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ABSTRACT

In the last two decades, radar-based contactless vital signs monitoring (heartbeat and
respiration rate) has raised increasing interest as an emerging approach for healthcare
and complementary for other more established technologies. Heartbeat and respiration
induce only very subtle rhythmic changes in the reflected radar signature, whereas the
signals reflected by larger objects in real scenarios and even the movements of body parts
of the subjects being monitored are typically larger. Radar reflection paths are multiple
and often vary strongly, especially indoors. It is therefore extremely challenging to deter-
mine the correct number of targets and to perform concurrent localization and reliable
vital signs monitoring on multiple people in real-world environments. The multipaths
(ghost signals) from the reflected signal of one individual, combine with the reflected
signals and multipaths of other subjects and with clutter, jeopardizing individual vital
signs extraction and localization.

The main research activities in this thesis aimed to extend the work of a previous
master thesis from SISO (single input single output) radar to a SIMO (single input mul-
tiple output) radar framework. The core idea is that the usage of multiple receiver chan-
nels that SIMO radar provides can enable an additional degree of freedom (the estima-
tion of the angular position) to distinguish real targets from ghost targets due to multi-
path, hence improving their rejection and cancellation.

Simulation results are then generated to compare SISO and SIMO frameworks for
recognition of the number of subjects in a given environment, for their localisation, and
for the estimation of their vital signs. Unfortunately, due to access limitation caused by
the COVID-19 pandemic to the offices of IMEC, Eindhoven, where this thesis work was
mostly performed, the initially planned experimental validation with SIMO radar was
not possible to perform.
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1
INTRODUCTION

Radar technologies have been intensively investigated as an emerging key tool in health
care, from which not only the elderly population and their families, caregivers, clinicians,
but also economy and society can obtain several benefits (e.g. reducing hospitalisation,
more timely and personalised individual care, maintaining quality of life for longer even
in case of multiple non-communicable diseases). A lot of research interest areis focused
on multi-people contactless (hence non-invasive, or less invasive) vital signs monitor-
ing, specifically the remote sensing of the heartbeat and respiration rate [1–3].

1.1. BACKGROUND
In the last two decades, radar technologies have been investigated as one of the promis-
ing measurements for long-term health monitoring, and in particular for remote people
localization and vital sign monitoring (i.e. respiratory and heartbeat). The radar sensor
systems can operate at a distance, without any explicit user involvement and detect the
vital signs non-invasively.

Table 1.1 shows a comparison among contactless vital signs detection approaches
and technologies [2]. Compared to other existing vital sign sensing techniques, radar
sensor systems have the advantages of not recording images of the subjects or private
environments, and not requiring the users to wear, carry or interact with additional de-
vices. Non-invasive vital signs monitoring is mainly based on the periodic motion of
the chest due to cardiopulmonary activity. The first vital sign system was introduced by
Caro et.al. in the 1970s [4]. After that, many researchers tried to improve the accuracy of
vital sign monitoring, the reliability of the radar system, processing speed for real-time
monitoring, and power requirements from the hardware structures and signal process-
ing techniques.

1.2. PROBLEM STATEMENT
The goal of this thesis is to explore radar-based approaches to localize multiple subjects
in an indoor environment correctly, and to monitor their vital signs accurately.

1
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Approach
Measured
vital sign

Main
advantage

Main
disadvantage

Camera
Respiration
heartbeat

Unobtrusiveness
Lighting condition

dependent

Infrared Body temperature Accuracy
Environment

dependent

Visible light
Respiration
heartbeat

Low-cost
Lighting condition

dependent

Microphone
Respiration
heartbeat

Low-cost
Sensitivity to

noise

Sonar Respiration
Environment
independent

Insensitivity to
small motion

Radar
Respiration
heartbeat

Environment
independent

Sensitivity to
interference

Table 1.1: Contactless vital signs detection approaches and technologies, with quick sum-
mary of advantages and disadvantages

However, breathing and heartbeats are very small movements, and they can be easily
masked by stronger signals and clutter from any other source in the environment. Heart-
beat and respiration induce only very subtle rhythmic changes in the reflected radar sig-
nature, whereas real-world environments are highly dynamic and rich of larger moving
targets, including body parts of the subjects to be monitored themselves.

Furthermore, propagation paths for the radar signals are multiple and often vary
strongly, especially indoors where they can be reflected by walls, ceiling, floor, and ob-
jects such as large pieces of furniture. It is therefore extremely challenging to determine
the correct number of targets in a given environment, and then perform concurrent lo-
calization and reliable vital signs monitoring on multiple people in real-world environ-
ments. Essentially, the propagation of the electromagnetic signals between radar and
monitored subjects happen over multiple paths, the so-called multipath phenomenon,
generating “ghost targets” together with the signature of the real human subjects.

This makes the determination of the real number of subjects in an indoor environ-
ment and the consequent estimation of their vital signs a challenging problem, for which
definitive algorithms have not been fully developed and validated yet. This thesis aims
to formulate and contribute a further step in this research direction.

1.3. THESIS CONTRIBUTIONS AND STRUCTURE
The main research activities aimed to extend the work of a previous master thesis from
SISO (single input single output) radar to a SIMO (single input multiple output) radar
framework. The core idea is that the usage of multiple receiver channels that SIMO radar
provides can enable an additional degree of freedom (the estimation of the angular po-
sition) to distinguish real targets from ghost targets due to multipath, hence improving
their rejection and cancellation. Simulation results are then generated to compare SISO
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and SIMO frameworks for recognition of the number of subjects in a given environment,
for their localisation, and for the estimation of their vital signs. Unfortunately, due to
access limitation caused by the COVID-19 pandemic to the offices of IMEC, Eindhoven,
where this thesis work was mostly performed, the initially planned experimental valida-
tion with SIMO radar was not possible to perform.

The key contributions of this thesis work are summarised in the following bullet
points.

• Detailed analysis of the multipath effects for the problem of vital signs indoor es-
timation, with key assumptions in the developed model.

• Construction and full characterisation of the SIMO radar data cube for further pro-
cessing in the range-Doppler-angle domain.

• Formulation of angular localisation algorithm as part of vital signs estimation pro-
cess for multiple subjects in SIMO radar framework.

• New definition of an SNR metric for the estimation of the number of subjects

• Validation and comparison of performances of SISO and SIMO vital sign estima-
tion

The general structure of the following sections of this thesis are summarised below.

• Literature review (section 2)

• FMCW Radar system description and theory (section 3)

• Multipath signals model and removal processing (section 4)

• Formulation of the proposed algorithms (section 5)

• Tests on selected simulation cases (section 6)

• Monte Carlo simulations for generalisation of the proposed approach (section 7)

• Conclusions and future work (section 8)





2
LITERATURE REVIEW

In this section, both the single channel radar and multiple channel radar vital sign mon-
itoring approaches are reviewed.

2.1. SINGLE CHANNEL RADAR VITAL SIGN MONITORING
Single-tone CW radar is the most common type in radar-based vital signs monitoring
system due to its simplicity and low power consumption. But it cannot detect the vital
signs of multi-subject at the same time since it cannot provide range information.

FMCW and UWB radar are capable of measuring both range and Doppler frequency,
therefore they can fulfill the functionality of multi-target detection. However, FMCW
radar system suffer from high phase noise level and power consumption.

UWB radar system has been proven to have great penetration ability, giving domi-
nant position for applications of search and rescue. But IR-UWB radar is limited by its
power density restriction, leading to short distance applications. Performance of differ-
ent radar systems for vital signs monitoring is summarized in Table 2.1 [5] [6].

System Multi-subject detection Range estimation Power consumption

CW No No Medium

FMCW Yes Yes High

IR-UWB Yes Yes Low

Table 2.1: Comparison of Radar-Based Vital Signs Monitoring Systems

Low-pass filters, high-pass filters, and complex digital signal processing algorithms
[7] have been reported for noise filtering and DC offsets elimination. Filtering at sig-
nal processing level, including Finite Impulse Response (FIR) [8] and Infinite Impulse
Response (IIR) filters have also been proposed.

Other phase-modulation methods have also been proposed to address DC offset.
These include using arctangent demodulation technique with DC offset calibrated through

5
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empty-room measurements [9]. However, these methods may not be valid because the
DC offset value depends on the surface reflectivity, the size of the stationary portion of
the target, and cannot be calibrated other than the subject under test. Complex signal
demodulation method using Bessel’s functions has also been explored to remove DC
offset; however, it is still affected by the even order harmonics that are present in the
baseband signal [7].

The main limitation in Doppler radar measurement of periodic motions is the pres-
ence of phase-nulling or null-point. The most prevailing solution is the quadrature (I/Q)
architecture, where at least one of the outputs I/Q is not at null-point. Channel selec-
tion is then required to select the most optimum channel for processing at any given
point in time [10]. However, I/Q output channels are not always in quadrature because
of the inherent amplitude and phase imbalance due to imperfect system components.
The contribution of extra flicker noise caused by the mixers also contribute to the degra-
dation of the detection accuracy [10].

The arctangent demodulation method combines the in-phase and quadrature base-
band signals into a single channel to eliminate null-point. The successful arctangent
demodulation depends on the correction of channel imbalances and the removal of un-
desired DC offsets. Channel imbalances can be corrected by using Gram-Schmidt pro-
cedure [11], however complex calibrations on the DC offsets is required for accurate de-
modulation [10].

Empirical Mode Decomposition (EMD) has been noted in the literature as an ef-
fective method in analyzing non-stationary and non-linear signals. Its application for
non-contact Doppler radar system in separating and removing motions artefacts has
also been proposed. As documented in the literature, EMD is used for breaking down
the radar signal output into its Intrinsic Mode Functions (IMFs). The removal of the
motions artefacts interferences is achieved by selecting the proper IMFs. However, the
proposed EMD application has its limitation in handling the interferences that occur at
frequencies very close to the heart rate. EMD is also limited in removing interferences of
the same type from the background objects [12]

In an attempt to address the multi-targets cancellation problem, a technique referred
to as Generalized Likelihood Ratio Test (GLRT), based on a model of the heartbeat was
proposed to firstly distinguish between the presence of 2, 1, or 0 subjects using a single-
antenna Doppler radar system. Using multiple antennas will also result in detection of
up to 2N-1 subjects. The use of a single antenna method is based on the subject’s heart-
beat signature in the frequency domain, and the use of the multiple antennas method is
based on the angle of signal arrival. The results demonstrated the theoretical concept;
however, accuracy and reliability were not consistent when this method was applied [13].

The location of the targets are often known by ranging the distance between the tar-
gets and antenna. Therefore, the vital sign features are not applied in the localization
steps and there will be some problems about the ranging when there are some objects
near the targets. In paper [14], the standard derivation (std) method was applied by cal-
culating the std of the phase history. The idea is that the physiological movements, over
an interval of time of a few seconds, involve a larger standard deviation than static ob-
jects. Therefore, the range bins with large variations indicate the location of human tar-
gets. In the student work [8], the optimization method was employed by find the optimal
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solution of the cost function of the signal model.
When the sources of noise are cancelled, the approaches of extracting the vital signs

can be applied. There are some techniques to obtain and classify the breathing rate/heartbeat
from the baseband received signal of the microwave sensor. The fast Fourier transform
(FFT) [15][16] and continuous wavelet transform (CWT) [17] [8] are considered as very
basic methods to retrieve the respiratory rate. These techniques can find the frequency
spectrum of received signals, based on the peak of the spectrum in a specific frequency
range, and the breathing rate or heartbeat can be estimated.

2.2. MULTIPLE CHANNELS RADAR VITAL SIGN MONITORING
The radar system with multiple receiving channels, which can be termed as single-input
multiple-output (SIMO), is used to achieve further improvement. SIMO radar systems
fuse the information from multiple channels to improve the detection performance.
Akiyama et al. [18] used a system with one transmitting antenna and four receiving an-
tennas to improve the signal-to-noise ratio (SNR) with correlation processing.

Liu et al. [19] demonstrated that the SIMO radar systems have the ability to re-
solve multiple sources and obtain the angle-of-arrival (AOA) of multiple human targets.
Multiple-input and multiple-output (MIMO) radar is a special type of multiple channels
radar which emerged in recent years. The MIMO array with M transmitting elements
and N receiving elements can obtain a virtual aperture with M by N virtual transceivers,
which greatly reduces the weight and cost of the radar system.

MIMO radar echo data can be decomposed as the data from multiple SIMO radar
system , since the MIMO radar system can attain and use information from more sight
angles. UWB MIMO radar combines the high range resolution property of the UWB sig-
naling with the directional resolution property of the multiple antenna elements, so it
has the ability of two-dimensional high-resolution imaging [20].

In paper [21], UWB MIMO radar is exploited to improve the detection performance
of multiple stationary humans for its multiple sight angles. To improve the detection
performance of human targets caused by heavy clutters, the constant false alarm rate
(CFAR), morphological filtering and clustering is implemented.

Recently, [22] introduced a highly integrated 120 GHz MIMO radar system for 3D
localization and simultaneous vital sign detection of human subjects. This MIMO radar
has the capability to detect and separate the respiration and heart signal of two human
subjects.

The conventional DOA estimation in MIMO radar systems can be categorized into
two types: non-parametric (spectral-based) methods and parametric methods. The non-
parametric algorithms (Bartlett, Capon, MUSIC and ESPRIT) exploit some spectrum-
based function of the parameters to be estimated . The parametric techniques, e.g.,
Deterministic Maximum Likelihood (DML [23]) algorithms have excellent DOA estima-
tion performance. However, they require accurate initialization to guarantee the conver-
gence of the algorithms and suffer from high computational complexity.

The non-parametric methods include conventional digital beamforming and subspace-
based algorithm. Although the subspace-based algorithm (MUSIC and ESPRIT) have
very good performance on angular resolution, the main challenge of these super reso-
lution DOA estimation algorithm is strongly correlated or coherent sources, the limited



2

8 2. LITERATURE REVIEW

number of snapshots (sometimes even single snapshot), and the unknown number of
targets [24].

In FMCW radar systems, beat signals convey range and angle information, which en-
ables to estimate the azimuth, elevation, range, and velocity of unknown targets via joint
parameter estimation techniques such as 2D-MUSIC, 2D-ESPRIT, JADE, and multidi-
mensional Capon. However, such multi-dimensional sub-space techniques increased
the computational complexity quite a lot, which needs to be considered in a real-time
FMCW automotive radar system [25].

2.3. CONCLUSIONS
In summary, from the analysis of the aforementioned techniques and approaches, it is
evident that radar-based monitoring of vital signs of multiple people in an indoor envi-
ronment is still an outstanding research challenge.

Specifically, one aspect of the challenge is the presence of multipath and the related
replicas (ghost targets) of the signatures of real targets; these are often not easily distin-
guishable from the signature of authentic, different real subjects.

Hence, an interesting research direction is the formulation of algorithms and ap-
proaches that can enhance the capability of identifying multipath-related signatures (i.e.
ghost targets, replicas of real ones) and then discard them. While this problem was par-
tially approached by a previous master work performed between IMEC and TU Delft
[8], in this thesis we aim to further extend the research into a SIMO radar framework,
exploring how the angular information estimated from multiple channels can improve
performances.

The popular signal processing approaches in vital signs monitoring and angle esti-
mation approaches are summarized in Table 2.2 which will be used for vital sign phase
extraction and frequnecy estimation and angluar estimation of the targets.

Approach Reference Main functions

Phase unwrap [9] phase extraction

Linear demodulation [1] phase extraction

Wavelet decomposition [17] [8] Signal decomposition

EMD [12] Signal decomposition

Digital beamforming [18] Angle estimation

1D MUSIC [23] Angle estimation

Table 2.2: Signal processing approaches in vital signs monitoring and an-
gle estimation
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FMCW RADAR SYSTEM MODEL

The ideal non-contact health monitoring system aims to monitor the Respiration Rate
(RR) and Heartbeat Rate (HR) of multiple stationary subjects. The electromagnetic waves
are sent into the environment by the transmitting antenna and are reflected by all the ob-
jects in the room, carrying the range (physical distance) and physiological information.
Those reflected signals arrive at the receiving antenna through multiple paths, intro-
ducing different time of flights (ToFs) and making the indoor localization and vital sign
monitoring more complicated. This section presents a short summary of the model of
FMCW radar signal, specifically in the case when this is used for vital signs monitoring.

3.1. THEORY OF FMCW RADAR
The transmitted signal of an FMCW radar system is a sweep signal, whose frequency is
linearly modulated in time, as is shown in Figure 3.1. In signal processing, the transmit-
ted chirp signal sT (t ) is usually expressed in complex form,

sT (t ) = aT e j 2π
∫ t

0

(
f0+ B w

T c t
)
d t

= aT e j 2π
(

f0+ B w
T c t

)
t ,0 < t < Tc

(3.1)

aT is the complex amplitude, indicating the transmitted power and the initial phase,
f0 is the starting frequency, B w is the bandwidth, and Tc is the sweep period.

The corresponding reflected signal sR (t ) in case of a static target is nothing but gen-
erally modelled as a delayed and attenuated copy of the transmitted signal, which can
be express by:

sR (t ) = sT (t −τ)

= aR e j 2π
(

f0+ B w
T c (t−τ)

)
(t−τ)

(3.2)

aR is the complex amplitude, indicating the reflected power and the initial phase,
f0 is the starting frequency, B w is the bandwidth, and Tc is the sweep period, τ is the
propagation delay of a certain path.

9
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Figure 3.1: Chirp signal in frequency vs time domain

3.2. DOPPLER EFFECT
Figure 3.2 depicts block diagram of range measurement principle FMCW radar system.
The shifted reflected signal mixes is mixed with a copy of the transmitted signal stored
generated and low-pass filtered, at the Local Oscillator (LO), generating producing a
beat-frequency signal sB (t ),

sB (t ) = aT e j 2π
(

f0+ B w
T c t

)
t aR e− j 2π

(
f0+ B w

T c (t−τ)
)
(t−τ)

= aT aR e j 2π
(

f0τ− B w
2T c τ

2+ B w
T c τt

)
≈ aT aR e j 2π

(
f0τ+ B w

T c τt
)

= aT aR e j 2π f0τ︸           ︷︷           ︸
aB

e j 2π B w
T c τt

= aB e j 2π B w
T c τt

(3.3)

Here aB is the complex amplitude of the beat frequency signal and the quadratic
term is neglected as it is very small.

From equation 3.3, we can know that the beat frequency signal of each reflected sig-
nal is a tone with beat frequency

fB = B w

T c
τ (3.4)

Which is proportional to the propagation delay . Intuitively, we also can see that the
frequency difference between the transmitted signal and the received signal is linearly
correlated with propagation delay.

Since the propagation delay is decided by the length of the propagation path

τ= 2d0

c
(3.5)

here d0 is the path distance, c is the speed of light. Once we know the beat frequency,
which can be easily estimated by performing Fast Fourier Transform (FFT), we know the
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Figure 3.2: Block diagram of FMCW radar principle

path distance

d0 = τc

2
= fB cB w

2Tc
(3.6)

This is the principle of range measurement in FMCW radar systems.
For human subjects, the beat-frequency signal has a Doppler component because of

the physiological motions of chest and abdomen, which introduce some vibrations in
range detection. In this case, the propagation delay is not a constant but a function of
time, τ(t ). This small variation detected by the radar can be utilized to realize the vital
signs monitoring in our system.

The equation that links the Doppler with the velocity of a target, here for the generic/ideal
case of the point target is:

fD = 2v fc

c
(3.7)

Assume that there are L narrowband signals arriving onto the array and N sensors
in the array (Figure 3.3) have identical isotropic responses. The digitized time domain
beat signal, which is retrieved after deramping of the transmitted FMCW waveform and
under the narrow band assumption, can be modeled as:

s(t ) =
L∑

l=1
al e j 2π B w

T c τl t e j 2π
λ

dn sinθl (3.8)

where a complex amplitude and phase of the l -th target, R, is a range to the l-th
target, B w is the transmitted signal bandwidth, c is the speed of light, Tc is the duration
of sweep, λ is the wavelength of the transmitted signal, d is the array elements spacing, ,
θ is the direction of arrival of signal from the l -th target,

3.3. VITAL SIGN MODEL
Non-contact health monitoring is based on remote sensing of cardiopulmonary activi-
ties, heartbeat and respiration. The inhalation and exaltation processes during breath-
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Figure 3.3: Diagram of a uniform linear array for a SIMO radar

ing and the contracting and relaxing of the atria and ventricles when pumping blood
through the heart all have contribution to the chest surface motion, which for the radar
is a disturbance source in range detection.

More realistic model (rather than sine) of vital signs are possible [26], but for the time
being this kind of signal model are not considered here.

Based on the assumption that the chest surface motion is a short-term stationary
process, a commonly used parametric model of heartbeat component Rh(t ) is a sine
wave which is:

Rh(t ) =αh sin
(
2π fh t +ϕh

)
(3.9)

where αh and fh are deterministic, unknown amplitude, angular frequency and ϕh

is initial phase of the heartbeat signal.
Similarly, the respiration component Rr (t ) can also be modelled in the same way,

Rr (t ) =αr sin
(
2π fr t +ϕr

)
(3.10)

where αr and fr are deterministic, unknown amplitude, angular frequency andϕr is
initial phase of the respiration signal in a short term.

Therefore, the chest surface motion y(t) as the sum of two sine waves,

R(t ) = Rh(t )+Rr (t ) =αh sin
(
2π fh t +ϕh

)+αr sin
(
2π fr t +ϕr

)
(3.11)

The typical values of respiration and heartbeat frequency and amplitude are dis-
played in Table 3.1 [26].

Frequency[Hz] Amplitude[mm]

Respiration 0.1-0.4 4-12
Heartbeat 0.83-1.67 0.3-0.6

Table 3.1: Typical frequencies and amplitudes of vital signs
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If considering this disturbance in range detection, the corresponding time-varying
path distance d(t) and propagation delay τ(t ) are

d(t ) = d0 +R(t ) (3.12)

τ(t ) = 2
d0 +R(t )

c
(3.13)

If we calculate the maximal velocity of the weakest vital sign, we can select the ob-
servation time. The maximal velocity of the weakest heart activity is:

vh,min = max
(

dRh (t )
d t

)
= max

(
αh,min2π fh,min cos

(
2π fh,mint +ϕh

))=αh,min2π fh,min

= 1.5645[mm/s]
(3.14)

The maximal velocity of the weakest respiration activity is:

vr,min = max

(
dRr (t )

d t

)
= max

(
αr,min2π fr,min cos

(
2π fr,mint +ϕr

))=αr,min2π fr,min = 3.2673
[mm

s

]
(3.15)

The global maximal velocity of the weakest vital signs to be measured is:

vmin = min
(
vr,min, vh,min

)= 1.5645
[mm

s

]
(3.16)

In order to be able to measure the maximal velocity of the weakest chest movement
at f0= 7.3 GHz, the required observation time Td of the chirp train is:

∆v = c

2Td f0
≤ vmin → Td ≥ c

2vmin f0
= 13.134[s] (3.17)

Therefore, the required measurement time Td is at least 13.134 s and the coherent
processing interval (CPI) of 20s is selected in this work.

3.4. RESOLUTION AND AMBIGUITY
We know that the beat frequency is related to time delay and path distance which is our
signal of interest. Assume w(t ) = δ (t −nTs ), where Ts is the fast time sampling interval
and n is from 0 to N-1, is a window function (rectangular window). The DTFT of the
beat-frequency signal with N samples is

SB (ω, t ) =F {sB (t ) ·w(t )}

=F
{

aB e j 2π B w
T c τ(t )t ·w(t )

} (3.18)

In practice, SB (, t ) is estimated via an FFT whose result is denoted as SB (k, t ),which
is a sampled version of DTFT,

SB (k, t ) = A(k)e jφ(t ) (3.19)

where k is the frequency bin index of FFT, from 0 to N-1.
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The disturbance caused by cardiopulmonary activities in range detection is regarded
as the vital signs of subjects. And the range is estimated by resolving the beat frequency.
However, the resolution of FFT, f, is restricted by the sweep period,

∆ f = 1

Tc
(3.20)

Therefore, the range resolution ∆d of a radar system is also limited,

∆d = c∆ f

2 B w
T c

= c

2B w
(3.21)

Bw is the radar bandwidth. The amplitude of chest surface motion is around 1cm, so
the frequency resolution is not sufficient to reflect the chest surface motion. However,
the phase of the resulting frequency domain signal SB (k, t ) still preserves the Doppler-
Doppler information.

3.5. CONCLUSION
First, the bandwidth using by the IMEC radar is 1GHz which leads to the range resolu-
tion to be 0.15 meters. Due to FMCW radar, the vital signs are detected from the phase
changes rather than the displacements. So here, the smallest amplitude of the vital sign
shown in Table 3.1 are not related to the range resolution. While for the UWB radar, this
smallest value which is 0.3mm are related to the range resolution. The vital sign obser-
vation time are related to the doppler resolution. The angle resolution is related to the
number of sensors. When we let array elements spacing equal toλ/2, we can get the max
angle range from -90 degrees to 90 degrees.



4
MULTIPATH MODEL AND REMOVAL

PROCESSING

In this section, the multipath model will be discussed and the corresponding removal
processing techniques are also discussed.

4.1. MULTIPATH ANALYSIS AND SIGNAL MODEL ASSUMPTION
In a wireless communication system, multipath interference is always an annoying is-
sue. It occurs when a signal takes two or more paths from the transmitting antenna to
the receiving antenna, resulting in ghost subjects and inter-subject interference. It is
known that in an indoor environment, the reflected rays arrive at the receiving antenna
in clusters. The power gain of different clusters and of rays within a cluster obey the
exponential power decay. [8]

While in the radar system, we should also consider the Doppler shift, as in equation
4.1 that shows the multipath model for a radar system

h(t ) =
N∑

l=1
βl ·δ (t −τl ) ·δ(

f −∆ fl
)

(4.1)

where l is the number of propagation paths, βl is the amplitude of the reflection, τl

is the delay of the different paths, ∆ fl is the Ddoppler shift of the path.
Figure 4.1 shows an example geometry of the multipath effect for one possible addi-

tional path. From the sensor to the wall, the distance is a.
The distance to the ghost target P’ is

R ′ =
√

R2 +4a2 −4aR sin(θ1) (4.2)

While the angle is

θ2 = arctan

(
2a −Rsin(θ)

Rcos(θ)

)
(4.3)

15
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Figure 4.1: Geometry of multipath where ’O’ indicates the bouncing point of the EM propagation rays on the
wall

The component of the velocity pointing to the reflecting surface is

v ′
r = vr cos(θ1 +θ2) (4.4)

with vr being the radial component of the velocity of P. Note that the angles are de-
fined with respect to the ordinate.

Apart from the direct path, three ray paths are generally considered as possible sources
of multipath.

• First, from the sensor S to the target and backwards over the wall.

• Second, from the sensor to the wall to the target and on the direct path backwards,
or alternatively from the sensor to the wall to the target and on the direct path
backwards (single bounces)

• third, from the sensor to the wall to the target and the same way back (double
bounce)

For the real target this results in a Doppler shift of

fD,Real =
f0

c
2−→vr ·~eSP (4.5)
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where vr is the velocity vector of the moving target, c the speed of light, f0 the trans-
mitted centre frequency, and~eSP the unit vector from the sensor to the target P.

Figure 4.2: Further multipath analysis with propagation paths and angles indicated

For the ghost target, the Doppler shift

fD,Ghost =
fc

c
2
−→
v ′

r ·~eSP ′ = fc

c
2−→vr cos(θ1 +θ2)~eSP ′ (4.6)

Therefore, the Doppler shift difference between the real target and the ghost target is

∆ fD = (1−cos(θ1 +θ2))
fc

c
2−→vr (4.7)

From the previous calculation of the velocity of the vital sign

vmin = min
(
vr,min, vh,min

)= 1.5645
[mm

s

]
(4.8)

By inserting the vmi n into the Doppler shift difference, we can get,

∆ fD ≤ 0.0761Hz (4.9)

If we use the observation time 20s, which means Td=20s, we can get the doppler
shift is 1/Td =0.05 Hz. Therefore, with the 0.05Hz resolution, it is difficult to resolve the
Doppler shift difference between the real and ghost target.

Figure 4.3 range Doppler plot of raw experimental FMCW SISO data (2 real target and
1 ghost target) From Figure 4.3, the two real targets are in about 1.5 and 2.5 meters and
the ghost targets are at about 3.5 meters. We can see it is difficult to resolve the Doppler
frequency difference between the real target and the ghost target.
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Figure 4.3: range Doppler plot of raw experimental FMCW SISO data (2 real target and 1 ghost target)

With the above analysis of the multipath effect when considering the small Doppler
of vital signs and the estimation of the available Doppler resolution for the actual FMCW
radar data in this study, we can simplify the multipath propagation model into the fol-
lowing model. Essentially, the Doppler difference between the direct path and the repli-
cas originated by multipath is neglected.

h(t ) =
L−1∑
l=1

βl ·δ (t −τl ) (4.10)

where l is the number of propagation paths, βl is the amplitude of the reflection, τl

is the delay of the different paths

4.2. MULTIPATH ARRAY SIGNAL MODEL FOR FMCW RADAR

It is a generalization of all the possible propagation models that occur in practice. Though
it is not a structured one, we can still specify the statistical properties of the model co-
effcients at a later stage. Therefore, the received parametric signal model sR (t ) over a
multipath channel can be corrected as the convolution
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sR (t ) = h(t )∗ sT (t )

=
[

L−1∑
l=0

βlδ (t −τl (t ))

]
∗ sT (t )

=
L−1∑
l=0

βl sT (t −τl (t ))

=
L−1∑
l=0

βl aTl︸  ︷︷  ︸
aRl

e j 2π
(

f0+ ρ
2 (t−τl (t ))

)
(t−τl (t ))

=
L−1∑
l=0

aRl e j 2π
(

f0+ ρ
2 (t−τl (t ))

)
(t−τl (t ))

(4.11)

The corresponding baseband signal model sB (t ) is then

sB (t ) =
L−1∑
l=0

sR (t ) · s−1
T (t )

=
L−1∑
l=0

aT aR e j 2π f0τl (t )︸               ︷︷               ︸
aBl

(t )

e j 2π·ρτl (t )t

=
L−1∑
l=0

aBl (t )e j 2π·ρτl (t )t

=
L−1∑
l=0

sBl (t )

(4.12)

After performing FFT in fast-time, the frequency domain signal S(k,m) becomes

S(k,m) =F

{
L−1∑
l=0

sBl (t ) ·w(t )

}
·δ(

t −mT ′
s

)
=

L−1∑
l=0

F
{

sBl (t ) ·w(t )
} ·δ(

t −mT ′
s

)
=

L−1∑
l=0

Al (k)e jφ(m)

︸               ︷︷               ︸
A′(k)

= A′(k)e jφ(m)

(4.13)

The aforementioned observation signal S(k,m) is a dual-variable function of frequency
index k and discrete slow-time m, forming a 2D observation matrix denoted as X. To ex-
plore the characteristics of the observation matrix, it is necessary to do matrix factor-
ization to isolate the signal of interest. Then the observation matrix X including all the
samples becomes
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X =

 S(0,0) · · · S(0, M −1)
...

. . .
...

S(L−1,0) · · · S(L−1, M −1)

 : L×M

= [
x0 x1 · · · xM−1

] (4.14)

It follow that X has a factorization that

X = hs (4.15)

Where

s = [
e jφ(0) e jφ(1) · · · e jφ(M−1)

]
: 1×M

h =


A(0)
A(1)

...
A(L−1)

 : L×1
(4.16)

Here s contains the Doppler information due to the physiological activities. Time
shifts in propagation delay resulting in frequency and range shifts in range, therefore
h contains the attenuation and time delay information of the propagation channel for
each reflector. Obviously, X is a rank-1 matrix and it spans the same row space with
s. However, this is the data model for single user case, in a real indoor environment,
there are a lot of static clutters and what we are interested in is the multi-user case. So
this simple model is going to be extended to a more complicated one for more practical
applications.

Suppose P targets multiple users case, the S(k,m) will becomes

S(k,m) =
P∑

i=1
Ai (k)e jφi (m) (4.17)

Then X has the following factorization

X = HS (4.18)

Where

H =


A1(0)

... AP (0)

A1(1)
... AP (1)

...
...

...

A1(L−1)
... AP (L−1)

 : L×P (4.19)

S =
 e jφ1(0) e jφ1(1) · · · e jφ1(M−1)

· · · · · · · · · · · ·
e jφP (0) e jφP (1) · · · e jφP (M−1)

 : P ×M (4.20)
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Considering the noise, X will become

X = HS +N (4.21)

For this X,

• It has full row rank P.

• Each row of S is regarded as a signal from an independent source. All the signals
are assumed to be random, independent, identically distributed (i.i.d.).

• The noise is assumed to be additive, white, zero mean, complex Gaussian dis-
tributed, with covariance and independent from the sources.

4.3. SINGULAR VALUE DECOMPOSITION (SVD)
The data model after DC removal is X = HS + N where every row of S is an arc, resulting
in a complex sinusoidal-like wave which is a linear combination of groups of sine waves
with a dominant component, i.e., respiration signal. The statistical independence of
common signals are validated in. It has been proved that sine waves of different frequen-
cies are highly independent with each other; therefore, the rows in S can be regarded as
independent source signals. The statistics of the above data model are summarized as
follows,

The SVD of X is

X = U ·Σ ·VH

= [
Us Un

] Σs 0
0 Σn

0 0

[
VH

s
VH

n

] (4.22)

where U is an L by L unitary matrix containing left singular vectors while V is an M by
M unitary matrix containing right singular vectors, S is a diagonal matrix containing all
the singular values. The first P columns in U and V are denoted as Us and Vs respectively.
The rest columns are denoted as Un and Vn respectively. Indeed, columns of Vs span the
same subspace as rows in S and columns of Vn span the null pace as rows in S. Therefore,
Us or Vs include the vital sign information of P targets.

4.4. PREVIOUS WORK OVERVIEW
With the previous algorithm [8], we extract the Doppler signals in order to first deter-
mine the number of targets and then to estimate their vital signs and location. The first
step is to reduce the noise by applying singular value decomposition (SVD) to X. It re-
sults is used to determine the number of persons P (target existence probability) in the
monitored environment. We specify that in real environments P cannot be determined
by simply calculating the rank of X. Knowing the number of targets, the SVD result is
further processed by an independent component analysis (ICA) algorithm in order to
estimate the sources S . The vital signs information is preserved in the phase informa-
tion of S. The AC coupling step removes all the DC information of the target, resulting
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in a distortion in the phase (angle) extraction. Therefore, we used the linear demodu-
lation algorithm on S to perform phase demodulation in order to extract the vital signs
information y(m). At this point, we face an order ambiguity issue: we are still not able
to indicate which source (i.e., vital signs signal) corresponds to which subject. H deter-
mines the linear combinations of the sources is S , so the magnitudes of the elements in
H indicate the energy of the sources in every range bin. Therefore, if we know the prop-
agation channels H of the sources, we can localize the targets and so remove the order
ambiguity. From the observation matrix X and the estimated source matrix S, we can
then estimate H which is the range information of the targets.

Figure 4.4: Previous algorithm block diagram [8]

4.5. CONCLUSIONS
The previous algorithms can estimate the multiple targets’ vital sign for the scenario that
they are in different range bin. However, when multiple targets are in the same range bin,
the previous algorithm does not work. It leads to the extension to the multiple channel
radar to use the angular information for the same range bin scenario. The ICA algorithm
will not be applied in the proposed one since when applying ICA, it still can not separate
the mixed vital sign signals in the same range bin.
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PROPOSED ALGORITHMS

In this section, the proposed algorithms are discussed in order to detection the target
vital signs for the same range bin scenario and find the location (both range and angle)
of the targets.

5.1. OVERVIEW OF THE PROPOSED ALGORITHMS
In Figure 5.1, the block diagram of the proposed algorithm is introduced. In the following
sections in the chapter, the algorithms will be described in detail which include FFT pro-
cessing to obtain the range-time-angle radar cube, reconstruction procedure and SVD to
obtain the phase values of the vital sign, phase extraction (phase unwrap approach and
linear demodulation approach), channel estimation to get the range and angular esti-
mation (DBF and 1D MUSIC).

One example is simulated and tested in each section to show the results. The sce-
nario is shown in Figure 5.2. The range of the direct path is 3.2 meters and at 30 degrees.
The ground truth of the simulation for respiration and heartbeat is 0.25Hz and 1.3Hz.
Besides the direct path, as discuss in section foure, there will be three different possible
multipaths. The mutlipath target are supposed to have the same vital sign frequencies
as the real targets.

5.2. FFT PROCESSING
Initially, the 3D data cube are shown as Figure 5.3 and the three dimension of this data
cube are in fast time-slow time and sensors. After applying FFT along the fast time, we
obtain a new data cube of range, slow time and number of sensors.

Then, the angular information can be extracted through digital beam forming (DBF),
which is an advanced approach for steering receiving phased array antennas in order to
estimate the angle. Using the data of the same single range-bin over all channels, DBF is
conducted through windowing and angular FFT in the sensor-index direction. The radar
cube is now in range-time-angle. Figure 5.4 shows the output the FFT processing.

23



5

24 5. PROPOSED ALGORITHMS

Figure 5.1: Block diagram of proposed algorithm. The additionall angular information of the proposed SIMO
frameworks is exploited in the data cube and multiple-channel matrix used as input of the SVD. The SNR
metric is defined to estimate the number of targets. Compared to the previous algorithm [8], the red rectangles
indicate the novel blocks added in this thesis

5.3. SVD AND TARGET NUMBER ESTIMATION
We first reconstruct the radar data cube (range-time-angle) into a big data matrix Xnew

which is shown in Figure 5.5. For each angle bin, we have a corresponding range-time
matrix. Then, we stack all the corresponding range-time matrix to reconstruct a big data
matrix.

The we take SVD on this new constructed data matrix.

Xnew = U ·Σ ·VH

= [
Us Un

] Σs 0
0 Σn

0 0

[
VH

s
VH

n

] (5.1)

where U is an L by L unitary matrix containing left singular vectors while V is an M by M
unitary matrix containing right singular vectors, S is a diagonal matrix containing all the
singular values. The first P columns in U and V are denoted as Us and Vs respectively.
The rest columns are denoted as Un and Vn respectively. Indeed, columns of Vs span the
same subspace as rows in S and columns of Vn span the null pace as rows in S. Therefore,
Us or Vs include the vital sign information of P targets. The results of SVD is shown in
Figure 5.6. It is proved that after SVD, we can see one clear vital sign signals and the
others are noise subspace signals.

Then, the target number estimation algorithm is discussed. In order to estimate tar-
get number P, and therefore to determine Us , we calculate the SNR of the uncorrelated
sources in U. A spectrum vital signs signal consists essentially of the respiration funda-
mental, which is the dominant component of the signal, of one or two decreasing in
magnitude respiration harmonics, and of the very small heartbeat fundamental. The
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Figure 5.2: Scenario of the example

first P sources of V (i.e., first P columns) produce a high SNR and indicate Us while the
remaining sources have very low SNR and indicate Un . By using the following SNR defi-
nition, we can calculate SNR for each colomn,

SNRdB = 10log10

[(
Asignal

Anoise

)2
]
= 20log10

(
Asignal

Anoise

)
= (

Asignal ,dB− Anoise ,dB
)

(5.2)

We perform also other checks on the spectrum’s local maxima:

• if the peak, which should indicate the respiration rate, is outside the typical medi-
cal ranges, we conclude that this source is noise;

• we determine the ratio of strongest peak and its first harmonic. We consider as
noise any source producing a ratio less than 2.

In fact, in the canonical spectrum, the two highest peaks indicate the respiration
fundamental and its first harmonic and their ration is always greater than a factor 2. In
those two situations, we fix the SNR to 0 dB. The last operation is to scan the obtained
SNR profile starting from the first estimation and stopping when the first descending
order uncorrelated source produced an SNR below a threshold. The latter source indi-
cates the starting of Un while the previous ones are the Us sources corresponding to the
P subjects.

5.4. CHANNEL AND RANGE ESTIMATION
In order to estimate the range, we can estimate the H. Since the range information (range
bin of the target) can be estimation from the estimated H by finding the largest energy
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Figure 5.3: Data cube typically extracted from SIMO radar, with range (fast time), slow time, and angle (number
of the different sensors or channels)

index.
The channel estimation is used to estimate the range. For each angle bin, we have a

range-time observation, X = HS+N.
H determines the linear combinations of the sources in S, so the magnitudes of the

elements in H indicate the energy of the sources in every range bin. Therefore, if we
know the propagation channels H of the sources, we can localize the targets. From the
observation matrix X and the estimated source matrix we can then estimate H.

Now we have already used SVD to obtain the estimated S. We can calculate the es-
timated H by the following equation by multiplying the pseudo inverse of the previous
step estimated S.

Ĥ = X Ŝ† (5.3)

5.5. ANGLE ESTIMATION
In this section, two DOA estimation algorithms are discussed. The first one is digital
beamforming [18] and the second one is 1D MUSIC [23].

5.5.1. DIGITAL BEAMFORMING (DBF)
Beamforming, also known as spatial filtering, is a kind of technology that focus the radar
beam of antenna array to some desired direction over azimuth or elevations. In an an-
tenna array, beamforming is realized through summing up the weighted signals of each
elements, the weighting basically includes information of amplitude and phase. As a
result, signals at a specific direction will be constructively interfered and thus a narrow
beam will be directed to the angle of interest.

In a ULA SIMO radar system, the phase difference between two adjacent antennas
can be shown as:
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Figure 5.4: Range angle results of the FFT processing of one time slice

∆φ= 2πd sin(θ)

λ
(5.4)

Assume the baseband signal of Rx1 is SB (t ). The other signals at different Q sensors
can be formulated as

Xi (t ) = SB (t )e j (i−1)∆φ (5.5)

And the results after using DBF techniques is:

Si (t ) =
Q∑

i=1
Wi Xi (t ) (5.6)

In order to make the same-direction addition of Si (t ), the phase difference of each
RF chain needs to be removed. Therefore, the coefficient Wi can be expressed as:

Wi = e− j (i−1)∆φ (5.7)

The spatial results of DBF are shown in Figure 5.9.

5.5.2. 1D MUSIC
According to the number of detected targets, the noise subspace can be extracted from
the eigen decomposition as

Uk̃ = [
Wk̃ Vk̃

]
(5.8)

where Vk̃ and Vk̃ represent the signal subspace and noise subspace, respectively.
Divide the angle domain into Q grids as [θ0, θ1, ..., θQ ] and formulate the steering

vector a(θ)
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Figure 5.5: The idea of construction the data cube into a new data matrix

where d is the inter space between neighbouring elements and λ is the wavelength
of the center frequency. Applying MUSIC algorithm, the pseudo-spectrum of angle can
be obtained.

pk̃ =
[

1∥∥a (θ0)Vk̃

∥∥2 , . . . ,
1∥∥a

(
θQ

)
Vk̃

∥∥2

]T

(5.9)

The spatial results of 1D MUSIC are shown in Figure 5.9.

5.6. PHASE EXTRACTION

In this section, two phase extraction methods are discussed in the context of vital signs
monitoring, i.e. in order to use the phase information to estimate the respiration and
heartbeat rates.
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Figure 5.6: SVD results which shows dopplers by taking the first five colomn vectors of U after SVD

5.6.1. PHASE UNWRAPPING
Extract the phase of signal s[n], we get the phase history φi . After obtaining the phase
information φi of the desired signal, the 2π discontinuity of the extracted phase appears
when an extreme value, π/ −π, is reached; the phase then jumps to the other end of the
interval, −π/ π, which suffers from the deficiency known as phase wrapping. To tackle
this problem, the unwrapping process is necessary to avoid the jump of the extracted
phase, the process steps are:

1. Calculate the difference between the current sample in wrapped phase signalφw (n)
and its previous adjacent phase sample φw (n −1):

∆φ=φw (n)−φw (n −1), n = 2, . . . , N (5.10)

2. If ∆φ > +π, subtract 2π from current phase sample and also from all the samples
to the right of it.

3. If ∆φ<−π, add 2π to the current sample and also to all the samples to the right of
it.

The process can be mathematically expressed as:

φu(t ) =U [φw (t )] =φw (t )+2πk, k ∈ {−1,1} (5.11)
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Figure 5.7: SNR results to show how the target number is estimated

where U [·] indicates the phase unwrapping operation, then phase historyφhi s (t ) can be
obtained as:

φhi s (t ) =U [φi (t )]. (5.12)

The results of phase unwrapping can be found in Figure 5.11

5.6.2. LINEAR DEMODULATION
The vital signs information is preserved in the phase information of S. The AC coupling
step used to obtain removes all the DC information of the target, resulting in a distortion
in the phase (angle) extraction. Therefore, we used the linear demodulation algorithm
on S to perform phase demodulation in order to extract the vital signs information.

Based on the small angle approximation, a vital sign source can be approximated as:

s(t ) = e j;(t ) ≈ 1+ j;(t )− ;2(t )

2
(5.13)

where is the phase (Doppler) shift caused by the vital signs. After DC removal, it
becomes:

s̄(t ) ≈ j;(t )− ;2(t )

2
(5.14)
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Figure 5.8: Channel estimation results which show the magnitudes of the energy of the sources in every range
bin.

where the two terms are orthogonal and the imaginary part is more powerful than the
real part. The vital signs information y (t) can be extracted from the estimated source s
(t) after linear demodulation and it can be expressed as:

ŷ(t ) = ŝ(t )
λ0

4π
(5.15)

whereλ0 is the wavelength corresponding with the start frequency of the chirp. If the
demodulation is performed correctly, the above equation is equivalent to the motion of
the chest surface R(t) caused by the vital signs.

The results of linear demodulation can be found in Figure 5.11

5.7. VITAL SIGN FREQUENCY ESTIMATION

Two signal decomposition methods are discussed in this section which are wavelet de-
composition and EMD. After separating the respiration and heartbeat, the FFT and peak
detection are applying to find the estimation respiration rate and heartbeat rate.
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(a) DBF (b) 1D MUSIC

Figure 5.9: Angle estimation spatial response by using DBF and 1D MUSIC

Figure 5.10: Vital sign estimation block diagram

5.7.1. WAVELET DECOMPOSITION

Wavelet transform offers variable time-frequency resolution. The finite oscillatory na-
ture of wavelets makes wavelet transform extremely useful for nonlinear and nonsta-
tionary signals in real life situations. Suppose sampling frequency of x(t) is f , L-level
discrete wavelet decomposition coefficients are

[
cL

1 · · ·cL
N
2L

: d L
1 · · ·d L

N
2L

... · · ·d 2
1 · · ·d 2

N
4

...d 1
1 · · ·d 1

N
2

]
(5.16)

where cr
i and d r

i are approximation coefficients and detail coefficients at the level
r scaling, respectively, and N is the length of x(t). The frequency range of the rth level
detail coefficients is from f/2r to f/2r −1 .

The results of EMD are shown in Figure 5.12.
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(a) Phase unwrap (b) Linear demodulation

Figure 5.11: Phase extraction by using phase unwrapping or using linear demodulation

5.7.2. EMD
EMD deconstructs non-stationary and non-linear signals into a set of mono-component
signals called intrinsic mode functions (IMF). An IMF is a function that represents the
oscillation mode embedded in the data signal. An IMF satisfies 2 conditions: the num-
ber of extrema and zero crossings must be either equal or differ by one, and the mean
value of the envelope defined by the local maxima and the envelope defined by the local
minima is zero.

Similar to wavelet analysis, EMD decomposes the signal into IMFs of different reso-
lution scales. However, in EMD, the basis functions are directly extracted from the data,
while in wavelet analysis, a pre-designed mother wavelet is selected before the analysis
and determines the basis functions for the different scales. Therefore, IMF can better
represent the local characteristics of a signal, and adapt to the signal’s oscillation pat-
terns over time. Due to this advantage, EMD is suitable for analyzing nonlinear and
non-stationary signals. A real valued signal y(t) can be represented as a set of IMFs plus
a residual:

y(n) =
N∑

k=1
sk (n)+ rk (n) k = 1,2, . . . ,N (5.17)

where sk (n) are the resulting IMFs and rk (n) the residual term.
The results of EMD are shown in Figure 5.12.

5.8. CONCLUSIONS
Figure 5.13 shows the final estimated frequencies of one targets compared to the ground
truth. It can be seen that final estimation with proposed algorithm can still work for
the multipath scenario. While we want to further discover how the angular information
helps the vital sign estimation and target localization compared to the SISO FMCW radar
which previous work used. Therefore, in the next section of case tests, we simulated two
targets in the same range bin in order to figure out it.
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(a) Wavelet (b) EMD

Figure 5.12: Wavelet decomposition and EMD results

Figure 5.13: Vital sign estimation results compared to the ground truth
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CASE SIMULATION TESTS

In this section, two case tests are simulated based on the same configuration of the radar
parameters. We present two cases whose characteristics are summarised below: 1) two
subjects with the same range and different respiration and heartbeat frequencies with-
out considering the multipath effect; 2) two subjects with the same range and different
respiration and heartbeat frequencies with considering the multipath effect

6.1. CONFIGURATION OF THE SIMULATIONS
FMCW Signal generation is realized based on MATLAB which built the signal model fixed
with realistic data collected by the IMEC radar [17]. The parameters of simulated FMCW
chirp signal is shown in Table 6.1.

The simulated model uses 24 spatial channels for DOA estimation (formed by 1 trans-
mitters and 24 receivers MIMO array), 1111 slow-time snapshots for Doppler processing
and 512 fast-time snapshots for range processing. Each transmitter emits FMCW signals
(IF signal) modulated to center frequency (RF signal) sequentially to generate Time Di-
vision orthogonal waveforms. The received signals are generated by timedelayed trans-
mitted signals. The delay is calculated. To generate reflected echo from targets, radar
range equation is calculated to get the received power as follows

Pr = Pt Gt Grλ
2σ

(4π)3R4L
(6.1)

where Pr ,Pt are the received and transmitted power, Gt ,Gr are transmitter and re-
ceiver gain, σ is target’s nonfluctuating radar cross section in square meters, R is the
distance from radar to the target, and L is the general loss factor.

Then the complex conjugate of down-converted received signal (IF signal) is multi-
plied with transmitted signal to generate deramped signal for processing. After deramp-
ing, the bandwidth of the signal is reduced considerably which allows lower sampling
frequency.
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Radar parameter Values

Centre frequency 7.3 GHz
Bandwidth 1GHz

Chirp duration 40.96 ns
PRI (pulse repetition interval) 40.96 ns

Observation frame period 20 s
Number of channels 24 channels

Table 6.1: Parameter of the radar

6.2. CASE TEST A: TWO TARGETS IN THE SAME RANGE BIN WITH-
OUT MULTIPATH EFFECT

In the case test, the scenario is show in the Figure 6.1. Since in this case, the multipath
effect is not supposed. It should output relatively good result. The ground truth data
are two targets both at 3.6m. RR for target 1 is 0.32Hz and HR for target 1 is 1.5Hz at 30
degrees. RR for target 2 is 0.23Hz and HR for target 2 is 1.1Hz at -45 degrees. The other
estimation reults are shown in the other figures. The input ground truth data are applied
to the SISO radar at the same time for comparison with SIMO one. Figure 6.2 shows
the range angle plots of a time slice according to the scenario. Figure 6.3 shows that
vital sign, location and angle estimation of two targets with comparing the ground truth
(in red line). From Figure 6.4 and Figure 6.5, we compared the estimated respiration
frequency and heartbeat frequency of both targets with the ground truths.

To compare with the SIMO results, the same range and vital sign ground truth are
used to generate the SISO data. It can been seen from Figure 6.6 the range time plot are
shown. Figure 6.7 shows that vital sign, location and angle estimation of two targets with
comparing the ground truth (in red line). From Figure 6.8 and Figure 6.9, we compared
the estimated respiration frequency and heartbeat frequency of both targets with the
ground truths.

6.3. CASE TEST B: TWO TARGETS IN THE SAME RANGE BIN WITH

MULTIPATH EFFECT
In the case test, the scenario is show in Figure 6.10. Since in this case, we suppose the
multipath effect. For one real target, all the three possible multipath possibilities are
supposed in this case test. The ground truth data are two targets both at 3.6m. RR for
target 1 is 0.24Hz and HR for target 1 is 1.2Hz at 30 degrees. RR for target 2 is 0.31Hz
and HR for target 2 is 1.8Hz at -45 degrees. The other estimation reults are shown in the
other figures. The input ground truth data are applied to the SISO radar at the same time
for comparison with SIMO one. Figure 6.11 shows the range angle plots of a time slice
according to the scenario. Figure 6.12 shows that vital sign, location and angle estima-
tion of two targets with comparing the ground truth (in red line). From Figure 6.13 and
Figure 6.14, we compared the estimated respiration frequency and heartbeat frequency
of both targets with the ground truths.
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Figure 6.1: sketech of case A scenario where two subjects with same distance and different angle are shown

To compare with the SIMO results, the same range and vital sign ground truth are
used to generate the SISO data. It can been seen from Figure 6.15 the range time plot
are shown. Figure 6.16 shows that vital sign, location and angle estimation of two targets
with comparing the ground truth (in red line). From Figure 6.17 and Figure 6.18, we
compared the estimated respiration frequency and heartbeat frequency of both targets
with the ground truths.

6.4. CONCLUSIONS
In conclusion, with the proposed algorithms, the multipath effect can be removed. And
SIMO radar can work for the same range bin scenario with the angular information,
while SISO radar can not. In the same range bin of SISO radar, two vital signs of different
targets are mixed together which are difficult to separate two targets’ vital sign.

In order to generalise this performances as an alternative to the experiments valida-
tion that can not be performed, the Monte Carlo simulations are conducted.
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Figure 6.2: Range time plot of a time slice for scenario A where there are two subjects at the same distance and
different angle

Figure 6.3: Vital sign, location, and angle estimation of subject 1 and subject 2 (red lines are ground truth)
(SIMO)
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Figure 6.4: RR and HR estimation of subject 1 (SIMO) and the correct vital sign is well estimated

Figure 6.5: RR and HR estimation of subject 2 (SIMO) and the correct vital sign is well estimated
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Figure 6.6: SISO range time plot for scenario A where there are two subjects at the same distance and different
angle

Figure 6.7: Vital sign, location estimation of subject 1 and subject 2 (red lines are ground truth) (SISO)
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Figure 6.8: RR and HR estimation of subject 1 (SISO), the estimation does not work well for subject 1, especially
estimating HR

Figure 6.9: RR and HR estimation of subject 2 (SISO), the estimation does not work well for subject 2, especially
estimating HR
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Figure 6.10: Scenario of this case B scenario with considering the multipath effect where two subjects with
same distance and different angle are shown

Figure 6.11: Range time plot of a time slice for case B scenario with considering the multipath effect where two
subjects with same distance and different angle, the figure gets more complicated and there are ghosts due to
multipath
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Figure 6.12: Vital sign, location, and angle estimation of subject 1 and subject 2 (red lines are ground truth)
(SIMO), works well for the estimation

Figure 6.13: RR and HR estimation of subject 1 (SIMO), works well for the estimation
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Figure 6.14: RR and HR estimation of subject 2 (SIMO), works well for the estimation

Figure 6.15: SISO range time plot for case B scenario with considering the multipath effect where two subjects
with same distance and different angle
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Figure 6.16: Vital sign, location estimation of subject 1 and subject 2 (red lines are ground truth)

Figure 6.17: RR and HR estimation of subject 1 (SISO), HR is a bit wrong estimated
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Figure 6.18: RR and HR estimation of subject 2 (SISO), HR is wrongly estimated
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MONTE CARLO SIMULATIONS

In this chapter, the Monte Carlo simulation is conducted for generalising this perfor-
mances as an alternative to the experiments validation that can not be performed

7.1. RESULTS OF MONTE CARLO SIMULATION FOR TARGETS IN

THE SAME RANGE BINS
50 sets of random data with initialising two targets in the same range bin, the summary
of the generation for each data are described as follows:

• Two subjects are 1 meter and 4 meters and between 30 degrees and -45 degrees

• Their vital signs are also randomly initialised between the value according to the
review table Table 3.1.

• one ghost target is simulated with the same vital sign information of target 1 and
in the range between 5 meter to 6 meter at 60 degree

Overall results which are the difference between the ground truth value and the es-
timated value of location, respiration rate and heartbeat rate are shown in the following
table. Table 7.1 summarises the results of the 50 MC simulations in terms of mean error
and standard deviation of the error between the estimated value of key parameters and
their actual value. The histograms plot in the subsequent figures show the distribution
of the amount of this error.

It can been seen that the mean error values of the heartbeat rate estimation are very
large. It is because that in SISO it could not detect the two subjects at all for the heartbeat
rate. Since it was not visible without the angular differentiation

7.1.1. LOCATION DIFFERENCE BETWEEN SISO AND SIMO
From Figure 7.1 and Figure 7.2, we can see SIMO have a better performance than SISO,
especially for the estimation of subject 2 location.
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SISO
mean error

SISO STD
of error

SIMO
mean error

SIMO STD
of error

Location S1(m) 0.0515 0.0304 0.0793 0.0451
Location S2(m) 0.5146 0.6157 0.1358 0.4299
Respiration S1
(bpm)

1.1606 1.5764 0.8099 0.5648

Respiration S2
(bpm)

1.8632 2.2452 0.7932 0.4660

Heartbeat S1
(bpm)

44.3687 27.3391 0.9870 0.9876

Heartbeat S2
(bpm)

16.1341 18.8573 0.7210 0.4235

Table 7.1: Monte Carlo simulation reults overview

For the first subject, both SISO and SIMO have a good estimation and SISO could
even works better than SIMO since for the SIMO channel (range) estimation, we take an
average value for each sensor’s estimation. While, for the second subject, SIMO radar
shows a better results than SISO for much more Monte Carlo experiments in less in 0.15
meters.

(a) SISO location difference histogram (b) SIMO location difference histogram

Figure 7.1: Location difference compared to the input ground truth between SISO and SIMO for subject 1

7.1.2. RESPIRATION RATE DIFFERENCE BETWEEN SISO AND SIMO

From Figure 7.3 and figure Figure 7.4, we can see SIMO have a overall superior perfor-
mance than SISO for estimating the respiration rate.

For the first subject, SIMO is slightly better than SISO radar. While for the second
subjects, SIMO works much better with all the respiration difference compared to the
ground truth between 0 to 2 bpm.
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(a) SISO location difference histogram (b) SIMO location difference histogram

Figure 7.2: Location difference compared to the input ground truth between SISO and SIMO for subject 2

(a) SISO RR difference histogram (b) SIMO RR difference histogram

Figure 7.3: RR difference compared to the input ground truth between SISO and SIMO for subject 1

7.1.3. HEARTBEAT RATE DIFFERENCE BETWEEN SISO AND SIMO
From Figure 7.5 and figure Figure 7.6, we can see SIMO have a overall higher quality
performance than SISO for estimating the heartbeat rate.

For the first subject, SIMO is really better than SISO radar. And SISO radar has very
limited Monte Carlo simulations to have a relatively correct result. While for the second
subjects, SIMO works much better with all the respiration difference compared to the
ground truth between 0 to 2 bpm while SISO not.

7.2. CONCLUSIONS
In conclusion, SIMO have a better performance than SISO in vital sign estimation and
target localization for the same range bin scenario. It is also proved than the angular
information can help for this same range bin scenario.
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(a) SISO RR difference histogram (b) SIMO RR difference histogram

Figure 7.4: RR difference compared to the input ground truth between SISO and SIMO for subject 2

(a) SISO HR difference histogram (b) SIMO HR difference histogram

Figure 7.5: HR difference compared to the input ground truth between SISO and SIMO for subject 1

(a) SISO HR difference histogram (b) SIMO HR difference histogram

Figure 7.6: HR difference compared to the input ground truth between SISO and SIMO for subject 2
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CONCLUSION AND FUTURE WORK

8.1. CONCLUSION
The aim of this MSc thesis was to explore the data processing algorithms for radar-based
non-contatct long term health monitoring (i.e., HR and RR) and the possibility of re-
alizing indoor positioning at the same time. This is in-line with the growing demand
for non-contatct health monitoring in hospitals, schools, homes and cars. The main re-
search activities aimed to extend the work of a previous master thesis from SISO (single
input single output) radar to a SIMO (single input multiple output) radar framework.
The core idea is that the usage of multiple receiver channels that SIMO radar provides
can enable an additional degree of freedom (the estimation of the angular position) to
distinguish real targets from ghost targets due to multipath, hence improving their rejec-
tion and cancellation. Simulation results are then generated to compare SISO and SIMO
frameworks for recognition of the number of subjects in a given environment, for their
localisation, and for the estimation of their vital signs.

The key contributions of this thesis work are summarised in the following bullet
points.

• Detailed analysis of the multipath effects for the problem of vital signs indoor es-
timation, with key assumptions in the developed model.

• Construction and full characterisation of the SIMO radar data cube for further pro-
cessing in the range-Doppler-angle domain.

• Formulation of angular localisation algorithm as part of vital signs estimation pro-
cess for multiple subjects in SIMO radar framework.

• New definition of an SNR metric for the estimation of the number of subjects

• Validation and comparison of performances of SISO and SIMO vital sign estima-
tion
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The effectiveness of the proposed approach has been demonstrated via simulations,
in particular a Monte Carlo simulations with multiple subjects located at the same range
bin but at different azimuth angle and with different vital signs. The proposed SIMO
framework achieved a reduction of error in the estimated location parameters of about
0.3m with respect to the conventional SISO case. The proposed SIMO framework achieved
a reduction of error in the estimated respiration rate parameters of about 1.4bpm with
respect to the conventional SISO case. The proposed SIMO framework achieved a good
estimation of heartbeat parameters, while the conventional SISO case can not output a
reliable heatbeat frequency estimation.

8.2. RECOMMENDATIONS OF FUTURE WORK
Unfortunately, due to access limitation caused by the COVID-19 pandemic to the offices
of IMEC, Eindhoven, where this thesis work was mostly performed, the initially planned
experimental validation with SIMO radar was not possible to perform. Therefore, the
first future work is to collect real data with a SIMO FMCW radar in the indoor environ-
ment.

For signal decomposition method, some other real time techniques such as online-
EMD or online VMD could be applied in order to get a better computational perfor-
mance and also better for the algorithms in the real time embedded system.

Now the indoor environment multipath effect are supposed to be 2D, while in the
real environment, it will be a 3D environment. Then, the geometry of the multipath
effect will be more complicated.
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