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Abstract

Task-based continual learning setups suffer from
temporary dips in performance shortly after switch-
ing to new tasks, a phenomenon referred to as sta-
bility gap. State-of-the-art methods that consider-
ably mitigate catastrophic forgetting do not nec-
essarily decrease the stability gap well. One no-
table continual learning regularization approach,
neuronal decay, attempts to encourage learning so-
lutions that have small activations in the hidden lay-
ers. It previously showed improvement in terms
of catastrophic forgetting but was not assessed in
the context of stability gap. In this study, we com-
pare neuronal decay with a baseline model to see
if it can reduce the stability gap. Qualitative anal-
ysis with plots and quantitative analysis with met-
rics, such as gap depth, time-to-recover and aver-
age accuracy, both give strong evidence that this
simple regularization method can reduce the stabil-
ity gap with no substantial sacrifice of performance
or training time. The source code is available at
https://github.com/zkkv/neuronal-decay.

1 Introduction
Deep artificial neural networks are sometimes required to
learn from a stream of incrementally changing non-stationary
training data [1], [2]. This process is commonly referred to
as continual learning (CL). Such a setup might be used, for
instance, in real-time systems or when dealing with sensitive
data [3] that needs to be discarded immediately after being
processed. In task-based continual learning (TBCL) scenar-
ios, the model deals with a discrete set of tasks that are pre-
sented to that model one after another [4].

Many models often experience sudden drops in accuracy (just
after a task-switch) for old tasks, that is then followed by a
recovery period [5]. A schematic representation of the phe-
nomenon can be seen in Figure 1. This stability gap becomes
apparent if the evaluation is done throughout training, rather
than solely at the end of each task. Surprisingly, it does not
disappear, even when using full replay (also called joint in-
cremental training), that involves exposing the model to the
entire set of old tasks while learning new ones [6]. It is im-
portant to consider stability gap as it serves as an indication
of the model’s performance in the worst case [7], which may
be more significant than the average performance in certain
contexts.

Different methods of dealing with stability gap have been pro-
posed and tested, each showing various success but none be-
ing perfect [4]. One notable approach described in [8] as-
sessed the impact of neuronal decay regularization on overall
accuracy. The authors argued that neuronal decay encourages
simpler solutions, retaining inactive neurons for future tasks.
Yet, they did not address how stability gap is influenced when
the outlined method is applied. In this work, we quantita-
tively and qualitatively explore this approach and evaluate its
impact specifically on stability gap.
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Figure 1: Stability gap. A continual learning model suffers from
a temporary dip in performance shortly after a task switch, that is
observed only if the evaluation is done continuously.

Multiple experiments with and without full replay were set
up to then compare the performance of the model before and
after introducing neuronal decay. This allowed us to answer
the following research questions:

Q1 (Main question) Does inclusion of neuronal decay reduce
the stability gap, compared to the baseline that uses re-
play but not decay?

Q2 Can neuronal decay on its own (with no replay) outper-
form the baseline that uses replay but not decay?

Q3 Is there a significant computational overhead associated
with using neuronal decay?

The results that we have obtained indicate that neuronal decay
indeed has the potential to reduce the stability gap, compared
to the baseline. It was confirmed that the observed difference
was present for various learning rates, model sizes and neu-
ronal decay coefficient values. Notably, neuronal decay alone
was not strong enough to decrease the stability gap. Nonethe-
less, combined with existing state-of-the-art methods, neu-
ronal decay may complement them and help a model maintain
acceptable accuracy throughout its lifetime. Importantly, this
beneficial effect comes at little cost in terms of computational
complexity.

In the remainder of the paper we cover the CL background
and importance of attenuating stability gap (section 2); de-
tails of neuronal decay approach, used dataset and architec-
ture, metrics and hypotheses (section 3); experimental setup
and results (section 4). We conclude with a discussion and
mention potential improvements that can be done (section 5).

2 Related Work
In this section, we will cover the most important background
concepts that are required to understand the problem. Specif-
ically, we go over the unique challenges CL is dealing with
in subsection 2.1; the well-known CL problem of catas-
trophic forgetting in subsection 2.2; and the stability gap phe-
nomenon in subsection 2.3.

2.1 Continual Learning
Continual learning is a subset of deep learning where the in-
put distribution may change over time (such data is called
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non-stationary) [1], [2]. In contrast to the classical deep learn-
ing, this requires the model to constantly adapt in order to
maintain acceptable accuracy for both old and new data, hav-
ing to minimize resource consumption, be it time, number of
operations or anything else.

While, in general, the data may change gradually, in research
and applications, the focus is usually put on task-based CL
[4]. It is concerned with a set of discrete tasks that switch at
certain time points. These tasks can range a lot in terms of
their similarity to each other.

Orthogonal to that lies the separation of CL into three distinct
scenarios [4], [9]. In task-incremental learning, the specific
task is provided as input or somehow known, and the output
does not change over time. The benefit of knowing the task
is that one can simply use a part of the network suited best
for that particular task. In class-incremental learning the task
is not given, and the model’s output space grows with each
task, thus making this scenario drastically more difficult. The
last scenario, which can be considered a middle ground, is
domain-incremental learning. Here, the model knows noth-
ing about what task it is dealing with, yet the output format
remains constant. Put simply, in the case of classification,
each new task expands the domain that we have to accom-
modate, but we ask the model to classify among the same
number of possible labels. In this study, we focus solely on
this scenario.

2.2 Catastrophic Forgetting
In numerous previous studies focusing on TBCL, it has been
observed that the performance of the model in the initial tasks
often deteriorates when new tasks are introduced, which is
known as “catastrophic forgetting” [10], [11]. In its most ex-
treme form, the network completely discards the previous set
of parameters in order to achieve high accuracy (or, equiv-
alently, low loss) for the active task. Crucially, the appar-
ent decrease in performance is not necessarily caused by lack
of model capacity, demonstrated by interleaved simultaneous
training on multiple tasks at once [4]. This knowledge led
researchers to believe that catastrophic forgetting in TBCL
setting can be avoided, or at the very least minimized.

The goal of any TBCL method, both in artificial networks or
otherwise, involves carefully balancing between stability and
plasticity [12]. This ideally leads to a point in the parameter-
space for which the model maintains acceptable accuracy in
all previously seen tasks [13]. Generally, this is done in two
non-exclusive ways [4], [6]: changing what exactly is opti-
mized (such as with experience replay [14], Elastic Weight
Consolidation [15]) and changing how the parameter space
is traversed and a point of minimum is reached (Orthogonal
Gradient Descent [16], hard attention mechanism [17]).

Neuronal decay, that we present in the next section, has prop-
erties that make it fit both categories. While the loss function
is modified, the motivation behind that is to promote learning
simpler solutions, thus preserving capacity for future tasks
[8].

2.3 Stability Gap
The most common state-of-the-art approaches described in
the literature put emphasis on avoiding catastrophic forget-
ting [5]. However, a less obvious and less studied issue still
persists. Even though the model might ultimately reach the
desired level of performance in every task, these approaches
still suffer from a sudden drop in accuracy, a stability gap,
occurring at task switches. To observe the stability gap, it is
necessary to evaluate the model performance during its train-
ing, ideally – after every batch.

Studying the stability gap phenomenon is important for sev-
eral reasons. For one, its presence could be an indication that
existing CL approaches are suboptimal [6]. Discovering gen-
eralizable methods that exhibit no stability gap can potentially
make deep neural networks spend fewer resources on achiev-
ing the same result. Higher efficiency can result in both more
powerful and less expensive models.

Another intriguing aspect of stability gap is that it is seem-
ingly not present in the human brain or other biological sys-
tems that perform continual learning [5], [18]. In fact, hu-
mans tend to do worse when tasks are introduced in an in-
terleaved way, compared to cases where each task is learned
sequentially [18]. This too could mean that models which
were initially inspired by the brain network, lack some fun-
damental aspects that enable the brain to be so efficient at
learning. Closing that gap could lead both to an improvement
in deep learning methods and a better understanding of cog-
nitive mechanisms.

Finally, as mentioned before, a large stability gap is associ-
ated with poor worst-case performance. This may be accept-
able most of the time but pose a problem when dealing with
safety-critical applications [7]. Any decrease in performance,
even a momentary one, can theoretically be exploited by ma-
licious actors [5].

3 Methodology
In this section, a high-level description of the applied method
is outlined. In subsection 3.1 we examine the regularization
method that is compared against a baseline model; in subsec-
tion 3.2 a description of the network architecture, dataset and
tasks are given; subsection 3.3 covers the metrics; and sub-
section 3.4 lists the hypotheses and the justification behind
them.

3.1 Neuronal Decay
Regularization refers to a broad set of machine learning tech-
niques that try to keep the model more generalizable [19].
Traditionally, machine learning regularization involves mod-
ifying the loss function to discourage some particular behav-
ior during the training step. In classical deep learning, such a
penalty typically leads to a simpler model.

In the context of CL, however, the use of the term regulariza-
tion is slightly different. Regularization-based methods usu-
ally try to either discourage big changes of the network’s pa-
rameters or function values at specific points [4].
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In the framework outlined in [8], the loss function comprises
two terms: the usual cross-entropy loss LCE and the addi-
tional neuronal decay term LND, with some coefficient λ:

L = LCE + λLND (1)

The decay term LND is defined by the authors to be either of:

L1 =
∑
x∈B

M∑
m

N(m)∑
i

∣∣∣f (m)(x)i

∣∣∣ (2)

L2 =
∑
x∈B

M∑
m

N(m)∑
i

(
f (m)(x)i

)2

(3)

where the activation function value f (m)(x)i of each neuron
i of each hidden layer m is evaluated for every sample x of
the batch B. Here, M indicates the number of hidden lay-
ers and N (m) is the number of neurons in a particular layer
m. The absolute value or square is taken, which is then
summed across all samples and hidden neurons to produce
a single scalar value. This definition makes neuronal decay
more closely related to the classical weight decay regulariza-
tion, rather than the usual CL regularization approaches.

The inclusion of the regularization term encourages the model
to learn compact solutions and preserve the rest of the net-
work for subsequent tasks [8]. Between any two given so-
lutions, both having high accuracy, the one that uses fewer
resources becomes more favorable. Figure 2 demonstrates
this concept. It shows two networks during inference, pro-
ducing roughly the same result for a particular sample. The
difference is that the network on the left learned sparse acti-
vations, indicated by few active neurons, while the other net-
work learned dense activations. The first network is preferred
due to its presumed remaining capacity for future tasks.

The original work on neuronal decay focused on mitigation
of catastrophic forgetting. The authors showed considerable
improvement in that aspect compared to the baseline experi-
ment. However, since the authors did not provide a discussion
of the effect of neuronal decay on stability gap, a more thor-
ough investigation is conducted by us to assess it from that
angle.

3.2 Network and Data
To answer the aforementioned research questions, a multi-
layer perceptron (MLP) neural network is set up. Due to its
simple structure, we can focus our attention on the impor-
tant differences. The baseline experiment uses full replay but
without any neuronal decay (λ is effectively zero). In the ex-
perimental model, L2 neuronal decay, defined in (3), is com-
puted for all hidden layers of the MLP. We stick to only L2

because we expect the effect of introducing L1 to be similar.
The choice is made in favor of L2 due to its reported wider
range of suitable values [8]. Neuronal decay value is calcu-
lated in each forward pass and added to the loss. All other
parameters of the experiments, such as the learning rate, op-
timizer, batch size, model size, etc., are left exactly the same
between the baseline and experimental models.

Sparse MLP Dense MLP

Input

Hidden
neurons

Output
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Low HighActivation

Figure 2: A schematic representation of a sparse network with few
active neurons and a dense network with many active neurons. Both
networks achieve comparable performance, yet neuronal decay
method prefers the sparser network.

The dataset of choice is MNIST [20], containing low-
resolution images of handwritten digits. It works well with
an MLP and allows achieving high accuracy quickly. Reach-
ing high accuracy is important for observing a stability gap
in the first place. We apply rotations to the digits from the
dataset to generate new tasks. Thus, in Task 1 the network
has to learn to classify digits with no rotation applied; in the
next task it has to classify digits both with and without rota-
tion, and so on. An illustration of this setup can be seen in
Figure 3.

Task 1 0° x Task 2 80° x Task 3 160° x

Figure 3: A training sample showing the three tasks used in the
study. Each task corresponds to a rotation: 0◦, 80◦ and 160◦.

To assess the model’s performance continuously, each for-
ward pass is followed by an evaluation step. The performance
in that step is measured as the portion of the samples classi-
fied correctly. This value is computed for each task from the
moment the task is first introduced onwards.
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3.3 Metrics
We assess the stability gap both qualitatively, with the help
of plots, and quantitatively, by simple metrics that we define
here. Figure 4 gives an intuition behind how the metrics are
computed. The gap depth GD for each task, starting from the
second one, is measured as the decrease in percentage points
(p.p.) from the accuracy in the very last batch before the task
switch to the lowest accuracy throughout that same task. An-
other metric of interest is time-to-recover TTR. We measure,
in percentage relative to the number of batches in the task,
how long it took for the model to get from the lowest point
within the task back to the level of accuracy before the task
switch. Finally, we also consider accuracy ACC either for a
single task or averaged out across all current and past tasks at
the moment of the task switch. This lets us confirm that the
applied method does not sacrifice plasticity.

For all three metrics, the subscript i, j denotes the perfor-
mance of which task i is considered and at what interval j
it is considered. For instance, the gap depth for performance
of Task 1 when the Task 3 is being learned is GD1,3.

GD

TTR

Figure 4: An example of how gap depth GD (in p.p.) and time-
to-recover TTR (expressed as the percentage of the total number of
batches in the task) metrics are computed for the accuracy curve.

In order to answer Q3, we use a profiler to better grasp the
impact the proposed method may impose. To get a hardware-
independent measure of how complex it is to train the model,
we also calculate the number of multiply-accumulate opera-
tions (MACs) per training batch analytically. One MAC is
defined as one multiplication and one addition, thus making
it equal to two floating-point operations (FLOPs) [21].

3.4 Hypotheses
Based on the research questions, three hypotheses are formu-
lated:

H1 Addition of neuronal decay reduces the stability gap with
little impact to the average accuracy.

H2 Neuronal decay alone is not enough to outperform replay.
H3 Neuronal decay is marginally worse in terms of compu-

tational complexity than the baseline (during training).

The first hypothesis stems from the observation that sparser
activations improve the network’s ability to learn multiple

tasks [8]. Thus, while higher average accuracy does not nec-
essarily imply a smaller stability gap, it’s reasonable to as-
sume that newer tasks could be learned with less interference
within the model. We motivate the next hypothesis by re-
flecting on the idea that full replay is an idealistic scenario,
since it practically makes the model see the old data in full
again. Therefore, it sets up a too high of bar to beat with a
simple regularization term like this one. The final hypoth-
esis is driven by preliminary analysis of the regularization
term. Since it does not involve complex computations, it is
expected to introduce very little overhead during training. At
the same time, we point out that regularization, in general,
doesn’t affect inference runtime at all.

4 Experimental Setup and Results
Experiments were conducted using the PyTorch v2.7.0 frame-
work for Python v3.12.8 and largely based on the code from
[1]. The following hyperparameters and configuration vari-
ables stayed the same throughout all experiments, unless
specified otherwise. Batch size was chosen to be 512 with
500 batches per task, which, for MNIST, equates to roughly 4
epochs per task. This number of batches per task was enough
for accuracy to stabilize and avoid overfitting. Note that we
simulated an environment where we had access to a stream
of data, therefore, the number of epochs is not an integer
amount, but it is still reported for completeness. After each
complete epoch the training set got reshuffled. We set the test
size to 2000 images to get a reliable estimation of accuracy
after each batch. The test set was reshuffled with every batch.
The learning rate was fixed at 10−3 and the chosen optimizer
was Adam with β1 = 0.9 and β2 = 0.999, which are the de-
faults of PyTorch. The MLP had a single hidden layer with
2048 neurons. Finally, we had three tasks corresponding to
three rotations: 0◦, 80◦ and 160◦.

To achieve reproducible results, fifteen random seeds were
chosen, with which we ran the exact same set of experiments.
The seeds can be found in the repository for this paper.

Visualized in Figure 5 is the performance of the model
throughout its lifetime in Task 1, averaged at each time point
over all executions. In red is the performance of the baseline
model, and in blue is the performance of the experimental
model (ND). The latter model showed a smaller gap depth
and approximately the same time-to-recover after both task
switches. The accuracy plateaued at a slightly lower value,
which is most apparent in the third interval.

The average accuracy across all current and past tasks is given
in the Figure 6. It appears to be similar for baseline and ND.
To gain even more insight, it is useful to compare the accuracy
for all tasks. Figure 7a shows how accuracy changed for every
task in the baseline model, while Figure 7b does so for the
ND model. The difference was mostly in favor of the second
one: the gap depth was smaller, and the curve was sharper.
These important observations imply that neuronal decay did
not reduce the stability gap in exchange for worse accuracy
for other tasks.

The computed metrics, presented in Table 1 and Table 2, sup-
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Figure 5: Test accuracy (%) for the baseline and neuronal decay
(ND) model in Task 1. The shaded area represents the standard er-
ror computed over all seeds. The gap depth in the ND model is
smaller, but so is the final accuracy.
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Figure 6: Average test accuracy (%) for the baseline and neuronal
decay (ND) model, computed over all present and past tasks. The
last interval considers all the tasks. There is no significant differ-
ence between the two, apart from slightly sharper curves and
lower final accuracy for the ND model.

port the qualitative analysis. The values of GD1,2 and GD1,3
were smaller by 5.3 p.p. and 10.9 p.p. respectively. ACC
was higher for the baseline model, but the difference was not
drastic. It is likely that tweaking the hyperparameters could
reduce this difference while preserving the positive effects.
TTR had quite a large variance which makes it harder to con-
clusively state that either method should be preferred.

It should be noted that these metrics were computed individ-
ually for each seed, and the reported standard error was com-
puted across the aggregated metrics. The figures, however,
present the average performance at every time point.

To show the robustness of these results, we ran experiments
with some hyperparameters tweaked in the baseline and the
ND model. Figure 8 illustrates how λ affected the perfor-
mance. A lower value of 1 · 10−7 led to the regularization
term being less significant, thus the gap becoming more sim-

Table 1: Task 1 gap depth GD, Task 1 time-to-recover TTR and aver-
age accuracy ACC, computed in the Task 2 interval for baseline and
neuronal decay (ND) models. The average accuracy only includes
Task 1 and Task 2, but not Task 3. The ND model shows a decrease
in GD while sacrificing some accuracy; TTR varies greatly in both
models.

Model GD1,2 (p.p.) ↓ TTR1,2 (%) ↓ ACCAVG,2 (%) ↑
Baseline 11.7± 1.1 15.8± 7.0 97.64± 0.26

ND 6.4± 0.7 14.8± 11.0 97.23± 0.23

Table 2: Task 1 gap depth GD, Task 1 time-to-recover TTR and av-
erage accuracy ACC, computed in the Task 3 interval for baseline
and neuronal decay (ND) models. The average accuracy includes all
three tasks. The ND model shows a decrease in GD while sacrific-
ing some accuracy; TTR varies greatly in both models.

Model GD1,3 (p.p.) ↓ TTR1,3 (%) ↓ ACCAVG,3 (%) ↑
Baseline 16.4± 1.4 15.0± 6.4 97.67± 0.17

ND 5.5± 1.0 16.1± 9.6 97.04± 0.16

ilar to that of the baseline. On the contrary, a higher value of
5·10−5 could provide an even better improvement in terms of
gap depth but also sacrificing the (initial) performance in Task
1. We report how the model performed in Task 1 in the last
interval and on average for different values of λ in Table 3.

Table 3: Gap depth GD, time-to-recover TTR and accuracy ACC, com-
puted for Task 1 in the Task 3 interval for three different values of the
neuronal decay coefficient λ. At most three seeds are excluded from
each TTR computation due the model not recovering at all. Larger
value of λ leads to a decrease in GD and TTR but also lower ACC.

λ GD1,3 (p.p.) ↓ TTR1,3 (%) ↓ ACC1,3 (%) ↑
1 · 10−7 11.0± 1.3 21.3± 13.8 98.20± 0.18

1 · 10−5 5.5± 1.0 16.1± 9.6 97.33± 0.25

5 · 10−5 4.2± 0.9 13.2± 10.6 96.32± 0.34

The effects of changing the learning rate of the optimizer and
the number of neurons in the hidden layer are displayed in
Figure 9 and Figure 10, respectively. The learning rate af-
fected the grand picture to a high degree: lowering the learn-
ing rate led to better base performance of the ND model, but
the absolute decrease in the gap was present across differ-
ent learning rate settings. The difference in performance be-
tween an MLP model with 1024 neurons and 4096 appears
marginal. However, the results may be different for models
that are several magnitudes larger.

Next, we take a look at the performance of the models with-
out replay (for the standard set of hyperparameters), which
is plotted in Figure 11. The baseline model with replay per-
formed best by a large margin. However, notably, neuronal
decay did make the overall forgetting a bit less severe, com-
pared to the baseline that did not use replay at all.

Lastly, we report the number of MACs in the baseline and
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(a) Test accuracy (%) of all tasks for the baseline model.
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(b) Test accuracy (%) of all tasks for the neuronal decay model.

Figure 7: Test accuracy of all tasks for the (a) baseline and (b) neuronal decay model. The shaded area represents the standard error computed
over all seeds. Accuracy curves of Task 2 and Task 3 follow a similar path between the two models.
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Figure 8: Test accuracy (%) for the baseline model and three neu-
ronal decay models with different values of coefficient λ. Lower
values of λ provide less benefit in terms of stability gap but pre-
serve a higher level of accuracy.

ND models and the profiling results. The baseline model per-
forms 5 820 416 operations in a single forward pass for a sin-
gle image. The ND model adds an overhead of just 4096
MACs to compute the L2 decay. The setup for the profil-
ing purpose was restricted to only Task 1. Time per batch
was computed as the total time spent in the task, divided by
the number of the batches in the task, then averaged over 60
seeds. The results are reported in Table 4. Both CPU and
CUDA time was slightly higher when using neuronal decay.

5 Discussion and Future Work
Analysis. The results showed a definite pattern: neuronal
decay reduced the gap depth. The effect on accuracy in the

Table 4: Average training time per batch (ms) for the baseline and
neuronal decay (ND) models in Task 1. The reported values are
computed as the total time spent in the task divided by the number
of batches in the task; then the mean and standard error are com-
puted over 60 seeds. The CPU and CUDA events are not necessarily
independent. The ND model, on average, spends slightly more
time per batch for both the CPU and CUDA events.

Model CPU time (ms) ↓ CUDA time (ms) ↓
Baseline 18.01± 0.61 14.60± 0.16

ND 19.21± 1.20 15.85± 0.48

same task was less severe and mostly offset by considering all
tasks together. Time-to-recover remains the most problematic
with its high variance: it needs to be studied further to see if
more consistent results can be obtained. While neuronal de-
cay on its own may help with maintaining some stability, it
is clear that it should be used in conjunction with other meth-
ods. Neuronal decay’s increase in the number of MACs is
marginal: 0.007%. Importantly, the number of MACs for
extra operations scales linearly with the number of neurons.
This characteristic can be very favorable in CL scenarios.
The increase in absolute time per batch was 6.66% for CPU
and 8.56% for CUDA (these are not necessarily independent).
The absolute time can be considered more tangible and useful
for those who train the models, however it is, arguably, a lot
less reliable of a metric.

Experiments with modified hyperparameters give a solid rea-
son to think that models with neuronal decay exhibit such be-
havior in a wide range of setups, at least for this type of model
and this dataset. Still, we optimized the hyperparameters to a
limited extent, so further work can address this aspect. This
could also explain the fact that we did not see an improve-
ment in average accuracy, observed in [8]. In this light, we
emphasize that a proper choice of λ is crucial for balancing
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(a) Test accuracy (%) with the learning rate of 10−4.
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(b) Test accuracy (%) with the learning rate of 10−2.

Figure 9: Test accuracy with (a) lower and (b) higher learning rates. The shaded area represents the standard error computed over all
seeds. The general pattern of a smaller gap depth is present in both cases, however lower learning rate demonstrates higher base
performance, and vice versa.
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(a) Test accuracy (%) for a network with 1024 hidden neurons.
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(b) Test accuracy (%) for a network with 4096 hidden neurons.

Figure 10: Test accuracy with (a) smaller and (b) larger multi-layer perceptron networks. The shaded area represents the standard error
computed over all seeds. The two plots show little difference.

between keeping adequate performance and benefiting from
the decrease in stability gap. Given how learning rate may
affect the performance curve, a further investigation into its
interaction with λ is essential.

Discussion. The negative effects on the accuracy were
likely due to the loss function representing the true goal less
precisely. This is the case with practically any regulariza-
tion method. The decrease in stability gap, we think, can be
caused by simplicity of the solutions, reflected in the sparsity
of the neural network, which allows for better generalization.
This explanation is in line with the results obtained in [8].
Future studies may focus more on assessing the model’s com-
plexity in a quantitative fashion.

Limitations. As mentioned above, the setup with an MLP
is rather simple. Neuronal decay may behave completely dif-
ferently, even detrimentally, when applied to different archi-
tectures. The authors of [8] state that the behavior of neuronal
decay in convolutional neural networks and transformers is
still unknown, and we too think that it might be the next step.
We appreciate the fact that even though rotations were lim-
ited to 160◦, some digits, like 0 or 8, may still change too
little under rotations. We think it is unlikely that this factor
affected the results, however.

What we did not examine closely is how neuronal decay may
act in the long term, meaning, when dealing with dozens or
hundreds of tasks. Whether its effect becomes less apparent
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Figure 11: Test accuracy (%) for the baseline model with and with-
out full replay and a neuronal decay (ND) model without replay. The
shaded area represents the standard error computed over all seeds.
The baseline model with replay performs best by a large mar-
gin, but neuronal decay does better, compared to the baseline
with no replay.

or not remains an open question.

6 Conclusion
In this work we looked into a regularization technique called
neuronal decay and its effect on stability gap. Its usage
was motivated by trying to achieve sparser activations, thus
leaving capacity for future tasks to be learned. Concretely,
we compared the baseline model against the neuronal decay
model, with and without full replay, and investigated the po-
tential impact using such a method may impose.

The acquired results strongly suggest that neuronal decay is
a solid way to reduce the stability gap. It was not power-
ful enough to mitigate the stability gap on its own, however
it could complement other methods, while introducing little
computational overhead. Its slight negative effect on the av-
erage accuracy could be considered acceptable in those setups
where the worst-case performance is more important. We dis-
covered that the choice of the neuronal decay coefficient λ
affected the stability-plasticity balance greatly. Therefore, it
should be paid close attention to when deploying models in
practice.

7 Responsible Research
Licensing. We made sure that this work adheres to the prin-
ciples of responsible research. All external code – such as
the one contained in the libraries and frameworks – and the
MNIST dataset are covered by permissive open-source li-
censes. The code developed for this work is itself released
under the MIT license to promote collaboration and trans-
parency.
Reproducibility. Considerable effort was made to ensure
the work is reproducible. To facilitate that, we fixed and doc-
umented all seeds with which we ran the experiments. On
top of that, we documented the exact versions of Python and
all dependencies such that an identical environment could be
easily recreated. Finally, we tried to make it as easy as possi-
ble to read and understand the code, as well as run the exper-
iments, for anyone seeing the codebase for the first time.

Ethics and societal impact. This study focuses on funda-
mental aspects of deep learning and uses no sensitive or iden-
tifying human subject data. That said, we still appreciate the
fact that applied machine learning, in general, is accompanied
by societal and ethical concerns. Taking that into account, we
strongly oppose the use of continual learning algorithms in
ways that could lead to discrimination or pose risks to human
well-being or safety.
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