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Abstract—Workflow schedulers often rely on task runtime
estimates when making scheduling decisions, and they usually
target the scheduling of a single workflow or batches of workflows.
In contrast, in this paper, we evaluate the impact of the absence
or limited accuracy of task runtime estimates on slowdown when
scheduling complete workloads of workflows that arrive over
time. We study a total of seven scheduling policies: four of
these are popular existing policies for (batches of) workloads
from the literature, including a simple backfilling policy which
is not aware of task runtime estimates, two are novel workload-
oriented policies, including one which targets fairness, and one
is the well-known HEFT policy for a single workflow adapted
to the online workload scenario. We simulate homogeneous and
heterogeneous distributed systems to evaluate the performance of
these policies under varying accuracy of task runtime estimates.
Our results show that for high utilizations, the order in which
workflows are processed is more important than the knowledge of
correct task runtime estimates. Under low utilizations, all policies
considered show good results, even a policy which does not use
task runtime estimates. We also show that our Fair Workflow
Prioritization (FWP) policy effectively decreases the variance of
workflow slowdown and thus achieves fairness, and that the plan-
based scheduling policy derived from HEFT does not show much
performance improvement while bringing extra complexity to the
scheduling process.

I. INTRODUCTION

In workloads of modern computing systems, workflows
are often used as a tool to drive complex computations, and
their popularity continues to increase [1]. Many of these
workflows are usually submitted to the system repeatedly so that
(statistical) runtime estimates of their tasks can be derived [2],
[3]; alternatively, runtime estimates can be provided by users [4].
However, the accuracy of runtime estimates significantly
depends on the estimation algorithm used, or on the user—
user runtime estimates can be very unreliable [5], [6]. Most
previous work on scheduling workflows [7]–[10] has assumed
some (and often even perfect) knowledge of task runtimes.
Moreover, often has been considered the offline problem of
scheduling a single workflow or a batch of workflows (which
are all initially present), or periodic submissions with a fixed
interval. In most cases, the makespan has been used as the
main metric.

However, workflows may be submitted to a system over
time according to some arrival pattern, in which case job
slowdown is a much more appropriate performance metric.
Then, especially when workflows of widely different sizes are
submitted, fairness becomes an issue, and an important goal

is to reduce the variability of job slowdown. In this paper,
we investigate how the accuracy of task runtime estimates
affects the quality of scheduling, and we address the issue of
fairness, in the online case of scheduling complete workloads
of workflows. Moreover, we evaluate the system stability to
know at which workflow arrival rates the system starts to
uncontrollably accumulate waiting workflows. Besides that,
we identify the maximal achievable system utilization which
guarantees the stability.

We distinguish dynamic and plan-based policies. Dynamic
policies make task placement decisions just-in-time when a
processor becomes idle or a new task becomes eligible. Plan-
based policies construct a full-ahead plan on every workflow
arrival and strictly follow this plan to perform task placements
between the workflow arrivals.

Task runtime estimates have been heavily used for different
forms of task prioritization by various scheduling algorithms
for single workflows and for batches of workflows. The most
popular approaches [4], [7], [10], [11] include upward and
downward ranking and different forms of list scheduling
techniques. Workflow tasks are usually prioritized in ascending
or descending order of their runtimes or by their proximity
to the entry or exit task. The individual workflows are often
prioritized based on the length of their critical path (a longest
path from an entry to the exit task). In this situation, inaccurate
runtime estimates can significantly affect the task and workflow
ranking, as not only the length of the critical path can be affected
but even a wrong critical path can be used. Knowing how the
quality of estimates affects the performance helps to create
better error-resilient scheduling policies and is useful when
selecting policies which are less sensitive to incorrect estimates.
In our previous work [12], we used a different approach where
we scheduled an arriving stream of workflows without using any
runtime estimates at all, and completely relied on the structure
of the workflows when making scheduling decisions.

To study the influence of the accuracy of task runtime
estimation on the performance, in this paper we study a total of
seven scheduling policies for workloads of workflows, and
we simulate their execution on two workloads of realistic
workflows. Four of these are existing dynamic workflow
scheduling policies, namely Greedy Backfilling (GBF), which
came out best of all the policies we proposed [12] in case no
runtime estimates are available, Online Workflow Management
(OWM) [10], [13], Fairness Dynamic Workflow Scheduling
(FDWS) [9], [10], and Rank Hybd (HR) [8]. We also propose
the simple Critical Path Prioritization (CPP) policy and, in



order to address the issue of fairness, the Fair Workflow
Prioritization (FWP) policy. To check how existing plan-
based scheduling algorithms can be applied when scheduling
workloads of workflows, we have adapted the Heterogeneous
Earliest Finish Time (HEFT) [7] policy to the online case. All
policies except GBF require task runtime estimates for their
operation.

The main contribution of this paper is threefold:

1) We propose two novel dynamic workflow scheduling poli-
cies (CPP and the fairness-oriented FWP), and we adapt
the popular HEFT policy to the online case (Section III).

2) We show how inaccurate task runtime estimates affect
the performance and fairness of scheduling workloads of
workflows (Section V).

3) We demonstrate how the knowledge of task runtime esti-
mates improves the performance at high system utilizations
(Section V-A), and how the plan-based approach struggles
to deal with workloads of workflows (Section V-C).

II. PROBLEM STATEMENT

This section presents our model for the problem of using
runtime estimates for scheduling workloads of workflows and
the performance metrics.

A. The Model

We consider large-scale homogeneous and heterogeneous
computing systems such as large clusters and datacenters that
are subject to an arrival stream of workflows. We only consider
processors as the type of system resources that can be controlled
by the scheduler. The workflows in the stream arrive according
to a Poisson process, and a single workflow in the workload is
considered as a job. We suppose that the selected arrival process
is representative as our system models a public distributed
system which serves multiple independent customers.

We schedule on this system a stream of synthetic workflows
where each workflow (WF, Directed Acyclic Graph (DAG))
consists of a set of tasks with precedence constraints among
them. Accordingly, the size of a workflow is defined as the
number of tasks it has. Each workflow task can start its
execution only when all of its precedence constraints are
satisfied (e.g., when all the required input files are available). We
assume that each workflow task requires only one processor to
run. The execution time of a task on a processor is proportional
to the processor speed. All the considered workflow structures
have a single entry node and a single exit node. We guarantee
this by adding, if necessary, one or two artificial nodes with
zero runtime.

Since we focus on the computational properties of work-
flows, we assume that the data transfer times between workflow
tasks in our simulated system can be neglected. This is
equivalent to the situation in a real system where the computing
nodes are connected to a shared file system so that the input data
is available for any task almost immediately after its parents
finish.

The runtime estimates are often extracted from historical
runs, simulations of workflow executions, or even are obtained
from users [5], [14]. However, the quality of such estimates can
vary significantly depending on the estimation method. To study

the effect of the quality of task runtime estimates on the system
performance, we modify the perfect task runtimes obtained
from the synthetic workload using a certain pre-defined error
factor fe. The error allows to either under-estimate or over-
estimate the task runtimes. All of the evaluated schedulers are
not aware of under- or over-estimation. They can only derive
the error in task runtimes post factum by comparing the given
runtime estimates with the actual task runtimes obtained during
the execution (as in our FWP policy, Section III-H). We use
three methods to introduce the estimation errors:

• Static error: Here we multiply the runtime of every task
of every workflow by the error factor fe.

• Random error I: Here we multiply the runtime of every
task within a single workflow by the same random error
factor. This random error factor is independently generated
for every workflow in the workload by drawing it from
the uniform distribution on the interval (0, fe × 2]. So
on average, task runtimes in the workload are under- or
overestimated by a factor of fe.

• Random error II: Here we multiply the runtime of every
task by an individually generated random error. The
runtime estimate of a task is computed by multiplying
its original correct task runtime dr by a random error
factor drawn from the uniform distribution on the interval
(0, fe/dr × 2]. This is an extreme case of introducing an
error, as it changes the distribution of task runtimes to
a uniform distribution on the interval (0, 2fe]. Thus, the
scheduler operates with estimates which are very far from
the original ones.

B. Performance Metrics

In order to compare the implemented scheduling policies,
we define a set of metrics and baselines. Scheduling workflows
is not work-conserving in that there may be non-eligible tasks
waiting in the queue while at the same time, there are idle
processors in the system. As a consequence, policies scheduling
workloads of workflows may not be able to drive a system
up to a utilization of 100%. Therefore, we use the maximal
utilization as a system-oriented metric to assess the performance
of workflow scheduling policies. The maximal utilization ρm is
defined as the utilization such that for any ρ1 with ρ1 < ρm the
system is stable (not saturated), and for any ρ2 with ρ2 > ρm
the system is unstable (saturated).

As a user-oriented metric to assess workflow scheduling
policies we use the (average) slowdown, which is defined in
steps in the following way:

• The wait time tw of a workflow is the time between its
arrival and the start of its first task.

• The execution time te of a workflow is the sum of the
runtimes of all its tasks.

• The makespan tm of a workflow is the time between the
start of its first task until the completion of its last task.

• The response time tr of a workflow is the sum of its wait
time and its makespan: tr = tw + tm.

• The slowdown s of a workflow is its response time (in
a busy system, when the workflow runs simultaneously
with other workflows) normalized by the length c of its
critical path: s = tr / c.



III. SCHEDULING POLICIES

In this section, we first provide some definitions and explain
the upward rank, which is crucial for task prioritization in
almost all of the scheduling policies we consider. Then we
present GBF the greedy backfilling dynamic policy which
does not use task runtime estimates at all, and five dynamic
policies: CPP, OWM, FDWS, HR, and FWP, that require task
runtime estimates. Dynamic policies make scheduling decisions
whenever a new task becomes eligible or a processor becomes
idle. Finally, we present the plan-based WHEFT policy which
uses task runtime estimates to construct a full ahead execution
plan on every workflow arrival; between arrivals, the execution
is completely guided by the precomputed plan. We classify the
considered policies by their distinctive properties in Table I.
The GBF policy is included in the paper as it has shown good
performance in our previous work [12]. The dynamic policies
that require task runtime estimates have been selected based
on the comparative study by Arabnejad et al. [10]. We choose
HEFT as it is one of the most popular algorithms for workflow
scheduling and it is often used as a reference [15].

A. Definitions

Scheduling workloads of workflows often operates with the
notions of eligible set and level of parallelism. For a workflow,
at any point in time before or during its execution, its eligible
set (of tasks) is defined as the set of non-completed tasks of
which the precedence constraints have been satisfied. For a
workflow that has not yet completed, we define its Level of
Parallelism (LoP) as the maximum number of processors it
may ever use at any future point in its execution, which is
equal to the maximum number of tasks in any of its potential
future eligible sets. Of course, the LoP of a workflow can only
stay the same or decrease during its execution. The LoP can
be computed exactly [16] or approximately [12]. In this paper,
we approximate LoP by dividing the total execution time te of
a workflow by the length c of its critical path.

B. The Upward Rank Computation

The upward rank is often used to prioritize tasks in
workflows based on their duration and proximity to the exit
task (e.g., in HEFT [7]). For each task ni in a workflow, the
upward rank ru is recursively calculated, starting from the exit
task, using the following formula:

ru(ni) = ei + max
nj∈S(ni)

(ci,j + ru(nj)),

where ei is the average estimated execution time of task ni,
S(ni) is the set of immediate successors of task ni, and ci,j
is the average communication delay between tasks ni and nj .
Since the exit task has no successors, its upward rank is just
equal to its average estimated execution time. The average
estimated execution time ei is calculated for each task using
the average speed of the processors in the system. The average
estimated communication cost ci,j is calculated as the average
communication start-up time plus the size of the data to be
transmitted, divided by the average transfer rate between the
processors. The length c of the critical path of a workflow is
equal to the maximum value of ru among all the workflow
tasks N :

c = max
ni∈N

(ru(ni)).

Table I: The distinctive properties of the considered policies.

Property Policies
GBF CPP OWM FDWS HR FWP WHEFT

Proposed in this paper – + – – – + +
Plan-based – – – – – – +
Explicit job queue (FCFS) + + – – – – –
Joint eligible set (one task per WF) – – + + – + –
Joint eligible set (all eligible tasks) – – – – + – –
Fairness-aware – – – + – + –

By workflow length we mean the length of its critical path.

C. Greedy Backfilling

The simple Greedy Backfilling (GBF) policy is an applica-
tion of greedy backfilling to workflow scheduling which we
proposed in our previous work [12]. This policy processes
workflows in FCFS order, and does not require task runtime
estimates for its operation. In GBF, on every invocation, the
scheduler, starting from the head of the queue, selects the first
workflow with a non-empty eligible set, randomly picks a task
from it, assigns it to the first available fastest processor, and
removes it from the set. It continues to do this until the eligible
set of the workflow is empty or until there are no more idle
processors. When the eligible set is empty but the system still
has idle processors, the scheduler takes the eligible set of the
next workflow in the queue, and so forth.

D. Critical Path Prioritization

Our Critical Path Prioritization (CPP) policy extends our
GBF policy. In CPP, on every invocation, the scheduler, starting
from the head of the queue, selects the first workflow with a
non-empty eligible set, picks the task from it with the highest
ru, assigns it to the first available fastest processor, and removes
it from the set. For the rest, the CPP scheduler is similar to
GBF.

E. Online Workflow Management

The Online Workflow Management (OWM) policy [10],
[13] maintains a single joint eligible set which contains only
a single eligible task (if any) with the highest ru from every
workflow in the system. At every scheduler invocation, as long
as the system has workflows with eligible tasks, the scheduler
selects the task with the highest ru from the joint set. If the
idle processors have the same speed, OWM finds the busy
processor which will become idle earlier than any other busy
processor. If the estimated finish time of the selected task on
that busy processor is smaller than EFT on any of the idle
processors, the task is postponed (stays in the joint set) until
the next scheduler invocation. Otherwise, the task is assigned to
any of the idle processors. If the idle processors have different
speeds, the task is assigned to the fastest idle processor.

F. Fairness Dynamic Workflow Scheduling

The Fairness Dynamic Workflow Scheduling (FDWS) pol-
icy [9], [10] maintains a single joint eligible set which is formed
in the same way as in OWM. However, within the joint set
each task of a workflow j is additionally prioritized with rank
ra (highest first) which considers the fraction of remaining



tasks of the workflow and the length of its critical path.
The additional rank ra is defined as follows:

ra,j =

(
mj

pj
× cj

)−1
,

where mj is the number of unfinished (not yet eligible or
eligible) tasks in workflow j, pj is the total number of tasks
in the workflow, cj is the initial length of the workflow (at
the moment of its arrival to the system). The first factor in the
formula prioritizes workflows with lower fractions of remaining
tasks, while the second factor in the formula gives priority to
shorter workflows. There are two versions of the FDWS policy
in the literature. The first version considers both idle and busy
processors for task allocation. If the selected processor is busy
the task is placed in its task queue. The second version considers
only idle processors. In both cases the processor allowing the
lowest estimated finish time for the task is selected. For better
comparability with other considered policies, in this paper we
use the version of the FDWS policy [10] without per processor
queues.

G. Hybrid Rank

The Hybrid Rank (HR, the original name is Rank Hybd [8])
policy maintains a single joint eligible set of all the eligible
tasks from all the workflows in the system. On arrival of a
workflow, the policy computes ru for all its tasks. At every
scheduler invocation, if the tasks in the joint set belong to
different workflows, the scheduler selects the task with the
lowest ru. If the tasks in the joint set are from the same
workflow, the algorithm selects the task with the highest ru.
On the one hand, the HR policy tries to achieve fairness by
allowing shorter workflows to start their execution earlier. On
the other hand, during the execution of a workflow, the length
of the remaining part of its critical path decreases as more
tasks finish. Although HR could delay longer workflows just
after their arrival, the policy gives them more preference when
they are about to finish.

H. Fair Workflow Prioritization

We propose the Fair Workflow Prioritization (FWP) policy
which is similar to OWM and FDWS in the way it forms the
single joint eligible set, but which uses a different mechanism
to compute task priorities to achieve even better fairness than
FDWS. On every workflow completion, by averaging historical
slowdowns of previously finished workflows, FWP computes
the target slowdown which all the workflows in the system are
supposed to experience. The workflows are prioritized based on
their proximity to the target slowdown. The lower the current
slowdown of a workflow than the target slowdown, the lower
its priority, the higher the current slowdown than the target
slowdown, the higher its priority.

FWP allows to achieve better fairness when scheduling
multiple workflows simultaneously, as the acceleration of
certain workflows is done at the cost of decelerating others.
Thus, the number of possibilities to slow down a certain
workflow is limited by the number of workflows present in
the system. To achieve the same target slowdown, workflows
with longer critical paths should be delayed more compared to
workflows with shorter critical paths. If the system does not

have enough concurrent workflows, the workflows with longer
critical paths will experience lower slowdowns than the target.
An alternative solution is to postpone certain workflows by
periodically excluding their tasks from the joint eligible set and
making them eligible for scheduling after a timeout. However,
we keep this improvement for future work.

We calculate the target slowdown st based on the history of
slowdowns si of K previously finished workflows by averaging
them: st =

∑K
i=1 si/K. When the history is empty, the system

is initialized with st = 1. For workflow j, its current slowdown
ŝj is calculated as:

ŝj = (t̂r,j + ĉjξ)/(cjξ),

where t̂r,j is the current residence time of workflow j from
its arrival till now, ĉj is the length of the critical path of the
remaining part of the workflow (which is not yet running), cj
is the length of the workflow, and ξ is the correction coefficient
which is required to cope with possibly incorrect estimates.
Since FWP depends on critical path length to calculate ŝ,
incorrect task runtime estimates could affect the ranking.
Thus, after the completion of each task, the policy stores its
actual measured runtime dm and its estimated runtime de, and
computes a correction coefficient ξ using information about
the M tasks that finished last:

ξ =

∑M
i=1 dm,i
M

/

∑M
i=1 de,i
M

.

To prioritize the task from workflow j within the joint
eligible set, FWP uses rank rb which is calculated as:

rb,j = ŝj − st,

where ŝj is the current slowdown of workflow j and st is the
target slowdown.

I. Workload HEFT

The Workload HEFT (WHEFT) policy is our adaptation
of HEFT policy [7] for scheduling workloads of workflows.
In addition to the scheduler, WHEFT uses a separate planner
which maintains a global execution plan for all the workflows
in the system. For each non finished task in the workflow, the
plan defines the processor where and when the task should
run. On every new workflow arrival a completely new global
plan is created. Between the workflow arrivals the execution is
completely guided by the scheduler using the plan.

Since the workload is an arriving stream of incoming
workflows, to be able to apply HEFT it is required to
combine the workflows in the system into one. For that, we
use an Alternating DAGs approach proposed by Zhao and
Sakellariou [15] as in the original paper it showed better
performance compared to other approaches from the same
group. To apply the Alternating DAGs approach, WHEFT
planner first combines the workflows in the system by adding a
single joint exit node. Then it computes upward ranks ru for all
the tasks within the new combined workflow. Further, using the
Hybrid policy [11], WHEFT splits the combined workflow into
levels where each level contains only independent tasks. The
tasks within each level are grouped according to the original
workflow where they belong to. WHEFT switches between
the groups in a round robin manner to make a sorted list of



tasks in (descending order of their ru). The plan is created by
sequentially traversing the levels and sequentially processing
the sorted lists of tasks made from the groups by applying
HEFT to them.

The WHEFT scheduler is called after the plan construction
and after each task completion. The scheduler sequentially
checks the plan and tries to assign non-running tasks from
the plan to according processors. The tasks are checked for
eligibility in the ascending order of their planned start times.
If a task is not yet eligible, the scheduler proceeds to the next
processor. When a task finishes, the scheduler removes it from
the plan. The scheduler does not perform any task preemption.
If, according to the plan, a certain task should be currently
started, but the processor where it should run is still busy (as
the plan could be incorrect due to erroneous runtime estimates),
the task which occupies the processor runs until its completion.

IV. EXPERIMENTAL SETUP

In this section, we present the synthetic workloads we use
to analyse the performance of our scheduling policies and we
present our simulation environment.

A. Workloads

In our simulations, we use two workloads with an arrival
process of workflows, and a batch of workflows that are all
submitted simultaneously. Workload I mixes equal fractions of
three representative types of workflows and is generated using
the workflow generator [17] presented by Bharathi et al. [18].
The workflows are taken from different application domains, i.e.,
astronomy (Montage [2], [18]–[20]), physics (LIGO [2], [18],
[20], [21]), and bioinformatics (SIPHT [2], [18], [22]). Montage
builds mosaic images of the sky obtained from different
telescopes. LIGO is used to process the data from detectors
of the Laser Interferometer Gravitational Wave Observatory
(LIGO) [23] and its mission is to detect gravitational waves
predicted by general relativity. SIPHT helps to search for small
untranslated bacterial regulatory RNAs.

Montage has the most complicated structure and its size
is determined by the number of processed images. A LIGO
workflow usually consists of many smaller workflows combined
into a single workflow. Similarly to LIGO, the SIPHT workflow
combines smaller independent workflows, but with very similar
structures. The workflow types are diverse not only in the
structure of their DAGs, but also with respect to the processing
requirements of their tasks as we will see later in this section.

Workload II solely consists of random workflows gen-
erated using an existing random DAG-generator created by
Suter et al. [24]. The generator has four configuration param-
eters: jump sets the maximum number of workflow levels
induced by the inter-task dependencies, regular specifies the
regularity of the task distribution across workflow levels, fat
specifies the width (LoP) of the workflow, and density specifies
the numbers of dependencies between tasks of two consecutive
workflow levels. The values for these parameters we use are
selected uniformly from the following sets: jump = 1, 2, 3,
regular = 0.2, 0.8, fat = 0.2, 0.8, and density = 0.1. We
use only a single and relatively low value for density since
for large workflows (with several hundreds of tasks and more),
higher densities significantly increase the complexity of finding

0 2000 4000 6000 8000 10000

Job runtime (s)

10−3

10−2

10−1

100

P
ro

b
a
b
il
it

y

0 1000 2000 3000 4000 5000

Task runtime (s)

100

10−2

10−4

10−6

1.0 1.5 2.0 2.5 3.0

Branching factor

100

10−2

10−4

10−6P
ro

b
a
b
il
it

y

0 20 40 60 80 100

Approximated LoP

100

10−2

10−4

10−6

Figure 1: Statistical characteristics of Workload I. The vertical
axes have a log scale.
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Figure 2: Statistical characteristics of Workload II. The vertical
axes have a log scale.

a critical path. More information on the parameterisation of the
random DAG generator can be found in its code repository [24].

For the total workflow execution time in Workload I, we use
a two-stage hyper-Gamma distribution derived from the model
presented in [25]. The shape and scale parameters (α, β) of the
two component Gamma distributions are set to (5.0, 501.266)
and (45.0, 136.709), respectively. Their proportions in the
overall distribution are 0.7 and 0.3. Figure 1 visualizes this
distribution. In Workload II we use the original total execution
time distribution obtained from the generator, see Figure 2. In
order to obtain simulation results for the different workflow
types that can easily be compared, in both workloads we use
the same average total execution time of one hour. For every
workflow in both workloads, we normalize the generated task
runtimes so that its total processing requirement is equal to the
corresponding sample of the execution time distribution.

In Figures 1 and 2 we show the distributions of the task
runtimes, the branching factors (the total number of inter-task
links in a workflow divided by its size), and the approximated
LoPs (te/c). The two workloads share the phenomenon that
they are dominated by short tasks. However, the task runtimes
in Workload I are an order of magnitude longer than in
Workload II. At the same time, the range of the total job
runtimes in Workload II is four times as large as in Workload I.
Interestingly, Workload II also shows a higher diversity of
branching factors but a twice smaller approximated LoP.

For each utilization level, both workloads consist of three
unique sets of workflows with 3,000 workflows each, which
allows us to perform three independent simulation runs per
utilization level. As with many other workloads in computer
systems, in practice, workflows are usually small, but very large



ones may exist too [26]. Therefore, in our simulations we dis-
tinguish small, medium, and large workflows, defined by sizes
that are uniformly distributed on the intervals [30,38], [40,198],
and [200,600], respectively (all workflows are assumed to have
even sizes). The small, medium, and large workflows constitute
fractions of 75%, 20%, and 5% of the workload.

Finally, we use a batch of 1,000 workflows consisting
of workflows from Workload I. Accordingly, the statistical
characteristics of the batch are similar to those of Workload I.

B. Simulation Environment

We have modified the DGSim simulator [27], [28] for
cluster and grid systems to include the workflow scheduling
policies we consider. The size of the cluster we use in all of
our simulations is 100 single-processor nodes. We vary the
accuracy fe of the estimates using the following values: 0.1, 2,
5, and 10. As in our model the communication overhead is not
considered, the ru values are computed only using the average
estimated execution time. We suppose that after a task has been
assigned to a processor, it runs there until its completion. For
our FWP policy we choose values of K = 300 and M = 1000
(see Section III-H).

We mostly focus on a homogeneous system where all
the processors have an average processing speed of 1 work-
flow/hour. However, we also perform a set of experiments
with a heterogeneous system with two equally sized groups of
processors: fast processors with an average processing speed
of 1.5 workflow/hour and slow processors with an average
processing speed of 0.5 workflow/hour.

For the majority of the simulations we use a system
utilization of 98% since all the considered dynamic policies can
handle such high utilizations (we show this later in Section V).
We only show results when the system is in steady state, i.e.,
when reporting performance results for workloads, we omit the
performance information for the first 1000 workflows and last
1000 workflows in each simulation.

C. System Stability Validation

To be able to clearly distinguish situations when the system
is or is not stable in a long-term perspective, we use two
methods: the statistical system stability check proposed by
Wieland et al. [29], as well as the Lyapunov drift theorem [30].
For every simulation run, we perform both stability tests. The
system is considered stable if each method shows at least two
stable results out of three.

According the Wieland approach, we take the observed
number of workflows in the system N(t) (both queued and
partially running) at every moment t, where 0 ≤ t ≤ τ with τ
the total duration of the simulation, and split the observations
into b batches, where b = 10. Then for each batch j = 2, . . . , b
we compute the time average number of workflows in the
system within the batch as:

λ̂N,j =

∫ jτ/b

(j−1)τ/b

N(t)

τ/b
dt.

Then we compute the difference between the last and second
batch observations: λ̂N = λ̂N,b − λ̂N,2, and compute the vari-
ance of batch observations σ2 with b− 1 degrees of freedom.

We conclude whether the system is stable if

λ̂N√
2σ

> t1−α,b−2,

where t1−α,b−2 is the 1−α Student-T quantile with b−2 degrees
of freedom. For the default values of b = 10 and α = 0.05,
t1−α,b−2 = 1.86, thus, stability is rejected if λ̂N > 2.63σ.

For the Lyapunov drift-based stability check we compute
the mean Lyapunov drift throughout the simulation as follows:
δ(t) = l(t) − l(t − 1), where l(t) = N(t)2/2. A low value
of the mean Lyapunov drift after the initial transient indicates
that the system converges and is stable. For our system we
experimentally derive a threshold of 1 for the mean Lyapunov
drift; if the mean drift exceeds 1, the system is considered
unstable.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results. We first
investigate how varying the error in task runtime estimates
affects the slowdowns of workflows in homogeneous and
heterogeneous systems for the six dynamic scheduling policies
we consider. Then we show the performance of the plan-based
WHEFT policy and the performance when scheduling batches
of workflows.

A. Performance of Dynamic Policies

First, we compare the performance of the six dynamic
policies we consider in a homogeneous system with the
three methods for introducing estimation errors. All of these
policies are able to achieve a 98% system utilization without
destabilizing. Figures 3a and 3b show the workflow slowdown
distribution and standard deviation versus the error factors in
our two random error methods for both workloads. We do not
show outliers in these figures and set the whisker boundaries
within 1.5 times of the interquartile range. Changing the runtime
estimates by a static factor does not affect the performance of
any of the dynamic policies. The reason is that all the task
upward ranks simultaneously scale in the same way, and that
as a consequence, the order of selecting workflow tasks for
execution is not affected. Therefore, we do not present the
results for the Static error method as they are identical to the
No Error results in Figures 3 and 4. Without an error, the mean
number of workflows (fully or partially running and waiting)
in the system throughout the experiment varies from 35 (CPP)
to 40 (HR).

For the Random error I method, in Figures 3a and 3b we
see that the performance of the policies is largely insensitive
to the value of the error factor. We also find that the GBF and
CPP policies, which both employ the FCFS principle, exhibit
a much poorer mean slowdown and higher percentiles than the
other policies. Moreover, the CPP policy exhibits only a slight
decrease in the mean slowdown and the standard deviation
with Workload I (see Figure 4a) over the GBF policy, which
shows that the way in which it uses task runtime estimates is
not effective. Notably, for our FWP policy the results for the
No Error case are definitely the best. It also achieves lower
values of the standard deviation with an error factor of 2.0 for
Workload I, at the cost of an increased mean slowdown. In the
other cases, FWP shows comparable or slightly higher standard
deviation than the other policies, except GBF and CPP.



(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I.

Figure 3: Slowdown versus the error factor at 98% system
utilization in a homogeneous system. NE is No Error, means
are marked with ×. Missing bars indicate unstable situations.

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I. The vertical axis has larger scale.

Figure 4: Slowdown standard deviation versus the error factor
at 98% system utilization in a homogeneous system. NE is
No Error. Missing bars indicate unstable situations.

In contrast, using the Random error II method for varying
the estimation error factor (see Figures 3c and 4c) does affect
the slowdowns of the workflows in Workload I, creating many
outliers and significantly increasing the mean slowdowns and
standard deviations for all policies except GBF and CPP. OWM
and FDWS even destabilize at high over-estimation factors, but
stay stable at lower 97% utilization for all the error factors.
However, our FWP policy shows the lowest values of the
standard deviation compared to OWM, FDWS, and HR due to
its correction mechanism for task runtime estimates (Figure 4c).
At the same time, the Random error II method hardly affects
Workload II and shows similar results as Random error I. Thus,
we omit the results for Random error II with Workload II as
they look identical to the Figures 3b and 4b. The statistical
characteristics of the workloads (Figures 1 and 2) show the
cause of this observation: Workload I has a much higher
variability of task runtimes.

B. Effects of Heterogeneity

We conduct the same set of experiments with the dynamic
policies as in Section V-A in a heterogeneous system and, analo-
gously, we omit the results with static error factor. Interestingly,
in a heterogeneous system the dynamic policies stay stable even

at 99% imposed utilization with correct runtime estimates. Even
though the average service rate of the heterogeneous system is
the same as of the homogeneous system, the stream of arriving
workflows does not split equally between two processor groups.
There are two reasons for this: all the considered policies give
priority to faster processors, and faster processors more often
lead to scheduler invocations as they simply capable to process
tasks faster. Compared to the homogeneous environment, the
mean number of workflows in the heterogeneous system during
the experiment without an error is higher and ranges from 38
(CPP) to 43 (HR).

For comparability with the results in Section V-A, in
Figures 5 and 6 we show the results for the heterogeneous
system at 98% utilization. Some policies, e.g., OWM, FDWS,
and HR destabilize at certain error factors even more often
as in the homogeneous system. However, similarly to the
homogeneous system, all the considered dynamic policies are
stable at 97% utilization for all the error factors. Comparing
Figures 5 and 3 we can see that for all the policies their mean
slowdowns increase in the heterogeneous system. At the same
time, the values of standard deviation stay comparable to the
homogeneous system, and only OWM perform much poorer
and even destabilizes at error factor 0.1. The reason is that



(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I.

Figure 5: Slowdown versus the error factor at 98% system
utilization in a heterogeneous system. NE is No Error, means
are marked with ×. Missing bars indicate unstable situations.

(a) Random error I, Workload I.

(b) Random error I, Workload II.

(c) Random error II, Workload I. The vertical axis has larger scale.

Figure 6: Slowdown standard deviation versus the error factor
at 98% system utilization in a heterogeneous system. NE is
No Error. Missing bars indicate unstable situations.

OWM postpones tasks if there exist better placement in the
future on a faster processor, and, of course, it is only applicable
to the heterogeneous system. However, when task runtimes
estimates are incorrect, OWM starts to make “mistakes” by
unnecessarily postponing more tasks. Similar but even worse
behavior can be observed in Figures 5c and 6c with Workload I
and Random error II where OWM destabilizes for any error
factor.

As in Section V-A, all the policies stay stable with
Workload II and only exhibit slightly higher mean slowdowns.
Only in Figure 6b OWM shows an increase of standard
deviation, however, without destabilizing. We do not present
results for Workload II with Random error II as they are almost
identical to Figures 5b and 6b with the only difference that
OWM does not increase the standard deviation at error factor
0.1 and stays in line with FWP, FDWS, and HR.

Our FWP policy shows comparable performance to FDWS
and HR while showing lower slowdown variability with
Random error II and Workload I (Figure 6c) as FDWS and HR
simply destabilize. Moreover, CPP policy performs better than
GBF, showing that prioritizing tasks with higher upward rank
has more effect in a heterogeneous system.

C. Performance of Plan-based WHEFT

We include only a limited set of results with WHEFT as it
simply turns out to be ineffective with workloads of workflows
and brings extra complexity by requiring plan construction.
Figure 7 shows a performance comparison of WHEFT with the
dynamic policies at an imposed system utilization of 97%, as
this is the maximum utilization at which WHEFT is stable in
the No Error scenario. As a first conclusion from Figure 7, we
find that a lower utilization decreases slowdowns and reduces
the difference between (the interquartile ranges of) the dynamic
policies compared to the results in Figures 3 and 5.

WHEFT is unstable for both error types and all error
factors at 97% utilization. We investigated at which utilizations
WHEFT stabilizes by decreasing the system utilization with
steps of 10% in the presence of task runtime estimation errors.
It turns out that WHEFT is only stable for all the considered
error factors at a very low utilization of 40%.

The reason why WHEFT is so sensitive to estimation
errors is that between workflow arrivals it is completely plan-
driven and thus has less flexibility to cope with incorrect
runtime estimates. If according to the plan a certain task
should be currently scheduled to a processor, but it is not



(a) Slowdown in various system configurations.

(b) Standard deviation of slowdown in various system configurations.

Figure 7: The performance of WHEFT in comparison with the
dynamic policies at 97% imposed system utilization without
estimation errors. Means are marked with ×.

eligible due to the incorrectly calculated plan, WHEFT just
skips it, leaving the processor idle. It thus creates a gap in
the schedule and slows down the workflow to which the task
belongs. Once a task is wrongly placed in the plan due to
incorrect estimates, it can only possibly be relocated to a
better position when a new workflow arrives. While WHEFT
postpones tasks “unintentionally”, OWM postpones tasks on
purpose in the hope that finally they will be scheduled on a
faster processor. So the reason why WHEFT shows poor results
is similar to why OWM becomes unstable in Section V-B.

At a 97% utilization, our simulated system receives 97
workflows per hour (since the workflows have an average total
execution time of 1 hour), which means that on average, the
plan is recomputed 97 times per hour. So on average, every
workflow task has a chance to be relocated to a better position 97
times during the workflow execution. Decreasing the utilization
decreases the number of simultaneously scheduled workflows,
but at the same time it decreases the number of possible task
relocations.

Moreover, the original HEFT policy schedules tasks with
higher upward ranks first. For this reason, WHEFT gives
priority to longer workflows constituting the joint workflow.
Accordingly, WHEFT postpones shorter workflows, which
represent the majority of both our workloads. That increases
the average slowdown and accumulates more workflows in the
system, finally destabilizing it.

For plan-based policies in real-world non-simulated envi-
ronments, the duration of the plan construction phase is crucial.
Newly arrived workflows cannot start their execution until their
tasks have been added to the plan. This can additionally increase
job slowdown. In the considered simulated environment, from
the perspective of workflows plan construction takes zero time,
but in real systems it should be much smaller than the average
workflow inter-arrival time. In our case, for 1000 simultaneously

Figure 8: The total schedule length in hours of a batch
submission based on Workload I with 1000 workflows in a
homogeneous system. NE stands for No Error.

running workflows (see Section V-D) the plan construction takes
40 minutes for a Python3 implementation running on a DAS-41

node (2.4 GHz Intel E5620 CPU, 24 GB RAM). The planning
time, however, can be reduced by using a tree structure (e.g.,
a k-tree [31]) to store the information about the gaps in the
plan. It will decrease the time required to find an appropriate
gap for a task at the cost of a higher memory consumption.

D. Performance of a Batch Submission

In this section we investigate how the considered policies
behave when handling a batch submission. Since this paper
mainly focuses on the analysis of workloads of workflows,
we only perform a limited set of experiments with a single
batch submission of 1000 workflows based on Workload I
in a homogeneous system. Figure 8 shows the total schedule
length in hours of this batch with variable Random error I.
We do not show the results for Random error II as they are
comparable. There is a small difference for under- and over-
estimating situations, with GBF and CPP producing schedules
that are longer by half an hour (5.5%) than the other dynamic
policies.

We do not report slowdowns, as we suppose that batch
submissions usually come from a single user who is only
interested in minimizing the total schedule length rather than
achieving fairness among the workflows in the batch. We can
clearly see that WHEFT, indeed, constructs a shorter schedule
than the dynamic policies. However, it is less resilient to errors
as its scheduler postpones tasks which are not eligible or if a
target processor is occupied (as in Section V-C). The schedule
length created by WHEFT matches the expected length of 10
hours, as we scheduled 1000 workflows with an average total
execution time of 1 hour on 100 processors. Surprisingly, GBF
and CPP policies produce shorter schedules than the other
dynamic policies. Note, that GBF and CPP process workflows
in the order in which they are defined in the batch, while all
the other policies use various ways of ranking to prioritize
workflows.

E. Fairness

To demonstrate that our FWP policy allows to achieve
better fairness when scheduling workloads of workflows, in
Figure 9 we show scatter plots when running both workloads
at 98% utilization in a homogeneous system without runtime
estimation errors. We can clearly see that FWP reduces the

1Distributed ASCI Supercomputer 4, www.cs.vu.nl/das4



(a) Workload I.

(b) Workload II.

Figure 9: Scatter plots of slowdowns versus the sizes of
workflows at 98% utilization in a homogeneous system without
an error. The glyph color encodes the approximated LoP, the
vertical axes have a log scale.

number of outliers and moves the median slowdown closer
to the mean than any other policy, while slightly increasing
the mean. Similar behaviour is observed in the heterogeneous
system (not shown).

Obviously, Workload I is more challenging for the dynamic
policies as it contains more highly parallel workflows (see
Figure 1). From one perspective, containing more tasks those
workflows have more chances to adjust their ranks during
the execution. From another perspective, among those highly
parallel workflows some have very short critical paths, which
means that their slowdowns, in case of any delay, increase
much faster compared to relatively sequential workflows with
long critical paths. These “short” but highly parallel workflows
are the main reason why FWP does not show even better results
with Workload I. None of the considered dynamic policies is
able to completely remove such outliers. Including the level of
parallelism when computing the rank in FWP might help to
solve this problem.

VI. RELATED WORK

Our work is a first study in the field which considers the
influence of task runtime estimates on the quality of scheduling
for a variety of workflow scheduling heuristics.

Yu ans Shi [8] use Poisson arrivals, but suppose perfect
runtime estimates, and do not investigate slowdown variability.
Hsu et al. [13] propose the original OWM algorithm and also
use Poisson arrivals with a set of experiments dedicated to the
impact of inaccurate runtime estimates. Unlike us, that paper
only considers one type of random uncertainty and compares
OWM only with two other algorithms, including Rank Hybd
(HR) which we implement in this paper. Moreover, the number
of scheduled workflows in that paper is only 100, and the
system utilization and stability are not taken into account.

In a paper by Arabnejad and Barbosa [32] the authors
compare HEFT with FDWS and show that HEFT exhibits
the poorest performance. They claim that they modified the
original HEFT to use it in an online scenario, but do not clearly
explain how. Moreover, the authors do not consider system
utilization, just simply submitting relatively few workflows (50)
with a fixed interval. In the recent paper by Arabnejad and
Barbosa [33] which targets multi-QoS constrains the system
utilization is not considered either.

The slowdown-based fairness problem has been addressed
before. Zhao and Sakellariou [15] proposed a plan-based policy
which targets fairness using a variety of approaches. However,
their algorithm has limited applicability for workloads of
workflows as it is plan-based. Recently, Wang et al. [34]
proposed fairness-aware dynamic FSDP algorithm which,
however, does not clearly link the current slowdown and
the target average slowdown which should be achieved, and
recomputes workflow priorities on every new workflow arrival
only. In contrast, our FWP policy recomputes priorities when a
task becomes eligible or a processor becomes idle. An algorithm
for fairness and granularity control for online scheduling of
workflows is also addressed in a paper by Ferreira da Silva
et al. [35]. Their approach, though, does not consider system
utilization.

Among the algorithms which can operate without task
runtime estimates we distinguish PRIO [36] which was success-
fully implemented in the DAGMan component of the Condor
distributed job scheduler [37]. However, we do not include it in
the comparison, as it tries to maximize the number of eligible
tasks in hope to increase the throughput of the system, while
in this paper we focus on upward rank-based policies.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the effect of incorrect
task runtime estimates on the performance of dynamic and plan-
based scheduling policies in the online scenario of scheduling
workloads of workflows.

We can clearly see the benefit of knowing task runtime
estimates as we do observe significant performance differences
between the considered dynamic policies and large improve-
ments in average job slowdown, but only at extremely high
system utilizations. Similarly, the sensitivity to incorrect task
runtime estimates increases at higher system utilizations. The
order in which the workflows are processed is very important,
as it allows to achieve a fairer distribution of slowdowns among
workflows in the workload, as in our FWP policy.

Giving priority to workflows with longer critical paths,
especially at extremely high utilizations, easily destabilizes



the system if the workload has a majority of short workflows, as
these short workflows start to accumulate. At lower utilizations,
which are very common in real datacenters, simpler backfilling-
based policies that do not use task runtime estimates are quite
applicable and show comparable performance to more advanced
fairness-oriented policies.

The plan-based WHEFT policy shows poor performance
with workloads of workflows, but it does construct the shortest
schedule for batch submissions. Moreover, WHEFT is quite
unstable with incorrect task runtime estimates, running stably
only at the relatively low utilization of 40%. We believe that
even more complex policies like Hybrid.BMCT [11] would also
suffer from this problem. Even though we do not exclude that
plan-based approaches could achieve slowdowns comparable
to those of dynamic policies, their planning overhead and
implementation complexity do not seem to be worth it.

For future work, we are going to further improve the
performance of the FWP policy by trying other prioritization
approaches to allow even short and extremely parallel workflows
to experience comparable slowdowns. Since the performance
of the policies which rely on task runtime estimates depends
on the type of the random error, it would be interesting to use
other error types, e.g., giving more error variability to shorter
tasks, as has been observed by Feitelson [5]. Moreover, we
plan to additionally validate the considered policies in a real
cloud environment with more complex submission patterns.
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