The Bowyer-Watson algorithm

An efficient implementation in a database environment

=l T
B Bowyer Watson speeithes = rﬁ'ﬁl 1B Bowynr Walzan aigeshe r'._-[Eﬂ?l B oy Walson st hee
T g Trlangios Triengiaaste
e
. -
5 h e e !
N
i 4 L 2
e Y %
3) -
b S =
L o LS
Ll &
LS i £ -
. Y o
S i o b4 o
- \ !
\ = \ e
3 \ .f
\ F,
Wi e
\
\ W
-, i .
Fa i i i
e - ",
- —.
= - e
- s T - e
A ; - - S

C.A.Arens

Department of Geodesy

Faculty of Civil Engineering and Geosciences
Delft University of Technology

Preface

This report describes a research towards how a TIN needs to be structured and indexed in a
DBMS (Oracle) to efficiently implement the Bowyer-Watson agorithm. This provides a case
for the research that determines if the present databases are able to store and use geographical
data without slowing down the system and with the advantages that a DBMS offers.

The research in this report is performed during the course Geo-DBMS case study (Ge4631) as
part of my study in Geodesy at the faculty of Civil Engineering and Geosciences at Delft
University of Technology. The course goal is to gain experience in using databases to handle
spatial data.

| would like to thank ir. E.Verbree for all his help as my supervisor. Furthermore, | would like
to thank drs. C.W.Quak for getting me started with Javaand drs. T.P.M.Tijssen for his help as
database administrator.

Delft, July 2002,

C.A.Arens

Abstract

This report describes a research towards how a TIN needs to be structured and indexed in a
DBMS (Oracle) to efficiently implement the Bowyer-Watson algorithm. This provides a case
for the research that determines if the present databases are able to store and use geographical
data without slowing down the system and with the advantages that a DBMS offers. There has
to be a balance between decreasing the conputational complexity and the increasing use of
storage space.

The Bowyer-Watson algorithm primarily works with triangles. A logical choice for the data
structure thus is atriangle based data structure. If Oracle Spatia is not used, this data structure
contains two tables, one with the coordinates of the points, so that they are not stored multiple
times, and one containing the vertices and neighbours of the triangles. The neighbours are
stored to help decreasing the computational complexity. If Oracle Soatia is used, the point
table is not necessary and the 3 vertices are stored as one geometry object (polygon).

The implementation of the Bowyer-Watson algorithm only queries one record at atime, while
all fields contain integers. The search tree is built in the implementation. It uses the neighbour
information in the triangle table to search for the triangle that contains the new point. This
neighbour information is also used to find the rest of the triangles that have the new point in
their circumscribing circles. When Oracle Spatial is used, it is necessary to create a spatial
index to use Oracle Spatia functions to find the triangle that contains the new point. The R
tree index is used here, because it works the fastest.

Using Oracle Spatial is faster than without using it. Oracle Spatial allows a more efficient
implementation of the Bowyer-Watson algorithm. It is possible to add all kinds of tricks to
make the application faster. Practise confirms this, because the final version of the application
is about 3 times faster than the very first version of the application.

Table of contents

PIEfACE ... i
ADSEIACL ... e s i
(R L g1 A oo [8 [o] o OSSP PR URURS 1
2 Creating a database application in Oracle.........ccccceveeieiierecie e 3
3 Triangular Irregular NetWOrk (TTN)....ocooeiieeseereeeeee e 5
4 Bowyer-Watson algorithm.........cceeiiiiieie e 7
S DALA SETUCLUI ...t n e e ne e 9
B SPALIAI INUEX.....eeietieciie e e et e e s ae e e seesreesaneenreeenns 11
A 0] 01114101 = 4 o o S 15
8 Conclusions and recoOMMENTALIONS.coouerierierirerere e 21
REFEIBNCES.....ceeeee e r e 23
APPENdIX A: JAVA SOUICE COUEoveeieeteriesiesieeee ettt sre et e e se s b b b nes 25
Appendix B: Java sour ce code finding first triangle option 1 (section 5)................. 49

Vi

1 Introduction

Geographical data is usually stored using the file system that is part of the operating system
that is running. This situation distinguishes itself by the lack of possibilities to protect the
stored data. For example, there are limited possibilities to provide, if necessary limited, access
to different users at the same time. The possibility to recover data that has been deleted by
accident is for example aso limited. These problems can be solved by storing the data in a
database. In this way it is possible to use one or more programs that protect the data. The
collection of these programs is called the Database Management System (DBMS).

Solving the above problem causes a new problem. The storage of datain a database is namely
more complicated than the storage of data in aregular file system. The data needs to be stored
in away that the DBMS can carry out its function. If this storage does not happen carefully,
the system might be slower or the security of the data cannot be guaranteed.

Hence, it is important to protect the data by storing it in a database, so that the DBMS can
guard these data. But it is also important to store the data in such a way that the working of
the DBMS and the speed of the system can be guaranteed.

The goa of this research is to determine if the present databases are able to store and use
geographical data without slowing down the system and with the advantages that a DBMS
offers. To explore the possibilities of this kind of use of databases, a specific case is covered
in this report. This case gives an answer to the following question: “ How does a TIN need to
be structured and indexed in the Oracle DBMS to efficiently implement the Bowyer-Watson
algorithm?”

This question will be solved by developing an application that stores and visualises a TIN (a
type of geographical data) by using a database. The focus will be on how to keep the
computational complexity to a minimum by using an efficient data structure and index.

The application will be made in Java with Oracle 9i as database. The implementation issues of
the algorithm are the most important, so the user interface and the error catching possibilities
of the application are not perfect.

Section 2 contains general comments about creating a database application in Oracle. In
section 3 there is a short introduction about TIN’s. Section 4 continues with an algorithm that
constructs a TIN. Section 5 has the possible data structures for storing a TIN and section 6 is
about using spatial indices. Section 7 describes the implementation of the Bowyer-Watson
algorithm in Java. Finally, section 8 has the conclusions.

2 Creating a database application in Oracle

Databases use SQL (Structured Query Language) for defining and manipulating data, e.g.
creating tables and querying them. It is not possible to build an extensive application in SQL,
because it does not support procedures. In Oracle there are basically two ways to create a
database application, by using:

1. PL/SQL
2. Java

The following table briefly describes the difference between these two language environments
[Oracle]:

PL/SQL.: Java:

- Datacentric and tightly integrated - Open standard, not proprietary to
into the database. Oracle.

- Proprietary to Oracle and difficult - Incurs some data conversion
to port to other database systems. overhead between the Database and

- Datamanipulation is dightly faster Javatype systems.
in PL/SQL than in Java. - Javais more difficult to use

- Eader to use than Java (depending (depending on your background).

on your background).

The application in this report is written in Java, because the visualisation part is easier to
implement in this language environment. The application was written with the help of Oracle
JDeveloper [JDeveloper], which is an Integrated Development Environment (IDE) for making
applications using Java.

The advantage of running an application that uses a DBMS is that the database is managed. It
is for example possible for different users to use the database, and the DBMS takes care of
locking the database for al other users when one user is editing it. Another big advantage is
that there are all kinds of constraints possible on the database, for example, who can use it for
editing, viewing or a combination of those, but also on the fields itself, like not letting fields
stay empty when inserting new data.

For protecting the database the DBMS has a transaction system. After giving commands to
define and manipulate the database, it is possible to either confirm (commit) these commands
or undo (rollback) them.

Java can connect to the database by using JDBC (Java DataBase Connectivity). JDBC is a set
of classes and interfaces written in Java to allow Java applications to send SQL statements to
the DBMS. Thiswill typically look like this:

Driver Manager.regi sterDriver(new oracle.jdbc.driver.OacleDriver());
Connection conn = DriverManager. get Connecti on("j dbc: oracl e:thin:

@url :1521: dbname", "user", "pass");

Statenent stnmt = conn.createStatenent();

st nt . execut eUpdat e(" CREATE TABLE points (id | NTEGER NOT NULL)");
stmt.close();

conn. cl ose();

First a connection is made by specifying the driver, the database URL, the database name and
the user. Next a statement is made. The embedded SQL is shown in bold. Finaly, the
statement and the connection need to be closed.

When using Javato send SQL commands to the DBMS, there is a commit automatically after
each command. This causes some overhead on the system, so it is better to disable this feature
and send a commit command at the end of the application. The implementation (see aso
above code):

conn. set Aut oConmi t (f al se);
stm . executeQuery(“COMW T");

It is also possible to store some parts of the application as a Java stored procedure. These Java
procedures are stored in the database and can be accessed through the JDBC or SQL. The
main advantage is that a stored procedure improves the application performance by
eliminating some network use and making use of the usually powerful database server.

In this case, the Oracle Spatial add-in is aso used. This means that the database can also hold
fields of the type geometry, next to norma data types such as numbers and strings. The
geometry type can hold data types such as (a collection of) points, lines and polygons.

Furthermore, Oracle Spatial has a number of functions that operate on the geometry field. The
main function is SDO_RELATE that can check how two geometries relate to each other, e.g.
if they intersect, touch or are digoint. Using this function has the same advantages as using a
stored procedure, because the work is done by and on the database server.

3 Triangular Irregular Network (TIN)

A spatial dataset can be represented as a tessellated structure to get more information about
topological relationships within this dataset. There can be regular and irregular tessellations.
If the constituent objects that form the plane of the dataset are all the same the tessellations is
caled regular, otherwise it is called irregular [Worboys]. The most common regular
tessellation is the grid, which divides the spatia dataset in squares of the same size. The
advantage of a grid is that neighbouring grid cells are easily found, which means it is easy to
perform operations on the dataset. The magjor disadvantage is that, e.g. in a point dataset, the
origina points are lost because of the conversion to a grid. To overcome this disadvantage, an
irregular tessellation between the original points can be used. The most commonly used
irregular tessellation is the triangulated irregular network (TIN). This divides the plane into a
set of irregular shaped triangles.

The tessellation of a plane into triangles is not unique. In spatia applications it is necessary to
keep the triangles as equilateral as possible, otherwise long and thin triangles may cut surface
variations crosswise. A triangulation that has this property s the Delaunay triangulation. A
Delaunay network in two dimensions consists of non-overlapping triangles where no pointsin
the network are enclosed by the circumscribing circles of any triangle; thisis called the circle
criterion [Midtbg].

To reach a Delaunay triangulation the points in a spatial dataset need to be connected so that
they form triangles. There are severa agorithms to do this. There are basically two types of
algorithms. The first is static triangulation where the triangulation is valid (Delaunay) after
every single point is processed. Some examples are [Midtbg]:

- therecursive split algorithm

- the divide-and-conquer algorithm

- the step-by-step algorithm

- the modified hierarchical algorithm

The second type of algorithms that reach a Delaunay triangulation is the dynamic
triangulation where the triangulation is valid during processing. This makes it possible to
view the contribution of a point to the TIN. The algorithms that do this are called incremental,
because they process one point at the time.

In this research an incremental algorithm by Bowyer and Watson [Lattuada) is used. In
[Midtbg] thisis called the incremental delete-and-build algorithm.

4 Bowyer-Watson algorithm

The Bowyer-Watson agorithm adds points sequentially into an existing Delaunay
triangulation, usually starting from a very ssimple triangulation (e.g. one large triangle) that
encloses all the points to be triangulated [Filipiak]. Then the algorithm proceeds as follows for
each point that is going to be added to the TIN:

1. Add apoint to the triangulation.

2. Find all existing triangles whose circumscribing circle contains the new point. This can be
done to find the triangle which contains the new point first. Then the neighbours of this
triangle are searched and then their neighbours, etc., until no more neighbours have the
new point in their circumscribing circle (figure 4.1 |eft).

Delete these triangles; this creates a convex cavity.

Join the new point to all the vertices on the boundary of the cavity (figure 4.1 right).

W

Figure 4.1: Bowyer-Watson triangulation: circumscribing circles
that contain the new point (left), and the resulting triangulation

(right).

The computational complexity of this algorithm is very important for determining the speed
of storing TIN's in a database. This influences the data structure that is used for storing the
TIN’s (section XX). The computational complexity normally increases with the increase of
the number of points in the TIN. Step number 2 in the algorithm above is the step where the
complexity depends on the number of elements in the TIN. The time T to generate a
triangulation for N pointsis [Lattuada]:

(T +S)

Qo=

T =

x~

-1

where T, isthe time to find out in which triangle the new point liesand S, the timeto find all
other elements in the cavity.

If we store neighbour relations for the triangles in the TIN data structure, S, will get a
complexity of O(1) , because it will be proportional to the number of elements in the cavity
and independent from the number of points. The reason for this is that a search for the
neighbouring triangle is obsolete in this situation. This means that T, is the dominant factor in
the computational complexity of this algorithm. In the worst case the complexity is O(K)
which yidds in T=0(N?). However, the theoretical optimum is T =O(N *logc N)
[Lattuada]. The computational complexity can be decreased by choosing the data structure in

an efficient way. Another way to decrease the computational complexity is to implement a
method that finds the triangle that contains the new point quickly.

S5 Datastructure
By choosing a certain data structure, the following points have to be taken into consideration:

- the maximum number of points to be triangulated;
- the available memory of the computer;

- if the TIN could be updated or not;

- the TIN construction agorithm;

- thetype of operations performed upon the TIN.

In this research any number of points has to be able to be stored in the data structure. The
usage of memory (storage space) should be limited to a minimum, but there has to be a
balance with the computational complexity of the TIN construction algorithm, e.g. storing
neighbour relationships in the data structure will cost more memory, but will also alow the
algorithm to find neighbouring triangles quickly.

There are three main data structures for storing a TIN:

- Point based data structure: the points are stored together with their Delaunay neighbours.

- Triangle based data structure: the triangles themselves are stored in a table.

- Edge based data structure: the edges of the triangles are stored and the triangles can be
implicitly reconstructed from the edge information.

The triangle based data structure is used in this research. There have been three different ideas
to store the geometry of the triangles:

1. For each triangle a set of its three corners is stored. This can either be done by storing the
coordinates directly into the data structure or by storing pointers to a table containing the
coordinates of all the points. Some storage space is wasted if the coordinates are directly
stored in the triangle table, because each point isin at least a couple of triangles. Storing
pointers will take up less space.

The SQL statements to create the point and triangle tables look like this:

CREATE TABLE points (
id | NTEGER NOT NULL PRI MARY KEY,
x NUMBER NOT NULL,
y NUMBER NOT NULL,
z NUMBER NOT NULL);

Thiswill create atable to store the identifier and coordinates for each point.

CREATE TABLE triangles (

id | NTEGER NOT NULL PRI MARY KEY,
vertex0 | NTEGER NOT NULL,
vertexl | NTEGER NOT NULL,
vertex2 | NTEGER NOT NULL,

nei ghbour 0 | NTEGER NOT NULL,

nei ghbour 1 | NTEGER NOT NULL,

nei ghbour 2 | NTEGER NOT NULL);

2. When using Oracle Spatidl, it is possible to store a geometry object. To store a triangle,
one can make use of the polygon data type. For each triangle, the geometry has a polygon
with three vertices and straight lines between these vertices.

The SQL statement to create this triangle table looks like this:

CREATE TABLE triangles (
id | NTEGER NOT NULL PRI MARY KEY,
geonetry MDSYS. SDO GEOMETRY NOT NULL,
nei ghbour 0 | NTEGER NOT NULL,
nei ghbour 1 | NTEGER NOT NULL,
nei ghbour 2 | NTEGER NOT NULL) ;

In this case it is not necessary to specify what kind of geometry the geometry column
contains. This is taken care of by the way the triangles are exported to the database in
Java

3. Itisaso possble to store the circumscribing circles of the triangles instead of storing the
triangles themselves. This alows finding all the triangles containing the new point in one
pass. To determine the construction of the new triangles there should also be information
about the edges of the triangle. The solution is to create a table with two geometries.
There is no neighbour information necessary, because al the triangles will be found in one
pass. The SQL implementation could look like this:

CREATE TABLE triangles (
id | NTEGER NOT NULL PRI MARY KEY,
circle_geonetry MDSYS. SDO GEOVETRY NOT NULL,
pol ygon_geonetry MDSYS. SDO_GEOVETRY NOT NULL);

The table contains the triangle id, the geometry in the form of a circumscribing circle and
the second geometry in the form of a polygon containing three edges.

For each of these possibilities the three neighbours of the triangle are stored too, because this
way it is less complex for the algorithm to find these neighbours. This will cost more
memory, but there is a significant increase in the speed of the TIN construction.

By choosing option 2 and 3 there adso needs to be a metadata table containing some
information about the geometry object. A reference to the triangle table has to be created in
the metadata table (option 2):

I NSERT | NTO user _sdo_geom net adata VALUES (' TRI ANGLES' , ' GEOVETRY' ,
MDSYS. SDO_DI M_ARRAY(MDSYS. SDO DI M ELEMENT(' X', 0, 350000, 0.0000005),
MDSYS. SDO DI M ELEMENT(' Y', 350000, 700000, 0.0000005),
MDSYS. SDO DI M ELEMENT(' Z', -100, 400, 0.0000005)), NULL);

The reference contains the table name, the name of the geometry column and information

about the minimum and maximum values of the coordinates that are used. In this case these
are the Dutch RD-coordinates.

10

6 Spatial index

An index enables a DBMS to find records more quickly by using a search tree instead of
checking every record sequentially. Indices can be created on each table and can improve the
performance of queries dramatically. The downside is that it takes time to build indices on the
records in a table and, more important, these indices need to be updated whenever the content
of the table chances.

In this research querying the database consists of finding a specified record. When choosing
option 1 in section 5 all the fields in the triangle table contain integers, so there is no need for
aspatia index.

It was dtated in section 4 that finding the triangle that contains the new point is the most
complex operation. In section 7 a few ways to do this operation are described. When using
option 2 or 3 in section 5 (using the geometry object) it is possible to use the Oracle function
SDO_RELATE to find the triangle that contains the point. This function requires a spatial
index.

There are basically two possible spatial indicesin Oracle:

1. R-tree: Using the minimum bounding rectangles (MBR, figure 6.1) as index for the
triangles.
2. Quad-tree: Tiling up the whole area in different levels as index for the triangles.

B i
GEMMETY —

Figure 6.1: Minimum
bounding rectangle of
ageometry.

The SQL statement to create a default R-tree index:

CREATE I NDEX triangles_idx ON triangles(geonetry) |NDEXTYPE IS
MDSYS. SPATI AL_I NDEX;

Oracle states that the Quad-tree option is usually faster than the Rtree when there is heavy
updating activity. | tried both indices and it is dmost 4 times faster to use the R-tree index to
find the triangle that contains the new point.

1

7 Implementation

Initialisation

The triangulation will be stored as described in option 1 or 2 in section 5. Then alist of points
is made from the input file that is given as argumert when running the application. The
Bowyer-Watson algorithm adds these points one by one into an existing Delaunay
triangulation, so this triangulation needs to be constructed first. In this application a large
rectangle divided in two large triangles is wsed as starting point. This rectangle is created by
enlarging the extents from the list of points:

xMn = 2*xMn - xMax;
xMax = 2*xMax - XM n;
yMn = 2*yMn - yMax;
yMax = 2*yMax - yM n;

This ensures that the extra space around the extents of the pointsis evenly distributed, even if
one of the values equals zero. The four points of this large rectangle are added to the points
table and two triangles are formed (figure 7.1):

id | vertex0 | vertexl | vertex2 nei ghbour 0 nei ghbour 1 nei ghbour 2
0 0 1 2 -1 -1 1
1 2 3 0 -1 -1 0
0 1
0
1
3 2

Figure 7.1. Initial triangulation consisting of 4
vertices (0,1,2,3) and two triangles (0,1).

Finally, the screen is redrawn and shows the two triangles.

Processing points

The points are processed one by one, after each point is added the Delaunay triangulation is
valid. The first step is to find the triangles that have the point in their circumscribing circles
(figure 7.2). The following method to evaluate if a point is in the circumscribing circle of a

triangle is used:

13

=

> w

Get the 3 vertices of the triangle from the database.

Trangdlate these 3 vertices so that the new point is in the centre of the coordinate system.
Thisis done, because it is easier to compute the determinant of 4 points when one of these
points is in the centre of the coordinate system, because it resembles computing a
determinant from 3 points.

Use the 3 trand ated vertices to compute the determinant.

If the determinant is smaller than or equals zero, the point is within or on the
circumscribing circle of the triangle. Because of the floating point inaccuracy the
implementation has an error margin of 0.00000001. This vaue is chosen, because there
are several multiplications with 3 decimal digits (millimetres) followed by addition. There
could be an error in the 9" digit. However, this is only correct when using RD-
coordinates. Another way to cope with the inaccuracy is the use of integer arithmetic.

Here, the coordinates will be transformed to integers first and then al the calculations
happen with integers. It is not necessary to have an error margin with this implementation.

S\

Figure 7.22 The new point (red) and the
circumscribing circles (blue) that contain the new
point.

The most complex task is to find the first triangle that has the point in its circumscribing
circle. There are several methods to do this:

Starting with the first triangle in the database and do the above computation for each
triangle until it returns true.

The same as above, but starting with the last triangle. It is more likely that the point that is
going to be added is close to the last point that was added, so aso close to the last triangle
that was added.

Using Oracle Spatial function SDO_RELATE, to relate a point geometry (the new point)
with the triangle geometry (polygon). The SQL statement is:

SELECT * FROM triangl es a WHERE SDO RELATE(a. Geonetry,
ndsys. sdo_geonet ry(3001, NULL, NULL, ndsys. sdo_el em.info_array(1,1, 1), ndsys
.sdo_ordinate_array(x,y, z))," ' mask=ANYlI NTERACT querytype=W NDOW) =" TRUE'

14

This returns all the triangles that have any interaction with the new point. Interactions are
e.g. touching, being completely within, being partly within, etc. When handling a point,
this will always return the triangle that contains the point.

If the number of triangles increases it will commonly take more and more triangles to
check before the triangle that contains the point is found. Therefore another method is
developed (see Appendix B). This method starts out with a triangle (in this case the last
one added to accommodate for the probability that the new point is close to the last point
added). For each edge of the triangle is determined if the point lies on the left side, the
right side or right on top of the line that extents this edge (red/blue in figure 7.3). It is easy
to see that if the point is on the right side of al the edges it is inside the triangle (green in
figure 7.3). There are six other possibilities. Three of them will result in a unique direction
to continue the search for the first triangle that contains the point (yellow in figure 7.3).
For the other 3 areas there are two possibilities to continue the search (white in figure 7.3).
If a point is on top of one or more edges there are some rules too. Table 7.1 shows a full
overview. There are 3* 3* 3 = 27 possibilities of which 8 are not possible.

MNexttriangle: neighbour 1

Next triangle: neighbour 0

Mext triangle: neighbour 2

Figure 7.3: The 7 areas that could contain the new point.

To determine if a point is to the |eft, to the right or on top of a line a method described in
[De Vries| can be used. This method takes three points (the new point and the vertices of a
triangle) and returns:

- 1if the point isleft of the line.

- 0if the point is on top of the line.
- -1if the point is right of the line.

15

The Java-code looks like this:

private int whichSi deEdge(Point pl,

{

doubl e twi ceTheArea =

pl. y*p2.x) +(p2. x*this.y-p2.y*this.x);

}

if (twiceTheArea > 0)

Poi nt p2)

(this.x*pl.y-this.y*pl.x)+(pl. x*p2.y-

is to the left of pl-->2

is on pl-->2

return 1; // AddPoi nt

else if (twiceTheArea == 0)
return 0; // AddPoint

el se

return -1; // AddPoi nt

is to the right of pl-->2

The area of the triangle through the 3 points is computed. This areais positive if all points
are in an anti-clockwise sequence, negative if al points are in a clockwise sequence and
zero if the new point is on top of the line. Because it is known that the two points from the
triangle are in clockwise sequence, it is easy to determine on which side of this edge the
new point will be.

Table 7.1: The decision structure for the edge checking method.

Edge0> 1 | Edgel—> 2 | Edge2-> 0 | Action
right right right first triangle found
online first triangle found
left continue with neighbour 2
online right first triangle found
online first triangle found, but point already exists
left continue with neighbour 2
left right continue with neighbour 1
online continue with neighbour 1
left continue with neighbour 2 or 1
online right right first triangle found
online first triangle found, but point already exists
left continue with neighbour 2
online right first triangle found, but point already exists
online combination impossible
left combination impossible
left right continue with neighbour 1
online combination impossible
left combination impossible
left right right continue with neighbour 0
online continue with neighbour 0
left continue with neighbour 0 or 2
online right continue with neighbour 0
online combination impossible
left combination impossible
left right continue with neighbour 0 or 1
online combination impossible
|eft combination impossible

16

If the rules from table 7.1 are followed, there will form a trail of triangles leading to
the triangle that contains the point (figure 7.4). Note that the trail can go in different

directions to find the triangle that contains the point. It is possible to compute which

neighbouring triangle to follow if there are two possibilities, but this takes more
computation while there is no guarantee in increasing speed.

Figure 7.4 Atrail of triangles leading to the triangle that
contains the new point.

When the first triangle is found, this triangle is used as a starting point to find the other
triangles that have the point in their circumscribing circle. This is less complex, because we
stored the neighbouring triangles for each triangle. Before the point is inserted we want to
know which triangles are no longer valid and have to be deleted and we want to know which
combination of triangles and edges (green in figure 7.5) get a new neighbour. To make the
insertion easier it is necessary to get these combinations in the right order. The right order is

the edges sorted in the way that they connect to each other. It does not matter which edge is
first in the list.

Figure 7.5: The edges that form the cavity around
the deleted triangles.

This is the method that is used:

17

- Add the triangle (starting with the first triangle) to a list containing the triangles that are
no longer valid and keep track of alist of triangles that is aready checked.

- Get the sequence of neighbours that are going to be checked. Check out the edge that
neighbours the last triangle (for the first triangle, any sequence is fine) and start with the
following edge. This ensures that the edges are found in the right order. So, there are three
possible sequences. {0,1,2}, {1,2,0} and (2,0,1}.

- lterate over the sequence:

o If the neighbour lies outside the triangulation (id = -1) store the current triangle
and edge in the cavity lists and proceed with next neighbour.

o Check if thetriangle is aready processed. Continue with the next neighbour if this
istrue.

o Check if the new point is in the circumscribing circle of the neighbouring triangle.
If this is true a recursion will follow, starting at the beginning of this method. If
this is false this triangle is on the edge of the cavity, so the triangle and edge are
stored in the cavity lists and the next neighbour in sequence is checked.

End iteration.

Now the information needed to insert the point is available. First there is a check if the point
is within the large rectangle extent and if the point is not aready known. Then the triangles
surrounding the cavity are updated with new neighbours. The new point will be connected to
all the vertices on the cavity edge (orange lines in figure 7.6).

Figure 7.6. The lines (orange) that form the new
triangles that contain the new point (red).

Finaly, the screen is redrawn to reflect the changes before the next point is going to be
processed. Figure 7.7 shows a sequence with possible application output.

18

B Bowyer Watson speeithes] El 1B Bowynr Walzan aigeshe EEEE] B Bowyer Walson st

Tl g Telangiioe Toiig
T
e S,
e ",
b - A%
e iy

\ \ -
- e e

Y

)
\ il)
4 o X
i Y
L .}
LS i
L1
5 - b =
" i
! i N
\ # 4
J
L '-_,,."'
- b L
" - A
2 -
o .
=
I s
- e =
& - -
=,

T gt i Telangusro Tl onugtoviicns:
3 =) o t
e o .>“'r-// L) i
| o, s,
Y P b i
h = P Wk i
Y s \ s A FE
\ = '\ ¥ K =
\ \
- e ko
A : i
L - L) r
% \ o o 5 "
Y L) A
1 LY - i Lt i
\ e c:
Y 4 Fd '\\
b g L} .
'\.\ e ! i
N o,
o %
A .
= ” X b
v e i - S k: E - ot
= el e - o = e
- = = Pl TR
e
e | e | s i

Figure 7.7: A segquence of possible application output. After each step the triangulation is a valid
Delaunay triangulation.

It is aso possible to get all the circumscribing circles that contain the new point in one go.
Option 3 from section 5 has to be used in that case. The SQL-query to get al the
circumscribing circles that contain the point is:

SELECT id FROM circles ¢ WHERE SDO RELATE(c. Geonetry,
nmdsys. sdo_geonet ry(3001, NULL, NULL, ndsys. sdo_elem.info_array(1,1, 1), ndsys. sd
o_ordinate_array(x,y, z))," ' mask=ANYlI NTERACT querytype=W NDOW) =" TRUE'

Thiswill result in alist of id’s that contain the new point in their circumscribing circles. With
these id’s you can select the edges from the triangles out of the other table (triangles, see
option 3, section 5). The edges that are found only one time can be connected with the new
point. The other edges are inside the cavity and can be thrown away.

The records of the found id's and two new records can ssimply be used to store the new
triangles, because there is o need to store neighbour relationships.

19

8 Conclusions and recommendations

Conclusions

The question that is going to be answered in this section is. “How does a TIN need to be
structured and indexed in the Oracle DBMS to efficiently implement the Bowyer-Watson
algorithm?” . There has to be a balance between decreasing the computational complexity and
the increasing use of storage space.

The Bowyer-Watson algorithm primarily works with triangles. A logical choice for the data
structure thus is a triangle based data structure. 1f Oracle Spatial is not used, this data structure
contains two tables, one with the coordinates of the points, so that they are not stored multiple
times, and one containing the vertices and neighbours of the triangles. The neighbous are
stored to help decreasing the computational complexity. If Oracle Spatial is used, the point
table is not necessary and the 3 vertices are stored as one geometry object (polygon).

The implementation of the Bowyer-Watson algorithm only queries one record at atime, while
all fields contain integers. The search tree is built in the implementation. It uses the neighbour
information in the triangle table to search for the triangle that contains the new point. This
neighbour information is also used to find the rest of the triangles that have the new point in
their circumscribing circles. When Oracle Spatia is used, it is necessary to create a spatia
index to use Oracle Spatial functions to find the triangle that contains the new point. The R
tree index is used here, because it works the fastest.

Using Oracle Spatial is faster than without using it. Oracle Spatial allows a more efficient
implementation of the Bowyer-Watson algorithm. It is possible to add all kinds of tricks to
make the application faster. Practise confirms this, because the final version of the application
is about 3 times faster than the very first version of the application.

Recommendations

In this research the implementation is mostly on the client side. It is interesting to know what
happens with the performance if more parts of the program are implemented on the server
side, for example with the use of Java stored procedures for finding al the triangles that
contain the new point.

Further more, it might be useful to do a benchmark with many points in the triangulation and

test which implementation is the quickest. A closer look on spatial indexing is then necessary.
In this research, the ideas for implementation were the main focus.

21

References

Midtbg, T., Spatial Modelling by Delaunay Networks of Two and Three Dimensions,
Trondheim: University of Trondheim, 1993.

Lattuada, R., A triangulation based approach to three dimensional geoscientific modelling,
London: University of London, 1998.

De Vries, J., Ruimtelijke gegevenstoegang d.m.v de Point-Tritree, Delft: Delft University of
Technology, 1998.

Worboys, M.F., GIS A Computing Perspective, London: Taylor & Francis, 1995.

Websites visited in June 2002:

Filipiak, M.,

http://mmww.epcc.ed.ac.uk/over view/publicationsg/training_material/tech_watch/96_tw/tw-
meshgen/MeshGeneration.book_1.html

JDeveloper, http://www.oracle.convip/devel op/ids/index.html ?java.html

Oracle, http://www.oracle.com

23

24

Appendix A: Java sour ce code

The application is written in Java. In Java each class has its own file with source code. In this
case there are 5 files:

BowyerWatson.java: The application starts in this file. It cals the other classfiles and it
contains the Graphical User Interface and a class to redraw the triangulation.
DatabaseOperation.java: This class contains all functions that operate on the database,
such as creating the tables and doing the initialisation. It also reads in the points from a
file.

Point.java: This is the super class of AddPoint and contains a specific function to subtract
two points from each other. It also allows instantiating points that are not going to be
added to the triangulation.

AddPoint.java: This is the class that has all the operations on a new point that is going to
be added to the triangul ation.

Trianglejava: Thisis the class that can instantiate triangles and add them to the database.

Note that the following source code is from option 2 in section 5. The source code from the
other options is dightly different. In Appendix B is the Java code for finding the first triangle
with option 1 (section 5).

25

Bowyer Watson.java

package bowyerwat son;

i nport java.sql.?*;

i nport java.io.*;

i nport java.awt.?*;

i nport javax.sw ng. *;

i nport java.awt. Col or;

i nport java.awt.event.?*;

public class Bowyer Wat son

{
I i I
/1 Class vari abl es.
B i i I
static Connection conn;
JPanel nenuPanel, triangul ati onPanel, statusPanel, gui Panel;
JLabel statuslLabel;

L e
/1 Constructor.
i R e LR
publ i c BowyerWat son() throws SQLException
{

menuPanel = new JPanel ();

bui | dMenu();

triangul ati onPanel = new JPanel ();

bui | dTri angul ati onSpace();

st at usPanel = new JPanel ();

bui l dStatus();

gui Panel = new JPanel ();

gui Panel . set Layout (new Bor der Layout ());

gui Panel . set Bor der (Bor der Fact ory. cr eat eEnpt yBorder (2, 2, 2, 2));

gui Panel . set PreferredSi ze(new Di nensi on(500, 500));

gui Panel . add(menuPanel , Bor der Layout. NORTH) ;

gui Panel . add(triangul ati onPanel , BorderLayout. CENTER);

gui Panel . add(st at usPanel , Bor der Layout. SOUTH) ;
}
e e e
/1 Build nenu.
L e e
private void buildMenu() throws SQLException
{

JButton startButton = new JButton("Start triangulation");
startButton. set Mnenoni c(KeyEvent . VK_S);
startButton. set Enabl ed(fal se);
startButton. addActi onLi st ener (new Acti onLi stener () {
public void actionPerforned(Acti onEvent e)
{7
st at usLabel . set Text ("Status: Triangul ation started...");
try

{
/] Initialize TIN

String dir ="

C.

26

11

String fileName = "input.txt";
Dat abaseOperation.initTIN(conn, dir, fileName);

triangul ati onPanel . repaint();
st atusLabel . set Text ("Status: Initialisation conplete...");

/1 Process point(s)
Dat abaseOper ati on. processPoi nt s(conn);

catch(Exception x) {}
*/}
1

JButton resetButton = new JButton("Reset database");
reset But t on. set Mnenoni c(KeyEvent. VK_R);

reset Button. set Enabl ed(f al se);

reset Butt on. addAct i onLi st ener (new Acti onLi stener ()

{
public void actionPerformed(ActionEvent e)
{7*
st at usLabel . set Text ("Status: Resetting...");
try
{
Dat abaseQOper ati on. reset Dat abase(conn);
cat ch(Exception x)
{
statusLabel . set Text ("Status: Error in resetting database!");
}
st at usLabel . set Text ("Status: Resetting...");
*/}
1)

menuPanel . set Bor der (Bor der Fact ory. creat eEnpt yBorder (5, 1, 5, 1));
menuPanel . set Layout (new GridLayout (1, 2, 10, 0));
menuPanel . add(start Button);

menuPanel . add(reset Button);

/1 Build triangul ation space.

11

private void buildTriangul ati onSpace()

{

11

triangul ati onPanel . set Bor der (Bor der Fact ory. cr eat eConmpoundBor der (Bor de
rFactory.createTitl edBorder (" Triangul ation"),

Bor der Fact ory. creat eEnpt yBorder (5,5,5,5)));

triangul ati onPanel . set Layout (new Bor der Layout ());

DrawTri angul ati on dt = new DrawTri angul ati on();
triangul ati onPanel . add(dt, BorderLayout. CENTER)

// Build status |ine.

11

private void buil dStatus()

{

st at usLabel = new JLabel (" Status");

27

3

Font ft = new Font("Default", 0, 11);
st at usLabel . set Font (ft);

st at usPanel . set Bor der (Bor der Fact ory. cr eat eLower edBevel Border ());
st at usPanel . set Layout (new Gri dLayout (0, 1));
st at usPanel . add(st at usLabel) ;

}
e e
/1 Application starts here.
e
public static void main(String[] args) throws SQLException, | OException
{

[l Timer start

long startTime = SystemcurrentTimeM I lis();

/1 Call constructor
Bowyer \at son app = new Bowyer Wat son()

/1 Connect to database.
conn = Dat abaseOperation. connect ToDat abase();

/1 Build GU
JFrame frame = new JFrane(" Bowyer-Watson al gorithni);

frane. set Cont ent Pane(app. gui Panel) ;

frane. set Defaul t Cl oseOperati on(JFrane. EXIT_ON CLCSE);
franme. pack();
franme. setVisible(true);

/1 Initialize TIN
String pathName = "c:\\input.txt";
Dat abaseOperati on.initTIN(app, conn, pathNane);

/1 Process point(s)
Dat abaseQper ati on. processPoi nt s(app, conn);

// Tinmer end

long endTinme = SystemcurrentTimeM I lis();
long duration = endTinme - startTine;
String durationMessage = " Processing tine: "+duration+"
i seconds. ";
app. st at usLabel . set Text (dur ati onMessage) ;
System out . printl n(durati onMessage);
/1 Cl ose connection to database.
conn. cl ose();
}
cl ass DrawTriangul ati on extends JPane
{

public void pai nt Conponent (G aphics Q)

/1 Paint background
super . pai nt Conponent (g) ;

/1 Paint triangles.
g. set Col or (Col or. red);

28

for (int i=0;i<DatabaseCOperation.polygonList.size();i++)

{
Pol ygon p = (Pol ygon) Dat abaseOper ati on. pol ygonLi st. get (i);
g. dr awPol ygon(p) ;

}

}
}
}

DatabaseOper ation.java

package bowyerwat son;

i nport oracle.sql.STRUCT;

i nport oracl e. sdoapi . OraSpati al Manager ;
i nport oracl e. sdoapi . adapter.*;

i mport oracle.sdoapi.geom *;

i nport java.sql.?*;

inport java.io.*;

import java.util.*;

i nport oracle.jdbc.driver.?*;

i nport java.awt.?*;

public cl ass DatabaseQOperation

{
e e
/1 Class vari abl es.
i e
private static Vector pointList = new Vector();
private static Vector oracl ePol ygonLi st = new Vector();
public static Vector polygonList = new Vector();
private static double x0, y0, ax, ay;

e e
/1 Constructor.
i e
publ i ¢ Dat abaseOperati on()

{

}

e e
/1 Connects to database.
e e
public static Connection connect ToDat abase() throws SQLException
{
Driver Manager.regi sterDriver(new oracle.jdbc.driver.OacleDriver());
Connection conn =
Dri ver Manager . get Connection("j dbc: oracl e: t hi n: @ww. gdnt. nl : 1521: geobase", "a
rens","calin");
return conn;

}

e e
/'l Resets database.
e e
public static void resetDat abase(Connection conn) //throws SQLException

{
Systemout.printin("Deleting old triangle table...");
try
{
Statenent stnmt = conn.createStatenent();
stm . execut eUpdat e("DROP TABLE TRI ANGLES") ;
stm.close();

}
catch (SQLException e)
{

Systemout.println(e);

}

Systemout.println("Del eting netadata reference...");
try
{

Statenent stmtl = conn.createStatenent();

bool ean i = st 1. execute("DELETE FROM user_sdo_geom net adat a WHERE
tabl e_nane = ' TRI ANGLES' ") ;

Systemout.println(i);

st 1. cl ose();

catch (Exception e2)

{
Systemout.println(e2);
}
}
e e
/1l Enpties triangle table.
i e

public static void enptyTriangl eTabl e(Connecti on conn) throws
SQLException

{
Systemout.println("Enptying old triangle table...");
try
{
Statenment stnt = conn.createStatenent();
stm . execut eUpdat e(" DELETE FROM TRI ANGLES") ;
stm.close();
}
catch (SQLException e)
{
Systemout.println(e);
}
}
e e
/1l Creates index on triangle table.
L e e

public static void createl ndex(Connection conn) throws SQLException
{

Systemout.println("Creating index...");

try

{

Statenent stnmt = conn.createStatenent();

stm . execut eUpdat e(" CREATE | NDEX triangles_idx ON triangl es(geonetry)
| NDEXTYPE | S MDSYS. SPATI AL_I NDEX") ;

stm.close();

}
catch (SQLException e)
{

Systemout.println(e);

}
}

31

e e
/1 Drops index on triangle table.
i e
public static void dropl ndex(Connection conn) throws SQLException

{
System out. println("Dropping index...");
try
{

Statenment stnt = conn.createStatenent();
st . execut eUpdat e("DROP | NDEX triangl es_i dx");
stmt.close();

}

catch (SQLException e)

{

}
}

e e

/1l Creates enpty table for the triangles.

i e

private static void createTriangl eTabl e(Connecti on conn) throws
SQLException

{
Systemout.println("Creating new table...");
try
{

Systemout.println(e);

Statenment stnt = conn.createStatenent();

st nt . execut eUpdat e(" CREATE TABLE TRI ANGLES (id | NTEGER NOT NULL
PRI MARY KEY, GEOVETRY MDSYS. SDO GEOVETRY NOT NULL, nei ghbourO | NTEGER NOT
NULL, nei ghbourl I NTEGER NOT NULL, nei ghbour2 | NTEGER NOT NULL)");

stm . execut eUpdat e(" | NSERT | NTO user _sdo_geom net adat a VALUES
(' TRI ANGLES' , ' GEOVETRY', MDSYS. SDO_DI M_ARRAY(MDSYS. SDO_DI M_ELEMENT(' X', O,
350000, 0.0000005), MDSYS.SDO DI M ELEMENT('Y', 350000, 700000, 0.0000005),
MDSYS. SDO DI M ELEMENT(' Z', -100, 400, 0.0000005)), NULL)");

stm.close();

}
catch (SQLException e)
{
System out. println(e);
}
}

e e
/] Create extent.
e e
private static void createExtent(BowerWtson app, Connection conn)
throws SQLException, InvalidGeonetryException,
Geonet ryQut put TypeNot Support edExcepti on

{

Systemout.println("Calculating extent...");

/1l Return m ni mum and mexi mum val ues.

Poi nt initPoint = (Point)pointList.get(0);

double xMn = initPoint.x, xMax = initPoint.x, yMn = initPoint.y, yMx
= initPoint.y;

for (int i=1;i<pointList.size();i++)

{

32

Point p = (Point)pointList.get(i);
if (p.x < xMn) xMn = p.x;
if (p.x > xMax) xMax = p.X;
if (p.y <yMn) yMn = p.y;
if (p.y > yMax) yMax = p.y;

}

/1 Enl arge extent.
XMn = 2*xMn - xMax;

xMax = 2*xMax - XM n;
yMn = 2*yMn - yMax;
yMax = 2*yMax - yM n;

/1 Add 4 envel ope points to points table.

Poi nt pl = new Poi nt (xM n, yMax, 0);
Poi nt p2 = new Poi nt (xMax, yMax, 0) ;
Poi nt p3 = new Poi nt (xMax, yM n, 0);
Poi nt p4 = new Poi nt (xM n,yMn, 0);

/1 Add triangles to database.

Triangle t1 = new Triangle(0, pl,p2,p3,-1,-1,1);
t 1. addToDat abase(conn);

Triangle t2 = new Triangle(1, p3, p4,pl,-1,-1,0);
t 2. addToDat abase(conn) ;

/1l Get translation
Point[] pointList = tl.getVertices();

doubl e x1, y2;

X0 = (pointList[0]).x;

y0 = (pointList[0]).y;

x1 = (pointList[1]).X;

y2 = (pointList[2]).y;

Rect angl e rect = app.triangul ati onPanel . get Bounds();

ax = ((rect.w dth-25)/(x1-x0));

ay = ((rect.height-45)/(y0-y2));
}
e

/1l Initializes TIN (make two big triangles around the points in the file.
i
public static void initTlN(BowerWatson app, Connection conn, String
pat hNane) throws SQLException, | OException,
Geonet ryQut put TypeNot Support edExcepti on, Invali dGeonetryExcepti on,
Geonet ryl nput TypeNot Suppor t edExcepti on
{
/1l Create enpty point and triangle tables.
/I reset Dat abase(conn);
[l createTriangl eTabl e(conn);
enptyTri angl eTabl e(conn) ;

/1 Add points to pointlList.
addPoi nt sToLi st (pat hNane) ;

/'l Get extents from points and enlarge this envel ope.
creat eExt ent (app, conn);

/1 Redraw triangul ati on.
get Pol ygons(app, conn);

e e
/1 Triangulate the points in the input-file.
i e
public static void processPoi nt s(Bowyer Wat son app, Connection conn)
throws SQLException, GeonetryQutput TypeNot SupportedException
I nval i dGeomet ryExcepti on, Geonetryl nput TypeNot Support edExcepti on

{

System out. println("Begin processing points...");

/'l For each point do:
for (int i=0;i<pointList.size();i++)

{
/1l Get the point.
AddPoi nt poi nt ToAdd = new AddPoi nt ((Poi nt) poi ntList.get(i));
/1l Process the point.
poi nt ToAdd. processPoi nt (app, conn);
}
app. st atusLabel . set Text (" Points processed.");
}
i

/1 Add the points in the input-file to the Vector pointlList.
i
private static void addPoi ntsToList(String pathNane) throws | OException

{

System out. println("Reading points...");

/1 Open input-file.

File inFile = new Fil e(pat hNane);

Buf f eredReader in = new BufferedReader(new Fil eReader(inFile));
String s = new String();

/1 Read every Iine.
while ((s = in.readLine())!=null)

{
/1 Split up the lines in point features.
StringTokeni zer st = new StringTokeni zer(s);
doubl e x = Doubl e. par seDoubl e(st. next Token());
doubl e y = Doubl e. parseDoubl e(st. next Token());
doubl e z = Doubl e. parseDoubl e(st. next Token());
Point p = new Point(x,Yy, z);
/1 Add point to pointlList.
poi nt Li st. addEl ement (p) ;

}

in.close();

System out. println("Nunber of points: "+pointList.size());

e e
/1 Draw the triangul ation.
e e
public static void getPol ygons(BowyerWat son app, Connection conn) throws
SQLException, Geonetryl nput TypeNot Support edExcepti on,
I nval i dGeonetryExcepti on
{
/1l Enpty pol ygonLi st.
or acl ePol ygonLi st. renoveAl | El ements();

pol ygonLi st. renmoveAl | El enents();

/1l Get all the triangles fromthe database.

Statenent stnmt = conn.createStatenent();

Geonet ryAdapt er sdoAdapter =
OraSpati al Manager . get Geonet ryAdapter ("SDO', "8.1.6", null, STRUCT. cl ass,
null, conn);

String queryString = "SELECT geonetry FROM tri angl es”

Oracl eResul t Set rset = (Oracl eResultSet) stnt. executeQuery(queryString);

/'l For each triangle do:
while (rset.next())

/1l Get the triangle and draw it.
oracl e. sdoapi . geom Pol ygon p =
(oracl e. sdoapi . geom Pol ygon) sdoAdapt er. i nport Geonetry(rset.get Object(1));
or acl ePol ygonlLi st. addEl enent (p) ;
}

rset.close();
stmt.close();

for(int i=0;i<oracl ePol ygonList.size();i++)

{
oracl e. sdoapi . geom Pol ygon pol =
(oracl e. sdoapi . geom Pol ygon) or acl ePol ygonLi st. get (i);
Triangle tri = new Triangle(-1,pol,-1,-1,-1);
Point[] pointList2 = tri.getVertices();

Point firstPoint = pointList2[0];
Poi nt secondPoint = pointList2[1];
Poi nt thirdPoint = pointList2[2];

int[] xPoints = {(int)(ax*(firstPoint.x-x0)), (int)(ax*(secondPoi nt. x-
x0)), (int)(ax*(thirdPoint.x-x0))};
int[] yPoints = {(int)(-ay*(firstPoint.y-y0)), (int)(-
ay*(secondPoi nt.y-y0)), (int)(-ay*(thirdPoint.y-y0))};
j ava. awt . Pol ygon pai ntpol = new java.aw . Pol ygon(xPoi nts, yPoi nts, 3);
pol ygonLi st. addEl enent (pai nt pol) ;
}

app. triangul ati onPanel . repaint();

}
}

Point.java

package bowyerwat son;

public class Point

{
B i i I
// Class vari abl es.
e T I
doubl e x;
doubl e vy;
doubl e z;
I i I
!/l Constructor #1.
I i i i I
publ i ¢ Poi nt (doubl e x, double y, double z)
{
this.x = x;
this.y = vy;
this.z = z;
}
I i i i I
/[Constructor #2.
I i I
publ i ¢ Poi nt (Poi nt p)
{
this.x = p.x;
this.y = p.y;
this.z = p.z;
}
I i I
// Substract Point from substractPoint.
I T I I
publ i ¢ Point substract Poi nt (Point substractPoint)
{
doubl e theX, theY, thez;
theX = substractPoint.x - this.x;
theY = substractPoint.y - this.y;
theZ = substractPoint.z - this.z;
Poi nt resultPoint = new Point(theX, theY,thez);
return resultPoint;
}
}

AddPoint.java

package bowyerwat son;

i nport java.sql.?*;

inport java.util.*;

i nport oracle.jdbc.driver.*;

i nport oracle.sqgl.STRUCT;

i nport oracl e.sdoapi . OraSpati al Manager ;
i nport oracl e. sdoapi . adapter. *;

i nport oracl e. sdoapi.geom *;

public class AddPoi nt extends bowyerwat son. Poi nt
{
i
/1 Class vari abl es.
e e
/1l Vector is a resizable array; they need to be enptied after each point
that is processed.
static Vector processedTriangles = new Vector();
static Vector deleteTriangles = new Vector();
static Vector cavityTriangles = new Vector();
static Vector cavityEdges = new Vector();
static int counter = O;

e e
/1 Constructor #1.
e
publ i ¢ AddPoi nt (doubl e x, double y, double z)
{

super(X,y, z);
}
e e
/1 Constructor #2.
e
publ i ¢ AddPoi nt (Poi nt p)
{

super (p) ;

count er ++;
}
i
/1l Clean up class vari abl es.
i
public static void cleanUp()
{

processedTri angl es. renmoveAl | El ement s() ;
del et eTri angl es. renoveAl | El ement s();
cavityTriangl es. renmoveAl | El ements();
cavi t yEdges. renoveAl | El ement s()

37

e e
/1 Process an AddPoi nt.
i e
public void processPoi nt (Bowyer Wat son app, Connection conn) throws
SQLException, I|nvalidGeonetryException,
Geonet ryQut put TypeNot Support edExcepti on
Geonet ryl nput TypeNot Support edExcepti on
{
/'l Get the Del aunay cavity.
this.locateTriangl es(conn);

/1 Run Insert AddPoint to TIN Triangle.
this.insert(app, conn);

/1l Clean up class vari abl es.
this.cleanUp();

/1 Redraw the triangul ation
Dat abaseOper ati on. get Pol ygons(app, conn);

i
/1l Locate triangles.
i
private void | ocateTriangl es(Connection conn) throws SQLException

I nval i dGeomet r yExcepti on, CGeonetryl nput TypeNot Support edExcepti on

/1l Locate first triangle that contains AddPoint (returns -1, if outside
triangul ation).
Triangle firstTriangle = this.|locateFirstTriangl e(conn);

/1 1f point is not outside the triangulation
if (firstTriangle.id !'= -1)

int[] nSequence = {1, 2, 0};
thi s. nei ghbouringTriangl e(firstTriangle, conn, nSequence);
/*

Systemout.println("processedTriangl es:"+processedTriangles.toString());

Systemout.println("del eteTriangles:");
for (int i=0;i<deleteTriangles.size();i++)
Systemout.println(((Triangle)deleteTriangles.get(i)).id);

Systemout. println("cavityTriangl es/cavityEdges:");
for (int i=0;i<cavityTriangles.size();i++)

Systemout.println(((Triangle)cavityTriangles.get(i)).id+"/"+cavityEdges. ge
t(i));
*/

}

el se

del et eTri angl es. addEl enent (firstTri angl e);

}
}

e e
/'l Locate the first triangle that contains AddPoint.
i e
private Triangle | ocateFirstTriangl e(Connection conn) throws
SQLException, I|nvalidGeonetryException,
Geonet ryl nput TypeNot Support edExcepti on

{

/1 Get triangle containing point.

Statenent stnmt = conn.createStatenent();

Geonet ryAdapt er sdoAdapter =
Or aSpati al Manager . get Geonet ryAdapter ("SDO', "8.1.6", null, STRUCT. cl ass,
null, conn);

String queryString = "Select * FROM tri angl es A VWHERE
SDO_RELATE(A. Geonetry,
nmdsys. sdo_geonet ry(3001, NULL, NULL, ndsys. sdo_elem.info_array(1,1, 1), ndsys. sd
o_ordinate_array("+this.x+", "+this.y+","+this.z+")), "' mask=ANYl NTERACT
querytype=WNDOW) = 'TRUE ";

O acl eResul t Set rset = (Oracl eResul t Set)stnt.executeQuery(queryString);

if (rset.next())
{
int id =rset.getlnt(1);
Pol ygon pol ygon =
(Pol ygon) sdoAdapt er. i mport Geonetry(rset.get Object(2));
i nt neighbour0 = rset.getlnt(3);
i nt neighbourl = rset.getlnt(4);
i nt neighbour2 = rset.getlnt(5);
rset.close();
stm.close();
Triangle tri = new
Triangl e(i d, pol ygon, nei ghbour 0, nei ghbour 1, nei ghbour 2) ;
return tri

}
el se
{
Poi nt fakePoint = new Point(-1,-1,-1);
Triangle tri = new Triangl e(-1,fakePoint, fakePoi nt, fakePoint,-1,-1, -
1);
return tri
}
}
R e e e T

/1 Locates on which side of the line pl-->p2 AddPoint is.
i
private int whichSi deEdge(Poi nt pl, Point p2)
{

doubl e twi ceTheArea = (this.x*pl.y-this.y*pl.x)+(pl. x*p2.y-

pl. y*p2.x) +(p2. x*this.y-p2.y*this.x);
if (twiceTheArea > 0)
return 1; // AddPoint is to the left of pl-->2

else if (twi ceTheArea == 0)
return 0; // AddPoint is on pl-->2
el se

return -1; // AddPoint is to the right of pl-->2

e e
/!l Locate neighbouring triangles that contain AddPoint.
i e
public void neighbouringTriangle(Triangle tri, Connection conn, int[]
nei ghbour Sequence) throws SQLException, InvalidGeonetryException
Geonet ryl nput TypeNot Support edExcepti on
{
del et eTri angl es. addEl enent (tri);
processedTri angl es. addEl ement (new I nteger(tri.id));

int[] nbSequence
int[] neighbours

= nei ghbour Sequence;
= {tri.neighbour0O, tri.neighbourl, tri.neighbour2};
/1l Check all the neighbouring triangles of a triangle that contains the
AddPoint in the circle.
for(int i=0;i<=2;i++)
{
i nt sequence = nbSequenceli];
int id = neighbours[sequence];

/1 Skip neighbours with id = -1 (outside triangulation).
if (id!=-1)

/1 Skip triangles that are already processed.
if (!processedTriangl es.contains(new |Integer(id)))
{
/'l Get the neighbouring triangle.
Statenment stnt = conn.createStatenent();
Geonet ryAdapt er sdoAdapter =
Or aSpati al Manager . get Geonet ryAdapter ("SDO', "8.1.6", null, STRUCT. cl ass,
null, conn);
String queryString = "SELECT * FROM triangles WHERE id = "+id;
Oracl eResul t Set rset =
(Oracl eResul t Set) st nt . execut eQuery(queryString);
rset.next();

int triangleld = rset.getint(1);
Pol ygon pol ygon =
(Pol ygon) sdoAdapt er. i nport Geonetry(rset.get Object(2));
i nt nei ghbourO rset.getlnt(3);
i nt nei ghbourl rset.getlnt(4);
i nt nei ghbour 2 rset.getlnt(5);
int[] theNei ghbours = {nei ghbour0, neighbourl, neighbour?2};

rset.close();
stmt.close();

Triangl e nei ghbouringTriangle = new
Triangl e(triangl el d, pol ygon, nei ghbour 0, nei ghbour 1, nei ghbour 2) ;
/1l Check if the triangle contains the point inside the circle.
bool ean pointInCircle = this.inCircle(neighbouringTriangle,
conn) ;

if (pointInCircle)

/1 Check the neighbours of this triangle (it will be stored
with calling the function).

int k=0;

while (tri.id != theNei ghbours[k])

{

k++;

}

int[] nSequence = {(k+1) %3, (k+2) 93, (k+3) ¥3};

nei ghbouri ngTri angl e(nei ghbouri ngTri angl e, conn, nSequence);
}

el se

/1 Add the triangle as a triangle that stays intact, but gets a
new nei ghbour .
cavi tyTri angl es. addEl enent (nei ghbouri ngTri angl e);
for(int j=0;j<3;j++)
if (theNeighbours[j] == tri.id)
cavi t yEdges. addEl enent (new I nteger(j));
processedTri angl es. addEl enent (new I nteger(id));

}
}
}

el se

/1 1f atriangle breaks up at the triangul ati on edge, this edge
needs to stay intact.

cavityTri angl es. addEl enent (tri);

cavi t yEdges. addEl enent (new | nt eger (sequence));

e R R T
/! Return true if AddPoint is in the circunscribing circle of a Triangle
tri.
e e
public boolean inCircle(Triangle tri, Connection conn) throws
SQLExcepti on
{
/1l Triangle as 3 vertices.
Point[] pointList = tri.getVertices();
Poi nt uPoint = pointList[O0];
Poi nt vPoi nt poi ntList[1];
Poi nt wPoi nt poi ntList[2];

/1l Translate triangle with AddPoint in the center.
Poi nt | uPoint, |vPoint, |wPoint;

| uPoi nt = this.substract Poi nt (uPoint);
I vPoint = this.substract Point (vPoint);
| wPoi nt = this.substract Poi nt (wPoi nt);

/] Get determ nant.

doubl e deterninant, detl, det2, det3;

detl = ((luPoint.x * luPoint.x) + (luPoint.y * [uPoint.y)) *
((lvPoint.x * IwPoint.y) - (lvPoint.y * IwPoint.x));

det2 = ((lvPoint.x * IvPoint.x) + (lvPoint.y * IvPoint.y)) *
((luPoint.x * IwPoint.y) - (luPoint.y * [wPoint.x));

det3 = ((IwPoint.x * IwPoint.x) + (IwPoint.y * IwPoint.y)) *
((luPoint.x * IvPoint.y) - (luPoint.y * |vPoint.x));

determ nant = detl - det2 + det3;

// 1f determinant is <=0 then return true, otherw se fal se.
bool ean circleCriterion = fal se;
if (deternm nant <= 0.00000001)

circleCriterion = true;

a4

/1 Return true if Delaunay circle criterion goes.
return circleCriterion

}

L e
/1l Inserts and updates triangles in database to accommmodate for AddPoint.
i R e LR
public void insert(BowerWatson app, Connection conn) throws
SQLException, GeonetryQut put TypeNot SupportedException
I nval i dGeomet r yExcepti on

{
/1 Check for point outside envelope, if so: skip insertion
Triangle tri = (Triangle)del eteTriangl es.get(0);
if (tri.id!=-1)

/1 Check for known point, if so: skip insertion
if ((deleteTriangles.size() + 2) == cavityTriangles.size())
{
/! Get the id for the newly forned triangles and the new point id.
Statenent stnmt = conn.createStatenent();
String queryString = "SELECT id FROM tri angles WHERE id = (SELECT
MAX(id) FROM triangles)";
Oracl eResul t Set rset =
(Oracl eResul t Set) st nt . execut eQuery(queryString);
rset.next();
int newlriangleld = rset.getlnt(1) + 1;
rset.close();
stmt.close();

/1 Make sone lists for the new triangles part.
Vector vertexList = new Vector();
Vect or nei ghbouringTriangl eLi st = new Vector();

int lengthCavity = cavityTriangles.size();

/1 Add two new triangles to deleteTriangles (initialized with lots
of -1's).

Poi nt fakePoint = new Point(-1,-1,-1);

Triangle firstNewlriangle = new
Tri angl e(newTri angl el d, f akePoi nt, f akePoi nt, fakePoint,-1,-1,-1);

del et eTri angl es. addEl enent (first NewTri angl e);

Triangl e secondNewTri angl e = new
Tri angl e(newTri angl el d+1, f akePoi nt, f akePoi nt, f akePoint,-1,-1,-1);

del et eTri angl es. addEl enent (secondNewTr i angl e) ;

/1l For every triangle around the cavity, save the new nei ghbours.
for(int i=0;i<lengthCavity;i++)
{
Triangle cavityTriangle = (Triangle)cavityTriangles.get(i);
int triangleld = cavityTriangle.id;
Point[] vertices = cavityTriangle.getVertices();
int[] neighbours = {cavityTriangl e. nei ghbourO,
cavi tyTriangl e. nei ghbour1, cavityTriangle. nei ghbour2};
int rand = ((Integer)cavityEdges.get(i)).intValue();

String[] neighbourFields = {"neighbour0", "neighbour1l"
"nei ghbour 2"} ;
String nei ghbourFi el d = nei ghbourFi el ds[rand];

i nt nei ghbourTriangl eld = nei ghbours[rand];

&

i f (neighbourTriangleld != -1)

/1 Update triangles in the database.

Statenent stmt2 = conn.createStatenent();

String updateString = "UPDATE triangles SET
"+nei ghbour Fi el ds[rand] +* = "+((Tri angl e)del eteTri angl es.get(i)).id+" WHERE
id="+triangleld,;

stm 2. execut eUpdat e(updat eStri ng) ;

stm 2. cl ose();

/1 Add a vertex to the vertex list and a neighbouring triangle
to that list.

vertexLi st. addEl enent (vertices[((rand+1)%3)]);

nei ghbouri ngTri angl eLi st. addEl enent (new I nteger(triangleld));

}

el se

/1 Add a vertex to the vertex list and a neighbouring triangle
to that I|ist.

vertexLi st. addEl enent (vertices[rand]);

nei ghbouri ngTri angl eLi st. addEl enent (new
I nt eger (nei ghbour Tri angl el d));

}

/1 New triangles part.
for(int i=0;i<lengthCavity;i++)
{
/1 Two existing vertices formthe triangle together with the new
poi nt.
int nextVertex = (i+1) %Il engthCavity;
i nt nextNextVertex = (i+lengthCavity-1) % | engthCavity;

int id = ((Triangle)deleteTriangles.get(i)).id;

Poi nt vertex0 = (Point)(vertexList.get(i));

Poi nt vertexl = (Point)(vertexList.get(nextVertex));

Poi nt vertex2 = this;

i nt nei ghbour0 =
((1I nteger)nei ghbouringTriangl eList.get(i)).intValue();

int neighbourl = ((Triangle)del eteTriangl es. get(nextVertex)).id;

i nt nei ghbour2 =
((Triangle)del eteTri angl es. get (next Next Vertex)).id;

Triangl e triangl eToAdd = new
Triangl e(id, vertex0, vertexl, vertex2, nei ghbour 0, nei ghbour 1, nei ghbour 2) ;

/1l Use two new triangles, plus the rest existing rows in the
dat abase (insert/update).
if (i < (lengthCavity-2))
tri angl eToAdd. updat el nDat abase(conn);
el se
triangl eToAdd. addToDat abase(conn) ;
}
app. st atusLabel . set Text (" Poi nt "+counter+" inserted.");
System out. println("Point "+counter+" inserted.");
}
el se
{
app. st atusLabel . set Text (" Poi nt "+counter+" known.");
System out. println("Point "+counter+" known.");

}

}

el se
{
app. st atusLabel . set Text (" Point "+counter+" outside triangulation.");
Systemout. println("Point "+counter+" outside triangulation.");
}
}
}

Trianglejava
package bowyerwat son;

i nport oracle.sql.STRUCT;

i nport oracl e. sdoapi . OraSpati al Manager ;
i nport oracl e. sdoapi . adapter.*;

i mport oracle.sdoapi.geom *;

i nport java.sql.?*;

i nport oracle.jdbc.driver.?*;

public class Triangle
{
i e e T
/1 Class variabl es.
i R e LR
int id;
Pol ygon pol ygon;
i nt nei ghbour 0;
i nt nei ghbour 1;
i nt nei ghbour 2;

i R e LR

/1 Constructor #1.

R e e e T

public Triangle(int id, Point vertex0O, Point vertexl, Point vertex2, int
nei ghbour 0, int neighbourl, int neighbour2) throws InvalidGeonetryException

{
this.id =id;

GeonetryFactory gF = OraSpati al Manager . get Geonet ryFactory();

doubl e coordArray[] = {vertex0.x, vertex0.y, vertex0.z, vertexl. X,
vertexl.y, vertexl.z, vertex2.x, vertex2.y, vertex2.z, vertex0.Xx,
vertex0.y, vertex0.z};

LineString[] |Is = {gF.createLineString(3, coordArray)};

t hi s. pol ygon = gF. createPol ygon(ls);

t hi s. nei ghbour0 = nei ghbour 0;

t hi s. nei ghbour1l = nei ghbour 1;

t hi s. nei ghbour2 = nei ghbour 2
}
e e
/1 Constructor #2.
e e

public Triangle(int id, Polygon polygon, int neighbour0O, int neighbourl,
i nt neighbour2) throws |nvalidGeonetryException

{
this.id = id;
thi s. pol ygon = pol ygon;
t hi s. nei ghbour0 = nei ghbour 0;
thi s. nei ghbour1l = nei ghbour1;
t hi s. nei ghbour2 = nei ghbour 2

e R R T
/1 Constructor #3.
L e e e
public Triangle(Triangle tri)
{

this.id = tri.id;

this. polygon = tri.pol ygon;

t hi s. nei ghbour0 = tri.neighbourO;

thi s. nei ghbour1 tri.nei ghbour1,

thi s. nei ghbour 2 tri.nei ghbour2;

L e
/1l Return vertices of a triangle.
i e e T
public Point[] getVertices()
{

Pol ygon p = this. pol ygon;

CurveString cs p. get Ri ngAt (0);

Coor dPoi nt cpO cs. getPoint At (0);

Coor dPoi nt cpl cs.getPointAt(1);

Coor dPoi nt cp2 cs. getPoint At (2);

Poi nt wPoi nt = new Poi nt (cp0. get X(), cp0. get Y(), cp0. getZ());

Poi nt vPoint = new Point(cpl.getX(), cpl.getY(),cpl.getZ());

Poi nt uPoi nt = new Poi nt (cp2.get X(), cp2.getY(),cp2.getZ());

Point[] pointList = {wPoint, vPoint, uPoint};

return pointlList;

i
/1 Add the triangle to the database.
i
public void addToDat abase(Connection conn) throws SQLExcepti on,
Geonet ryQut put TypeNot Support edExcepti on, InvalidGeonetryException
{
Statenent stnmt = conn.createStatenent();
Geonet ryAdapt er sdoAdapter =
Or aSpati al Manager . get Geonet ryAdapter ("SDO', "8.1.6", null, STRUCT. cl ass,
null, conn);
Geonetry geom = (Geonetry)this. pol ygon;

String queryString = "INSERT I NTO triangles VALUES(?, ?, ?, ?, ?2)";
Prepar edSt at enent ps = conn. prepar eSt at enent (queryString);
ps.setlint(1l, this.id);

ps. set Obj ect (2, sdoAdapter. export Geonetry(STRUCT. cl ass, geon));
ps.setlnt (3, this.neighbour0);

ps.setlnt(4, this.neighbourl);

ps.setlnt(5, this.neighbour?2);

ps. execut eUpdat e() ;

stm.close();

i
/1l Updates the triangle to the database.
i
public void updat el nDat abase(Connecti on conn) throws SQLExcepti on,

Geonet ryQut put TypeNot Support edExcepti on, InvalidGeonetryException

{

Statenment stnt = conn.createStatenent();

Geonet ryAdapt er sdoAdapter =
Or aSpati al Manager . get Geonet ryAdapter ("SDO', "8.1.6", null, STRUCT. cl ass,
null, conn);

Geonetry geom = (Geonetry)this. pol ygon;

String queryString = "UPDATE triangles SET geonetry = ?, nei ghbour0 =
?, neighbourl = ?, neighbour2 = ? WHERE id = ?";

Prepar edSt at enent ps = conn. prepareStatenment (queryString);

ps. set Obj ect (1, sdoAdapter. export Geonetry(STRUCT. cl ass, geon));
ps.setlnt(2, this.neighbourO0);

ps.setlnt(3, this.neighbourl);

ps.setlnt(4, this.neighbour?2);

ps.setlnt(5, this.id);

ps. execut eUpdat e() ;

stm . close();

47

Appendix B: Java source code finding first triangle option 1 (section 5)

e e
/1l Locate the first triangle that contai ns AddPoi nt.
i e
private Triangle | ocateFirstTriangl e(Connection conn) throws SQLException
{

/1 lnitialise counter
int counter = O;

/1l Get last triangle fromthe database.
Statenment stnt2 = conn.createStatement();
String queryString2 = "SELECT MAX(id) FROM triangl es";
Oracl eResul t Set rset2 =
(Oracl eResul t Set) st nt 2. execut eQuery(queryString2);
rset2. next();
int theld = rset2.getlnt(1);
rset2.close();
stm 2. cl ose();

Triangle tri = new Triangle(-2,-1,-1,-1,-1,-1,-1);
bool ean foundFirstTriangle = false;

while (!foundFirstTriangle)
{

count er ++;

if (tri.id == -1)
br eak;

/1l Get triangle: theld fromthe database.
Statenent stnmt = conn.createStatenent();
String queryString = "SELECT * FROM triangles WHERE id = "+t held;
Oracl eResul t Set rset =
(Oracl eResul t Set) st nt. execut eQuery(queryString);

rset.next();

tri.id = rset.getlint(1);
tri.vertex0 = rset.getlnt(2);
tri.vertexl rset.getlnt(3);
tri.vertex2 rset.getlnt(4);
tri.neighbour0 = rset.getlnt(5);
tri.neighbourl rset.getlnt(6);
tri.neighbour2 = rset.getlnt(7);

rset.close();
stm.close();

/1l Get the coordinated of the vertices fromthe database.
Statenent stmtl = conn.createStatenent();
String queryStringl = "SELECT * FROM points WHERE id =
"+tri.vertex0O+" or id = "+tri.vertex1l+" or id = "+tri.vertex2;
Oracl eResul t Set rsetl =
(Oracl eResul t Set) stnt 1. execut eQuery(queryStringl);

rsetl. next();

int idu =rsetl.getint(1);

doubl e xu = rset 1. get Doubl e(2);

doubl e yu rset 1. get Doubl e(3);

doubl e zu rset 1. get Doubl e(4);

Poi nt poi nt2 = new Poi nt (i du, xu, yu, zu) ;

49

rsetl. next();
int idv = rsetl.getlnt(1);

doubl e xv = rsetl. get Doubl e(2);
doubl e yv = rset 1. get Doubl e(3);
doubl e zv = rsetl. get Doubl e(4);

Poi nt pointl = new Point(idv, xv,yv, zv);

rsetl. next();

int idw = rsetl.getint(1l);

doubl e xw = rset 1. get Doubl e(2);

doubl e yw = rset 1. get Doubl e(3);

doubl e zw = rset 1. get Doubl e(4);

Poi nt poi nt0 = new Poi nt (i dw, Xxw, yw, zw) ;
rsetl.close();

stm 1. close();

int wS01 = this.whichSi deEdge(point0, pointl);
int wS12 = this.whichSi deEdge(poi ntl, point2);
int wS20 = this.whichSi deEdge(point2, point0);

System out. println(wS01+" "+wS12+" "+wS20);
int result = -1;

switch (ws01)
{
case - 1:
switch (wS12)

case -1:
switch (wS20)
{
case -1:
resul t
br eak;
case O:
resul t
br eak;
case 1:
resul t
br eak;

n
»

I
>

1
N

}

br eak;
case O:
switch (wS20)
{
case -1:
resul t
br eak;
case O:
resul t
br eak;
case 1:
resul t
br eak;

I
>

I
»

1]
N

}

br eak;

case 1:
switch (wS20)
{

case -1:

result = 1;

br eak;
case O:
result = 1;
br eak;
case 1:
result = 2;
br eak;
}
br eak;
}
br eak;
case O:
switch (ws12)
{
case -1:
switch (wS20)
{
case -1:
result = 4;
br eak;
case O:
result = 4;
br eak;
case 1:
result = 2;
br eak;
}
br eak;
case O:
switch (wS20)
{
case -1:
result = 4;
br eak;
case O:
result = -1;
br eak;
case 1:
result = -1;
br eak;
}
br eak;
case 1:
switch (wS20)
{
case -1:
result = 1;
br eak;
case O:
result = -1;
br eak;
case 1:
result = -1;
br eak;
}
br eak;
}
br eak;
case 1:

switch (wS12)

51

case -1:
switch (wS20)
{
case -1:
resul t
br eak;
case O:
resul t
br eak;
case 1:
resul t
br eak;

I
L

I
e

I
e

}

br eak;
case O:
switch (wS20)
{
case -1:
resul t
br eak;
case O:
result = -1;
br eak;
case 1:
result = -1;
br eak;

I
e

}

br eak;
case 1:
switch (wS20)
{
case -1:
resul t
br eak;
case O:
result = -1;
br eak;
case 1:
result = -1;
br eak;

n
L

}

br eak;

}

br eak;

if (result == -1)
tri.id = -1;
else if (result == 0)
theld = tri.neighbourO;
else if (result == 1)
theld = tri.neighbourl;
else if (result == 2)
theld = tri.nei ghbour2
el se
foundFirstTriangle = true;
}
System out. println("Nurmber of triangles processed to find first
contai ning point: "+counter);
return tri
}

52

