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Introduction

Since the very beginnings of human-machine interaction studies carried out by McRuer et al. [3, 10], exten-
sive research has been done on the identification of the human operator in-the-loop, in both simple single-
channel and complex multi-channel tracking tasks [11, 15, 17, 21], in most cases with constant controlled
element dynamics. An increased interest in time-varying modelling of the human operator has been emerg-
ing, supported on the reasoning that in real-life situations very frequently the human operator needs to adapt
himself, either due to a controlled element dynamics that changes over time [25, 27], or simply due to accu-
mulated fatigue, momentary distractions or even the boredom experienced while performing a task.

Numerous time-varying identification techniques have been proposed and previously tested, not only
for human-in-the-loop identification purposes, but also for industrial-oriented applications [4, 8, 9, 12, 19,
20, 22, 26]. Within the human in-the-loop framework, recursive least-squares, maximum likelihood and
wavelet transform analysis algorithms have been implemented [8, 12, 19, 26]. On the other hand, the Lin-
ear Parameter-Varying (LPV) system class has been successfully studied and applied for the identification
of time-varying behaviour of industrial systems [4, 9, 20, 22]. An LPV model assumes the system dynamics
change over time and depend exclusively on measurable external variables, called Scheduling Variables. A
promising example of an LPV system identification technique is the Predictor-Based Subspace Identification
(PBSID) algorithm, developed and optimized by Chiuso and van Wingerden et al. [2, 23], and having already
been applied for wind turbine LPV identification, with encouraging results. [22]

The innovative use of the LPV framework to identify time-varying human neuromuscular admittance dy-
namics for steering tasks using the grip force on the steering wheel as Scheduling Variable has recently yielded
promising results [16]. However, LPV framework application and subsequent identification of the human in-
the-loop operator in aeronautical tracking tasks is still fairly unexplored territory, as selecting an appropriate
Scheduling Variable in this context is not a trivial problem.

Most recently, Zaal used a genetic MSE algorithm to identify the adaptation of test subjects to changing
controlled element dynamics [27]. However, the assumption that the human operator dynamics change ac-
cording to the same function that defines the controlled element dynamics change limits the potential for
capturing possible non-mapped details and nuances in the evolution of the operator dynamics over time.
Due to its reliance on an explicit and possibly experimental Scheduling Variable, the LPV framework could
provide an increased freedom in human operator identification, by not requiring strict assumptions on the
time-variation of the parameters of the human operator.

The goal of this MSc. Thesis thus is to assess the viability of adapting and applying the LPV framework and
PBSID algorithm to the time-varying human operator identification problem. This is achieved by recreating
the experiment by Zaal [27] in offline conditions using Matlab and identifying the simulated human opera-
tor in offline Monte Carlo simulations using an adaptation of the PBSID algorithm. This is accomplished in
three phases. Firstly, the tunable settings of the PBSID algorithm are selected based on the comparison of
the quality of the models obtained for different algorithm settings. Secondly, using the previously selected
PBSID settings, the models are identified using a selection of four Scheduling Variables (two analytical and
two experimental) and two conditions (with and without perturbation of the human operator dynamics).
These results are then analysed regarding model quality and parametric estimation bias, to evaluate the per-
formance of the candidate experimental Scheduling Variables. Finally, a sensitivity analysis is performed,
where the estimated parameters of the identified model are varied in an isolated fashion. The subsequently
induced variations in estimated model quality provide a backdrop for analysing the parametric estimation
performance, by indicating the expected parameter estimation precision achievable with this framework.

This MSc. Thesis has the following structure. The Scientific Paper that forms the basis of this Thesis is
presented in Part I. Part II comprises the appendixes, subdivided in four sections. Appendix A explores the
process for obtaining the experimental Scheduling Function µE1 . Analogously, Appendix B presents the pro-
cess for obtaining the experimental Scheduling Function µE2 . In Appendix C, the experimental Scheduling
Functions obtained from the Monte Carlo simulations are presented. Finally, Appendix D provides an exten-
sive overlook to the parametric estimation distribution obtained from the Monte Carlo simulations.

xi
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Implementation of Predictor-Based Subspace

Methodology for Human Operator Identification in the

LPV System Framework

R.F.M. Duarte ∗ , D.M. Pool † , M.M. van Paassen ‡ , M. Mulder §

Delft University of Technology, Delft, The Netherlands

Human interaction with time-varying systems is becoming commonplace. Driving a car
or piloting an aircraft are examples of such human-machine interactions, where the human
operator must adapt his control strategy to the changing dynamics of the system. However,
changes in control dynamics of the human operator may also be induced by internal factors,
namely fatigue, boredom or even a sudden scare. Therefore, the search for a suitable
method that can correctly and sharply identify these changes in the operator dynamics
is of the highest importance. In this paper, a novel application of the Linear Parameter
Varying (LPV) framework to the human operator in single-loop time-varying tracking tasks
and subsequent time-varying identification with a Predictor-Based Subspace Identification
(PBSID) algorithm is tested. Additionally, two experimentally determined Scheduling
Functions, derived from the measured output of the human operator, are tested regarding
their model identification performance. An offline simulation analysis based on a recent
experimental study was setup and the PBSID algorithm was used to identify the human
operator model in different conditions. The results obtained from offline Monte Carlo
simulations show good overall model identification, but high noise realization sensitivity.
The results further show the possibility of increased freedom in human operator parameter
evolution over time when using the LPV framework. An experimental Scheduling Function
obtained from zero-phase filtering the second derivative of the human operator output
signal was found to capture the time-variation in human operator dynamics, with equivalent
accuracy as obtained with analytical Scheduling Functions.

Nomenclature

A Dynamics Matrix
At Sinusoidal amplitude, deg
ak Continuous model denominator coefficients
B Input matrix
bk Continuous model numerator coefficients
C Output matrix
Cxy Covariance matrix
D Feed-through matrix
e Operator input, deg
F PBSID future window, samples
fc LTI capturing frequency, Hz

fs Sampling frequency, Hz
ft Forcing function target signal, deg
G Sigmoid function maximum rate of change, s-1

Hc Controlled element dynamics
Hn Human operator remnant filter
Hp Human operator dynamics
K Innovation matrix
Kxy Correlation matrix
Kc Controlled system gain
Kn Remnant filter gain
Kv Human operator visual gain
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4 I. Scientific Paper

k Discrete sample
M Sigmoid function time of

maximum rate of change, s
N PBSID system order
n Human operator remnant signal
Pn Relative remnant signal power
p PBSID past window, samples
s Laplace unit, rad s-1

TL Operator lead time constant, s
Tm Measurement time (sinusoidal period), s
Tsim Simulation time, s
t Time, s
u Human operator control signal, deg
W Pseudo-white noise signal

y Controlled element output signal, deg

Symbols

ζnm Operator neuromuscular damping ratio
µ Sigmoid function
σ Standard deviation
σ2 Variance
τv Operator visual delay, s
φt Sinusoidal phase, rad
ωb Controlled system break frequency, rad s-1

ωnm Operator neuromuscular natural frequency, rad s-1

ωt Sinusoidal frequency, rad s-1

I. Introduction

Since the very beginnings of human-machine interaction studies carried out by McRuer et al.,1,2 ex-
tensive research has been done on the identification of the human operator in-the-loop, in both simple

single-channel and complex multi-channel tracking tasks,3–6 in most cases with constant controlled element
dynamics. An increased interest in time-varying modeling of the human operator has been emerging, sup-
ported on the reasoning that in real-life situations very frequently the human operator needs to adapt himself,
either due to a controlled element dynamics that changes over time7,8 (for example, an aircraft that stalls,
or suffers structural damage), or simply due to accumulated fatigue, momentary distractions or even the
boredom experienced while performing a task.

Numerous time-varying identification techniques have been proposed and previously tested, not only
for human-in-the-loop identification purposes, but also for industrial-oriented applications.9–17 Within the
human in-the-loop framework, recursive least-squares, maximum likelihood and wavelet transform analysis
algorithms have been implemented.9–12 On the other hand, the Linear Parameter-Varying (LPV) system
class has been successfully studied and applied for the identification of time-varying behavior of industrial
systems.13–17 An LPV model assumes the system dynamics change over time and depend exclusively on mea-
surable external variables, called Scheduling Variables. A promising example of an LPV system identification
technique is the Predictor-Based Subspace Identification (PBSID) algorithm, developed and optimized by
Chiuso and Van Wingerden et al.,18,19 and having already been applied for wind turbine LPV identification,
with encouraging results.14

The innovative use of the LPV framework to identify time-varying human neuromuscular admittance
dynamics for steering tasks using the grip force on the steering wheel as Scheduling Variable has recently
yielded promising results.20 However, LPV framework application and subsequent identification of the
human in-the-loop operator in aeronautical tracking tasks is still fairly unexplored territory, as selecting an
appropriatea Scheduling Variable in this context is not a trivial problem.

Most recently, Zaal used a genetic MSE algorithm to identify the adaptation of test subjects to changing
controlled element dynamics.8 However, the assumption that the human operator dynamics change according
to the same function that defines the controlled element dynamics change limits the potential for capturing
possible non-mapped details and nuances in the evolution of the operator dynamics over time. Due to its
reliance on an explicit and possibly experimental Scheduling Variable, the LPV framework could provide an
increased freedom in human operator identification, by not requiring strict assumptions on the time-variation
of the parameters of the human operator.

The goal of this paper thus is to assess the viability of adapting and applying the LPV framework and
PBSID algorithm to the time-varying human operator identification problem. This is achieved by recreating
the experiment by Zaal8 in offline conditions using Matlab and identifying the simulated human operator
in offline Monte Carlo simulations using an adaptation of the PBSID algorithm. This is accomplished in
three phases. Firstly, the tunable settings of the PBSID algorithmb are selected based on the comparison of
the quality of the models obtained for different algorithm settings. Secondly, using the previously selected

aAccurate, low-noise and sensitive to changes in system dynamics.
bSystem order N , Past window p and Future Window F .
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5

PBSID settings, the models are identified using a selection of four Scheduling Variables (two analytical and
two experimental) and two conditions (with and without perturbation of the human operator dynamics).
These results are then analysed regarding model quality and parametric estimation bias, to evaluate the
performance of the candidate experimental Scheduling Variables. Finally, a sensitivity analysis is performed,
where the estimated parameters of the identified model are varied in an isolated fashion. The subsequently
induced variations in estimated model quality provide a backdrop for analysing the parametric estimation
performance, by indicating the expected parameter estimation precision achievable with this framework.

Therefore, the paper has the following structure. In Section II, the fundamental mathematical basis
of the PBSID algorithm is described. Section III introduces the Zaal setup, identification methodology,
performance metrics and the offline testing conditions that are used to achieve the goal of the paper. In
Section IV, the results of the PBSID algorithm tunning and offline Monte Carlo simulations for all testing
conditions are presented and analyzed. Finally, a discussion on the relevance of the results and subsequent
conclusions are presented in Sections V and VI.

II. The PBSID Algorithm

The chosen algorithm for the identification of the human operator LPV model is the Predictor-Based
Subspace Identification (PBSID).14 The reasoning behind this choice lies on the fact that the PBSID

is a global LPV identification algorithm. Unlike a local algorithm it does not interpolate a collection of
identified LTI models at isolated instants in time, but rather identifies the system as an explicit LPV model.
The lack of model interpolation in the identification process allows for a precise representation of the system
dynamics at any given instant in time, which is advantageous for identifying the possible details and nuances
in the evolution of the operator dynamics over time.

This section explores the mathematical fundamentals of the PBSID algorithm. The following description
is based on Refs. 14 and 19.

A Linear Parameter-Varying (LPV) system state-space model with parameter-independent output equa-
tion may be modeled by Eqs. (1).

xk+1 =
m∑

i=1

µ
(i)
k

(
A(i)xk +B(i)uk +K(i)ek

)
(1a)

yk = Cxk +Duk + ek (1b)

where k represents the discrete time unit and m is the number of considered Scheduling Variables; xk ∈ <n,
uk ∈ <r and yk ∈ <l are, respectively, the state, input and output vectors. The white innovation process,
ek ∈ <l, has zero mean and accounts for the error committed when approximating the output yk with its
prediction ŷk, in a one step ahead predictor framework (Eq.(2)).

xk+1 =
m∑

i=1

µ
(i)
k



(
A(i) −K(i)C

)

︸ ︷︷ ︸
Ã(i)

xk +
(
B(i) −K(i)D

)

︸ ︷︷ ︸
B̃(i)

uk +K(i)yk


 (2a)

yk = Cxk +Duk + ek (2b)

The matrices A(i) ∈ <n×n, B(i) ∈ <n×r, C ∈ <l×n, D ∈ <l×r and K(i) ∈ <n×l are, respectively, the
dynamics, input, output, feedthrough and error intensity matrices. The vector µ(i) ∈ < is the Scheduling
Function (SF), and is comprised of the timed samples k of the ith Scheduling Variable (SV). The Scheduling
Function is, in an LPV framework, responsible for changing the system dynamics over time by effectively
working as a local weight in the matrices Ã(i), B̃(i) andK(i). These matrices depend linearly on the scheduling

sequence, which comprises all SFs and is assumed to have an affine dependence: µk =
[
1 µ

(2)
k . . . µ

(m)
k

]T
.

As a consequence, the time-varying A matrix, for example, becomes:

Ak =
m∑

i=1

µ
(i)
k A(i) (3)
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The main goal of the algorithm is to introduce a factorization which separates the to-be-identified system
matrices from the to-be-assumed scheduling sequence. Before achieving it, however, some definitions need
to be introduced:

• The extended time-varying controllability matrix

The transition matrix for discrete-time time-varying systems may be defined as in Ref. 21:

φp,k = Ãk+p−1...Ãk+1Ãk (4)

where p is defined as the past window of collected data.

Using Eq. (4), and grouping the matrices B̃ and K as B̆k =
[
B̃k Kk

]T
, B̄(i) =

[
B̃(i) K(i)

]
, the

extended time-varying controllability matrix is defined as:

K̄pk =
[(
φp−1,k+1B̆k

)
, . . . ,

(
φ1,k+p−1B̆k+p−2

)
,
(

B̆k+p−1

)]
(5)

• The extended time-invariant controllability matrix

The operator L is introduced, which allows for the systematic multiplication of matrices Ã and B̄, in
permutations:

L1 =
[
B̄(1), . . . , B̄(m)

]
(6)

Lp =
[
Ã(1)Lp−1, . . . , Ã(m)Lp−1

]
(7)

where m represents the number of SVs. Using this operator, the LPV extended time-invariant control-
lability matrix may be constructed (Eq. (8)).

Kp =
[
Lp, Lp−1, . . . , L1

]
(8)

• The Scheduling matrix

The Scheduling matrix N is introduced, aggregating the scheduling sequence within the range of the
past window p:

N p
k =




Pp|k 0

Pp−1|k+1

. . .

0 P1|k+p−1




(9)

where Pp|k = µk+p−1 ⊗ µk+p−2 ⊗ · · · ⊗ µk ⊗ I, and ⊗ represents the Kronecker matrix product.

Finally, the desired factorization of the time-varying extended controllability matrix is achieved:

K̄pk = Kp︸︷︷︸
unknown

·
known︷︸︸︷
N p
k (10)

Note that Kp depends on the unknown system matrices andN p
k depends exclusively on the known schedul-

ing sequence. Furthermore, the number of columns of K̄pk grows with p, through the relation (r + l)
∑p
j=1m

j .
Please recall that r, l, p and m represent, respectively, the number of inputs, number of outputs, past window
and number of SVs.

Consequently, the state equation for the modelled states may now be written as:

xk+p = φp,kxk +KpN p
k︸ ︷︷ ︸

K̄p
k

z̄pk (11)
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where z̄pk =
[
zk zk+1 ... zk+p−1

]T
and zk =

[
uTk yTk

]T
. If the system is uniformly exponentially

stable, φj,k ≈ 0 for all j > p, as the influence of the transition matrix outside the considered past window
is assumed to be negligible. This approximation becomes perfect for p → ∞, but might result in biased
estimates for finite p.14 Consequently:

xk+p ≈ KpN p
k z̄

p
k (12a)

yk+p ≈ CKpN p
k z̄

p
k +Duk+p + ek+p (12b)

Now, the known data is stacked in matrices:

Ui = [up+i, . . . , uN−f+i+1] , Yi = [yp+i, . . . , yN−f+i+1] , Zi =
[
N p+i

0 z̄p+i0 , . . . , N p+i
N−p−f z̄

p+i
N−p−f

]
.

If the matrix
[
ZT UT

]T
has full rank the following linear regression may be solved, to estimate CKp+i

and D:

min
CKp+i,D

‖ Yi −
(
CKp+iZi +D Ui

)
‖2F (13)

However, the state sequence can not be directly estimated. So, firstly the extended observability matrix
is constructed:

ΓF =




C

CÃ(i)

...

C
(
Ã(i)

)F−1




(14)

where F denotes the future window of predicted data. The product of the extended observability and
controllability matrices is then computed (Eq. (15)), using Eq. (14), relation (16) and the estimation of
CKp+i, previously obtained solving Eq. (13).

ΓFKp =




CLp CLp−1 · · · CL1

CÃ(1)Lp CÃ(1)Lp−1 · · · CÃ(1)L1

...
...

. . .
...

C
(
Ã(1)

)F−1

Lp C
(
Ã(1)

)F−1

Lp−1 · · · C
(
Ã(1)

)F−1

L1




(15)

CKp = [CLp, CLp−1, . . . , CL1] (16a)

CLp =
[
CÃ(1)Lp−1, . . . , CÃ(m)Lp−1

]
(16b)

The extended observability matrix multiplied by the state sequence (ΓFKpZ) is then computed, and the
state sequence X̂ = KpZ is estimated by performing a Singular Value Decomposition:

̂ΓFKpZ =
[
U U⊥

] [ΣN 0

0 Σ

][
V
V⊥

]
(17)

where ΣN denotes a diagonal matrix containing the N largest singular values and V are the corresponding
singular vectors. By selecting only the largest singular values, a reduced number of states can be estimated:

X̂r = ΣNV (18)

Since the states, the input, the output, the feedthrough and the scheduling sequence are now known, the
remaining system matrices can be determined from Eq. (1), yielding matrices of the form:

A(i) =

[
a

(i)
11 a

(i)
12

a
(i)
21 a

(i)
22

]
(19)
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as an example for a generic second order (N = 2) A(i) matrix.
While the LPV model structure and PBSID algorithm have been successfully used for the identification

of wind turbines,14,19 this paper focuses on their usage for the purpose of human operator identification in
a simple single-axis tracking task.

III. Methods

A. Tracking Task

The manual control scenario which serves as the basis for the identification algorithm testing is that
presented in Ref. 8, with minor adjustments to better fit the purpose of LPV algorithm testing. This

allowed the algorithm to be tested in a familiar human in-the-loop framework.
In Ref. 8, human control behaviour in a dual-axis roll-pitch control task was experimentally evaluated.

For the purpose of simplicity, only a single-axis, i.e., the pitch control task was considered in this paper. The
block diagram of the task is shown in Figure 1.

Hn(s)

Hp(s, µ) Hc(s, µ)
ft

−

e

W

u θ

+

++

Human Controller

Figure 1. The pitch control task used for testing.

The simplified aircraft pitch dynamics (Hc) and the linear human operator controller and neuromuscular
dynamics (Hp) are assumed to have time-varying parameters according to a predefined Scheduling Variable
µ, while the human operator remnant filter (Hn) is assumed to be time-invariant.

B. Scheduling Function

In Ref. 8, the time-varying parameters were changed over time according to the sigmoid function:

P (t) = P1 +
P2 − P1

1 + e−G(t−M)
(20)

where P1 represents the initial value of the generic parameter P and P2 its final value. G is the maximum
rate of change of the parameter and M is defined as the time (in seconds) at which it occurs.

For testing purposes, this sigmoid function was defined as the reference analytical scheduling function
µA1 , by introducing the following relation:

µA1
(t) =

1

1 + e−G(t−M)
=⇒ P (t) = P1 + (P2 − P1) · µA1

(t) (21)

where µA1
denotes, from now on, the reference analytical Scheduling Function within the LPV framework.

When µA1
= 0 (or t → −∞), P = P1, and when µA1

= 1 (or t → +∞), P = P2. Setting G = 0.5 s−1,
M = 50 s and using t = 0 s and t = 100 s yields, respectively, µA1 = 1.4 × 10−11 and µA1 = 1, which
represent good approximations. In Ref. 8, two values of G were tested to assess the effect of the rate of
change of the controlling dynamics in the human operator. In this paper, the focus is on evaluating the
performance of the PBSID algorithm for a human in-the-loop task. Hence, fixed G = 0.5 s−1 and M = 50
s were used. The corresponding time variation of µA1

is represented in Figure 2.
When performing LPV identification, a single Scheduling Function was always considered, to further

simplify the problem.
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Figure 2. The sigmoid scheduling function µA1
, used for reference testing purposes.

C. Controlled System Dynamics

The controlled dynamics, represented in Figure 1 as Hc, is defined by the transfer function:

Hc(s, µ) =
Kc(µ)

s2 + ωb(µ)s
(22)

where both the break frequency wb and the static gain Kc change over time according to the relation
presented in Eq. (21). The initial and final parameter values were set according to Ref. 8, and Figure 3(a)
represents the time variation of both parameters throughout a simulation. The initial and final values of the
parameters of Hc are also compiled in Table 1. The controlled system dynamics changes, thus, from mainly
single-integrator dynamics to double-integrator dynamics (Figure 3(b)).

t, s

ω
b,
ra
d
s−

1

K
c,
-

0 20 40 60 80 100

0.2

1.5

3

4.5

6

0

30

60

90

120

(a) Time variation of ωb, from 6 to 0.2 rads−1 and Kc, from
90 to 30.

t = 0s

t = 55s

t = 100s

ω, rad s−1

6
H

c,
d
eg

|H
c|,

d
B

10−1 100 101
−540

−360

−180

0

−20

0

20

40

60

(b) Frequency and phase response of Hc over time.

Figure 3. Controlled element dynamics variation over time.

D. Linear Human Operator Dynamics

According to the human operator model developed by McRuer et al.,1 the human operator is expected to
close the loop in a way that the closed-loop frequency response approximates that of a single-integrator

system, around the crossover frequency. In this case, the human operator compensation dynamics is expected
to be mostly a gain in the early stages of the simulation, and both a gain and a lead component in the later
stages of the simulation: a result verified in Ref. 8.

Hence, for the linear human operator model Hp, a time-varying visual gain Kv, a time-varying lead
term TL, a constant visual delay τv and neuromuscular limitations ωnm and ζnm are assumed, as shown in
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Eq. (23).8

Hp(s, µ) = Kv(µ) · [1 + TL(µ)s] · e−sτv · ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(23)

where both the human operator gain Kv and the lead term TL change over time according to Eq.(21), with
initial and final conditions according to the results obtained by Zaal,8 as shown in Figure 4(a). The initial
and final values of the parameters of Hp are compiled in Table 1.

1. Alternative Parametrization

The initial phases of testing showed the estimation of the human operator equalisation parameters Kv and
TL was abnormally biased, as evidenced by the strong correlation between Kv and TL in Eq. 23, for dominant
TL. This was solved by utilizing an alternative parametrization:

Hp(s, µ) = [Ks(µ)s+Kv(µ)] · e−sτv · ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(24)

where Ks(µ) = Kv(µ) · TL(µ). The evolution of the parameter Ks over time is represented in Figure 4(b),
and its initial and final values are compiled in Table 1.

t, s

K
v
,
-

T
L
,
s

0 20 40 60 80 100
0.07
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0.08

0.085

0.09
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0.6

0.8

1

1.2

(a) Time variation of Kv and TL.

t, s

K
s
,
s

0 20 40 60 80 100
0.036

0.044
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0.06

0.068

0.076

0.084

(b) Time variation of Ks.

Figure 4. Evolution of the human operator equalisation parameters over time.

Table 1. Initial and final values for the parameters of Hc and Hp.

Hc Hp

Kc ωb, rad s−1 Kv TL, s Ks, s† ωnm, rad s−1 ζnm τv, s

t = 0 s 90 6 0.09 0.4 0.036
11.25 0.35 0.28

t = 100 s 30 0.2 0.07 1.2 0.084

†Ks = Kv · TL.

E. Non-Linear Human Operator Dynamics

The non-linear human operator dynamics was simulated by having a pseudo-white noise signal W passing
through a low-pass remnant filter Hn. This filter was defined as Hn = Kn/ (0.2s+ 1), and the gain Kn

was chosen so that the power of the remnant signal in the initial single-integrator dynamics phase of the
simulation, Pn = σ2

n/σ
2
u, is as desired. Since no time variation of Kn is assumed, a lower remnant signal

power towards the end of the simulation ensues, as the controlling activity increases. The resulting filtered
white-noise signal is then added to the linear response of the human operator, to produce its output u.
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F. Forcing Function

The forcing function was defined in an analogous way as in Ref. 8. Although the simulation time was
increased from 81.92 to 100 secondsc, the sinusoidal period was kept at Tm = 81.92 seconds, which

allowed the use of the same forcing function as in Ref. 8.
The forcing function was obtained by summing ten individual sinusoidal functions:

ft(t) =

10∑

i=1

At(i)sin [ωt(i)t+ φt(i)] (25)

with their respective amplitudes (At), frequencies (wt) and phases (φt) listed in Table 2. The length of the
simulation was defined at Tsim = 100 s, and the sampling frequency at fs = 100 Hz.

For each sinusoidal component, the frequency was defined as an integer multiple of the measurement-time
base frequency: ωt(i) = nt(i)

2π
Tm

.
The amplitudes of the sinusoidal components were defined as the absolute value of a second-order low-pass

filter at a specific sinusoid frequency:

At(i) =


[1 + 0.1jωt(i)]

2

[1 + 0.8jωt(i)]
2

 (26)

This ensures that the high frequency sinusoids have lower amplitude. The obtained amplitudes were then
scaled down to obtain a forcing function with standard deviation of 1.5 deg.8

The sinusoidal phases were obtained by generating a large number of random phase sets. The set that
yields a probability distribution closest to a Gaussian distribution and without excessive peaks was selected.8

Table 2. Forcing function parameters.

i wt, rad s−1 At, deg φt, rad

1 0.230 1.186 −0.753

2 0.384 1.121 1.564

3 0.614 0.991 0.588

4 0.997 0.756 −0.546

5 1.687 0.447 0.674

6 2.608 0.245 −1.724

7 4.065 0.123 −1.963

8 6.596 0.061 −2.189

9 10.661 0.036 0.875

10 17.564 0.025 0.604

G. Off-the-loop delay estimation

Since the used LPV model has a discrete state-space model and the considered value of τv was 0.28
seconds, with the sampling frequency of fs = 100 Hz, this yields around 28 samples of delay between

input and output. In order to capture this delay, the estimated LPV model would need to be of at least 28th

discrete order (N > 28), which is inefficient and requires a significant computational effort. The solution
was to pre-estimate the delay by iteratively estimating lower order LPV models with different amounts of
input-output delay compensation. The delay setting which yielded the highest VAF value was then chosen
as the estimated τ̂v. By removing the corresponding input-output delay, the system could be effectively
estimated by a lower order discrete model, with τ̂v added a posteriori, after the formal identification process.
Figure 5 provides a schematic overview of the entire identification process.

cto provide approximately 40 seconds of simulation data for both initial and final system conditions, while maintaining
M = 50 seconds.
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Data set
τv τv

LPV model
Evaluate at Order Parameter

estimation compensation set intervals reduction retrieval
N > 2

N = 2

τv = 0

Figure 5. General overview of the parameter estimation process (N represents the identified system order).

H. Retrieving the model parameters

In the testing conditions used, the PBSID provides the human operator model estimation, Hp, as presented
in Eq. (1). The corresponding LTI models can be obtained by fixing values of the Scheduling Function µ,

obtaining:

xk+1 = A1xk + (B1 +B2µk)uk (27a)

yk = Cxk +Duk (27b)

where the matrices A1 and B1 are the dynamics and input matrices of the initial system, at µ = 0. The
matrix B2 is the time-varying input matrix, which is multiplied with the Scheduling Variable µ and induces
a variation in the system dynamics according to the Scheduling Function. The A matrix does not depend
on the Scheduling Function (A2 = 0), as the neuromuscular parameters are not expected to vary over time.
Considering only the visual gain and lead time constant are time-varying, and to alleviate the computational
burden, only the B matrix was considered time-varying.

The defined model for Hp is SISO and of second-order (Eq. (24)), thus a series of intermediate steps were
required in order to obtain an estimation of the model parameters from Eq. (27):

• The obtained set of local LTI models (Eq. (27)) was converted from discrete to continuous-time, using
zero-order hold.

• The continuous-time state-space models were then converted to the SISO transfer-function form.

• If N > 2, a balanced order reduction to second order with matching DC gain was performed (Fig-
ure 5).22

The final estimated local LTI continuous-time models, with added τ̂v have the following structure:

Ĥi
p =
U(s)

E(s)
=

bi0 + bi1s

ai0 + ai1s+ s2
· e−τ̂vs (28)

with respect to the ith local LTI model. Comparing Eq. (28) with Eq. (24), it is possible to write:

ω̂inm =
√
ai0 ζ̂inm =

ai1

2
√
ai0

K̂i
v =

bi0
ai0

K̂i
s =

bi1
bi0

(29)

I. Performance Metrics

The quality of the estimated second-order model depends not only on how good its model parameters
are estimated, but also on the quality of the corresponding Scheduling Function. In order to assess the

inherent quality of the obtained models with respect to the reference model, some metrics are introduced.
These performance metrics were applied divided into regions of interest, to better assess the performance

of the system identification with respect to the changing human operator dynamics. These regions are
represented in Figure 6.

In Region I, the human operator equalization is predominantly a gain; Region II is the transition region;
in Region III, the human operator dynamics is the combination of a gain and lead compensation.
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Figure 6. The three regions of testing assessment, with µ represented.

As Region II is the crucial transition phase in between dynamics, the VAF and Correlation between
Scheduling Functions results were obtained for the full simulation and for the transition Region II. The
parameter estimation bias results were obtained for all of the regions (I - III).

1. Variance Accounted For

The VAF is a metric that indicates the percentage of identification data that is explained by the estimated
model, and it is given by Eq. (30).

VAF =

(
1−

∑N
k=1 (û(k)− u(k))

2

∑N
k=1 (u(k))

2

)
× 100% (30)

where û(k) and u(k) are the estimated and real output of Hp, at sample k. The higher the VAF value, the
better the model fit to the data.

2. Average Bias of Parameter Estimation

In order to obtain insight as to how good an estimated model is, the VAF alone is not sufficient, as it gives
little information regarding the quality of the model parameters themselves. For the purpose of evaluating
the parameter estimation, the average absolute bias over time provides a simple and meaningful metric:

B̄θ̂ =
1

N

N∑

k=1

∣∣∣∣∣
θ(k)− θ̂(k)

θ(k)

∣∣∣∣∣ (31)

where θ(k) is the real value of the generic parameter θ (e.g., Kv) at sample k, and θ̂(k) is the estimated
value of the same parameter, at the same instant. B̄θ̂ is the average bias of the estimation of parameter θ
over a single noise realization.

3. Correlation between Scheduling Functions

The Correlation between the reference analytical Scheduling Function µA and the to-be-tested experimental
Scheduling Function µE is introduced as a simple indicator of the quality of µE . This allows for an objective
comparison between potential experimental Scheduling Function candidates, and can be computed as in
Eq. (32).23

KµA,µE
=
CµA,µE

σµA
σµE

(32)

where KµA,µE
is the correlation matrix, of which the off-diagonal element is taken as the correlation metric.

CµA,µE
is the covariance matrix and σ represents the standard deviation. A value of KµA,µE

= 1 indicates
the experimental Scheduling Function is perfect, while a value of KµA,µE

= 0 indicates a completely unusable
Scheduling Function.
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J. Off-line Testing

In order to test the PBSID algorithm for the time-varying pitch-control task, a series of three tests were
devised:

• PBSID Tuning Tests;

• Scheduling Function Tests;

• Sensitivity Analysis.

All were offline simulation scenarios performed with three different levels of human operator remnant
power, as specified in Section III-E: Pn = 0.05, 0.15, 0.25, and with the same forcing function for all conditions
and realizations (see Section III-F).

1. PBSID Tuning Tests

The goal of these tests was to objectively choose the optimal settings for the PBSID algorithm, namely the
past window P , the future window F and the estimated LPV system order N . The chosen tuning would
therefore be used for all the remaining tests.

Several Monte Carlo simulations with 100 different noise realizations were performed, using different
combinations of algorithm settings. The tunable parameters and their respective range of testing are compiled
in Table 3.

Table 3. Testing range of the tunable
parameters of the PBSID alogrithm.

PBSID Parameter Range Step

p [15, 120] 30†

N [2, 14] 2

†A step of 15 was used, to go from p = 15
to p = 30. A step of 30 was subsequently
used until the end of the range.

In Table 3, p is the past window of the algorithm (given in samples). The parameter N represents the
desired order of the identified system. It was decided that the desired system order and the Future Window
F would always share the same value, as it significantly reduces the number of testing combinations and
decreases the computational effort.14 The main drawback of using a small F is the truncation of the extended
observability matrix (Eq. 14). Through Eq. 15 and Eq. 17, the state sequence X̂ will be reduced, but the
number of reduced states determined by the Singular Value Decomposition (Eq. 18) is expected to be low
anyway.

The definitive tuning is the one that guarantees that the VAF of the identified model is high, but more
importantly, that there is no drop in VAF after the model order reduction.

2. Scheduling Function Tests

In the LPV framework, the Scheduling Function is critical, as it directly drives the time variation of the
modelled system dynamics.19 For the LPV identification of a human controller, a suitable, measurable
Scheduling Variable must be found, so that a Scheduling Function that reflects the change in dynamics of
the human operator can be constructed.

Therefore, the Scheduling Function tests focus on comparing different Scheduling Functions regarding
their performance on the identification of the LPV model, with data collected from Monte Carlo runs of 100
noise realizations each.

Four Scheduling Functions were selected for testing: two of analytical origin (µA) and two of experimental
origin (µE). Table 4 compiles the testing conditions.
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Table 4. Scheduling Function testing con-
ditions.

Hp

Condition

Scheduling Function

Analytical Experimental

µA1
µA2

µE1
µE2

P̄ P̄A1 P̄A2 P̄E1 P̄E2

P PA1
PA2

PE1
PE2

• Analytical Scheduling Function µA1 (Figure 7(a)) is the reference Scheduling Function, previously
defined in Section III-B.

• Analytical Scheduling Function µA2
(Figure 7(a)) consists on the Scheduling Function µA1

with a
”perturbation” added to it. This perturbation is a Gaussian curve with average at 50 seconds, standard
deviation of eight seconds and amplitude of 0.6.

• Experimental Scheduling Function µE1
(Figure 7(c)) is based on the second derivative of the

human operator output, ü. Figure 7(b) indicates that ü might hold crucial information about the
evolution of the human operator system dynamics over time. However, to be usable as a Scheduling
Function, the raw data of ü had to undergo some post-processing. Here, ü was treated with successive
RMS filterings,24 where a movable filtering window ten samples wide was used. The high amount
of RMS filtering was necessary to guarantee the usability of µE1

as Scheduling Function, specially in
high human operator remnant conditions. Afterwards, the filtered ü was normalized, to ensure a fair
comparison between Scheduling Functions.

• Experimental Scheduling Function µE2 (Figure 7(c)) treats ü with a zero-phase digital filtering,
processing the data with a linearly optimized Butterworth low-pass filter in both forward and reverse
directions.25 The optimization process makes use of a cost function which compares the resulting µE2

with the corresponding experimental Scheduling Function µA and strives to minimize the error by
tweaking the filter coefficients.
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Figure 7. Analytical and experimental Scheduling Functions.

The four Scheduling Functions were tested by performing the identification of Hp for two different con-
ditions:

• Condition P̄ : without the Gaussian perturbation in Hp parameters Kv and Ks.

• Condition P : The same Gaussian curve that is included in µA2
is added to Kv and Ks.

The time traces of Kv and Ks for both P̄ and P conditions are represented in Figure 8.
A consequence of this setup is that the Scheduling Function µA1

serves as the reference for the Hp

condition P̄ , while µA2 is the reference for condition P .
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Figure 8. Hp parameters for the two testing conditions.

3. Sensitivity Analysis

Finally, a sensitivity analysis was performed in the estimated human operator model parameters, consisting
of a single PBSID model estimation using a unique realization of noise, followed by the calculation of the
VAF as a function of variations in each of the parameters (while maintaining the others constant and equal
to the result of the PBSID estimation), for Region I and Region III.

This analysis was important for deducing the parameter estimation precision expectable from the algo-
rithm, for a given parametrization. This analysis will further show that the change in model parametrization
(Kv, Ks) presented in Section D-1 delivers better estimation accuracy than the traditional human control
model definition (Kv, TL).

IV. Results

In this section, the results for the three tests described in Section III-J are presented. Section IV-A
presents the results of the PBSID Tuning Tests; the results of the Scheduling Function Tests are presented
in Section IV-B, and Section IV-C presents the results of the Sensitivity Analysis.

As an example of the data used for the human operator identification, Figure 9 shows the evolution of the
human operator tracking error (input), as well as its output over time. Please note how the control activity
amplitude changes with µ.
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Figure 9. Evolution of the human operator performance over time.

A. PBSID Tuning

Figure 10 shows a comparison between the VAF obtained for the high-order identified LPV models and
their respective balanced order reductions to second order, for different values of Pn, p and N .
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(l) Pn = 0.25

Figure 10. VAF of identified and reduced LPV models for different N , p and Pn.
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As expected, it is possible to identify an increasing tendency for the VAF with increasing model order.
On the other hand, there is a clear break point after which VAF is lost due to the order reduction. This point
is always identified as beginning with the reduction from sixth to second order. The VAF difference between
using fourth or sixth models is generally small, but for Pn = 0.25, N = 4 yields better results for the reduced
model. However, the difference in VAF between N = 4 and N = 2 is not significant. Furthermore, by
using N = 2, the system order reduction step is not needed, eliminating the errors in parameter estimation
potentially introduced by the system order reduction.

The comparison between different p values shows firstly a tendency for high order models to be more
successfully reduced with higher p. There seems not to be any visible trend for the VAF to further increase
with p, and the computational burden increases with p.19 However, the higher the past window value p, the
lower the truncation error in the state predictions.14 A compromise was made and p = 120 was selected to
both reduce parameter estimation bias while maintaining the computation time at acceptable levels.

From this point forward, all testing was performed with PBSID settings F = N = 2 and p = 120.

B. Scheduling Functions

The results obtained in this section are based on the models obtained using F = N = 2 and p = 120 as
PBSID settings.
Figure 11 reveals once more that as the human operator remnant power Pn increases, the VAF decreases.

This is a general and natural trend. However, for both figures, the maximum attainable VAF values for
Pn = 0.05, 0.15 and 0.25 are higher than the normally expected values of 95, 85 and 75%, respectively. This
is due to the time-invariance of the human remnant filter, which yields comparatively lower Pn values for
Regions II and III, and, consequently, overall higher VAF values.
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(b) Region II.

Figure 11. VAF of identified reduced models, for different SF conditions and Pn = 0.05, 0.15 and 0.25.

In further detail, Figure 11(a) represents the distribution of the VAF values attained in the Monte Carlo
runs for the different SF and Pn conditions. For no Hp perturbation conditions (P̄ ), the SF µA1

yields the
highest VAF values for every Pn level bar Pn = 0.05, being the reference SF for this condition. Remarkably,
the SF µE2 presents very similar results for every Pn value, providing good indications about the usefulness
of this experimental SF in the identification process. The SF µA2 is very similar to µA1 , the difference
being the addition of the perturbation in Region II. As such, the results are quite similar between the two
analytical SFs, with both obtaining quite similar scores for condition P̄ and µA2

obtaining higher scores for
condition P - where µA2

is the reference. The VAF values of the models identified with µE1
are generally

lower than with µE2 , for both conditions. These trends are maintained throughout Region II (Figure 11(b)),
but the differences between µA1 , µA2 and µE1 , µE2 are now more pronounced. In fact, this is a critical
region: the perturbation that differentiates µA1

and µA2
is defined in this region, and the penalization of

using an unsuitable SF for identification is clearly visible. Regarding the experimental SFs, the heavy RMS
filtering needed to make ü usable as an experimental SF introduces a delay in µE1

, which is most clearly
perceptible in Region II. This in turn accentuates the VAF difference between µE1

and µE2
in this region

and fleshes out the dangers of phase-altering filtering Scheduling Functions.
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Figure 12 further explores the comparison between the experimental Scheduling Functions by showing
their correlation with the respective reference analytical SF, for different Pn levels. It is perceptible that for
every condition, µE2

is better correlated with either µA1
or µA2

than µE1
. Furthermore, the correlation values

concerning µE2
are consistently above 0.9, a value µE1

only seldom achieves. It is also noticeable a general
trend for the correlation to decrease as the condition changes from P̄ to P , which suggests both experimental
SFs have some trouble detecting small perturbations in the human operator dynamics. Focusing on Region
II, it is possible to observe a high correlation variance concerning µE1 , which indicates a severe lack of
consistency. When comparing the results of the full simulation with those of Region II, a general drop in
correlation becomes apparent. This drop is strong for µE1

, due to its relative delay; it is, however, much
smaller for µE2

, further evidencing the superior SF quality of µE2
over µE1

.
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(b) Region II.

Figure 12. Correlation of experimental SFs with their analytical counterparts, for different SF conditions and
Pn = 0.05, 0.15 and 0.25.

Figure 13 concerns the normalized bias of the parameters estimated using different SFs, Hp conditions
and Pn values in Monte Carlo simulations of 100 runs.

Through analysis of Figures 13(a)-(c), it is possible to observe a much more accurate Kv estimation for all
testing conditions in Region I when compared with Region III. In fact, the absolute value of the normalized
bias for Region I is rarely above 20%, even for Pn = 0.25. On the other hand, Region III Kv estimations
seem to be worse, with some runs of Pn = 0.25 achieving a normalized bias as high as 80%. Throughout the
different testing regions, a distinct tendency for undershooting the estimation of Kv is present, as evidenced
by the median of the normalized biases of the different conditions. Finally, there is not much difference in Kv

estimation between the considered SFs, apart from a slightly worse performance of µE1
in Regions I and II.

Analysing these plots with the help of Figure 11, it may be concluded that the parameter Kv has relatively
small influence in the estimated overall model quality.

In turn, the subsequent trio of sub-figures (Figures 13(d)-(f)) presents much more conclusive results
regarding the fundamental differences in VAF witnessed in Figure 11. In fact, the Ks estimation using µE1

proves to be worse than with µE2
, especially concerning Regions I and II. This result combined with Figure 11

indicates that, in the considered framework, the lead term Ks is more important than Kv in obtaining good-
fitting models. There is not a significant difference in estimation bias between different human operator
remnant intensities, and the overall bias reduces in Region III, evidencing very good performance in Ks

estimation for this particular region.
Figures 13(g)-(i) concern ωnm, which is supposed to be non time-varying. Accordingly, the normalized

bias results are the same throughout the different regions. A very high variance is observed, with a tendency
to overshoot the real value. This unusually high variance contributes to a lack of ωnm estimation precision,
and gets worse as Pn increases. No significant differences between SFs or Hp conditions are detected.

For ζnm, Figures 13(j)-(l) show no bias variation between regions, as expected. However, much like ωnm,
the normalized bias variance is still very high. As Pn increases, the estimation gets gradually worse, and
there are no significant differences between SFs or Hp conditions.

Figure 14 represents the normalized bias of the visual delay τv. Since its estimation was performed
off-the-loop (Section III-G), the results are not presented separated in regions, as the estimation is valid
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Figure 13. Bias in parameter estimation, for different regions and Pn = 0.05, 0.15 and 0.25.
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Figure 14. Bias in visual delay τv estimation.

for the entire simulation length. The estimations have high bias variances for any condition but seem to
be generally more biased for the experimental Scheduling Functions. Furthermore, despite displaying high
variances for Pn = 0.15 and 0.25, the experimental Scheduling Functions have a performance comparable to
the analytical ones, for these Pn levels.

C. Sensitivity Analysis

The results of the offline parameter sensitivity analysis are presented in Figure 15. This analysis was not
performed for the visual delay parameter τv, since its estimation was not explicitly performed by the

algorithm (see Section III-G). This analysis is intended to support and further explain the results obtained
in the Scheduling Function tests of Section IV-B.

Most of the plots in Figure 15 show a convex parabola-like shape, indicating the presence of a single VAF
maximum. This maximum should, in theory, be reached at the real value of the parameter being estimated.

Throughout Figure 15, it is possible to observe that the VAF values for Region III are consistently much
higher than those for Region I. A direct comparison between the VAF of these two conditions can not be
considered, as the human operator remnant power is time-invariant.

Figure 15(a) shows the VAF value is much more sensitive to Kv variations in Region I than in Region III,
where a large offset in Kv leads to relatively small VAF drops. This result supports the large estimation bias
observed for Kv in Region III (Figure 13(a)). The probable cause is the high-importance status the visual
gain has in Region I human operator dynamics (where the human equalization is, excluding limitations, the
visual gain itself) versus the low importance Kv acquires, when in Region III the human operator equalization
becomes predominantly a lead term.1 As the remnant power increases, the curves flatten and the bias is
bound to increase, because a high VAF model is equally obtainable for a broader range of Kv.

Figures 15(d)-(f) showcase the performance of the alternative parametrization presented in Section III-
D-1, where it is possible to observe less bias for Region III than for Region I, confirming the results from
Figure 13(f).

The last two sets of plots deal with the non time-varying parameters ofHp, ωnm and ζnm. In Figures 15(g)-
(i), it is possible to observe a lack of VAF sensitivity for estimated ωnm values above 20 rad s−1: an expected
result, since ft does not have input power at those frequencies. Furthermore, as Pn increases, the well-defined
VAF peak close to 10 rad s−1 erodes considerably. Finally, Figures 15(j)-(l) contain information about ζnm,
where it is possible to observe an almost flat VAF curve throughout the neuromuscular damping range. This
explains the high bias variances observed in Figure 13(g)-(l) for the estimated neuromuscular parameters.
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Figure 15. Changes in VAF induced by alternate variations of the model parameters.
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V. Discussion

In this paper a Predictor-Based Subspace routine was proposed for time-varying human-operator identifica-
tion in a single-loop pitch-tracking task with time-varying controlled element dynamics. The algorithm was

implemented with the help of Van Wingerden’s PBSID Toolbox.19,26 To assess the usefulness of the PBSID
algorithm in the identification of the human controller, data collected from offline Monte Carlo simulations
of the control task performed experimentally in Ref. 8 were used to identify several LPV models. These
were then converted to local LTI models and evaluated. This analysis involved three steps. Firstly, the
tunable settings of the PBSID algorithmd were selected based on the comparison of the quality of the mod-
els obtained for different algorithm settings (Section IV-A). Secondly, using the previously selected PBSID
settings, the human operator model was identified using a selection of four Scheduling Variables and two
Hp conditions. These results were then analysed regarding model quality and parametric estimation bias,
to evaluate the performance of the candidate experimental Scheduling Variables (Section IV-B). Finally,
a sensitivity analysis was performed, where the estimated parameters of the identified model were varied
one at a time. The subsequently induced variations in estimated model quality provided a backdrop for
analysing the parametric estimation performance, by indicating the expected parameter estimation precision
achievable with this framework (Section IV-C).

The PBSID Tuning test showed a positive VAF effect on the increase of the identified model order.
However, the improvement is marginal and after sixth order, the balanced order reduction needed to reduce
the identified model to second order and retrieve the Precision Pilot Model1 parameters induces a sharp
decrease in model quality. An increasing past window p was verified to only marginally increase the overall
VAF of the models. A more refined test would provide more meaningful results regarding the precise effects
of p on the model quality. Furthermore, the effects of the Future Window F were not considered, to decrease
the computation time. A study on the effect of F in model quality would add value to the PBSID parameter
tuning. The selected tuning of N = 2, F = 2 and p = 120 provided satisfactory results. When comparing
these settings with the ones used in the PBSID identification example presented in Ref.19, it is possible to
observe a considerable difference in the selected size of the Past Window. Figure 3 in Ref.19 reveals that
the overall model quality for that specific application example starts sharply decreasing for p > 10, so an
appropriate choice of p would be between five and ten samples. On the other hand, the results presented
in Section IV-A of the present paper indicate no adverse effects in model quality on increasing p until 120
samples. It is worth noting, however, the identification data used in this paper contained 10000 samples,
while in Ref. 19 only 2000 samples were used.

Unfortunately, τv was pre-estimated and its estimation was not part of the main identification process.
While the results obtained were satisfactory, this method does not allow for the estimation of a time-varying
human operator visual delay.

The Scheduling Function tests revealed the potential of ü to be used as an experimental Scheduling
Function, by carefully filtering the high-frequency oscillations. A phase-shifting filtering method, like RMS,
was shown to be especially problematic in Region II, where the dynamics transition occurs. The zero-phase
filtering of ü (µE2

) presented better VAF results, in both the full simulation and Region II, yielding estimated
models with very close VAF values to the ones generated by the analytical sigmoid-based SFs. However,
both experimental SFs fail to accurately capture the perturbation introduced for condition P , as evidenced
by the decrease in SF correlation for this condition (Figure 12).

The PBSID algorithm itself is relatively consistent, its high-order LPV discrete state-space model esti-
mates showing high VAF with low variance. In fact, if an appropriate Scheduling Function can be chosen,
then the identified LPV model is of high quality. The usage of N = 2 eliminates the need of performing a
balanced order reduction to second order for parametric retrieval, which would introduce a factor of error
and uncertainty. Notably, the bias and variance of Kv in Region I and Ks in Region III are much lower than
in any other combination of parameters and regions, as supported by the results of the Sensitivity Analysis.
The estimation of the neuromuscular parameters was found to be inconsistent, a result also supported by
the Sensitivity Analysis.

Still, the parameter estimation bias is generally higher than that obtained in Ref 8. Furthermore, a
high number of parameter estimates turned out to be outliers, which shows the high-sensibility nature of
the algorithm to different noise realizations. A possible solution to this problem might be averaging the
identification data of the Monte Carlo runs, so that the human operator remnant is diluted and reduced.

dSystem order N , Past window p and Future Window F .
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Future work in the application of the LPV framework for the identification of the human operator in
tracking tasks may be developed. Experimental data testing using the time-varying controlled element
of Ref. 8 and human test subjects to validate µE2

as a suitable SF for LPV identification is a natural
continuation to the work developed in this paper. Within the PBSID algorithm, a thorough analysis on the
effects of the p and F in model estimation quality would add a more precise understanding on the optimal
PBSID settings for the specific application presented in this paper. The key aspect of the LPV framework
lies in the Scheduling Variable. Therefore, a research on suitable candidate Scheduling Variables to be
used for time-varying human operator identification in tracking tasks is of high importance. An interesting
research topic also lies on the possibility of using multiple Scheduling Variables for LPV identification, and
their effects on model quality and parameter estimation. The LPV framework was proved promising for
modelling time-varying human operator behaviour, so new LPV identification methods (using Orthonormal
Basis Functions,15 for example) may continue to be developed and tested in the future. Finally, a new,
unambiguous human operator parametrization, more suitable for LPV identification may be explored in the
future.

VI. Conclusion

This paper had the goals of assessing the viability of using the LPV framework and the PBSID algo-
rithm to solve the time-varying human in-the-loop identification problem, and to find a suitable experimental
Scheduling Variable that can be used for the LPV identification. To accomplish this, an offline recreation
of the experiment in Ref 8 was used as a testing bed. Monte Carlo runs with representative human op-
erator remnant noise realizations were performed, and the human operator dynamics was identified as an
LPV model using the PBSID algorithm, with different testing conditions and Scheduling Functions. The
identified models were compared using VAF and the relative bias of the model parameters. The PBSID
algorithm was found to have difficulties in estimating the high visual delay of the human operator. When
delay compensation was used, the algorithm yielded very high VAF models, of high fitting quality. The
comparison between analytical and experimental Scheduling Functions yielded encouraging results regarding
the Scheduling Function obtained from zero-phase filtering the second derivative of the human operator
output signal (µE2). In fact, the models identified with this experimental SF produced VAF values very
close to the models identified with the analytical Scheduling Functions for condition P̄ (no perturbation in
Hp dynamics). Furthermore, for condition P (perturbation in Hp dynamics), the µE2

models had slightly
higher VAF values than the models obtained through the reference analytical SF taken from Ref. 8, over
which represents an improvement.
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A
Scheduling Function E1

An LPV system depends on Scheduling Functions that are explicitly time dependent and steer the system’s
dynamics by weighing the system matrices.

In the case of the LPV identification setting of a human controller controlling simple pitch dynamics, the
choice of Scheduling Variable is not as trivial as in natural LPV systems. Indeed, the human operator is a non-
linear, time varying system, whose conversion to an LPV framework depends on the use of a SF that is both
measurable and coupled with the varying system dynamics. In this appendix, the retrieval and subsequent
treatment of the SF E1 used in testing is explored.

A.1. Human operator output and its derivatives
The output of the human controller, u, was verified be a good candidate for SF: it is measurable (through the
deflection of the joystick element) and, as supported by Figure A.1, presents a good coupling to the overall
changing dynamics, in the form of an increased activity in u, as the workload increases.
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Figure A.1: Comparison between the sigmoid baseline SF µ and the human operator output (u).

The output u, however, can not be directly used as a Scheduling Function, because the changes in dy-
namics it indicates need to be represented in the form of amplitude variations. The controlled system double
integrator forces the human operator to adopt a lead term in its own dynamics, which is expected to generate
more aggressive changes in u, as the human operator tries to predict the input signal. These changes are best
picked up in the amplitude of ü. We can observe the coupling between ü and µ in Figure A.2.

The difference between the µ = 0 dynamics and the µ = 1 dynamics is now much more noticeable in ü
than in u.
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Figure A.2: Comparison between the sigmoid baseline SF µ and the double time derivative of the human operator output (ü).

The retrieval of ü from the offline simulation was performed using an approximation: a derivative term
with a low-pass filter with a low cutoff frequency, so that the noise is filtered out, to avoid its accidental
differentiation:

u̇(s)

u(s)
= s

0.5s +1
(A.1)

A.2. Pre-processing
Before ü can be used as an experimental SF for the PBSID testing, it needs to be pre-processed, in order to
eliminate the noisy oscillations and hopefully extract a clean signal trend, similar in character to the reference
µ.

A.2.1. Step 1
The signal has currently negative and positive values, with an average close to zero. Since the reference SF µ
is always positive, E1 has to follow the same trend, to provide a fair comparison. There are two main possibil-
ities: take the absolute value of ü, or exponentiate it with an even power.

The absolute value of ü was then taken: E1S1 = |ü|. While an even exponentiation would yield a further
accentuated difference between the two main human operator dynamics in play, it would also amplify any
disturbance in the signal.

Figure A.3 shows the resulting E1S1 signal. Notice the trending is still present, only the average became
positive.
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Figure A.3: Time trace of E1S1 = |ü|.
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A.2.2. Step 2
Now that E1S1 = |ü| has been obtained, a filtering process can be applied to the signal. The main goal is to
remove the high frequency oscillations of the signal and extract the trend component of E1S1 . This filtering
was performed by defining a moving window in which the Root Mean Square (RMS) of the corresponding
portion of signal is calculated. [5]

Different window sizes and number of successive filterings were tested. The obtained correlation values
between the reference SF µ and the post-filtering signal E1S2 are compiled in table A.1 and showed in Figure
A.4. These values were obtained for no human operator remnant (Pn = 0) and for a wide range of window
sizes and successive RMS filterings.

Number of successive RMS filterings
1 2 3 4 5 6 7

RMS filter
window size

(samples)

4 0.6957 0.7808 0.8309 0.8643 0.8883 0.9064 0.9207
6 0.8352 0.9261 0.9598 0.9747 0.9819 0.9856 0.9876
8 0.9169 0.9790 0.9916 0.9951 0.9960 0.9959 0.9952

10 0.9572 0.9939 0.9976 0.9973 0.9955 0.9929 0.9894
12 0.9764 0.9974 0.9969 0.9937 0.9888 0.9826 0.9751
14 0.9847 0.9963 0.9926 0.9859 0.9770 0.9662 0.9539

Table A.1: Correlation between µ and E1S2 , Pn = 0.

Figure A.4: Correlation map between µ and E1S2 , Pn = 0.

From Figure A.4, it is observable that large correlation values between µ and E1S2 are obtained for a wide
range of window sizes and number of successive filterings. It is noticeable, nevertheless, that as the number
of successive filterings increases, the optimal window size decreases. Although a high correlation is good,
meaning both SV’s are compatible, it doesn’t necessarily guarantee a good performance when identifying the
LPV system: let us consider the filter settings which yielded the highest correlation value: window size of 10
samples and 3 successive RMS filterings (Table A.1). The resulting E1S2 is presented in Figure A.5.

It is possible to observe some high-frequency oscillations of relatively low amplitude. For higher values of
Pn , the oscillations could be severe and negatively impact the convergence of the algorithm. This possibility
will be investigated in Section A.3.

A.2.3. Step 3
A final step of translating and scaling is required. This ensures the final SF stays approximately normalized
within the interval [0,1], to facilitate the comparison between different SFs. This was done by first subtracting
the initial value of E1S2 to the entire scheduling array, followed by dividing the scheduling array with the
average value of E1S2 in the last forty seconds of simulation. This results in the final E1 SF, presented in Figure
A.6.
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Figure A.5: E1S2 , obtained filtering E1S1 with 3 successive filterings of window size 10, Pn = 0.
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Figure A.6: E1, obtained by translating and scaling E1S2 .

A.3. The effect of the human operator remnant
When considering high levels of human operator remnant, an increase in noise on the ü signal can be ex-
pected, which affect the filtering procedure for obtaining the E1 Scheduling Function.

For an arbitrary realization Pn = 0.25, and using the same settings that yielded the highest correlation for
Pn = 0, the obtained E1 SF is represented in Figure A.7.
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Figure A.7: E1, obtained by 3 RMS filterings with a 10-sample window size, Pn = 0.25.
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In this case, the high remnant level (Pn = 0.25) induces high-frequency and high-amplitude oscillations
that are not sufficiently filtered by the optimal filter settings for Pn = 0. By increasing the number of successive
filterings, the signal becomes more smooth, but a delay is also introduced:
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Figure A.8: E1, obtained by 20 RMS filterings with a 10-sample window size, Pn = 0.25.

The higher the number of successive filterings, the higher the delay introduced in E1, but also the smoother
the signal. This limitation of the RMS filtering prompted the search for a different type of filtering in Ap-
pendix B.





B
Scheduling Function E2

Following from the findings of Appendix A, the need for a better filtering of the potential SF that would not
introduce phase-shift and work well under different Pn levels became clear. As such, a simple linear opti-
mization of a zero-phase digital Butterworth filtering was chosen to process ü and obtain E2.

B.1. Zero-phase filtering
The zero-phase filtering technique applies a specified filter to the signal twice, once in the forward direction
and once in the opposite direction. This operation guarantees that the phase distortion caused by the first
filtering is counteract by the second filtering, yielding zero-phase distortion. [13]

B.2. Pre-processing
The pre-filtering processing starts, similarly to E1, with the computation of |ü| (Figure A.3).

B.2.1. Filter design
The chosen filter to treat the data was a low-pass Butterworth filter. This filter was chosen because it allows
for a flat frequency response throughout the low frequency range. The filter is thus expected to eliminate or
highly attenuate the oscillations of frequency higher than the specified cut-off frequency. Since the Butter-
worth filter is applied to |ü| using zero-phase digital filtering, the resulting signal is also expected to conserve
its phase and, consequently, not suffer from the RMS-induced delay of E1. Figure B.2 represents a typical
frequency response for a generic low-pass Butterworth digital filter.

By specifying the order and the half-power frequency, the transfer function of the filter may be obtained.
A second-order filter was selected, as its performance was better than a first-order filter, and less oscillating
than higher-order filters, as can be observed in Figures B.1.
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(a) First-order filter.
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(b) Second-order filter.
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(c) Third-order filter.
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(d) Fourth-order filter.

Figure B.1: Effects of different order zero-phase Butterworth filtering of |ü|, for the same specified half-power frequency. Pn = 0.

The half-power frequency, however, was chosen to be iteratively optimized for each individual simulation
run, in a bid to attenuate the effects of noise-realization variability on the filtered |ü|.
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Figure B.2: Frequency response of a second order Butterworth filter, with cut-off frequency ωc = 25 Hz and sampling frequency fs = 100
Hz, yielding a normalized cut-off frequency of 0.5π rad/sample.

B.2.2. Optimization process
To optimize the half-power frequency, a simple quadratic error cost function was defined:

J =∑
(|ü|filt −µ)2

Region II (B.1)

where |üfilt| is the filtered ü signal with the candidate half-power frequency and µ is the analytical SF with re-
spect to the considered condition. Obviously, a better approximation between the two Scheduling Functions
results in a lower cost function value J , and the of half-power frequency which yields the minimum cost is
chosen to filter the signal. This optimization is performed with respect to Region II, to specifically penalize
a bad fit in this region, as this is where the change in dynamics happen and where the perturbations have
significant effect in testing condition P .

The full optimization process makes use of a Nelder-Mead Simplex algorithm [6] and has the following
steps:

• For the first iteration, initialize the normalized half-power frequency, ωhp0
;

• Check if ωhp ≤ 0. If true, assign it a low positive value (1×10−6);

• Design a low-pass second-order Butterworth digital filter with the specified ωhp ;

• Process the |üfilt| signal with a zero-phase digital filtering, using the previously obtained Butterworth
filter (use Matlab function filtfilt, for example);

• Translate and scale the obtained |ü|filt, as in Section A.2.3;

• Obtain J from Equation B.1;

• Search for new ωhp using the Simplex method;

• Repeat until improvements in J are marginal or the limit of twenty iterations has been reached.

The final value ofωhp , deemed the optimal, is then used to filter |ü|, which is then translated and scaled to
obtain E2. Figure B.3 represents E2, obtained after the aforementioned process, for Pn = 0. For comparison,
µ is also given. It is possible to observe that due to the zero-phase filtering, no delay is observed.
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Figure B.3: Comparison between E2 and µ, for Pn = 0.

B.3. The effect of the human operator remnant
Figures B.4 represent the obtained Scheduling Functions E1, for aleatory realizations of different remnant
levels, compared with µ.

Comparatively to the results presented in Appendix A, the results obtained for E2, with the optimized
zero-phase digital filtering appear to be more robust against high human-operator noise. Furthermore, there
is no delay in the transition region for Pn = 0.05 and Pn = 0.15, although E2 is not able to tightly follow µ

during the transition for Pn = 0.25. The final value of E2 seems to be quite tightly around µ for all conditions,
with some low-amplitude oscillations. However, there is a ten-second transient of relatively high-amplitude
at the beginning of the simulations. This is probably caused by the fact that the initial condition of |ü| is zero.
The filter matches this initial condition, causing the filtered signal to transition from zero to its initial DC
component in the first ten seconds. After the translation and scaling operations are complete, this transient
is observed to be modified as well.
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(a) Pn = 0.05.
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(b) Pn = 0.15.
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(c) Pn = 0.25.

Figure B.4: Effects of different levels of human operator remnant in the SF E2, for a single realization.
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Monte Carlo Results: Scheduling Functions
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(a) P̄E1, Pn = 0.05.
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(b) P̄E1, Pn = 0.15.
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(c) P̄E1, Pn = 0.25.
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(d) P̄E2, Pn = 0.05.
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(e) P̄E2, Pn = 0.15.
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(f) P̄E2, Pn = 0.25.
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(g) PE1, Pn = 0.05.
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(h) PE1, Pn = 0.15.
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(i) PE1, Pn = 0.25.
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(j) PE2, Pn = 0.05.
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(k) PE2, Pn = 0.15.
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(l) PE2, Pn = 0.25.

Figure C.1: Experimental SF realizations obtained from 100 Monte Carlo runs, for each condition. Comparison with the corresponding
analytical SF.



D
Monte Carlo Results: Parameter Estimation

The considered testing conditions and Scheduling Functions are once again presented in Table D.1.

Table D.1: Scheduling Function testing conditions.

Hp

Condition

Scheduling Function

Analytical Experimental
µA1 µA2 µE1 µE2

P̄ P̄ A1 P̄ A2 P̄E1 P̄E2

P P A1 P A2 PE1 PE2

The regions of assessment are defined as in Figure D.1. The results presented in this appendix are for
Region I and Region III.

I II III
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Figure D.1: The three regions of testing assessment, with µ represented.
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D.1. Kv

D.1.1. Region I
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Figure D.2: Distribution of Kv estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region I.
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Figure D.3: Distribution of Kv estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region I.
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D.1.2. Region III
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Figure D.4: Distribution of Kv estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region III.
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(l) E2, Pn = 0.25.

Figure D.5: Distribution of Kv estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region III.
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D.2. Ks

D.2.1. Region I
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Figure D.6: Distribution of Ks estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region I.
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Figure D.7: Distribution of Ks estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region I.
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(l) E2, Pn = 0.25.

Figure D.8: Distribution of Ks estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region III.
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(l) E2, Pn = 0.25.

Figure D.9: Distribution of Ks estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region III.
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(l) E2, Pn = 0.25.

Figure D.10: Distribution of ωnm estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region I.
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(l) E2, Pn = 0.25.

Figure D.11: Distribution of ωnm estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region I.
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(e) A2, Pn = 0.15.

Real value

ωnm, rad s−1

P
er
ce
n
ta
ge

of
O
cc
u
re
n
ce
,
%

P̄

0 4 8 12 16 20 24 28
0

5

10

15

20

25

30

35

40

45

50

(f) A2, Pn = 0.25.
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(k) E2, Pn = 0.15.

Real value

ωnm, rad s−1

P
er
ce
n
ta
ge

of
O
cc
u
re
n
ce
,
%

P̄

0 4 8 12 16 20 24 28
0

5

10

15

20

25

30

35

40

45

50

(l) E2, Pn = 0.25.

Figure D.12: Distribution of ωnm estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region III.
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(l) E2, Pn = 0.25.

Figure D.13: Distribution of ωnm estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region III.
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D.4. ζnm
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(l) E2, Pn = 0.25.

Figure D.14: Distribution of ζnm estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region I.
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(l) E2, Pn = 0.25.

Figure D.15: Distribution of ζnm estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region I.
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(k) E2, Pn = 0.15.

Real value

ζnm, -

P
er
ce
n
ta
ge

of
O
cc
u
re
n
ce
,
%

P̄

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

(l) E2, Pn = 0.25.

Figure D.16: Distribution of ζnm estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ , Region III.
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(g) E1, Pn = 0.05.
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(k) E2, Pn = 0.15.
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(l) E2, Pn = 0.25.

Figure D.17: Distribution of ζnm estimations in 100 Monte Carlo simulations for different SFs. Condition P , Region III.
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(b) A1, Pn = 0.15.
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(c) A1, Pn = 0.25.
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(d) A2, Pn = 0.05.
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(e) A2, Pn = 0.15.
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(f) A2, Pn = 0.25.
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(g) E1, Pn = 0.05.
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(h) E1, Pn = 0.15.
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(i) E1, Pn = 0.25.
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(j) E2, Pn = 0.05.
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(k) E2, Pn = 0.15.
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(l) E2, Pn = 0.25.

Figure D.18: Distribution of τv estimations in 100 Monte Carlo simulations for different SFs. Condition P̄ .
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(a) A1, Pn = 0.05.
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(b) A1, Pn = 0.15.
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(c) A1, Pn = 0.25.
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(d) A2, Pn = 0.05.
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(e) A2, Pn = 0.15.
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(f) A2, Pn = 0.25.
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(g) E1, Pn = 0.05.
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(h) E1, Pn = 0.15.
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(i) E1, Pn = 0.25.

Real value

τv, s

P
er
ce
n
ta
ge

of
O
cc
u
re
n
ce
,
%

P

0.14 0.18 0.22 0.26 0.30 0.34 0.38
0

5

10

15

20

25

30

35

40

45

50

(j) E2, Pn = 0.05.
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(k) E2, Pn = 0.15.
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(l) E2, Pn = 0.25.

Figure D.19: Distribution of τv estimations in 100 Monte Carlo simulations for different SFs. Condition P .
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