . 1
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σ2
3

...
σ2
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...
σ2

j


(4.44)

which is a system that uses the positive incidence matrix B+ of the graph Ξ, so it is the incidence matrix
used before but with all positive entries. The squared residuals vector is η, and the vector of variances to be
estimated is ζ. The linear system then becomes

η= B+T
ζ. (4.45)

A least squares estimation of the variances can then be done. The matrix B+T is a full rank (rank M) matrix so
it should provide the desired estimates directly. The variances however cannot be negative, so a non-negative
least squares (NNLS) implementation is used,

ζ̂= argmin
ζ

∥∥∥η−B+T
ζ
∥∥∥2

2
(4.46)

s.t. ζ≥ 0

where ζ̂ is the vector of estimated variances. If the model is correct the estimated variances should be positive
anyway. To cope with the imperfections of this variance estimation method, the NNLS estimation is done in
MATLAB with the lsqnonneg function. The estimated covariance matrix is then constructed as

Ĉ = diag(B+T
ζ̂)+q I (4.47)

with the quantization variance q again added. With this estimated covariance the LATs can be estimated in
the same way as was done in the previous section with the GLS estimate.
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4.4.4. Off-diagonal elements in the noise covariance matrix
In the previous sections the covariance matrix was assumed to only have non-zero entries on the diagonal. If
the errors on the estimated lags are actually correlated, the covariance matrix can have off-diagonal entries.
Let us assume the error on the estimate lag between electrode i and j , ∆̂(i , j ), is comprised of the intrinsic
error of electrode i , ε(i ), and the intrinsic error of electrode j , ε( j ). The estimated delay is then

∆̂(i , j ) = τ j −τi +ε( j ) −ε(i ), (4.48)

which means ε(i , j ) = ε( j )−ε(i ). This has as a result that the covariance between the errors on the observations is
not equal to 0, so for pairs (i , j ) and (i , z), with i , j , z ∈ 1,2, . . . , M , the covariance is Cov(ε(i , j )ε(i ,z)) 6= 0. Putting
this in matrix form gives the model

d = B T (τ+ετ) (4.49)

where d is the the length L vector containing the estimated lags, B is again the incidence matrix of Ξ, τ is
the vector of true activation times and ετ is the length M vector of errors belonging to each electrode. Let us
again assume the error is zero-mean. The error covariance matrix C of this model would then be

C = E [B T ετε
T
τ B ] = B T CτB (4.50)

where Cτ is the covariance matrix of the electrode error which is unknown for now. The covariance matrix
with the structure B T CτB is actually a singular matrix as B is rank-deficient as was mentioned before. There
are methods available [60] that use the pseudoinverse to calculate the inverse of C to use it in a GLS solution.
For now lets assume it is non-singular to see what happens if we use it in a GLS setting. Taking the GLS
estimate of τ from Eq. (4.34) and using the covariance matrix found the estimate becomes

τ̂= (B (B T CτB )−1B T )−1B (B T CτB )−1d . (4.51)

If both sides are multiplied by B (B T CτB )B T this becomes

B (B T CτB )−1B T τ̂= B (B T CτB )−1d . (4.52)

Multiplying both sides by B T Cτ now gives

B T CτB (B T CτB )−1B T τ̂= B T CτB (B T CτB )−1d . (4.53)

This can now be simplified to

B T τ̂= d , (4.54)

which results in the estimate of the activation times

τ̂= (B B T )−1B d . (4.55)

The GLS solution for this type of error model is thus the OLS solution again. The estimation of the activation
times in this model then does not depend on the covariance matrix of the errors of the electrodes Cτ.

Let us now introduce the quantization error vector εq to the model. This error is independent per mea-
surement, with a covariance matrix Cq = q I . The model becomes

d = B Tτ+B T ετ+εq . (4.56)

From this model the maximum likelihood estimator can be derived when assuming ετ and εq are indepen-
dent and zero mean with a Gaussian distribution [61]. The estimate for the activation times then becomes
[61]

τ̂= (B (B T CτB +Cq )−1B T )−1B (B T CτB +Cq )−1d . (4.57)

Rewriting this the expression,

B (B T CτB +Cq )−1B T τ̂= B (B T CτB +Cq )−1d (4.58)
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can be obtained. The matrix Cq = q I is known to be a scaled version of the identity matrix. This gives

B (B T CτB +q I )−1B T τ̂= B (B T CτB +q I )−1d , (4.59)

which can be rewritten again when multiplied by Cτ to

1

q
CτB (B T 1

q
CτB + I )−1B T τ̂= 1

q
CτB (B T 1

q
CτB + I )−1d . (4.60)

Using the matrix identity [62] A−1B (B T A−1B + I )−1 = (A +B B T )−1B with A−1 = 1
q Cτ the following can be

obtained

(qC−1
τ +B B T )−1B B T τ̂= (qC−1

τ +B B T )−1B d . (4.61)

Multiplying each side by (qC−1
τ +B B T ), the result is

B B T τ̂= B d , (4.62)

which then is again the same as the OLS solution,

τ̂= (B B T )−1B d . (4.63)

The results of assuming the error on the links is a summation of the intrinsic errors of the nodes, is that the
information about the covariance of the errors is not used at al. The OLS estimator is for this model then the
same as the GLS estimator.

4.4.5. Cramér-Rao lower bound
For unbiased estimators, there is a lower bound on the variance, given by the Cramér-Rao (lower) bound
(CRLB) [63] and is determined by the inverse of the Fisher information matrix J . The bound is given by

E [(τ̂−τ)(τ̂−τ)T ] ≥ J−1 (4.64)

where τ̂ is an unbiased estimator of the parametersτ. The entries of the Fisher information matrix are depen-
dent on the distribution of our observations d given the parameters τ. Given the probability density function
p(d |τ) of the observations, the Fisher information matrix is

J =−E

[
d 2

dτ2 ln p(d |τ)

]
. (4.65)

The derivation of this matrix for our data model is given in Appendix A. The resulting Fisher information
matrix is

J = BC−1B T , (4.66)

with B the incidence matrix introduced before and C the covariance matrix of the observations. The variance
of the GLS estimator from Eq. (4.34) is [57]

Var(τ̂GLS ) = (BC−1B T )−1 = J−1, (4.67)

which means it reaches the CRLB. However, the covariance matrix C must be known beforehand to obtain
this estimator. If the incorrect covariance matrix is used for the GLS estimate the variance will be higher.

4.4.6. Combination with steepest deflection estimates
Due to the wide array of different morphologies of electrograms that can occur in epicardial electrograms,
special cases can exist where cross-correlation will work less effectively. The LATs estimated with the steepest
deflection method can then be combined with the time delays estimated with the cross-correlation to obtain
new LAT estimates.

The times at which the steepest deflection was found, tsd , are added as separate observations to the least-
squares estimation of the LATs. The minimization is then formulated as

τ̂= argmin
τ

∥∥∥∥W
1
2

([
d

tsd

]
−

[
B T

I

]
τ

)∥∥∥∥2

2
(4.68)
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where W is a diagonal matrix to add weights to observations. The weights will be constructed as

W =
[

I(L×L) 0
0 w I(M×M)

]
(4.69)

where w is a scalar that determines the influence of the steepest deflection LAT estimates. The estimated
LATs with the combined method then follow from minimizing Eq. (4.68). The added SD estimates make the
problem no longer underdetermined, so no regularization or SVD pseudoinverse is needed. The expression
for the estimated LATs using the OLS estimator then is

τ̂=
([

B T

I

]T

W
[

B T

I

])−1 [
B T

I

]T

W
[

d
tsd

]
. (4.70)

4.5. Data window determination and comparison
The data that is supplied will most likely be a single time series for every electrode, containing multiple beats
of the heart during SR. For the comparison of multiple LAT estimation methods, first a time window of the
data needs to be selected for which the different algorithms will be evaluated. Secondly, the electrodes where
the electrogram shows distinct multiple deflections in a single time window will be designated as fraction-
ated. The performance of different LAT estimation methods can then also be evaluated only on those special
cases. Lastly in this section, the performance metric to compare LAT estimated to their ground truth, where
available, is explained.

4.5.1. Time windowing
To apply cross-correlation, a segment of the data has to be taken where a beat or single activation of the tissue
is present. The segment also has to be short enough not to include the ventricular activity. The depolarization
of the ventricles can be measured in the electrode array and happens shortly after the depolarization of the
atria, so excluding it is important. For this a method was developed to determine the time window in which
to determine the LAT.

An electrode that is confirmed to function properly beforehand is taken as a reference. The data from this
electrode is filtered by a highpass filter, to isolate the atrial activity. This filtered data will be denoted as a
y = [y(0), y(1), . . . , y(K −1)].

The algorithm to determine the time windows to be used is given in Algorithm 1. The data y is evaluated in
windows of Nwi ndow /2 samples, with the start of this window being shifted with Nstep samples, where Nstep <
Nwi ndow /2, until the end of the data is reached. The reason only the first half of the window is evaluated, is
because there needs to be enough time after the activity is detected to include the propagation through the
whole array in the data.

At each step the absolute values of the data in the window are compared to a threshold athr es . This thresh-
old is determined as a fraction η, where 0 < η < 1, of the maximum absolute value in the entire filtered data
y . If the window contains a value greater than the threshold in magnitude, the window will be considered
active. The starting points of the active windows, kwi ndow , will be returned afterwards.

Algorithm 1 Time window selection

1: procedure WINDOWSELECT(y , Nwi ndow , Nstep ,η) . Select all time windows where there is atrial activity
2: athr es = η∗max(|y |) . Set a fraction of the maximum absolute value as a threshold
3: k = 0
4: kwi ndow = { }
5: while k +Nwi ndow ≤ K −1 do
6: ywi ndow = [yk , yk+1, . . . , yk+(Nwi ndow /2)] . Select a subset of the data
7: if max(|ywi ndow |) > athr es then
8: kwi ndow = {kwi ndow ,k} . Append the starting point of the window to the list
9: k = k +Nwi ndow

10: else
11: k = k +Nstep

12: return kwi ndow . The starting points of the active windows are returned
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4.5.2. Determining fractionated electrodes
When evaluating an area of atrial tissue, some electrodes might be above an area where the tissue conduction
is normal, and other electrodes might be right on top of an area with a large section of non-conducting tissue.
It can therefore be interesting to evaluate the performance of different LAT estimation methods for only those
electrodes where there is a problem in tissue conduction and the signal morphology might differ from the
regular electrograms.

In this case the term fractionated is used for electrograms that show these irregularities in morphology. To
find these cases, the electrograms are examined individually. The regular epicardial electrogram for normal
conducting tissue was shown in Chapter 2, and it shows one clear negative deflection. If an electrogram has
at least two discernible negative deflections in it, it will be characterized as fractionated.

4.5.3. Performance metric
If the true activation times of the cells are available, they can be compared to the estimated LATs for the elec-
trode locations. This can be done by taking the root-mean-square error (RMSE). The RMSE of the estimated
times τ̂i and the true times τi is then

RMSE =
√∑M

i=1(τ̂i −τi )2

M
(4.71)

where M is the total number of electrodes. If the estimated or true time is not available for a certain electrode
then this one will not be taken into account when calculating the error. Its estimate is then eliminated from
τ̂ and the number of electrodes M is adjusted. This can happen if an electrode is above an area of blocked
conduction in the simulated tissue and the true activation time does not exist. It can also happen that an
electrode is malfunctioning and does not record proper data, its contribution to the error should then also be
0.





5
Results

In this chapter, the methods of Chapter 4 will be applied to simulated and clinical data described in Chap-
ter 3. In Section 5.1, results on simulated data are presented. Cross-correlation methods for estimation of
LATs that use more data than only direct neighboring nodes are examined for different types of simulated
tissue. The cross-correlation methods for increasing orders of neighbors are compared to other known meth-
ods. Only using direct neighbors is also evaluated in this section, and the difference between using OLS and
GLS estimators for the LATs is evaluated as well. Finally combining cross-correlation and steepest deflection
information is evaluated.

In Section 5.2, the cross-correlation method of using higher order neighbors is tested on data recorded
from patients during open-heart surgery and compared to the steepest deflection estimates of activation
times. The methods are tested on a range of different signal morphologies, their estimates are shown and the
differences are highlighted.

5.1. Experiments on simulated data
In Section 3.1, the simulation of the atrial tissue was explained. That simulation will be used to create data
sets to test the methods for estimating LATs. This is useful as the ground truth is known for these simulations
and the error of the different methods can be compared.

In each data set, a single activation of the tissue will be simulated. In Section 4.5, giving electrodes the
label fractionated was discussed. In this chapter, a threshold of 30% of the maximum value of the derivative
is used, to determine when a secondary deflection is severe enough to say an electrogram is fractionated.

5.1.1. Data sets used
Two categories of data sets were examined. One with specially created blocks and one with more randomly
distributed tissue deficiencies. The set of artificial non-conductive tissue shapes, T1, T2 and T3, mentioned
in Section 3.1 were examined first. They are shown again in Fig. 5.1.

The second type of data sets that will be examined are the fibrosis tissue sets, also shown in Section 3.1.
Three different kinds were used, S1, S2 and S3. For each of those, 10 iterations were randomly generated,
with different conduction patterns. The areas under the electrode array that are simulated for each of the S
sets are shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4.

5.1.2. Cross-correlation over a higher order neighbors
First three methods are compared. The steepest deflection (SD) method is put against the normalized cross-
correlation (NCC) and the normalized cross-correlation of the derivative (NDCC). Using the square grid graph
as a base, the performance is compared when taking the cross-correlation over an increasing number of hops,
so an increased order of neighbors P for the connectivity graphΞ(P ).

The estimation of the covariance matrix C of the observed lags between electrode pairs is not considered
here yet. The OLS solution from Section 4.4 will applied to transform the inter-electrode delays to the LATs.
The effects of the covariance estimation are investigated later in Section 5.1.7.

35
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Figure 5.1: The conductivity maps for simulating specific shapes of blocks in the tissue, sets T1, T2 and T3, are shown.
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Figure 5.2: The 31×31 cells under the simulated electrodes are shown for the data sets S1.
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Figure 5.3: The 31×31 cells under the simulated electrodes are shown for the data sets S2.
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Figure 5.4: The 31×31 cells under the simulated electrodes are shown for the data sets S3.
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Figure 5.5: The normalized RMSE for sets T1, T2, T3 is shown. The error bars indicate the standard deviation. On the left the error on all
electrodes is taken, on the right only the fractionated electrode signals are taken into account.

Special blocking shapes In Fig. 5.5 the resulting mean RMSE and standard deviation are shown for the T
data sets. The RMSE is shown as normalized on the error of the SD, so the RMSE for SD is always 1 for every
data set.

What can be observed is that the error of the cross-correlation LAT estimation methods is decreasing by
using higher order neighboring pairs. This means increasing P in Ξ(P ), so increasing the distance in the grid
graph over which cross-correlations are calculated. The NCC method’s error keeps decreasing well below the
error of the SD method. This happens when taking all electrodes into account, and also when taking only the
RMSE on electrodes where the signal is fractionated.

The NDCC method’s error does decrease when higher-order neighbors are used but it converges to a value
only marginally below the error of the SD. It seems the NDCC method does benefits from having a larger
number of delays to calculate the LAT with when P increases at first. The derivative of the data however can
be seen as a high-pass filtered version of the original electrogram. The high frequency components, such as
steep deflections, will thus be more prominent than the low frequency components. The cross-correlation
will then focus on these steep deflections and the resulting estimate is in the end similar to that of the SD
method.

To give an overview of the non-normalized results, the RMSE in milliseconds is shown in Table 5.1 for the
individual T data sets.
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Table 5.1: The RMSE in milliseconds of the different methods for the special blocking shape data sets is shown, calculated for all elec-
trodes and for only fractionated electrodes, indicated with an (f). The cross-correlation methods are shown for their direct (1-hop)
neighbors and their 10th order neighbors (10-hops).

SD NCC-1 NCC-10 NDCC-1 NDCC-10
T1 2.41 3.00 1.27 2.21 2.26
T2 11.54 32.17 5.26 10.02 11.03
T3 0.93 10.31 0.49 4.24 0.85
T1 (f ) 8.66 6.60 2.41 7.87 8.24
T2 (f ) 27.69 40.08 12.46 23.72 26.47
T3 (f ) 3.44 3.34 0.87 5.49 3.47
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Figure 5.6: The normalized RMSE is shown for the 10 iterations of S1. The error bars indicate the standard deviation. On the left the error
on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.

Fibrosis tissue The same methods are now applied to the 10 sets generated for S1, S2, S3. In Fig. 5.6 the
normalized RMSE is shown for set S1. As with the special blocking shapes, the error of the cross correlation
methods drops below the error of the SD when using a higher order neighbors for which to calculate lags.
The error measured only on the fractionated electrodes does not differ significantly from the error on all
electrodes here.

What is also interesting is the NDCC method performing almost as well as the NCC method. This data set
with the random dots of conduction block has limited blocking potential for activation going through it, so
the absolute error is low and there is limited room for performance increases.

The results for S2 are shown in Fig. 5.7. The zoomed-in version is shown in Fig. 5.8. The same trend
is visible, the cross-correlation methods again perform better than the SD method when a higher order of
neighbors is used. It is also visible that the method using the derivative, NDCC, performs somewhat worse
than the regular NCC method.

The results for S3 are shown in Fig. 5.9. The zoomed-in version is shown in Fig. 5.10. The same trend as in
the other two sets is visible. The spread of the RMSE however has become larger. A larger area of the simulated
tissue is now covered in non-conductive tissue so the potential for improvement will also be greater in this
set.

The mean of the RMSE in milliseconds of the methods used for these simulations is shown in Table 5.2.
Using the higher order neighbors to determine lags in NCC methods gives the best performance in every
simulation examined.

Conclusions From both the T sets and the S sets it can be observed that the methods using the cross-
correlation improves vastly when using more than the direct neighboring nodes to calculate the lag. It can
also be observed that the NCC method outperforms the other methods when using lag estimation over higher
order neighbors instead of only direct ones.
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Figure 5.7: The normalized RMSE is shown for the 10 iterations of S2. The error bars indicate the standard deviation. On the left the error
on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.
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Figure 5.8: The normalized RMSE of S2 from Fig. 5.7 is shown here with a zoomed-in y-axis. The error bars indicate the standard
deviation. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.
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Figure 5.9: The normalized RMSE is shown for the 10 iterations of S3. The error bars indicate the standard deviation. On the left the error
on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.
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Figure 5.10: The normalized RMSE of S3 from Fig. 5.9 is shown here with a zoomed-in y-axis. The error bars indicate the standard
deviation. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.

Table 5.2: The mean RMSE in milliseconds for the 10 simulations for sets S1, S2 and S3 is shown, calculated for all electrodes and for
only fractionated electrodes, indicated with an (f). The cross-correlation methods are shown for their direct (1-hop) neighbors and their
10th order neighbors (10-hops).

SD NCC-1 NCC-10 NDCC-1 NDCC-10
S1 0.69 0.82 0.40 0.85 0.44
S2 1.26 3.16 0.89 2.11 1.08
S3 1.63 3.07 1.06 2.09 1.29
S1 (f ) 1.27 1.31 0.88 1.44 0.98
S2 (f ) 2.73 4.55 1.94 3.73 2.47
S3 (f ) 2.64 4.12 1.83 3.37 2.31
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Figure 5.11: The RMSE of NCC in S3 is shown here with different regularization parameters λ. The error bars indicate the standard
deviation. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.

5.1.3. Dependence on regularization
In Section 4.4 the methods of converting lags between pairs of electrodes to LATs was discussed. In the results
shown up to now in this chapter all have been obtained using the SVD method discussed there.

In the regularized least squares method, the parameter λ is used during the conversion of relative lag to
absolute times. The influence of the regularization parameter is shown in Fig. 5.11 with the mean RMSE on
the set S3, as an example.

Using a smaller values for λ makes the LAT estimates converge. These LATs for small values of λ are also
the estimates found when using the SVD pseudo-inverse method. It is also interesting to see the value of λ
does not make a great difference anymore for higher P .

Conclusions For these simulations the regularized least squares method of obtaining the LATs performs as
expected, as reducing the amount of regularization makes the estimate converge to those estimated using an
SVD pseudoinverse method.

5.1.4. Comparison with gradient method
The spatial gradient (SG) method is also compared to the SD and NCC method. This method uses the deriva-
tive in space instead of in time and was described in Section 2.4.5. The resulting LATs are compared to that of
SD, NCC-1 and NCC-10 for the T and S simulations.

The resulting RMSE for data sets T1, T2, T3 is shown in Table 5.3. It can be observed that the SG method
sometimes performs better than the SD method, but never better than the NCC method using 10th order
neighbors.

The mean RMSE for data sets S1, S2, S3 is shown in Table 5.4. On these simulations the SG method on
average performs worse than the SD method, although their results are close. The NCC method with the
bigger connectivity performs better than both of them again.

Conclusions The results from using the spatial gradient method indicate it has no clear advantage over the
steepest deflection method. As the SD method has performed worse than the higher order neighbor NCC
method, the SG method also performs worse.

5.1.5. Ignoring close neighbors
Previous results have shown improvement in cross-correlation LAT estimation when adding the delays of
higher order neighboring pairs of electrodes. Now performance on simulated data will be examined when
using only the further away pairs, so ignoring the delay estimates from more directly neighboring nodes.

First NCC is examined when using only pairs of nodes exactly P hops away and not the node pairs closer
to each other on the grid. This then only uses the links present in Ξ(P ) that are not present in Ξ(P−1). This is
then called the single hop-order normalized cross-correlation (SNCC) method.
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Table 5.3: The RMSE in milliseconds of the different methods for the special blocking shape data sets is shown, calculated for all elec-
trodes and for only fractionated electrodes, indicated with an (f). The NCC method is now compared to the spatial gradient (SG) method.
The NCC method is shown for their direct (1-hop) neighbors and their 10th order neighbors (10-hops).

SD NCC-1 NCC-10 SG
T1 2.41 3.00 1.27 2.66
T2 11.54 32.17 5.26 9.99
T3 0.93 10.31 0.49 4.01
T1 (f ) 8.66 6.60 2.41 8.39
T2 (f ) 27.69 40.08 12.46 23.74
T3 (f ) 3.44 3.34 0.87 15.55

Table 5.4: The mean RMSE in milliseconds for the 10 simulations for sets S1, S2 and S3 is shown, calculated for all electrodes and for only
fractionated electrodes, indicated with an (f). The NCC method is now compared to the spatial gradient (SG) method. The NCC method
is shown for their direct (1-hop) neighbors and their 10th order neighbors (10-hops).

SD NCC-1 NCC-10 SG
S1 0.69 4.57 0.40 0.92
S2 1.26 5.68 0.89 1.58
S3 1.63 6.58 1.05 1.63
S1 (f ) 1.27 5.28 0.89 1.62
S2 (f ) 2.73 7.23 1.95 2.96
S3 (f ) 2.64 7.72 1.83 2.79

Two examples of performance are given on two types of simulated data. The normalized RMSE (normal-
ized on SD again) for set T1 is shown in Fig. 5.12. The mean normalized RMSE for the 10 iterations of S3 is
also shown in Fig. 5.13. These sets are chosen as an example to give representative information about the
performance of this method.

The results for the special shape set T1 in Fig. 5.12 shows an interesting pattern. Only using pairs exactly
P hops away (SNCC) seems to show improved performance over the regular NCC method for P between 2
and 8. Especially looking at the fractionated electrodes, this can improve the LAT estimates. The estimates
of SNCC for the highest P then fail to further improve. This also has to do with the electrode being only a
11×11 array. For P = 10 the center electrode only has four links, to the very corners of the array, making LAT
estimation more difficult for that electrode.

The results for the 10 iterations of S3 in Fig. 5.13 show a quite consistent pattern in the case of using all
electrodes and also when only looking at the fractionated electrodes. The SNCC method performs slightly
worse than regular NCC, except for P = 2. This shows there is some benefit in using all of the links instead of
only the higher order ones in these simulations. This can be said with the side note that when using second
order neighboring nodes as pairs it does seem better to remove the direct links between neighboring cells in
these simulations.

Another method to examine the influence of using close pairs versus distant pairs of nodes is also tested.
In this method the 10th order neighbors are used, and step by step the first Q-hop connections are removed
with Q going from 0 to 9. So this uses the links present inΞ(10) that are not present inΞ(Q).

Again two examples of performance on sets given on simulated sets T1 and S3. The normalized RMSE for
set T1 is shown in Fig. 5.14 and the mean RMSE for the 10 iterations of S3 is shown in Fig. 5.15.

The results on the special blocking shape in Fig. 5.14 shows a very constant RMSE when looking at all
electrodes, up until Q = 6 when the performance starts to degrade somewhat. On the fractionated electrodes
there is a slight performance edge when excluding the lag estimates of closer neighbors, but it does not im-
prove the performance over the whole array.

In Fig. 5.15 the resulting performance on the simulated fibrosis-type tissue seems to indicate there is
some performance loss when eliminating electrode pairs that are closer from the lag estimation in general.
This would indicate there is a benefit on average to including all the lag estimates between all pairs.

From all of these experiments it can be observed that using the estimated delays from two nodes that are
close can degrade the performance in certain cases. This effect is visible in the T sets and is most noticeable
when looking at the electrodes with fractionated signals. This would suggest that it can be beneficial to only
use higher order neighbors to estimate the LATs, when heavy distortions of the regular shape of the electro-
gram are observed. The distortion of the regular morphology then makes Eq. (4.1) not hold, the electrogram
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Figure 5.12: The normalized RMSE of NCC in T1 is shown here in comparison with SNCC, which only uses lags of electrodes exactly P
hops away, not less than P hops. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are
taken into account.

0 2 4 6 8 10

Order of neighbors used

0

0.5

1

1.5

2

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - all sensors

NCC

SNCC

SD

0 2 4 6 8 10

Order of neighbors used

0

0.5

1

1.5

2

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - fractionated sensors

NCC

SNCC

SD

Figure 5.13: The normalized mean RMSE of NCC in S3 is shown here in comparison with SNCC, which only uses lags of electrodes exactly
P hops away, not less than P hops. The error bars indicate the standard deviation. On the left the error on all electrodes is taken, on the
right only the fractionated electrode signals are taken into account.
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Figure 5.14: The normalized RMSE of NCC-10 in T1 is shown here in comparison with NCC-10 where the neighbors the first Q hops away
are not used. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.
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Figure 5.15: The mean normalized RMSE of NCC-10 in S3 is shown here in comparison with NCC-10 where the neighbors the first Q
hops away are not used. The error bars indicate the standard deviation. On the left the error on all electrodes is taken, on the right only
the fractionated electrode signals are taken into account.

φi is not similar anymore to the standard electrogram φ0, giving

φi (k) 6=αiφ0(k −τi )+ni (k). (5.1)

These distortions might show up in roughly the same manner in two neighboring electrodes, making them
correlate in an erroneous way. If they are only correlated with electrograms further away these distortions
may correlate less and thus give an improved estimate of the delay through cross-correlation.

Conclusions Leaving the delays estimated between close neighbors out when estimating the LATs seems to
not directly improve performance over all electrodes when looking at more realistic simulations. It also does
not make the performance much worse. For electrograms that substantially differ in morphology from the
standard electrogram due to distortions, it can potentially be beneficial.

5.1.6. Combining steepest deflection and cross-correlation
In Section 4.4.6 a method to combine the SD estimates of the activation times and the lag estimates of the
NCC method was described. The RMSE of this method will be shown on T1 and S3 to give examples of the
performance.

The SD observations are combined with NCC-P observations where P is the order of neighbors used,
similar to the previous results shown. The performance is shown with no difference in weighting (w = 1) and
with a weighting of w = 1

10
L
M , where L is the amount of links in Ξ(P ) and M is the number of electrodes.

The resulting RMSE normalized on the error of SD for set T1 is shown in Fig. 5.16. It can be observed that
the combination methods perform better than both SD and NCC separately for low P . For higher P values
the unweighted combination SD-NCC gives performance similar to the NCC method, the weighted method
WSD-NCC starts to perform worse that the NCC method. The mean normalized RMSE for set S3 is shown in
Fig. 5.17. About the same performance characteristics of the combination methods can be observed, albeit
less prominently.

To show what happens with different weights and to try and maximize performance, the combination
of SD and NCC-10 is done while varying the weight w from a small to a large value. The normalized RMSE
for different weights on T1 is shown in Fig. 5.18. The error with a low weight converges to that of NCC-10,
and with higher weights the error increases and goes to the level of SD. The mean normalized RMSE for S3
for different weights is shown in Fig. 5.19. The difference here is that there seems to be a weighting value of
around w = 5 where the combination performance is ever so slightly better than the NCC-10 performance.
In this case the ground truth is known and the optimal weighting value can be observed. For clinical data this
truth will not be available and it will have to be estimated.

Conclusions For a low P , so only using the cross-correlation between relatively close electrodes, the perfor-
mance when combining SD and NCC can be better than the methods separately. For a higher P the perfor-
mance advantage diminishes. There might be a little performance gain to be had, however the right balance
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Figure 5.16: The normalized RMSE of SD and NCC-10 in T1 is shown here in comparison with the weighted combination method of SD
and NCC-10. On the left the error on all electrodes is taken, on the right only the fractionated electrode signals are taken into account.
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Figure 5.17: The mean normalized RMSE of NCC in S3 is shown here in comparison with its combination with SD (SD-NCC), and the
weighted combination of both (W SD-NCC). On the left the error on all electrodes is taken, on the right only the fractionated electrode
signals are taken into account.
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Figure 5.18: The RMSE of SD and NCC-10 in T1 is shown here in comparison with the weighted combination method of both. The
performance for different weighting values w (on the x-axis) is shown. On the left the error on all electrodes is taken, on the right only
the fractionated electrode signals are taken into account.



46 5. Results

10-2 100 102 104

Weighting value

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - all sensors

NCC-10

W SD&NCC-10

SD

10-2 100 102 104

Weighting value

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - fractionated sensors

NCC-10

W SD&NCC-10

SD

Figure 5.19: The mean normalized RMSE of NCC-10 in S3 is shown here in comparison with the weighted combination method of both.
The performance for different weighting values w (on the x-axis) is shown. On the left the error on all electrodes is taken, on the right
only the fractionated electrode signals are taken into account.

must be struck when weighting the observations. Determining the correct weighing might prove difficult if
the ground truth is not known.

5.1.7. Estimation of error covariance matrix
The previously shown results were all obtained without estimation of the error covariance matrix C of the de-
lays, before transforming those to absolute times using a least squares method. The OLS estimation method
was thus used in all previous experiments as this does not use this information, as it assumes equal variances
and independent errors.

In Section 4.4.2, a method was shown to estimate a diagonal matrix C using the squared residuals, which
we will call the unstructured method of variance estimation here. In Section 4.4.3, another method was pro-
posed that assumed there to be more structure in the estimated variances, which we will simply refer to as
the structured method. The covariance matrix is estimated using the residuals of the OLS method, as was
explained in the previous chapter. The LATs are then estimated with these covariance matrices using the GLS
estimator. No further iteration is done, as this showed no guarantee to improve the LAT estimates, so the
residuals are only calculated once. Both methods are tested on the T and S sets.

First, the mean of the normalized RMSE is shown on the T sets in Fig. 5.20, to give an example of the
performance. Looking at all electrodes, the methods perform somewhat better than the regular NCC method,
although the difference becomes minimal for higher P . Interestingly, they perform slightly worse when only
looking at fractionated electrodes.

The mean normalized RMSE is also shown for the S3 sets in Fig. 5.21. The differences here are much
smaller. The unstructured estimation method of C seems to perform worse than the regular NCC method for
higher P .

The RMSE results for the T sets are shown in Table 5.5, the mean RMSE for the S sets is shown in Table 5.6.
The unstructured covariance estimation works fine on T1 but lacks performance on the other sets. Looking at
the performance on all electrodes the structured covariance estimation could give a very slight performance
improvement for NCC-10.

Conclusions Covariance estimation for use in a GLS estimator can improve performance of LAT estima-
tion for cross-correlation for lower values of P . For higher values of P the performance difference is small.
However a slight performance increase can be had on average when assuming a structure in the covariance
matrix related to the underlying nodes. The covariance has been estimated with using the residuals of the
OLS estimate, finding other ways to estimate covariance might improve the performance further. The LATs
estimated with the OLS method however also show good performance and GLS methods do not clearly beat
them in all situations.
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Figure 5.20: The mean normalized RMSE of NCC in the T sets is shown here in comparison with NCC where the covariance matrix C is
estimated. Both the unstructured and structured estimation of C is done and shown. On the left the error on all electrodes is taken, on
the right only the fractionated electrode signals are taken into account.

0 2 4 6 8 10

Order of neighbors used

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - all sensors

NCC

NCC - C struct

NCC - C unstruct

SD

0 2 4 6 8 10

Order of neighbors used

0.6

0.8

1

1.2

1.4

1.6

1.8

R
M

S
E

 -
 n

o
rm

al
iz

ed

S3 LAT estimation error - fractionated sensors

NCC

NCC - C struct

NCC - C unstruct

SD

Figure 5.21: The mean normalized RMSE of NCC-10 in the S3 sets is shown here in comparison with NCC where the covariance matrix
C is estimated. Both the unstructured and structured estimation of C is done and shown. On the left the error on all electrodes is taken,
on the right only the fractionated electrode signals are taken into account.

Table 5.5: The RMSE in milliseconds for the sets T1, T2 and T3 is shown, calculated for all electrodes and for only fractionated electrodes,
indicated with an (f). The regular NCC-10 method is now compared to method with structured covariance estimation (NCC-10 C struct)
and with unstructured covariance estimation (NCC-10 C unstruct)

SD NCC-1 NCC-10 NCC-10 C struct NCC-10 C unstruct
T1 2.41 2.99 1.27 1.27 1.26
T2 11.54 32.16 5.26 5.37 5.46
T3 0.93 10.30 0.49 0.27 0.50
T1 (f ) 8.66 6.59 2.41 2.35 2.27
T2 (f ) 27.69 40.07 12.46 12.88 13.10
T3 (f ) 3.44 3.34 0.87 0.98 1.88
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Table 5.6: The mean RMSE in milliseconds for the 10 simulations for sets S1, S2 and S3 is shown, calculated for all electrodes and for
only fractionated electrodes, indicated with an (f). The regular NCC-10 method is now compared to method with structured covariance
estimation (NCC-10 C struct) and with unstructured covariance estimation (NCC-10 C unstruct).

SD NCC-1 NCC-10 NCC-10 C struct NCC-10 C unstruct
S1 0.69 0.81 0.40 0.39 0.39
S2 1.26 3.15 0.89 0.87 0.94
S3 1.63 3.06 1.06 1.04 1.08
S1 (f ) 1.27 1.30 0.88 0.88 0.89
S2 (f ) 2.73 4.55 1.94 1.94 2.04
S3 (f ) 2.64 4.11 1.83 1.85 1.95
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Figure 5.22: On the left an atrial electrogram is shown, where the initial atrial activity comes first and the ventricular activity afterwards
is also shown. On the right this electrogram is shown when highpass filtered.

5.2. Experiments on real-world, clinical data
The clinically recorded, real-world mapping data as described in Section 3.2 can be evaluated using the same
methods used as on simulated data. However, the true activation times of the cells are not available for
this data. The resulting LATs estimated can then be compared to each other, but no direct measure of their
accuracy is available.

The LATs of the clinical data will be estimated using SD and NCC methods to compare a currently standard
practise with the method that was found to perform best on the simulated data. NCC-10 with OLS estimation
will be used, although these estimated LATs do not significantly differ from the NCC-9 or NCC-11 estimates.

5.2.1. Time windowing
In Section 4.5, a method was described to obtain time windows from the recorded data. This method used
highpass filtered data to detect the activation of the cells and remove unwanted disturbances, like the de-
polarization of the ventricles. For the recorded atrial electrograms an equiripple filter was used, designed in
MATLAB with a 7.5 Hz stopband frequency, a 15 Hz passband frequency and a stopband attenuation of 60 dB.
An example of the effect of this highpass filtering is shown in Fig. 5.22.

A window of 200 ms is sought for each activation, so Nwi ndow = 200 samples, and the step size was set at
Nwi ndow = 50 samples. The threshold to determine if a window was to be detected as active was set at η= 0.3,
so if the signal had a maximum amplitude larger than 30% of the maximum amplitude of the electrogram the
window was marked as active.

5.2.2. Regular sinus rhythm
The first data set that will be used was recorded from a patient undergoing coronary artery bypass surgery.
This data set was recorded from the left pulmonary vein site, on the left atrium. From the 5 beats present in
the 5-second recording of sinus rhythm from the patient, five time windows of 200 ms were extracted. The
third beat, so the third time window, is evaluated here.

First, the total activation map of this beat is shown for the SD and NCC-10 method. The maps can be seen
in Fig. 5.23. It can be observed there are quite some differences in estimated LATs. A few of those differences
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Figure 5.23: On top the estimated activation times in milliseconds with the steepest deflection (SD) method are show. On the bottom the
estimate times are shown for the normalized cross-correlation method using 10th order neighbors (NCC-10).

will be highlighted.
Looking at the 20th column, the 4th and 5th electrode are highlighted in Fig. 5.24. There it can be observed

that the SD method sees an 8 ms difference in activation time between these two electrodes. The NCC-10
method sees only a 3 ms delay between these electrodes.

The two electrograms corresponding to these electrodes are also shown. They are shown separately in
the upper plots, and they are shifted in the lower plots. In the lower plots the lag detected by each method
is compensated for, so the signals should be synchronized and their activation time should be simultaneous.
Shifting them by their time difference can give an indication if the delay estimated between them is plausible.

An obvious difference can be seen between the two methods from Fig. 5.24. When the signals are over-
lapped, both methods have different interpretation of how they should be synchronized to let their LATs
coincide. Without any further knowledge about the ground truth available the correctness of the methods
cannot be validated directly, unfortunately.

Looking at another part of the array, in the 8th row, there are 4 electrodes highlighted in Fig. 5.25. There,
the SD method shows the electrodes all have an estimated LAT at the same exact moment. The NCC-10
method estimates there is a 1 ms delay between all the electrodes.

The time series signals are shown on the right in Fig. 5.25. The upper plot depicts the signals not shifted
in time, as the SD method estimates these signals all have their activation time at exactly the same time. On
the bottom right of Fig. 5.25 the signals are shown when shifted according to the NCC-10 method’s estimated
lag. There the signals are synchronized according to it’s estimate of their activation time. The estimates from
both methods are again clearly different.

5.2.3. Signals with disturbances
The second data set that will be investigated is from a patient with a history of paroxysmal AF. This patient
was also undergoing coronary artery bypass surgery. The data was recorded from the left atrium during SR
and a single beat, the first of the recorded beats, will be evaluated.

The estimated LATs for SD and NCC-10 are shown in Fig. 5.26. In the right bottom corner the signal was
especially chaotic, which might be because the contact with the atrial tissue was weak. That corner will be
ignored and other locations in the array are compared.

In Fig. 5.27 the signals of two electrodes from row 7 are compared, those at column 11 and 12. The SD
method detects a difference of 9 milliseconds in LAT. The NCC-10 method detects a difference of 4 millisec-
onds for the same two electrodes. The signals are shifted according to those delays between them that were
estimated and are also shown in their shifted form. Because the point of steepest deflection is at the begin-
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Figure 5.24: On the left side the LAT maps in milliseconds are shown for SD and NCC-10, for column 15 to 24 of the electrode array. On
the right the signals from the highlighted electrodes are shown and compared.

Figure 5.25: On the left side the LAT maps in milliseconds are shown for SD and NCC-10, for column 1 to 8 of the electrode array. On the
right the signals from the highlighted electrodes are shown and compared.
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Figure 5.26: The LAT maps are shown in milliseconds for SD and NCC-10, for the first beat recorded on the left atrium during SR.

ning of the downward slope in one electrode and at the end of the slope in another electrode, the SD method
detects a long delay. The NCC method tries to match the entire signals to each other and to many other
signals in the array, and it detects a much lower lag.

Another set of 4 electrodes is compared. This time from row 6, column 16 to 19. The estimated LATs and
the signals are shown in Fig. 5.28. The interesting thing here is the SD method detecting a much later LAT
for the middle two electrodes. Looking at the shifted signals for SD and NCC-10 it can be observed that the
SD method sees a second, smaller deflection as the LAT for the electrodes from column 17 and 18. The NCC
method focuses on the bigger deflections.

Lastly for this beat, four other electrodes were compared. This time four electrodes from column 9 are
taken, from row 2 to row 5. The activation maps and electrode signals are shown in Fig. 5.29. Taking the elec-
trode from row 2 as a reference, the SD method detects lags of 5 ms, 5ms, and 12 ms for the other electrodes.
The NCC-10 method detects lags of 4 ms, 7 ms, and 9 ms for those same electrodes.

The unshifted signals and the shifted signals according to those estimated lags are shown on the right in
Fig. 5.29. The signals from the electrodes differ substantially in morphology, so overlapping them to see where
they match becomes even more difficult. The estimates of the delay between the LATs of different locations
in the array are again clearly different. The SD method estimates a lag of 7 ms between the electrodes in row
4 and 5 of column 9, the NCC-10 method estimates it is only a 2 ms lag.

5.2.4. Multiple wavefronts
Another data set that can be evaluated is that of another patient with paroxysmal AF. This patient was un-
dergoing surgery for mitral valve disease. The first beat recorded from the left atrium during SR investigated
here. In this beat there were parts of the array that clearly measured multiple activation waves.

The LATs for SD and for NCC-10 are shown on the right in Fig. 5.30, for column 1 to 16. From both these
estimates of the LATs it is clear there is a segment of the electrode on the lower left where the tissue activates
much earlier than the part on the top right, these parts seem to be excited by separate activation waves.

Four electrodes from row 2 are investigated, from column 10 to 13. The unshifted electrode signals are
shown on the right. In these electrodes there are three or even four different activations visible in all elec-
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Figure 5.27: On the left side the LAT maps are shown in milliseconds for SD and NCC-10, for column 9 to 16 of the electrode array. On
the right the signals from the highlighted electrodes from row 7 are shown and compared.
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Figure 5.28: On the left side the LAT maps are shown for SD and NCC-10, for column 15 to 22 of the electrode array. On the right the
signals from the highlighted electrodes in row 6 and their shifted versions are shown.
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Figure 5.29: On the left side the LAT maps are shown in milliseconds for SD and NCC-10, for column 6 to 13 of the electrode array. On
the right the signals from the highlighted electrodes in column 9 and their shifted versions are shown.

trodes. Shifting the electrode signals according to the estimated delays in LAT does not yield much results
here as the shifted signals become hard to interpret.

The estimated times for the NCC method seem to have difficulties with the electrodes detecting all these
different activation waves. Looking at the unshifted electrograms, it might be better in such cases to develop a
method that can cross-correlate all the detected peaks individually, rather than try to correlate these multiple
activation, spread out over 100 ms, at the same time.

Conclusions From investigating the estimated LATs on clinical data it can be observed that the cross-correlation
method can provide distinctly different estimates when compared to the LAT estimates from a steepest de-
flection method.

For electrodes that have not measured discrete multiple activations in a short window, the cross-correlation
method provides LAT estimates that show robustness to smaller disturbances and provides LAT maps that
could give more information to help find accurate excitation patterns in the tissue.

For situations where there are multiple wavefronts, the cross-correlation method could have difficulties
identifying which activation to focus on. It can be combined with other methods in a weighting scheme dis-
cussed before to help improve this, or the window over which the cross-correlation is done can be shortened
to help identify individual propagating waves. Ideally, the time windows of the electrograms that are cross-
correlated thus only contain a single wavefront.
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Figure 5.30: On the left side the LAT maps are shown in milliseconds for SD and NCC-10, for column 1 to 16 of the electrode array. On
the right the signals from the highlighted electrodes in row 2 and their shifted versions are shown.



6
Conclusions

6.1. Summary of results
In this thesis, using cross-correlation to determine the delay between the activation time of pairs of electrodes
measuring epicardial electrograms in the atria was investigated. Cross-correlation was applied to pairs of
electrodes further apart, not only to directly neighboring electrodes. The obtained delay were then converted
back to the local activation times and they were compared to the current accepted methods.

In Chapter 2 epicardial mapping for the human atria was introduced using an array of electrodes. A model
of the action potential of the cardiac cells was discussed, which introduces the transmembrane currents that
determine the measured electrogram. Several methods were introduced that use the measurements from the
electrode to estimate the local activation times of the tissue underneath these electrodes.

In Chapter 3 multiple types of simulations were discussed where a 2D piece of atrial tissue with different
conductive properties could be simulated. Furthermore, clinically recorded data of the atrial electrograms
was introduced, where during open-heart surgery epicardial recording was done with an array of 192 elec-
trodes.

In Chapter 4 a framework is first presented which uses a grid graph to define the spatial relations of the
electrodes. Using the neighboring electrodes defined by this graph, higher order neighbors could be then
defined as pairs of electrodes with a higher number of hops between them in the grid graph. Cross-correlation
of measured signals could then be done between the higher order neighbors and not only the direct ones.
Additionally, multiple methods were described to convert the delays between pairs of electrodes to absolute
activation times. Estimation of the error covariance of the observed delays was presented for different error
models, with and without the structure of the graph taken into account.

In Chapter 5 experiments with simulated data were used to compare the performance of several methods
on different types of conduction patterns in atrial tissue. Experiments with clinical data were done to validate
the functionality and observe differences between methods in a real-world setting.

Cross-correlation over higher order neighbors was first applied to simulated data, and the performance
of the LAT estimates was observed to improve for increasing orders of neighboring pairs used. The results
were compared to those obtained using steepest deflection and spatial gradient methods. Cross-correlation
over higher order neighbors out-performed them on the simulated tissue. Further tests were done to see if
results could be improved when observations were left out or combined with information from the steepest
deflection. For cross-correlation methods only using pairs close together, this could improve performance.
However, when many further away pairs were used, improvements on the estimated activation times were
minimal. Estimation of the covariance was also done, yielding possible improvements in some cases.

In the experiments on data recorded from real-world patients the cross-correlation and steepest deflec-
tion estimates of activation times were compared. The estimates showed distinct differences in many situa-
tions. When the recorded electrograms’ morphologies were reasonably standard for signals recorded in SR,
with sometimes smaller disturbances, the cross-correlation over higher order neighbors was found to give
estimates that were certainly probable. When the morphologies become more complex and multiple wave-
fronts are detected by a single electrode the analysis became more difficult.

The results from the experiments clearly showed the advantages of cross-correlation over higher order
neighbors when determining the delay between local activation times. The estimates of the absolute activa-
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tion times from those lags were superior in simulation to methods using only close neighbors. Some other
observation about the tested methods are discussed below.

Increasing P in NCC-P Increasing the order of neighbors used to in the cross-correlation methods improves
the activation time estimation. The improvements do diminish at a certain point, and adding even more
distant pairs does not help significantly anymore. Excluding electrode pairs that are close, so only using
pairs with greater distances between them, can have a positive impact is some situations, which is also an
interesting result to note.

NDCC vs NCC Using the derivative of the electrograms to perform cross-correlation on seems to give better
results than using the time series data when only using direct neighbors (NDCC-1 vs NCC-1). When using
higher order neighbors its advantage goes away and using the derivative performs worse in all tests. The
regular time-domain cross-correlation seems to be able to better match the signals using their time-domain
morphology.

NCC vs SD On the results using simulated data, the cross-correlation over higher order neighbors outper-
forms the steepest deflection method of estimating local activation times. Combining them both yielded
improved estimates when using only close neighbors in delay estimation, however this improvement seemed
to diminish with using higher order neighbors. The combination scheme could still be useful if it would be
dependent on the type of electrograms present to play to the strengths of the individual methods.

Covariance estimation The ordinary least-squares estimation of the activation times from the observed
delays was tested against generalized least-squares methods where the covariance matrix was estimated. Co-
variance estimation could improve the results for when using only close neighbors, however the improve-
ments became negligible when higher order neighbors were taken. The ordinary least-squares estimate of
the activation times seems difficult to improve upon.

Clinical signals In experiments on clinical signals, substantial differences arise in estimated activation
times, most noticeably when comparing the differences in estimated times between neighboring electrode
locations. To provide the most probable improvements in epicardial mapping procedures for the atria, cross-
correlation could be a candidate. If the cross-correlation methods examined in our experiments are used
where they are strong, in areas where there is a clear single activation wave with some smaller disturbances,
the possibilities of improve estimates seem to be there.

6.2. Future work
More research must be done into the application of cross-correlation for LAT estimation in epicardial atrial
mapping. The performance increase when using the estimated lags between distant pairs was shown for a
single type of array. The influence of higher or lower densities of electrodes can be investigated to see if the
performance benefit increases or decreases.

The properties of the individual electrograms that contribute to proper estimates of the delay should also
be investigated, to see if there is a property that can indicate these delays should get an increased weight
when estimating the LATs. Using more real-world examples or different simulations of epicaridal electro-
grams could help in investigated what kind of morphology of the signal is most suited for a cross-correlation
estimate, and for which ones a steepest deflection estimate could be given more weight if their information
would be combined.

For optimizing the cross-correlation LAT estimation performance, it is important that its time window is
small enough to not include multiple passing wave fronts. Isolating these windows properly then allows for
the proper estimation of the propagation of the depolarization through the tissue.

Furthermore, it can be investigate how generalized cross-correlation methods such as the phase trans-
form (GCC-PHAT) can be applied in the atrial recording. The difficulties with these methods using cross-
spectral analysis during testing arose due to the significant differences in morphology of the signals.

Lastly, a benchmark test using artificial tissue where the transmembrane currents are known could benefit
research into this subject. Having the information about the true physical transmembrane currents can help
in understanding what happens exactly in the cardiac tissue as recorded electrograms could be recreated in
a controlled setting.



A
CRLB derivation

The Cramér-Rao lower bound [63] for an unbiased estimator for the length M parameter vectorτ in the model

d = B Tτ+ε (A.1)

will be investigated, with the error ε from a zero-mean multivariate Gaussian distribution with a non-singular,
M×M covariance matrix C , so ε∼N (0,C ). The length L vector of observations is d and B T is a L×M matrix.
The lower bound for the variance of such an estimator is then

E [(τ̂−τ)(τ̂−τ)T ] ≥ J−1, (A.2)

with J the Fisher information matrix. This matrix is defined as

J =−E

[
d 2

dτ2 ln p(d |τ)

]
, (A.3)

with p(d |τ) the probability density function of d given τ. This creates an L×L matrix with entries

J =


−E

[
d 2

dτ2
1

ln p(d |τ)

]
−E

[
d 2

dτ2dτ1
ln p(d |τ)

]
. . .

−E
[

d 2

dτ1dτ2
ln p(d |τ)

]
−E

[
d 2

dτ2
2

ln p(d |τ)

]
. . .

...
...

. . .

 . (A.4)

The probability density function of the observations given the parameters is

p(d |τ) = (2π)−
L
2 |C |− 1

2 exp
(−1/2(d −µ)T C−1(d −µ)

)
(A.5)

with µ= E [d ]. Taking the natural logarithm gives

ln p(d |τ) =−2L ln(2π)−2ln(|C |)−1/2
(
(d −µ)T C−1(d −µ)

)
. (A.6)

Taking the derivative with respect to τ then gives

d

dτ
ln p(d |τ) =−1/2

(
(

dµ

dτ
)T C−1(d −µ)+ (d −µ)T C−1(

dµ

dτ
)

)
, (A.7)

when assuming d
dτC = 0. Taking the derivative again gives

d 2

dτ2 ln p(d |τ) =−1/2

(
2(

dµ

dτ
)T C−1(

dµ

dτ
)+ (

d 2µ

dτ2 )T C−1(d −µ)+ (d −µ)T C−1(
d 2µ

dτ2 )

)
. (A.8)

The expected value is taken, and because E [d −µ] = B Tτ−B Tτ= 0, the expression becomes

E

[
d 2

dτ2 ln p(d |τ)

]
=−

(
(

dµ

dτ
)T C−1(

dµ

dτ
))

)
. (A.9)
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Using the fact that µ= B Tτ, the Fisher information matrix becomes

J = BC−1B T . (A.10)

Its inverse is then the bound on the variance that was sought,

E [(τ̂−τ)(τ̂−τ)T ] ≥ (BC−1B T )−1. (A.11)



B
List of Abbreviations and Symbols

x Vector x .

X Matrix X .

Xi , j The element at index i , j of a matrix.

xT , X T Transpose of vector or matrix.

x H , X H Hermetian transpose of vector or matrix.

|X | Determinant of matrix.

E [·] The expected value.

Var(·) The variance.

Cov(·, ·) The covariance.

N (µ,σ2) A Gaussian distribution with mean µ and variance σ2.

N (i ) The set of neighbors of node i .

AA Atrial Activity.

AF Atrial Fibrillation.

AFL Atrial Flutter.

CRLB Cramér-Rao lower bound.

ECG Electrocardiogram.

FFT Fast Fourier Transform.

GLS Generalized Least Squares.

IAF Induced Atrial Fibrillation.

LAT Local Activation Time.

ML Maximum Likelihood.

NCC Normalized Cross-Correlation.
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60 B. List of Abbreviations and Symbols

NCC-P Normalized Cross-Correlation, using P th order neighbors.

NDCC Normalized Derivative Cross-Correlation, using the 1st order time-derivative of the data.

OLS Ordinary Least Squares.

RMSE Root Mean Square Error.

SD Steepest Deflection.

SG Spatial Gradient.

SNCC Single hop-order Normalized Cross-Correlation.

SVD Singular Value Decomposition.

VA Ventricular Activity.
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