
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

An advanced Monte Carlo method for the multi-asset
Heston model

A thesis submitted to the
Delft Institute of Applied Mathematics

in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by Wander Sybe Wadman

Delft, the Netherlands
November 3, 2010

Copyright c© 2010 by Wander Sybe Wadman. All rights reserved.





MSc THESIS APPLIED MATHEMATICS

“An advanced Monte Carlo method for the multi-asset Heston model”

Wander Sybe Wadman

Delft University of Technology

Daily supervisor Responsible professor

Prof. Dr. Ir. C.W. Oosterlee Prof. Dr. Ir. C.W. Oosterlee

Ir. L.A. Grzelak

Other thesis committee members

Dr. J.A.M. van der Weide Drs. W.F. (Erik) van Raaij

Dr. H.M. Schuttelaars

November 3, 2010 Delft, the Netherlands





Preface

As the final part of the two-year MSc-program Applied Mathematics at the Faculty of Electrical Engineering, Mathe-
matics and Computer Science, students at Delft University of Technology can choose to perform their master’s thesis
in collaboration with a company which has a suitable mathematical topic of interest. The goal of this project is to
design a new numerical method to price financial instrumentsfor the Derivatives, Research & Validation department
of Rabobank International. The time frame of the project is nine months.

I would like to thank my supervisor professor Cornelis Oosterlee for our fruitful discussions and my grateful use of his
experience. At least as much thanks should go to Lech Grzelak, since his tireless support and inspiration for me to find
new ideas were very helpful during the project. Furthermore, I would like to thank Steven Korteland for his attentive
supervision during a part of the thesis. Last but not least, great love goes out to my girlfriend, who kept supporting me
during my frequent absence, and to my parents, whose help gave me a lot of motivation.

4



Contents

1 Introduction 7

2 The Heston model 8
2.1 Analysis of the variance dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Analysis of the stock dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Path simulation of the variance process 12
3.1 Taylor-based schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Euler discretization: the Full Truncation scheme (FT) . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Transformed Volatility scheme (TV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 (Almost) exact schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Exact simulation (ES). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Quadratic Exponential scheme (QE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Noncentral Chi-square Inversion scheme (NCI). . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Gamma Expansion scheme (GE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Comparison of different schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The MQE Monte Carlo method 21
4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Construction of the MQE scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Set up of the MQE scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Simulation of the next time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Performance tests for the MQE scheme 28
5.1 Imposed correlation test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Results of imposed correlation test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Option validation: theFeller SatisfiedTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Option validation: theFeller ViolatedTest I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Option validation: theFeller ViolatedTest II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.1 Problem set up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2 Strategy outline in case of Black-Scholes dynamics. . . . . . . . . . . . . . . . . . . . . . . 33
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Chapter 1

Introduction

The valuation of financial derivatives is becoming more and more a dedicated subject of mathematics and computer
science. Nowadays, the prices of contracts whose future values are uncertain (foreign exchange, interest rate, equity,
commodity) add up to billions of US dollars each year (see [BIS, 2009]). Because of this importance, several mathe-
matical approaches have been developed to model the underlying of derivatives.

Some derivatives are based on more than one underlying. Examples are stock market index options or derivatives used
to hedge against the fluctuation of more than one currency. Ascan be seen from historical market data, these underly-
ings are correlated in general. Therefore, pricing these derivatives would involve a multi-dimensional extension of the
single asset models. This thesis considers the multi-assetHeston model.

The celebrated Heston model (see [Heston, 1993]) is an extension of the well-known Black-Scholes model (see [Black
& Scholes, 1973]). An important drawback of the latter model is the strong assumption of a constant volatility. Market
data analysis (as is done in [Cont, 2001], for example) indicates the existence of the ‘volatility skew’ or ‘smile’. The
model of Heston allows such skew by defining the volatility asa stochastic process itself.

In this thesis, an extension of the Heston model to the multi-dimensional case will be investigated. Most attention will
be given to design a multi-asset Monte Carlo method, which can efficiently simulate multivariate random variables
with almost no bias. The prevention of negative variance in the discretization method will be a challenge, as well as
the generation of correlated multivariate random variables.

In Chapter2, the Heston model will be discussed. In Chapter3, the problem of potential negative variance is treated.
We investigate several numerical methods which are designed to simulate the variance path, and we test them. We
will choose one method as our candidate scheme for the multi-dimensional Monte Carlo method. In Chapter4,
we construct this method, which we name the Multi-dimensional Quadratic Exponential method (MQE). We test its
performance in Chapter5. In Chapter6, we derive a calibration method for the MQE method.

7



Chapter 2

The Heston model

Consider the probability space(Ω,F ,Q), with Q the risk-neutral measure. The Heston model describes theQ-
dynamics of a stock price,S(t), with stochastic variance,V(t), by the two-dimensional stochastic differential equation
(SDE)

dV(t) = κ
(
θ−V(t)

)
dt+ ε

√
V(t)dWV(t), (2.1)

dS(t) = r(t)S(t)dt+
√

V(t)S(t)dWX(t). (2.2)

Here the mean-reverting term,κ, the long-term variance,θ, and the volatility of volatility,ε, are strictly positive con-
stants. The mean rate of return,r(t), is actually assumed constant in the Heston model, but we assume that it is a
deterministic function of time, since this natural generalization will not make our further derivations too complex.
Further,WX(t) andWV(t) are Brownian motions underQ, and we havedWX(t)dWV(t) = ρdt, with dt an infinitesimal
amount of time.

We will now define the concept of arbitrage and then use an important theorem in finance:

Definition. Arbitrage
An arbitrage is a portfolio value process X(t) satisfying X(0) = 0 and also satisfying for some time T> 0

Q
{

X(T)≥ 0
}
= 1, Q

{
X(T)> 0

}
> 0.

An arbitrage is a way of trading so that one starts with zero capital and some later timeT is sure not to have lost
money and furthermore has a positive probability of having earned money. We state the following well-known theorem
without proof:

Theorem 1. First fundamental theorem of asset pricing.
If a market model has a risk-neutral probability, then it does not admit arbitrage.

Furthermore, sinceQ is the risk-neutral probability,S(t)/B(t) is a martingale underQ. Therefore,r(t) must be equal
to the risk-free rate of return, and we will refer to this byr(t) from now on. For the multi-dimensional case, this will
practically mean that the risk-free rate of every stock return is the same.

Since instantaneous correlation will be an important topicin this project, let us introduce this quantity.

Definition. Instantaneous correlation
Suppose X1(t) and X2(t) are stochastic processes with dynamics

dX1(t) = µ1(t)dt+σ1(t)dW1(t),

dX2(t) = µ2(t)dt+σ2(t)dW2(t),

where W1(t),W2(t) are Brownian motions satisfying dW1(t)dW2(t) = ρ(t)dt andρ(t),µ1(t),µ2(t),σ1(t) andσ2(t) are
functions of time. We callρ(t) the instantaneous correlation between dX1(t) and dX2(t).
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Integration of the SDE ofXi(t) for i = 1,2 over a time interval∆ > 0, yields

Xi(t +∆)−Xi(t) =
∫ t+∆

t
µi(s)ds+

∫ t+∆

t
σi(s)dWi(s).

We recognize the second integral on the right-hand side as anItô integral, which is normally distributed givenF (t),
sinceσi(s) is a deterministic function. Therefore:

Xi(t +∆)−Xi(t)∼ N
(∫ t+∆

t
µi(s)ds,

∫ t+∆

t
σ2

i (s)dt

)
given F (t).

In this case of deterministicρ(t),µ1(t),µ2(t),σ1(t) andσ2(t), the instantaneous correlation is equal to the correlation
between the infinitesimal increases of the two stochastic processes. We can make this intuitive by assuming that these
five parameters are constant:ρ(t) = ρ,µ1(t) = µ1, and so on. Then, fort > 0 and infinitesimal increasedt, it is easy to
derive that

E
[
Xi(t +dt)−Xi(t)

∣∣F (t)
]

= µidt, for i = 1,2,

Var
(
Xi(t +dt)−Xi(t)

∣∣F (t)
)

= σ2
i dt, for i = 1,2,

Cov
(
X1(t +dt)−X1(t),X2(t +dt)−X2(t)

∣∣F (t)
)

= ρσ1σ2dt.

Therefore, conditioned onF (t), the correlation between the incrementsX1(t +dt)−X1(t) andX2(t +dt)−X2(t) is

Cov
(
X1(t +dt)−X1(t),X2(t +dt)−X2(t)

∣∣F (t)
)

√
Var
(
X1(t +dt)−X1(t)

∣∣F (t)
)
Var
(
X2(t +dt)−X2(t)

∣∣F (t)
) = ρ.

If we drop the assumption of constantρ(t),µ1(t),µ2(t),σ1(t) andσ2(t), a similar result can be derived. We present it
here without proof (see [Shreve, 2004]):

lim
dt↓0

Cov
(
X1(t +dt)−X1(t),X2(t +dt)−X2(t)

∣∣F (t)
)

√
Var
(
X1(t +dt)−X1(t)

∣∣F (t)
)
Var
(
X2(t +dt)−X2(t)

∣∣F (t)
) = ρ(t) given F (t).

It is important to notice that this result will not hold for stochasticσ1(t) andσ2(t), as it is the case in the Heston model.
In that case, we callρ(t) the instantaneous correlation between the Brownian motions of the Heston model, while the
log-stock return correlation denotes the correlation betweendX1(t) anddX2(t).

2.1 Analysis of the variance dynamics

The variance process in (2.1) is a mean-reverting square-root process. An investigation of its dynamics in [Cox et al.,
1985] gives us the conditional distribution of the variance. We state some results without proof:

Result 1. Let∆ > 0 and Fχ′2(x,δ,λ) be the cumulative distribution function for the noncentralchi-square distribution
with δ degrees of freedom and noncentrality parameterλ. Then

Q
(
V(t +∆)< x|V(t)

)
= Fχ′2

(
n(t,∆)x

e−κ∆ ,d,n(t,∆)V(t)

)
,

with d= 4κθ/ε2 and n(t,∆) = 4κe−κ∆

ε2(1−e−κ∆)
.

Result 2. Since a noncentral chi-square distributed random variable, X ∼ Fχ′2(x,k,λ), has mean k+λ and variance
2(k+2λ), we can compute the first two conditional moments of the variance process:

E
[
V(t +∆)|V(t)

]
= θ+(V(t)−θ)e−κ∆,

Var
[
V(t +∆)|V(t)

]
=

V(t)ε2

κ
e−κ∆(1−e−κ∆)+

θε2

2κ
(1−e−κ∆)2.
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2.2 Analysis of the stock dynamics

Let us define the log-stock,X(t) := lnS(t), and apply It̂o ’s Lemma on the functionf (t,S(t)) = lnS(t) to find the
dynamics ofX(t):

dX(t) =
(

r(t)− 1
2

V(t)
)

dt+
√

V(t)dWX(t). (2.3)

By integrating over the time step, we obtain an expression which is intuitive to discretize:

X(t +∆) = X(t)+
∫ t+∆

t

(
r(s)− 1

2
V(s)

)
ds+

∫ t+∆

t

√
V(s)dWX(s). (2.4)

We know that we can sample a Brownian motiondW(t) by a normal random variable with zero mean and variancedt.
Furthermore, the correlationρ between the two Brownian motions must be imposed. To do so, wecan use a Cholesky
decomposition.

Result 3. Cholesky decomposition
Suppose that an n×n matrixΣ is real-valued, symmetric and positive definite. Then we canwrite Σ as LL⊤, with L an
n×n lower triangular matrix. This decomposition is called theCholesky decomposition ofΣ.

The proof of this theorem and an algorithm to findL can be found in AppendixA. We now claim that ifZ is a vector
of n independent standard normal random variables, thenLZ is a vector of standard normal random variables with
correlation matrixΣ. To show this, we first use the fact that the family of normal distributions is closed under linear
transformations. Therefore, all elements ofLZ are normally distributed. The expectation vector,µLZ, and covariance
matrix,ΣLZ, of LZ can easily be deduced, using the linear property of expectations:

µLZ = E[LZ] = LE[Z] = 0

ΣLZ = E

[(
LZ −E[LZ]

)(
LZ −E[LZ]

)⊤]
= E

[
LZ
(
LZ
)⊤]

= E

[
LZZ⊤L⊤

]

= LE
[
ZZ⊤

]
L⊤ = LIL⊤ = Σ.

In the second last equality,E[ZZ⊤] is equal to the identity matrixI since the components ofZ are independent and
standard normal random variables. Therefore, the multi-variate normal vector

√
∆LZ has correlation matrixΣ, but all

elements still have mean zero and variance∆.

If we define the 2-dimensional vector

dWcorr(t) =

(
dWV(t)
dWX(t)

)
,

then its correlation matrix and its corresponding lower triangular matrix are

Σ =

(
1 ρ
ρ 1

)
, L =

(
1 0
ρ
√

1−ρ2

)
.

This implies that if

dWuncorr(t) =

(
dWV(t)
dW(t)

)
,

with dW(t) a Brownian motion independent ofdWV(t), thenLdWuncorr(t) has correlation matrixΣ. This practically
means that in our scheme we have to sample two independent Brownian motionsdWV(t) anddW(t), and set

dWX(t) = ρdWV(t)+
√

1−ρ2dW(t). (2.5)

Suppose we do not sample the numerical estimate ofdWV(t) itself to simulate the variance process, but another random
variable instead (for example the noncentral chi-square random variables as defined in Section2.1). Then we cannot
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use the above procedure to correlate the two processes. Although there are methods to correlate non-normal random
variables (for example, by sampling from the normal copula), these are not exact, unfortunately. In [Broadie & Kaya,
2006], the following solution is proposed: first, substitute (2.5) in (2.4):

X(t +∆) = X(t)+
∫ t+∆

t

(
r(s)− 1

2
V(s)

)
ds+ρ

∫ t+∆

t

√
V(s)dWV(s)+

√
1−ρ2

∫ t+∆

t

√
V(s)dW(s). (2.6)

Then we can replacedWV(t) by terms that we do sample, namelyV(t) andV(t +∆). Therefore, we integrate the
variance process SDE, formula (2.1):

V(t +∆)−V(t) =
∫ t+∆

t
κ
(
θ−V(s)

)
ds+ ε

∫ t+∆

t

√
V(s)dWV(s).

Rearranging yields

∫ t+∆

t

√
V(s)dWV(s) = ε−1

(
V(t +∆)−V(t)−κθ∆+κ

∫ t+∆

t
V(s)ds

)
. (2.7)

Finally, the substitution of (2.7) in (2.6) yields

X(t +∆) = X(t)︸︷︷︸
v1

+
∫ t+∆

t
r(s)ds

︸ ︷︷ ︸
v2

− 1
2

∫ t+∆

t
V(s)ds

︸ ︷︷ ︸
v3

+
ρ
ε
(
V(t +∆)−V(t)

)

︸ ︷︷ ︸
v4

+
κρ
ε

∫ t+∆

t

(
V(s)−θ

)
ds

︸ ︷︷ ︸
v5

+
√

1−ρ2
∫ t+∆

t

√
V(s)dW(s)

︸ ︷︷ ︸
v6

. (2.8)

The first term on the right-hand side is of course the current log-stock value. The second term represents the contribu-
tion of the interest rate during the time step. The third termis due to the quadratic variation of the geometric Brownian
motion. The fourth term reflects the correlation between thetwo SDEs: in case of a positiveρ, an increase or decrease
of the variance implies that this term respectively increases or decreases the stock value. (In case of a negativeρ, an
increase or decrease of the variance implies that this term respectively decreases or increases the stock value.) The fifth
term corresponds to this correlation in the same way, but nowthevariation of the variance path from the long-term
varianceis the driving factor, instead of the increase in variance. The last term represents the independent random
part of the next log-stock value. Simplifying (2.8), we end up with the following exact representation of the log-stock
process:

X(t +∆) = X(t)+
∫ t+∆

t
r(s)ds+

ρ
ε
(
V(t +∆)−V(t)−κθ∆

)

+
(κρ

ε
− 1

2

)∫ t+∆

t
V(s)ds+

√
1−ρ2

∫ t+∆

t

√
V(s)dW(s). (2.9)

This formula practically implies the following sampling scheme:

1. Sample the next step variance,V(t +∆), and sample or estimate the variance path integral,
∫ t+∆

t V(s)ds. In
Chapter3, we will describe several methods to do this.

2. Sincer(t) is deterministic, we can obtain
∫ t+∆

t r(s)ds independent of this sampling scheme.

3. GivenV(t), the last term of the right-hand side of (2.9) is an It̂o integral, and we can thus sample this last term
by drawing a normal random variable with mean zero and variance

(
1−ρ2

)∫ t+∆
t V(s)ds.

Since the current log-stock valueX(t) is given, we have now obtained all terms on the right-hand side of (2.9), so we
have obtained a sample of the next log-stock valueX(t +∆).
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Chapter 3

Path simulation of the variance process

Let us take a closer look at the variance dynamics:

dV(t) = κ
(
θ−V(t)

)
dt+ ε

√
V(t)dWV(t), (3.1)

We know from Result1 in Section2.1 that the next step variance,V(t +∆), follows a noncentral chi-square distri-
bution given the current step variance,V(t). Since this distribution is supported on(0,∞), the variance process is
non-negative for allt.

Secondly, observe that for larger values ofε, the variance process becomes more volatile. One may wonderwhether
the mean-reverting term,κ, can prevent the variance process to become zero. In [Feller, 1951], this phenomenon is
formalized: precisely whenε2 < 2κθ, thenP(V(t) = 0) = 0 ∀ t > 0. This condition is called the Feller condition, and
it basically means that the variance process can not reach zero when the mean-reverting term is sufficiently strong.

The Feller condition is important for the choice of the discretization method. Suppose for example that we would
discretize (3.1) by use of the well-known Forward Euler method:

V̂(t +∆) = V̂(t)+κ
(
θ−V̂(t)

)
∆+ ε

√
V̂(t)

√
∆ZV , (3.2)

with ZV a standard normal random variable. Then conditional on somenon-zero current variance estimateV̂(t), the
probability that the variance scheme is negative at the nextstep is

P
(
V̂(t +∆)< 0|V̂(t)

)
= P

(
ZV <

κ
(
V̂(t)−θ

)
∆−V̂(t)

ε
√

∆V̂(t)

∣∣∣∣∣V̂(t)

)

= Φ

(
κ
(
V̂(t)−θ

)
∆−V̂(t)

ε
√

∆V̂(t)

)
, (3.3)

with Φ(x) the cumulative distribution function of a standard normal random variable. The right-hand side of (3.3)
will be strictly positive sinceV̂(t),∆ and all Heston parameters are finite and non-zero. This meansthat with Euler
Forward, there is a strictly positive probability that the discretization path becomes negative. This is undesirable,since
it contradicts with the non-negative variance dynamics andit breaks down the scheme. In the subsequent step namely,
the square-root of the negative variance is used, which is not a real number. Note that the probability of a breakdown
in the computation of (3.3) increases when∆ increases, i.e. when the discretization is less accurate. Large values ofε,
which correspond to volatile variance processes, imply a high probability as well. One can see this by writing (3.3) as

P
(
V̂(t +∆)< 0|V̂(t)

)
= Φ

(
V̂(t)

(
κ∆−1

)
−κθ∆

ε
√

∆V̂(t)

)
. (3.4)
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Since the numerator of the above fraction is negative for allpractical parameter values, the probability increases inε.
In fact, the probability approachesΦ(0) = 0.5 asε approaches infinity. This positive probability of negativevariance
illustrates the importance of the Feller condition.

The question arises whether or not the Feller condition is violated in practice. The answer is that for typical examples
of FX options, interest rate options as well as equity options, this is the case most of the time. Therefore, during the
last decade, several numerical schemes have been proposed to overcome the problem of negative variance. In the first
two sections of this chapter, we will introduce some of them,give an argumentation for the approximation used in the
scheme and discuss possible drawbacks. In the last section of this chapter, we will compare their accuracy and speed
in the one-dimensional case, as well as their applicabilityfor the multi-dimensional case. Then we will decide which
scheme will be the candidate scheme for the multi-dimensional Monte Carlo method that we will design.

3.1 Taylor-based schemes

We can distinguish two main categories of variance process discretization schemes: Taylor-based schemes and (al-
most) exact schemes. Taylor-based schemes use a discretization method with a constant estimate for the variance
during each time step, taking the current variance for example. Since this constant estimate contains an error, one can
increase accuracy by decreasing the time step.

We will discuss the Full Truncation scheme and the Transformed Volatility (TV) scheme. Full Truncation is one of the
various Euler Forward schemes, but we will only discuss thisscheme since in [Lord et al., 2008], it has been shown
that it contains the least discretization bias.

3.1.1 Euler discretization: the Full Truncation scheme (FT)

To preventV̂(t +∆) in (3.2) to become negative, one technique is to project any negative variance to zero. Since the
variance process remains non-negative in this way, we prevent the computation of the square-root of a negative value.
Instead of projection, reflection (changing the sign of a value) could be used for the same purpose. Furthermore, in-
stead ofpreventingthe variance process to become negative, one also could project or reflect negative variance values
beforethey are used in further computations. Then the variance path itself can become negative, but before square-
root computations (and maybe other computations as well) are performed with these negative values, projection or
reflection is used.

The Euler FT scheme is based on this last method, using projection: the variance process is allowed to become
negative, at which point the scheme becomes deterministic with a mean-reverting drift ofκθ. As a result, for negative
variance values, the scheme reduces to a mean reverting scheme. The algorithm is as follows:

V̂(t +∆) = V̂(t)+κ
(
θ−V̂(t)+

)
∆+ ε

√
V̂(t)+

√
∆ZV ,

X̂(t +∆) = X̂(t)+
(

r(t)− 1
2

V̂(t)+
)

∆+

√
V̂(t)+

√
∆ZX,

whereV̂(t) andX̂(t) are the discrete estimates ofV(t) andX(t) respectively, andx+ := max(0,x).

The scheme is intuitive and very fast per time step. However,since the variance during[t, t + ∆] is estimated by
the constant̂V(t), this estimation contains bias which increases in the time step size. Therefore, the accuracy of the
method decreases in∆, which is a well-known feature of the Euler Forward scheme. This means that we need a small
time step to obtain sufficient accuracy. This bias increaseswhenever projection is applied more frequently, which is
why this problem is significant when the Feller condition is violated or close to violation. In this case, the time step
size must be so small that the scheme is often too slow.
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3.1.2 Transformed Volatility scheme (TV)

In [Zhu, 2008], the author tries to prevent the negative variance in a different way: the idea of the TV scheme is to
discretize the volatility dynamics instead of the variancedynamics. It thereby avoids the computation of the square-
root of the process. To be precise, Zhu defines the volatilityprocessυ(t) so thatV(t) = υ2(t) and applies It̂o’s lemma
with f (V(t), t) :=

√
V(t) on formula (3.1), to obtain

dυ(t) := d
√

V(t) =
1
2

κ
[(

θ− ε2

4κ

)
υ−1(t)−υ(t)

]
dt+

1
2

εdWV(t),

= κυ[θυ(t)−υ(t)]dt+ ευdWV(t). (3.5)

Note that the volatility process can become negative, but this does not cause any unnatural behavior of the stock
process:

dX(t) =
(

r(t)− 1
2

V(t)
)

dt+υ(t)dWX(t).

One can see that a change of sign of the volatility,υ(t), does not change the distribution ofX(t), by symmetry ofWX(t).

Unfortunately, the application of Itô’s lemma is not allowed here, since the derivatives

d f
dυ

(υ) =
1

2
√

υ
and

d2 f
dυ2 (υ) =− 1

4υ
√

υ

are obviously not continuous inυ = 0. This means that the obtained model is not equivalent to theoriginal Heston
model. To illustrate this further, note that in [Heston, 1993], the mean-reverting square-root model (2.1) is derived
from the Ornstein-Uhlenbeck processdυ(t) =−κ

2υ(t)dt+ ε
2dWV(t), by Itô’s lemma withg(υ(t), t) = υ2(t). However,

process (3.5) is not this Ornstein-Uhlenbeck process again, sinceθυ is stochastic.

Furthermore, the mean-reverting function of the first term disappears wheneverθ < ε2

4κ . Then, the term will drive the
volatility towards negative infinity wheneverυ(t)> 0, and towards positive infinity wheneverυ(t)< 0. Zhu proposes
two techniques to mute these oscillations, one with a predictor-corrector method, and one by moment matching. The
scheme algorithm is as follows:

X̂(t +∆) = X̂(t)+
(

r(t)− 1
2

υ̂2(t)
)

∆+ υ̂(t)
√

∆ZX,

υ̂(t +∆) = υ̂(t)+
1
2

κ[θυ(t)− υ̂(t)]∆+
1
2

ε
√

∆Zυ,

whereυ̂(t) is the discretization estimate ofυ(t).

In [Zhu, 2008], it is proposed to use this model instead of the square-rootprocess, since then potential negative
volatilities do not cause any problems. However, ifθ < ε2

4κ (which is actually stronger than the violation of the Feller
condition), the variance process is indeed not reverting toits mean anymore. The two proposed fixes do not solve this
problem sufficiently for certain (in practice not uncommon)parameter sets. In all other cases, the TV scheme seems
to be approximately as fast and accurate as the Euler FT scheme.

3.2 (Almost) exact schemes

A scheme that is based on sampling from the exact conditionaldistribution ofV(t +∆) is called an exact scheme.
Since samples are exact, time steps do not have to be small to obtain sufficient accuracy. As we will show in the
next subsection, it appears that the exact scheme for the variance path is computationally very expensive. Therefore,
“almost exact” schemes have been proposed, which are, each in their own way, approximations of the exact scheme.
For most schemes, a refinement of the time discretization will reduce the error of these approximations. However, an
almost exact scheme will only be of use if it has the same or improved accuracy compared to the Euler FT scheme
with respect to CPU time.
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3.2.1 Exact simulation (ES)

In the well-known article [Broadie & Kaya, 2006], the authors introduced an alternative sampling scheme for the
Heston model. The method of [Broadie & Kaya, 2006] is computationally expensive, which is why it will not be
a serious candidate for the multi-dimensional Heston model. However, since it influenced several other methods
developed afterwards, we will discuss it here briefly. The scheme algorithm is as follows:

1. Firstly,V(t +∆) givenV(t) is sampled from a noncentral chi-square distribution, (seeResult1 of Chapter2).
The following representation for this distribution is used:

χ′2(d,λ) d
=

{ (
Z+

√
λ
)2

+χ2
d−1 for d > 1,

χ2
d+2Y1

for d > 0.

with Z ∼ N (0,1),χ′2(d,λ) the noncentral chi-square distribution withd degrees of freedom and noncentrality
parameterλ; χ2

d+2N is the ordinary chi-square distribution withd degrees of freedom andY1 is Poisson dis-
tributed with mean1

2λ. In both cases, we have to sample from the ordinary chi-square distribution, which is a
special case of the gamma distribution:χ2

k ∼ Γ(k/2,2). We can efficiently sample fromΓ(k/2,2) by use of the
following acceptance-rejection method:

(a) We sample an exponentially distributed random variable, Y2 ∼ Exp(k−1), by settingY2 = −k ln(1−U1),
with U1 ∼U(0,1). We sample a uniform random variable,U2, independent ofY2.

(b) We definefΓ(x,k/2,2) as the probability density function of a gamma random variable with shapek/2 and
scale 2, andgY2(t) the probability density function ofY2. Then if

U2 ≤
fΓ(Y2,k/2,2)

gY2(Y2)
,

we setY3 =Y2, andY3 ∼ Γ(k/2,2). Otherwise, we return to step (a).

2. Then,
∫ t+∆

t V(s)ds is sampled conditioned on starting pointV(t) and endpointV(t+∆). Its cumulative distribu-
tion function is recovered by a Fourier inversion method of the characteristic functionφ(u) of

∫ t+∆
t V(s)ds:

F(x) := P

(∫ t+∆

t
V(s)ds≤ x

)
=

2
π

∫ ∞

0

sin(ux)
u

ℜ(φ(u))du

≈ hx
π

+
2
π

M

∑
j=1

sin(h jx)
j

ℜ(φ(h j)), (3.6)

where the Trapezoidal rule is used with step sizeh andM is chosen large. A numerical inversion of the CDF
allows to sample

∫ t+∆
t V(s)dsby F−1(U), with U a uniform random number in[0,1].

3. Via (2.9), X(t+∆) is sampled givenV(t),V(t+∆) and
∫ t+∆

t V(s)ds, using the knowledge that
∫ t+∆

t

√
V(s)dW(s)

is normally distributed with mean zero and variance
∫ t+∆

t V(s)ds.

4. We setS(t +∆) = eX(t+∆).

The simulation is exact except that the truncation of the sumand the numerical inversion of the CDF in (3.6) will
introduce some bias. By choosingM large enough and the discretization steph small enough, we can achieve any de-
sirable accuracy of the numerical inversion, and thus this bias can be as small as we desire. However, the characteristic
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function contains two modified Bessel functions of the first kind:

φ(x) =
γ(x)e−0.5∆(γ(x)−κ)(1−e−∆κ)

κ(1−e−∆γ(x))

×exp

[
V(t)+V(t +∆)

ε2

(
κ(1+e−∆κ)

1−e−κ∆ − γ(x)(1+e−∆γ(x))

1−e−∆γ(x)

)]

×
I0.5d−1

[√
V(t)V(t +∆)4γ(x)e−0.5∆γ(x)

ε2(1−e−∆γ(x))

]

I0.5d−1

[√
V(t)V(t +∆)4κe−0.5∆γ(x)

ε2(1−e−∆κ)

] ,

with γ(x) =
√

κ2−2ε2ix,d = 4κθ
ε2 andIv(x) is the modified Bessel function of the first kind. The method becomes very

time consuming because of the computation of 2M of these Bessel functions each step.
Furthermore, the acceptance-rejection method has the disadvantage that the number of samples depend on the specific
Heston parameter set, which influences the quasi randomnessof the random number generator. The methods to follow
in subsequent sections will address some of these problems by adapting the method in [Broadie & Kaya, 2006] in
some way.

3.2.2 Quadratic Exponential scheme (QE)

Recall from Result1 in Section2.1that

n(t,∆)x
e−κ∆ V(t +∆)∼ χ′2(d,n(t,∆)V(t)).

It was observed in [Andersen, 2007] that a noncentral chi-square random variableX ∼ χ′2(d,λ) approaches a normal
distribution asλ approaches infinity. Therefore, Andersen proposed to estimate the next step variance by a function
of a normal random variable. The moments can be matched usingResult2. Observe that a normal random variable
can attain negative values, whereasV(t +∆) can not. Therefore, Andersen proposed to either truncate orsquare the
normal random variable. The former scheme, the Truncated Gaussian scheme (TG), is slightly outperformed by the
latter scheme, the Quadratic Exponential scheme (QE). We will only discuss the QE scheme for this reason. In this
scheme,V(t +∆), with a moderate or high noncentrality parameter, is estimated by:

V̂(t +∆) = a(b+ZV)
2, (3.7)

with ZV a standard normal random variable. Forλ ↓ 0 however, this approximation becomes inaccurate, but then
χ′2(d,λ) approaches acentralchi-square distribution,χ2(d). The corresponding probability density function reads

f (x) =
e−y/2yd/2−1

2d/2Γ(d/2)
.

with d = 4κθ
ε2 degrees of freedom. Based on the arguments given at the end ofSection3.2.1, Andersen proposed to

approximate this distribution too. One can see from the PDF that when the Feller condition is violated, thend is small,
so then the density ofV(t+∆) will be relatively large around 0. This insight gives rise toan approximation of the PDF
by a distribution with some point mass at the origin, supplemented with an exponential tail:

Ψ(x, p,β) = P(V̂(t +∆)≤ x) = p+(1− p)(1−e−βx).

Its inverse,Ψ−1(x, p,β) exists in explicit form. Therefore, can sample exactly fromthis distribution and set our new
value for the variance

V̂(t +∆) = Ψ−1(UV , p,β) =





0 for 0≤UV ≤ p,

β−1 ln

(
1−p

1−UV

)
for p<UV ≤ 1,

(3.8)

with UV a uniform random variable. Constantsa andb from (3.7) andp andβ from (3.8) are determined by matching
the moments of this distribution with those of the true conditional distribution ofV(t +∆). The scheme algorithm is
as follows:
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1. To find a rule to switch between the two estimates forV(t +∆), we first define

ψ =
Var[V(t +∆)|V(t) = V̂(t)]

E[V(t +∆)|V(t) = V̂(t)]2
.

For the simulation of̂V(t+∆), we use (3.7) whenψ ≤ ψc, with ψc ∈ [1,2] the critical value. Wheneverψ > ψc,
we use (3.8). Andersen claims that the precise choice ofψc does not matter for the accuracy of the scheme, and
choosesψc = 1.5.

2. Then
∫ t+∆

t V(s)ds is estimated using
∫ t+∆

t V(s)ds≈ ∆[γ1V(t)+ γ2V(t +∆)], with, for example,γ1 = γ2 =
1
2, or

by matching moments.

3. Finally,X̂(t +∆) is generated using (2.9), just as in the exact scheme as described in Section3.2.1.

The QE method performs very fast, since it uses just few more computations per time step than the Euler FT scheme.
Its accuracy is superior to that of the other schemes, especially when the Feller condition is violated. This is due to the
fact that the method is based on the exact distribution of thenext step variance, and not on its Taylor expansion.

3.2.3 Noncentral Chi-square Inversion scheme (NCI)

Let us recall from Section3.2.1, that a noncentral chi-square distributionχ′2(d,λ) can be represented by a central chi-
square distributionχd+2Y1 with stochastic degrees of freedom:Y1 is Poisson distributed with mean12λ. Applying this
to the conditional sampling method ofV(t +∆), implies drawing a Poisson number and an inversion of the ordinary
chi-square CDF. While the exact simulation in [Broadie & Kaya, 2006] uses an acceptance-rejection test (see Section
3.2.1) instead of the CDF inversion, in [van Haastrecht & Pelsser, 2008], it is claimed that this method is too slow.
However, inverting the ordinary chi-square CDF each step and each path is numerically expensive. Therefore, the
authors of [van Haastrecht & Pelsser, 2008] proposes to use an interpolation on some cached values. Thescheme
algorithm is as follows:

1. Based on the Poisson mean1
2λ, a integer gridM := {0, . . . ,M j , . . . ,Mmax} is chosen as well as a gridUM j :=

{0, . . . ,1−δ}, with δ some small number.M andUM j contain the Poisson values and the discretized domain of
the inverse, respectively, on which we will cache the inverse of the corresponding conditional chi-square CDF’s:

H−1
M j

(Ui) := G−1
χ2

d+2M j

(Ui), ∀ M j ∈M ∀ Ui ∈ UM j ,

with G−1
χ2

d+2M j

(x) the inverse of the chi-square CDF withd+2M j degrees of freedom. Note that we chose 1−δ

instead of 1 as the final grid point ofUM j to omit the infinite valueG−1
χ2

d+2M j

(1) for all M j .

2. We draw a Poisson distributed random variable,mj
1. Now we can sampleV

(
t +∆|V(t)

)
by drawing a uniform

random numberUV and by computing

V(t +∆) =

{
e−κ∆J(UV)/n(t,∆) for mj ≤ Mmax,

e−κ∆F−1
d+2M j

/n(t,∆) for mj > Mmax,
(3.9)

with n(t,∆) as in Proposition1, J(·) an interpolation rule onH−1
M j

, andF−1
d+2M j

the direct numerical inversion of
the ordinary chi-square CDF. The authors of [van Haastrecht & Pelsser, 2008] propose to use a monotone cubic
Hermite spline interpolation forJ(·).

3.
∫ t+∆

t V(s) dsandX(t +∆) are generated just as in the QE scheme.

1In [Ahrens & Dieter, 1982] for example, an efficient method is decribed
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The idea is to chooseM in such a way that the caching does not cost too much computational effort, while the inter-
polation in (3.9) must be used often enough to speed up the original method of direct inversion. Furthermore,UM j

must be chosen so that the interpolation is accurate enough.For example, both grids could be made non-equidistant to
improve the accuracy.

In case the Feller condition is violated, the NCI scheme performs well. In [van Haastrecht & Pelsser, 2008], it
is claimed thatE[N] = 1

2λ ≪ 10 in all practical model configurations, which would make the Poisson generator
computationally efficient. However, in case of more “Black Scholes type” parameter settings (id est, whenε is small
with respect toκθ), E[λ] can be become much larger than 10. Since the Poisson random number generator employs
an acceptance-rejection method, each natural number will be rejected until the first acceptance, which will slow down
the scheme for highλ. In this case, we should switch from the NCI scheme to anothermethod, for example QE, as
proposed in [van Haastrecht & Pelsser, 2008]. Anyhow, the NCI scheme can not be a generic method for the Heston
model by this argument.

3.2.4 Gamma Expansion scheme (GE)

While in [Andersen, 2007] and [van Haastrecht & Pelsser, 2008], the aim is to speed up the generation ofV(t+∆), the
authors of [Glasserman & Kim, 2008] sample

∫ t+∆
t V(s)ds (givenV(t) andV(t +∆)) more efficiently than is done in

the exact scheme. The article proposes an approximation of its distribution that should be accurate enough compared
to the ones in the QE scheme or the NCI scheme. This approximation is based on the following proposition, proved in
the article.

Proposition 1.
(∫ t+∆

t
V(s)ds|V(t) = vt ,Vt+∆ = vt+∆

)
d
= X1+X2+

η

∑
j=1

Z j , (3.10)

in which X1,X2,η,Z1, Z2, . . . are mutually independent random variables. The following representations hold:

X1
d
=

∞

∑
n=1

1
γn

Nn

∑
j=1

Expj(1), X2
d
=

∞

∑
n=1

1
γn

Γn(d/2,1), Z j
d
=

∞

∑
n=1

1
γn

Nn

∑
j=1

Γn(2,1), ∀ j = 1,2, . . . , (3.11)

where

d = 4κθ/ε2, λn =
16π2n2

ε2t(κ2t2+4π2n2)
, γn =

κ2t2+4π2n2

2ε2t2 ,

the Yn are independent Poisson random variables with respective means(v(t)+ v(t +∆))λn, the Expj(1) are inde-
pendent exponential random variables with mean 1, and theΓn(α,β) are independent gamma random variables with
shape parameterα and scale parameterβ. η is a Bessel random variable, which has probability mass function

P(η = n) =
(z/2)2n+ν

Iv(z)n!Γ(n+ν+1)
, n≥ 0,

with parametersν = d/2−1, Iv(z) a modified Bessel function of the first kind and

z=
2κ/ε2

sinh(κt/2)
√

vtvt+∆.

For the precise scheme algorithm, see [Glasserman & Kim, 2008]. The idea of the sampling method of the integral in
(3.10) is to truncate the infinite sums in (3.11) and match the moments of the truncation error estimate.

Just as the NCI scheme, this method performs well for the extreme cases that are treated in the article. That is, in
case the Feller condition is violated. However, again forε ↓ 0, the computational speed decreases enormously, this
time because the computation of the Bessel function values is consuming since its parameterz has become large. We
conclude that just as the NCI scheme, the GE scheme cannot become a generic scheme for the Heston model.

18



3.3 Comparison of different schemes

We implemented the 5 schemes described in the above subsections in MatLab 2007b. To show that the schemes can
perform well in at least one particular case, the European call option price estimates of these schemes are shown in
Figure3.1.
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Figure 3.1: European call price estimates, obtained using different schemes

The estimates were all obtained by performing a Monte Carlo run, where we used 10.000 paths,∆ = 1 and the
following parameter set:

Parameter S(0) r(t) κ θ =V(0) ε ρ
Value 100 0 0.5 0.04 0.1 -0.1

Table 3.1: Parameter values of the underlying of the European call option

The maturity of the option is taken to be 1 year.

Remark. Note that from the parameter set in Figure3.1, the NCI option price differs significantly from the analytic
price: we found that the scheme is biased because we use an equidistant grid. For small realizations of V(t +∆), the
interpolation grid ofUNj should be refined near zero to obtain sufficient accuracy. TheNCI scheme did perform quite
well for other parameter sets. However, since NCI will not beour candidate scheme for the multi-dimensional case,
we did not implement this improvement.

We tested the performance of the schemes for cases for which the Feller condition was satisfied and for which it was
violated. The accuracy and CPU time of the pricing of a European call option was measured for all schemes. The
reference price is the semi-analytic price obtained by the Carr-Madan method (see [Carr & Madan, 1999]). The results
are displayed (qualitatively) in Table3.2.

FT TV QE NCI GE
European call price accuracy (Feller satisfied)+ + + - -
European call price accuracy (Feller violated) - - + + +
CPU time + + + - -
Easily applicable for multi-D + + ? ? -

Table 3.2: Qualitative comparison of the considered Monte Carlo methods.
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There is a significant difference in accuracy for situationsin which the Feller condition is and in which it is not satisfied.
Therefore, we tested the schemes for at least the following two cases: one with small volatility of volatility (ε = 0.1),
and one with high volatility of volatility (ε= 1). In both cases,S(0) = 100,κ = 0.5,θ=V(0) = 0.04,T = 10,∆= 1/16
and the number of paths is 10.000.

The Euler FT scheme is inaccurate when the Feller condition is violated. The TV scheme tends to blow up the variance
process whenever 4κθ < ε2. This is a serious drawback of the TV scheme. On the other hand, NCI and GE do not
perform very well whenε is too small with respect toκθ, since then the schemes slow down so much that a memory
limit breaks down the scheme.
One generic method would be preferable over switching between more than one method. In the latter case namely,
the option value, as a function ofε, may show a discontinuity at the value ofε where the scheme switches from one
method to another. This discontinuity is unrealistic and therefore undesirable. The QE scheme has the advantage of
being robust in this sense.

In terms of CPU time, Euler FT, TV and QE always perform well because of their relative low computational effort
per time step. NCI and GE are often reasonably fast, but againif ε is small with respect toκθ, the computation can
become very slow.

One other comparison should be made: for a multi-dimensional extension (i.e., vector-valued SDEs), all processes
should be correlated correctly. For Euler FT and TV, this canof course be done by the use of a Cholesky decomposi-
tion. The same cannot be done in case the variance scheme is handled in the QE, NCI or GE schemes, since then not
all random variables are normally distributed.
Instead, one could use the normal copula to correlate these random variables, but this method is non-exact. The result-
ing correlation differs from the imposed correlation. Thisdifference is known to be small, which is why the problem
may be surmountable. Therefore, QE and NCI have been given a question mark for this feature. GE has got a minus,
since its use of many random variables implies the need of a extensive research of how to correlate the variance pro-
cesses appropriately.

We could also have distinguished biases, which formally denote the difference between the expectation of an estimator
and the parameter which is estimated. Loosely speaking, this means that a scheme contains no bias when any estima-
tion error can be reduced by an increase of the number of paths.
Each method contains bias in some sense: even the numerical estimate of the exact representation in [Broadie & Kaya,
2006] (see Section3.2.1) has an expectation differing from the correct value, due tothe truncation and trapezoidal rule
in (3.6).
Euler FT is of course subject to bias whenever variance pathscontain negative values. TV has bias since the model
which it is based on, does not correspond to the Heston model.The QE scheme approximates the variance distribution
and the integral over the variance path, NCI interpolates and GE truncates infinite sums. It is hard to extract some
performance measure from these different biases, which is why we do not take this issue into account.

Mainly based on the robustness in accuracy and speed, we choose QE as the candidate scheme for our multi-stock
Heston Monte Carlo method.
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Chapter 4

The MQE Monte Carlo method

ConsiderD stocks, each following the Heston dynamics as defined in Expressions (2.1) and (2.2). We already pointed
at the problem of the correlations between the processes of aD-dimensional Heston model. In fact, the very difference
between aD-dimensional Heston model andD one-dimensional Heston models lies in the correlation structure of the
model. We can distinguish:

1. ρi , the correlations between the Brownian motions of thei-th stock and variance, just as we had in the one-
dimensional Heston model;

2. ρi j , the correlations between thei-th and j-th stock Brownian motions;

3. ρViVj , the correlations between thei-th and j-th variance Brownian motions;

4. ρSiVj , the correlations between the Brownian motions of thei-th stock and thej-th variance,i 6= j.

When we considerD one-dimensional Heston models, we assume that the latter three correlations are zero. When
constructing a multi-dimensional Heston Monte Carlo method, we assume that at least some of these correlations can
be non-zero. First, we will discuss the significance of thesedifferent correlations.

4.1 Assumptions

Just as in the case of one stock, correlations between a stockand its variance,ρi , are also significant in case of multiple
stocks. We explained in Section2.2 how we can ensure that the correlation estimate of our Monte Carlo paths will
not structurally differ from the imposed correlation. We have to rewrite the stock dynamics so that the input Brownian
motion is independent of the other random variables. When we use the QE method in particular, we can illustrate this
as follows. Instead of writing

Xi(t +∆) = Xi(t)+
∫ t+∆

t

(
r(s)− 1

2
Vi(s)

)
ds+

∫ t+∆

t

√
Vi(s)dWXi (s), (4.1)

with dWXi (t)dWVi (t) = ρidt, we could equally write

Xi(t +∆) = Xi(t)+
∫ t+∆

t
r(s)ds+

ρi

εi

(
Vi(t +∆)−Vi(t)−κiθi∆

)

+
(κiρi

εi
− 1

2

)∫ t+∆

t
Vi(s)ds+

√
1−ρ2

i

∫ t+∆

t

√
Vi(s)dWi(s), (4.2)

with Wi(t) an independent Brownian motion. Therefore, both expressions (4.1) and (4.2) can be discretized to sample
the next step stock value. However, suppose we would use the QE method and discretize (4.1), thus obtaining
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Xi(t +∆) = Xi(t)+

(
r(t)− 1

2
Vi(t)

)
∆+

√
Vi(t)

√
∆ZXi .

Then we would correlate the standard normal random variablesZXi andZVi by settingZXi = ρiZVi +
√

1−ρ2
i Zi , with Zi

a standard normal random variable, which is independent ofZVi . However, since we apply a non-linear transformation
with ZVi in the QE method (by settinĝVi(t +∆) = a(b+ZVi )

2, for example), the resulting correlation will differ from
the imposed correlation.

This phenomena has been namedleaking correlation, and it is avoided in [Broadie & Kaya, 2006] by discretizing rep-
resentation (4.2), which has independent random variables as input. We will show how we can extend this procedure
to the multi-dimensional case in the next section.

Correlations between stocks can certainly not be neglected, for the obvious reason that different markets influence each
other. Consider a foreign exchange option for example: one exchange rate will influence another exchange rate. If one
specific part of the market goes up or down, one often observesthat another particular stock follows this movement
to some extend, or shows the opposite behavior. Let us discuss how to implement the stock-stock correlation in our
multi-dimensional Monte Carlo method. One can see in (4.2) that whenXi(t),Vi(t), Vi(t +∆) and

∫ t+∆
t Vi(s)ds are

given, the next log-stock valueXi(t +∆) is normally distributed: the first four terms on the right-hand side are then
known, while the remaining term is a constant times an Itô integral with a deterministic integrand. This term has thus a
normal distribution. To correlate these normal random variables appropriately, we can use a Cholesky decomposition
of ΣX, the correlation matrix of the stock Brownian motions. We will discuss this idea in detail in the next section.

Correlations between variances may also be significant: when a basket of stocks becomes more volatile on average,
some traders may react by trading other stocks as well, whichin turn will increase their volatility. The implementation
of correlated variance processes in our Monte Carlo method will not be straightforward. With the QE method, the cor-
responding random variables are not normally distributed.Therefore, an approach based on a Cholesky decomposition
will not impose the desired correlation exactly. Nevertheless, a well-known procedure to correlate random variables
which are not normally distributed, is the NorTA method, which employs the normal copula:

1. Generate a standard normal random vectorZ ∈ RD.

2. Perform a Cholesky decomposition onΣV = LLT , the correlation matrix of the variance Brownian motions. Set
Z̄ = LZ, thenZ̄ is aD-dimensional standard normal vector with a correlation structure defined byΣV .

3. TransformZ̄ to X, a random vector with the desired marginal distributions, by computing element-wiseXi :=
F−1

i (Φ(Z̄i)) for i = 1, . . . ,D, with Φ(x) the standard normal cumulative distribution function andFi the cumula-
tive distribution function of thei-th desired marginal distribution.

See [Ghosh & Henderson, 2003] or [Chen, 2001], for example. The correlation betweenXi andXj will differ from
the correlation between̄Zi andZ̄ j . The difference is expected to be small, though we do not knowits exact size. We
could use the normal copula method and investigate this difference. In the MQE scheme however, we set the variance-
variance correlations equal to zero. In this way, our investigation of the performance of the MQE scheme will not be
influenced by an error that this NorTA method would induce.

Finally, we assume that correlations between stocks and other variances will be zero as well.

4.2 Construction of the MQE scheme

By extending the one-dimensional QE method in [Andersen, 2007] to theD-dimensional case, we aim at a sampling
scheme in which we go through 3 stages each time step and path:
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1. Firstly, we sample the next step of each variance process independently, starting withV1(t +∆), followed by
V2(t +∆), and so on.

2. Secondly, we estimate all variance path integrals duringthis time step,∫ t+∆
t Vi(s)ds, i = 1, . . . ,D.

3. Third of all, we sample the next step of each stock process,properly correlated with its corresponding variance
process as well as with all other stock processes. FirstS1(t +∆), thenS2(t +∆), and so on.

The order of these stages will be of crucial importance in ourreasoning.

4.2.1 Set up of the MQE scheme

For i = 1, . . . ,D, the dynamics of thei-th stock are given by

dVi(t) = κi
(
θi −Vi(t)

)
dt+ εi

√
Vi(t)dWVi (t), (4.3)

dXi(t) =
(

r(t)− 1
2

Vi(t)
)

dt+
√

Vi(t)dWXi (t), (4.4)

andΣ ∈ R2D×2D is the correlation matrix of the 2D-dimensional Brownian motions vector



dWV1(t)
...
dWVD(t)
dWX1(t)
...
dWXD(t)




.

The mentioned correlation assumptions imply thatΣ will be of the form

Σ =

(
ID ΣXV

Σ⊤
XV ΣX

)
, (4.5)

with ID the D×D-identity matrix,ΣX the D×D-correlation matrix of the stocks, andΣXV a diagonal matrix of the
same size, given by

ΣXV =




ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
.. . 0

0 0 0 ρD


 .

A Cholesky decompositionΣ = LL⊤ can be used to correlate independent Brownian motions appropriately:




dWV1(t)
...
dWVD(t)
dWX1(t)
...
dWXD(t)




d
= LdW̃(t) = L




dW̃1(t)
...
dW̃2D(t)


 , (4.6)

with dW̃(t) a vector of independent Brownian motion increments.L is a 2D×2D lower triangular matrix. We will
now state a proposition about the structure ofL.
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Proposition 2. Let us assume a correlation structure as stated at the start of this section. Consider a Cholesky
decomposition LL⊤ of the corresponding correlation matrixΣ from (4.5). Then L is a2D× 2D lower triangular
matrix which can be written as the following block matrix:

L =

(
ID OD

ΣXV L∗

)
, (4.7)

with OD the D×D zero matrix and L∗ a D×D lower triangular matrix.

Proof. In Appendix A, we have proved that for a correlation matrix, there is a lower triangular matrixL so that
Σ = LL⊤. We write out the equationΣ = LL⊤ in an element-wise fashion, thus obtaining the following formulas1 for
the elements ofL :

L j, j =

√√√√Σ j, j −
j−1

∑
k=1

L2
j,k, Li, j =

1
L j, j

(
Σi, j −

j−1

∑
k=1

Li,kL j,k

)
, for i > j, j = 1, . . . ,2D.

The elements of the two upper submatrices in (4.7) follow immediately from these two formulas. For the elements of
the lower left submatrix ofL, we can simplify the second formula above to

LD+i, j =
1

L j, j

(
ΣD+i, j −

j−1

∑
k=1

LD+i,kL j,k

)
, for D+ i > j, j = 1, . . . ,D. (4.8)

Since the upper left submatrix ofL is ID, it follows that L j, j = 1 andL j,k = 0 for j = 1, . . . ,D,k = 1, . . . , j − 1.
Substitution in (4.8) yields thatLD+i, j = ΣD+i, j for i = D+1, . . . ,2D, j = 1, . . . ,D, which is what we had to show for
the lower left submatrix. The lower right submatrix is lowertriangular sinceL is lower triangular, which was the only
constraint that we claimed for this submatrix.

The elements ofL depend on the correlations only. For example, ifD = 2, then

Σ =




1 0 ρ1 0
0 1 0 ρ2

ρ1 0 1 ρ12

0 ρ2 ρ12 1


 , L =




1 0 0 0
0 1 0 0

ρ1 0
√

1−ρ2
1 0

0 ρ2
ρ12√
1−ρ2

1

√(
1−ρ2

1

)(
1−ρ2

2

)
−ρ2

12

1−ρ2
1



.

4.2.2 Simulation of the next time step

The first stage of the MQE scheme is the sampling of the next step variance,Vi(t+∆). Note that the upper-left identity
submatrix ofL in (4.7) confirms the fact that the variance processes can be simulated independently. In the MQE
scheme, we use the QE methodD times every step with independent random variables as input.

The second stage of the MQE scheme is the simulation of the variance path integral∫ t+∆
t Vi(s)ds. Since an exact

simulation is computationally expensive (see [Broadie & Kaya, 2006]). In [Glasserman & Kim, 2008], the author
proposes an almost exact method to sample this quantity. As described in Section3.2.4, this method is not robust.
Instead, we will use the intuitive (central discretization) approximation in [Andersen, 2007]:

∫ t+∆
t V̂i(s)ds≈ ∆[γ1V̂i(t)+ γ2Vi(t +∆)], (4.9)

with γ1 = γ2 =
1
2.

1These formulas are also known from the Cholesky-Banachiewicz algorithm, which is another algorithm to perform a Choleskydecomposition
than the one we describe in AppendixA.
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In the final stage, we focus on the simulation of the next step of the stocks. We would like to sampleX1(t +∆) first,
thenX2(t +∆), and so on,with the independent Brownian motion vector dW̃(t) as input. Therefore, we first substitute
(4.7) in (4.6), to obtain




dWV1(t)
...

dWVD(t)


 d

=




dW̃1(t)
...

dW̃D(t)


 , (4.10)




dWX1(t)
...

dWXD(t)


 d

= ΣXV




dW̃1(t)
...

dW̃D(t)


+L∗




dW̃D+1(t)
...

dW̃2D(t)


 . (4.11)

One can see from (4.10) that the Cholesky decomposition assures that the varianceprocesses are driven by independent
Brownian motions. We write out thei-th row of (4.11), obtaining

dWXi (t)
d
= ρidW̃i(t)+

i

∑
j=1

L∗
i, jdW̃D+ j(t),

where we used the facts thatΣXV is a diagonal matrix andL∗ a lower triangular matrix. Substitution in (4.4), yields

dXi(t) =
(

r(t)− 1
2

Vi(t)
)

dt+
√

Vi(t)ρidW̃i(t)+
i

∑
j=1

√
Vi(t)L

∗
i, jdW̃D+ j(t).

The integrated form reads

Xi(t +∆) = Xi(t)+

t+∆∫

t

r(s)− 1
2

Vi(s)ds+ρi

t+∆∫

t

√
Vi(t)dW̃i(t)+

i

∑
j=1

L∗
i j

t+∆∫

t

√
Vi(s)dW̃D+ j(s). (4.12)

Note that we would like to sampleXi(t +∆) after the realization ofV i := {Vi(t),Vi(t +∆),∫ t+∆
t Vi(s)ds}, which is done

in the first two stages of the MQE scheme. Therefore, to samplethe left-hand side of (4.12) exactly givenV i , one has
to sample the It̂o integrals on the right-hand side exactly givenV i . We can distinguish two types of Itô integrals: those
with the Brownian motion of a variance process and those withthe Brownian motion of a stock process. Let us name
themvariance It̂o integralsandstock It̂o integrals, respectively.

Variance It ô integrals
After having simulated the next step variance with the QE method, the Brownian motion of the variance process has
not been sampled explicitly, but the substitute input random variable of the QE methodhas. Therefore, we learned
from the one-dimensional case in [Andersen, 2007], not to sample this Brownian motion directly in this stage,since
then correlation may leak. We also learned (see formula (2.7)) that by integrating the variance process, we obtain an
exact expression for each variance Itô integral:

∫ t+∆

t

√
Vi(s)dW̃i(s) =

∫ t+∆

t

√
Vi(s)dWVi (s)

= ε−1
i

(
Vi(t +∆)−Vi(t)−κiθi∆+κi

∫ t+∆

t
Vi(s)ds

)
∀ i = 1, . . . ,D, (4.13)

where the first equality holds since all variance processes are independent. In this way, we can compute the exact value
of the variance It̂o integrals givenV1, . . . ,VD.

Stock Itô integrals
All other Itô integrals on the right-hand side of (4.12) are stock It̂o integrals, and they are all contained under the
summation term. In the one-dimensional case, only the final term under this summation in (4.12) is present, which
is an independent normal random variable. However, when propagating more than one stock, we consider groups of
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different stock It̂o integrals with identical Brownian motions. To simulate one group of these stock Itô integrals, we
must use the same normal random variable sample for each integral, and multiply it by different constants which are
chosen so that the variances correspond with those of these different stock It̂o integrals. Formally, givenV i ,

∫ t+∆

t

√
Vi(s)dW̃D+ j(s)

d
= Z j

√∫ t+∆

t
Vi(s)ds, ∀ i, j = 1, . . . ,D, (4.14)

with Z =
(

Z1 . . . ZD
)⊤

an independent standard normal random vector. By sampling this random vector exactly,
we can sample all stock Itô integrals , givenV1, . . . ,VD, exactly.

Matrix-vector form
Numerical implementation is efficient in vector form. To endup with this form, suppose thatV1, . . . ,VD are sampled,
and let us define, fori = 1, . . . ,D, j = 1, . . . ,D,

Ii, j :=
∫ t+∆

t
Vi(s)dW̃j(s),

si :=

√∫ t+∆

t
Vi(s)ds,

fi := ε−1
i

(
Vi(t +∆)−Vi(t)−κiθi∆+κi

∫ t+∆

t
Vi(s)ds

)
,

Z j ∼ N (0,1).

For all i, givenV i , si represents the standard deviation of the Itô integralIi, j . Then Expressions (4.13) and (4.14) can,
respectively, be written as

Ii,i = fi for i = 1, . . . ,D,

Ii,D+ j = siZ j for i, j = 1, . . . ,D.

After substituting this in (4.12), the last two terms of the right-hand side in (4.12) read

ρi Ii,i +
i

∑
j=1

L∗
i j Ii,D+ j = ρi fi +

i

∑
j=1

L∗
i j siZ j ∀ i = 1, . . . ,D.

Therefore, (4.12) can be written, in vector notation, as

X(t +∆) = X(t)+
∫ t+∆

t
r(s)− 1

2
V(s)ds+ρ⊤f +DsL

∗Z, (4.15)

with

X(t) =




X1(t)
...

XD(t)


 ,V(t) =




V1(t)
...

VD(t)


 ,ρ =




ρ1
...

ρD


 , f =




f1
...
fD


 ,Z =




Z1
...

ZD


 ,

and

Ds =




s1 0 . . . 0
0 s2 . . . 0
...

...
.. . 0

0 0 0 sD


 .

If V1, . . . ,VD andX(t) are given, then the first three terms on the right-hand side of(4.15) are known while the fourth
term can be simulated exactly by drawing an independent standard normal random vectorZ. An element-wise imple-
mentation of the third stage of the MQE scheme is then based on(4.12), whereas a vector-wise implementation will
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employ (4.15).

The MQE simulation of the next step variances and the variance path integrals goes completely analogously to the
corresponding simulation schemes of the conventional QE method. The remaining part of the MQE scheme is the
propagation of all stock paths. In this section, we constructed a method to simulate these next steps of the log-stock
values exactly, given

⋃D
i=1V i . We recall that the distribution of the next step log-stock value of stocki is known just

whenV i is given. This explains the importance of the sampling orderthat we claimed at the start of this section.
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Chapter 5

Performance tests for the MQE scheme

Let us recall the approximations on which the MQE scheme is based. Since there are no additional approximations
required in the multi-dimensional extension of the stock propagation, the only approximations are those in the first
two stages. These approximations are all immediately inherited from the QE method, which have shown to perform
satisfactory in [Andersen, 2007]. Furthermore, as is clear from the algorithm, the number ofcomputations is linear
in the model dimension. This means that the CPU time will not grow exponentially as the dimensionality grows.
Based on these arguments, we have confidence that the MQE scheme may perform well. Nevertheless, we will test
our method extensively in this chapter.

5.1 Imposed correlation test

We implement a two-dimensional QE method and check whether the estimated correlations behave as expected. The
estimated correlations obtained by using a two-dimensional Euler FT scheme serve as the reference values. We
consider the following two cases:

Feller Satisfied Feller Violated
Si(0) 100 100
r(t) 0 0
κi 0.5 0.5

θi ,Vi(0) 0.04 0.04
εi 0.01 1

Table 5.1: Parameter settings of both stocksS1 andS2

One can see that the parameter setFeller Violated is the multi-dimensional version of Test Case 1 in [Andersen,
2007]. Parameter setFeller Satisfiedis asFeller Violated, but now the volatility of volatility is set such that the Feller
condition is satisfied. In both cases, we setT = 10 (years), the number of Monte Carlo paths is 10.000,∆QE = 46 days
(2−3 year),∆FT = 6 days (2−6 year) and the correlation matrix is given by

Σ =




1 ρV1V2 ρ1 ρV1S2

ρV1V2 1 ρV2S1 ρ2

ρ1 ρV2S1 1 ρ12

ρV1S2 ρ2 ρ12 1


=




1 0 −0.3 0
0 1 0 −0.6

−0.3 0 1 0.7
0 −0.6 0.7 1


 .

We will use these parameter sets more often in this thesis andrefer to them by the namesFeller SatisfiedandFeller
Violated, respectively.
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5.1.1 Results of imposed correlation test

We estimate the correlation between the SDEs of the two stocks and the two correlations between the stock SDE and
corresponding variance SDE by using numerical schemes. Thecomputation of correlation estimates is based on the
definition of correlation:

corr(Yi ,Yj) :=
Cov(Yi ,Yj)√

Cov(Yi ,Yi)Cov(Yj ,Yj)
, with Cov(Yi ,Yj) = E

[
(Yi −E[Yi ])(Yj −E[Yj ])

]
.

The estimated correlations ofFeller Satisfiedare shown in Figure5.1.
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Figure 5.1: Correlation estimates inFeller Sat-
isfied, using QE and Euler FT
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Figure 5.2: Correlation estimates inFeller Vio-
lated, using QE and Euler FT

As one can see in this figure, all correlation estimates of theMQE and Euler FT scheme are approximately equal,
which is as expected. The same holds forFeller Violatedin Figure5.2, but now corr(dX1(t),dX2(t)) drops from an
initial value of approximatelyρ12 towards zero during the first couple of time steps. Although this may look strange
at first sight, it is expected. To understand this, first note that the corr(dX1(t),dX2(t)) denotes the log-stock return
correlation. Assuming Black-Scholes dynamics, this correlation is equal to the correlation between the corresponding
Brownian motions. Since the variance term in each SDE is stochastic, we have

corr(dX1(t),dX2(t)) = corr((r −σ2
1)dt+σdWX1(t),(r −σ2

2)dt+σ2dWX2(t))

= corr(dWX1(t),dWX2(t))

= E[dWX1(t)dWX2(t)]/dt

= ρ12. (5.1)

In the second equality, we used the fact thatr,σ1,σ2 are deterministic. However, for Heston dynamics, the first equality
does not hold, since then the volatility is stochastic. Therefore under the Heston model, the log-stock return correlation
is theoretically different from the correlation between the two corresponding Brownian motions. InFeller Violated,
the simulated variance path can often reach zero, which drives the log-stock return correlation towards zero, regard-
less of the imposed correlation value on the stock Brownian motions. Instead, when the Feller condition is satisfied,
this stochastic variance cannot be absorbed in the origin, while its mean-reverting property makes it reverting to the
long-term variance. Therefore, the correlation between the SDEs more or less coincides withρ12 in that case. This
explains the difference between the two blue, most upper function graphs in Figure5.1and those in Figure5.2.

Despite the confusion, one might say that this correlation drop is not troublesome as long as the model prices fit market
prices. However, suppose we would like to investigate the sensitivity of an option value to different models. Then to
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compare a multi-asset Heston value fairly with, say, a multi-asset Black-Scholes value, it is hard to make sure that the
log-stock return correlations mutually coincide.

Now one may wonder why the estimated correlations between log-stock return and corresponding variance return do
not decrease in time. The explanation is that the variance SDE containsthe samestochastic variance term as the stock
SDE. Therefore, no matter how close the variance is to zero, both Brownian motionsdWSi (t) anddWVi (t) are scaled by
the same factor. This does not cause any reduction in correlation. In fact, one can check that the correlation estimate
between the two stock processes does not decrease if we takeV1(t) =V2(t).

At last, note that the estimates for corr(dX1(t),dV1(t)) and corr(dX2(t),dV2(t)) vary in time inFeller Violated. One
can explain this fact by the more volatile variance paths inFeller Violated. The variance path exhibits significant jumps
every time step, which increases the standard error of the correlation estimate.

Just like the Euler FT scheme, the MQE scheme shows the expected correlation estimates. Therefore, we conclude
that the MQE scheme has passed this test.

5.2 Option validation: the Feller SatisfiedTest

In a one-dimensional Heston model, one can check the option pricing performance of a Monte Carlo method by com-
paring the results with those obtained by the Carr-Madan method ( [Carr & Madan, 1999]) or the COS method ( [Fang
& Oosterlee, 2008]). A European call or put option can be priced by one of these semi-analytic Fourier methods, and
this price can serve as a reference value for the Monte Carlo result.

With multi-dimensional Heston dynamics however, the characteristic function of the model (which is necessary in any
Fourier method) is not known in general, which makes this procedure inapplicable. As an alternative, we try to obtain
a reference by use of the Euler FT scheme with a very small timestep and a large number of Monte Carlo paths, as we
expect that the bias will be reduced in this way. However, forhigh volatility of volatility parameter (even for very fine
time grids and many paths), the Euler FT variance path will often become negative, as in the one-dimensional case.
This will cause bias, which is why we prefer not to use Euler FTas a reference method when the Feller condition is
not fulfilled.

For our first test, we choose the parameter values ofFeller Satisfied, and use the Euler FT scheme as a reference for
the MQE scheme. The payoff function that we will evaluate, isgiven by

max[S1(T)+S2(T)−K,0], (5.2)

for some strike priceK at maturityT. Results are presented in Figure5.3.
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Figure 5.3: Basket option price:ρ12 = 0.7,Si(0) = 100,κi = 1.5,θi =Vi(0) = 0.04,εi = 0.01,ρi = −0.3 for i = 1,2.
The right-hand figure zooms in on the upper left corner of the left-hand figure.

In both plots of Figure5.3, five MQE option prices are plotted against five Euler FT option prices. One can see from
the left-hand plot that both estimates coincide quite well.The Euler FT prices are slightly lower than the MQE prices.
However, even this small difference may be caused by a bias ofthe Euler FT scheme. The right-hand plot in Figure
5.3shows that the MQE prices are closer to the analytic value of the payoff function atK = 0 (which is 200) than the
Euler FT prices. This may imply that the Euler FT prices have some negative bias, since all estimates are smaller than
200 atK = 0.

We conclude that the MQE scheme has successfully passed an option validation test in caseFeller Satisfied.

5.3 Option validation: the Feller ViolatedTest I

Since we already stated that the Feller condition is often violated in financial practice, we would also like to test the
MQE scheme when the Feller condition is violated. Furthermore, we stated in the previous section that we cannot use
the Euler FT scheme as a reference for the MQE scheme, due to its large bias when the Feller condition is violated.
Therefore, we perform two other tests. The first test will be treated in this section.

Consider a European call option on the sum of several underlyings. The payoff function is then:

max

[
D

∑
i=1

Si(T)−K,0

]
.

Suppose we make the (somewhat trivial) assumption that all stocks are identical. Then the problem becomes one-
dimensional immediately, and we can thus find the semi-analytic price (by use of a Fourier method). In that case, we
can find a reference value for the MQE prices. Of course, no basket option will be of this form in practice, but this
example nevertheless serves as a first test for the MQE schemeunderFeller Violated.

We chooseD = 3,T = 10 years and the following parameter values per stock:

Parameter Si(0) r(t) κi θi ,Vi(0) εi

Value 100 0 0.5 0.04 1

Table 5.2: Parameter values of all stocksS1, S2 andS3
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These values coincide withFeller Violated, but now the correlation structure is different. In order tohave identical
stocks, one has to choose

Σ =




1 1 1 ρ1 ρ1 ρ1

1 1 1 ρ1 ρ1 ρ1

1 1 1 ρ1 ρ1 ρ1

ρ1 ρ1 ρ1 1 1 1
ρ1 ρ1 ρ1 1 1 1
ρ1 ρ1 ρ1 1 1 1



.

One may be confused since a full correlation matrix is not allowed in the MQE method. However, the correlations can
be attained in this case, by using the same Brownian motions for each variance process. We chooseρ1 = −0.6. The
results are shown in Figure5.4.
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Figure 5.4: Basket option price estimates when Feller condition is violated, all three stocks identical. The right-hand
plot zooms in on the left-hand plot.

One can see in the left-hand plot of this figure that forN = 50.000 and∆ = 1/16, the MQE option price practically
coincides with the semi-analytic option price. In fact, thesemi-analytic price is contained in the 95% confidence inter-
val of the price as estimated from the Monte Carlo Paths. Thisshows the absence of an significant error statistically.
Since the confidence interval is relatively small (less than3% of the semi-analytic price for in-the-money option, and
less than 30% of the semi-analytic price for out the money options), we conclude that the MQE scheme has passed
this test successfully.

5.4 Option validation: the Feller ViolatedTest II

The test of the previous section is not very general, since the three-dimensional problem is actually one-dimensional.
In this section, we perform a second test: we will reduce a twoasset Heston model to a single-asset model, by changing
the nuḿeraire. In this way, we can find the basket option price semi-analytically, thus obtaining a reference value for
the MQE estimates for option prices with two correlated stocks as underlyings. We will see that we have to make some
restrictions on the two-dimensional Heston parameter set.However, since we will be allowed to choose any value for
the correlation between the two stocks,ρ12, this test will be more general than that of Section5.3.
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5.4.1 Problem set up

Suppose thatB(t) is the price at timet of one unit of the currency that was invested in the money market at timet = 0.
Then

dB(t) = r(t)B(t)dt,

and thusB(t) = e
∫ t
0 r(s)ds. It is common to defineB(t) as the nuḿeraire1 under the risk-neutral probability measureQ.

For D = 2, the dynamics for our multi-dimensional Heston model are given by

dV1(t) = κ1(θ1−V1(t))dt+ ε1

√
V1(t)dWV1

(t),

dV2(t) = κ2(θ2−V2(t))dt+ ε2

√
V2(t)dWV2

(t),

dS1(t) = S1(t)r(t)dt+S1(t)
√

V1(t)dWS1
(t),

dS2(t) = S2(t)r(t)dt+S2(t)
√

V2(t)dWS2
(t),

whereWVi
(t),WSi

(t) are Brownian motions underQ for i = 1,2. For now, we assume the following correlation struc-
ture:

Σ =




1 ρV1V2 ρ1 0
ρV1V2 1 0 ρ2

ρ1 0 1 ρ12

0 ρ2 ρ12 1


 ,

Compared to the previous sections, we drop the assumption ofzero variance-variance correlation. Note that each of
these stocks, priced in terms of the money market, is a martingale with respect toQ and filtrationF (t) up to timet,
since

E

[
Si(T)
B(T)

∣∣∣∣F (t)
]

=
Si(t)
B(t)

+E

[∫ T

t
d

(
Si(s)
B(s)

)∣∣∣∣F (t)
]
=

Si(t)
B(t)

∀ t ≤ T, i = 1,2.

For the most right equality, we used Itô’s Lemma on the functionf (t,x) = xB−1(t) to find

d

(
Si(s)
B(s)

)
=

(
− Si(s)r(s)

B(s)
+

Si(s)r(s)
B(s)

+0

)
dt+

Si(s)
√

Vi(s)

B(s)
dWSi (s) =

Si(s)
√

Vi(s)

B(s)
dWSi (s),

which implies that, givenF (t),

∫ T

t
d

(
Si(s)
B(s)

)
=

∫ T

t

√
Vi(s)

B(s)
dWSi (s)

is an It̂o integral, which has expectation zero. Therefore,Si(t) is indeed aQ-martingale fori = 1,2.

5.4.2 Strategy outline in case of Black-Scholes dynamics

Our strategy to price one specific basket option semi-analytically is based on an existing strategy, as described
in [Björk, 2009]. In this strategy, both stocks are assumed to have Black-Scholes dynamics. We will explain this
strategy briefly to give an idea of our own strategy.

Björk assumes thatS1(t) andS2(t) follow Black-Scholes dynamics:

dS1(t) = S1(t)rdt +S1(t)σ1dWS1
(t),

dS2(t) = S2(t)rdt +S2(t)σ2dWS2
(t),

1A numéraire is the unit of account in which other assets are denominated.

33



with σ1,σ2 positive constants. Now consider anexchange optionwith a payoff given by max[S2(T)−KS1(T),0]. One
can price this exchange option by use of a Monte Carlo method.In order to find a reference price, Björk changes the
numéraire from the money market accountB(t) to S1(t). He defines the Radon-Nikodým derivative

dS
dQ

=
B(t)S1(T)
B(T)S1(t)

. (5.3)

Here,S is the induced measure, and Björk shows that the exchange option value at timet can be written as

S1(t)
B(t)

ES
[
max

(
Sq(T)−K,0

)∣∣F (t)
]
,

with Sq(t) := S2(t)/S1(t). This means that the problem reduces to the validation of a European call option underS. To
price this option, one needs the dynamics ofSq(t) underS. Björk finds these dynamics via a Girsanov transformation,
and shows thatSq(t) is anS-martingale. SinceSq(T) is log-normally distributed givenS(t), one can use the Black-
Scholes formula to price the call option. In this way, we find the analytic price of the exchange option.

Our strategy is analogous to the above strategy. Of course, the Black-Scholes formula is not useful for us since we
assume Heston dynamics. However, in one dimension, a semi-analytic call option price can be derived when the
underlying follows Heston dynamics. The analogy between the Black-Scholes strategy and our Heston strategy will
not be straightforward. Therefore, we will be strict in eachderivation step in the following subsections.

5.4.3 Change of nuḿeraire under Heston

Let us return to our assumption thatS1(t) andS2(t) follow Heston dynamics and change the numéraire similarly to the
method in [Björk, 2009]. We will change the nuḿeraire fromB(t) to S1(t). We define the probability measureS by
the Radon-Nikod́ym derivative:

dS
dQ

=
B(t)S1(T)
B(T)S1(t)

. (5.4)

SinceB(t) is an exponential function andS1(0)> 0 by assumption,B(t),S1(t)> 0 ∀ t ≥ 0 almost surely. Therefore,
the fraction in (5.4) is almost surely strictly positive for allt. Furthermore, sinceS1(t)/B(t) is aQ-martingale, we
have

E

[
dS
dQ

∣∣∣∣F (t)
]

=
B(t)
S1(t)

E

[
S1(T)
B(T)

∣∣∣∣F (t)
]
=

B(t)
S1(t)

S1(t)
B(t)

= 1.

This shows that the probability measureS is well-defined (see [Shreve, 2004]). Therefore, for every non-negative
random variableX, we can write

ES[X] = E

[
X

dS
dQ

]
. (5.5)

This yields, for all 0≤ t ≤ T,

ES

[
S2(T)
S1(T)

∣∣∣∣F (t)
]
= E

[
S2(T)
S1(T)

B(t)S1(T)
B(T)S1(t)

∣∣∣∣F (t)
]
=

B(t)
S1(t)

E

[
S2(T)
B(T)

∣∣∣∣F (t)
]
=

B(t)
S1(t)

S2(t)
B(t)

=
S2(t)
S1(t)

.

In the second last equality, we used the fact thatS2(t)/B(t) is a martingale underQ. We conclude thatS2(T)/S1(T) is
a martingale under measureS.

Now let us consider an exchange option, which gives the holder the right to exchange oneS2-share forK S1-shares at
timeT. We recall that the payoff is max[S2(T)−KS1(T),0]. The option value can be written as

E
[
max

(
S2(T)−KS1(T),0

)
/B(T)

∣∣F (t)
]
. (5.6)
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In order to change the measure, we first note that sincedS/dQ is almost surely strictly positive, we can transform (5.5)
to

E[X] = ES

[
X

dQ
dS

]
.

Therefore, we can write (5.6) as

ES

[
max

(
S2(T)−KS1(T),0

) B(T)S1(t)
B(T)B(t)S1(T)

∣∣∣∣F (t)
]

=
S1(t)
B(t)

ES
[
max

(
Sq(T)−K,0

)∣∣F (t)
]
,

with Sq(t) := S2(t)/S1(t) (the indexq refers to the quotient of the two stocks). To conclude, the problem reduces to
the validation of a European call option on theS-martingaleSq(t) with strike priceK.

5.4.4 Dynamics ofSq(t) under S

In order to price this European call option, we first have to find theS-dynamics ofSq(t). We will use It̂o’s Lemma in
two dimensions:

Result 4. It ô’s Lemma, two dimensions
Let f(t,x,y) be a function whose partial derivatives ft , fx, fy, fxx, fyy, fxy are defined and are continuous. Let X(t) and
Y(t) be Itô processes. Then

d f(t,X(t),Y(t)) =
∂ f
∂t

(
t,X(t),Y(t)

)
dt+

∂ f
∂x

(
t,X(t),Y(t)

)
dX(t)+

∂ f
∂y

(
t,X(t),Y(t)

)
dY(t)

+
1
2

(
dX(t) dY(t)

)



∂2 f
∂x2

(
t,X(t),Y(t)

) ∂2 f
∂x∂y

(
t,X(t),Y(t)

)

∂2 f
∂x∂y

(
t,X(t),Y(t)

) ∂2 f
∂y2

(
t,X(t),Y(t)

)



(

dX(t)
dY(t)

)
.

The application of It̂o’s Lemma in two dimensions on the functionf (t,x,y) = y/x yields

dSq(t) = d f(t,S1(t),S2(t))

= 0− S2(t)

S2
1(t)

(
S1(t)r(t)dt+S1(t)

√
V1(t)dWS1

(t)
)
+

1
S1(t)

(
S2(t)r(t)dt+S2(t)

√
V2(t)dWS2

(t)
)

+
1
2

(
2S2(t)

S3
1(t)

(dS1(t))
2− 1

S2
1

dS1(t)dS2(t)−
1

S2
1

dS1(t)dS2(t)+0

)

= Sq(t)
(√

V2(t)dWS2
(t)−

√
V1(t)dWS1

(t)
)
+

S2(t)

S3
1(t)

(dS1(t))
2− 1

S2
1(t)

dS1(t)dS2(t). (5.7)

If we write outdSi(t)dSj(t) for i, j = 1,2, all terms withdt2 anddWSi
(t)dt vanish since we neglect higher order terms.

This yields

dSi(t)dSj(t) = Si(t)Sj(t)ρi j

√
Vi(t)

√
Vj(t)dt = Si(t)Sj(t)ρi j

√
Vi(t)Vj(t)dt, for i, j = 1,2.

In the last equality, we used the fact that both variance paths are non-negative for allt. Substituting this formula in
(5.7), yields

dSq(t) = Sq(t)
(
V1(t)−ρ12

√
V1(t)V2(t)

)
dt+ Sq(t)

(√
V2(t)dWS2

(t)−
√

V1(t)dWS1
(t)
)
. (5.8)

Now we have arrived at the one-dimensionalQ-dynamics ofSq(t). However, we desire theS-dynamics ofSq(t).
Therefore, we will apply the multi-dimensional version of Girsanov’s Theorem:

Result 5. Girsanov’s Theorem, multiple dimensions
LetW(t),0≤ t ≤ T, be a d-dimensional Brownian motion vector with independent components on a probability space
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(Ω,F ,P).- LetF (t),0≤ t ≤ T, be the filtration generated by this Brownian motion vector. Let (t) be a d-dimensional
adapted process. Define

Z(t) = e−
∫ t
0

⊤(s)dW(s)− 1
2
∫ t
0 || (s)||2ds, (5.9)

W̃(t) = W(t)+
∫ t

0
(s)ds,

where||x|| denotes the Euclidean norm ofx. Assume that

E

∫ T

0
|| (s)||2Z2(s)ds< ∞. (5.10)

ThenE[Z(T)] = 1, and under the probability measurẽP, given by

P̃(A) =
∫

A
Z(ω)dP(ω) ∀ A∈ F (t),

the process̃W(t) is a d-dimensional Brownian motion.

Note that the theorem usesindependentBrownian motions, whereas our model has a correlation structure given by the
4×4 correlation matrixΣ. Therefore, we will transform our model: suppose thatL is a lower triangular matrix so that
Σ = LL⊤. Then we can write




dWV1
(t)

dWV2
(t)

dWS1
(t)

dWS2
(t)




d
= L




dW1(t)
dW2(t)
dW3(t)
dW4(t)


 , (5.11)

in which all components of the right-hand side vector are independent Brownian motion increments. Substitution in
(5.8) yields theQ-dynamics ofSq(t):

dSq(t)

Sq(t)
=

(
V1(t)−ρ12

√
V1(t)V2(t)

)
dt+

(√
V2(t)L41−

√
V1(t)L31

)
dW1(t)

+
(√

V2(t)L42−
√

V1(t)L32

)
dW2(t)+

(√
V2(t)L43−

√
V1(t)L33

)
dW3(t)

+
√

V2(t)L44dW4(t). (5.12)

We apply the theorem forP = Q, P̃ = S andZ(T) equal to the proposed Radon-Nikodým derivative in (5.3). We
rewrite the integrated form of (2.3), to obtain

S1(t) = S1(0)e
∫ t
0 r(s)ds− 1

2
∫ t
0V1(s)ds+

∫ t
0

√
V1(s)dWS1

(s)
,

which yields

Z(T) =
dS
dQ

∣∣∣∣
t=0

=
B(0)S1(T)
B(T)S1(0)

= e
− 1

2
∫ T
0 V1(s)ds+

∫ T
0

√
V1(s)dWS1

(s)
.

Comparing this expression with (5.9), we conclude that we have to define(t) as follows:

(t) =




0
0

−
√

V1(t)
0


 .

Note that this is the only possible choice forΘ(t). To validate condition (5.10), we note that

E

∫ T

0
||Θ(s)||2Z2(s)ds = E

∫ T

0
V1(s)

B2(0)S2
1(s)

B2(s)S2
1(0)

ds=
B2(0)

S2
1(0)

∫ T

0
E
[
V1(s)S

2
1(s)

]
B−2(s)ds, (5.13)

36



where we used Fubini’s Theorem in the second equality. The momentE
[
V1(s)S2

1(s)
]

can be computed by using results
in Appendix A of [Andersen, 2007]. There, the analytic expression of the joint characteristic function ofV1(T) and
X1(T), φ(u,v) = E

[
eiuV1(T)+iv(X1(T)−X1(0))

]
, is derived (which we will not repeat here). Then, using the fact that

∂φ
∂u

(0,−2i) = E

[
iV1(T)e

2
(

X1(T)−X1(0)
)]

= ie−2X(0)E

[
V1(T)S

2
1(T)

]
,

we can derive the left-hand side (which we will not write out ). In this way, we derived that the right-hand side of
(5.13) is finite. We conclude that it is appropriate to apply Girsanov’s Theorem. Now recall that we restrict thatSq(t)
is anS-martingale. Loosely speaking, alldt-terms should vanish by applying Girsanov’s Theorem. Therefore, by
substitutingdWi(t) = dWS

i (t)−Θi(t)dt for i = 1,2,3,4 in (5.12), it is straightforward that

V1(t)−ρ12

√
V1(t)V2(t) =−

(√
V2(t)L43−

√
V1(t)L33

)√
V1(t), for t ≥ 0, (5.14)

must hold. This implies that one must haveL43 = ρ12 andL33 = 1. However, a Cholesky decomposition ofΣ (see
Example1 of AppendixA), shows thatL33 = 1 if and only if ρ1 = 0. If this is the case, thenL43 = ρ12 follows
immediately. We conclude that the assumptionρ1 = 0 is necessary. ThenSq(t) is aS-martingale, withS-dynamics

dSq(t)

Sq(t)
=

(√
V2(t)L41−

√
V1(t)L31

)
dWS

1 (t)+
(√

V2(t)L42−
√

V1(t)L32

)
dWS

2 (t)

+
(√

V2(t)L43−
√

V1(t)L33

)
dWS

3 (t)−
√

V1(t)L44dWS
4 (t)

=
√

V2(t)
(

L41dWS
1 (t)+L42dWS

2 (t)+L43dWS
3 (t)+L44dWS

4 (t)
)

−
√

V1(t)
(

L31dWS
1 (t)+L32dWS

2 (t)+L33dWS
3 (t)

)
. (5.15)

The correlation structure between Brownian motions remains unchanged after a change of measure:

dWi(t)dWj(t) =
(
dWS

i (t)−Θi(t)dt
)
(dWS

j (t)−Θ j(t)dt) = dWS
i (t)dWS

j (t).

Therefore, the correlation matrix of theS-Brownian motions isΣ and we can use the same Cholesky decomposition
Σ = LL⊤. We substitute (5.11) in (5.15) to end up with a more simple expression of theS-dynamics ofSq(t):

dSq(t)

Sq(t)
=
√

V2(t)dWS
S2
(t)−

√
V1(t)dWS

S1
(t). (5.16)

The derivation of theS-dynamics ofV1(t) andV2(t) is straightforward. Note that

dWVi (t) = dWi(t) = dWS
i (t)−Θi(t)dt = dWS

i (t) = dWS
Vi
(t), i = 1,2.

Here, the first and last equality are due to the independence of the variance processes under respective measuresQ

andS, the second equality represents the application of Girsanov, and the third equality holds by choice of(t). We
conclude that the dynamics of the variance processes underS are similar to those underQ:

dV1(t) = κ1(θ1−V1(t))dt+ ε1

√
V1(t)dWS

V1
(t),

dV2(t) = κ2(θ2−V2(t))dt+ ε2

√
V2(t)dWS

V2
(t).

5.4.5 Conditions for model affinity

Now that we have found theS-dynamics ofSq(t), we have to price a European call option withSq(t) as underlying.
As Björk assumes Black-Scholes dynamics, he is able to use the Black-Scholes formula to obtain the analytic price of
this option. In our model, since we assume Heston dynamics, we can instead compute a semi-analytic price by use of
a Fourier method.

In order to find the Fourier price of the European call option on Sq(t), we must find the characteristic function of
lnSq(t). For affine models, this characteristic function can be derived by following a specific procedure, as described
in [Duffie et al., 2000]. We do not yet know whether our model is affine. Let us first introduce the definition of this
property:
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Definition. SupposeX(t) ∈ RN is the vector of state variables of an N-dimensional SDE, andsuppose we can write
its dynamics as

dX = µ(t,X(t))dt+σ(X(t))dW(t),

with W(t) ∈ R2D a standard Brownian motion vector with independent components, µ(t,X(t)) ∈ RN the drift compo-
nent andσ(X(t)) ∈ RN×2D the diffusion component. Then the model is affine if

µ(t,x) = K0(t)+K1x, K0(t) ∈ RN,K1 ∈ RN×N, (5.17)[
σ(x)σ(x)⊤

]
i j

= [H0]i j +[H1]i j x ∀ i, j = 1,2, . . . ,N, H0 ∈ RN×N,H1 ∈ RN×N×N. (5.18)

In these expressions, K0(t) is a function of time, K1, H0 and H1 are constants, and[H1]i j is a 1×N-vector component
of H1.

Let us considerf (t,Sq(t)) = lnSq(t). Applying Itô’s lemma on this function, using (5.16), yields

dXq(t) := d lnSq(t) =−1
2

(
V2(t)+V1(t)−2ρ12

√
V1(t)V2(t)

)
dt+

√
V2(t)dWS

S2
(t)−

√
V1(t)dWS

S1
(t).

Furthermore, let us define

X(t) =




V1(t)
V2(t)
Xq(t)


 ,W(t) =




W1(t)
W2(t)
W3(t)
W4(t)


 ,Σ =




1 ρV1V2 ρ1 0
ρV1V2 1 0 ρ2

ρ1 0 1 ρ12

0 ρ2 ρ12 1


 ,

with W(t) a vector of independentS-Brownian motions. The we know that we can write



WS
V1
(t)

WS
V2
(t)

WS
S1
(t)

WS
S2
(t)




d
= LW(t),

with L the lower triangular matrix obtained by a Cholesky decomposition of the correlation matrixΣ = LL⊤ of the
Brownian motion vector on the left-hand side. Therefore, wecan write the model in the following vector form:

dX(t) = µ(t,X(t))dt+S(X(t))LdW(t),

with

µ(t,X(t)) =




κ1(θ1−V1(t))
κ2(θ2−V2(t))

−1
2

(
V2(t)+V1(t)−2ρ12

√
V1(t)V2(t)

)


 ,

S(X(t)) =




ε1
√

V1(t) 0 0 0
0 ε2

√
V2(t) 0 0

0 0 −
√

V1(t)
√

V2(t)


 .

Let us investigate for which parameter sets,{κ1,θ1,ε1,V1(0),κ2,θ2,ε2,V1(0),Σ}, this model is affine. The drift com-
ponent,µ(t,X(t)), is not linear inX(t) in general. Furthermore, for the diffusion component timesits transpose, we
find

σ(X(t))σ⊤(X(t)) = S(X(t))L(S(X(t))L)⊤ = S(X(t))LL⊤S(X(t))⊤ = S(X(t))ΣS(X(t))⊤

=




ε2
1V1(t) ρV1V2ε1ε2

√
V1(t)V2(t) −ε1ρ1V1(t)

ρV1V2ε1ε2
√

V1(t)V2(t) ε2
2V2(t) ε2ρ2V2(t)

−ε1ρ1V1(t) ε2ρ2V2(t) V1(t)+V2(t)−2ρ12
√

V2(t)V1(t)


 .

Before we will write the above expression in terms ofH0 andH1, note that only three elements of the right-hand side
matrix are non-affine inX(t) for all Θ. In those three elements as well as in the drift component, the square-root of
V1(t)V2(t) prevents the model from being affine. We can eliminate this problem in two ways:
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1. Firstly, we can setρ12= ρV1V2 = 0, but this would imply that the problem would tantamount to two independent
one-dimensional Heston models. However, since the uncertainty of the performance of our new model lies in
the very fact that it is multi-dimensional, this solution would obviously be unacceptable.

2. Alternatively, we can choose the two variance dynamics proportional to each other:

b2V2(t) = V1(t),

for a constantb ∈ R. We use the square ofb for notational convenience. Note that this assumption allows
V1(t) = 0 for all t. In this case, the dynamics ofS1(t) are deterministic.V2(t) = 0 is not allowed. Nevertheless,
by a symmetry argument, we have not lost generality. Since both variance dynamics are non-negative, the
equalityb

√
V1(t)V2(t) =±V1(t) holds and we can thus obtain an affine diffusion component.

Hence we conclude that the considered model is affine if we assumeb2V2(t) =V1(t).

5.4.6 Derivation of the characteristic function

Let us make this assumption and derive the characteristic function of the model. The assumption reduces our model
to a two-dimensional model with three Brownian motions:

dV2(t) = κ2(θ2−V2(t))dt+ ε2

√
V2(t)dWS

V2
(t),

dXq(t) = −1
2
(b2−2bρ12+1)V2(t)dt−b

√
V2(t)dWS

S1
(t)+

√
V2(t)dWS

S2
(t).

Note that forb= 0, the model reduces to a one-dimensional Heston model with zero mean rate of return. We can write
this affine model in vector form

dX(t) = µ(t,X(t))dt+S(X(t))LdW(t),

by setting

X(t) =

(
V2(t)
Xq(t)

)
, µ(t,X(t)) = K0+K1X(t), K0 =

(
κ2θ2

0

)
, K1 =

(
−κ2 0

−(b2−2bρ12+1)/2 0

)
,

S(X(t)) =

(
ε2
√

V2(t) 0 0
0 −b

√
V2(t)

√
V2(t)

)
, W(t) =




W1(t)
W2(t)
W3(t)


 .

The elements ofW(t) are independentS-Brownian motions, andL is the lower triangular matrix of a Cholesky de-
composition of the correlation matrix

Σ =




1 ρ1 ρ2

ρ1 1 ρ12

ρ2 ρ12 1




of the Brownian motion vector



WS
V2
(t)

WS
S1
(t)

WS
S2
(t)


 . (5.19)

The diffusion component becomes

σ(X(t))σ⊤(X(t)) = S(X(t))ΣS(X(t))⊤ =

(
ε2

2V2(t) ε2(ρ2−bρ1)V2(t)
ε2(ρ2−bρ1)V2(t) (b2−2bρ12+1)V2(t)

)
,

so that the diffusion component can be written in the form as given in (5.18), by takingH0 = 0 andH1 a 2×2×2-matrix
which we will express in parts along its third dimension:

(H1)1 =

(
ε2

2 ε2(ρ2−bρ1)
ε2(ρ2−bρ1) b2−2bρ12+1

)
,(H1)2 =

(
0 0
0 0

)
.
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Now we will use an important result in [Duffie et al., 2000]. Since the model is affine, the characteristic function of
the vector-valued SDE is of the form

φ(u,x, t,T) = eα(t)+xβ(t),

with u∈ C andx =
(

v xq
)
. Furthermore,α : [0,∞)→ R andβ : [0,∞)→ R2 satisfy the complex-valued ordinary

differential equations2

dβ
dt

(t) = −K⊤
1 β(t)− 1

2
β(t)⊤H1β(t),

dα
dt

(t) = −K⊤
0 β(t)− 1

2
β(t)⊤H0β(t),

with boundary conditionsα(T) = 0 andβ(T) = [ 0 iu ]⊤ ∀ u∈C, wherei is the imaginary unit. In our model,α(t)
andβ(t) must satisfy:

dβ1(t)
dt

=
1
2

(
(b2−2bρ12+1)β2(t)

−(b2−2bρ12+1)β2
2(t)
)
+
(
κ2− ε2(ρ2−bρ1)β2(t)

)
β1(t)−

ε2
2

2
β2

1(t),

dβ2(t)
dt

= 0,

dα(t)
dt

= −κ2θ2β1(t).

To obtain a more familiar ODE, we perform a change of variablesτ := T − t, the time up to maturity, and we solve for
β(τ) andα(τ). This will only change the sign of the right-hand side of the three ODEs and the boundary conditions:

dβ1(τ)
dτ

= −1
2

(
(b2−2bρ12+1)β2(τ)− (b2−2bρ12+1)β2

2(τ)
)

−
(
κ2− ε2(ρ2−bρ1)β2(τ)

)
β1(τ)+

ε2
2

2
β2

1(τ), (5.20)

dβ2(τ)
dτ

= 0, (5.21)

dα(τ)
dτ

= κ2θ2β1(τ). (5.22)

with α(0) = 0, β1(0) = 0 andβ2(0) = iu ∀ u∈ C. This last boundary condition combined with (5.21) immediately
impliesβ2(τ) = iu. Substituting this in the first of the three ODEs yields

dβ1(τ)
dτ

(τ) = −1
2

(
(b2−2bρ12+1)iu+(b2−2bρ12+1)u2

)
−
(

κ2− ε2(ρ2−bρ1)iu
)

β1(τ)+
ε2

2

2
β2

1(τ),

which we recognize as a Ricatti equation. The general solution of a Ricatti equation, given by

dg(τ)
dτ

= c0+c1g(τ)+c2g2(τ),

with boundary conditiong(0) = g0, is

g(τ) = g0+
(−c1−d−2c2g0)(1−e−dτ)

2c2(1−Ge−dτ)
, where d =

√
c2

1−4c0c2 and G=
−c1−d−2g0c2

−c1+d−2g0c2
.

Now, we can findβ1(τ), by settingc0 =−1
2

(
(b2−2bρ12+1)iu+(b2−2bρ12+1)u2

)
, c1 =−

(
κ2−ε2(ρ2−bρ1)iu

)
,

c2 = ε2
2/2 andg0 = 0. The solution of the last ODE, (5.22), is then given by

α(τ) =
κ2θ2

2c2

(
(−c1−d)τ−2log

1−Ge−dτ

1−G

)
.

We have fully specified the characteristic function, and we can thus find a reference value for the exchange option by
use of a Fourier method.

2Here,c⊤H1c denotes the the vector inCn with k-th element∑i, j ci(H1)i jkc j .
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5.4.7 Results

We implement the above in MatLab, choosing the parameters sothat the Feller condition was violated for both stocks.

S1 S2

Si(0) 100 100
r(t) 0 0
κi 0.5 0.5

θi ,Vi(0) 0.16 0.04
εi 2 1

Table 5.3: Parameter set of stocksS1 andS2

It is shown in Table5.3that stockS2 has the same parameter value as inFeller Violatedin Section5.1. Furthermore, the
parameters of stockS1 are chosen so that the model satisfies one of our derived conditions to be able to find a reference
value for the exchange option:V1(t) = b2V2(t),b= 2. We chooseT = 1. The other conditions (ρ1 = 0,ρV1V2 = 1) are
satisfied by choosing a correlation structure given by

Σ =




1 ρV1V2 ρ1 ρV1S2

ρV1V2 1 ρV2S1 ρ2

ρ1 ρV2S1 1 ρ12

ρV1S2 ρ2 ρ12 1


=




1 1 0 −0.6
1 1 0 −0.6
0 0 1 0.7

−0.6 −0.6 .7 1


 .

At first, we choose a large number of Monte Carlo paths and steps3, to show that the MQE scheme and the Fourier
method agree on the exchange option price. One can see in Figure5.5that this is indeed the case.
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Figure 5.5: Exchange option price: this shows that MQE as well as Euler FT can attain high option price accuracy.
The right-hand plot zooms in on the left-hand plot.

We plotted the semi-analytic option price once as a reference value. Just as in any of the coming test runs, five MQE
prices and five Euler FT prices are plotted against this reference value. Each test run, we estimate the 95% confidence
interval of both Monte Carlo prices from their respective paths. Furthermore, the average of the five CPU times of
both Monte Carlo methods is displayed in the legend. In Figure5.5, the three plotted functions are hard to distinguish
since they all practically coincide. The confidence intervals show that both prices are indeed not significantly different
from the semi-analytic price for all displayed strikes. Since both confidence intervals are small (less than 4% of the
price estimate for allK), this shows the success of both numerical methods in this case.

3The computer used was an Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50 GHz
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We stated thatρ1 = 0 is a necessary condition to be able to find a semi-analytic price. We illustrate this fact in Figure
5.6, a copy of the previous test, except that now we setρ1 =−0.7.
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Figure 5.6: Exchange option price: this illustrates that wecannot find a semi-analytic option price forρ1 6= 0. The
right-hand plot zooms in on the left-hand plot.

In this figure, the same numbers of time steps and Monte Carlo paths are used as was done in the test run of Figure
5.5. The figure suggests that again the MQE prices and Euler FT prices mutually coincide. The fact that each estimate
lies in the 95% confidence interval of the other estimate, supports this fact statistically. However, both Monte Carlo
prices are significantly different from the semi-analytic price forK ∈ [0.50,1.95]. This thus agrees with our derivation
thatρ1 = 0 is a necessary condition to find an accurate semi-analytic price.

We showed in Figure5.5 that the Euler FT scheme can give option prices with sufficient accuracy too. One may
wonder why we did not use the Euler FT scheme as a reference method in the first place. The answer is that we were
not sure about this accuracy: as illustrated in Section3.1.1, it is well-known that the Euler FT prices contain bias when
the Feller condition is violated. How large this bias would be in case of multi-dimensional Heston, was just not known
until we performed this test.
Moreover, Euler FT prices are not accurate for all parametersets: consider for example a long maturity exchange
option, withT = 10, and parameters:

S1 S2

r 0 0
εi 1.5 1
κi 1.5 1.5

θi ,Vi(0) 0.09 0.04

Table 5.4: Parameter set of stocksS1 andS2

Note that we chooseb= 1.5 this time. Suppose furthermore that the correlation structure is given by

Σ =




1 ρV1V2 ρ1 ρV1S2

ρV1V2 1 ρV2S1 ρ2

ρ1 ρV2S1 1 ρ12

ρV1S2 ρ2 ρ12 1


=




1 1 0 −0.5
1 1 0 −0.5
0 0 1 0.8

−0.5 −0.5 .8 1


 .

The computed exchange option values are given in Figure5.7.
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Figure 5.7: Exchange option price: this shows that the EulerFT scheme has significant bias for some parameter sets,
even for large numbers of paths and steps. The right-hand plot zooms in on the left-hand plot.

Figure5.7suggests that all MQE prices again coincide with the semi-analytic price, whereas the Euler FT prices seem
to contain bias. The 95% condidence intervals support this fact: the MQE prices are not significantly different from
the semi-analytic price. The Euler FT prices exhibit significant bias forK ∈ [0.75,3]. Further investigation shows
that this bias is also noticeable for other parameter sets, as long as the maturity is large and the Feller condition is
violated. We can explain this by the fact that for large maturity options on underlyings with high volatility of volatility
parameter, the Euler FT scheme inherits too much bias duringa too long period. Without the characteristic function,
we might have concluded falsely that MQE inherits bias in case of long maturity. This shows the necessity of the test
of this section.

How many times steps and paths are necessary to achieve a satisfactory accuracy? Let us assume the parameter set of
the first test run of this section again (see Table5.3). The right-hand plot in Figure5.8 shows that 32 steps per year
is too few for Euler FT to reach satisfactory accuracy. In fact, the Euler FT prices are significantly different from the
semi-analytic value forK ∈ [0.80,1.95], whereas the MQE prices are not significantly different fromthe semi-analytic
value for any strike. Note that the MQE and Euler FT CPU times are more less the same, which shows that MQE
performs very well in this case.
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Figure 5.8: Exchange option price: this shows the superiority of MQE to Euler FT in accuracy of European call option
pricing. The right-hand plot zooms in on the left-hand plot.

In Figure5.9, the quality of the MQE scheme compared to the Euler FT schemeis illustrated. We used the practical
time step of one quarter of a year for both Monte Carlo methods.
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Figure 5.9: Exchange option price: this shows that MQE, unlike Euler FT, still has high accuracy in case of a large
step size. The right-hand plot zooms in on the left-hand plot.

As the above figure suggests, the five MQE option prices are notsignificantly different from the semi-analytic value.
The five Euler FT prices are structurally too large for at the money options: they differ significantly from the semi-
analytic price forK ∈ [0.50,1.95].

5.5 Conclusion

The MQE method has passed several tests. The resulting stock-stock correlations and the corresponding stock-variance
correlations after a computation are as prescribed beforehand. The MQE European call values are in accordance to
the Euler FT prices when the Feller condition is satisfied. When this condition is violated, we can not use Euler FT as
a reference, which is is why we performed two other tests. TheMQE scheme passed the test of validating a European
call on a sum of three identical stocks in case the Feller condition was violated.
Since this test was somewhat trivial, we performed a second test: we priced an exchange option with MQE (and Euler
FT), and reduced the dimension by a change of numéraire. In this way, we obtained a semi-analytic option price as a
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reference value. One limitation represents the restrictions on the Heston parameter set: we had to choose zero corre-
lation between the first stock process and the first variance process, and we had to choose the first variance process as
a multiple of the second variance process.
MQE passed this test too: the MQE prices practically coincide with the semi-analytic price for sufficiently large num-
ber of Monte Carlo paths and time steps. When the Feller condition is violated, the Euler FT prices contain significant
bias in case of long maturity options (T = 10), even for a very high number of steps and paths. In all other tests, using
a sufficient number of Monte Carlo paths and steps, the Euler FT scheme could have served as a reference value for
the MQE scheme.
Furthermore, the MQE prices are still very close to the semi-analytic price for a small number of time steps (for ex-
ample, a time step of one quarter with a maturity of one year).The Euler FT prices contain large bias for this large
time step. We already expected this advantage of MQE from theone-dimensional case.

We can conclude that the two-dimensional MQE scheme validates European call prices accurately and imposes corre-
lation between stock processes correctly. From these facts, we have gained confidence that the MQE scheme performs
well in two dimensions. Since more than two dimensions is a straightforward extension of the two-dimensional case,
the MQE scheme will perform well for an arbitrary number of dimensions.

5.6 Further investigation

The MQE scheme can be extended by altering the correlation structure. We expect that dropping the assumption of
zero correlation betweenSi(t) andVj(t), i 6= j (thecross-correlations), will be most easy to implement. In this case,
we could perform the construction of the MQE scheme in Section 4.2 as follows. The correlation matrixΣ will be
different, since the submatrixΣXV in (4.5) will be a full matrix instead of a triangular matrix. This will alter the lower
triangular matrixL, obtained by a Cholesky decomposition ofΣ = LL⊤. However, all derivations in that section can
be made. They will lead to a form as in (4.12) with an extra term, containing a sum of other Itô integrals. These Itô
integrals are of the form

∫ t+∆

t

√
Vj(s)dW̃i(s), i 6= j.

Now note that, givenV i ,

∫ t+∆

t

√
Vj(s)dW̃i(s)

d
= sjZi

d
= sj

fi
si
, (5.23)

where we used the notations given at the end of Section4.2and assumed thatsi 6= 0. This last assumption is not valid
for V̂i(t) = V̂i(t +∆) = 0 if we use the approximation

s2
i ≈ ∆[γ1V̂i(t)+ γ2V̂i(t +∆)],

as proposed in (4.9). However, by choosing an approximation which can not be zero (for example, by using the first
moment ofsi , which is derived in [Dufresne, 2001]), this problem can be avoided. In this way, we can sample these
new Itô integrals exactly by use of representation (5.23). We can implement this extended expression just as we did
with expression (4.12).

The other assumption, that we could avoid, would be the assumption of the zero variance-variance correlations. This
would be more desirable than the avoidance of the previous assumption, since one naturally would expect dependence
between the variances of stocks. When a group of stocks on average becomes more volatile, some traders will trade
other stocks as well, which in turn will increase their volatility.
However, when constructing this version of the MQE method, one problem occurs. Since we use the QE method to
compute the next step variance, the corresponding random variables are not normally distributed. Therefore, there is no
exact method available to draw these random variables with the correct correlation structure. As mentioned in Section
4.1, one could nevertheless use the NorTA method to correlate these non-normally distributed random variables. In
this way, the MQE extension can be constructed in the same wayas we constructed the MQE extension with non-zero
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cross-correlations. An investigation should be made of theerror between the estimated variance-variance correlation
and the originally imposed variance-variance correlation. If this error appears to be sufficiently small, we can adopt
this MQE extension.

46



Chapter 6

Calibration of the MQE scheme

In finance, a calibration method is a method to choose values for the model parameters such that the model fits some
chosen data well enough. The choice of parameter values is crucial for our MQE scheme to price derivatives accurately.

We can divide calibration methods in two main categories: historical data calibration and market price implied calibra-
tion. The former uses historical time series (mainly of stock prices) to estimate the current parameters. The latter uses
the assumption of arbitrage absence to claim that derivatives with the concerned underlying are priced correctly in the
market. The calibration method searches for parameter values such that the model derivative price is close enough to
the market derivative price. More precisely, a market priceimplied calibration method minimizes the function

N

∑
i=1

wi

[
CΩ̄

i (Ki ,Ti)−CM
i (Ki ,Ti)

]2
(6.1)

over a discretized parameter spaceΩ̄. Here, N is the number of options used in the calibration,CΩ̄
i (Ki ,Ti) and

CM
i (Ki ,Ti) are the respective model and market derivative prices, withstrikeKi and maturityTi , andwi are weights.

There are two main drawbacks of the historical data calibration method. Firstly, several parameters are not always
observable in the market. Secondly, empirical estimates dooften disagree with the market price implied estimates (see
for example [Bakshi et al., 1997]). In that case, since we assume no arbitrage, we will preferthe market price implied
estimates. Historical estimates will only be used if marketprice implied estimates are unavailable.

The curse of a more realistic model is the increase in complexity of the corresponding market implied calibration
method. This also holds for the Heston model: it is able to capture the volatility smile, whereas the Black-Scholes
model is not since the volatility is then assumed constant. However, in the Black-Scholes model, one only needs to
calibrate the volatility parameter1, whereas in the one-dimensional Heston model, five parameter values need to be
found (κ,θ,ε,V(0) andρ). It is clear that the computational effort will increase much when the parameter space of the
optimization method is five-dimensional instead of one-dimensional.

The situation is similar in case of aD-dimensional Heston process, compared toD independent Heston processes. We
assume the same correlation structure as in the MQE scheme. Our model contains 5D single-asset Heston parameters
plusD(D−1)/2 stock-stock correlation parameters. The model consisting of D independent Heston submodels can
be calibrated inD separate steps, calibrating five Heston parameters each step. Therefore, we decide to divide the
calibration method in two steps:

1. We calibrate the five parameters of each single-asset Heston submodel:κi ,θi ,εi ,Vi(0) andρi , ∀ i = 1, . . . ,D.
Therefore, we use a known Heston calibration method.

2. We calibrate the remaining parameters, i.e. the correlations between the Heston submodels.

1Assuming no arbitrage, the drift of the each stock is equal to the risk-free rate. Its calibration can thus be performed independent from the
considered model calibration, and is beyond the scope of thisthesis.
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By assumption of our correlation structure, the second stepinvolves the calibration of the stock-stock correlations
only. Note that the corresponding stock-variance correlation, ρi , will be calibrated in step 1 already. This seperation
of the calibration ofΣ will not yield any risk of positive indefiniteness. All variance processes are only correlated with
their corresponding stock process. Therefore,Σ will be positive definite as long as the stock-stock correlation matrix,
ΣX, is positive definite.

We will treat the two steps in the coming two sections, respectively. In the third section, we will construct a market
implied calibration method for the stock-stock correlations. In the fourth and fifth section, the method will be inves-
tigated and discussed. The last section contains a conclusion on the method as well as recommendations for further
investigation.

6.1 Single-asset Heston calibration

The first step of our multi-dimensional calibration method has been developed as a calibration technique for deriva-
tives with one underlying. Therefore, it has been investigated extensively. See for example [Moodley, 2005] and [Bin,
2007]. We will give an overview on the considerations of a one-dimensional Heston calibration method.

As we explained, the main problem of a single-asset Heston calibration is the dimensionality of the optimization. One
solution for this problem is to narrow the parameter space byinsights on the derivative of concern. The sensitivity
of the derivative price to a certain Heston parameter can vary much per Heston parameter. We will explain this by
giving an interpretation of every parameter. Since we consider the single-asset Heston model, we will omit the indices
of the Heston parameter, just as in Chapter2 and3. The long-term variance,θ, represents the mean value of the
variance process. A first guess for this parameter could be chosen as the square of the implied volatility obtained by a
Black-Scholes calibration. Then one could concentrate theoptimization grid for this parameter around this first guess.
The initial variance,V(0), influences the option price significantly when the maturityis short. A first guess for this
parameter value could be the volatility implied by a Black-Scholes calibration of an at the money option with short
maturity. The volatility of volatility,ε, affects the kurtosis of the stock distribution. High volatility of volatility implies
heavy tails on both side of the distribution. In contrast, the mean reverting term,κ, drives the variance process back to
the long term variance. Thevolatility surfacemay employ a first guess of these two parameters. This surfaceconsists
of volatility estimates implied by Black-Scholes calibrations for different strikes and maturities.
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Figure 6.1: Implied volatility surfaces for low and high value of ε. κ = 1.5, theta= V(0) = 0.04,ρ = −0.6 in both
cases.

The implied volatility surface will exhibit a smile for highε, as can be seen in Figure6.1. As the mean reverting term,
κ, drives the variance process back to its mean, a high value ofκ will moderate the smile. Therefore, a first guess of
these two parameters can be based on the shape of the volatility surface.

The stock-variance correlation,ρ, affects the skewness of the stock distribution. Note that for negativeρ, a volatil-
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ity increase will stimulate the stock value to decrease. Another way of saying this is that the left tail of the stock
distribution will be heavier than the right tail, thus inducing a more negative skew, as can be seen in Figure6.2.
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Figure 6.2: The influence of the stock-variance correlationon the distribution of the log-stock. The right-hand plot
exhibits a negative skew. Further parameters:κ = 1.5,θ =V(0) = 0.04,ε = 0.5.

Options which are rather sensitive to the skew (like cliquets2, see [Dupire, 1994]), can be calibrated more efficiently
by putting educated restrictions on the optimization grid of ρ. For example, one may restrict the correlation to the
interval[−1,0]. The motivation is the expectation that when a stock becomesmore volatile, its value often decreases.

We conclude that the optimization parameter space should beanticipated on the parameter to which the concerned
derivative is sensitive. By restricting the optimization parameter space, a problem may occur, however. For two dif-
ferent derivatives with the same underlying, one may obtaintwo different optimal parameter sets. For the validation
of a financial product which is based on both derivatives, it is unclear which of the parameter sets should be used. One
should avoid this problem by combining the restrictions of all different subproducts in the calibration.

The anticipation of the optimization algorithm can be done in several ways. For example, one could first calibrate all
parameters except the stock-variance correlation, by use of variance swap prices. The payoff of this option is based on
the realised variance of an asset, which is why one could price it using the Heston variance process only. After that,
one can calibrate the stock-variance correlation separately, thus emphasizing the optimization on this parameter.
One drawback of this procedure is that variance swaps are notknown to be very liquid. Therefore, prices can be
unrealististic or even missing for certain extreme maturities and strikes. One could use an extrapolation method to
substitute missing quotes with estimates. However, the derivative price will depend on the used extrapolation method
in that case, which is undesirable. Instead, one could anticipate the optimization algorithm by fixing one or two less
important parameters so that the optimization method can search the more important parameters from relatively fine
grids. Fixing can be based on the mentioned first guesses we gave at the start of this section.

The objective function of the minimization problem in (6.1) is not linear in case of a single-asset Heston model.
Further, it is often far from being convex and there are oftenmany local minima (see [Mikhailov & Nögel, 2003]).
Therefore, several optimization procedures have been investigated, which can be divided in two main categories:

Local algorithms
One chooses an initial guess for the parameter set. Depending on the gradient of the objective function in that point,
an optimal direction is estimated. Following that gradient(‘going downhill’), one arrives at a new point, and estimates

2A cliquet option option is an option consisting of a series ofconsecutive forward start options. The first is active immediately. The second
becomes active when the first expires, and so on. Each option isstruck at-the-money when it becomes active
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a new optimal direction again. This iterates until a minimumis reached. One always has the risk of arriving at a local
minimum, which makes the initial guess crucial.

Stochastic algorithms
In order to avoid arriving at a local minimum, one can includestochastic jumps in the algorithm. The algorithm
searches downhill, but may search uphill with a probabilitydecreasing in time. There are theorems that state that
the algorithm always arrives at the global minimum, provided that the probability decrease is sufficiently slow (see
[Kirkpatrick, 1984]). These stochastic algorithms are computationally more expensive than the local algorithms.

6.2 Stock-stock correlation calibration

Stock-stock correlations can have significant influence on derivative prices. In Figure6.3, a small example is shown
of the sensitivity of a European call price toρ12:
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Figure 6.3: Sensitivity of call price to stock-stock correlationρ12. Other parameter values:S1(0) = S2(0) = 100,κ1 =
1,κ2 = 1.5,θ1 =V1(0) = 0.04,θ2 =V2(0) = 0.05,ε1 = 0.01,ε2 = 0.02,ρ1 =−0.4,ρ2 =−0.5,T = 10,∆ = 0.125 year,
number of Monte Carlo paths is 10.000. The right-hand plot zooms in on the left-hand plot.

In the above figure, the prices of two European call options onthe sum of two stocks have been estimated by use of the
MQE method. The difference between these two Monte Carlo runs is the value ofρ12. All other parameters coincide,
as well as the Brownian motions samples. One can see that for most strikes, a change in correlation causes a change
in the option price. In order to state this more precisely, weestimated a 95% confidence interval from the Monte Carlo
paths of both option prices. ForK ∈ [119,600], these two intervals are disjoint, which means that the option prices
differ significantly for these strikes. This illustrates the necessity of an accurate calibration method. We found one
historical calibration method in literature, and we will discuss this one first.

6.2.1 Literature on multi-asset Heston calibration

The authors of [Dimitroff et al., 2009] agree with us to calibrate the one-dimensional models separately by known
methods first. They assume the same correlation structure asused in the MQE scheme. As a next step, they calibrate
each stock-stock correlation separately, by use of the historical correlations of the log-stock returns:

ρ̂R
i j := corr

(
X̂i(t +∆)− X̂i(t), X̂j(t +∆)− X̂j(t)

)
,
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with X̂i(t) the observed value of the log-stockXi(t) in the market at timet. We assume that̂ρR
i j is the realization of the

theoretical log-stock return correlation:

ρR
i j := corr

(
Xi(t +∆)−Xi(t),Xj(t +∆)−Xj(t)

)
.

The article reasons that unlike in the Black-Scholes model,ρR
i j 6= ρi j , with ρi j the correlation between the correspond-

ing stock Brownian motions. In case of Black-Scholes dynamics, equalitydoeshold since the volatility is deterministic
(see (5.1), which is obviously not true in case of Heston dynamics. Therefore, one has to find a stock-stock correlation
matrix so that the resulting correlation between the log-stock returns will be close to the historical correlations. More
strictly, one has to find:

min
ΣX∈CD

∣∣∣
∣∣∣ΣR(ΣX)− Σ̂R

∣∣∣
∣∣∣, (6.2)

with CD the set of all correlation matrices of dimensionD and the matrices defined by

ΣR =
(
ρR

i j

)
1≤i, j≤D, ΣX =

(
ρi j
)

1≤i, j≤D, Σ̂R =
(
ρ̂R

i j

)
1≤i, j≤D.

The method explains how to solve this minimization problem per element ofΣX:

min
−1≤ρi j≤1

∣∣ρR
i j (ρi j )− ρ̂R

i j

∣∣. (6.3)

Firstly, a limiting relationship is found betweenρR
i j andρi j as the step size goes to zero:ρR

i j is approximately linear
in ρi j , with a positive slope. This insight gives rise to use a line search method (for example, the bisection method) to
solve (6.3). Throughout this procedure,ρR

i j (ρi j ) is required, which is estimated by using a small Monte Carlo method:
sample paths are generated by using Brownian motions with correlationρi j . Then the sample path average of the
correlation between the log-stock returns is the estimate for ρR

i j (ρi j ). The authors expect that the resulting matrixΣ∗
X

with optimal elementsρ∗
i j will be close to the solution of (6.2). However, it could be thatΣ∗

X is not positive definite.
To transformΣ∗ to a ‘close by’ positive definite matrix in this case, the article recommends the procedure described
in [Jäckel, 2002].

This calibration method has some drawbacks. Firstly, one has to run a Monte Carlo method at each optimization step
in the optimization of eachρi j , which will be computationally expensive. Secondly, the resulting correlation matrix
might differ much from the solution of (6.2), since the minimization is performed per element ofΣX. Moreover,
the method is a historical calibration method, and we explained at the start of this chapter that market price implied
calibration method are preferred.

6.3 Market implied calibration method

Since market implied calibration is preferred to historical calibration, we desire an alternative calibration methodof
the former category. We assume that each one-dimensional submodel has been calibrated separately. Now, we require
a fast method to compute market prices given a chosen parameter set of stock-stock correlations. Then one can effi-
ciently search for the optimum in a high-dimensional parameter space.

In the one-dimensional case, a common procedure is to use a Fourier method to compute European call and put prices,
since the characteristic function of the log-stock value isavailable. In the multi-dimensional extension, one may tryto
calibrate in a similar way, namely via quoted call (or put) prices on abasket option. Its payoff is given by

max

[
D

∑
i=1

Si(T)−K,0

]
. (6.4)

Unfortunately, the distribution or characteristic function of

Ss(t) :=
D

∑
i=1

Si(t) (6.5)
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is not known explicitly forD ≥ 2. We conclude that we can not find semi-analytic prices for this option in this way.

Since neither the characteristic function nor the density function ofSs(T) is known, we need another analytic property
depending on the stock-stock correlations. Therefore, we propose method based on moment matching. Thematching
momenttechnique is based on the substitution of a distribution which is mathematically more tractable, and which
approximates the original distribution in the sense that a certain number of moments coincides. For example, the
QE scheme uses two moment matching techniques. It approximates the noncentral chi-square distribution,fχ′2, by
two other distributions, by setting their first two moments equal to the first two moments offχ′2 (see Section3.2.2).
More of the topic of moment matching calibration techniquesin finance can be found in [Levy, 1992] and [Turnbull
& Wakeman, 1991].

The idea of moment matching originates from the fact that moments ofSs(T) higher than the first moment, depend on
all stock-stock correlations. For example, the second moment of Ss(T) can be written as:

E[S2
s(T)] = e2

∫ T
0 r(t)dt

D

∑
i=1

D

∑
j=1

Si(0)Sj(0)E

[
exp

{∫ T

0

√
Vi(t)ρi j

√
Vj(t)dt

}]
. (6.6)

One can find the derivation in AppendixB. Now suppose the following:

1. Suppose that we find a close approximation,M̂Ss
2 (T), for E[S2

s(T)].

2. Suppose that we find a close approximate distribution,F , for the distribution ofSs(T), of which we can de-
rive the second moment,MF

2 (T). Suppose further that we can calibrate the corresponding approximate model
sufficiently fast (for example, by existence of an analytic solution, or by use of a Fourier method).

Then, our proposed market implied calibration method will be as follows. We calibrate our model to given market
prices, assumingSs(T)∼ F , and find its second moments,MF

2 (T), as function of the maturityT. This is our observed
data set. We chooseΣX so that the two momentŝMSs

2 (T) andMF
2 (T) are close for allT. In this way, we have calibrated

all stock-stock correlations. The two above mentionde suppositions are discussed in the respective next two sections.

6.3.1 Approximate second moment ofSs

As it is obvious from (6.6), the derivation of an analytic expression ofMSs
2 requires the derivation of

Ei j := E

[
exp

{
ρi j

∫ T

0

√
Vi(t)

√
Vj(t)dt

}]
. (6.7)

We did not found any analytic expression forEi j in literature, and we expect that it is hard to find one. Instead, we
propose some estimates, each based on one of the following substitutions, withm= i, j:

1. For allt, we use the estimate

Vm(t) ≈ θm. (6.8)

This is a strong assumption, we expect bad behavior when the Feller condition is violated. We will refer to the
resulting estimate ofEi j by Êθ

i j .

2. Vm(t)≈ E[
√

Vm(T)], where we use the expression from [Grzelak & Oosterlee, 2010] for the right-hand side:

E
[√

Vm(T)
]
=
√

2c(t)e−λ(t)/2
∞

∑
k=0

1
k

(
λ(t)/2

)k
Γ
(

1+d
2 +k

)

Γ
(

d
2 +k

) ,

with Γ(t) the Gamma function and

c(t) =
ε2

4κ
(
1−e−κt), d =

4κθ
ε2 , λ(t) =

4κVm(0)e−κt

ε2
(
1−e−κt

) .
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The estimation is based on a truncation of the infinite sum. One drawback is that the computation of the Gamma
function becomes expensive for small values ofε.

3. Vm(t)≈ E[
√

Vm(T)], but now we use the following estimate as proposed in [Grzelak & Oosterlee, 2010]:

E
[√

Vm(T)
]
≈
√

c(t)
(
λ(t)−1

)
+c(t)d+

c(t)d

2
(
d+λ(t)

) .

The authors of [Grzelak & Oosterlee, 2010] show that this estimate may not be well-defined when the Feller
condition is violated. They propose to use the exact representation in this case.

4.
∫ T

0

√
Vi(t)

√
Vj(t)dt ≈√

µiµj , with

µm := E

[∫ T

0
Vm(t)dt

]
= θmT +

(
e−κmT −1

)(
θm−Vm(0)

)
/κm.

The expression for this expectation is derived in [Dufresne, 2001].

For simplicity, we will initially useÊθ
i j as our estimate forEi j .

6.3.2 Approximate distribution of Ss(T)

The first candidate forF , the approximate distribution ofSs(T), is the normal distribution:F =: BS. In fact, this
approximation means that we assume thatSs(t) approximately follows one-dimensional Black-Scholes dynamics.
This suggests:

Ss(T) ≈ Ss(0)e
(r−σ2/2)T+σW(T),

with constant risk-free rater, constant volatilityσ, andW(t) a Brownian motion. This assumption implies that forZ
an independent standard normal random variable,

MBS
2 (T) = E

[
S2

s(0)exp{2rT −σ2T +2σW(T)}
]

= S2
s(0)e

2rT−σ2TE
[
exp{2σ

√
TZ}

]

= S2
s(0)e

2rT−σ2T+2σ2T

= S2
s(0)e

(2r+σ2)T .

The second candidate forF is the one-dimensional Heston distribution:F =: HES. Consider the joint characteristic
function

φ(u,v) = E

[
eiuV(T)+ivx(T)

]
,

wherex(T) = lnS(T)− lnS(0), andS(t) andV(t) follow single-asset Heston dynamics. Its explicit form canbe found
in Appendix A of [Andersen, 2007], for example. Note that

φ(0,−ni) = E

[
en
(

lnS(T)−lnS(0)
)]

=
E
[
Sn(T)

]

Sn(0)
,

for n= 1,2, . . . , which yields

MHES
2 (T) = S2(0)φ(0,−2i).
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6.4 Investigation of the calibration method

The approximate distributionF must be close enough in the sense that their second moment must be close to the
second moment ofSs(T). In order to choose from these two candidate distributions,we will investigate the distribu-
tion of Ss(T). Therefore, we will sampleSs(T) with our MQE method and investigate the corresponding empirical
distribution. We consider different number of underlyings(D = 2 andD = 10) and cases in which the Feller condition
is satisfied and violated. For the sake of generality, we choose different Heston parameter sets per stock. For each
stock in fact, we draw the Heston parameters uniformly from practical intervals, as shown in Table6.1.

parameter (a,b) such that parameter value∼U(a,b)
Si(0) (10, 110)

κi (0.5, 1.5)
θi =Vi(0) (0.02, 0.06)

ρi (-1,0)

Table 6.1: Parameter distribution of all underlying stocks

The risk-free rater(t) is taken to be zero and a positive definiteΣX is some arbitrary correlation matrix (in [Bendel
& Mickey, 1978], a method is proposed to draw correlation matrices with uniformly distributed eigenvalues). Finally,
we choose all volatilities of volatility from the same uniform distribution, considering three cases. The domain of the
distribution will depend on the fulfillment of the Feller condition of all one-dimensional Heston models:

Case Feller Satisfied Feller Almost Violated Feller Violated
(a,b), so thatεi ∼U(a,b) (0.008,0.01) (0.08,0.1) (0.8,1)

Table 6.2: Uniform distribution intervals forεi , for all i, for three different cases

Histograms of the empirical distribution of lnSs(T) are displayed in Figures6.4and6.5, considering 2 and 10 stocks,
respectively. In both figures, the three histograms correspond to the three cases mentioned in Table6.2.
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Figure 6.4: Sample histograms of lnSs(T) for D = 2. From left to right: casesFeller Satisfied, Feller Almost Violated
andFeller Violated.
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Figure 6.5: Sample histograms of lnSs(T) for D = 10. From left to right: casesFeller Satisfied, Feller Almost Violated
andFeller Violated.

One can see in Figures6.4and6.5that for smallεi , the empirical distribution of lnSs(T) is close to normal. For large
εi however, this is not the case. It is hard to see from these histograms whether a Heston distribution will fit this data
better. Therefore, we choose eitherF = BSor F = HES, and perform the following test3:

1. We consider two stocks. We choose each one-dimensional Heston parameter set from the parameter distributions
displayed in Tables6.1and6.2. We choose some arbitrary stock-stock correlation (in our caseρ12 = 0.5). We
let the MQE method simulate basket option prices with the payoff as given in (6.4), for different strikes and
maturities. We assume that these prices are market quotes.

2. We calibrate these prices by assuming thatSs(t)∼ F . A plot of the simulated quotes against the calibrated prices
is displayed in Figure6.6.

3. We computeMF
2 (T) for all considered maturitiesT. We also estimate the second moment from our MQE

Monte Carlo paths. This estimate,MMQE
2 (T), serves as a reference value. We expect that this estimate will be

sufficiently accurate by taking a large number of Monte Carlopaths (1.000.000) and time steps (∆ = 0.1 year).
See Table6.3.

4. We approximateE[S2
s(T)] by substitutingEi j ≈ Êθ

i j , using (6.8). We match this moment toMF
2 (T), thus obtain-

ing an optimal stock-stock correlation. We also estimateEi j from our Monte Carlo Paths and match the thereby
induced moment toMMQE

2 , thus obtaining a Monte Carlo reference optimum.

5. We investigate whether the optimal stock-stock correlation is close to the imposedρ12.

For the Black-Scholes calibration in step 2, the method usesthe analytic Black-Scholes formula for a European call
option price:

C(Ss(0),T) = Ss(0)Φ(d1)−Ke−rT Φ(d2),

with

d1 =
lnSs(0)− lnK+

(
r +σ2/2

)
T

σ
√

T
,

d2 = d1−σ
√

T.

3The computer used was an Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50 GHz
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HereC(Ss(0),T) denotes the call option value at timeT, assuming initial stock priceSs(0), Φ(·) the standard normal
cumulative distribution function. For each subsequent volatility, chosen from a certain grid, the induced option price
is compared to the market quotes for every maturity and strike. The mean error of these Black-Scholes prices is the
function that we will numerically minimize over the volatility parameterσ. For the Heston calibration, the method is
similar. Now we use the COS method as described in [Fang & Oosterlee, 2008], to obtain the semi-analytic call price
instead of the Black-Scholes call price. To find the optimal parameter set, we use a local minimizer, as mentioned
in Section6.1. We set the interval for the stock-variance correlation,ρi , to [−1,0]. Further, we focus the long-term
variance grid on the implied volatility obtained by the Black-Scholes calibration. In this way, we increase the efficieny
of the Heston calibration method.
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Figure 6.6: Performance of approximate distribution in fitting European call prices. All three figures contain simu-
lated market quotes of the basket option, plotted against the best fits of these prices obtained by a one-dimensional
Black-Scholes calibration and a one-dimensional Heston calibration. All for different strikes and maturities, and the
parameters as given in Tables6.1 and6.2. The top left plot represents the caseFeller Satisfied, the top rightFeller
Almost Violated, and the last plotFeller Violated

The Black-Scholes calibration took 3.2 seconds, while the Heston calibration took 456 seconds. At first sight, Figure
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6.6suggests that both the Black-Scholes distribution and Heston distribution fit the market prices well. In case Feller
Almost Violated and case Feller Violated, the Black-Scholes calibration prices are slightly different from the market
quotes. For the moment, this fact does not worry us much, since the quality of the approximation depends on the
quality of the moment estimate only. In Table6.3, the second moment estimates ofSs(T) are displayed.

Feller Satisfied Feller Almost Violated Feller Violated
MF

2 (T) T = 1 T = 3 T = 10 T = 1 T = 3 T = 10 T = 1 T = 3 T = 10
MBS

2 (T) 19229 20226 24141 19210 20169 23914 18977 19442 21160
MHES

2 (T) 19234 20237 24166 19222 20181 23911 19072 19663 21780
MMQE

2 (T) 19220 20244 24204 19216 20174 23946 19075 19766 22129
seMQE(T) 6.3 12.1 33.2 6.1 11.7 31.1 5.2 140.7 224.7

Table 6.3:MF
2 (T), as estimated by using two calibration methods and the MQE Monte Carlo estimate. The last row

displays the standard error ofMMQE
2 (T).

One can see in Table6.3 that the standard error ofMMQE
2 (T) is small except for largeε andT. This indicates that

MMQE
2 (T) is often an accurate estimate for the second moment ofSs(T). The values ofMBS

2 (T) andMHES
2 (T) differ

only a few standard errors fromMMQE
2 (T) in all cases. This suggests that these moment estimates are accurate too.

One can see thatMHES
2 (T) is closer to the MQE estimate thanMBS

2 (T) for largeε, which is intuitive since the Heston
dynamics are a generalization of the Black-Scholes dynamics.

The calibrated stock-stock correlations obtained in this test, are displayed in Table6.4.

MF
2 (T) Feller Satisfied Feller Almost Violated Feller Violated

MBS
2 (T) 0.46 0.40 -0.48

MHES
2 (T) 0.47 0.40 -0.26

MMQE
2 (T) 0.46 0.39 -1.00

Table 6.4: Calibrated stock-stock correlation, as obtained by using three different approximations forSs, and for three
different levels of the volatility of volatility. The imposed correlation isρ12 = 0.5.

Table6.4 shows that our method performs quite well in case all volatility of volatility parameter values are low. Let
us define the calibration error as the absolute difference betweenρ12 and the calibrated estimate ofρ12. Further inves-
tigation shows that the calibration error increases asε1 andε2 increase. Since the CPU time of one calibration run is
around 30 minutes, we did not collect statistics of the errormean over multiple runs. Nevertheless, several calibration
runs show that the calibration error is less than 0.05 in caseFeller Satisfiedand less than 0.13 in caseFeller Almost
Violated. One may think that the calibration method is succesfull as long as the volatilities of volatility of the two
underlyings are sufficiently small. However, one should be aware of the sensitivity of the derivative to stock-stock
correlation. In case of high sensitivity (like is the case with dispersion trades), the performance shown under Feller
Almost Violated will certainly not be sufficient to price such derivative accurately. In caseFeller Violated, the calibra-
tion is obviously too large for any practical purpose.

6.5 Discussion of the calibration method

This error is partly caused by the estimation error of (6.8). As we already explained in Section6.3.1, this latter error
will increase inεm, which is reflected in the above numerical results. However,we do not notice better calibration
performance for any other choice of the four proposed approximations forEi j . Furthermore, the calibration method
performs bad too when using MQE estimates in caseFeller Violated(see Table6.4). This indicates that there must be
another problem, which we revealed after a further investigation. Note that all four estimates ofEi j are based on the
following approximation:
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Ei j = E

[
exp

{
ρi j

∫ T

0

√
Vi(t)

√
Vj(t)dt

}]
≈ exp

{
ρi jE

[∫ T

0

√
Vi(t)

√
Vj(t)dt

]}
.

For largeεi andε j , the above integral will have a large standard deviation, since the processesVi(t) andVj(t) will be
more volatile. Taking the exponential function of this integral will increase the standard deviation of the approximate
distribution ofSs(T) exponentially. When estimatingEi j numerically, an increase of the volatility of volatility param-
eter will significantly decrease the accuracy of the estimate. In fact, further investigation of the Monte Carlo paths
shows that the standard error of theEi j Monte Carlo estimate is often around 20% of the estimate itself. Since the
value of the second moment is rather insensitive to changes in ρi j , we need an accurate estimate. We conclude that
the standard error is too large to achieve this. This explains why the performance of the calibration method based on
MQE estimates, decreases inε1 andε2.

A significant improvement of the approximation ofEi j will be the key to a robust calibration method. To this purpose,
note thatEi j simplifies fori = j. Sinceρii = 1 andVi(t)≥ 0 for all t, one can write

Eii := E

[
exp

{∫ T

0
Vi(t)dt

}]
.

In [Dufresne, 2001], the moment generating function of the integrated square-root process is derived:

MGF(s) := E

[
exp

{
−s

∫ T

0
Vi(t)dt

}]
, s≥ 0.

It is tempting to setEii = MGF(−1). Unfortunately, this equality does not hold since the moment generating function
has positive domain only. Numerical experiments show that this estimate is indeed inaccurate, unless the volatility of
volatility parameter is very small. Our last attempt for a close approximation ofEi j involves the power series of the
exponential function:

ex =
∞

∑
n=0

xn

n!
.

This expansion suggests the following approximation

Ei j = E

[
exp

{
ρi j

∫ T

0

√
Vi(t)

√
Vj(t)dt

}]
≈ 1+

N

∑
n=1

ρn
i j

n!
E

[(∫ T

0

√
Vi(t)

√
Vj(t)dt

)n
]
,

with N ∈ N not too large. The estimate will therefore be a weighted sum of the firstN moments of the integral

∫ T

0

√
Vi(t)

√
Vj(t)dt.

For i = j, these moments can be derived analytically by use of the moment generating functionMGF(s). The first
three moments can be found in [Dufresne, 2001]. Since the expressions for the second and third moment are already
extensive, we first test this method by use of the MQE estimates of these moments. Unfortunately, the accuracy does
not improve significantly, whether the Feller condition is satisfied or not. We therefore conclude that this power series
will not be of any use.

In order to increase calibration accuracy, we may try to match higher moments as well. After adding a third moment to
the method, we do not notice any improvement of the calibration accuracy. As the numerical experiments suggest, the
inaccuracy of the estimation ofEi j is again the main problem. All higher moments depend onEi j . We conclude that
extending the moment matching technique to multiple moments may help provided that we find a good approximation
for Ei j .
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6.6 Conclusion and outlook

In this chapter, we designed a market price implied calibration method for the multi-asset Heston model. We assumed
the correlation structure of the MQE method in Chapter4.

For the one-dimensional Heston calibration, consideratins regarding efficiency and pitfalls of this method are given.
This calibration can be cumbersome since the parameter space of the minimization problem is five-dimensional. The
key to an efficient and accurate calibration is the insight inthe derivative that is to be priced. Knowing the sensitivity
of the derivative to each parameter, one can improve calibration efficiency by anticipating the discretized parameter
space on the more important parameter. Furthermore, one canperform calibration in more than one step, thus solving
subequent subproblems of lower dimensionalities.

For the stock-stock correlation calibration method, market quotes of basket options for different strikes and maturi-
ties are required as input. We have tested the method in case of two stocks, measuring its performance by the error
between the imposed stock-stock correlation and the calibrated stock-stock correlation. We considered 3 cases with
increasing volatility of volatility parameter, using either a Black-Scholes or a Heston calibration method. Whereas the
Black-Scholes calibration is much faster than the Heston calibration, both methods attain the same level of accuracy
in these three cases. High accuracy is attained in caseFeller Satisfied, medium accuracy is attained inFeller Almost
Violated, and in caseFeller Violated, the method accuracy is unacceptably low. We investigated this inaccuracy and
concluded that the key to the solution will be an estimate forEi j in (6.7) which is accurate for all practical parameter
sets.

In many practical situations, the number of underlyings of abasket option will be more than 2. In case of many stock-
stock calibrations, the calibration method should solve the optimization problem in an efficient way. In our method,
this means that we have to find

min
Σ∈CD

∑
T∈T

|M̂Ss
2 (T)−MF

2 (T)|. (6.9)

HereCD represents the set of all correlation matrices of dimensionD andT is the set of maturities of all used market
price quotes. Using the first estimate of Section6.3.1can write the approximation forE[S2

s(T)] as

M̂Ss
2 (T) = e2

∫ T
0 r(t)dt

D

∑
i=1

D

∑
j=1

Si(0)Sj(0) fi j , with fi j := exp
{

ρi j
√

θiθ jT
}
.

SinceM̂Ss
2 (T) is linear in fi j , we can use a linear optimization method to find the solution of (6.9). The simplex method

is an efficient and well-known method to solve linear optimization problems (see [Dantzig et al., 2003]). The optimal
solution set{ fi j , i, j = 1, . . . ,D} will immediately yield the optimal correlation parameter set{ρi j , i, j = 1, . . . ,D}, by
definition of fi j . Note that for all choices of our proposed estimates forEi j in Section6.3.1, the optimization problem
will be linear.

Another possible problem will be that in practice, market price quotes of the used basket options are often not liquid.
This means that the basket option is traded for a number of maturities and strikes which is insufficient for accurate
calibration use. We say that the derivative is not liquid. One may work around this problem by calibrating the stock-
stock correlation in multiple steps:

1. We choose a subset of stocks, so that the corresponding basket option is liquid. We calibrate the corresponding
stock-stock correlations by use of our proposed method.

2. Some correlations are still to be calibrated. We try to findanother subset of stocks so that the corresponding
basket option is liquid. We calibrate the corresponding stock-stock correlations.
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3. We repeat step 2 either until all correlations are calibrated, or until there are no more liquid basket options
available for the calibration of the remaining correlations. Any remaining correlation parameter can be calibrated
using historical data, for example by use of the method in [Dimitroff et al., 2009].

4. Since we calibrate the stock-stock correlation with different sets of data, our correlation matrix may be positive
indefinite. In that case, we try to find a ’close by’ positive definite matrix, for example by use of the procedure
described in [Jäckel, 2002].
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Chapter 7

Conclusions

This chapter summarizes the conclusions and recommendations for further investigation of this thesis.

The goal of this thesis was to construct a multi-asset HestonMonte Carlo method. The method has to be efficient with
regard to accuracy and CPU time. Additionally, we investigated the design of a market impied calibration technique
for the multi-dimensional model. The following issues wereencounterd.

Negative variance
Conventional Taylor based schemes are not suitable to discretize Heston dynamics. Especially when the Feller condi-
tion is violated, the variance path of these scheme can become negative. This either breaks down the scheme or induces
bias in derivative price estimates. Therefore, we investigated several alternative schemes for the single-asset Heston
model. Eventually, the QE scheme became the scheme to use forour multi-dimensional model. Its intuitive and close
approximation of the exact distribution of the next step variance makes the scheme fast and accurate, regardless of the
fulfilment of the Feller condition.

Correlation imposition
We assume general stock-stock correlations and corresponding stock-variance correlations. We take the variance-
variance correlations and the cross-term stock-variance correlations to be zero. Whereas the sampling of the variance
processes occurs independently, the issue of ’leaking correlation’ exists in a ‘naive’ stock propagation scheme. We
avoid this leaking correlation by converting the conventional scheme so that all input random variables can be sampled
independently. The resulting Monte Carlo method is the Multi-dimensional Quadratic Exponential (MQE) method.

A numerical correlation test of the MQE method is performed.It appears precisely when the Feller condition is vio-
lated, the log-stock return correlation estimate is substantially different from the imposed stock-stock correlation on
the Brownian motions. This phenomenon is not observed underBlack-Scholes dynamics and is theoretically different
from the concept of leaking correlation. Though it is in accordance with the Heston dynamics when Feller is vio-
lated, this difference is not intuitive and may be confusing. For example, the problem arises that, when comparing the
multi-asset price fairly with, say, a multi-asset Black-Scholes price, it is hard to make sure that the log-stock return
correlations mutually coincide.

Efficiency and accuracy
In order to test the validation performance of the MQE method, we had to find a reference method. When the Feller
condition is satisfied, the MQE prices coincide with the multi-dimensional Euler Full Truncation (FT) prices. Since
the Euler FT method may inherit significant bias in case the Feller condition is violated, we had to find another refer-
ence for our MQE method. We found a semi-analytic pricing method for a double-asset option, based on a change of
numéraire. We had to choose proportional variance processes and one of the two stock-variance correlation had to be
taken zero. The MQE prices coincide with these prices, whilethe Euler FT method exhibits significant bias for long
maturity and high volatility of volatility. Further, the MQE method is superior to the Euler FT method in accuracy,
when fixing either the step size or the CPU time. The CPU time ofthe MQE method grows linear in the number of
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assets of the model.

Market implied calibration method
In literature, we only found a multi-asset Heston calibration method based on historical data. Therefore, we investi-
gated the construction of an market implied calibration method for the MQE method. The calibration method consists
of D separate one-dimensional Heston model calibrations, whereafter theD(D− 1)/2 stock-stock correlations are
calibrated using a moment matching technique. For the one-dimensional Heston calibration, considerations regarding
efficiency and pitfalls of this method are given. The key point to an efficient calibration is the anticipation of the
optimization to the more important parameters.
The stock-stock correlation calibration method uses basket option prices for different stocks and maturities as data.It
appears that the performance of the method decreases in the volatilities of volatility. The main cause is an approxima-
tion error which increases exponentially in these Heston parameters.

Further investigation
We expect that the MQE scheme can be extended by dropping the assumption of zero cross-term stock-variance cor-
relations. The same can be said about the variance-variancecorrelations, though then an approximation error will
be made. To correlate the different variance processes, onehas to use an inexact method to correlate the concerning
random variables. The resulting bias should be investigated.

Another consideration of these extensions is the increase in complexity of the required calibration method. One should
either design a new method to calibrate all multi-dimensional correlations, or calibrate the added non-zero correlations
and solve the problem of possible positive indefiniteness ofthe resulting correlation matrix.

The performance of the current stock-stock correlation method should be improved. In particular, an accurate estimate
of Ei j in (6.7) should be conceived. Further, since in practice one may have to calibrate high-dimensional models,
an efficient optimization algorithm should be applied. For example, choosing the estimate forEi j appropriately, the
optimization problem becomes a linear one, for which efficient solution methods are known (see Section6.6).
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Appendix A

Cholesky decomposition

In this appendix, we give details of a Cholesky decomposition.

Theorem 2. Cholesky decomposition
Suppose that an n×n matrixΣ is real, symmetric and positive definite. Then we can writeΣ as LL⊤, with L an n×n
lower triangular matrix. This decomposition is called a Cholesky decomposition ofΣ.

Before proofing this theorem, we will show one of the various algorithms to find matrixL, theCholesky algorithm:

1. Seti = 1 andΣi = Σ.

2. Fori = 1,2, . . . , the square matrixΣi of dimension(n+1− i) has the following form:

Σi =




Ii−1 0 0
0 ai,i b⊤

i
0 bi Bi


 ,

whereIi is the identity matrix of dimensioni, ai,i ∈ R, bi ∈ Rn−i a column vector andBi a square matrix of
dimension(n− i). If we now define the lower triangular matrixLi by

Li =




Ii−1 0 0
0

√
ai,i 0

0 1√
ai,i

bi In−i


 ,

then we can writeΣi asΣi = LiΣi+1L⊤
i , where

Σi+1 =




Ii−1 0 0
0 1 0
0 0 Bi − 1

ai,i
bib⊤

i


 .

3. We repeat the previous step fori = 1, . . . ,n, obtainingΣn+1 = I in this way. Therefore we found

Σ = L1L2 . . .LnL⊤
n . . .L⊤

2 L⊤
1 .

As a result, by defining

L = L1L2 . . .Ln,

(which is lower triangular since all matrices on the right-hand side are lower triangular) we have found the
Cholesky decomposition ofΣ = LL⊤.
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Proof. We already showed that matrixL we obtained from the above algorithm is lower triangular. Toshow that the
decomposition is always possible for symmetric, positive definite matrices, we only have to show that all computations
in the algorithm are well-defined. Therefore basically, we have to show thatai,i > 0 for all i. To do so, we define the
unit vectorei ∈ Rn with elements(ei) j = δi j for i, j = 1, . . . ,n andδi j the Kronecker delta. Then, sinceΣ is positive
definite, we deduce

a1,1 = e⊤1 Σe1 > 0.

This shows that the computations are well-defined fori = 1. Then we claim that ifΣi is positive definite, then the matrix
Bi − 1

ai,i
bib⊤

i is positive definite too. To show this, we will use the property that sinceΣi is symmetric positive definite,

every principal submatrix ofΣi is symmetric and positive definite too. Now take any column vectorv∈Rn−i \{0} and
w=−(1/ai,i)b⊤

i v. Then

v⊤
(

Bi −
1

ai,i
bib⊤

i

)
v=

(
w v⊤

)( ai,i b⊤
i

bi Bi

)(
w
v

)
> 0.

The equality above follows from simple linear algebra and the inequality holds since
(

ai,i b⊤
i

bi Bi

)

is a principal submatrix ofΣi and is thus positive definite. SinceBi − 1
ai,i

bib⊤
i is positive definite,ai+1,i+1, which is the

upper left element of this matrix, is strictly positive too.By mathematical induction, we have proven thatai,i > 0 for
all i. We conclude that the Cholesky decomposition exists.

Example 1. Consider the following correlation matrix

Σ =




1 ρV1V2 ρ1 0
ρV1V2 1 0 ρ2

ρ1 0 1 ρ12

0 ρ2 ρ12 1


 .

Then the Cholesky algorithm yields the representationΣ = LL⊤, with

L =




1 0 0 0

ρV1V2

√
1−ρ2

V1V2
0 0

ρ1 − ρV1V2ρ1√
1−ρ2

V1V2

√
ρ2

V1V2
+ρ2

1−1

ρ2
V1V2

−1
0

0 ρ2√
1−ρ2

V1V2

ρ12−ρ2
V1V2

ρ12+ρV1V2ρ1ρ2√(
ρ2

V1V2
−1
)(

1−ρ2
V1V2

−ρ2
1

) L44




,

with

L44 =

√√√√1+
ρ2

2

ρ2
V1V2

−1
+

(
ρ12−ρ2

V1V2
ρ12+ρV1V2ρ1ρ2

)2

(
ρ2

V1V2
−1
)(

1−ρ2
V1V2

−ρ2
1

) . (A.1)

66



Appendix B

Derivation of the second moment ofSs(T)

In this appendix, we will derive the second moment ofSs(T), with Ss(t) as defined in (6.5). Suppose that allD stocks
follow the Heston dynamics as given in (2.1) and (2.2). Then, by linearity of expectations, one has

E
[
S2

s(T)
]
=

D

∑
i=1

D

∑
j=1

E
[
Si(T)Sj(T)

]
(B.1)

In order to find an expression for the summand, we first define

X(t) = lnSi(t)+ lnSj(t).

Note that

Si(T)Sj(T) = eX(T) = eX0+
∫ T
0 dX(t) = Si(0)Sj(0)e

∫ T
0 dX(t). (B.2)

Using two-dimensional It̂o’s Lemma, we find

dX(t) = 2r(t)dt− 1
2

(
Vi(t)+Vj(t)

)
dt+

√
Vi(t)dWSi (t)+

√
Vj(t)dWSj (t). (B.3)

SincedWSi (t) anddWSj (t) have correlationρi j , we can write

dWSj (t)
d
= ρi j dWSi (t)+

√
1−ρ2

i j dW(t), (B.4)

with W(t) a Brownian motion independent of everything else. Substitution of (B.4) in (B.3) and integrating the result,
yields

∫ T

0
dX(t) = 2

∫ T

0
r(t)dt− 1

2

∫ T

0

(
Vi(t)+Vj(t)

)
dt+

∫ T

0

(√
Vi(t)+ρi j

√
Vj(t)

)
dWSi (t)

+
√

1−ρ2
i j

∫ T

0

√
Vj(t)dW(t).

Note that givenV i j = {Vi(t),Vj(t),0≤ t ≤ T}, all terms on the right-hand side are independent. Therefore,

E

[
e
∫ T
0 dX(t)

∣∣∣V i j

]
= exp

{
2
∫ T

0
r(t)dt− 1

2

∫ T

0
(Vi(t)+Vj(t))dt

}

×E

[
exp

{∫ T

0

√
Vi(t)+ρi j

√
Vj(t)

)
dWSi (t)

}∣∣∣∣V i j

]

×E

[
exp

{√
1−ρ2

i j

∫ T

0

√
Vj(t)dW(t)

}∣∣∣∣V i j

]
. (B.5)

Both exponents in the two expectations on the right-hand side are It̂o integrals. Both It̂o integrals are normally dis-
tributed givenV i j . We can use the following rule:
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Result 6. Suppose Y is normally distributed. Then

E
[
eY]= exp{Var(Y)/2}.

Applying this rule yields:

E

[
exp

{∫ T

0

(√
Vi(t)+ρi j

√
Vj(t)

)
dWSi (t)

}∣∣∣∣V i j

]
= exp

{
1
2

∫ T

0
Vi(t)+ρ2

i jVj(t)+2ρi j

√
Vi(t)

√
Vj(t)dt

}

E

[
exp

{√
1−ρ2

i j

∫ T

0

√
Vj(t)dW(t)

}∣∣∣∣V i j

]
= exp

{
1−ρ2

i j

2

∫ T

0
Vj(t)dt

}
.

After substitution of these two expressions in (B.5), we obtain

E

[
e
∫ T
0 dX(t)

∣∣∣V i j

]
= exp

{
2
∫ T

0
r(t)dt+

∫ T

0
ρi j

√
Vi(t)

√
Vj(t)dt

}
.

Sincer(t) is deterministic,

E

[
e
∫ T
0 dX(t)

]
= e2

∫ T
0 r(t)dtE

[
exp

{∫ T

0
ρi j

√
Vi(t)

√
Vj(t)dt

}]
. (B.6)

Finally, by substituting of (B.2) in (B.1), and then substituting (B.6) in the result, we arrive at

E[S2
s(T)] = e2

∫ T
0 r(t)dt

D

∑
i=1

D

∑
j=1

Si(0)Sj(0)E

[
exp

{∫ T

0

√
Vi(t)ρi j

√
Vj(t)dt

}]
.
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