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Chapter 1

Introduction

The valuation of financial derivatives is becoming more amtera dedicated subject of mathematics and computer
science. Nowadays, the prices of contracts whose fututeesare uncertain (foreign exchange, interest rate, equity
commaodity) add up to billions of US dollars each year (#¥5[ 2009). Because of this importance, several mathe-
matical approaches have been developed to model the umdeoltderivatives.

Some derivatives are based on more than one underlying. fi&armmre stock market index options or derivatives used
to hedge against the fluctuation of more than one currencgaAde seen from historical market data, these underly-
ings are correlated in general. Therefore, pricing thesgat®&es would involve a multi-dimensional extension loét
single asset models. This thesis considers the multi-aesstbn model.

The celebrated Heston model (sekefton, 1995 is an extension of the well-known Black-Scholes modeé (&tack
& Scholes, 1978. An important drawback of the latter model is the stronguasption of a constant volatility. Market
data analysis (as is done i€¢nt, 2001, for example) indicates the existence of the ‘volatilikes/ or ‘smile’. The
model of Heston allows such skew by defining the volatilityaagochastic process itself.

In this thesis, an extension of the Heston model to the ndiittiensional case will be investigated. Most attention will

be given to design a multi-asset Monte Carlo method, whicheficiently simulate multivariate random variables

with almost no bias. The prevention of negative variancééndiscretization method will be a challenge, as well as
the generation of correlated multivariate random varigble

In Chapter2, the Heston model will be discussed. In Cha@ethe problem of potential negative variance is treated.
We investigate several numerical methods which are degigmsimulate the variance path, and we test them. We
will choose one method as our candidate scheme for the diaiensional Monte Carlo method. In Chapter
we construct this method, which we name the Multi-dimensi@puadratic Exponential method (MQE). We test its
performance in Chapté:. In Chaptet6, we derive a calibration method for the MQE method.



Chapter 2

The Heston model

Consider the probability spad®, 7 ,Q), with Q the risk-neutral measure. The Heston model describefthe
dynamics of a stock pric&(t), with stochastic varianc¥(t), by the two-dimensional stochastic differential equation
(SDE)

dv(t) = k(6—V(t))dt+e\/V(t)dW(t), (2.1)
dSt) = r(®)St)dt+/V (1) St)dWk(t). (2.2)

Here the mean-reverting term, the long-term variancé), and the volatility of volatility,e, are strictly positive con-
stants. The mean rate of retumft), is actually assumed constant in the Heston model, but weresshat it is a
deterministic function of time, since this natural genizeglon will not make our further derivations too complex.
Further Wy (t) andW, (t) are Brownian motions undép, and we havel\W (t)dW, (t) = pdt, with dt an infinitesimal
amount of time.

We will now define the concept of arbitrage and then use aniitapbtheorem in finance:

Definition. Arbitrage
An arbitrage is a portfolio value process(¥§ satisfying X0) = 0 and also satisfying for some time-T 0

Q{X(T)>0} =1, Q{X(T)>0}>0.

An arbitrage is a way of trading so that one starts with zemitahand some later tim& is sure not to have lost
money and furthermore has a positive probability of havimged money. We state the following well-known theorem
without proof:

Theorem 1. First fundamental theorem of asset pricing.
If a market model has a risk-neutral probability, then it do®t admit arbitrage.

Furthermore, sinc@ is the risk-neutral probability§(t) /B(t) is a martingale unde®. Thereforey(t) must be equal
to the risk-free rate of return, and we will refer to thisitfy) from now on. For the multi-dimensional case, this will
practically mean that the risk-free rate of every stocknretsithe same.

Since instantaneous correlation will be an important tapibis project, let us introduce this quantity.

Definition. Instantaneous correlation
Suppose Xt) and X (t) are stochastic processes with dynamics

dXa(t) = pa(t)dt+oy(t)dWa(t),
dXo(t) = pe(t)dt+oz(t)dVia(t),

where W(t),Wx(t) are Brownian motions satisfying d\lY)dWa(t) = p(t)dt andp(t), p(t), k2(t),01(t) andoz(t) are
functions of time. We cafi(t) the instantaneous correlation betweem@Xand dX(t).



Integration of the SDE oX;(t) for i = 1,2 over a time intervah > 0, yields

Xi(t+A)=X(t) = /tHAp{- (s)ds+ /tHAcri(s)dW(s).

We recognize the second integral on the right-hand side #&®amtegral, which is normally distributed given(t),
sinceaoi(s) is a deterministic function. Therefore:

t+A t+A
Xa(t+A)—Xa(t)~f7\£<t w(s)ds | o?(s)dt) given 7 (t).

In this case of deterministig(t), (), h2(t),01(t) andoz(t), the instantaneous correlation is equal to the correlation
between the infinitesimal increases of the two stochasticgsses. We can make this intuitive by assuming that these
five parameters are constaptt) = p, 1 (t) = p1, and so on. Then, fdr> 0 and infinitesimal increas#, it is easy to
derive that

E[X(t-+dt) =X (t)|7 (t)] = pdt, for i=1,2,
Var(X(t+dt) — X (t)|# (t)) = o?dt, for i=1,2,
COV(Xl(t +dt) — Xy (), Xp(t +dt) — X2(t)|ﬂ-' (t)) = po102dt.

Therefore, conditioned o# (t), the correlation between the incremeKist + dt) — X;(t) andXa(t + dt) — Xa(t) is
Cov(Xy (t+dt) — Xy (), Xa(t +dt) — Xa(t)| 7 () B
\/Var(xl(t +dt) — Xg ()| 7 (t)) Var(Xa(t +dt) — Xo(t) | 7 (1))

If we drop the assumption of constapit), pu(t), H2(t),01(t) andoz(t), a similar result can be derived. We present it
here without proof (seeShreve, 2008:

- Cov(Xa (t +dt) — Xq(t), Xo(t + dt) — Xo(t)| 7 (1))
O [Var(Xa(t+dt) — Xa (1) 7 (1)) Var(Xe(t +dt) - Xo(1)] 7 (1))

=p(t) given 7 (t).

It is important to notice that this result will not hold fooshastiao, (t) andoz(t), as itis the case in the Heston model.
In that case, we cafi(t) the instantaneous correlation between the Brownian metdithe Heston model, while the
log-stock return correlation denotes the correlation leetd X; (t) anddX(t).

2.1 Analysis of the variance dynamics
The variance process i2.() is a mean-reverting square-root process. An investigatfats dynamics inCox et al.,
1987 gives us the conditional distribution of the variance. e some results without proof:

Result 1. LetA > 0and FX/z(X, 8,\) be the cumulative distribution function for the noncentfaitsquare distribution
with & degrees of freedom and noncentrality paramétethen

Q(V(t+4) <xV(t) = FX/z(ng’KAA)X,d,n(t,A)V(t)),

with d = 4k8/e2 and n(t,A) = %€

e2(1-eK4y"

Result 2. Since a noncentral chi-square distributed random varialle- F,2(x,k,A), has mean k-A and variance
2(k+2)), we can compute the first two conditional moments of the meegrocess:

ENV(t+A)V(E)] = 68+ (V(t)—8)e ™,
Var[V(t+a)|V(t)] = \%)sze—m(lie—m)+927?(2(179_“)2.



2.2 Analysis of the stock dynamics

Let us define the log-stock(t) := InS(t), and apply 6 's Lemma on the functiorf(t,S(t)) = InS(t) to find the
dynamics ofX(t):

axX(t) — (r(t)—%V(t))dum/va)dvx&(t). 2.3)

By integrating over the time step, we obtain an expressioichnis intuitive to discretize:
t+A 1 t+A
X(Et+a) = X(t) +/t (r(9)- EV(s))o|s+/t VSV (S). (2.4)

We know that we can sample a Brownian mot@f/(t) by a normal random variable with zero mean and variatice
Furthermore, the correlatignbetween the two Brownian motions must be imposed. To do seanaise a Cholesky
decomposition.

Result 3. Cholesky decomposition
Suppose that an xnn matrix3 is real-valued, symmetric and positive definite. Then wewrde > as LL", with L an
n x n lower triangular matrix. This decomposition is called fBholesky decomposition &f

The proof of this theorem and an algorithm to findan be found in AppendiA. We now claim that iZ is a vector

of n independent standard normal random variables, th#is a vector of standard normal random variables with
correlation matrixz. To show this, we first use the fact that the family of normatmibutions is closed under linear
transformations. Therefore, all elementd.@f are normally distributed. The expectation vecigg, and covariance
matrix, % z, of LZ can easily be deduced, using the linear property of expentat

E[LZ] = LE[Z] =0
E [(LZ ~E[LZ))(LZ —E[LZ])T} —E [LZ(LZ)T} - E[LZZTLT}

Hiz

21z

LE [zzq LT =L =5

In the second last equaliti[ZZ '] is equal to the identity matrik since the components @ are independent and
standard normal random variables. Therefore, the multat@normal vectok/ALZ has correlation matrig, but all
elements still have mean zero and variafce

If we define the 2-dimensional vector

onat=(348).

then its correlation matrix and its corresponding lowartgular matrix are

(1 p (1 0
Z_(p 1>’L_<p 1—92)'

dWancorr(t) = ( c:JVV\‘\;((tt)) )

with dW(t) a Brownian motion independent di{ (t), thenLdW  ncor(t) has correlation matri. This practically
means that in our scheme we have to sample two independenhBromotionsd\W; (t) anddW(t), and set

This implies that if

dW () = pdW (t) + /1 — p2dW(t). (2.5)

Suppose we do not sample the numerical estimad®\ft) itself to simulate the variance process, but another random
variable instead (for example the noncentral chi-squardom variables as defined in Secti®rd). Then we cannot
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use the above procedure to correlate the two processesujththere are methods to correlate non-normal random
variables (for example, by sampling from the normal copulese are not exact, unfortunately. Brgadie & Kaya,
2004, the following solution is proposed: first, substitugg) in (2.4):

X(t+ +/t+A —%v ds+p/t+Adew )+ /1— p2/ NEdWS).  (2.6)

Then we can replacéW, (t) by terms that we do sample, nam&lyt) andV(t + A). Therefore, we integrate the
variance process SDE, formula.p):

V{t+0)-V(t) = /t”A K(6—V(s )ds+s/ NV (S)dW (s

Rearranging yields

t+A
/ V(AW (s) = s_l(V(t+A)—V(t)fK9A+Kt

Finally, the substitution of4.7) in (2.6) yields

t+A

V(s)ds). 2.7)

X({t+4) = é(/t.)ﬁ/twr s—f/t+A ds+ (V(t+4) -V (1))

Kp/”A< )ds—s—\/lipz/ Fdw 2.8)

V5

The first term on the right-hand side is of course the cur@gstock value. The second term represents the contribu-
tion of the interest rate during the time step. The third texaiue to the quadratic variation of the geometric Brownian
motion. The fourth term reflects the correlation betweenweSDES: in case of a positiy® an increase or decrease
of the variance implies that this term respectively incesasr decreases the stock value. (In case of a negatae
increase or decrease of the variance implies that this tespectively decreases or increases the stock value.) e fif
term corresponds to this correlation in the same way, butthewariation of the variance path from the long-term
varianceis the driving factor, instead of the increase in varianche Tast term represents the independent random
part of the next log-stock value. Simplifying.8), we end up with the following exact representation of thge $tock
process:

t+A
X(t+d) = x(t)+/t r(9)dst 2 (V(t+a) V() - kon)
+ (K?p - %) tt+AV(s)ds+\/17p2/tt+A\/V(s)dW(s). 2.9)

This formula practically implies the following samplingheme:

1. Sample the next step variand&(t + A), and sample or estimate the variance path integféﬁV(s)ds In
Chapter3, we will describe several methods to do this.

2. Sincer(t) is deterministic, we can obtaﬁt+A s)dsindependent of this sampling scheme.

3. GivenV (t), the last term of the right-hand side &.9) is an 10 integral, and we can thus sample this last term
by drawing a normal random variable with mean zero and vaeié]]— p2) ft”AV(s)ds

Since the current log-stock valugt) is given, we have now obtained all terms on the right-hand sfd2.9), so we
have obtained a sample of the next log-stock va{(ie+ A).

11



Chapter 3

Path simulation of the variance process

Let us take a closer look at the variance dynamics:
dvV(t) = k(6—V(t))dt+e\/V(t)dW,(t), (3.2)

We know from Resulll in Section2.1 that the next step varianc¥é(t + A), follows a noncentral chi-square distri-
bution given the current step variandé(t). Since this distribution is supported @6, «), the variance process is
non-negative for all.

Secondly, observe that for larger valuespthe variance process becomes more volatile. One may waevttither
the mean-reverting ternk, can prevent the variance process to become zerd=dltef, 1951, this phenomenon is
formalized: precisely whee? < 2k, thenP(V (t) = 0) = 0 V't > 0. This condition is called the Feller condition, and
it basically means that the variance process can not reaolwten the mean-reverting term is sufficiently strong.

The Feller condition is important for the choice of the ditation method. Suppose for example that we would
discretize 8.1) by use of the well-known Forward Euler method:

V(t+d) = V(t)+k(0-V(t))A+e\/V(t)VDAZy, (3.2)

with 2y a standard normal random variable. Then conditional on swenezero current variance estimaté), the
probability that the variance scheme is negative at the stextis

2000y
€4/AV (1)

_ ¢<K(V(t) 8)a V(t))7 339
£/AV (t)

with ®(x) the cumulative distribution function of a standard nornsidom variable. The right-hand side &3

will be strictly positive since/(t),A and all Heston parameters are finite and non-zero. This nteansvith Euler

Forward, there is a strictly positive probability that thealetization path becomes negative. This is undesiralriege

it contradicts with the non-negative variance dynamicsiabrkaks down the scheme. In the subsequent step namely,

the square-root of the negative variance is used, whichtia neal number. Note that the probability of a breakdown

in the computation of3.3) increases whea increases, i.e. when the discretization is less accurateelvalues of,

which correspond to volatile variance processes, imphgh probability as well. One can see this by writirf®y3) as

V(t)(ka—1) KGA)

P\V(t+0)<ON(t) = p(ZV<K(A(t)—9)A—\A/(t)

(3.4)

P\V(t+4)<0N() = q:(
€4/AV (1)

12



Since the numerator of the above fraction is negative fopralttical parameter values, the probability increases in
In fact, the probability approach&¥0) = 0.5 ase approaches infinity. This positive probability of negatiggiance
illustrates the importance of the Feller condition.

The question arises whether or not the Feller conditiondkated in practice. The answer is that for typical examples
of FX options, interest rate options as well as equity otjdhis is the case most of the time. Therefore, during the
last decade, several numerical schemes have been propa»esttome the problem of negative variance. In the first
two sections of this chapter, we will introduce some of thgime an argumentation for the approximation used in the
scheme and discuss possible drawbacks. In the last seétibis chapter, we will compare their accuracy and speed
in the one-dimensional case, as well as their applicabidityhe multi-dimensional case. Then we will decide which
scheme will be the candidate scheme for the multi-dimersiblonte Carlo method that we will design.

3.1 Taylor-based schemes

We can distinguish two main categories of variance processatization schemes: Taylor-based schemes and (al-
most) exact schemes. Taylor-based schemes use a disioetizeethod with a constant estimate for the variance
during each time step, taking the current variance for exangince this constant estimate contains an error, one can
increase accuracy by decreasing the time step.

We will discuss the Full Truncation scheme and the Transéarvolatility (TV) scheme. Full Truncation is one of the
various Euler Forward schemes, but we will only discuss shigeme since irLjord et al., 2008 it has been shown
that it contains the least discretization bias.

3.1.1 Euler discretization: the Full Truncation scheme (FT)

To prevent\?(t +4) in (3.2 to become negative, one technique is to project any negeaéiiance to zero. Since the
variance process remains non-negative in this way, we ptélre computation of the square-root of a negative value.
Instead of projection, reflection (changing the sign of aigakould be used for the same purpose. Furthermore, in-
stead ofpreventingthe variance process to become negative, one also couktpmjreflect negative variance values
beforethey are used in further computations. Then the variande ifslf can become negative, but before square-
root computations (and maybe other computations as walparformed with these negative values, projection or
reflection is used.

The Euler FT scheme is based on this last method, using pimjecthe variance process is allowed to become
negative, at which point the scheme becomes determinigificaxmean-reverting drift k6. As a result, for negative
variance values, the scheme reduces to a mean revertingischié@e algorithm is as follows:

V(t+4) V(t)+k(0—V(t)")A+e\/V (1) VAZy,
(t)+ (r(t) - %V(t)Jr)A-F \/V ()T VAZy,

whereV (t) andX (t) are the discrete estimates\6ft) andX (t) respectively, anet™ := max0, x).

X(t+n)

I
x>

The scheme is intuitive and very fast per time step. Howesiace the variance during,t + A] is estimated by
the constan¥/ (t), this estimation contains bias which increases in the tirep size. Therefore, the accuracy of the
method decreases & which is a well-known feature of the Euler Forward schentds Theans that we need a small
time step to obtain sufficient accuracy. This bias increagesnever projection is applied more frequently, which is
why this problem is significant when the Feller condition islated or close to violation. In this case, the time step
size must be so small that the scheme is often too slow.

13



3.1.2 Transformed Volatility scheme (TV)

In [Zhu, 2008, the author tries to prevent the negative variance in &dfit way: the idea of the TV scheme is to
discretize the volatility dynamics instead of the variadgeamics. It thereby avoids the computation of the square-
root of the process. To be precise, Zhu defines the volaifitgessi (t) so thatv (t) = v2(t) and applies f's lemma
with f(V(t),t) := \/V(t) on formula @8.1), to obtain

du(t) i=d N = %K{(Gf%bu‘l(t)fu(t)]dtqt%sd\/\;(/(t),
— Ko[Bu(t) — L)]dt+ e, W (). (3.5)

Note that the volatility process can become negative, hgtdbes not cause any unnatural behavior of the stock
process:

dxX(t) = (r(t)f%V(t))dtJrU(t)dV\&(t).

One can see that a change of sign of the volatility), does not change the distributionXft), by symmetry ol (t).

Unfortunately, the application ofdts lemma is not allowed here, since the derivatives
df 1 d?f 1

—U)=——=and-—()=——~=

du( ) 2\/u duz( ) 4v/v
are obviously not continuous im = 0. This means that the obtained model is not equivalent t@tiginal Heston
model. To illustrate this further, note that inl¢ston, 1998 the mean-reverting square-root mod2llj is derived
from the Ornstein-Uhlenbeck procedis(t) = —Su(t)dt+ §dW(t), by Itd’s lemma withg(u(t),t) = L?(t). However,
process3.5) is not this Ornstein-Uhlenbeck process again, sthcis stochastic.

Furthermore, the mean-reverting function of the first teisappears whenevér< j—i. Then, the term will drive the
volatility towards negative infinity whenevei(t) > 0, and towards positive infinity whenewve(t) < 0. Zhu proposes
two techniques to mute these oscillations, one with a ptedimmorrector method, and one by moment matching. The
scheme algorithm is as follows:

I
2
+

R(t+a) = X (r(t)—%ﬁz(t))AJrO(t)\/EZx,
1
2

Ot+A) = O(t)+ K[Gu(t)—f)(t)]A—F%S\/EZU,

where0((t) is the discretization estimate oft).

In [Zhu, 2008, it is proposed to use this model instead of the squarefpootess, since then potential negative
volatilities do not cause any problems. Howevef ¥ j—i (which is actually stronger than the violation of the Feller
condition), the variance process is indeed not revertintstmean anymore. The two proposed fixes do not solve this
problem sufficiently for certain (in practice not uncommg@ayameter sets. In all other cases, the TV scheme seems
to be approximately as fast and accurate as the Euler FT schem

3.2 (Almost) exact schemes

A scheme that is based on sampling from the exact conditidistibution ofV(t + A) is called an exact scheme.
Since samples are exact, time steps do not have to be smditam sufficient accuracy. As we will show in the
next subsection, it appears that the exact scheme for tienearpath is computationally very expensive. Therefore,
“almost exact” schemes have been proposed, which are, edbbii own way, approximations of the exact scheme.
For most schemes, a refinement of the time discretizatidrredlce the error of these approximations. However, an
almost exact scheme will only be of use if it has the same orowga accuracy compared to the Euler FT scheme
with respect to CPU time.

14



3.2.1 Exact simulation (ES)

In the well-known article Broadie & Kaya, 200p the authors introduced an alternative sampling scheméhto
Heston model. The method oBfoadie & Kaya, 200pis computationally expensive, which is why it will not be
a serious candidate for the multi-dimensional Heston modiwever, since it influenced several other methods
developed afterwards, we will discuss it here briefly. THeesee algorithm is as follows:

1. Firstly,V(t+A) givenV (t) is sampled from a noncentral chi-square distribution, 8esultl of Chapter2).
The following representation for this distribution is used

2 2
X/Z(d,)\) g (%‘i’\/X) +Xd—l for d > 1,
Xd-+2v, ford > 0.

with Z ~ a( (0, 1),x’2(d,)\) the noncentral chi-square distribution widldegrees of freedom and noncentrality
parameten; x§+2N is the ordinary chi-square distribution withdegrees of freedom anq is Poisson dis-
tributed with mear%)\. In both cases, we have to sample from the ordinary chi-gadiatribution, which is a
special case of the gamma distributioqf:~ I' (k/2,2). We can efficiently sample froii(k/2,2) by use of the
following acceptance-rejection method:

(@) We sample an exponentially distributed random varjable- Exp(k=1), by settingY, = —kIn(1—Uy),
with U; ~U(0,1). We sample a uniform random variablé, independent of-.

(b) We definefr(x,k/2,2) as the probability density function of a gamma random végialith shape/2 and
scale 2, andjy, (t) the probability density function of;. Then if

fr(Yz,k/2,2)
gv, (YZ)

we setYs =Yy, andYs ~ I'(k/2,2). Otherwise, we return to step (a).

U <

)

2. Then,ft”AV(s)dsis sampled conditioned on starting poiftt) and endpoinV (t 4+ A). Its cumulative distribu-
tion function is recovered by a Fourier inversion methochef ¢haracteristic functiop(u) of [V (s)ds

F(x) ::P( tHAV(s)dsg x) = %/Om Sinl(Jux)D((p(u))du

M . .
B(Jrg sm(hjx) 0
T4

(@(hj)), (3.6)
where the Trapezoidal rule is used with step $izndM is chosen large. A numerical inversion of the CDF
allows to samplg;" ™V (s)dsby F~1(U), with U a uniform random number if®), 1].

3. Via(2.9), X(t+A) issampled giveN (t),V(t+A) andft”AV(s)ds using the knowledge thf,i;fJrA VV(s)dW(s)
is normally distributed with mean zero and variarj"ﬁ“éAV(s)ds

4. We setS(t +A) = eXt+8),

The simulation is exact except that the truncation of the amehthe numerical inversion of the CDF i8.§) will
introduce some bias. By choosiivylarge enough and the discretization stegmall enough, we can achieve any de-
sirable accuracy of the numerical inversion, and thus flais tan be as small as we desire. However, the characteristic
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function contains two modified Bessel functions of the fiiatk
y(x e—O.SA(y(x)—K) 1— e
ox = Y ( )

K(1—e BY0)
V() +V(E+A) [ kK(14+e2€)  yx)(1+e X))
exp €2 1-ekd 1 el

4 —0.54y(x)
losd—1 [ OV (t +A)M}

I0.5d—1{ V(t)V(t +A)4KeO5AV<X>]

e2(1-e4K)

X

with y(x) = VK2 — 2€2ix,d = 48%9 andly(x) is the modified Bessel function of the first kind. The methocddmees very
time consuming because of the computation Mf & these Bessel functions each step.

Furthermore, the acceptance-rejection method has thévdistage that the number of samples depend on the specific
Heston parameter set, which influences the quasi randoroh#ssrandom number generator. The methods to follow
in subsequent sections will address some of these problgragdpting the method irBfoadie & Kaya, 200pin
some way.

3.2.2 Quadratic Exponential scheme (QE)

Recall from Resulfl in Section2.1that

n(t,A)x
e—KA

V(t+4) ~ x(d,n(t, AV (1)).

It was observed infndersen, 200[ahat a noncentral chi-square random varia¥le x’z(d,}\) approaches a normal
distribution as\ approaches infinity. Therefore, Andersen proposed to aggitne next step variance by a function
of a normal random variable. The moments can be matched B&nglt2. Observe that a normal random variable
can attain negative values, wher&gs + A) can not. Therefore, Andersen proposed to either truncaseumare the
normal random variable. The former scheme, the Truncates$tan scheme (TG), is slightly outperformed by the
latter scheme, the Quadratic Exponential scheme (QE). Wemly discuss the QE scheme for this reason. In this
schemeV (t +A), with a moderate or high noncentrality parameter, is esgchhy:

V(t+A4)=ab+2y)? (3.7)

with 2, a standard normal random variable. Rof O however, this approximation becomes inaccurate, but then
x’z(d,)\) approaches eentralchi-square distributiorx?(d). The corresponding probability density function reads

e ¥/2yd/2-1
X) = ——.

2d/2r(d/2)
with d = 48%9 degrees of freedom. Based on the arguments given at the eédectibn3.2.1, Andersen proposed to
approximate this distribution too. One can see from the RiaEwhen the Feller condition is violated, the:is small,
so then the density &f (t +A) will be relatively large around 0. This insight gives riseatoapproximation of the PDF
by a distribution with some point mass at the origin, sup@eted with an exponential tail:

W(x,p,B) =PV (t+4) <x) = p+(1-p)(L—e ™).

Its inverse,W~1(x, p, ) exists in explicit form. Therefore, can sample exactly frinis distribution and set our new
value for the variance

0 for0<Uy <p,

\7(t +A) = qJ71<UV7 p? B) = { B*1|n (ll—UF\)/) fOI’ p < UV S 17 (38)

with Uy a uniform random variable. Constartandb from (3.7) andp andf3 from (3.8) are determined by matching
the moments of this distribution with those of the true ctiodel distribution ofV (t + A). The scheme algorithm is
as follows:
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1. To find a rule to switch between the two estimated/tir+ A), we first define

~ VarV(t+A)V(t) =V ()]
 EN{+A)VE) =VD)2

For the simulation 0T7(t +A), we use 8.7) wheny < g, with . € [1,2] the critical value. Whenevel > g,
we use B8.8). Andersen claims that the precise choicegidoes not matter for the accuracy of the scheme, and
choosesp. = 1.5.

2. Then "V (s)dsis estimated using "V (s)ds~ AlysV (t) + sV (t +A)], with, for exampley; = y> = 1, or
by matching moments.

3. Finally,X(t +A) is generated usin@(9), just as in the exact scheme as described in SestA

The QE method performs very fast, since it uses just few momgpcitations per time step than the Euler FT scheme.
Its accuracy is superior to that of the other schemes, ealheaihen the Feller condition is violated. This is due to the
fact that the method is based on the exact distribution ohéxe step variance, and not on its Taylor expansion.

3.2.3 Noncentral Chi-square Inversion scheme (NCI)

Let us recall from SectioB.2.1, that a noncentral chi-square distributkfﬁ(d,)\) can be represented by a central chi-
square distributiorq oy, with stochastic degrees of freedoiy:is Poisson distributed with me%'}\. Applying this

to the conditional sampling method {t + A), implies drawing a Poisson number and an inversion of thanary
chi-square CDF. While the exact simulation Brpadie & Kaya, 200puses an acceptance-rejection test (see Section
3.2.]) instead of the CDF inversion, ivgn Haastrecht & Pelsser, 2008 is claimed that this method is too slow.
However, inverting the ordinary chi-square CDF each stapeacth path is numerically expensive. Therefore, the
authors of yan Haastrecht & Pelsser, 2Q0&oposes to use an interpolation on some cached values scftenme
algorithm is as follows:

1. Based on the Poisson me%m, a integer gridv :={0,...,Mj,...,Mnay} is chosen as well as a griqu =
{0,...,1- 38}, with d some small numbens andy; contain the Poisson values and the discretized domain of
the inverse, respectively, on which we will cache the ing@fsthe corresponding conditional chi-square CDF's:

Hh;jl(ui)::cs;} (Ui), YMjeM YU € Uy,

d+2Mj

with G} (x) the inverse of the chi-square CDF with 2M; degrees of freedom. Note that we chosed
d+2Mj

instead of 1 as the final grid point efy; to omit the infinite valu&st (1) for all M.
d+2Mj

2. We draw a Poisson distributed random variabig. Now we can sampl¥ (t +A[V(t)) by drawing a uniform
random numbeldy and by computing

e *AJ(Uy)/n(t,8)  for mj < Mmax
vit+4) :{ e‘KAFdjrlZMj/n(t,A) for m; > Mmax (3.9)

with n(t,A) as in Propositiori, J(-) an interpolation rule oH,\]jl, andFd;l2Mj the direct numerical inversion of

the ordinary chi-square CDF. The authorsvdrj Haastrecht & Pelsser, 2dQ8opose to use a monotone cubic
Hermite spline interpolation fai(-).

3. ft”AV(s) dsandX(t +A) are generated just as in the QE scheme.

in [Ahrens & Dieter, 198Pfor example, an efficient method is decribed
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The idea is to choos@/ in such a way that the caching does not cost too much compngeffort, while the inter-
polation in @.9) must be used often enough to speed up the original methotteaft dnversion. Furthermore v,
must be chosen so that the interpolation is accurate endlaglexample, both grids could be made non-equidistant to
improve the accuracy.

In case the Feller condition is violated, the NCI schemequer§ well. In yan Haastrecht & Pelsser, 200&

is claimed thatE[N] = %)\ < 10 in all practical model configurations, which would make fhoisson generator
computationally efficient. However, in case of more “Bladt8les type” parameter settings (id est, wiséa small
with respect ta0), E[A] can be become much larger than 10. Since the Poisson randoivengenerator employs
an acceptance-rejection method, each natural numberevitjlected until the first acceptance, which will slow down
the scheme for high. In this case, we should switch from the NCI scheme to anatiethod, for example QE, as
proposed inyan Haastrecht & Pelsser, 200&nyhow, the NCI scheme can not be a generic method for tretdfie
model by this argument.

3.2.4 Gamma Expansion scheme (GE)

While in [Andersen, 200[/and [van Haastrecht & Pelsser, 2Q08he aim is to speed up the generatioVgt +A), the
authors of Glasserman & Kim, 20qasampleftt+AV(s)ds(givenV(t) andV(t +A)) more efficiently than is done in
the exact scheme. The article proposes an approximatida disitribution that should be accurate enough compared
to the ones in the QE scheme or the NCI scheme. This appradrimatbased on the following proposition, proved in
the article.

Proposition 1.

t+A n
d
( t V(s)dsV(t) =w,Viia = vt+A> = Xi+Xo+ Z Zj, (3.10)
=1
in which X, X2,n,21, Z2,... are mutually independent random variables. The followiggresentations hold:
d 0 1 Nn d © 1 d 0 1 Nn )
X]_: z* EXpJ(l)7 XZZ Z*rn(d/zal% ZJ: Z*Zrn(Z,l),Vle,Z,, (311)
n= Y (S = Yn i Y =1
where
2 2:2 2
d— 4KB/e%. Ay 161%n X t2 + 41PN ’
€2t(k2t? 4 412n?) 222

the Y, are independent Poisson random variables with respectieans(v(t) + v(t + A))An, the Exp(1) are inde-

pendent exponential random variables with mean 1, and flte, ) are independent gamma random variables with

shape parameten and scale parametd. n is a Bessel random variable, which has probability masstianc
(2/2)2n+v

P =N = Fnrmnevrn 2%

with parameters = d/2— 1, I,(z) a modified Bessel function of the first kind and

2K /€2
2= Sinhkt/2) Ve

For the precise scheme algorithm, séégsserman & Kim, 2008 The idea of the sampling method of the integral in
(3.10 is to truncate the infinite sums iB8.(L1) and match the moments of the truncation error estimate.

Just as the NCI scheme, this method performs well for theemdrcases that are treated in the article. That is, in
case the Feller condition is violated. However, againef@rO, the computational speed decreases enormously, this
time because the computation of the Bessel function vatuesrisuming since its parametgnas become large. We
conclude that just as the NCI scheme, the GE scheme canmmnbexgeneric scheme for the Heston model.
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3.3 Comparison of different schemes

We implemented the 5 schemes described in the above subiseitiMatLab 2007b. To show that the schemes can
perform well in at least one particular case, the Europediroption price estimates of these schemes are shown in
Figure3.1

European Call option prices for the Heston model
100

90

1 Semi-Analytic (FFT)
\ 2 Euler Full Truncation
70L \ —— 3 Quadratic Exponential

80

N 4 Transformed Volatility
60 — — —5NCI

6 Gamma Expansion

50

Call price V

40

30

201

10

0 50 100 150 200 250
Strikes K

Figure 3.1: European call price estimates, obtained usifereht schemes

The estimates were all obtained by performing a Monte Carig where we used 10.000 patlfs= 1 and the
following parameter set:

Parametert S0) r(t) k B8=V(0) & p
Value ‘100 0 05 0.04 0.1 -0.1

Table 3.1: Parameter values of the underlying of the Eunopal option

The maturity of the option is taken to be 1 year.

Remark. Note that from the parameter set in Figuel, the NCI option price differs significantly from the anadyti
price: we found that the scheme is biased because we use atistant grid. For small realizations of { + A), the
interpolation grid ofzy; should be refined near zero to obtain sufficient accuracy.N@escheme did perform quite
well for other parameter sets. However, since NCI will noolie candidate scheme for the multi-dimensional case,
we did not implement this improvement.

We tested the performance of the schemes for cases for wiedheller condition was satisfied and for which it was
violated. The accuracy and CPU time of the pricing of a Euaopeall option was measured for all schemes. The
reference price is the semi-analytic price obtained by the-®ladan method (se€prr & Madan, 199p. The results
are displayed (qualitatively) in Tab&2

FT | TV
European call price accuracy (Feller satisfied)+ +

: Q
o+ +| +|TR
Z
Q
®
m

European call price accuracy (Feller violated) - - + +
CPU time + + - -
Easily applicable for multi-D + + ? -

Table 3.2: Qualitative comparison of the considered Morgddmethods.
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There is a significant difference in accuracy for situationghich the Feller condition is and in which it is not satisffie
Therefore, we tested the schemes for at least the followigchses: one with small volatility of volatilitye (= 0.1),
and one with high volatility of volatility§ = 1). In both cases§(0) = 100,k =0.5,6 =V (0) =0.04, T =10A=1/16
and the number of paths is D00.

The Euler FT scheme is inaccurate when the Feller conditiviolated. The TV scheme tends to blow up the variance
process whenever® < €2. This is a serious drawback of the TV scheme. On the other,Hd@t and GE do not
perform very well where is too small with respect tg6, since then the schemes slow down so much that a memory
limit breaks down the scheme.

One generic method would be preferable over switching batweore than one method. In the latter case namely,
the option value, as a function ef may show a discontinuity at the value ®ivhere the scheme switches from one
method to another. This discontinuity is unrealistic anetéifiore undesirable. The QE scheme has the advantage of
being robust in this sense.

In terms of CPU time, Euler FT, TV and QE always perform weltdngse of their relative low computational effort
per time step. NCI and GE are often reasonably fast, but afyairs small with respect t&0, the computation can
become very slow.

One other comparison should be made: for a multi-dimensiextansion (i.e., vector-valued SDES), all processes
should be correlated correctly. For Euler FT and TV, this eboourse be done by the use of a Cholesky decomposi-
tion. The same cannot be done in case the variance schemadietian the QE, NCI or GE schemes, since then not
all random variables are normally distributed.

Instead, one could use the normal copula to correlate tlhestom variables, but this method is non-exact. The result-
ing correlation differs from the imposed correlation. THiference is known to be small, which is why the problem
may be surmountable. Therefore, QE and NCI have been giveestign mark for this feature. GE has got a minus,
since its use of many random variables implies the need ofemsixve research of how to correlate the variance pro-
cesses appropriately.

We could also have distinguished biases, which formallytiethe difference between the expectation of an estimator
and the parameter which is estimated. Loosely speakirgynbans that a scheme contains no bias when any estima-
tion error can be reduced by an increase of the number of paths

Each method contains bias in some sense: even the numesticahte of the exact representationBrdadie & Kaya,
20049 (see Sectiord.2.]) has an expectation differing from the correct value, dubeédruncation and trapezoidal rule

in (3.6).

Euler FT is of course subject to bias whenever variance gathtain negative values. TV has bias since the model
which it is based on, does not correspond to the Heston mdtelQE scheme approximates the variance distribution
and the integral over the variance path, NCI interpolates@E truncates infinite sums. It is hard to extract some
performance measure from these different biases, whiclhyswe do not take this issue into account.

Mainly based on the robustness in accuracy and speed, weeli@B as the candidate scheme for our multi-stock
Heston Monte Carlo method.
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Chapter 4

The MQE Monte Carlo method

ConsiderD stocks, each following the Heston dynamics as defined indsgions2.1) and @.2). We already pointed
at the problem of the correlations between the processeBafimensional Heston model. In fact, the very difference
between @-dimensional Heston model ailone-dimensional Heston models lies in the correlatiorcttine of the
model. We can distinguish:

1. pi, the correlations between the Brownian motions of ithie stock and variance, just as we had in the one-
dimensional Heston model;

2. pij, the correlations between tih andj-th stock Brownian motions;
3. PV, the correlations between tivth andj-th variance Brownian motions;

4. psy;, the correlations between the Brownian motions ofitttestock and thg-th variancej # j.
When we consideb one-dimensional Heston models, we assume that the latiss torrelations are zero. When

constructing a multi-dimensional Heston Monte Carlo mdttlwee assume that at least some of these correlations can
be non-zero. First, we will discuss the significance of thdifferent correlations.

4.1 Assumptions

Just as in the case of one stock, correlations between aatadks variancep;, are also significant in case of multiple
stocks. We explained in Secti@2 how we can ensure that the correlation estimate of our MoatéoMaths will
not structurally differ from the imposed correlation. Wev@#o rewrite the stock dynamics so that the input Brownian

motion is independent of the other random variables. Whensgghe QE method in particular, we can illustrate this
as follows. Instead of writing

X(t+4) — X;(t)+/tt+A (r(s)—%\/i(s))ds+/tt+A\/Vi(s)dV\&i(s), 4.1)

with dW; (t)dW; (t) = pidt, we could equally write

t+A Pi
X(t+h) = Xa(t)+/t r(9ds+ & (V(t+8) (D) ~ ki6id)

. (Kipi - %) tt+AVi(5)ds+ ﬂ/jw VM(s)dw(s), (4.2)

&

with Wi (t) an independent Brownian motion. Therefore, both exprassih1) and @.2) can be discretized to sample
the next step stock value. However, suppose we would useEhaé&hod and discretizd (1), thus obtaining
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X(t+h) = Xa(t)+(r(t)—;\/i(t)>A+\/Vi(t)\/Ein.

Then we would correlate the standard normal random vasayeandzy, by settingZx, = pi2y, ++/1— p?Z, with

a standard normal random variable, which is independes; oHowever, since we apply a non-linear transformation
with 2y, in the QE method (by setting (t +A) = a(b+ 2y;)?, for example), the resulting correlation will differ from
the imposed correlation.

This phenomena has been naneaking correlationand it is avoided inBroadie & Kaya, 200pby discretizing rep-
resentation4.2), which has independent random variables as input. We halhshow we can extend this procedure
to the multi-dimensional case in the next section.

Correlations between stocks can certainly not be neglefdethe obvious reason that different markets influencé eac
other. Consider a foreign exchange option for example: gokange rate will influence another exchange rate. If one
specific part of the market goes up or down, one often obsémetsanother particular stock follows this movement
to some extend, or shows the opposite behavior. Let us disoms to implement the stock-stock correlation in our
multi-dimensional Monte Carlo method. One can seedi)(that whenX;(t),Vi(t), Vi(t +A) and ft”AVi(s)ds are
given, the next log-stock valug (t + A) is normally distributed: the first four terms on the righildaside are then
known, while the remaining term is a constant times anritegral with a deterministic integrand. This term hastau
normal distribution. To correlate these normal randomalaes appropriately, we can use a Cholesky decomposition
of Zx, the correlation matrix of the stock Brownian motions. Wé discuss this idea in detail in the next section.

Correlations between variances may also be significantnvahigasket of stocks becomes more volatile on average,
some traders may react by trading other stocks as well, whitthin will increase their volatility. The implementation

of correlated variance processes in our Monte Carlo methibdot be straightforward. With the QE method, the cor-
responding random variables are not normally distributdabrefore, an approach based on a Cholesky decomposition
will not impose the desired correlation exactly. Nevertss| a well-known procedure to correlate random variables
which are not normally distributed, is the NorTA method, @fhemploys the normal copula:

1. Generate a standard normal random veZterRP.

2. Perform a Cholesky decomposition B = LLT, the correlation matrix of the variance Brownian motionst S
Z =LZ, thenZ is aD-dimensional standard normal vector with a correlationcttrre defined by, .

3. TransfoLmZ_ to X, a random vector with the desired marginal distributionsctmputing element-wis; :=
F1(®(z)) fori =1,...,D, with ®(x) the standard normal cumulative distribution function &nthe cumula-
tive distribution function of theé-th desired marginal distribution.

See [Ghosh & Henderson, 2008r [Chen, 200], for example. The correlation betweéhandX; will differ from

the correlation betweery andZ;. The difference is expected to be small, though we do not kitmexact size. We
could use the normal copula method and investigate thisréifice. In the MQE scheme however, we set the variance-
variance correlations equal to zero. In this way, our irigesion of the performance of the MQE scheme will not be
influenced by an error that this NorTA method would induce.

Finally, we assume that correlations between stocks aret gttriances will be zero as well.

4.2 Construction of the MQE scheme

By extending the one-dimensional QE methodAmlersen, 200j7to the D-dimensional case, we aim at a sampling
scheme in which we go through 3 stages each time step and path:
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1. Firstly, we sample the next step of each variance procefependently, starting witth (t + A), followed by
V,(t +A), and so on.

2. Secondly, we estimate all variance path integrals dutirggtime stept*2Vi(s)ds i=1,...,D.

3. Third of all, we sample the next step of each stock progesperly correlated with its corresponding variance
process as well as with all other stock processes. Ei(st+ A), thenS;(t +A), and so on.

The order of these stages will be of crucial importance inreasoning.

4.2.1 Setup of the MQE scheme

Fori=1,...,D, the dynamics of theth stock are given by

dVi(t) = k(8 —Vi(t))dt+ei/Mi(t)dW, (), (4.3)
1
() = (r0)-ZUO)d+ VDAL 1), (4.4)
ands € R?P*2D js the correlation matrix of thel-dimensional Brownian motions vector
dW, (t)
AW (1)
dVi, (t)
AW, (1)

The mentioned correlation assumptions imply thatill be of the form

Z:< Ib  Zxv >, (4.5)

with Ip the D x D-identity matrix,Zx the D x D-correlation matrix of the stocks, arxky a diagonal matrix of the
same size, given by

pr O ... 0
0 p2 ... 0O
Zxv = ) .
: : 0
0O O 0 pp

A Cholesky decompositio = LL" can be used to correlate independent Brownian motions ppately:

AW, (1)
d dW(t)

dw&D((tt)) LLawn =L | ; : (4.6)
o Wik (1)

AW, (t)

with dW(t) a vector of independent Brownian motion incremeritss a 2D x 2D lower triangular matrix. We will
now state a proposition about the structurd of
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Proposition 2. Let us assume a correlation structure as stated at the stathie section. Consider a Cholesky
decomposition LL of the corresponding correlation matrix from 4.5). Then L is a2D x 2D lower triangular
matrix which can be written as the following block matrix:

B b Op
L< s L ) 4.7)

with Op the Dx D zero matrix and Lt a D x D lower triangular matrix.

Proof. In Appendix A, we have proved that for a correlation matrix, there is a lotti@angular matrixL so that
Y =LLT. We write out the equatiofi = LL" in an element-wise fashion, thus obtaining the followingralas for
the elements of :

ZL]k7 L|J_<Z|J ZL|kLJk> f0r|>J,J:17..,2D.

The elements of the two upper submatriceddiryfollow immediately from these two formulas. For the elernseof
the lower left submatrix ok, we can simplify the second formula above to
1 iz o
I—D+I j= L ZDJrI g Z LD-‘ri.ij,k ’ forD+| >, :la"'7D' (48)
I =1

Since the upper left submatrix af is Ip, it follows thatL;; =1 andLjx =0 for j=1,....D.k=1,...,j -1
Substitution in 4.8) yields thatlLp,j j = 2pyjjfori=D+1,...,2D, j=1,...,D, which is what we had to show for
the lower left submatrix. The lower right submatrix is lovigangular since is lower triangular, which was the only
constraint that we claimed for this submatrix. O

The elements of depend on the correlations only. For exampl® i 2, then

1 O 0 0
1 0 pp O 0 1 0 0
0 1 0 p2 2
pr 0 1 p12 |’ P1 P1
0 p2 p2 1 0 o P12 (1-02) (1-p3) -,
V1-0} 1-pf

4.2.2 Simulation of the next time step

The first stage of the MQE scheme is the sampling of the neptvstigance (t + A). Note that the upper-left identity
submatrix ofL in (4.7) confirms the fact that the variance processes can be seduiatiependently. In the MQE
scheme, we use the QE methbdimes every step with independent random variables as.input

The second stage of the MQE scheme is the simulation of tHane path integrali*2Vi(s)ds Since an exact
simulation is computationally expensive (s&rdadie & Kaya, 200p. In [Glasserman & Kim, 2008 the author

proposes an almost exact method to sample this quantity.e8sridbed in SectioB.2.4 this method is not robust.
Instead, we will use the intuitive (central discretiza)iapproximation in Andersen, 2007

AR (S)ds~ AlyaVk (1) +YaVi (t +4)], (4.9)

withy; =y = 3.

1These formulas are also known from the Cholesky-Banachiesligorithm, which is another algorithm to perform a Cholegkgomposition
than the one we describe in Appendix
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In the final stage, we focus on the simulation of the next stephestocks. We would like to samplg (t + A) first,
thenXx(t +4), and so onwith the independent Brownian motion vect®W @) as input Therefore, we first substitute
(4.7)in (4.6), to obtain

dV\‘(/l (t) J d\Kll (t)

: = : ) (4.10)
dW, (t) dWh (1)
dW, (t) dWA (t) dWb.1(t)

: 4 s : L : (4.11)
dW (1) dWh (t) dWkp (1)

One can see from}(10 that the Cholesky decomposition assures that the varjanocesses are driven by independent
Brownian motions. We write out thieth row of (4.11), obtaining

[
AWk (1) £ pidWi (1) + Y L Vb (1),
=1
where we used the facts thaty is a diagonal matrix and* a lower triangular matrix. Substitution id.@), yields
1 - ! -
a%(t) = (r(t) = SU(0) ) dt-+ VUDPdW (1) + T VAL Wb ().
=1

The integrated form reads

t+A t+A : t+A

X(t+8) =X (0)+ [ 1(9- S(Sdstp [ VEDWD + 3 L [ Vb () (4.12)
t =1y

t

Note that we would like to samplé (t + A) after the realization of/; := {Vi(t),Vi(t +4), 2 Vi(s)ds}, which is done

in the first two stages of the MQE scheme. Therefore, to sathpléeft-hand side of4.12) exactly given;, one has

to sample the & integrals on the right-hand side exactly given We can distinguish two types oflintegrals: those
with the Brownian motion of a variance process and those thi#gtBrownian motion of a stock process. Let us name
themvariance Ib integralsandstock 16 integrals respectively.

Variance Itd integrals

After having simulated the next step variance with the QEhme} the Brownian motion of the variance process has
not been sampled explicitly, but the substitute input rand@vriable of the QE methodas Therefore, we learned
from the one-dimensional case iArjdersen, 2007 not to sample this Brownian motion directly in this stagce
then correlation may leak. We also learned (see fornig)(that by integrating the variance process, we obtain an
exact expression for each varianog ilitegral:

[ imans = [ e
= sil(Vi(tJrA) —Vi(t) — KiBiA+ K /HAV‘(S)dS) D o
t

where the first equality holds since all variance processemdependent. In this way, we can compute the exact value
of the variance fi integrals givenvy, ..., vp.

Stock Itd integrals

All other Itd integrals on the right-hand side of.12 are stock Ib integrals, and they are all contained under the
summation term. In the one-dimensional case, only the farah tunder this summation i (12 is present, which

is an independent normal random variable. However, whepggating more than one stock, we consider groups of
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different stock 16 integrals with identical Brownian motions. To simulateeggroup of these stockdtintegrals, we
must use the same normal random variable sample for eagjrahtand multiply it by different constants which are
chosen so that the variances correspond with those of tliféseedt stock 16 integrals. Formally, given;,

t4+A _ d t+A o
| Vb9 Lz [ ieds Vig=1...D, (4.14)
with Z = ( Zy ... Zp )T an independent standard normal random vector. By samplisgandom vector exactly,

we can sample all stockdtintegrals , giverv/y, ..., ¥p, exactly.

Matrix-vector form
Numerical implementation is efficient in vector form. To argwith this form, suppose thaty, ..., 7p are sampled,
and let us define, far=1,...,D,j=1,...,D,

I
<
=
v

:
=
NO2

li,j

fi g;1<\/i(t+A)—\/i(t)—KieiA+ Ki /t.HA\/i(s)ds),
Zj ~ A (O, l).

For alli, given 7, s represents the standard deviation of tigeifitegrall; j. Then Expressiongi(13 and @.14) can,
respectively, be written as

lij=f fori=1,...,D,
lip+j =SZj fori,j=1,...,D.

After substituting this in4.12), the last two terms of the right-hand side th12 read
i i
pilii+ Y Lijliosj = pifi+ ) Lisz; vi=1...D.
=1 =1

Therefore, 4.12 can be written, in vector notation, as

t+A
X({t+4) = X(b) +/ r(s)— %V(s)ds+ p'f+DsL*Z, (4.15)
t
with
Xa(t) Vi(t) P1 f1 Z
Xp(t) Vb(t) PD fo Zp
and
s O 0
0 0
Ds - .
0

0 O 0 s
If v1,...,9p andX(t) are given, then the first three terms on the right-hand si¢4.2§) are known while the fourth

term can be simulated exactly by drawing an independentiatdmormal random vectar. An element-wise imple-
mentation of the third stage of the MQE scheme is then bas€d.a8), whereas a vector-wise implementation will
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employ @.15).

The MQE simulation of the next step variances and the vagignrath integrals goes completely analogously to the
corresponding simulation schemes of the conventional Qthade The remaining part of the MQE scheme is the
propagation of all stock paths. In this section, we consédi@ method to simulate these next steps of the log-stock
values exactly, giveQJiD:1 ;. We recall that the distribution of the next step log-stoakue of stocki is known just
whenv/ is given. This explains the importance of the sampling otkdat we claimed at the start of this section.
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Chapter 5

Performance tests for the MQE scheme

Let us recall the approximations on which the MQE scheme sedaSince there are no additional approximations
required in the multi-dimensional extension of the stoatpaigation, the only approximations are those in the first
two stages. These approximations are all immediately itdtefrom the QE method, which have shown to perform
satisfactory in Andersen, 2007 Furthermore, as is clear from the algorithm, the numbecavhputations is linear

in the model dimension. This means that the CPU time will moingexponentially as the dimensionality grows.
Based on these arguments, we have confidence that the MQBEa&chay perform well. Nevertheless, we will test
our method extensively in this chapter.

5.1 Imposed correlation test

We implement a two-dimensional QE method and check wheltgeestimated correlations behave as expected. The
estimated correlations obtained by using a two-dimensiguoder FT scheme serve as the reference values. We
consider the following two cases:

Feller Satisfied Feller Violated
S(0) 100 100
r(t) 0 0
Ki 0.5 0.5
6i,Vi(0) 0.04 0.04
& 0.01 1

Table 5.1: Parameter settings of both stoSkand$,

One can see that the parameter Belter Violatedis the multi-dimensional version of Test Case 1 Anflersen,
2007. Parameter sdteller Satisfieds asFeller Violated but now the volatility of volatility is set such that the kel
condition is satisfied. In both cases, weBet 10 (years), the number of Monte Carlo paths i000,Aqe = 46 days
(273 year),ArT = 6 days (2° year) and the correlation matrix is given by

1 Pvivi P1 Pvis, 1 0 -0.3 0
[ P, 1 pws P2 _ 0 1 0 -06
P1 Pv,s; 1 P12 -0.3 0 1 Q7
Pvis, P2 P12 1 0 -06 07 1

We will use these parameter sets more often in this thesisefadto them by the namé=eller SatisfiedandFeller
Violated respectively.
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5.1.1 Results of imposed correlation test

We estimate the correlation between the SDEs of the two stacH the two correlations between the stock SDE and
corresponding variance SDE by using numerical schemes cdimputation of correlation estimates is based on the
definition of correlation:

Cov(V1i,Y; .
corn(Y;,Y;) == OV(¥, Yj) , with Cov(Y;,Yj) =E[(Y, —EM])(Y; —E[Yj])].
V/Cov(Yi, Yi)Cov(Y;,Y))
The estimated correlations Béller Satisfiecare shown in Figuré.1

Correlation estimate, using QE and FT Correlation estimate, using QE and FT

corr(dX1,dX2) (QE)
corr(dX1,dX2) (FT)
corr(dX1,dV1) (QE)
corr(dX1,dV1) (FT)
corr(dX2,dv2) (QE)
0.4l corr(dX2,dVv2) (FT)

0.8f 08¢

—

0.6f 061
corr(dX1,dX2) (QE)

corr(dX1,dX2) (FT)
corr(dX1,dVv1) (QE)
corr(dX1,dVv1) (FT)
corr(dX2,dV2) (QE)
corr(dX2,dVv2) (FT)

0.4r

0.2r

Log asset return correlation
Log asset return correlation

=06 e < - —0.6F A e VA =\
-08¢ -08
_1 L L
0 2 4 6 8 10 - 2 " 5 s 10
T (years) T (years)

Figure 5.1: Correlation estimateskeller Sat-

L : Figure 5.2: Correlation estimatesheller Vio-
isfied using QE and Euler FT

lated, using QE and Euler FT

As one can see in this figure, all correlation estimates ofM@E and Euler FT scheme are approximately equal,
which is as expected. The same holdsFeler Violatedin Figure5.2, but now corfdX;(t),dXz(t)) drops from an
initial value of approximately;, towards zero during the first couple of time steps. Although tmay look strange
at first sight, it is expected. To understand this, first nb#g the corfdXy(t),dX(t)) denotes the log-stock return
correlation. Assuming Black-Scholes dynamics, this dati@n is equal to the correlation between the correspandin
Brownian motions. Since the variance term in each SDE idhsistic, we have

corr(dXy(t),dX(t)) = corr((r— 0%)dt+0dV\.5<l(t), (r—o3)dt+ 02dW, (1))
= corr(dW, (t),dW, (t))
= E[dW, (1)dW, (t)]/dt
= P12 (5.1)

In the second equality, we used the fact that, o, are deterministic. However, for Heston dynamics, the fiystedity
does not hold, since then the volatility is stochastic. €fme under the Heston model, the log-stock return coroglat

is theoretically different from the correlation betweee tivo corresponding Brownian motions. Feller Violated

the simulated variance path can often reach zero, whiclesitive log-stock return correlation towards zero, regard-
less of the imposed correlation value on the stock Browniatians. Instead, when the Feller condition is satisfied,
this stochastic variance cannot be absorbed in the oridiile\its mean-reverting property makes it reverting to the
long-term variance. Therefore, the correlation betweenSBEs more or less coincides with, in that case. This
explains the difference between the two blue, most uppaatimmgraphs in Figur&.1and those in Figur.2

Despite the confusion, one might say that this correlatiop @s not troublesome as long as the model prices fit market
prices. However, suppose we would like to investigate timsigigity of an option value to different models. Then to
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compare a multi-asset Heston value fairly with, say, a radiet Black-Scholes value, it is hard to make sure that the
log-stock return correlations mutually coincide.

Now one may wonder why the estimated correlations betwegistiock return and corresponding variance return do
not decrease in time. The explanation is that the variande &idtainghe samestochastic variance term as the stock
SDE. Therefore, no matter how close the variance is to zeith, Brownian motionsl\W (t) anddW; (t) are scaled by
the same factor. This does not cause any reduction in cbarldn fact, one can check that the correlation estimate
between the two stock processes does not decrease if wé;fake= Va(t).

At last, note that the estimates for c@ki (t),dVi(t)) and corfdX(t),dVx(t)) vary in time inFeller Violated One
can explain this fact by the more volatile variance path=eiiter Violated The variance path exhibits significant jumps
every time step, which increases the standard error of titrelation estimate.

Just like the Euler FT scheme, the MQE scheme shows the &eactrelation estimates. Therefore, we conclude
that the MQE scheme has passed this test.

5.2 Option validation: the Feller SatisfiedTest

In a one-dimensional Heston model, one can check the opticimg performance of a Monte Carlo method by com-
paring the results with those obtained by the Carr-Madamateg [Carr & Madan, 199 or the COS method Hang

& Oosterlee, 200B. A European call or put option can be priced by one of theseisanalytic Fourier methods, and
this price can serve as a reference value for the Monte Cesldtr

With multi-dimensional Heston dynamics however, the cbimastic function of the model (which is necessary in any
Fourier method) is not known in general, which makes this@doire inapplicable. As an alternative, we try to obtain
a reference by use of the Euler FT scheme with a very smalldtepgand a large number of Monte Carlo paths, as we
expect that the bias will be reduced in this way. Howeverhigh volatility of volatility parameter (even for very fine
time grids and many paths), the Euler FT variance path wi#robecome negative, as in the one-dimensional case.
This will cause bias, which is why we prefer not to use EulerasTa reference method when the Feller condition is
not fulfilled.

For our first test, we choose the parameter valudetér Satisfiedand use the Euler FT scheme as a reference for
the MQE scheme. The payoff function that we will evaluatgiven by

for some strike pric& at maturityT. Results are presented in Figi&.
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Option price for the 2-dimensional Heston model: max( S - K,0) Option price for the 2—dimensional Heston model: max( IS - K,0)
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Figure 5.3: Basket option pricgi2 = 0.7,5(0) = 100,k; = 1.5,8; = V;(0) = 0.04,&; = 0.01,p; = —0.3 fori = 1,2.
The right-hand figure zooms in on the upper left corner of éfieHand figure.

In both plots of Figuré.3, five MQE option prices are plotted against five Euler FT apfioices. One can see from
the left-hand plot that both estimates coincide quite wiglle Euler FT prices are slightly lower than the MQE prices.
However, even this small difference may be caused by a bitsedEuler FT scheme. The right-hand plot in Figure
5.3shows that the MQE prices are closer to the analytic valueepayoff function ak = 0 (which is 200) than the
Euler FT prices. This may imply that the Euler FT prices hawaea negative bias, since all estimates are smaller than
200 atk = 0.

We conclude that the MQE scheme has successfully passedian walidation test in caseeller Satisfied

5.3 Option validation: the Feller Violated Test |

Since we already stated that the Feller condition is oftetatéd in financial practice, we would also like to test the
MQE scheme when the Feller condition is violated. Furtheenwe stated in the previous section that we cannot use
the Euler FT scheme as a reference for the MQE scheme, dueléwge bias when the Feller condition is violated.
Therefore, we perform two other tests. The first test willdeated in this section.

Consider a European call option on the sum of several uridgdy The payoff function is then:

max[iS(T)—Kp}.

Suppose we make the (somewhat trivial) assumption thatadks are identical. Then the problem becomes one-
dimensional immediately, and we can thus find the semi-éicglyice (by use of a Fourier method). In that case, we
can find a reference value for the MQE prices. Of course, nkebaption will be of this form in practice, but this
example nevertheless serves as a first test for the MQE salnedegreller Violated

We choosé® = 3, T = 10 years and the following parameter values per stock:

Parametert S(0) r(t) ki 6,Vi(0) &
Value ‘ 100 0 0.5 0.04 1

Table 5.2: Parameter values of all sto&sS, andS;
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These values coincide witeller Violated but now the correlation structure is different. In ordehtve identical
stocks, one has to choose

1 1 1 p1p1r P
1 1 1 pp PP
s_| 11 1 ppope
pPr P P2 1 1 1
pPr pr p2 1 1 1
pPr P P21 1 1 1

One may be confused since a full correlation matrix is navedid in the MQE method. However, the correlations can
be attained in this case, by using the same Brownian motmmsaich variance process. We chopgse= —0.6. The
results are shown in Figuie4.

Super option Price for 3D-Heston: max(Sl(T) + Sl(T) + Sl(T) -K,0) Super option Price for 3D-Heston: max(Sl(T) + Sl(T) + Sl(T) -K,0)
350 -
MQE (N =50000, A=1/16, 34.1s) 3 MQE (N =50000, A=1/16, 34.1s )
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Figure 5.4: Basket option price estimates when Feller ¢mwdis violated, all three stocks identical. The right-tlan
plot zooms in on the left-hand plot.

One can see in the left-hand plot of this figure thatNo+ 50.000 andA = 1/16, the MQE option price practically
coincides with the semi-analytic option price. In fact, seei-analytic price is contained in the 95% confidence inter
val of the price as estimated from the Monte Carlo Paths. 3inisvs the absence of an significant error statistically.
Since the confidence interval is relatively small (less tB#nof the semi-analytic price for in-the-money option, and
less than 30% of the semi-analytic price for out the monejoop), we conclude that the MQE scheme has passed
this test successfully.

5.4 Option validation: the Feller Violated Test |l

The test of the previous section is not very general, sine¢htee-dimensional problem is actually one-dimensional.
In this section, we perform a second test: we will reduce aasget Heston model to a single-asset model, by changing
the nunéraire. In this way, we can find the basket option price semiydically, thus obtaining a reference value for
the MQE estimates for option prices with two correlated ls¢aas underlyings. We will see that we have to make some
restrictions on the two-dimensional Heston parameter-éaivever, since we will be allowed to choose any value for
the correlation between the two stocks,, this test will be more general than that of Sectio@
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5.4.1 Problem setup

Suppose thaB(t) is the price at timé of one unit of the currency that was invested in the money etaktimet = 0.
Then

and thusB(t) = 07995 |t is common to defin@(t) as the nurarairé- under the risk-neutral probability measte
ForD = 2, the dynamics for our multi-dimensional Heston model avergby

dVi(t) = Ku(B1—Va(t))dt+er/NVa(t)dW, (1),
dVa(t) = Ka(B2—Va(t))dt+&21/Va(t)dW, (1),
dSi(t) = Si(t)r(t)dt+S(t) \/\Td\/\él
dS(t) = SOr(t)dt+S(t)y/Va(t)dWs,(t)

whereV\, (t), W (t) are Brownian motions undép for i = 1,2. For now, we assume the following correlation struc-
ture:

1 p\/1V2 P1 0

S — pV1V2 1 0 P2
P1 0 1 pi2 |’
0 P2 P2 1

Compared to the previous sections, we drop the assumptiperofvariance-variance correlation. Note that each of
these stocks, priced in terms of the money market, is a ngaternwith respect t@) and filtration# (t) up to timet,

since
E{Z((_-II__))‘T(U} = 28+E{/jd<§3>‘7(t)}:‘2§8 Vt<T.i=12.

For the most right equality, we use@k Lemma on the functiori(t,x) = xB~(t) to find

(89 - (S5, SOMS ) S9N

B(s) B(s) B(s) B(s)

S(s)VVi(s)
B(s)

dVig (s) = dvis (s),

which implies that, giverr (t),

T (S0 T VVi(s)
d - / AW (s
/t (B(s) ) t  B(9 (8)
is an 1D integral, which has expectation zero. Theref&#,) is indeed &Q-martingale fori = 1,2.

5.4.2 Strategy outline in case of Black-Scholes dynamics

Our strategy to price one specific basket option semi-aicalijt is based on an existing strategy, as described
in [Bjork, 2009. In this strategy, both stocks are assumed to have Blabki8s dynamics. We will explain this
strategy briefly to give an idea of our own strategy.

Bjork assumes tha& (t) andS;(t) follow Black-Scholes dynamics:

dSi(t) = Si(t)rdt+Si(t)ordWg (t),
dS(t) S(t)rdt + S(t) 020V, (1),

1A numeéraire is the unit of account in which other assets are deratetn
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with o1, 02 positive constants. Now consider exchange optiowith a payoff given by map&(T) — KS;(T),0]. One
can price this exchange option by use of a Monte Carlo methmodrder to find a reference price,@k changes the
numéraire from the money market accoit) to S;(t). He defines the Radon-Nikgoh derivative

as _ BMSU(T)
dQ  B(M)Su(t)’

Here,S is the induced measure, anddB{ shows that the exchange option value at tirnan be written as

205 [max(s(T) - K.0)| 7 0],

(5.3)

with §(t) := S(t)/Si(t). This means that the problem reduces to the validation ofrag&an call option unde. To
price this option, one needs the dynamic§gt) underS. Bjork finds these dynamics via a Girsanov transformation,
and shows tha,(t) is anS-martingale. Sincé&,(T) is log-normally distributed give’(t), one can use the Black-
Scholes formula to price the call option. In this way, we fihd &nalytic price of the exchange option.

Our strategy is analogous to the above strategy. Of coulreeBlack-Scholes formula is not useful for us since we
assume Heston dynamics. However, in one dimension, a seaiyti call option price can be derived when the
underlying follows Heston dynamics. The analogy betweenBlack-Scholes strategy and our Heston strategy will
not be straightforward. Therefore, we will be strict in eaehmivation step in the following subsections.

5.4.3 Change of nungraire under Heston

Let us return to our assumption tHft) andS;(t) follow Heston dynamics and change the raraire similarly to the
method in Bjork, 2009. We will change the nuigraire fromB(t) to S;(t). We define the probability measuseby
the Radon-Nikogim derivative:

ds  BH)Sy(T)
@ BMsi(t)
SinceB(t) is an exponential function arg| (0) > 0 by assumptionB(t),S;(t) > 0 V't > 0 almost surely. Therefore,

the fraction in b.4) is almost surely strictly positive for all Furthermore, sinc&(t)/B(t) is aQ-martingale, we
have

(5.4)

3] - Bl 28-

dQ Su(t) Sut) Bt)

This shows that the probability meas§ds well-defined (seeShreve, 2008. Therefore, for every non-negative
random variableX, we can write

ES[X] = E {x (5.5)

)

dQ |’
Thisyields, forall 0<t <T,

M| 1 [SMBOSM| 1 BO [ST)] ] BO SO S

. [sm‘”‘)} ‘E[slm BT)S.() "f “)} “s0" { B(T) "f “)} S0 B0 S0

In the second last equality, we used the fact Sét) /B(t) is a martingale unde®. We conclude tha®;(T)/S1(T) is
a martingale under measuse

Now let us consider an exchange option, which gives the haolderight to exchange orf®-share forlK S;-shares at
time T. We recall that the payoff is m&&(T) — KS;(T),0]. The option value can be written as

E[max(S(T) — KSi(T),0)/B(T)|# (t)]. (5.6)
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In order to change the measure, we first note that siS¢eQ is almost surely strictly positive, we can transforsi]
to
dQ
E[X] = ES|X
X X

Therefore, we can writes(6) as

ES max(Sz(T)—KSl(T),O)B(I_?g;zts)ls(IzT)‘f(t)} = SBl((tt))ES[max(s](T)—K,o)yf(t)],

with §(t) := S(t)/Si(t) (the indexq refers to the quotient of the two stocks). To conclude, tlubiem reduces to
the validation of a European call option on thenartingaleS;(t) with strike priceK.

5.4.4 Dynamics ofS(t) under S

In order to price this European call option, we first have td fimeS-dynamics of;(t). We will use 16’s Lemma in
two dimensions:

Result 4. Itd’s Lemma, two dimensions
Let f(t,x,y) be a function whose partial derivativeg f, fy, fx, fyy, fxy are defined and are continuous. LettXand
Y(t) be It processes. Then

dA(LX0.Y() - f,tf(t X(0.Y(0)dt+ S (XY 0)dX(0)+ 5 X0, Y0)av0

LX) S (XM, Yt
L ax dY(t))(S%f( DY) ogy L XO ())>(35§3)'

N \

say (LX,Y (1) 5z (6LX(1),Y(1)
The application of B’s Lemma in two dimensions on the functid(t,x,y) = y/x yields

dg(t) = df(t Si(t), (1))

- 0 )(sl t)dt+ Si(t) V1 (E)dWg (t )*sll(t(SZ Or(H)dt+S(t) VoD Vg, (1))
1/25(t) 1
Z(S?(t - $US(095(0) - IS OIS0 +0)
S, 1
- s0 (V%O ~ VDdvg () + S0 a(t))z—%dsm)dsz(t). (5.7)

If we write outdS(t)dS;(t) for i, j = 1,2, all terms withdt? anddW (t)dt vanish since we neglect higher order terms.
This yields

d§tdS(t) = St)St)pijv/Vit)/Vjt)dt=S(t)S;(t)pij/Vi(t)Vj(t)dt, for i, j=12.

In the last equality, we used the fact that both variancespath non-negative for all Substituting this formula in
(5.7), yields

dst) = S0)(Val) - pr2ov MOV )dt+ S0 (VOG0 — VEDAWE (1), (5.8)

Now we have arrived at the one-dimensiof@adynamics ofS;(t). However, we desire th8-dynamics ofS(t).
Therefore, we will apply the multi-dimensional version daf€anov’s Theorem:

Result 5. Girsanov's Theorem, multiple dimensions
LetW(t),0<t < T, be ad-dimensional Brownian motion vector with indepemdemponents on a probability space
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(Q,7,P).-Lety (1),0<t <T, be the filtration generated by this Brownian motion vedtetm(t) be a d-dimensional
adapted process. Define

Z(t) = e Jom (©aW(9-3fo|m(s)%ds (5.9)
W) = W) +/Otl(s)ds
where||x|| denotes the Euclidean normxfAssume that
E /OT m(s)[[2Z2(s)ds < . (5.10)
ThenE[Z(T)] = 1, and under the probability measuke given by
A — /AZ(oo)dIP’(oo) VAE 7 (1),

the procesW(t) is a d-dimensional Brownian motion.

Note that the theorem useslependenBrownian motions, whereas our model has a correlationtstregiven by the
4 x 4 correlation matrixe. Therefore, we will transform our model: suppose thé a lower triangular matrix so that
T =LL". Then we can write

0,0 aw )
W,(t) | d dW5(t)
s ) | " aw) | G40
v (1) W1

in which all components of the right-hand side vector arepehdent Brownian motion increments. Substitution in
(5.9) yields theQ-dynamics ofs(t):

o = () pra Nt (VR — AL 1)
+ (VValt)Laz— VVa(DLaz) V() + (VVa(t)Las— Vi (E)Las) dVis(t)

+/Vao(t)LaadW, (). (5.12)

We apply the theorem fdP = Q, P=S andZ(T) equal to the proposed Radon-NiKad derivative in 6.3). We
rewrite the integrated form oR(3), to obtain

Sit) = Si(0)eforIs 3 loVa(Sdstfo VM9V, (9

which yields

7z = B _BOSD _ -3ivieis Vs
dQli—o B(MSi(0)

Comparing this expression with.Q), we conclude that we have to defmg) as follows:

Note that this is the only possible choice fft). To validate conditiong.10), we note that

2 T
]E/ 10(3)|2Z%(s)ds = IE/ Va(s 2 g;ds z%((g))/o EM(9L(9]B 2(s)ds  (5.13)
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where we used Fubini’s Theorem in the second equality. TheemtE[V;(s)S}(s)] can be computed by using results
in Appendix A of [Andersen, 2007 There, the analytic expression of the joint characterisinction ofV1(T) and
X1(T), @(u,v) = E [@Ma(NH+VE(T)=X1(0)] s derived (which we will not repeat here). Then, using thet that

g—ﬁ)(o,—Zi) - E[ivl(T)ez(xl(T>*x1(0))} —ie O |y (T)$(T)),
we can derive the left-hand side (which we will not write outin this way, we derived that the right-hand side of
(5.13 is finite. We conclude that it is appropriate to apply Gisas Theorem. Now recall that we restrict tH&t)

is an S—martingale Loosely speaking at-terms should vanish by applying Girsanov's Theorem. Tioeeg by
substitutingdW (t) \/\{S t)dtfori=1,23,4in (5.1, itis straightforward that

V(1) — pr2y/Va(t) (\/Vz (t)Las — V(1) ng)\/vl for t >0, (5.14)

must hold. This implies that one must havg = p;2> andLsz = 1. However, a Cholesky decomposition D{see
Examplel of AppendixA), shows that.3z = 1 if and only if p; = 0. If this is the case, thehy3 = p;2 follows
immediately. We conclude that the assumptan= 0 is necessary. The®(t) is aS-martingale, withS-dynamics

ds® _ (VVa(OLa — VA La )W (1) + (VVa(Laz — VWi (D)Laz) dWE (1)

S
+ (\/\T(t)us— \/\T(t)Lss) AV (t) — \/Va () Laad W (1)
AR (L4ldvv§( + LagdW5 (1) + LagdWE (1) + L44dv\4§(t))
V(D) (LatdW (1) + LaodWE (1) + LoadW§ (1)) (5.15)
The correlation structure between Brownian motions regailthanged after a change of measure:
dW (1) dWi (t) = (dWE () — ©; (t)dt) (dWE (t) — ©j(t)dt) = dWE (1) dWE (1).

Therefore, the correlation matrix of tteBrownian motions i€ and we can use the same Cholesky decomposition
T =LL". We substituteg.11) in (5.15 to end up with a more simple expression of adynamics of;(t):

d31(t)) _ \/\Ta)dv\g(t) _ \/\Ta)dv\é(t) (5.16)
The derivation of th&-dynamics of\/1(t) ande(t) is straightforward. Note that
dW, (t) = = dWE(t) — ©;(t)dt = dWE (1) = dWG(t), i=1,2.

Here, the first and last equality are due to the independehttee cvariance processes under respective meagures
ands, the second equality represents the application of Girsaaral the third equality holds by choicemft). We
conclude that the dynamics of the variance processes Gratersimilar to those undép:

dVi(t) = Ka(B1—Vi(t))dt+e1/Valt d\/\é
d\o(t) = Ko(B2—Vao(t))dt+e24/Va(t) dV\(/

5.4.5 Conditions for model affinity

Now that we have found th&-dynamics ofSy(t), we have to price a European call option wi{t) as underlying.

As Bjork assumes Black-Scholes dynamics, he is able to use tik-Blgholes formula to obtain the analytic price of
this option. In our model, since we assume Heston dynamiesam instead compute a semi-analytic price by use of
a Fourier method.

In order to find the Fourier price of the European call optionSy(t), we must find the characteristic function of
In&(t). For affine models, this characteristic function can beveerby following a specific procedure, as described
in [Duffie et al., 2000 We do not yet know whether our model is affine. Let us firstadtice the definition of this

property:
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Definition. SupposeX(t) € RN is the vector of state variables of an N-dimensional SDE, supgpose we can write
its dynamics as

dX = J(t, X (t))dt+ o (X (t))dW(t),

with W (t) € R?P a standard Brownian motion vector with independent comptme(t, X (t)) € RN the drift compo-
nent ando(X(t)) € RN*2P the diffusion component. Then the model is affine if

HEX) = Ko(t)+Kix, Ko(t)eRN KyeRVN, (5.17)
[c(x)c(x)q_. = [Holij +[Haijx ¥i,j=12,...,N, HgeRVN Hy c RNNxN, (5.18)
i
In these expressionsgK) is a function of time, I Hp and H; are constants, anfHi];j is a1 x N-vector component
of Hy.

Let us considef (t, §(t)) = In(t). Applying Itd’s lemma on this function, using(16), yields

=5 (Va(t) + Va(t) — 2p120/Va (V2 (1)) dt + /Va(t) WG (t) — +/Va(t) AW (t)

I\HI—‘ v

dXg(t) = ding(t) =

Furthermore, let us define

Vi(t) &V,;gg ! Pvivz pol 0
Pv,v P2
X(t) = Vo (t JW(t) = T = 1V2
© ( ngtg ) O=1 wa) PP 0 1 pr
Wy (t) 0 P2 P12 1
with W (t) a vector of independeStBrownian motions. The we know that we can write
J, ()
g
MO 2w,
sél()
We, (1)

with L the lower triangular matrix obtained by a Cholesky decoritjmosof the correlation matrixz = LLT of the
Brownian motion vector on the left-hand side. Therefore cawe write the model in the following vector form:

dX() = Wt X()dt+SX(t)LdW(t),
with
(61 —Va(t))
HE,X(t) = K2(62 —Va(t))
—%(Vz(t)+V1(t) 2p12/ V1 (t)Va(t) )
€14/ Va(t) 0 0
SX(t) = ( 8 82\@ \/\/7 \/07)
1(

Let us investigate for which parameter sets;,01,€1,V1(0),K2,02,€2,V1(0),Z}, this model is affine. The drift com-
ponent,u(t, X(t)), is not linear inX(t) in general. Furthermore, for the diffusion component tintgesranspose, we
find

o(X(1)o" (X(t)) = SX(t)LSXH)L)" =SX(H)LLTSX(t))" =S(X(t)ZS(X ()"
S%Vl(t) PvyVv,E1E2 V]_(t)Vz(t) —£1p1 Vi (t)
= ( Pviv,E1€2+/ Vi (t)Va(t) g5Va(t) €2p2Va(t) ) :
—€1Pp1Va(t) €2P2Va(t) Vi (t) +Va(t) — 2p12+/V2(t)VA(t)

Before we will write the above expression in termdHfandHi, note that only three elements of the right-hand side
matrix are non-affine iXX(t) for all ©. In those three elements as well as in the drift componeatstjuare-root of
Vi (t)Vo(t) prevents the model from being affine. We can eliminate thiblem in two ways:
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1. Firstly, we can s> = pv;v, = 0, but this would imply that the problem would tantamounito independent
one-dimensional Heston models. However, since the uniobrtaf the performance of our new model lies in
the very fact that it is multi-dimensional, this solution w@ obviously be unacceptable.

2. Alternatively, we can choose the two variance dynamiop@rtional to each other:
bAVL(t) = VA(t),

for a constanb € R. We use the square &f for notational convenience. Note that this assumptionmallo
Vi (t) = 0 for allt. In this case, the dynamics 6f(t) are deterministicV(t) = 0 is not allowed. Nevertheless,
by a symmetry argument, we have not lost generality. Sindk bariance dynamics are non-negative, the
equalityby/V1(t)Vx(t) = £V1(t) holds and we can thus obtain an affine diffusion component.

Hence we conclude that the considered model is affine if wenasb?Va(t) = Vi(t).

5.4.6 Derivation of the characteristic function

Let us make this assumption and derive the characterigtittiin of the model. The assumption reduces our model
to a two-dimensional model with three Brownian motions:

dVa(t) = Ka(B2—Va(t))dt-+ea/Vo(t)dWE (1),
dX, (1) — f%(bszbplerl)Vz(t)dtfb\/Vg(t)dV\gSl(t)Jr\/Vz(t)d\l\é(t).

Note that forb = 0, the model reduces to a one-dimensional Heston model @ithrmean rate of return. We can write
this affine model in vector form

dX(t) = pt,X(1))dt+ S(X(t))LdW(t),
by setting

—Ko2 0

X(t) = ( \)228 > W, X (1)) = Ko + KaX(t), Ko=< 0 ) Ky = ( (PP~ 2bp1o+1)/2 O )

Wi(t)
. 82\/\/27“) 0 0 =
soxo) = (=Y R g ) WO ( e )

The elements ofV(t) are independerfi-Brownian motions, andl is the lower triangular matrix of a Cholesky de-

composition of the correlation matrix
1 p1 p2
= p1 1 p12
P2 P12 1

(%)
WSél ® . (5.19)
Ws, (t)

2 _
o(x(0)s’ (XW) = Sx@ESX®) = (o P U ),

so that the diffusion component can be written in the formiasgin (5.18), by takingHo = 0 andH1 a 2x 2 x 2-matrix
which we will express in parts along its third dimension:

_ & €2(p2—bpa) /(00
(Hl)li ( Ez(pz—bpl) b2—2bp12+1 7(H1)27 0O 0/
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The diffusion component becomes



Now we will use an important result ibuffie et al., 200D Since the model is affine, the characteristic function of
the vector-valued SDE is of the form

(p(U,X,t, T) = eu(t>+XB(t)

withue Candx= (v X ). Furthermoreq : [0,») — R andB: [0,») — R? satisfy the complex-valued ordinary
differential equatior’s

)

%(t) - —KlTB(t)—%B(t)THlﬁ(t)y
?T(:(t) — —KJﬁ(t)—%B(I)THOB(t)a

with boundary conditions(T) =0andB(T)=[ 0 iu |" Vue& C, whereiis the imaginary unit. In our modeds(t)
andp(t) must satisfy:

dBJt(t) _ %((bZ—meerl)ﬁz(t)
2
~ (B2~ 2p1z+ LB3(V) + (k2 — £2(P2 — BP1)Ba(V)) Bult) — 2B (),
d2(t)
T
dC;it) —Kzezﬁl(t)'

To obtain a more familiar ODE, we perform a change of varisibte- T —t, the time up to maturity, and we solve for
B(t) anda(t). This will only change the sign of the right-hand side of theee ODEs and the boundary conditions:

PUY (0~ 2bpra-+ 1Ba(®) - (7 2bpr+ (D)
—(Kz—ﬁz(pz—bpl)BZ(T))Bl(T)+€*2%B§(T)7 (5.20)

dBd?r(T) S (5.21)

do(‘j?) — Koo (T). (5.22)

with a(0) = 0, B1(0) = 0 andB(0) = iu ¥ u e C. This last boundary condition combined with.21) immediately
impliesB2(T) = iu. Substituting this in the first of the three ODEs yields

dBi(t 1 . | .2
%()(T) = - ((bZ — 2bp12+ 1)iu+ (b? — 2bp1a+ 1)u2) B (KZ —ey(pa— bpl)lu) B(1) + 52[3%('[),
which we recognize as a Ricatti equation. The general solatf a Ricatti equation, given by
do(t
g(r : Co+€19(T) + C2g°(V),

with boundary conditiomy(0) = go, is

- (—c1 —d—2cg0) (1— e 9T) B ~ —Cc1—d—2g0C;
9(t) =go+ 20,(1_ Ge ) , Whered = /c? —4coc, and G = e T 2000,

Now, we can find31(1), by settingco = —% ((b2 —2bp12+ 1)iu+ (b? — 2bpyo+ 1)u2) ,C1=— (Kz —&2(p2— bpl)iu) )
C2 = €3/2 andgo = 0. The solution of the last ODE5(22), is then given by
. K202 1-— Ge*dT
at) = 2, ((—cl —d)t— 2Iogl_G) .

We have fully specified the characteristic function, and ae thus find a reference value for the exchange option by
use of a Fourier method.

2Here,c" Hic denotes the the vector i with k-th elementy; ; 6 (Ha)ijC;.
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5.4.7 Results

We implement the above in MatLab, choosing the parameteisasthe Feller condition was violated for both stocks.

S S
S(0) | 100 100
r(t) 0 0

Ki 05 05
6;,Vi(0) | 0.16 0.04
& 2 1

Table 5.3: Parameter set of sto&sandS,

Itis shown in Tablé.3that stocks; has the same parameter value a&dlter Violatedin Section5.1 Furthermore, the
parameters of stoc® are chosen so that the model satisfies one of our derivedtammsiio be able to find a reference
value for the exchange optioW;(t) = b?V,(t),b = 2. We choosd = 1. The other conditiongf = 0, Pvv, = 1) are
satisfied by choosing a correlation structure given by

1 Pviv,  P1 Pus 1 1 0 -06
S — pV1V2 1 p\/zsl P2 _ 1 1 0 -0.6
P Pvs 1 pr2 0 0o 1 a7
Pvis, P2 P12 1 -06 -06 .7 1

At first, we choose a large number of Monte Carlo paths ands$tép show that the MQE scheme and the Fourier
method agree on the exchange option price. One can see ireBiguhat this is indeed the case.

Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0) Exchange Option Price for 2D-Heston: max(S,(T) - K*S,(T),0)
100
\ \ - -
9ok MQE (N =50000, A = 1/32y, 6.24s ) 251 \ MQE (N =50000, A =1/32y, 5.67s)
— — — Euler FT (N = 50000, A = 1/128y, 6.00s ) \ — — —Euler FT (N =50000, A = 1/128y, 6.12s )
80f \ FFT (Carr—-Madan) \,\ FFT (Carr-Madan)
\ 20 \
@ 70F \ o N
kel \ 8 \
\

g 6o c 15 \
2 S \
a g N\
o 50F o \
g g \
= c 10+ N
g o g N

30 -

5t . -
20+ N e
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0 L L — J L L L L L L L
0 0.5 1 15 2 08 09 1 11 12 13 14
Strikes K Strikes K

Figure 5.5: Exchange option price: this shows that MQE a$ agEuler FT can attain high option price accuracy.
The right-hand plot zooms in on the left-hand plot.

We plotted the semi-analytic option price once as a refereatue. Just as in any of the coming test runs, five MQE
prices and five Euler FT prices are plotted against this eefer value. Each test run, we estimate the 95% confidence
interval of both Monte Carlo prices from their respectivehga Furthermore, the average of the five CPU times of
both Monte Carlo methods is displayed in the legend. In Ei§us, the three plotted functions are hard to distinguish
since they all practically coincide. The confidence interghow that both prices are indeed not significantly différe
from the semi-analytic price for all displayed strikes. &irboth confidence intervals are small (less than 4% of the
price estimate for aK), this shows the success of both numerical methods in tisis. ca

3The computer used was an Intel(R) Core(TM)2 Duo CPU T9300 @ G153z
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We stated thap; = O is a necessary condition to be able to find a semi-analyitte pvVe illustrate this fact in Figure

5.6, a copy of the previous test, except that now wepget —0.7.

Exchange Option Price for 2D—Heston: max(Sz(T) - K*SI(T).O)

Exchange Option Price for 2D-Heston: max(SZ(T) - K*Sl(T),O)

i \
0 7\\ MQE (N =50000, A = 1/32y, 5.63s ) ‘,\ MQE (N =50000, A = 1/32y, 5.63s )
\ — — — Euler FT (N = 50000, A = 1/128y, 6.03s ) \ — — — Euler FT (N = 50000, A = 1/128y, 6.03s )
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Figure 5.6: Exchange option price: this illustrates thatoaanot find a semi-analytic option price fpr £ 0. The
right-hand plot zooms in on the left-hand plot.

In this figure, the same numbers of time steps and Monte Catlwspare used as was done in the test run of Figure
5.5. The figure suggests that again the MQE prices and Euler E€gpmutually coincide. The fact that each estimate
lies in the 95% confidence interval of the other estimatepsttp this fact statistically. However, both Monte Carlo
prices are significantly different from the semi-analytiicp forK € [0.50,1.95. This thus agrees with our derivation
thatp; = 0 is a necessary condition to find an accurate semi-analgtie.p

We showed in Figur&.5 that the Euler FT scheme can give option prices with sufficéaturacy too. One may
wonder why we did not use the Euler FT scheme as a referendethit the first place. The answer is that we were
not sure about this accuracy: as illustrated in Seaidn, it is well-known that the Euler FT prices contain bias when
the Feller condition is violated. How large this bias wouddib case of multi-dimensional Heston, was just not known
until we performed this test.

Moreover, Euler FT prices are not accurate for all paramsd¢s: consider for example a long maturity exchange
option, withT = 10, and parameters:

S S
r 0 0
& 15 1
Ki 15 15
6;,Vi(0) | 0.09 0.04

Table 5.4: Parameter set of stosandS,

Note that we chooske = 1.5 this time. Suppose furthermore that the correlation sireds given by

1 pvw P1 Pus 1 1 0 -05
Pviv, 1 Pv,s P2 1 1 0 -—-05
Tl oPr Pws 1 P2 | 0 0 1 a8
Pus, P2 P12 1 -05 -05 8 1

The computed exchange option values are given in Figute
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Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)

Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)
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Figure 5.7: Exchange option price: this shows that the Btilescheme has significant bias for some parameter sets,
even for large numbers of paths and steps. The right-hann@@dons in on the left-hand plot.

Figure5.7 suggests that all MQE prices again coincide with the seralydic price, whereas the Euler FT prices seem
to contain bias. The 95% condidence intervals support #us the MQE prices are not significantly different from
the semi-analytic price. The Euler FT prices exhibit siguaifit bias forK € [0.75,3]. Further investigation shows
that this bias is also noticeable for other parameter setiyreg as the maturity is large and the Feller condition is
violated. We can explain this by the fact that for large mitwptions on underlyings with high volatility of volatily
parameter, the Euler FT scheme inherits too much bias dartog long period. Without the characteristic function,
we might have concluded falsely that MQE inherits bias ireaafdong maturity. This shows the necessity of the test
of this section.

How many times steps and paths are necessary to achievefadaty accuracy? Let us assume the parameter set of
the first test run of this section again (see Tah®. The right-hand plot in Figur®.8 shows that 32 steps per year

is too few for Euler FT to reach satisfactory accuracy. In,féee Euler FT prices are significantly different from the
semi-analytic value foK € [0.80,1.95], whereas the MQE prices are not significantly different ftbesemi-analytic
value for any strike. Note that the MQE and Euler FT CPU tinesmaore less the same, which shows that MQE
performs very well in this case.
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Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)

Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)

f k
% 7\\ MQE (N =50000, A = 1/8y, 1.72s ) 9 r\ MQE (N =50000, A = 1/8y, 1.72s )
\ — — — Euler FT (N = 50000, A = 1/32y, 1.71s ) \ — — — Euler FT (N = 50000, A = 1/32y, 1.71s )
8ol \_\ FFT (Carr-Madan) 8 \ FFT (Carr-Madan)
‘\, 7tk !
o 70T \ @
L AN Re]
S 60 \ < 6
o o
= \ =
o 50t o 5t
(] [
j=2] j=2]
IS L ]
& 40 =N
30+ \
\ 3F
20} N\
N\ 2r
10f A
'\‘\ _ 1k
o . . e . . . . . . . .
0 0.5 1 1.5 1 1.05 1.1 1.15 1.2 1.25 13 1.35
Strikes K Strikes K

Figure 5.8: Exchange option price: this shows the sup¢yiofiMQE to Euler FT in accuracy of European call option

pricing. The right-hand plot zooms in on the left-hand plot.

In Figure5.9, the quality of the MQE scheme compared to the Euler FT schisiiflastrated. We used the practical
time step of one quarter of a year for both Monte Carlo methods

120

Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)

Exchange Option Price for 2D-Heston: max(S,(T) - K*S, (T),0)
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Figure 5.9: Exchange option price: this shows that MQE kenkuler FT, still has high accuracy in case of a large
step size. The right-hand plot zooms in on the left-hand plot

As the above figure suggests, the five MQE option prices arsigoificantly different from the semi-analytic value.
The five Euler FT prices are structurally too large for at theney options: they differ significantly from the semi-
analytic price forK € [0.50,1.95].

5.5 Conclusion

The MQE method has passed several tests. The resultingstodkcorrelations and the corresponding stock-variance
correlations after a computation are as prescribed bedocehThe MQE European call values are in accordance to
the Euler FT prices when the Feller condition is satisfied. kMthé condition is violated, we can not use Euler FT as
a reference, which is is why we performed two other tests. MQ&E scheme passed the test of validating a European
call on a sum of three identical stocks in case the Felleritiondvas violated.

Since this test was somewhat trivial, we performed a secestdwe priced an exchange option with MQE (and Euler
FT), and reduced the dimension by a change of &naine. In this way, we obtained a semi-analytic optionges a
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reference value. One limitation represents the restristimn the Heston parameter set: we had to choose zero corre-
lation between the first stock process and the first variameeegs, and we had to choose the first variance process as
a multiple of the second variance process.

MQE passed this test too: the MQE prices practically comeiith the semi-analytic price for sufficiently large num-
ber of Monte Carlo paths and time steps. When the Feller dondg violated, the Euler FT prices contain significant
bias in case of long maturity option$ & 10), even for a very high number of steps and paths. In alrdésts, using

a sufficient number of Monte Carlo paths and steps, the EdlesdReme could have served as a reference value for
the MQE scheme.

Furthermore, the MQE prices are still very close to the senailytic price for a small number of time steps (for ex-
ample, a time step of one quarter with a maturity of one yeling Euler FT prices contain large bias for this large
time step. We already expected this advantage of MQE frororleedimensional case.

We can conclude that the two-dimensional MQE scheme validatropean call prices accurately and imposes corre-
lation between stock processes correctly. From these faethave gained confidence that the MQE scheme performs
well in two dimensions. Since more than two dimensions isaghtforward extension of the two-dimensional case,
the MQE scheme will perform well for an arbitrary number ahénsions.

5.6 Further investigation

The MQE scheme can be extended by altering the correlationtste. We expect that dropping the assumption of
zero correlation betwee§ (t) andV;(t),i # j (thecross-correlationy will be most easy to implement. In this case,
we could perform the construction of the MQE scheme in Seati@ as follows. The correlation matrix will be
different, since the submatr&xy in (4.5 will be a full matrix instead of a triangular matrix. ThisMalter the lower
triangular matrixL, obtained by a Cholesky decompositionsof LL". However, all derivations in that section can
be made. They will lead to a form as iA.12 with an extra term, containing a sum of othey lhtegrals. These dt

integrals are of the form
t+A _ o
/t \/Vj(s)dWi(s), i # j.

Now note that, giverv;,

T edi e & sz 4 i
/t Wieas) £ szts (5.23)

where we used the notations given at the end of Sedtidand assumed that# 0. This last assumption is not valid
for Vi(t) = Vi(t+A) = 0 if we use the approximation

§ ~ AV (t) + Vit +4)],

as proposed in4(9). However, by choosing an approximation which can not be fer example, by using the first
moment ofs;, which is derived in Dufresne, 2000, this problem can be avoided. In this way, we can sampleethe
new I integrals exactly by use of representatiér2@. We can implement this extended expression just as we did
with expression4.12.

The other assumption, that we could avoid, would be the aggoamof the zero variance-variance correlations. This
would be more desirable than the avoidance of the previagisw@stion, since one naturally would expect dependence
between the variances of stocks. When a group of stocks oagevéecomes more volatile, some traders will trade
other stocks as well, which in turn will increase their viiigt

However, when constructing this version of the MQE methats problem occurs. Since we use the QE method to
compute the next step variance, the corresponding randoables are not normally distributed. Therefore, thereis n
exact method available to draw these random variables htlcdrrect correlation structure. As mentioned in Section
4.1, one could nevertheless use the NorTA method to correlatethon-normally distributed random variables. In
this way, the MQE extension can be constructed in the samew/aye constructed the MQE extension with non-zero
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cross-correlations. An investigation should be made oktiner between the estimated variance-variance corralatio
and the originally imposed variance-variance correlatidithis error appears to be sufficiently small, we can adopt
this MQE extension.
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Chapter 6

Calibration of the MQE scheme

In finance, a calibration method is a method to choose vahrethé model parameters such that the model fits some
chosen data well enough. The choice of parameter valuesdgtfor our MQE scheme to price derivatives accurately.

We can divide calibration methods in two main categoriestanical data calibration and market price implied cahlbra
tion. The former uses historical time series (mainly of ktpices) to estimate the current parameters. The latter use
the assumption of arbitrage absence to claim that derastiith the concerned underlying are priced correctly in the
market. The calibration method searches for parameteesauch that the model derivative price is close enough to
the market derivative price. More precisely, a market pineglied calibration method minimizes the function

N = 2
i;Wi [ciQ(Ki,Ti) —CiM(Ki,Ti)] (6.1)

over a discretized parameter spa@e Here, N is the number of options used in the calibrati@f(K;,T;) and
CiM(Ki,Ti) are the respective model and market derivative prices, stitke Ki and maturityT;, andw; are weights.
There are two main drawbacks of the historical data calitmanethod. Firstly, several parameters are not always
observable in the market. Secondly, empirical estimatesftén disagree with the market price implied estimates (see
for example Bakshi et al., 199]J. In that case, since we assume no arbitrage, we will pteEemarket price implied
estimates. Historical estimates will only be used if magkéte implied estimates are unavailable.

The curse of a more realistic model is the increase in contplex the corresponding market implied calibration
method. This also holds for the Heston model: it is able tdwapthe volatility smile, whereas the Black-Scholes
model is not since the volatility is then assumed constamiwvéver, in the Black-Scholes model, one only needs to
calibrate the volatility parameterwhereas in the one-dimensional Heston model, five paranetees need to be
found (,0,¢,V(0) andp). Itis clear that the computational effort will increasechwhen the parameter space of the
optimization method is five-dimensional instead of one-atisional.

The situation is similar in case oflxdimensional Heston process, compared toadependent Heston processes. We
assume the same correlation structure as in the MQE schemnen@lel contains B single-asset Heston parameters
plusD(D — 1)/2 stock-stock correlation parameters. The model congistifD independent Heston submodels can
be calibrated irD separate steps, calibrating five Heston parameters egeh Bterefore, we decide to divide the
calibration method in two steps:

1. We calibrate the five parameters of each single-assebhissbmodelx;, 6;,¢€;,Vi(0) andp;, Vi=1,...,D.
Therefore, we use a known Heston calibration method.

2. We calibrate the remaining parameters, i.e. the coioesbetween the Heston submodels.

1Assuming no arbitrage, the drift of the each stock is equahéorisk-free rate. Its calibration can thus be performedpedéent from the
considered model calibration, and is beyond the scope oftthiss.
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By assumption of our correlation structure, the second stegves the calibration of the stock-stock correlations
only. Note that the corresponding stock-variance coiigrap;, will be calibrated in step 1 already. This seperation
of the calibration o will not yield any risk of positive indefiniteness. All variae processes are only correlated with
their corresponding stock process. Therefaraill be positive definite as long as the stock-stock corietamatrix,
>x, is positive definite.

We will treat the two steps in the coming two sections, respely. In the third section, we will construct a market
implied calibration method for the stock-stock correlato In the fourth and fifth section, the method will be inves-
tigated and discussed. The last section contains a coaolosi the method as well as recommendations for further
investigation.

6.1 Single-asset Heston calibration

The first step of our multi-dimensional calibration methas ibeen developed as a calibration technique for deriva-
tives with one underlying. Therefore, it has been investidaxtensively. See for exampldodley, 200%and [Bin,
2007. We will give an overview on the considerations of a one-glisional Heston calibration method.

As we explained, the main problem of a single-asset Hestiiloraton is the dimensionality of the optimization. One
solution for this problem is to narrow the parameter spacebights on the derivative of concern. The sensitivity
of the derivative price to a certain Heston parameter cay rarch per Heston parameter. We will explain this by
giving an interpretation of every parameter. Since we amrghe single-asset Heston model, we will omit the indices
of the Heston parameter, just as in Chafzeand3. The long-term varianced, represents the mean value of the
variance process. A first guess for this parameter could bgserhas the square of the implied volatility obtained by a
Black-Scholes calibration. Then one could concentratetienization grid for this parameter around this first guess
The initial varianceV/ (0), influences the option price significantly when the matuistghort. A first guess for this
parameter value could be the volatility implied by a Blaadt8les calibration of an at the money option with short
maturity. The volatility of volatility,e, affects the kurtosis of the stock distribution. High vaigt of volatility implies
heavy tails on both side of the distribution. In contrase, tirean reverting tern, drives the variance process back to
the long term variance. Thelatility surfacemay employ a first guess of these two parameters. This suwtatssts

of volatility estimates implied by Black-Scholes caliboats for different strikes and maturities.

Implied volatility surface fore = 0.01 Implied volatility surface fore = 1

Implied volatility

Maturities T Strikes K Maturities T Strikes K

Figure 6.1: Implied volatility surfaces for low and high welofe. kK = 1.5,theta=V(0) = 0.04,p = —0.6 in both
cases.

The implied volatility surface will exhibit a smile for high as can be seen in FiguBel As the mean reverting term,
K, drives the variance process back to its mean, a high valuenadf moderate the smile. Therefore, a first guess of
these two parameters can be based on the shape of the sofatifiace.

The stock-variance correlatiop, affects the skewness of the stock distribution. Note tbanhegativep, a volatil-
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ity increase will stimulate the stock value to decrease. tAeoway of saying this is that the left tail of the stock
distribution will be heavier than the right tail, thus indug a more negative skew, as can be seen in FigLite

Empirical distribution of the log-stock, p = 0 Empirical distribution of the log—stock, p = -0.9
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Figure 6.2: The influence of the stock-variance correlatinrthe distribution of the log-stock. The right-hand plot
exhibits a negative skew. Further parameters: 1.5,6 =V (0) = 0.04,¢ = 0.5.

Options which are rather sensitive to the skew (like cligtietee Pupire, 1993, can be calibrated more efficiently
by putting educated restrictions on the optimization gfigoo For example, one may restrict the correlation to the
interval[—1,0]. The motivation is the expectation that when a stock beconus volatile, its value often decreases.

We conclude that the optimization parameter space shoulthbeipated on the parameter to which the concerned
derivative is sensitive. By restricting the optimizatioar@meter space, a problem may occur, however. For two dif-
ferent derivatives with the same underlying, one may obttadifferent optimal parameter sets. For the validation
of a financial product which is based on both derivatives, itriclear which of the parameter sets should be used. One
should avoid this problem by combining the restrictionslbéiéferent subproducts in the calibration.

The anticipation of the optimization algorithm can be damseveral ways. For example, one could first calibrate all
parameters except the stock-variance correlation, by fusgiance swap prices. The payoff of this option is based on
the realised variance of an asset, which is why one coule firiesing the Heston variance process only. After that,
one can calibrate the stock-variance correlation seggrétas emphasizing the optimization on this parameter.

One drawback of this procedure is that variance swaps ar&nmtn to be very liquid. Therefore, prices can be
unrealististic or even missing for certain extreme matsiand strikes. One could use an extrapolation method to
substitute missing quotes with estimates. However, theatemr price will depend on the used extrapolation method
in that case, which is undesirable. Instead, one couldipati the optimization algorithm by fixing one or two less
important parameters so that the optimization method carckehe more important parameters from relatively fine
grids. Fixing can be based on the mentioned first guessesweeajthe start of this section.

The objective function of the minimization problem i6.9) is not linear in case of a single-asset Heston model.
Further, it is often far from being convex and there are ofteny local minima (seeMikhailov & N ogel, 2003).
Therefore, several optimization procedures have beestigated, which can be divided in two main categories:

Local algorithms
One chooses an initial guess for the parameter set. Depgndithe gradient of the objective function in that point,
an optimal direction is estimated. Following that gradiggoing downhill’), one arrives at a new point, and estinsate

2A cliquet option option is an option consisting of a seriexofhsecutive forward start options. The first is active immietiia The second
becomes active when the first expires, and so on. Each optirnuik at-the-money when it becomes active
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a new optimal direction again. This iterates until a minimigmeached. One always has the risk of arriving at a local
minimum, which makes the initial guess crucial.

Stochastic algorithms

In order to avoid arriving at a local minimum, one can incliedechastic jumps in the algorithm. The algorithm
searches downhill, but may search uphill with a probabiligcreasing in time. There are theorems that state that
the algorithm always arrives at the global minimum, prodidieat the probability decrease is sufficiently slow (see
[Kirkpatrick, 1984). These stochastic algorithms are computationally mgpessive than the local algorithms.

6.2 Stock-stock correlation calibration

Stock-stock correlations can have significant influence emvative prices. In Figuré.3, a small example is shown
of the sensitivity of a European call price pa,:

Option Price for 2D-Heston: max(S, (T) + S,(T),0)
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Figure 6.3: Sensitivity of call price to stock-stock coatabnpio. Other parameter valueS; (0) = $(0) = 100 k1 =
1,k =15, 91 =V1(O) = 0.04, 92 =V2(0) = 0.057 €1 = 0.017 €2 = 0.027 P1= —0.4, P2 = —0.5,T = 10,A =0.125 year,
number of Monte Carlo paths is 10.000. The right-hand plonz®in on the left-hand plot.

In the above figure, the prices of two European call optionthersum of two stocks have been estimated by use of the
MQE method. The difference between these two Monte Carls isithe value ops,. All other parameters coincide,

as well as the Brownian motions samples. One can see thatdstrstrikes, a change in correlation causes a change
in the option price. In order to state this more preciselyeatimated a 95% confidence interval from the Monte Carlo
paths of both option prices. F#t € [119 600, these two intervals are disjoint, which means that theoopprices
differ significantly for these strikes. This illustratesethecessity of an accurate calibration method. We found one
historical calibration method in literature, and we wilsduss this one first.

6.2.1 Literature on multi-asset Heston calibration

The authors of Dimitroff et al., 2009 agree with us to calibrate the one-dimensional modelsragglg by known
methods first. They assume the same correlation structurseakin the MQE scheme. As a next step, they calibrate
each stock-stock correlation separately, by use of theriisi correlations of the log-stock returns:

B == corr(X (t+A) — Xi(t), Xj(t+4) — X{(1)),
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with X; (t) the observed value of the log-sto¥Kt) in the market at time. We assume thqﬁﬁ is the realization of the
theoretical log-stock return correlation:

P} == corr(X (t+A) — Xi(t), Xj (t+4) — X(t)).

The article reasons that unlike in the Black-Scholes mqrfpi;;é pij, with pjj the correlation between the correspond-
ing stock Brownian motions. In case of Black-Scholes dymaequalitydoeshold since the volatility is deterministic
(see b.1), which is obviously not true in case of Heston dynamics.r&fae, one has to find a stock-stock correlation
matrix so that the resulting correlation between the |lagisteturns will be close to the historical correlations.rislo
strictly, one has to find:

min ||Zr(Ex) — 2r||, (6.2)
2XECD
with ¢p the set of all correlation matrices of dimensibrand the matrices defined by
R S AR
2R= (pij)lgi,ng’ 2x = (pij)lgi,ng’ 2R= (pij)lgi,jgo'
The method explains how to solve this minimization problenglement of:
min__|pf (pij) —Bf. (6.3)

—1<pij<1

Firstly, a limiting relationship is found betwequﬁ- andp;; as the step size goes to zepﬁ is approximately linear

in pij, with a positive slope. This insight gives rise to use a liearsh method (for example, the bisection method) to
solve 6.3). Throughout this procedurpﬁ(pij) is required, which is estimated by using a small Monte Carthod:
sample paths are generated by using Brownian motions witieledion pjj. Then the sample path average of the
correlation between the log-stock returns is the estirrmtpff(pij ). The authors expect that the resulting makjx
with optimal elementqni*j will be close to the solution of6(2). However, it could be thaly is not positive definite.
To transformX* to a ‘close by’ positive definite matrix in this case, the @deirecommends the procedure described
in [Jackel, 2002

This calibration method has some drawbacks. Firstly, osedaun a Monte Carlo method at each optimization step
in the optimization of each;j, which will be computationally expensive. Secondly, theuténg correlation matrix
might differ much from the solution of6(2), since the minimization is performed per elementz@f Moreover,
the method is a historical calibration method, and we erpldiat the start of this chapter that market price implied
calibration method are preferred.

6.3 Market implied calibration method

Since market implied calibration is preferred to histdricaibration, we desire an alternative calibration metlobd
the former category. We assume that each one-dimensiomalaglel has been calibrated separately. Now, we require
a fast method to compute market prices given a chosen pagasadtof stock-stock correlations. Then one can effi-
ciently search for the optimum in a high-dimensional par@mgpace.

In the one-dimensional case, a common procedure is to usereeFmethod to compute European call and put prices,
since the characteristic function of the log-stock valuavigilable. In the multi-dimensional extension, one mayary
calibrate in a similar way, namely via quoted call (or puires on ebasket optionlts payoff is given by

max[_iS(T)K,O}. (6.4)

Unfortunately, the distribution or characteristic fulctiof
D

S(t) =) S(t) (6.5)
2
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is not known explicitly forD > 2. We conclude that we can not find semi-analytic prices fisrdption in this way.

Since neither the characteristic function nor the densitizfion ofS;(T) is known, we need another analytic property
depending on the stock-stock correlations. Therefore,nepgse method based on moment matching. Mma&hing
momenttechnique is based on the substitution of a distributioncvlis mathematically more tractable, and which
approximates the original distribution in the sense thaeam number of moments coincides. For example, the
QE scheme uses two moment matching techniques. It apprtesntize noncentral chi-square distributidpy,, by

two other distributions, by setting their first two momentgial to the first two moments df . (see Sectior8.2.2.
More of the topic of moment matching calibration technigimreinance can be found irLgvy, 1992 and [Turnbull

& Wakeman, 1991L

The idea of moment matching originates from the fact that er10fS;(T ) higher than the first moment, depend on
all stock-stock correlations. For example, the second nmbiwieS;(T) can be written as:

D D T
E[S(T)] =60y 5 S(0)S (0E [exp{ | Ve, <t>dt}] . (6.6)
i=1]=1 0
One can find the derivation in Append Now suppose the following:
1. Suppose that we find a close approximatlﬁl},(T), for E[S(T)].

2. Suppose that we find a close approximate distributigrfor the distribution ofS;(T), of which we can de-
rive the second momenttd; (T). Suppose further that we can calibrate the correspondipgoajmate model
sufficiently fast (for example, by existence of an analytituson, or by use of a Fourier method).

Then, our proposed market implied calibration method wallds follows. We calibrate our model to given market
prices, assumings(T) ~ F, and find its second momentd} (T), as function of the maturity . This is our observed
data set. We choogg so that the two moment@z&’(T) andM (T) are close for all. In this way, we have calibrated
all stock-stock correlations. The two above mentionde sajjpns are discussed in the respective next two sections.

6.3.1 Approximate second moment 0%

As itis obvious from 6.6), the derivation of an analytic expressionmf requires the derivation of

eXp{pij /OT\/\W Vj(t)dt”- (6.7)

We did not found any analytic expression &y in literature, and we expect that it is hard to find one. Insteee
propose some estimates, each based on one of the followlstjtstions, withm=1, j:

Eij =E

1. For allt, we use the estimate
Vm(t) = Om. (6.8)

This is a strong assumption, we expect bad behavior wheneter Eondition is violated. We will refer to the
resulting estimate d;j by Ef.

2. Vin(t) = E[\/Vn(T)], where we use the expression fro@rgelak & Oosterlee, 201@or the right-hand side:

kr(liz‘wk)

21
E[vVin(T)] = V2e(t)e */2 5 = (A(t)/2 7
VR AL
with I"(t) the Gamma function and
g . A6 _ 4KVm(0)e ™
ct) = @(179 ), d= -2 M) = 2(1_ex)

52



The estimation is based on a truncation of the infinite sune @awback is that the computation of the Gamma
function becomes expensive for small values.of

3. Vin(t) = E[1/Vin(T)], but now we use the following estimate as proposedirz¢lak & Oosterlee, 2010

E[v/Vn(T)] = \/C(t)o\(t) —1) +c(t)d+ 2((;:5:):(0)'

The authors of Grzelak & Oosterlee, 201Ghow that this estimate may not be well-defined when thesFell
condition is violated. They propose to use the exact reptaten in this case.

4. fo VNV O dt~ /B, with

.
Hn:=E /0 Vm(t)dtlzemTJr(eKmT 1) (Bm—Vin(0)) /Km.

The expression for this expectation is derivediufresne, 200[L

For simplicity, we will initially useléiej as our estimate fd;j.

6.3.2 Approximate distribution of S(T)

The first candidate foF, the approximate distribution @&(T), is the normal distributionF =: BS In fact, this
approximation means that we assume t84t) approximately follows one-dimensional Black-Scholes aiyits.
This suggests:

S(T) ~ Ss(o)e(rfcz/Z)TJroW(T)’

with constant risk-free rate constant volatilityo, andW(t) a Brownian motion. This assumption implies that Zor
an independent standard normal random variable,

MES(T) = E[L(0)exp(2rT —0?T +20W(T)}]
= (0" "TE[exp{20VTZ}]
= 0T 02T +202T
_ i(o)e(ZH»G

The second candidate féris the one-dimensional Heston distributidh:=: HES Consider the joint characteristic
function

(P( ) [epuv )+ivx T)} ,

wherex(T) = InS(T) —InS(0), andS(t) andV (t) follow single-asset Heston dynamics. Its explicit form tarfound
in Appendix A of [Andersen, 200]7 for example. Note that

@0, —ni) = (ST -n50)] E[j‘g)” ,

forn=12, ..., which yields

MYES(T) = $(0)p(0, —2i).

53



6.4 Investigation of the calibration method

The approximate distributioR must be close enough in the sense that their second momehtmueose to the
second moment d&(T). In order to choose from these two candidate distributiaresvill investigate the distribu-
tion of S(T). Therefore, we will sampl&(T) with our MQE method and investigate the corresponding eoadir
distribution. We consider different number of underlyirfs= 2 andD = 10) and cases in which the Feller condition

is satisfied and violated. For the sake of generality, we sbatfferent Heston parameter sets per stock. For each
stock in fact, we draw the Heston parameters uniformly fraacfical intervals, as shown in Talkel

parameter\ (a,b) such that parameter valseJ (a,b)

SO (10, 110)
Ki (0.5, 1.5)
8, = Vi(0) (0.02, 0.06)
Pi ('110)

Table 6.1: Parameter distribution of all underlying stocks

The risk-free rate(t) is taken to be zero and a positive defintig is some arbitrary correlation matrix (iBgndel

& Mickey, 1978, a method is proposed to draw correlation matrices wittiaurily distributed eigenvalues). Finally,
we choose all volatilities of volatility from the same unifio distribution, considering three cases. The domain of the
distribution will depend on the fulfillment of the Feller adition of all one-dimensional Heston models:

Case \ Feller Satisfied Feller Almost Violated Feller Violated
(a,b), so that; ~ U (a,b) \ (0.0080.01) (0.08,0.1) (0.8,1)

Table 6.2: Uniform distribution intervals fay, for all i, for three different cases

Histograms of the empirical distribution of 8(T) are displayed in Figured.4and6.5, considering 2 and 10 stocks,
respectively. In both figures, the three histograms comegdpo the three cases mentioned in TahR
£~ U(0.008,0.01)

€~ U(0.08,0.1) €~ U(0.8,1)
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Figure 6.4: Sample histograms of3¢(T ) for D = 2. From left to right: caseBeller SatisfiedFeller Almost Violated
andFeller Violated
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One can see in Figurés4 and6.5that for smallg;, the empirical distribution of I8(T) is close to normal. For large
€ however, this is not the case. It is hard to see from thesedrmins whether a Heston distribution will fit this data
better. Therefore, we choose eitlier= BSor F = HES and perform the following tet

1.

5.

We consider two stocks. We choose each one-dimensios&bhiparameter set from the parameter distributions
displayed in Table§.1and6.2 We choose some arbitrary stock-stock correlation (in asepi2 = 0.5). We

let the MQE method simulate basket option prices with theoffags given in 6.4), for different strikes and
maturities. We assume that these prices are market quotes.

. We calibrate these prices by assuming S&ét) ~ F. A plot of the simulated quotes against the calibrated price

is displayed in Figuré.6.

. We computeMb (T) for all considered maturitie3. We also estimate the second moment from our MQE

Monte Carlo paths. This estimalM,g"QE(T), serves as a reference value. We expect that this estimkhitgewi
sufficiently accurate by taking a large number of Monte Cadths (1000.000) and time stepg\(= 0.1 year).
See Tablé.3,

. We approximat&[SZ(T)] by substitutingi; ~ EJ, using 6.8). We match this moment t5 (T), thus obtain-

ing an optimal stock-stock correlation. We also estintafdrom our Monte Carlo Paths and match the thereby

induced moment tMQ"QE, thus obtaining a Monte Carlo reference optimum.

We investigate whether the optimal stock-stock cori@fes close to the imposeah ;.

For the Black-Scholes calibration in step 2, the method tleesinalytic Black-Scholes formula for a European call
option price:

with

C(S(0),T) = S(0)(dr) —Ke T d(dp),

4 INS(0) —InK + (r +02/2)T
1 = O'\/T )

d = di—oVT.

3The computer used was an Intel(R) Core(TM)2 Duo CPU T9300 @ G153z
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HereC(S5(0), T) denotes the call option value at tifie assuming initial stock pricg&(0), ®(-) the standard normal
cumulative distribution function. For each subsequenatilitly, chosen from a certain grid, the induced option eric
is compared to the market quotes for every maturity andestrithe mean error of these Black-Scholes prices is the
function that we will numerically minimize over the volatyl parameteio. For the Heston calibration, the method is
similar. Now we use the COS method as describedranf) & Oosterlee, 2008to obtain the semi-analytic call price
instead of the Black-Scholes call price. To find the optimedameter set, we use a local minimizer, as mentioned
in Section6.1 We set the interval for the stock-variance correlatipnto [—1,0]. Further, we focus the long-term
variance grid on the implied volatility obtained by the B{a8choles calibration. In this way, we increase the effigcien
of the Heston calibration method.

Best fit 1D BS/Heston call price to superstock call price Best fit 1D BS/Heston call price to superstock call price
\ g W
Quotes (MQE estimates, N = 1000000, A = 0.1y) Quotes (MQE estimates, N = 1000000, A = 0.1y)
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Figure 6.6: Performance of approximate distribution inrfigitEuropean call prices. All three figures contain simu-
lated market quotes of the basket option, plotted agaimsb#st fits of these prices obtained by a one-dimensional
Black-Scholes calibration and a one-dimensional Hestthresion. All for different strikes and maturities, andeth
parameters as given in Tablésl and6.2 The top left plot represents the casaler Satisfiedthe top rightFeller
Almost Violategdand the last ploEeller Violated

The Black-Scholes calibration took 3.2 seconds, while thetbh calibration took 456 seconds. At first sight, Figure
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6.6 suggests that both the Black-Scholes distribution andd#edistribution fit the market prices well. In case Feller
Almost Violated and case Feller Violated, the Black-Schaalibration prices are slightly different from the market
guotes. For the moment, this fact does not worry us muchedime quality of the approximation depends on the
quality of the moment estimate only. In Talle3 the second moment estimatesSyfT) are displayed.

Feller Satisfied Feller Aimost Violated Feller Violated
ME(T) | T=1 T=3 T=10|T=1 T=3 T=10|T=1 T=3 T=10
) 19229 20226 24141 19210 20169 23914 18977 19442 21160
MHES(T) | 19234 20237 24166 19222 20181 23911 19072 19663 21780
MYOE(T) | 19220 20244 24204 19216 20174 23946 19075 19766 22129
(T) 6.3 12.1 33.2 6.1 11.7 31.1 5.2 140.7 224.7

Table 6.3:M5 (T), as estimated by using two calibration methods and the MQEt#Garlo estimate. The last row
displays the standard error NI’ZV'QE(T).

One can see in Tabkg.3 that the standard error cMQ"QE(T) is small except for large andT. This indicates that
MQ"QE(T) is often an accurate estimate for the second mome8(@f). The values oMES(T) andMLES(T) differ

only a few standard errors froMQ"QE(T) in all cases. This suggests that these moment estimatesarate too.
One can see thatES(T) is closer to the MQE estimate thaBS(T) for largee, which is intuitive since the Heston
dynamics are a generalization of the Black-Scholes dyramic

The calibrated stock-stock correlations obtained in s, tare displayed in Tab&4.

M5 (T) | Feller Satisfied Feller Almost Violated  Feller Violated

MBS(T) 0.46 0.40 -0.48
MEES(T) 0.47 0.40 -0.26
My'9E(T) 0.46 0.39 -1.00

Table 6.4: Calibrated stock-stock correlation, as obthimeusing three different approximations &y and for three
different levels of the volatility of volatility. The imp&sl correlation ig12, = 0.5.

Table 6.4 shows that our method performs quite well in case all vattilf volatility parameter values are low. Let
us define the calibration error as the absolute differentedsnp;, and the calibrated estimate pf,. Further inves-
tigation shows that the calibration error increases;ande; increase. Since the CPU time of one calibration run is
around 30 minutes, we did not collect statistics of the emean over multiple runs. Nevertheless, several calibratio
runs show that the calibration error is less thadb0n caseFeller Satisfiedand less than.Q3 in casereller Almost
Violated One may think that the calibration method is succesfulloag) las the volatilities of volatility of the two
underlyings are sufficiently small. However, one should Wware of the sensitivity of the derivative to stock-stock
correlation. In case of high sensitivity (like is the cas¢tmdispersion trades), the performance shown under Feller
Almost Violated will certainly not be sufficient to price duderivative accurately. In cageller Violated the calibra-

tion is obviously too large for any practical purpose.

6.5 Discussion of the calibration method

This error is partly caused by the estimation error@8). As we already explained in Secti@n3.1, this latter error
will increase ingy, which is reflected in the above numerical results. Howewerdo not notice better calibration
performance for any other choice of the four proposed apprations forE;;. Furthermore, the calibration method
performs bad too when using MQE estimates in daedker Violated(see Tablé.4). This indicates that there must be
another problem, which we revealed after a further invasitg. Note that all four estimates Bf; are based on the
following approximation:
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Ej=E

oxofp | V00| =z [ 0 0] |

For largeg; andgj, the above integral will have a large standard deviatiarcesthe processé(t) andVj(t) will be
more volatile. Taking the exponential function of this i@l will increase the standard deviation of the approxénat
distribution ofS(T) exponentially. When estimatirg; numerically, an increase of the volatility of volatility yzam-

eter will significantly decrease the accuracy of the eséman fact, further investigation of the Monte Carlo paths
shows that the standard error of thg Monte Carlo estimate is often around 20% of the estimatdf.itSence the
value of the second moment is rather insensitive to changgeg,iwe need an accurate estimate. We conclude that
the standard error is too large to achieve this. This explainy the performance of the calibration method based on
MQE estimates, decreasesinandes.

A significant improvement of the approximation&f will be the key to a robust calibration method. To this puggos
note thats;; simplifies fori = j. Sincepj = 1 andVj(t) > O for allt, one can write

exp{ /OTvi(t)dtH.

In [Dufresne, 200[L the moment generating function of the integrated squao¢process is derived:

exp{ —s/OTVi(t)dtH , s>0.

Itis tempting to seE; = MGF(—1). Unfortunately, this equality does not hold since the mongemerating function
has positive domain only. Numerical experiments show thiatdstimate is indeed inaccurate, unless the volatility of
volatility parameter is very small. Our last attempt for asgl approximation of;; involves the power series of the
exponential function:

Ei =E

MGF(s) :=E

This expansion suggests the following approximation

Ei,-:]E[exp{p”/on vj(t)dt}}mlJr%pi?El(/on vj(t)dt)n],

n=1 n:

with N € N not too large. The estimate will therefore be a weighted stitheofirstN moments of the integral

[ vao M

Fori = j, these moments can be derived analytically by use of the mbgenerating functioMGF(s). The first
three moments can be found iDdfresne, 200l Since the expressions for the second and third moment e@dy
extensive, we first test this method by use of the MQE estisnaftthese moments. Unfortunately, the accuracy does
not improve significantly, whether the Feller conditionasisfied or not. We therefore conclude that this power series
will not be of any use.

In order to increase calibration accuracy, we may try to matgher moments as well. After adding a third moment to
the method, we do not notice any improvement of the calibnegiccuracy. As the numerical experiments suggest, the
inaccuracy of the estimation &; is again the main problem. All higher moments dependEgnWe conclude that
extending the moment matching technique to multiple momeaty help provided that we find a good approximation
for Eij .
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6.6 Conclusion and outlook

In this chapter, we designed a market price implied calibnathethod for the multi-asset Heston model. We assumed
the correlation structure of the MQE method in Chagter

For the one-dimensional Heston calibration, considesatgarding efficiency and pitfalls of this method are given.
This calibration can be cumbersome since the parametee gifdlace minimization problem is five-dimensional. The
key to an efficient and accurate calibration is the insighhanderivative that is to be priced. Knowing the sensitivity
of the derivative to each parameter, one can improve célior&fficiency by anticipating the discretized parameter
space on the more important parameter. Furthermore, ongetéorm calibration in more than one step, thus solving
subequent subproblems of lower dimensionalities.

For the stock-stock correlation calibration method, madietes of basket options for different strikes and maturi-
ties are required as input. We have tested the method in ¢ae® atocks, measuring its performance by the error
between the imposed stock-stock correlation and the eadiirstock-stock correlation. We considered 3 cases with
increasing volatility of volatility parameter, using edtha Black-Scholes or a Heston calibration method. Whereas th
Black-Scholes calibration is much faster than the Hestdibregion, both methods attain the same level of accuracy
in these three cases. High accuracy is attained in eeléer Satisfiedmedium accuracy is attained keller Almost
Violated and in caséd-eller Violated the method accuracy is unacceptably low. We investigdtisdriaccuracy and
concluded that the key to the solution will be an estimateEfpin (6.7) which is accurate for all practical parameter
sets.

In many practical situations, the number of underlyings bésket option will be more than 2. In case of many stock-
stock calibrations, the calibration method should soheedhtimization problem in an efficient way. In our method,
this means that we have to find

min 'y [M3(T) — M5 (T)]. (6.9)

2elo ey

Herecp represents the set of all correlation matrices of dimenBi@md7 is the set of maturities of all used market
price quotes. Using the first estimate of Secta®.1can write the approximation fd[S2(T)] as

D D
MZSS(T) = erOTr(t)dt Z S(O)Sj (O) fij, with fij = exp{pij MT}

i=1]=1

SinceM%(T) is linear infjj, we can use a linear optimization method to find the solutiq®). The simplex method
is an efficient and well-known method to solve linear optiatian problems (sedjantzig et al., 2008. The optimal
solution sef{ fij,i, j = 1,...,D} willimmediately yield the optimal correlation parametet §pjj,i, j =1,...,D}, by
definition of fj;. Note that for all choices of our proposed estimate€pin Section6.3.1, the optimization problem
will be linear.

Another possible problem will be that in practice, markét@quotes of the used basket options are often not liquid.
This means that the basket option is traded for a number afirities and strikes which is insufficient for accurate
calibration use. We say that the derivative is not liquid.e@may work around this problem by calibrating the stock-
stock correlation in multiple steps:

1. We choose a subset of stocks, so that the correspondikgtlzgaion is liquid. We calibrate the corresponding
stock-stock correlations by use of our proposed method.

2. Some correlations are still to be calibrated. We try to indther subset of stocks so that the corresponding
basket option is liquid. We calibrate the correspondinglststock correlations.
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3. We repeat step 2 either until all correlations are catdataor until there are no more liquid basket options
available for the calibration of the remaining correlaioAny remaining correlation parameter can be calibrated
using historical data, for example by use of the methodimijtroff et al., 2009.

4. Since we calibrate the stock-stock correlation withedéht sets of data, our correlation matrix may be positive
indefinite. In that case, we try to find a 'close by’ positivdidige matrix, for example by use of the procedure

described inJackel, 2002
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Chapter 7

Conclusions

This chapter summarizes the conclusions and recommenddtiofurther investigation of this thesis.

The goal of this thesis was to construct a multi-asset Hegimmte Carlo method. The method has to be efficient with
regard to accuracy and CPU time. Additionally, we invegddahe design of a market impied calibration technique
for the multi-dimensional model. The following issues wereounterd.

Negative variance

Conventional Taylor based schemes are not suitable toatiserHeston dynamics. Especially when the Feller condi-
tion is violated, the variance path of these scheme can beoceguative. This either breaks down the scheme or induces
bias in derivative price estimates. Therefore, we invastid several alternative schemes for the single-assebiest
model. Eventually, the QE scheme became the scheme to userforulti-dimensional model. Its intuitive and close
approximation of the exact distribution of the next steparace makes the scheme fast and accurate, regardless of the
fulfilment of the Feller condition.

Correlation imposition

We assume general stock-stock correlations and corresmpstbck-variance correlations. We take the variance-
variance correlations and the cross-term stock-variaooelations to be zero. Whereas the sampling of the variance
processes occurs independently, the issue of 'leakingledion’ exists in a ‘naive’ stock propagation scheme. We
avoid this leaking correlation by converting the convemdiltscheme so that all input random variables can be sampled
independently. The resulting Monte Carlo method is the Miithensional Quadratic Exponential (MQE) method.

A numerical correlation test of the MQE method is performi@ppears precisely when the Feller condition is vio-
lated, the log-stock return correlation estimate is sutiithy different from the imposed stock-stock correlation

the Brownian motions. This phenomenon is not observed uBldek-Scholes dynamics and is theoretically different
from the concept of leaking correlation. Though it is in aclamce with the Heston dynamics when Feller is vio-
lated, this difference is not intuitive and may be confusiRgr example, the problem arises that, when comparing the
multi-asset price fairly with, say, a multi-asset BlackaBles price, it is hard to make sure that the log-stock return
correlations mutually coincide.

Efficiency and accuracy

In order to test the validation performance of the MQE metheel had to find a reference method. When the Feller
condition is satisfied, the MQE prices coincide with the fadiinensional Euler Full Truncation (FT) prices. Since
the Euler FT method may inherit significant bias in case tHkeFeondition is violated, we had to find another refer-
ence for our MQE method. We found a semi-analytic pricinghradtfor a double-asset option, based on a change of
numéraire. We had to choose proportional variance processksranof the two stock-variance correlation had to be
taken zero. The MQE prices coincide with these prices, whieEuler FT method exhibits significant bias for long
maturity and high volatility of volatility. Further, the MB)method is superior to the Euler FT method in accuracy,
when fixing either the step size or the CPU time. The CPU timh®MQE method grows linear in the number of
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assets of the model.

Market implied calibration method

In literature, we only found a multi-asset Heston calilmatimethod based on historical data. Therefore, we investi-
gated the construction of an market implied calibrationtradtfor the MQE method. The calibration method consists
of D separate one-dimensional Heston model calibrations, eslfter theD(D — 1)/2 stock-stock correlations are
calibrated using a moment matching technique. For the anestsional Heston calibration, considerations regarding
efficiency and pitfalls of this method are given. The key paman efficient calibration is the anticipation of the
optimization to the more important parameters.

The stock-stock correlation calibration method uses Hagiion prices for different stocks and maturities as dhta.
appears that the performance of the method decreases inl#i#ities of volatility. The main cause is an approxima-
tion error which increases exponentially in these Hestoarpaters.

Further investigation

We expect that the MQE scheme can be extended by droppingsoengtion of zero cross-term stock-variance cor-
relations. The same can be said about the variance-var@noglations, though then an approximation error will
be made. To correlate the different variance processesham#o use an inexact method to correlate the concerning
random variables. The resulting bias should be investiyate

Another consideration of these extensions is the increesemplexity of the required calibration method. One should
either design a new method to calibrate all multi-dimenai@orrelations, or calibrate the added non-zero corgati
and solve the problem of possible positive indefinitenesb@fesulting correlation matrix.

The performance of the current stock-stock correlatiorhamgshould be improved. In particular, an accurate estimate
of Ejj in (6.7) should be conceived. Further, since in practice one mag kmealibrate high-dimensional models,
an efficient optimization algorithm should be applied. Feareple, choosing the estimate féf; appropriately, the
optimization problem becomes a linear one, for which efficgolution methods are known (see Sectof).
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Appendix A

Cholesky decomposition

In this appendix, we give details of a Cholesky decompasitio

Theorem 2. Cholesky decomposition
Suppose that an n n matrixZ is real, symmetric and positive definite. Then we can wiges LL", with L an nx n
lower triangular matrix. This decomposition is called a Gdsky decomposition af.

Before proofing this theorem, we will show one of the variolg®eathms to find matrix., the Cholesky algorithm

1. Seti=1andXj =3.

2. Fori=1,2,..., the square matri¥; of dimension(n+ 1 —i) has the following form:

lire O 0
Zi - 0 a-i,i b|T )
0 bi B

wherel; is the identity matrix of dimension &;; € R, bj € R™ a column vector and@®; a square matrix of
dimension(n—i). If we now define the lower triangular matrix by

li—1 0 0
Li = 0 \/aTl 0 )
0 -Lbi In

then we can writ&; as>j = LiZi+1LiT, where

li_t O 0
Sa=[ 0 1 0 |
0 0 B- %bibiT

3. We repeat the previous step foe 1,...,n, obtainingZ, 1 = | in this way. Therefore we found
Y=Lilo.. Lol .. L .
As a result, by defining
L=Lily...Lp,

(which is lower triangular since all matrices on the riglid side are lower triangular) we have found the
Cholesky decomposition af = LL .
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Proof. We already showed that matrixwe obtained from the above algorithm is lower triangular.sfiow that the
decomposition is always possible for symmetric, positierdte matrices, we only have to show that all computations
in the algorithm are well-defined. Therefore basically, agéhto show thad; ; > O for alli. To do so, we define the
unit vectorg € R" with elementgg); = &; for i, j = 1,...,nandg; the Kronecker delta. Then, singeis positive
definite, we deduce

a;1 =€ Ze; > 0.

This shows that the computations are well-defined fod.. Then we claim that i£; is positive definite, then the matrix
B — %bibiT is positive definite too. To show this, we will use the propdinat since; is symmetric positive definite,

every principal submatrix af; is symmetric and positive definite too. Now take any columetaer € R™'\ {0} and
w=—(1/a;)b"v. Then

VT(Bi—%bibiT)V:(W VT)(a‘bl' %T)(\\'/V)>O

The equality above follows from simple linear algebra arelittequality holds since

ai bl
by B

is a principal submatrix of; and is thus positive definite. Sin8g— %bibiT is positive definiteg;.1 1, which is the
upper left element of this matrix, is strictly positive tddy mathematical induction, we have proven thgt> 0 for
alli. We conclude that the Cholesky decomposition exists. O

Example 1. Consider the following correlation matrix

1 Pviv,  P1 0
(QVAV 1 0 P2

P1 0 1 p2

0 P2 P12 1

> =

Then the Cholesky algorithm yields the representafieal L ", with

1 0 0 0
pvl\/Z \/ 1- p\2/1V2 O O
L = pl _ PvyV, P1 P\2/1V2+P§*1 0
\/ lip\2/1V2 p\2/1\/271
P2 P12*P\2/1v2P12+Pv1v2P192 4
2
\/1 A \/ (p\zllvzfl) (1*9\2/1v2*p%)
with
2 _n2 + 2
Laa = (|1+P2 4 (p122 P, P12 pzvlvzplpzz ) (A.1)
Py, —1 (pvlvz -1)(1- P, — p)
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Appendix B

Derivation of the second moment of5(T)

In this appendix, we will derive the second momengg(T ), with S;(t) as defined in&.5). Suppose that ald stocks
follow the Heston dynamics as given iB.0) and @.2). Then, by linearity of expectations, one has

D D

E[S(T)] = > ;E[sms,- (T)] (B.1)

In order to find an expression for the summand, we first define
X(t) =In§(t) +InS(t).
Note that
S(T)S)(T) = T = 0H1o XU = 5(0)s;(0)ef0 X0, (B:2)
Using two-dimensional &'s Lemma, we find
1
dX(t) = 2r(t)dt — 5(\/i (1) +Vj (1)) dt+ Vi () dWg (t) -+ /Vj (H)dW (t). (B.3)
SincedW (t) anddW; (t) have correlatiomij, we can write
AVg, (t) £ pij AV (1) + /1~ pRAW(), (B.4)

with W(t) a Brownian motion independent of everything else. Suligiitwof (B.4) in (B.3) and integrating the result,
yields

[laxo = 2 rwa-j [T +vio)as [ (Vim0 )as
Jm/l—pﬁ/oT Vi (t)dwit).

Note that givenw;; = {Vi(t),V;(t),0 <t < T}, all terms on the right-hand side are independent. Thezefor
T T 1 /7
o AX®) g | — _ - 1 :
]E{ef X(t ‘fV.,} = exp{z/o r(t)dt 2/0 (V.(t)+V,(t))dt}
T
XE{GXD{/O \/Vi(t)+pijq/Vj(t))dV\é(t)H‘Vij:|
T
xE{exp{\/lpﬁ./o \/Vj(t)dW(t)Hq/ij} (B.5)

Both exponents in the two expectations on the right-hane aré 16 integrals. Both b integrals are normally dis-
tributed givenv;;. We can use the following rule:
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Result 6. Suppose Y is normally distributed. Then
E[e'] = exp{Var(Y)/2}.

Applying this rule yields:
]E[exp{/o-r(\/\m_;_pij\/\%)d\/\é(t)}'fl/ij} exp{;/()T\/i(t)+pﬁvj(t)+2pij\/\m vj(t)dt}
]E{exp{\/l—pizj /OT \/Vj (t)dW(t)}’fVij} exp{lzpi2j /OTVJ- (t)dt}.

After substitution of these two expressions B15), we obtain
T T T
E{efo dx(t)‘q/i,-} - exp{Z/ r(t)dt+/ SIRVAIOINAY (t)dt}.
0 0
Sincer (t) is deterministic,

E[ed o] — ez.er<t>th[exp{ /OTpiijt) Vj(t)dt}]. (8.6)

Finally, by substituting of.2) in (B.1), and then substitutind3(6) in the result, we arrive at

T D D
BT =815 5 50508 lexp{ [ e (t)dt}] .
i=1j=
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