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Abstract

In this work, a novel subspace-based algorithm is presented for automated random noise reduc-
tion in online recorded music. Musical signal enhancement is a separate issue from the well-
studied speech enhancement problem due to the particularly wide range of signal characteristics
encountered, and thus requires a very general approach. Because similar issues drive denoising
advances in seismic signal processing, it is argued that an algorithm can be developed through
a cross-disciplinary approach. Inspired by an enhancement method for seismic sections, noise
reduction is achieved by applying a singular value decomposition-based image enhancement
technique, known as eigenimage filtering, to the time-frequency representation of the musical
signal. Classic eigenimage filtering approximates a full-rank matrix by its closest rank-deficient
approximation; the preserved and discarded parts of the matrix correspond to the signal and
noise subspaces, respectively. Under the assumption of a quasi-stationary signal, this technique
is applied to the short-time Fourier transform of the signal. However, because the standard eigen-
image filtering approach results in unwanted residual noise characteristics when applied in this
domain, an adapted version of the technique is used. In this adaptation, all singular values are
altered but none are set to zero, and the alteration is dependent on the singular values encoun-
tered. Therefore, the method is data-adaptive. Subjective and objective performance measures
indicate that the method is capable of improving the quality of noisy recordings, and that its
quality is competitive compared with an open-source noise reduction algorithm whilst having
the advantages of automation and fewer user-defined parameters.
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Chapter 1

Introduction

Music is omnipresent in our modern society. With an ever-growing number of both consumers
and producers, there is an increasing demand for innovations that enhance the musical expe-
rience. In particular, this requires improvements to the stage during which audio is recorded,
the stage in which it is played, or the processing stage in between. However, a large number
of aspiring musicians do not have the option to make improvements in the former two stages,
as this requires upgrading to expensive higher-quality hardware or recording in a professional
studio. One of the main purposes of the processing stage for this group of users is thus to com-
pensate for the adverse effects and limitations of their suboptimal equipment. A straightforward
example of such a processing solution is audio equalisation, in which individual frequency bins
can be either attenuated or enhanced, for instance to compensate for the often biased frequency
response of the microphone and speakers used. A much more complex issue, however, is that of
general background noise. In the absence of a soundproofed recording studio and professional
recording hardware, a variety of unwanted sounds may appear in recordings. This is particularly
the case for those recordings made using accessible and easy-to-use music-making applications.
These platforms are specifically designed for use at home, in classrooms or even outside, and
are intended to be used with mobile phones, tablets, or laptops, thus mostly relying on unso-
phisticated built-in microphones. Removing or reducing the noise from this category of audio
therefore poses a particular challenge. It is however also an appealing challenge, both from a
theoretical and a practical point of view, and will constitute the main goal of this thesis.

Over the past decades, many methods for removing noise from audio have been developed.
Although partially successful, many of these methods either leave too much residual noise,
introduce new (musical) noise (Inoue et al., 2011; Malca & Wulich, 1996) or distort the signal
considerably (J. Chen et al., 2006). Moreover, techniques like spectral noise gating are prone
to personal error, because they require the user to carefully select a noise-only interval upon
which to base the noise removal. Hence, new methods are required that remove more noise
without audible distortion of the signal, and that are generally applicable, preferably with as
little parameterisation and user intervention as possible.

The noise reduction problem is not unique to audio, but shared in most disciplines that involve
signal processing. One approach for the development of denoising methods is thus to adapt and
apply processing algorithms used in other fields of research. Examples of such interdisciplinary
works include the application of the (originally geophysical) Stockwell transform to enhance the
signal in electrocardiograms (Huang et al., 2009), the usage of a Voice Activity Detector (VAD)
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to determine the presence or absence of wind noise in volcanic tremors (Cabras et al., 2014),
and the usage of Music Information Retrieval (MIR) methods to define and extract attributes
from seismic data (Amendola et al., 2017).

Out of all disciplines that include signal enhancement stages, the combination of audio and
seismics seems particularly well-suited for a cross-disciplinary approach for a number of reasons.
First, both disciplines deal with the physics of sound wave propagation. Naturally, of main
interest in music is the direct wave from sound source to microphone, whereas the reflected
(and sometimes refracted) waves generally constitute the desired signal in seismic exploration.
Nevertheless, the methods used to separate desired from undesired waves may be cross-field
compatible. Second, seismic data volumes are generally large, typically including thousands to
tens of thousands of recordings. It is thus impractical to find the optimal processing solution for
each individual data trace by hand. Instead, the objective is to find a general and efficient way
to enhance the signal in a large number of channels, without having to intervene and change
parameters. Similarly, the data volumes in online music recording applications quickly become
too large to allow for manual noise removal, such that automated methods are required.

In this thesis I present an interdisciplinary approach, in which seismic noise-reduction algorithms
serve as a source of inspiration for musical signal enhancement methods. In order to enable a
proper assessment of the possibilities and limitations of such an approach, it is paramount to
have an overview of the signal and noise types encountered in both fields, as well as conven-
tional processing algorithms. Hence, the following sections of this chapter will provide a general
overview of common denoising practices in audio (Sec. 1.1) and seismic data processing (Sec.
1.2), which provides the framework to define the scope and outline of this work (Sec. 1.3).

1.1 Denoising techniques in audio signal processing

Noise reduction in audio is a very active field of research, with successful algorithms finding use
in speech processing (Benesty et al., 2011; Parchami et al., 2016), automatic speech recognition
(Hermus et al., 2007), hands-free communication (Preuss, 1979; Boll, 1979), hearing implants
(Yousefian et al., 2014), and to a lesser degree, musical applications (Bassiou et al., 2014).
Besides sorting methods by their field of application, noise suppression algorithms (NSA) can
be classified according to the type of noise they are designed to reduce. The most extensively
studied problem is that of speech corrupted by additive and uncorrelated white noise; that is,
the following equations are assumed to hold:

x(n) = s(n) + v(n) (1.1a)
X(k, τ) = S(k, τ) + V (k, τ) (1.1b)

where x(n), s(n) and v(n) correspond to the noisy signal, clean signal and noise sampled at
discrete time n, the capitals X, S and V denote their respective discrete Fourier transforms, and
k and τ represent the frequency bin and time frame indices of a time-frequency representation.
Though other options exist, audio signal processing conventionally takes place in the time-
frequency domain, as it is particularly well suited for representing and analysing non-stationary
signals. Note that (1.1b) only holds if the transform that connects it with (1.1a) is linear, which
in audio is generally the case.
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The denoising techniques associated with this particular additive noise model are commonly cat-
egorised into four subclasses: spectral subtractive, Wiener, statistical estimation (or Bayesian),
and subspace methods. For extensive literature reviews and discussions of each of these classes,
the reader is referred to Upadhyay & Karmakar (2015), J. Chen et al. (2006), Ephraim (1992)
and Hermus et al. (2007), respectively. A concise overview is provided here for the purpose of
reference.

1.1.1 Spectral subtraction (SS)

The spectral subtraction class, which still sees extensive use today, was introduced by Boll
(1979) for the purposes of speech signal enhancement, and operates in the time-frequency domain
obtained by the short-time Fourier transform (STFT). A time interval, assumed to be devoid
of signal, is used to obtain an estimate of the amplitude spectrum of the noise. Under the
assumption of locally stationary, uncorrelated and additive noise, this estimate is subsequently
subtracted from the noisy audio to yield the desired ’clean’ signal amplitude spectrum:

|Ŝ(k, τ)| = |X(k, τ)| − |V̂ (k, τ)| (1.2)

or, in case the noise is estimated in terms of its power spectral density (PSD):

|Ŝ(k, τ)|2 = |X(k, τ)|2 − |V̂ (k, τ)|2 (1.3)

where the hat symbol is used to denote an estimate. The cross-terms X(k, τ)V̂ ∗(k, τ) and
X∗(k, τ)V̂ (k, τ) (∗ denoting conjugate transpose) are omitted in (1.3) because the noise is as-
sumed zero-mean and uncorrelated with the signal. If a pause in the signal is detected (by using
a voice activity detector), it is used to update the noise amplitude spectrum estimate accord-
ingly. It is common practice to subsequently combine the processed spectral amplitudes with the
original (noisy) phase spectrum, which was proven by Ephraim & Malah (1984) to be the opti-
mal phase estimate when the STFT coefficients are mutually uncorrelated. Hence, the processed
STFT coefficients are conventionally obtained as follows:

Ŝ(k, τ) = |Ŝ(k, τ)|ejϕx(k,τ) (1.4)

where j is the imaginary unit and ϕx(k, τ) is the phase spectrum of the original noisy speech.
The last step is to retrieve the estimate of the clean signal ŝ(n) by applying the inverse short-time
Fourier transform (ISTFT).

Though effective in its aim of reducing background noise, the residual noise was found to possess
undesirable characteristics (Preuss, 1979; Berouti et al., 1979). Because an average noise am-
plitude spectrum is subtracted from the stochastic noise process, the method is prone to noise
residuals that are confined in both frequency and time. Converted back to the auditory domain,
these are experienced as short, random-pitch sounds, leading to the phenomenon’s designation
as tonal or musical noise. Considered by many to be more intrusive than the original noise,
subsequent research efforts where dedicated to alleviating this problem, which led to improved
versions with different noise spectrum estimators (Preuss, 1979), over-subtracting based on the
noise amplitudes (Berouti et al., 1979; Lorber & Hoeldrich, 1997) and subsequent processing
steps designed to deal with residual musical noise (Haulick et al., 1997; Malca & Wulich, 1996).
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1.1.2 Wiener Filter (WF) methods

The Wiener methods also filter the signal under the assumption of uncorrelated and additive
Gaussian noise, and are in fact related to spectral subtraction. The aim is to improve the
output signal-to-noise ratio (SNR) under the constraint of minimum mean square error (MMSE)
between the desired (clean) and estimated signal. This criterion can be applied to the time series
in time domain Wiener filtering (Benesty & Chen, 2011) or, more commonly, to the signal’s
amplitude spectrum in the STFT domain (Benesty et al., 2011; Parchami et al., 2016, and
references therein). For the latter, the Wiener filters take the shape of a two-dimensional gain
function W (k, τ):

Ŝ(k, τ) = W (k, τ)X(k, τ) (1.5)

and, defining the error matrix as

ε(k, τ) = Ŝ(k, τ)− S(k, τ) = W (k, τ)X(k, τ)− S(k, τ) (1.6)

the problem becomes to find the Wiener gain that minimises the frequency sub-band MSE
criterion

Eτ [|ε(k, τ)|2] (1.7)

where Eτ [.] denotes the mathematical expectation operator over the index τ .
It can be derived (Benesty et al., 2011) that the coefficients of the Wiener gain are given by:

W (k, τ) =
(σ2s/σ

2
v)

1 + (σ2s/σ
2
v)

=
iSNR(k, τ)

1 + iSNR(k, τ)
(1.8)

where iSNR(k, τ) is the local input signal to noise ratio, defined as the ratio of the signal
and noise variances. As can easily be deduced from (1.8), the gain end-members for the cases
of infinitely high and low iSNR are 1 and 0, respectively. Clearly, the success of a Wiener
method relies on the accuracy of the estimate of the local signal to noise ratio, which is a whole
branch of research in itself. For the purposes of audio signal enhancement, examples of valuable
contributions are cepstro-temporal SNR estimation (Breithaupt et al., 2008), two-step STFT-
domain SNR estimation (Plapous et al., 2006) and STFT-domain SNR estimation conditioned
on all previous frames (Cohen, 2005).
The Wiener gain includes an implicit trade-off between noise reduction and signal distortion.
This can be derived by rewriting equations (1.5) and (1.6) using (1.1b). For the former, this
leads to:

Ŝ(k, τ) = W (k, τ)X(k, τ)

= W (k, τ)S(k, τ) +W (k, τ)V (k, τ)

= Sf (k, τ) + Vr(k, τ) (1.9)

which indicates that the result of filtering is a superposition of the filtered signal Sf and the
residual noise Vr. The formulation of the error matrix can be reformulated in similar fashion:

ε(k, τ) = W (k, τ)X(k, τ)− S(k, τ)

= W (k, τ) [S(k, τ) + V (k, τ) ]− S(k, τ) (1.10a)
ε(k, τ) = S(k, τ) [W (k, τ)− 1 ] +W (k, τ)V (k, τ) (1.10b)
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and, using the definitions of Sf and Vr as in (1.9):

ε(k, τ) = [Sf (k, τ)− S(k, τ) ] + Vr(k, τ)

= Sd(k, τ) + Vr(k, τ) (1.11)

The difference between the filtered and true signal, denoted Sd, is indicative of the signal dis-
tortion due to the filtering. Equation (1.11) illustrates that the error matrix always consists of
a signal distortion and a residual noise component. It is insightful to consider the effect of the
aforementioned gain end-members of 1 and 0. In the case of infinitely high iSNR, the Wiener
gain is equal to one, and (1.10b) reduces to ε(k, τ) = V (k, τ). In this case, there is no signal
distortion, but the noise is equally unaltered. Conversely, if iSNR is infinitely low, the gain is
equal to zero, and (1.10b) reduces to ε(k, τ) = −S(k, τ). Now, there is no residual noise, but the
signal is fully distorted.

After estimating the a priori SNR, there are different approaches in defining the Wiener gain
itself. Aside from the standard formulation in (1.8), common varieties include square-root Wiener
filtering (Inoue et al., 2011), which is in fact equal to PSD domain spectral subtraction, and
parametric varieties (Inoue et al., 2011; Fan, 2004) that allow for adjustments in the trade-off
between noise reduction and signal distortion. In general, the greatest advantage of the Wiener
methods is the simplicity of implementation, whereas the major disadvantage is the inherent
trade-off between signal distortion and residual noise.

1.1.3 Statistical estimator methods

The third branch of denoising methods has its roots in probability theory. Research in this
area gained momentum after Ephraim & Malah (1984) argued that although both the spectral
subtractive and the Wiener methods are implemented in the STFT domain, neither method
actually attempts to estimate the individual STFT coefficients in an optimal sense. This obser-
vation initiated the class of methods known as Bayesian short-time spectral amplitude (STSA)
estimators. As the name implies, these methods focus on altering the perceptually dominant
amplitude values, and like most of the classical spectral subtractive and Wiener methods, they
are usually combined with the noisy phase spectrum afterwards as in (1.4).
The required inputs of an algorithm in this class comprise the input SNR, for which estimation
methods were discussed in section 1.1.2, and the probability distributions of the Fourier coeffi-
cients of both the noise and the clean signal. These coefficients cannot be accurately measured
from the signal because music and speech (and possibly the noise) are non-stationary processes.
Hence, a specific statistical model is assumed for the Fourier coefficients, and the corresponding
probability distribution is used. The most common choice is to assume that the Fourier coef-
ficients are statistically independent, mutually uncorrelated, and Gaussian distributed. When
the Fourier real and imaginary parts are both Gaussian distributed, the corresponding ampli-
tudes are Rayleigh distributed. As this corresponds to a negligible probability at low amplitudes,
which can lead to reduced noise suppression in the absence of signal, an additional signal pres-
ence probability factor complements the algorithm.
The actual implementation then involves minimising some Bayesian cost function of distance
between the estimated and clean signal STSA values. The original algorithm by Ephraim &
Malah (1984) uses the standard MMSE criterion

E{ ( |S| − |Ŝ| )2 } = CMMSE{ |S|, |Ŝ| } (1.12)

5



where CMMSE{., .} denotes the MMSE cost function between its arguments. Though this was
found to yield better results in comparison with the standard spectral subtraction and Wiener
filtering methods, it was already known at that time that the method could be further improved
by using a different cost function based on the human auditory system. Specifically, because
the relation between amplitude and perceived loudness is more logarithmic than linear, it is
perceptually more meaningful to compare the log-amplitude spectra. This lead to the so-called
MMSE log-STSA estimator (Ephraim & Malah, 1985):

E{ ( log|S| − log|Ŝ| )2 } = CLog−MMSE{ |S|, |Ŝ| } (1.13)

which was found to yield better results in comparison with the standard implementation. Further
research efforts led to an even more fine-tuned weighted power law cost function (Plourde &
Champagne, 2008):

E


(
|S|β − |Ŝ|β

|S|α

)2
 = CWβ−SA{ |S|, |Ŝ| } (1.14)

that takes into account both the non-linear amplitude-loudness relation (denoted by β) and the
frequency-sensitive masking properties of the human ear (denoted by α).
The greatest strength of the Bayesian class is a good overall performance, and particularly
the relative absence of musical noise after application. The larger amount of required a-priori
knowledge and the slightly increased computational load constitute the largest drawbacks.

1.1.4 Subspace methods

The last denoising class for suppressing uncorrelated white noise comprises the so-called sub-
space methods. Subspace methods have been applied in a plethora of fields for the purposes of
denoising (Hu & Loizou, 2003; Jones & Levy, 1987), data compression and pattern recognition.
An impractical consequence is that there exist some differences in definitions and nomenclature
between fields. This work will follow the definitions as in Ulrych & Sacchi (2005). The generally
adopted approach in subspace methods is to decompose the noisy signal in a number of weighted
and mutually orthonormal constituents as

x = K y (1.15a)

x(k) =
M∑
i=1

Kki yi (1.15b)

where x = [ x(1) x(2) .. x(N) ]T is an N-point noisy audio vector, K is a (N ×M), N > M
matrix with the M constituent vectors ki ordered as columns, and y = [ y(1) y(2) .. y(M) ]T is
a M-point vector containing the weights. In this context, the linearly independent constituents
are also commonly referred to as the basis functions. Making use of the orthonormal nature of
the basis functions, the inverse of (1.15a) can be written as

y = KT x (1.16)

This process is known as the principal component or Karhunen-Loèwe transformation (KLT) of
the vector x, and y is known as the principal component projection of x. The transformation
matrix K is obtained by means of eigenvalue decomposition of the covariance matrix of the
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signal x:
Rx = K ΛK∗ (1.17)

with Rx = E[xx∗] denoting the noisy signal covariance matrix, Λ a diagonal matrix containing
the corresponding eigenvalues λi ordered by decreasing magnitude, and K a matrix with the
eigenvectors ki as its columns, ordered accordingly.

The approach adopted in subspace methods is now to assume that the signal component s of the
noisy signal vector x can be reconstructed by using only the first p basis functions and weights,
whereas to completely reconstruct the noise, all basis functions are required. Put differently: Rx
is assumed to be of full rank M , whereas the clean signal covariance matrix Rs = E[s s∗] is
assumed to be of rank p, with p < M . If we assume, as for the other methods in this section,
that the noise is Gaussian, white, and uncorrelated with the signal, Rx can be written as

Rx = Rs +Rv = Rs + σ2v I (1.18)

and the components of Λ in (1.17) can be written as

λi =

{
λsi + σ2v , 1 ≤ i ≤ p
σ2v , p < i ≤M.

(1.19)

where λs denote the clean speech eigenvalues, i.e. those resulting from the decomposition of the
clean speech covariance matrix Rs = K ΛsK∗. As (1.19) illustrates, noise occupies the wholeM -
dimensional space, whereas the signal resides in the p-dimensional subspace. Noise removal can
thus be achieved by nulling the (M -p)-dimensional noise subspace, and optionally, by reducing
its contribution in the signal subspace (or, more accurately, the signal-plus-noise subspace). The
former procedure can be achieved in terms of the Karhunen-Loèwe transform by using only those
eigenvectors ki that correspond with the signal subspace in (1.15b):

ŝ(k) =

p∑
i=1

Kki yi (1.20)

The removed signal, or nulled subspace, is given by

x(k)− ŝ(k) =
M∑

i=p+1

Kki yi (1.21)

which, when p is chosen correctly, does not contain any signal components.

One of the earliest contributions in this field was provided by Dendrinos et al. (1991), who
showed how the singular value decomposition (SVD), a factorisation technique closely related
to the KLT, can be used to effectively remove white noise. Shortly after, Ephraim & Trees
(1995) demonstrated the applicability of the KLT to the additive white noise problem, as well
as the method’s superiority over conventional methods at that time. Later, it was found that
the subspace approach can be extended to the case of coloured noise through use of implicit
(Hermus et al., 2007) or explicit (Hermus et al., 2007; Hu & Loizou, 2003) noise pre-whitening.
Particularly taking the last point into account, one of the main strengths of the subspace class
is its general applicability and lack of required a-priori knowledge. The greatest shortcoming is
the higher computational complexity, which arises from the need to perform a singular value or
eigenvalue decomposition.
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1.2 Denoising techniques in seismic signal processing

There are many different types of seismic surveys, each with a specific purpose. Examples include
1) the check-shot survey, designed to correct sonic logs and calibrate synthetic seismograms; 2)
vertical seismic profile methods, used (amongst other reasons) to get high-resolution images in
vicinity of a borehole, for subsequent correlation with surface seismic data; 3) refraction surveys,
whose main purpose is to create images of subsurface seismic velocities; 4) reflection surveys,
devised to locate subsurface reflectors associated with lithological boundaries or changes in pore
fluid content; and 5) monitoring surveys, whose purpose is to detect tremors and (induced or
natural) earthquakes. The corresponding processing sequences depend on the type of survey, the
target of investigation and the acquisition characteristics.
In conventional seismic data processing, the majority of the energy that is removed from the
records is not of random, but of coherent nature. For instance, in a reflection survey, the data
recorded at an individual measurement station will generally consist of a superposition of the
desired primary reflection, the direct arrival, refracted waves, multiple reflections, as well as
random noise. Moreover, ground roll commonly poses a problem in land surveys, whereas marine
surveys cope with additional complexities originating from ocean wave swells, cable towing and
source/receiver ghosts. In order to keep a review of seismic processing standards tractable, this
section considers only those methods that do not divert far from the low-dimensional field of
audio. In particular, this section will focus on single-channel noise removal and the enhancement
of stacked sections.

1.2.1 Single-channel signal enhancement

The main objective in the pre-stack processing phase is to remove any noise that may sum con-
structively in the subsequent stacking stage. Particularly, the coherent noise from the various
unwanted wave types needs to be reduced. This issue can be addressed in multiple ways.
The conventional approach is to separate these wave types by exploiting differences in their
velocity or move-out behaviour. Aside from the standard t-x plane, interfering wave types are
commonly addressed by filtering in a transformed domain, in which they are more clearly sep-
arated from the signal of interest. Examples of signal enhancement methods in such filtering
dimensions include projection filtering (K. Chen & Sacchi, 2017) and eigenimage noise sup-
pression (Trickett, 2002, 2003) in the f-x (or f-xy) domain; multiple reflection removal (Zhou &
Greenhalgh, 1994b) in the f-k domain; automated thresholding for large-amplitude noise (Elboth
et al., 2009) in the t-f domain; and wave separation and filtering (Zhou & Greenhalgh, 1994a)
in the τ-p domain. Furthermore, the use of multiple-component receivers opens up another class
of signal enhancement techniques, as they allow for processing based on polarisation and the
direction of wave propagation. Though this has multiple uses, it is particularly valuable in sur-
face wave related problems such as building a near-surface velocity model (Socco et al., 2010)
and the identification and removal of (potentially scattered) surface waves (Kragh & Peardon,
1995).

The exploitation of spatial and/or directional information offers limited opportunity to be ex-
tended to online recorded audio, which is generally recorded using a single microphone. However,
some seismic signal enhancement procedures do operate on a single trace basis. An example of
such a technique is non-negative matrix factorisation (NMF or NNMF), which can be performed
on the TFR of an individual recording (as amplitude spectra are by definition non-negative).
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The concept is that a non-negative matrix can be factorised as follows:

|X(k, τ)|2β = X̄ = DH + E (1.22)

where X(k, τ) is a time-frequency representation of size (N ×M), the amplitude of which is
raised to the exponential 2β to enhance NMF performace. The variable β usually takes the value
of 1/3 in seismic literature (e.g. Cabras et al. (2014); Vaezi & Kazemi (2016)). D is the features
or dictionary matrix of size (N × k), H is the weighting or code matrix of size (k ×M), and E
is the approximation error of the same size as X. Both D and H are strictly positive matrices.
The factor k is smaller than M, and dictates how many features are extracted.
If an additive model is assumed for the various constituents of the signal, (1.22) can be refor-
mulated:

X̄ = X1 +X2 =
[
D1 D2

] [H1

H2

]
+ E (1.23)

The theory is that the matrices X1 and X2 relate to the amplitude spectra of the distinct
constituents, provided that the approximation error E is insignificant. A Wiener filter can then
be constructed, depending on which of the constituents in desired. If X1 represents the signal
to be extracted, the corresponding time-domain signal x1(t) is given by:

x1(t) ≈ iSTFT
{
G(k, τ)X(k, τ)

}
(1.24)

with

G(k, τ) =

(
X1

X1 +X2

) 1
2β

(1.25)

and similarly for X2. This procedure has found application in the field of seismology, where
volcanic tremors were separated from wind noise (Cabras et al., 2014), as well as from one another
(Cabras et al., 2012) using only a single-sensor recording. More recently, Vaezi & Kazemi (2016)
found the technique successful in removing swell noise from marine seismic data, and suggest to
extend its use to the reduction of ground roll in the future.

A second single-channel approach is to apply some form of thresholding to the coefficients of
a time-frequency representation. The principle of thresholding methods is to specify a number
of ranges, which are bounded by threshold values. An alteration rule is defined for each range;
depending on in which range a coefficient falls, it is altered according to said rule. An example of
such a procedure is the customised thresholding rule provided by Yoon & Vaidyanathan (2004):

fc(x) =


x− sgn(x)(1− α)λ, if |x| ≥ λ
0, if |x| ≤ γ

αλ
(
|x|−γ
λ−γ

)2{
(α− 3)

(
|x|−γ
λ−γ

)
+ 4− α

}
, otherwise.

(1.26)

Parolai (2009) applied the customised thresholding rule in (1.26) to the real and imaginary
coefficients of a seismic signal’s S-transform, which is a TFR with frequency-dependent resolution
(Stockwell et al., 1996). By relating the value of λ in (1.26) to the measured noise variance, and
by empirically determining suitable values for γ and α, Parolai (2009) reports a clear isolation
of dispersive waves, even at low signal to noise ratios.

A further noise reduction method is median filtering, which is a nonlinear smoothing operation.
It has been applied extensively in image processing to remove impulse noise (e.g. Chan et al.
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(2005)) whilst preserving edges, and as will be discussed in section 1.2.2, these characteristics
make it suitable for enhancing stacked seismic sections. However, the technique can also be
performed on 1-dimensional data, such as a time series. In its simplest form, a median filter
replaces each sample of a trace by the median value of samples in its vicinity. Like a running
average, a running median tends to smooth the data, and for Gaussian distributed data, the
results are equal in statistical sense (Bednar, 1983). The difference is that sharp discontinuities
are much better preserved using a median filter. These characteristics make it well-suited for
removing spiking noise from acoustic impedance logs (Bednar, 1983) and seismic traces (Liu et
al., 2009).
The major influencing factor in median filters is the filter length, since the degree of smoothing
increases as more samples are considered. For this reason, Liu et al. (2009) propose a two-step
algorithm for removing random, spike-like noise. In the first stage, the filter length is determined
by comparing the local median value to the global average median value. When the local value
exceeds this threshold, the filter length is set to a smaller value; otherwise, the length is increased.
In the second step, the signal is filtered using the updated filter lengths. Thus, regions assumed to
consist mostly of noise are smoothed more heavily than portions with a stronger signal content.
Later, Y. Chen (2015) adopted the same data-adaptive median filtering approach, but defined
the filter length based on the degree of similarity between the original and median-filtered signal
(a measure denoted signal reliability). This leads to smoother filter length variations and more
stable results.

1.2.2 Enhancement of seismic sections

The majority of the unwanted signal is removed prior to and during stacking in reflection seis-
mic processing. Nevertheless, there exist some additional noise suppression algorithms that are
designed to operate on seismic sections. These methods are potentially applicable for audio de-
noising purposes, because the previously mentioned time-frequency transforms allow us to create
a 2-D image of the recording of interest.

In the previous section, methods of median filtering a single trace were discussed. However,
as previously mentioned, the expansion to a higher-order dimension is straightforward. The
edge-preserving characteristic is particularly useful for application in seismic sections, as discon-
tinuities can correspond to important geological features such as faults. To smooth out the noise
whilst preserving such discontinuities, Aqrawi et al. (2013) opt to employ either a weighted mean
or a median filter, depending on the local coherency of the seismic response. They use a filter
length that increases with depth, as well as a dip estimator to guide the direction of filtering.
An alternative approach is to alter the filter length based on an estimate of the local noise level.
Al-Dossary (2014) used this approach in a seismic volume to adapt the size of a 3-D median
filter to the data automatically, which filter sizes ranging from (3x3x3) for low-noise portions to
(7x7x7) for high-noise sub volumes.

A second approach to enhance seismic sections is eigenimage filtering. This is a subspace tech-
nique that relies on the decomposition of a data matrix X using singular value decomposition
(SVD) as follows:

X = UΣV ∗ (1.27)

where X(N ×M) is the seismic section in matrix format, with the M traces xj ordered as its
columns; U(N ×N) and V (M ×M) are square matrices with the eigenvectors ui of XX∗ and vi
of X∗X ordered as their columns, respectively; and Σ(N ×M) is a diagonal matrix containing
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the so-called singular values, sorted by decreasing magnitude. Vice versa, the synthesis of the
data matrix X from these matrices can be viewed as a summation rank-one constituent matrices,
weighted by their singular value σi:

X =

min(N,M)∑
i=1

σi ui v
∗
i (1.28)

The result of the outer dot product ui � v∗i is referred to as the ith eigenimage of X (Ulrych &
Sacchi, 2005, and references therein). Each eigenimage is a rank one matrix of the same size as X.
Much like the previously discussed Karhunen-Loèwe transform (Sec. 1.1.4), the reconstruction
can be truncated after p eigenimages to approximate X. Signal with pronounced trace-to-trace
coherency will tend to reside in the dominant first few eigenimages (for an elaborate discussion,
see section 2.4), whereas incoherent noise will spread the entire domain. Noise can be reduced by
removing the contribution from the last eigenimages in the reconstruction of X. The amount of
energy that is removed in this process depends on the relative magnitude of the singular values
and the value of p, and can be expressed as a ratio of the squared singular values (Ulrych &
Sacchi, 2005):

ε =

min(M,N)∑
i=p+1

σ2i∑
i

σ2i
(1.29)

When ε = 0, the original and processed sections are equal; when ε = 1, all energy has been
removed.

As the method is biased toward coherent events, eigenimage filtering in the t-x domain is most
suitable for regions where dipping events are largely absent. If dipping layers are known to
be present, the best practice is to look at the removed section (i.e. the difference between the
original and reconstructed data), and choose the lowest value of p for which no information is
visible in the removed section. Alternatively, the technique can be applied in the f-x (Trickett,
2002) or f-xy (Trickett, 2003) domain.

1.3 Scope and aim of the thesis

With the framework for potential denoising techniques in mind, it is essential to now carefully
formulate the problem that needs solving. In the broadest sense, the aim is to develop an algo-
rithm capable of removing noise from musical recordings. These recordings are made using the
online studio application developed by Soundtrap, which at the time of writing has 1.5 million
users. To determine what constitutes the most common quality issue in user projects, a pre-
liminary study was carried out among 400 randomly selected recordings. These recordings were
classified by the main quality issue in them, as summarised in table 1.1. Random noise (hiss),
leakage of background music, and coherent noise (mostly AC hum) were found to be both very
frequent as well as intrusive. Compared to the two noise issues, the problem of background music
leakage can be addressed relatively easily by suggesting users to check their volume and to lower
it if necessary. To constrain the scope, this work thus focuses on the most frequently occurring
noise issue, which is the presence of random noise.
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Table 1.1: Frequency of occurrence of quality issues in a group of 400 randomly selected user
projects.

Quality issue Occurrence (n) Occurrence (%)
Amplitude clipping and clicks 16 4.0
Background music leaking from headphones 102 25.5
Random background noise (hiss) 96 24.0
Coherent background noise (hum) 38 9.5
Echoes 4 1.0
Background noise (TV, mumble, etc.) 16 4.0
Other 38 9.5
No noticeable issues 90 22.5
Total 400 100

Three particular constraints need to be taken in account regarding the nature of the project.
First, because the field of application is online recorded music, the final goal is to develop a work-
flow with which all recordings can be automatically processed. Therefore, the algorithm needs
to be data-adaptive: nothing should be removed from noise-free recordings, and as much noise
as possible should be removed otherwise. Second, the application to music leads to strict limits
in terms of signal distortion. A small amount of distortion may lead to music that sounds out-of-
tune or unnatural; particularly so for vocal recordings, since a user will easily be able to notice
any changes to his or her own voice. In terms of the previously discussed signal distortion-versus-
noise reduction trade-off, higher residual noise levels are thus preferred over signal distortion.
Finally, since the algorithm will potentially process a vast number of recordings, it should be
as cheap as possible in a computational sense. The aim of this thesis can thus be concretely
formulated as:

“To develop an algorithm that effectively removes random noise from musical recordings, without
noticeable distortion of the signal; and that can process all recordings, regardless of initial quality.”

With these requirements in mind, the general applicability of the subspace methods discussed
in section 1.1.4 appears particularly appealing. However, rather than applying a Karhunen-
Loève transform on the time-domain signal, the approach used here is to perform a singular
value decomposition of the signal time-frequency representation. If performed in a small enough
frame, a linear approximation to the signal may be valid; we can then enhance these linear
features using the eigenimage filtering technique from seismic processing.

The remainder of this thesis is organised as follows. Chapter 2 will consider the theory of trans-
forming a signal to a time-frequency representation, as well as the inverse transform back to a
waveform. Next, the singular value decomposition on which the algorithm relies will be further
elaborated on. In chapter 3, the implementation of the processing sequence will be explained in
detail. The performance of the proposed algorithm will be discussed in chapter 4, both by means
of objective and subjective evaluation. Finally, in chapter 5, I will provide the key conclusions
of this study and indicate in which direction further work may proceed.
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Chapter 2

Theoretical principles

In this chapter, the theory behind the proposed noise removal method is described. First, a
concise summary of the assumptions made with regard to the music and noise signals is provided
(section 2.1). Afterwards, the theory of two main procedures needs to be considered. The first
of these comprises the specifics of converting a signal to the time-frequency domain and back
to a waveform; the corresponding forward and inverse transforms will be outlined in sections
2.2 and 2.3, respectively. Second, the procedure used to remove noise from the time-frequency
representation using singular value decomposition will be derived and discussed in section 2.4.
The practical implementation is explained in detail in chapter 3.

2.1 Signal model

After recording, the sampled total signal x(n) is assumed to be a superposition of uncorrelated
music and noise constituents, which can be written as

x(n) = s(n) + v(n) (2.1)

where s(n) and v(n) represent the clean music and noise signals respectively, sampled at discrete
time n. The assumption of no correlation between signal and noise is common in the case of
white noise problems (for example, see Ephraim & Trees (1995); Plourde & Champagne (2008);
Hermus et al. (2007), amongst many others). The clean signal is considered a non-stationary
process, because of the time variations in volume and pitch in music. The noise is assumed to
be a zero-mean, wide-sense stationary, random process with a Gaussian probability distribution,
i.e.:

v(n) = N
(
0, σ2

)
(2.2)

2.2 Short-Time Fourier Transform (STFT)

As indicated by our signal model, the noise and clean signals overlap in time, which makes
the task of separating them difficult in this domain. It is thus desirable to transform the time-
domain waveform to difference space, in which the constituents are easier to distinguish from
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each other. A well-known example is the Fourier transform, which transforms a signal to its
frequency-domain representation:

X(f) = F{x(t)} =

∫ +∞

−∞
x(t) e−j2πftdt (2.3)

where x(t) denotes the time-domain signal to be transformed; X(f) is its Fourier transform, a
function of frequency f ; and j denotes the imaginary unit. This transformation allows a signal to
be evaluated based on its frequency content, which is meaningful in many disciplines of science
and engineering.
Though useful in theoretical derivations, equation (2.3) is a continuous-time expression and
thus not applicable to sampled waveforms x(n). Instead, the discrete Fourier transform (DFT)
is used:

X(k) = DFT {x(n)} =

N−1∑
n=0

x(n) e−j2π
nk
N (2.4)

in which n represents the time or sample index as before, k ∈ [0, 1, 2, ... , N − 1] is the fre-
quency index of the DFT result, and N is the number of samples in x(n). In analogy with the
continuous-time formulation, equation (2.4) allows a discrete-time waveform to be represented
as a summation of a finite number of discrete frequencies, given by:

f(k) =
fsk

N
(2.5)

where fs denotes the sampling frequency of the discretised waveform. In modern audio, this is
usually 44100 Hz or 48000 Hz, such that the entire human auditory range 20 Hz – 20 kHz is
sampled unaliased in accordance with the Nyquist sampling theorem. It is important for the
discussion to follow to realise that the frequency resolution of the DFT is a function of N .

2.2.1 Motivation for a time-frequency representation

Although the Fourier transform is extremely useful in a wide range of applications, it is not
particularly well-suited to the analysis of audio signals. This is due to the fact that all temporal
information is lost, which is a consequence of the integration or summation over all time. Con-
sider the waveform shown in figure 2.1a, which consists of a windowed 10 Hz sine wave of unit
magnitude between 1 and 2 seconds and a windowed 32 Hz sine wave of amplitude 0.5 between
3 and 4 seconds, sampled at fs = 128 Hz. Although the amplitude spectrum clearly shows both
peaks around the correct frequencies, as well as the difference in magnitudes, it is impossible to
infer the time relationship from figure 2.1b. For example, if the time axis is reversed before taking
the discrete Fourier transform, a very similar looking result is obtained (Fig. 2.1d). Although
this may not be a problem in some applications, it is clearly undesirable for musical purposes.

Intuitively, this issue can be addressed by taking the DFT of a limited sub-section of the wave-
form, and moving the corresponding window along the time axis. This is the procedure by which
the short-time Fourier transform operates. In practice, this can be achieved by successively mul-
tiplying different sections of the waveform with a windowing function, and taking the DFT of
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(a) Time-domain waveform. (b) Corresponding amplitude spectrum.

(c) The waveform shown in a), but time-reversed. (d) Amplitude spectrum corresponding to c).

Figure 2.1: Top: a discrete Fourier transform pair. The waveform consists of 1-second intervals of two sine waves
at frequencies of 10 and 32 Hz, separated by a 1-second interval of zeros. The sampling rate is 128 Hz. c) the

time-reversed equivalent of the waveform in a). d) Amplitude spectrum of the time-reversed waveform.

each multiplication. Mathematically, this is formulated as:

X(k, τ) = ST FT {x(n)} =
N−1∑
n=0

x(n)w(n− τh) e−j2π
nk
N

= DFT {x(n)w(n− τh)} (2.6)

Here, τ denotes the reintroduced time index, h represents the hop size (in samples of x) between
successive windows, w(n) is the windowing function, and N now represents the window size (or
number of frequency bins) rather than the length of the entire audio array. Figure 2.2 shows the
result of applying equation (2.6) to the waveform in figure 2.1a.

A number of important remarks can be made with respect to this image. First, it is clear that the
aforementioned problem of time-ambiguity has been resolved, and that this new representation
is better suited for signals whose frequency content varies over time. However, there now is
not only leakage into nearby frequency bins (an issue originating from the discretisation of the
frequency axis), but also a smearing effect in the time direction. The original waveform had
non-zero values only in the [1s, 2s] and [3s, 4s] time intervals, but in figure 2.2, that clearly is
not the case. This is a consequence of the large width of the analysis window. For example, at
the time index τ = 9, corresponding to a time of 2.25 seconds, the window spans a time range
of [1.75s, 2.75s]. Consequently, a 0.25-second portion of the 10 Hz sinusoid is included in the
windowed frame, resulting in a nonzero amplitude at this point in the time-frequency space.
To address this issue, the window width can be reduced from N = 128 to 64 to double the
time resolution. However, as indicated by equation (2.5), this will double the sampling interval
along the frequency axis. Thus, the product of the frequency and time resolution is a constant,
and the overall resolution cannot be increased by tuning these parameters. Figure 2.3 illustrates
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Figure 2.2: The short-time Fourier transform amplitudes of the waveform shown in figure 2.1a, using a
rectangular analysis window. The window size N and hop size h to create this image were 128 and 32 samples,

respectively, corresponding to a 75% overlap between adjacent frames.

this aspect by showing the same signal as in figure 2.2, but with double and half the frequency
resolution. In practice, the resolution in one dimension will usually be chosen based on the
specifics of the problem at hand, which automatically determines the resolution in the other
direction. The window length is generally chosen to be an integer power of 2, as this allows for
the use of computationally efficient radix-2 Fast Fourier Transform (FFT) algorithms. Finally,
note that despite their similar appearance, the result of figure 2.2 and the so-called spectrogram
(commonly used in audio) are not equivalent. A spectrogram shows the variation of the power
spectral density (PSD) over time; it is obtained by multiplying each element of the STFT result
by its complex conjugate.

(a) N = 256, h = 64. (b) N = 64, h = 16.

Figure 2.3: Illustration of the constant-resolution concept of a STFT. The figure on the left allows us to more
precisely indicate the frequencies of the sine waves, but blurs their temporal behaviour. Conversely, the figure
on the right shows the times of onset and termination more clearly, at the cost of a loss in frequency resolution.
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2.2.2 Analysis windows

As discussed above, a problem with time-frequency images (e.g. figure 2.2) is that they clearly
suffer from the adverse effects of spectral leakage. This phenomenon occurs when the signal
contains frequencies other than the analysis frequencies given by equation (2.5). It manifests
itself as as a pattern of non-zero amplitudes in other frequency bins. Although it is not possible
to completely alleviate this issue, its behaviour can be controlled through the use of window-
ing functions. The previously discussed figures were all created by taking successive DFT’s of
portions of the array x(n). This is equivalent to multiplication with the rectangular windowing
function, which is equal to 1 in a range of N samples, and 0 outside this range (top left in figure
2.4). Although this window allows for a very precise determination of the highest-amplitude
frequency, it has unfavourable characteristics in terms of spectral leakage. The occurrence of
spectral leakage is best understood by considering the effects of windowing a function on that
function’s Fourier transform. When two functions are multiplied in one domain, the correspond-
ing action in the transformed domain is convolution. Hence, multiplication of a time-domain
signal by a window function (i.e. truncating the time-domain signal) corresponds to convolu-
tion of the Fourier transforms of that signal and the window function. The transform pair of
a rectangular function is the sinc function; therefore, applying this window to the time-domain
signal corresponds to convolving the Fourier transform of the signal with the sinc function. The
sinc function reaches its maximum when the argument is zero (the so-called main lobe), and has
periodic maxima and minima (denoted side-lobes) that diminish in amplitude as the function
argument increases. This periodic character is imposed on the result of the convolution and thus
appears (in sampled form) in the DFT result, causing spectral leakage.

For this reason, it is important to evaluate magnitude responses when choosing a windowing
function. In the case of the discrete-time rectangular window (shown in the top left of figure
2.4), the magnitude response is a sampled version of the sinc function (figure 2.4, top right).
The side-lobes are of relatively high amplitude: the first side-lobe has a magnitude of -13dB
compared to the main lobe. This is usually undesirable, because when a low and high-amplitude
signal exist at the same time, the former could potentially be masked by the leakage of the
latter. There are a multitude of windows with a magnitude response more suitable to audio
signal processing. In choosing an appropriate analysis window, three characteristics are of main
interest:

• Height of the side-lobes
• Width of the main lobe
• Constant overlap add (COVA) property of the window

The third point will be discussed in the section on the inverse STFT (Sec. 2.3). For the first
two, an improvement in the one generally comes at the expense of the other. As mentioned,
the rectangular window has high side-lobes (prominent leakage), but a narrow main lobe (high
frequency resolution). In audio signal processing, it is generally preferred to reduce the amplitude
of the spectral leakage into distant frequency bins, as it could potentially mask lower-amplitude
features. This generally comes at the cost of a wider main lobe. A good compromise for audio

17



applications are the Hann and Hamming windows (Lyons, 2011):

wHann(n) = 0.5− 0.5cos

(
2πn

N

)
(2.7a)

wHamming(n) = 0.54− 0.46cos

(
2πn

N

)
(2.7b)

for n = 0, 1, 2, ..., N − 1.

As can be derived from their mathematical formulations, the difference is that the first and last
points of the Hann window just reach zero, whereas those of the Hamming window do not. The
Hamming window was designed specifically to minimise the amplitude of the nearest side-lobe,
whereas the side-lobes of the Hann window diminish in amplitude more quickly (Fig. 2.4). The
difference is subtle, and in audio processing literature, both the Hamming window (Cohen, 2005;
Hu & Loizou, 2003; Breithaupt et al., 2008) and the Hann window (Boll, 1979; Ephraim & Trees,
1995; Yousefian et al., 2014) are very common choices.

Figure 2.5 shows the short-time Fourier transform for the same waveform as before, but using
the three different analysis windows of figure 2.4. The effect of using a window with a wider main
lobe are clearly visible; the frequency of the sine wave is not as well resolved when using the
Hann or Hamming windows. However, when compared to the maximum amplitude at the true
frequencies 10 Hz and 32 Hz, the leakage into other frequency bins is of much lower amplitude.
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Figure 2.4: Analysis windows (left) and their corresponding magnitude responses (right). Top: rectangular
window. Middle: Hamming window. Bottom: Hann window. The maximum side-lobe levels for the rectangular,

Hamming and Hann windows are -13.3dB, -42.7dB, and -31.5dB, respectively.
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Figure 2.5: The STFT results using three different analysis windows. Top: Rectangular window (same as in
figure 2.2). Middle: Hamming window. Bottom: Hann window. The other parameters (window width, hop size)

have been kept the same as in figure 2.2.
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2.3 Inverse Short-Time Fourier Transform (ISTFT)

Although the STFT clearly provides a very convenient way to represent a musical signal, its
usage for filtering purposes is only justified if an inverse transform can be formulated. Ideally,
the inverse would be exact, meaning that x(n) can be exactly retrieved from just its short-
time Fourier transform X(k, τ). However, this is not the case for the inverse short-time Fourier
transform, which is not exact. In particular, alteration of some coefficients in X(k, τ) may lead to
an invalid result (Griffin & Lim, 1984). This means that a real signal y(n) whose STFT Y (k, τ)
is exactly equal to the modified version of X(k, τ) may not exist. Therefore, in order to allow
for filtering in the time-frequency space, Griffin & Lim (1984) derived a procedure to obtain
the signal that corresponds best to the invalid STFT. This is the signal y(n), whose short-time
Fourier transform Y (k, τ) is closest to the modified X(k, τ) in the minimum mean square error
sense. In mathematical terms, this can be expressed as:

minimise ε =

∞∑
τ=−∞

N−1∑
k=0

|Xw(k, τh)− Yw(k, τh) |2 (2.8)

where the subscript w denotes that a specific analysis window function w(n) was used in creating
the STFT. Using Parseval’s theorem for the DFT:

N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2 (2.9)

equation (2.8) can be reformulated as:

minimise ε =
1

N

∞∑
τ=−∞

N−1∑
n=0

|xw(n, τh)− yw(n, τh) |2 (2.10)

where

xw(n, τh) = w(n− τh)x(n) (2.11a)

yw(n, τh) =
1

N

N−1∑
k=0

Yw(k, τh)ej2π
nk
N = IDFT {Yw(k, τh)} (2.11b)

Equation (2.10) is a quadratic equation of x(n). The minimum can thus be found by finding
the derivative with respect to x(n), equating this expression to zero, and solving for x(n). The
result of this process is (Griffin & Lim, 1984):

x(n) =

∞∑
τ=−∞

w(n− τh)yw(n, τh)

∞∑
τ=−∞

w2(n− τh)

(2.12)

This expression describes how the filtered audio x(n) (or, more accurately, its best approxima-
tion) can be retrieved from a modified short-time Fourier transform. Specifically, it states that
the final value of a sample in x(n) is the sum of a number of contributions. Each contribution is
the product of the inverse DFT of a column of Yw at time τh and a window function w(n− τh).
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The sum of these contributions is normalised by the sum over the squared window function. In
the context of the inverse transform, w is usually referred to as the synthesis window; however,
as indicated by the notation, the synthesis and analysis windows are equivalent.

As can be deduced from equation (2.12), the hop size value h influences the number of values
that are superposed to yield x(n). If h = 1 sample, a total of N samples will be added at a
given location to construct the result, and equation (2.6) will contain the expression of discrete
convolution. Although this is not a problem from a theoretical point of view, three practical
consequences should be kept in mind. First, the reconstruction as given by equation (2.12) will
require a factor of τ more computations, which will slow down processing. Second, the number
of points in the STFT is inversely proportional to the value of h, so each reduction in hop size
is associated with an increase in memory requirements. Third, by using more points used to
represent x(n) in the time-frequency space, the information content is not increased. Instead,
the redundancy of the representation is increased, as is the correlation between adjacent spectra
(Benesty et al., 2011).

2.3.1 COVA-analysis and exactness of the ISTFT

Suppose now that a simple STFT-ISTFT combination is performed on the original audio array.
In equation (2.12), we substitute xw(n, τh) = w(n− τh)x(n) for yw(n, τh), and the resynthesis
is done by superposition of all windowed vectors xw in the summation over τ . However, if
the window hop size h is not chosen carefully, the windowing in equation (2.12) may cause
reconstructions errors. This is illustrated in figure 2.6, which shows how two vectors xw are
extracted from a larger vector x using a Hann window. If h is chosen correctly, as shown in
figure 2.6a, the sum of the two Hann windows (shown in red) is constant for the entire range in
which they overlap. Within this range, the superposition of the two windowed vectors xw will
thus yield the original result. However, if h is not chosen correctly, as shown in figure 2.6b, the
sum of the Hann windows is not a constant. In this case, not all samples n will be weighted
equally and the synthesis will not yield the original vector x, because windowing has modulated
the signal’s envelope. This combination of windowing function and hop size is then said to not
satisfy the so-called constant overlap add (COVA)-constraint.

Exactly which combinations of windowing function and hop size satisfy the COVA-constraint
can be formulated mathematically. The scaling factor

∑∞
τ=−∞w

2(n− τh) in (2.12) needs to be
a constant; not just for all integer multiples of h, but for all points n. Using this rule, it is now
possible to define how to choose the value of h: it should be as small as possible (to avoid high
redundancy and computational requirements), subject to the constraint that the overlap-add of
the squared windows is a constant:

∞∑
τ=−∞

w2(n− τh) = c for all n (2.13)

As one would expect, the choice of h is intertwined with the choice of w(n). Without exception,
all windows satisfy the COVA-constraint in (2.13) in the maximum-redundancy case where h
is equal to 1. However, for the common windowing functions, h may be much larger, while
still leading to a constant sum. Figure 2.7 illustrates the sum of the squared Hann window for
different values of h. Both the squared Hann and Hamming windows are COVA(h=N/4), which
indicates that an exact inverse can be obtained when four windows overlap at any point. Any
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(a) COVA-compliant superposition of windowed
signals.

(b) Superposition of windowed signals that does
not satisfy the COVA-constraint.

Figure 2.6: Synthesis of a total signal from windowed segments, performed correctly on the left and incorrectly
on the right. In a.1) and b.1), the original signal x is shown (in black) alongside two adjacent Hann windows

(in blue). In a.2) and b.2), the windowed signals xw are shown. Finally, a.3) illustrates how the correct,
original amplitudes are retrieved within the overlap range when the sum of the overlapping windows (shown in
red) is a constant. Conversely, in b.3), the reconstructed signal is amplitude modulated, because the sum of the
windows is not a constant for all n, and this combination of window function and hop size does not satisfy the

COVA-constraint.

integer multiple of four will also satisfy the COVA-constraint.

With the COVA-constraint in mind, it should be possible to obtain an exact (within numerical
precision) inverse of x(n). Figure 2.8 shows the waveform of a three-second audio file (top left),
alongside the waveform obtained by doing an STFT-ISTFT combination (top right). A Hann
window of length 1024 was used, along with 75% overlap as dictated by the COVA-constraint.
For the vast majority of samples, the error is on the order of 10−15, which is the order of
magnitude to be expected for rounding errors. However, there are significant errors at the start
and end of the difference series. This can be understood by looking at figure 2.7: for the first
and last samples, the total sum is not a constant, because the number of overlapping windows
has not reached its maximum yet. For the 1024-point Hann window with 75% overlap, we find
that the index at which the maximum is attained is 1 + 1024 ∗ 0.75 = 769. For the case of 87.5%
overlap, the maximum is reached at sample 1+1024∗0.875 = 897. With the usual sampling rate
of 44100 Hz, this corresponds to only a 17ms or 20ms interval of incorrect values. Nevertheless,
it is good practice to address this issue by padding both ends of the audio array with zeros, such
that the first and last non-zero values of the audio array fall within the constant-sum range.
These values can easily be removed after processing. When this simple workaround is used, the
reconstruction error is on the order of the numerical precision for the entire audio length.
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Figure 2.7: Weighted OVA-profile (red) for the 1024-point squared Hann window (blue) for different overlap
values. For both figures a) and b), which have 8 and 4 overlapping windows (h = 128, 256), the

COVA-constraint is met. Thus, all samples between the thick vertical black lines will be weighted equally. As
shown in c), 50% overlap between squared Hann windows (h = 512) does not meet the COVA-constraint.
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Figure 2.8: The exactness of the inverse short-time Fourier transform. a) The original, three-second waveform;
b) The waveform obtained after performing the ISTFT on the short-time Fourier transform of the original
waveform; c) The difference plot between the two waveforms at the top. The difference is negligible for the
majority of the waveform, but significant at the edges. d) Close-up view of the encircled area 1 in c). The

difference is significant for the first samples, but decreases rapidly as progressively more windows are
overlapping. e) Same as d), but for encircled area 2. Note y-axis scales.
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2.4 Singular Value Decomposition (SVD)

The noise reduction algorithm proposed in this work relies on a matrix factorisation technique
called singular value decomposition (SVD). SVD enables the separation of a signal into signal-
plus-noise and a noise-only components. The algorithm is closely related to the eigenimage
filtering technique discussed in section 1.2.2, and thus belongs to the class of subspace methods
discussed in section 1.1.4. Similar to section 1.1.4, I will follow the notation and definitions of
Ulrych & Sacchi (2005).

2.4.1 Mathematical concept

The SVD-theorem states that a general complex data matrix X of size (N×M) can be uniquely
factorised into a product of three matrices as follows:

X = UΣV ∗ (2.14)

where the superscript ∗ denotes the conjugate transpose. U (N×N) and V (M×M) are complex,
unitary matrices, i.e.:

U∗U = UU∗ = I, V ∗V = V V ∗ = I (2.15)

and Σ (N ×M) is a rectangular diagonal matrix that contains the singular values σi, sorted by
decreasing magnitude. The singular values are always positive real numbers. The matrices U , Σ
and V can be understood by considering the relation between SVD and eigenvalue decomposition
(EVD). Making use of the unitary nature of U and V , it can be derived from equation (2.14)
that:

XX∗ = [UΣV ∗] [UΣV ∗]∗

= [UΣV ∗] [V Σ∗U∗]

= U(ΣΣ∗)U∗

= UΛU∗ (2.16a)

X∗X = [UΣV ∗]∗ [UΣV ∗]

= [V Σ∗U∗] [UΣV ∗]

= V (Σ∗Σ)V ∗

= V ΛV ∗ (2.16b)

Since Σ is a rectangular diagonal matrix, the matrix products Σ∗Σ and ΣΣ∗ are square, diagonal
matrices that contain the entries of Σ squared. Thus, equations (2.16a) and (2.16b) show the
eigenvalue decomposition of the square matrices XX∗ (N × N) and X∗X (M ×M), and the
singular values are the positive square roots of the eigenvalues in the matrix Λ. Furthermore, U
and V are matrices containing the eigenvectors ui and vi of the matrices they decompose. In the
context of singular value decomposition, these matrices are said to contain the left-singular and
right-singular vectors, respectively. Note that regardless of a potential difference in size, XX∗

and X∗X are of equal rank and have the same eigenvalues. The extra diagonal entries of the
larger of the matrices Σ∗Σ and ΣΣ∗ are all equal to zero.
Qualitatively speaking, equations (2.16a) and (2.16b) describe a principal component analysis
of the sample covariance matrices of X. The first entries u1 or v1 are those vectors that have
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the largest variance when XX∗ or X∗X is projected onto it. Each of the following entries ui
and vi then accounts for as much of the remaining variance as possible, under the constraint of
orthogonality with all preceding vectors.

2.4.2 Eigenimage filtering a time-frequency representation

As explained briefly in section 1.2.2, noise can be removed from a data matrix X using the SVD
in a technique referred to as eigenimage filtering. This involves approximating a full-rank matrix
by a rank-deficient reconstruction: in the process, a specific part of the information in X is kept,
and the rest is discarded. Assume that X is a full-rank matrix of size (N ×M), with M < N .
The complete reconstruction of X is given by:

X =

M∑
i=1

σi ui v
∗
i (2.17)

The outer dot product ui � v∗i between the two singular vectors creates a so-called eigenimage,
which is a rank-one matrix that will be weighted by the associated singular value σi in the
reconstruction of X. Suppose now that the signal in X, which could be represented by a number
of similar columns or rows, is dominant over the noise component. This will have two important
consequences. First, these rows or columns are then approximately linear combinations of one
another, and the matrix X will be rank-deficient. Second, a series of similar rows or columns will
show up prominently in the sample covariance matrices XX∗ or X∗X. Since the eigenvalues in
equations (2.16a) and (2.16b) are ordered by magnitude, the first eigenvectors ui or vi will cor-
respond to the same signal when these matrices are diagonalised. Combined, these two features
ensure that dominant linear features in X will reside in the first p eigenimages of X, whereas
the reconstruction of random features will require all M eigenimages to be summed. Equation
(2.17) can thus be expanded:

X =

p∑
i=1

σi ui v
∗
i +

M∑
i=p+1

σi ui v
∗
i (2.18)

where the first term corresponds to the signal subspace to be kept, and the second term corre-
sponds to the noise-only subspace to be discarded. This is the principle of eigenimage filtering.

Let us now consider the case where X is the short-time Fourier transform of a noisy signal
x(n). In this section, bold symbols (e.g. S(k, τ), x(n)) will be used to denote signal compo-
nents, to distinguish them from the matrices and vectors (e.g. V, ui) used in the notation of the
singular value decomposition. In order for eigenimage filtering to be an effective noise removal
method in the time-frequency domain, there must be a distinction in rank between the time-
frequency representations of the signal S(k, τ) and the noise V (k, τ), such that truncation of
the reconstruction after p components will lead to noise reduction.

First, consider a Gaussian white noise vector v(n) with variance σ2v . Since the discrete Fourier
transform is an orthogonal transformation of v(n) to V (k), the Fourier coefficients <{V (k)}
and ={V (k)} will both be independent Gaussian random variables with the same variance σ2v .
Therefore, the assumption that V (k, τ) is a full-rank matrix is valid. Let us now consider a
superposition of a musical signal s(n) and v(n). For the musical signal, the same waveform as in
figure 2.1a is used. Figure 2.9b shows the result of adding Gaussian white noise to this waveform
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at a global signal to noise ratio of 0dB. Upon transformation to the time-frequency domain
(figure 2.9d), the noise spreads out across all frequency and time indices as expected. Since the
signal S(k, τ) in this example consists of two perfectly linear features, it should be reasonably
well reconstructed when only the first two eigenimages are summed. Figure 2.10a shows the re-
construction of this time-frequency representation, using equation (2.18) with p = 2. In addition,
the removed information is shown, obtained from the second term in equation (2.18).

A number of important characteristics of the method are visible in figures 2.9 and 2.10. First, it
is evident that the method has removed a large amount of noise from the noisy waveform. Partic-
ularly the second, lower-amplitude waveform has become much more apparent after processing.
Second, the residual noise in the TFR is clearly not random. Because the filtered matrix in 2.10a
is specified to be of rank two, only those noise coefficients V (k, τ) that can be obtained by linear
combination of the first two eigenimages have been reconstructed. Therefore, the residual noise
tends to ’shadow’ the strongest signals, meaning that it is concentrated at those frequencies
and time intervals that contain strong signal components. As a consequence, the residual noise
in the time intervals without signal (e.g. 4-5 seconds) appears to be periodic in the waveform
view. Conversely, the difference matrix shown in 2.10b is of near-full rank, and the corresponding
waveform does not appear to have any particular structure.
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Figure 2.9: Comparison of the waveforms and time-frequency representations of a clean and noisy signal. a) The
clean signal s(n), the same as in figure 2.1a. b) The same waveform, but with added white Gaussian noise v(n)
at 0dB SNR. c) STFT of the signal shown in a), using a Hamming window. All other parameters equal to those

in figure 2.2. d) STFT of the signal shown in b), using the same parameters.

Figure 2.10: The results of eigenimage filtering a signal’s short-time Fourier transform. a) The reconstruction of
the STFT shown in figure 2.9d, obtained by summation of the first two eigenimages. b) The corresponding
removed STFT, equal to the difference between a) and 2.9d, or the second term in equation (2.18). c) The
filtered waveform, obtained by performing the inverse STFT of the TFR shown in a). d) The removed

waveform, obtained by subtracting the result in c) from 2.9b.
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The results shown in figures 2.9 and 2.10 illustrate that eigenimage filtering is in principle appli-
cable to the time-frequency representation of a signal. However, when applied to the short-time
Fourier transform of a real musical signal, some shortcomings of the method become apparent.
Consider the TFR of a real, 8-second recording shown in figure 2.11. Whereas the synthetic
example before could conveniently be reconstructed using only 2 eigenimages, this will clearly
not be the case here. The structure in this image is considerably more complex, and although a
significant part of the signal could be considered approximately linear, a number of features are
visible for which this assumption does not hold. For instance, the signal in the area encircled
in black (which corresponds to a vibrato) has a sinusoidal appearance. Since the method relies
on enhancing linear features, delicate structures such as these are likely to be distorted during
filtering.

Figure 2.12 shows that this indeed is the case. Although the highest-amplitude features in the
lower frequencies have been reconstructed close to perfectly, the region that is encircled in figure
2.11 has been negatively affected. As the difference image in figure 2.12b indicates, a significant
part of the signal has been removed, particularly at the higher frequencies. The obvious solution
to this problem is to keep a larger number of eigenimages in the reconstruction. However, the
performance in terms of noise reduction is already suboptimal in this example, and keeping more
eigenimages will reintroduce more of the original noise. Another issue that needs to be resolved is
the selectivity of the noise reduction. As mentioned in the discussion of figure 2.10a, the residual
noise tends to shadow the dominant signal components. In the TFR shown in figure 2.11, the
vast majority of the signal energy falls in the frequency range of 0 to 2 kHz. Consequently,
the noise in the same frequency range has been left almost untouched by eigenimage filtering.
Although the noise will perceptually be masked by the much louder audio in some portions, it
will dominate the time intervals without signal (for instance, around 3 and 8 seconds).

Figure 2.11: The time-frequency representation of a song recorded by a female singer (fs = 44100Hz). The area
encircled in black corresponds to a vibrato and is discussed in the text. The Hamming window length and hop
size used to create this image were 2048 and 512 samples, respectively. Note that the natural logarithm of the
amplitude is plotted, that only the frequencies between 0-10kHz are shown, and that the colour scale has been

reversed, for the sake of clarity.
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(a) Reconstruction of the TFR shown in figure 2.11, using 125 out of 710 possible eigenimages.

(b) The information removed in the reconstruction, corresponding to the sum of eigenimages
126 to 710.

Figure 2.12: The results of applying eigenimage filtering to the time-frequency representation of a musical signal.
Although a substantial amount of noise has been removed, some of it remains, and part of the signal is lost.
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2.4.3 Enhancing performance by frame-wise processing

The issues of signal loss and suboptimal noise reduction can be simultaneously resolved by pro-
cessing the time-frequency representation in a frame-wise manner, rather than all in one go. In
speech processing literature, a common assumption is to consider speech a stationary signal over
a time range of 30-50 milliseconds (Ephraim & Malah, 1984; Ephraim & Trees, 1995; Lorber &
Hoeldrich, 1997). Extraction of a frame of approximately this length from the encircled area in
2.11 yields the results shown in figure 2.13 (in order to increase the time resolution and image
quality, the analysis window length and hop size were reduced to 1024 and 128 samples, respec-
tively).

Figure 2.13: A 32-by-32 pixel processing
frame, taken from the centre of the encircled
area in figure 2.11. Within the frame, the
signal is stationary by approximation.

Within this frame, the signal is indeed approximately
stationary, despite its sinusoidal appearance on the
larger scale. Given the results previously obtained
for a time-frequency representation containing signal
of linear shape (figure 2.10), one would expect that
eigenimage filtering in this case does much less harm
to the signal. Moreover, if the next frame were to con-
tain only noise, it would not suffer from the previously
mentioned shadowing issue, since the two frames are
processed independently. This holds true for both
the next frame in the time direction, as well as the
adjacent frame in the frequency direction. There is
no significant increase in computational cost associ-
ated with frame-wise processing, because the singular
value decomposition of the smaller matrices converges
much more quickly. In terms of memory requirements,
dividing the matrix into smaller frames is the prefer-
able approach.

The idea of frame-wise processing gives rise to the
question: how can the eigenimage filtering be made adaptive to the contents of the frame? The
amount of noise reduction should be dependent on the signal content of the frame; if a frame
consists predominantly of signal, the number of eigenimages p should be large, such that the
signal in the frame can be properly reconstructed. Conversely, if a frame consists mostly of noise,
p must be a smaller number, such that the noise is significantly reduced in volume. To avoid
sudden volume jumps between two frames that have been reconstructed using different values of
p, adjacent processing frames overlap in the time direction, and a weighted overlap add is used
to construct the filtered image.

32



2.4.4 Removing the noise contribution from the singular values

The key to frame-adaptive noise reduction lies in the singular values. Aside from the fact that
they are always real, positive, and sorted by decreasing magnitude, the singular values have a
physical interpretation. This is most easily understood by again considering the relation between
SVD and EVD. A property of EVD is that the trace of the eigenvalue matrix Λ is identical to
the trace of the matrix (XX∗ and X∗X) that has been factorised. Proceeding with the matrix
X∗X, which is the most intuitive, the entries on the main diagonal are given by:

(X∗X)ττ =

N∑
k=1

(x∗)τk xkτ

=
N∑
k=1

(x̄)kτ xkτ

=
N∑
k=1

|xkτ |2 (2.19)

where the notation x̄ is used to denote the scalar complex conjugate, to distinguish it from the
matrix conjugate transpose operator. Since zz̄ = |z|2, each value (X∗X)ττ corresponds to the
summed squared moduli of the entries in the column at index τ . Because each column of X
contains the local spectrum, equation (2.19) is equal to the power spectral density at time index
τ . The trace of the matrix X∗X (and Λ) is therefore equal to the sum of the power spectral
densities of all columns, a measure of the total energy contained within the frame X.

Since the singular values are the positive square roots of the eigenvalues, they are also related
to the energy content, albeit via a square-root relation. This is illustrated in figure 2.14, which
shows the magnitude of the singular values for three frames of different content: one with a strong
signal presence, one with a much weaker signal, and one containing only noise. Two important
characteristics of the singular values are visible here. First, the previously discussed relation with
energy content is obvious: the squared singular values for the noise, mixed, and signal frames
add up to 1, 5.7, and 639, respectively. Second, all graphs tend toward the same magnitudes at
the higher indices, regardless of the signal content in the corresponding frame. This observation
corroborates the assumption of distinct signal and noise subspaces: provided that the noise is
wide-sense stationary, it should be represented by singular values of similar magnitude across
all analysis frames.

The conventional procedure to reduce the noise using eigenimage filtering would be to truncate
the reconstruction after p singular values, essentially nulling the N − p last values. There are
multiple possibilities in defining the value of p. It could for instance be decided based on a
threshold, where the value of σi is unchanged if it is larger than this threshold, and set to zero if
it is smaller. Since we assume that the noise is wide-sense stationary, the use of a single threshold
value seems justified. Alternatively, a threshold could be defined on the basis of the slope of the
singular value plot, because in theory, the slope should flatten out in the noise subspace. The
problem with both these approaches is that they define the threshold in a binary sense, which
can result in the unwanted residual noise characteristics discussed previously (section 2.4.2).
Moreover, they remove the noise component in the noise-only subspace, but leave the noise that
resides in the signal subspace intact. Especially in the cases were p is a large number, this implies
that only a small portion of the noise is removed.
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Figure 2.14: Top: Zoomed-in view of the time-frequency representation shown in figure 2.11, with three
32-by-32 pixel analysis frames outlined. Middle: Detailed view of the three analysis frames. Frames 1, 2 and 3
correspond to noise-only, mixed, and strong-signal frames, respectively. Bottom: Singular value magnitudes for

the three analysis frames. In the presence of signal, the first singular values will be of high magnitude. The
maximum value in the signal frame (bottom right) is 19,2. The last values correspond to noise, and are of

similar magnitude regardless of the frame considered.
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To circumvent this issue, I use an adapted version of eigenimage filtering, in which the singular
values are altered, but none are set to zero. This way, it is ensured that the residual noise is of full
rank, whilst still being greatly reduced in volume. The concept is that in the p-dimensional signal
subspace, an estimate of the noise contribution is subtracted, whereas in the noise subspace, the
singular values are reduced as opposed to nulled. In order to apply this method, three quantities
must be determined:

• An estimate of the noise contribution to subtract from the signal subspace, σv;
• The dimensionality of the signal subspace, p;
• A factor by which to reduce the noise subspace, α.

An estimate of the noise contribution is obtained from a processing frame that is completely
devoid of signal. It is assumed that at least one (90ms) frame without signal always exists, and
that this is the frame with the smallest first singular value (an exception to this assumption
will be discussed later). Theoretically, all singular values for such a noise-only frame should be
of the same magnitude, and equal to the standard deviation of the Fourier coefficients of that
noise. This is equivalent to the fact that the eigenvalues of the covariance matrix of a random
process are equal to the variance of that process. In practice, however, the singular values will
always decay in magnitude as seen in the bottom left in figure 2.14. This is partly a consequence
of the correlation between adjacent Fourier coefficients, and partly due to the stochastic nature
of the noise. It was empirically determined that setting the threshold σv equal to the maximum
singular value of the noise-only frame yields the best results.
When the threshold has been determined, the signal subspace dimensionality p for a given
analysis frame is defined by the number of singular values greater than σv in that frame. The
noise energy can then be removed by altering the singular values. However, because the sum of
the eigenvalues corresponds to the total energy in the analysis frame X, the removal of the noise
energy also has to be expressed in terms of the eigenvalues. The removal of the noise energy is
achieved as follows:

σ2i = λi =


λi − σ2v , if λi > σ2v

σ2v
α
, if σ2v > λi >

σ2v
α

λi, if λi <
σ2
v
α

(2.20)

Figure 2.15 illustrates how the singular values of the mixed frame in figure 2.14 are altered using
this procedure. First, σv is set to 0.41, which is the first singular value of the noise-only frame
in figure 2.14. In the signal subspace, denoted by I, the updated value is obtained using the first
case of equation (2.20). In the noise subspace, the values are altered according to the second
case of equation (2.20), unless this leads to an increase; in which case, the value is unaltered.

The shape of the singular value plot depends in part on the choice for the tuning param-
eter α, which enables a degree of freedom in the noise reduction algorithm. A larger value
will lead to more noise reduction, but may result in unpleasant-sounding residual noise due to
rank-deficiency; a smaller value will reduce the noise to a lesser degree, but ensures that the
background sounds more like white noise.

Two final remarks should be made with regard to the proposed method, particularly concerning
the threshold value σv. First, the analysis frames do not span the entire frequency range. In figure
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Figure 2.15: Singular value alteration for the mixed frame in figure 2.14, using a value of α = 15 for the tuning
parameter. Dashed red: Original singular value profile. Solid red: Altered singular value profile. Dotted

blue: Singular values as used in standard eigenimage filtering. I and II denote the signal and noise subspaces,
respectively.

2.14, for instance, the frames outlined are in the second frequency band (1.25kHZ - 2.5kHz) out of
a total 16. By determining a threshold value σv for each frequency band separately, the proposed
method can enhance recordings with coloured noise as well.
Second, there is an inherent practical danger associated with the way the threshold value is
defined. In practice, many recordings are not only contaminated by random noise, but also
contain noise of coherent nature (examples are AC hum or noise from the computer fan). This
poses a problem for the way the threshold value is defined, as it is assumed that there exists
a frame containing only random noise. Because coherent noise is linear in the time-frequency
space, it will emerge prominently in the singular values. For this reason, the threshold values
of all frequency bands are compared to one another; if the value for one frequency band is
excessively high, its value will be changed based on an extrapolation from the other values.
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Chapter 3

Implementation

The algorithm was developed in MathWorks’ MATLAB_R2016b. Using a regular personal com-
puter with a 1.8 GHz processor, it takes 29 seconds to process a one-minute audio file. The
implementation can be subdivided in five main processing stages, as shown in figure 3.1. The
following sections of this chapter discuss these stages in chronological order. In the last section
of this chapter, the parameter settings are summarised.

Figure 3.1: Processing sequence of the proposed denoising algorithm.

3.1 Data preparation

The first stage starts by reading in the processing parameters from an input file. These include
the following:

• The STFT parameters: window length N and hop size h;
• The SVD parameters: processing frame size L and processing frame overlap β;
• The noise reduction parameter α.
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Figure 3.2: Block diagram of the data
preparation stage.

Next, the audio x(n) is read in and converted to
mono if it was a stereo recording. Both the start and
the end of the array are then padded withN−h zeros
on both ends to avoid the end-of-array errors from
the inverse STFT (i.e. those shown and discussed in
figure 2.8). Additional zeros are padded at the end
until the array length is an integer multiple of h: this
ensures that the audio array length is unchanged by
the STFT and ISTFT. The number of padded zeros
(denoted c in figure 3.2) is stored, so that they can
be correctly removed at the end of the processing se-
quence. Finally, the audio is normalised by dividing
it by its maximum absolute value.

3.2 Transformation to time-frequency representation

In the second stage, the audio is converted to the time-frequency space by taking the short-time
Fourier transform. The analysis window w(n) is chosen to be a Hamming window of length
N = 1024 (23 ms at the sampling rate of 44100 Hz), which results in 513 unique frequency
points since the redundant negative frequencies are discarded. Thus, the frequency axis of the
TFR runs from 0 to 22050 Hz at a bin spacing of 43 Hz.

Figure 3.3: Block diagram of the transformation
to the time-frequency domain using the STFT.

In choosing the hop size h, two competing in-
terests have to be taken into consideration.
On the one hand, h should be as large as pos-
sible to minimise the redundancy of the time-
frequency representation. This helps to avoid
excessive requirements in terms of storage and
computational power. On the other hand, the
eigenimage filtering frame time length scales
proportionally to the value of h, because the
frame size is defined in terms of TFR-points
(the corresponding parameter L is discussed
in section 3.3). These frames should not ex-
ceed a length of 50 ms by too much, because
the assumption of a stationary musical sig-
nal becomes less valid as the frame length in-
creases. Thus, from this perspective, h should
be a small value. It was found that using a
value of h = 128 samples is a good compro-
mise in terms of these considerations. This re-
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sults in a TFR time sample spacing of 128/44100 = 2.9 ms, or 344 points per second. Using
these values for N and h, adjacent analysis windows have 87.5% overlap, and the TFR (which
is stored as a complex, double precision matrix) requires 160 megabytes of storage per minute
of audio.

3.3 Find noise contribution in singular values

After conversion to the time-frequency domain, the noise contribution to the singular values is
determined. As this requires doing singular value decomposition, the filter frames have to be
defined concretely first. As mentioned in the previous section, the frame size is controlled by the
parameter L. Its value should be large enough to allow for distinct signal and noise subspaces
to take shape. However, the product L ∗ h should be kept as small as possible, so that the
assumption of stationary signal is justified. With h = 128, the best results were obtained for
L = 32 points, which corresponds to a frame length of (128 ∗ 32)/44100 = 93 ms. Although this
is in slight violation of the recommended 30− 50 ms maximum length, no signal distortion was
observed using these values.
The processing frames, denoted XF , overlap in the time direction to ensure a smooth volume
profile (see section 2.4.3). An overlap of β = 50% between adjacent frames (i.e. a frame spac-
ing of L/2) was found to be optimal: more overlap does not lead to a noticeably smoother
result, but does increase the number of frames in the time direction (denoted NT ), and thus
the computational time. Finally, the extent of the processing frames in the frequency direc-
tion is set to the same value of L points, which results in a total of NF = N/(2 ∗ L) = 16
frequency bands. However, to account for the fact that the number of frequency bins is 513
rather than 512, the frames in the first frequency band have a height of L+1 points instead.

Figure 3.4: Block diagram of the processing stage
in which the noise contribution is determined.

With the extent in the time and frequency
directions defined, all processing frames are
factorised using SVD, and the singular values
σFo are stored for all frames (the subscript o
is used to indicate that these are the original
singular values). As discussed in section 2.4.4,
the noise threshold σv for the frequency band
fb is then set to the minimum first singular
value of all frames in that frequency band.
The final step is to check the 16-point vector
σv(fb) for abnormally high values, assumed to
correspond to coherent noise (see the conclud-
ing remarks in section 2.4.4). If any particu-
lar value σv is more than twice the average of
the σv’s of the two nearest frequency bands,
it is judged unreliable. In this case, it will be
replaced by a linear interpolation or extrapo-
lation based on those two nearest σv values.
The resulting vector σv(fb) is then stored for
use in the eigenimage filtering stage.
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3.4 Windowed, adapted eigenimage filtering

The noise filtering takes place in the fourth stage. In a loop over all (NF × NT ) processing
frames XF , each frame is again factorised using singular value decomposition to obtain the
original singular value vector σFo = trace(ΣF ) and the singular vector matrices UF and V F 1. In
the next step, the singular values are altered according to equation (2.20), using the correct noise
threshold value σv(fb) for the current frequency band. The filtered frame is then constructed
by adding all eigenimages using the new singular values σFn as weights (i.e. equation (2.17)).
Finally, the reconstructed processing frames are combined by weighted overlap add, to create
the filtered time-frequency representation Ŝ(k, τ).

Figure 3.5: Block diagram of the adapted eigenimage filtering stage .

1Alternatively, these matrices could be stored for all processing frames in section 3.3 to save computation time
in the filtering stage. This speeds up the algorithm as a whole by roughly 25%, but requires 300 megabytes of
extra memory space per minute of audio at the discussed settings.
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3.5 Transformation back to waveform

Figure 3.6: Block diagram of the transformation
back to a waveform.

The last stage involves using the ISTFT to
transform the filtered time-frequency repre-
sentation to the filtered waveform, denoted
ŝ(n). The column in Ŝ(k, τ) at index τ = 1
is extracted, and the negative frequencies are
appended in reverse order (by taking the com-
plex conjugate of the positive frequencies).
This yields the full spectrum Y , which has
the 0 Hz frequency centered. Next, an inverse
FFT is taken of Y to obtain the 1024-point
time-domain vector y(i). This vector is mul-
tiplied by the synthesis Hamming window of
the same length, and the result is added to
the array ŝ(n) at entries n = 1 to 1024. The
procedure is repeated for the column at index
τ = 2, but it is added at entries n = 1 + 1h
to n = 1024 + 1h. This procedure is repeated
until the last column of the TFR is reached.
The last step of the inverse STFT is to divide
all values of ŝ(n) by the appropriate COVA-
constant for the used window and overlap.
Finally, the zero padding applied in the first
stage is undone, which results in a filtered audio vector ŝ(n) of the same length as the original
input vector x(n).

3.6 Choice of parameters

The outcome of the proposed algorithm is affected by the choice of parameters. The settings
summarised in table 3.1 are considered the standard settings, for the reasons discussed in the
previous sections. These are the values that are chosen in the evaluation of the algorithm’s
performance in chapter 4.

Table 3.1: Recommended parameter settings for the proposed denoising
method.

Parameter Symbol Value
STFT window length N 1024 [samples]
STFT analysis window hop size h 128 [samples]
SVD processing frame size L 32 [samples]
SVD processing frame overlap β 50 [%]
Noise reduction tuning parameter α 1 ≤ α ≤ ∞
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Chapter 4

Results

In this chapter, the results of the proposed method are presented and discussed. A three-step
approach is used to assess the performance of the algorithm. First, a description is provided
of the library of musical recordings used in the performance assessment (section 4.1). Second,
I outline how the effectiveness of the method is quantified using objective quality measures in
section 4.2. Finally, in section 4.3 the outcome of a subjective test based on the comparative
test methodology ITU-T P.835 (2003) is presented.

4.1 Musical recording library

Musical signals are complex and can have widely varying characteristics, for instance depending
on what instrument is played. For example, the sound of a snare drum is relatively broadband
but persists for only a short period of time, whereas a triangle or glockenspiel produces sound of
a specific frequency with a long decay. Moreover, the signal of instruments that include a sound
box (including the human voice) generally contains a large number of harmonic overtones, while
the sound of a tuning fork predominantly comprises the fundamental frequency. Hence, it is
important to evaluate the performance of the proposed algorithm on the basis of different types
of recordings.

For this reason, a musical signal database was created that consists of altered versions of four
distinct reference recordings. The music was recorded in a studio using an AKG C414 XLS
microphone on cardioid setting, which has a near uniform frequency response2 and 88dB self-
noise SNR3. The following instruments were recorded:

• Claves (a percussive instrument consisting of two hollow wooden tubes)
• Acoustic guitar
• Male singing voice
• Glockenspiel (a metallic version of a xylophone)

2Frequency response available online at: http://demandware.edgesuite.net/aauj_prd/on/demandware
.static/-/Sites-masterCatalog_Harman/default/dwaaaeaa69/pdfs/AKG_C414XLS_Polar_Patterns.pdf
[Accessed July 26th, 2017].

3Microphone specifications available online at: http://www.akg.com/Microphones/Condenser%
20Microphones/C414XLS.html [Accessed July 26th, 2017].
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All of these instruments have different characteristics in the time and time-frequency domains,
as illustrated in figure 4.1. In musical terms, these instruments are said to have different timbre,
which is the property that allows the human auditory system to distinguish them from one
another. Claves produce a bright, impulsive sound that resembles a person snapping their fingers.
The signal of an acoustic guitar consists of abrupt onsets followed by long decays, and contains
a very large number of harmonic overtones. The human voice has particularly complex time-
frequency characteristics, which include relatively gradual rises and falls in frequency (or pitch),
overtones, as well as impulsive, broadband features that are mostly associated with the ’s’ and
’sh’ sounds. The glockenspiel has a comparatively small number of overtones, but a particularly
long decay. In addition to their varying signal properties, it was ensured that each of the reference
recordings contains a time interval that is largely devoid of signal as well, to allow for evaluation
of how the method performs in noise-dominated conditions.

Subsequently, Gaussian white noise was added to the reference recordings at three signal-to-noise
ratios. The noise intensity is specified in terms of the global signal-to-noise power ratio (GSNR),
given by:

GSNR = 10 log10


N∑
n=1

s2(n)

N∑
n=1

v2(n)

 = 20 log10


N∑
n=1

s(n)

N∑
n=1

v(n)

 (4.1)

where s(n) and v(n) denote the clean signal and noise vectors of length N . The noise intensities
added to the signal are 25dB, 30dB and 35dB; it is judged that noise levels higher than 25dB are
unrealistically noisy for musical recording purposes, whereas values below 35dB are perceptually
almost irrelevant. Figure 4.2 shows the waveforms and time-frequency representations for the
clean and noisy guitar recordings; I refer to appendix A for the figures corresponding to the
other reference recordings.

When the waveform figures are considered, the effects of adding noise are visually underwhelm-
ing. The time-frequency images, on the other hand, illustrate much better why noise is harmful
to the musical signal. Whereas the highest-amplitude signal components are left relatively intact,
the much lower-amplitude overtones and decays are partially or completely masked by the raised
noise floor. These signal components play an important part in the perception of the previously
mentioned timbre: therefore, in addition to being an unpleasant background sound, noise alters
how an instrument’s sound is perceived.

The noisy recordings were then processed in four ways. Each recording was processed with the
proposed adapted eigenimage filtering (AEF) method, using three different values for the noise
reduction tuning parameter: a conservative setting α = 10, a high-reduction setting α = 25, and
an intermediate setting α = 17.5. In addition, each of the recordings was processed using the
spectral noise gating (SNG) method implemented in the popular open-source software package
Audacity4 to set a standard for comparison. The settings used were 20dB noise reduction at
a sensitivity of 5 and with one-bin frequency smoothing; note however that the results of this
method also vary slightly with the selection of the noise interval. This should not compromise
the quality of the results obtained, because each recording includes a noise-only section, which
allows for the selection of a signal-free noise sample.

4Available online at: http://www.audacityteam.org [Accessed July 26th, 2017].
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Figure 4.1: Waveform and time-frequency views of the four reference recordings used in performance
evaluations. Top: Claves. Second row: Acoustic guitar. Third row: Singing voice (male). Bottom:
Glockenspiel. The time-frequency representations are shown up to 10 kHz to clarify the most important

structures, but extend up to 22050 Hz.
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Figure 4.2: Waveforms and corresponding time-frequency representations of the Guitar recording at various
noise levels. Top: Reference recording, which has a SNR of approximately 88 dB according to the microphone
specifications. Second row: Reference recording with additive white Gaussian noise (AWGN) at 35dB GSNR.

Third row: 30dB GSNR. Bottom: 25dB GSNR, the highest noise level considered in this work.
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This results in 16 total recordings per instrument (one noise-free reference recording, three noisy
references, and four processed versions per noisy reference). The time-frequency representations
of all these recordings are included in appendix B. The audio library used in testing thus en-
compasses 64 recordings in total.

4.2 Objective results

The best way to evaluate the effectiveness of audio processing algorithms is to conduct a sub-
jective questionnaire. However, as this can be time-consuming and potentially expensive, it is
difficult to conduct such a test on a sufficiently large scale. Consequently, the subjective results
may not always be statistically reliable, and a variety of objective measures have been developed
to (partially) replace or complement subjective results.
Objective measures for audio processing algorithms work by quantifying some measure of dis-
tance between the noise-free and noisy recordings. Examples of such measures are the global
SNR and the average segmental SNR in the time-domain, and frequency-weighted segmental
SNR in the spectral domain. In their study of objective quality measures, Hu & Loizou (2008)
compare how these objective measures correlate to opinion scores given by listeners in subjective
tests. They found that whereas some objective measures correlate well with opinion scores on
signal distortion, others correlate better with perceived noise reduction or background distortion.
Therefore, the best practice is to use multiple objective measures in evaluating the results, or
alternatively, to use a composite measure. The results of this study will be quantified using the
global and segmental SNR measures, because they are intuitive to understand as well as easily
computed. In addition, Hu & Loizou (2008) found that the segmental SNR correlates best out
of all simple measures with opinion scores given on background distortion. Since the proposed
algorithm contains an explicit trade-off between background noise reduction and background
distortion, this measure appears particularly appropriate.

4.2.1 Global signal-to-noise ratio

As discussed in section 4.1, white noise was added to the reference recordings of the four instru-
ments in terms of three global signal-to-noise ratios. After processing these recordings using the
proposed method and spectral noise gating, the GSNR was computed again as follows:

GSNR = 10 log10

[ ∑N
n=1 x

2(n)∑N
n=1[x(n)− x̂(n)]2

]
(4.2)

where x denotes the noise-free reference recording, and x̂ denotes the altered recording of which
to determine the GSNR. Naturally, it is critical that both vectors have been aligned and nor-
malised prior to this calculation. The outcomes for all 48 processed recordings are summarised
per instrument in tables 4.1-4.4. They are interpreted by comparison to the initial GSNR, in
terms of the influence of the tuning parameter α, as well as compared with the results obtained
using spectral noise gating.

Dependence on the initial GSNR

The results in tables 4.1-4.4 quantify the GSNR gain obtained by processing the recordings in
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various ways. As to be expected, any form of processing usually leads to a marked improvement
in the global signal-to-noise ratio. The size of the gain in GSNR itself decreases as the input
signal-to-noise ratio increases. For example, the mean GSNR improvement of all four processing
methods for the guitar recording is 4.95 at 25 dB, 4.14 at 30 dB, and 3.00 at 35 dB. Note also
that the increase in GSNR is larger for the claves and glockenspiel recordings than for the guitar
and singing recordings. This is a consequence of the fact that these recordings contain relatively
many processing frames without any signal (compare the TFR’s in figure 4.1). As a result, a
larger portion of the singular values encountered during processing fall in the noise subspace,
and are thus reduced more drastically than if they were part of the signal subspace.

Influence of the tuning parameter

The effects of changing the tuning parameter α on the GSNR are unambiguous. All values in
tables 4.1-4.4 indicate that higher values lead to increased GSNR gains, with the exception of the
change from α = 17.5 to 25 at 30 dB GSNR in table 4.3. This is as to be expected, since higher
settings increase noise reduction at the cost of noise distortion. Furthermore, the increase from
α = 10 to 17.5 consistently yields a larger GSNR improvement than that from α = 17.5 to 25.
This too can be intuitively understood: since the tuning parameter appears in the denominator
in equation (2.20), its behaviour should be asymptotic.

Comparison with spectral noise gating

In terms of the global signal-to-noise ratio, the proposed AEF method consistently compares
favourably with spectral noise gating at all signal-to-noise ratios and for all instruments. The
difference in GSNR gain is approximately 2 dB on average for all instruments at 25 dB noise,
but interestingly, the discrepancies are progressively larger as the noise intensity is lowered. At
30 dB, the difference in GSNR gain is 3.5 dB on average, and at 35 dB, it has increased to 7.5
dB on average. Furthermore, the application of the SNG method has actually lead to a GSNR
decrease for the guitar and glockenspiel recordings at a noise intensity of 35 dB. Both of these
observations are likely not a consequence of poor noise reduction with the SNG method, but
rather, they indicate that some degree of signal distortion has occurred. This could cause the
numerator in equation (4.2) to decrease, leading to a lower GSNR measure than one would
expect.

4.2.2 Segmental signal-to-noise ratio

The segmental signal-to-noise ratio (SSNR) of a recording is obtained by computing the ’global’
signal-to-noise ratio’s of smaller segments, followed by averaging the scores of all segments.
Following the notation of Cohen (2005), the segmental signal-to-noise ratio (SSNR) is computed
as follows:

SSNR =
1

L

L−1∑
l=0

T

{
10 log10

[ ∑N
n=1 x

2(n+ lN/8)∑N
n=1[x(n+ lN/8)− x̂(n+ lN/8)]2

]}
(4.3)

where L is the number of windows in the signal, N is the number of samples per window
(1024), and x and x̂ denote the reference and noisy audio vectors, respectively. The L windows
are the same as those used in the calculation of the short-time Fourier transform, and the
division by eight arises from the 87.5% overlap used in the STFT. The operator T is defined as
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Table 4.1: Global signal-to-noise (GSNR)
power ratios (in dB) for the claves recordings.

Added
GSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

35 41.21 41.74 42.06 36.19
30 36.53 37.11 37.60 36.08
25 32.06 32.73 33.21 31.38

Table 4.2: Global signal-to-noise (GSNR)
power ratios (in dB) for the guitar recordings.

Added
GSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

35 39.68 39.87 40.09 32.37
30 34.88 35.33 35.50 30.84
25 30.33 30.68 30.87 27.90

Table 4.3: Global signal-to-noise (GSNR)
power ratios (in dB) for the singing

recordings.

Added
GSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

35 38.76 38.83 39.02 35.56
30 34.33 34.38 34.00 31.83
25 30.32 30.68 30.78 29.61

Table 4.4: Global signal-to-noise (GSNR)
power ratios (in dB) for the glockenspiel

recordings.

Added
GSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

35 42.62 43.42 43.82 33.43
30 37.91 38.70 39.28 33.20
25 33.17 34.03 34.64 32.58

T {x } = max[ min[35, x], −10 ], and serves the purpose of confining the SNR of a segment to
the perceptible range between -10 dB and +35 dB (Cohen, 2005; Hu & Loizou, 2008). As is the
case for the global signal-to-noise ratio, both vectors should be aligned and normalised prior to
this calculation.

The results of this calculation are shown in tables 4.5-4.8. Note that the SSNR was calculated not
only for the 48 processed recordings (as done for the GSNR), but additionally for the 12 noisy
reference recordings. This is necessary because the noise was added to the recordings in terms of
the global signal-to-noise ratio; the corresponding SSNR values depend on the characteristics of
the recordings. This is clear when the first columns of each table are considered: whereas adding
noise at a GSNR of 35 dB leads to a SSNR of 1.46 dB for the claves recording, it results in a
SSNR of 24.78 dB for the guitar recording. The results are interpreted on the same three levels
as before.

Table 4.5: Segmental signal-to-noise (SSNR) ratios (in
dB) for the claves recordings. From top to bottom,
rows correspond to GSNR’s of 35, 30 and 25 dB.

Noisy
SSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

1.46 8.19 8.96 9.47 5.67
-2.21 3.70 4.79 5.25 5.43
-4.24 -0.32 0.51 1.16 3.65

Table 4.6: Segmental signal-to-noise (SSNR)
ratios (in dB) for the guitar recordings.

Noisy
SSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

24.78 29.28 29.61 29.82 23.53
20.70 26.10 26.56 26.85 22.43
15.93 21.90 22.40 22.65 20.06

Table 4.7: Segmental signal-to-noise (SSNR)
ratios (in dB) for the singing recordings.

Noisy
SSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

19.36 22.89 23.15 23.36 21.56
15.67 19.91 20.27 20.28 19.65
11.87 16.35 16.85 17.12 17.72

Table 4.8: Segmental signal-to-noise (SSNR)
ratios (in dB) for the glockenspiel recordings.

Noisy
SSNR

Proposed method SNG
α = 10 α = 17.5 α = 25

14.14 20.70 21.40 21.73 13.94
9.67 16.90 17.64 18.18 13.71
5.20 12.78 13.64 14.22 13.32
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Dependence on the initial GSNR

The relation between initial noise level and SSNR after processing is more ambiguous compared
to the case for the GSNR. For the claves recording, the gain in SSNR is largest for the lowest
noise level (e.g. from 1.46 to 8.19 dB using α-10 AEF) and smallest for the highest noise level
(-4.24 to -0.32 dB) when AEF is used, but the reverse relation holds for the SNG method. For the
other instruments, the SSNR gain does increase with increasing noise intensity similar to what
was observed for the GSNR. Aside from this discrepancy, the results of the SSNR calculation are
comparable to those obtained for the GSNR. The magnitude of the SSNR gain is again larger
for the claves and glockenspiel recordings than for the other two instruments, and the gains of
in both measures are of similar magnitude under the same circumstances.

Influence of the tuning parameter

Similar to the previously observed behaviour, higher values of α result in larger improvements in
the segmental signal-to-noise ratio, and the difference between the lower two settings (α = 10-
17.5) is larger than the difference between the higher two settings (α = 17.5-25).

Comparison with spectral noise gating

In terms of the segmental signal-to-noise ratio, the comparison between the proposed method
and SNG is not as one-sided as was the case for the GSNR. Whereas the proposed method
outperforms spectral noise gating at 35 dB additive noise at all settings and for all instruments,
SNG performs better at the higher noise levels for the claves and singing recordings, and com-
parable for the glockenspiel recording. Judging by the trends observed for both methods with
different SNR’s, it appears likely that SNG would outperform the proposed method at higher
noise levels (e.g. 20 dB GSNR), whereas AEF performs better at lower noise levels.

4.3 Subjective results

The field of musical enhancement is a relatively small discipline within the field of audio signal
processing, and as such, it does not have standardised testing procedures and libraries. For this
reason, the subjective listening test in this work is designed to comply with the ITU-T P.835
(2003) testing methodology, which is intended for speech processing algorithms, where possible.

4.3.1 Test design

The 64 audio fragments of the musical recording library discussed in section 4.1 were divided
into 20 3-piece trials and one 4-piece trial. Within each trial, listeners are required to give their
opinion in three different categories:

• The M-score, a measure of musical signal distortion;
• The B-score, a measure of background intrusiveness;
• The O-score, the rating of the overall quality of the fragment.

The motivation for this three-step rating approach is that some some listeners may naturally
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Table 4.9: Meaning of opinion scores in subjective tests

M-score B-score O-score
5 Not distorted Not noticeable Excellent
4 Slightly distorted Slightly noticeable Good
3 Somewhat distorted Noticeable, but not intrusive Fair
2 Fairly distorted Somewhat intrusive Poor
1 Very distorted Very intrusive Bad

pay more attention to either the background or the musical signal in forming their opinion of
the overall quality. Requiring them to explicitly formulate their opinion in terms of each of these
three measures takes this variability out of the results.
Listeners were instructed to formulate their opinion using a scale from 1 to 5, 5 being the best
score, using table 4.9. For the three files in each trial, listeners have to rate one on the basis
of the M-measure, another on the B-score, and the last one on the overall quality. In the last,
four-segment trial, one of the categories is repeated. To ensure that each audio fragment receives
a rating in each of the three categories, the group of listeners is divided in three teams: the
members of different teams rate the same audio file by a different category.

As the test takes approximately 25-30 minutes in its entirety, listeners were advised to take a
break when they deemed it necessary. Although the use of high-quality headphones was also
strongly encouraged, not all listeners had these available to them, and the listening environment
is not controlled enough to fully comply with ITU-T P.835 standards (see also section 4.3.3). A
copy of the test instructions handed out to listeners is included in appendix D.

4.3.2 Discussion of results

A total of 24 listeners participated in the subjective test. Their scores were averaged per audio
file to yield the three scores (M, B and O) for all 64 audio fragments. The complete results of all
listeners for all audio files are available in appendix C. In figure 4.3, the scores of audio fragments
are averaged and summarised per added noise intensity. From left to right, it shows the average
ratings of the unprocessed, noisy reference recording, the proposed AEF method for the three
different α settings, the spectral noise gating method, as well as the noise-free original recording.
In evaluating these results, comparisons are made between processed and unprocessed recordings,
between the different settings for the noise reduction parameter α, between the proposed method
and spectral noise gating, as well as between different noise levels.

Processing versus no processing

Amongst other things, figure 4.3 shows the adverse effects of noise on the perceived audio quality.
A comparison of the unprocessed recording to the noise-free reference reveals that the B- and O-
scores decrease by up to 3 points upon addition of white noise at various intensities. The M-score,
although not affected as markedly as the other two categories, also decreases by approximately
0.5-0.75 points at all noise levels. This finding is compatible with the signal masking property
of broadband noise mentioned in section 4.1.

Moreover, figure 4.3 shows clearly the benefits of noise reduction algorithms. Almost all pro-
cessed audio fragments compare favourably to their unprocessed counterparts in all categories
and at all added noise levels. In particular, the B- and O-scores are generally raised by a full
point after processing. The M-score, on the other hand, shows much less improvement and may
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Figure 4.3: Average opinion scores per method and per added noise intensity. The results were obtained by
averaging the scores given by the participants, and subsequently taking the mean of all four instrument

recordings processed in that particular way. In addition to the four processing approaches, the ratings of the
unprocessed noisy reference (far left, denoted ’Unproc.) and noise-free reference (far right, denoted ’Reference’)

are shown for comparison.
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even decrease: these are the cases of α-17.5 AEF and SNG at 25 dB noise, which score 0.2 and
0.1 points lower on average than the unprocessed noisy recording, and the cases of α-10 AEF
and α-25 AEF at 30 dB noise, whose scores are 0.15 and 0.4 points lower, respectively. These
results indicate that the benefits of these noise reduction algorithms in terms of overall audio
quality are mostly in reducing the intrusiveness of the background noise, rather than (perceptu-
ally) enhancing the musical signal.

Influence of the tuning parameter

From theory, a higher value of the tuning parameter α leads to more background noise reduction
at the cost of increased noise distortion. Since no explicit distinction is made between these two
processes in the listening test, their effects are combined in the opinion scores, particularly the
B-category. Although the results are ambiguous and the differences generally small, the results
obtained using a value of α=10 appear to be the worst in general out of the three options. The
O-ratings at all noise levels using this value are the lowest of the three options considered, and
the background rating is the lowest at both 30 and 25 dB by a relatively considerable margin.
Instead, the results appear to suggest that the value of α should be approximately 17.5. At
the two highest noise intensities, this setting yields the best ratings in both the background and
overall categories, whereas at the lowest noise level, it scores in the middle between the other two
options in terms of the overall rating. However, as the α=25 setting scores better at 35 dB and
somewhat comparably at 25 dB, the optimal value may lie somewhere in between. Alternatively,
more testing may be required to reveal which is the superior choice.

Comparison with spectral noise gating

Contrary to in the objective results, the spectral noise gating method compares favourably with
the proposed method in most aspects of the subjective test. In particular, SNG is more effective
in reducing the background intrusiveness. This is a consequence of the flexibility of the method
in this respect: whereas SNG allows for a trade-off between noise reduction and signal distortion,
the trade-off in the proposed AEF approach is between noise reduction and noise distortion. This
statement is supported by the M-ratings, which are slightly lower for SNG than for the best AEF
result at all noise levels. In terms of the overall score, SNG is the preferred method, particularly
at higher noise levels. It should be noted, however, that the proposed method is fully automated
and requires the tuning of only one parameter, whereas the SNG algorithm considered involves
setting three parameters as well as manual selection of a noise-only interval.

4.3.3 Comments on the subjective results

Although the outcome of the subjective test makes intuitive sense, a number of matters should
be kept in mind in its interpretation. First and foremost, the fact that each fragment is rated
by 24 participants, or 8 individuals per category per fragment, means that the results should be
seen as indicative, not as statistically significant. Upon closer inspection of the results in figure
4.3, some inconsistencies can be detected that likely stem from the small number of listeners.
For instance, in the case of 35 dB noise, some of the processed fragments are rated better on
average than the noise-free reference recording, which is highly improbable. Additionally, one
would expect the ratings to gradually decrease with increasing noise level; however, the B-score
for α-17.5 AEF at 35 dB is nearly half a point lower than the corresponding score at 30 dB. These
inconsistencies are likely to gradually disappear as the number of test participants increases.
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A second point should be made with regard to the listening conditions. As mentioned briefly in
section 4.3.1, logistics and time constraints prohibited the construction of a controlled environ-
ment with equal listening conditions for all test participants. The listening conditions include
the direct environment (i.e. the degree of soundproofing in the room and its acoustics), the
volume at which the audio is played, as well as the device (headphones, earphones, speakers)
over which it is played. Although the majority of these characteristics are unlikely to affect the
relative scores given by a single participant, and therefore do not compromise the reliability of
the results presented in figure 4.3, it does unequivocally result in different average scores per
participant. Indeed, the tester with the lowest average score rated the files 2.6 out of 5 on aver-
age, whereas the tester with the highest average score rated them just over 4 points on average.
Therefore, the absolute values of the presented subjective results are less meaningful, and the
results should only be interpreted in a comparative sense.
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Chapter 5

Conclusions and future work

In the previous chapters, the theory, practical implementation and results of an algorithm for
denoising music were discussed. In summary, the approach taken is to transform the time-domain
signal to the time-frequency space, and to remove noise from the resulting 2-D image. This is
achieved by using an adapted version of the eigenimage filtering technique, which is also used
in the enhancement of seismic sections. After filtering, the image is converted back to a wave-
form, which yields an enhanced version of the input signal. Although the proposed method does
not unequivocally outperform the noise suppression method called spectral noise gating, with
which it was compared directly, it does significantly improve the recording quality, and has the
additional advantages of being fully automated and requiring only a single parameter to be
tuned. For the intended application to an online platform for music creation, whose commu-
nity comprises hundreds of thousands of amateur musicians, these are essential features that
can outweigh the importance of enhanced noise reduction. The sample study conducted at the
start of this work indicated that approximately 25% of user projects contain noticeable random
noise. Particularly these recordings should see great improvements in quality upon processing.
Therefore, the developed algorithm should hold some company value.

For the purpose of further improving the average quality of the user projects, the installment
or development of a follow-up filter is worth considering, specifically a coherent noise filter.
Presently, coherent noise will be perceptually enhanced upon filtering with the proposed method.
A filter designed to remove coherent noise would thus enhance not only the 9.5% of recordings
in which this was found to be the major quality issue, but many of the other recordings in which
it is contained. An additional benefit to this second filter would be that the proposed method is
more reliable if coherent noise is removed from recordings first, as its presence complicates the
step in which the noise threshold is determined. If this coherent noise filter were to be included, it
would thus be advised to install it before the developed denoising method in the filter sequence.

Although the results with adapted eigenimage filtering are generally promising, they are also
ambiguous. Therefore, it would be preferable to put the algorithm to further tests. The objective
results, which have been quantified with two relatively simple measures, could be complemented
with another distance measure that correlates well with overall quality or signal distortion, such
as the log-likelihood ratio or frequency-weighted SSNR. Moreover, the subjective results would
benefit from having more opinion scores given by additional testers, as this would likely reduce
the ambiguity of the outcome. With these efforts, the optimal value for the tuning parameter α
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(presently presumed to lie between 17.5 and 25) could be decided on in a more conclusive manner.
Furthermore, the performance of the algorithm in removing non-white noise, for instance pink
noise, was not included in the tests. This choice was made to ensure that the length of the
subjective test would not serve as a barrier for the listeners, all of which participated on a
voluntary basis. Nevertheless, the algorithm is theoretically capable of suppressing noise types
other than white. If a follow-up test is to be conducted, the addition of these noise types is worth
considering.

General applicability was an important requirement that influenced the design of the algorithm.
Nevertheless, some limitations to its applicability exist as a consequence of the assumptions
made on the signal and noise characteristics. For the proposed method, one of the key simpli-
fications is that the noise is wide-sense stationary: this justified the usage of a single threshold
value in defining the signal and noise subspaces throughout the entire recording. Although this
assumption appears reasonable for many noise sources (for instance, the noise generated by the
electrical circuits in a computer), it is inevitably not valid for all noise sources that users may
encounter. A periodic re-evaluation of the noise threshold, which would constitute a relatively
simple addition to the algorithm, would likely be effective in addressing this issue and may
broaden the method’s field of applicability to include recordings with slowly-varying noise.

Another feature of the method, which could be seen as either a strength or as its second limita-
tion, is the absence of an explicit trade-off between noise reduction and signal distortion. Most
of the common noise reduction methods do include this trade-off, which enables their users to
modify the degree of noise reduction based on how much signal distortion they can tolerate.
From the subjective test results, it became clear that most listeners do not notice any significant
signal distortion with the proposed method in its current form, whereas the background was
still considered intrusive to a varying degree. This observation suggests that by alteration of the
algorithm, such that it removes more noise at the cost of increased signal distortion, overall rat-
ings on its performance might be further improved. This could for instance be achieved through
the introduction of a second tuning parameter. Inclusion of a factor by which to multiply the
noise threshold value α would enable the user to influence the dimensionality of the signal and
noise subspaces. This would introduce the classic trade-off between signal distortion and noise
reduction, albeit at a loss of simplicity.

To conclude, it can be said that the disciplines of seismic and audio signal processing are similar
enough for methods to be applicable to both fields. Some of such methods, such as Wiener
filtering and non-negative matrix factorisation, have already been extensively published on in
literature. At the same time, it appears that the fields are far enough apart such that not all
options have been fully explored yet. The proposed eigenimage filtering method, which to my
knowledge has not been applied to the denoising of music before, is a testament to this case. This
finding suggests that there is potentially more to gain from the combination of these disciplines
in the future.
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Appendix A:

Noise-free and noisy reference recordings



A.1 Reference recordings: claves

Figure A.1: Waveform and time-frequency views of the claves recording at different noise levels. Top: Noise-free
reference recording. Second row: Noisy reference at a global signal-to-noise ratio of 35 dB. Third row: Noisy
reference at a global signal-to-noise ratio of 30 dB. Bottom: Noisy reference at a global signal-to-noise ratio of

25 dB.
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A.2 Reference recordings: guitar

Figure A.2: Waveform and time-frequency views of the guitar recording at different noise levels. Top: Noise-free
reference recording. Second row: Noisy reference at a global signal-to-noise ratio of 35 dB. Third row: Noisy
reference at a global signal-to-noise ratio of 30 dB. Bottom: Noisy reference at a global signal-to-noise ratio of

25 dB.
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A.3 Reference recordings: singing

Figure A.3: Waveform and time-frequency views of the singing recording at different noise levels. Top:
Noise-free reference recording. Second row: Noisy reference at a global signal-to-noise ratio of 35 dB. Third

row: Noisy reference at a global signal-to-noise ratio of 30 dB. Bottom: Noisy reference at a global
signal-to-noise ratio of 25 dB.
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A.4 Reference recordings: glockenspiel

Figure A.4: Waveform and time-frequency views of the glockenspiel recording at different noise levels. Top:
Noise-free reference recording. Second row: Noisy reference at a global signal-to-noise ratio of 35 dB. Third

row: Noisy reference at a global signal-to-noise ratio of 30 dB. Bottom: Noisy reference at a global
signal-to-noise ratio of 25 dB.
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Appendix B:

Objective denoising results



B.1 Claves recording, 35 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.1: Time-frequency representations of the claves recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 35 dB.
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B.2 Claves recording, 30 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.2: Time-frequency representations of the claves recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 30 dB.
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B.3 Claves recording, 25 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.3: Time-frequency representations of the claves recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 25 dB.
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B.4 Guitar recording, 35 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.4: Time-frequency representations of the guitar recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 35 dB.
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B.5 Guitar recording, 30 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.5: Time-frequency representations of the guitar recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 30 dB.
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B.6 Guitar recording, 25 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.6: Time-frequency representations of the guitar recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 25 dB.
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B.7 Singing recording, 35 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.7: Time-frequency representations of the singing recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 35 dB.
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B.8 Singing recording, 30 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.8: Time-frequency representations of the singing recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 30 dB.
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B.9 Singing recording, 25 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.9: Time-frequency representations of the singing recordings associated with additive white Gaussian
noise (AWGN) at a global signal to noise-ratio of 25 dB.
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B.10 Glockenspiel recording, 35 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 35 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.10: Time-frequency representations of the glockenspiel recordings associated with additive white
Gaussian noise (AWGN) at a global signal to noise-ratio of 35 dB.
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B.11 Glockenspiel recording, 30 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 30 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.11: Time-frequency representations of the glockenspiel recordings associated with additive white
Gaussian noise (AWGN) at a global signal to noise-ratio of 30 dB.
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B.12 Glockenspiel recording, 25 dB AWGN

(a) Noise-free reference recording. (b) Noisy reference recording with a global
signal-to-noise ratio of 25 dB.

(c) The recording in (b), processed using
adapted eigenimage filtering with α=10.

(d) The recording in (b), processed using
adapted eigenimage filtering with α=17.5.

(e) The recording in (b), processed using
adapted eigenimage filtering with α=25.

(f) The recording in (b), processed using
spectral noise gating.

Figure B.12: Time-frequency representations of the glockenspiel recordings associated with additive white
Gaussian noise (AWGN) at a global signal to noise-ratio of 25 dB.
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Appendix C:

Subjective denoising results



C.1 Musical opinion scores

Table C.1: Individual opinion scores in the M-category given for all files in the audio library. The
average M-score is shown in bold text. Note that participants rated only one third of the files on the
M-category, based on which team they were in; the results of all three teams are bundled here for

convenience of presentation.

Instrument Added noise Processing
Musical score

Participant
1 2 3 4 5 6 7 8 Avg.

Claves

None None 5 5 4 3 4 5 2 4 4.00

35 dB

None 4 4 5 4 4 4 4 3 4.00
α-10 AEF 3 5 4 4 3 5 4 3 3.88
α-17.5 AEF 5 4 5 4 4 5 4 4 4.38
α-25 AEF 5 4 4 4 5 4 5 4 4.38

SNG 3 5 5 5 3 5 4 4 4.25

30 dB

None 5 4 5 5 3 4 4 5 4.38
α-10 AEF 4 5 5 5 3 4 3 5 4.25
α-17.5 AEF 4 3 4 3 3 4 4 3 3.50
α-25 AEF 4 2 2 3 4 4 3 3 3.13

SNG 5 5 4 5 2 5 4 5 4.38

25 dB

None 4 5 3 1 3 4 4 3 3.38
α-10 AEF 5 2 3 4 4 4 3 3 3.50
α-17.5 AEF 3 3 4 2 3 2 3 2 2.75
α-25 AEF 4 5 4 4 5 4 4 5 4.38

SNG 5 3 3 5 1 5 2 4 3.50

Guitar

None None 5 5 5 1 5 4 5 5 4.38

35 dB

None 5 5 4 3 5 4 4 2 4.00
α-10 AEF 4 5 5 4 5 4 4 3 4.25
α-17.5 AEF 5 2 5 5 4 5 5 4 4.38
α-25 AEF 5 5 4 5 5 4 5 5 4.75

SNG 5 5 3 3 5 5 4 5 4.38

30 dB

None 4 4 4 5 4 4 5 2 4.00
α-10 AEF 5 3 3 1 4 3 4 3 3.25
α-17.5 AEF 5 3 5 5 5 4 4 3 4.25
α-25 AEF 4 2 4 2 3 3 4 2 3.00

SNG 4 5 3 3 4 5 4 4 4.00

25 dB

None 5 5 4 2 5 4 4 3 4.00
α-10 AEF 5 2 3 1 4 4 4 1 3.00
α-17.5 AEF 5 3 2 2 4 3 2 3 3.00
α-25 AEF 4 5 3 3 3 4 4 3 3.63

SNG 5 4 2 5 3 5 4 3 3.88
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Instrument Added noise Processing
Musical score

Participant
1 2 3 4 5 6 7 8 Avg.

Singing

None None 5 5 5 2 4 5 4 5 4.38

35 dB

None 5 3 4 1 4 2 3 2 3.00
α-10 AEF 5 5 5 2 5 4 4 3 4.13
α-17.5 AEF 3 4 4 4 4 5 4 5 4.00
α-25 AEF 4 4 5 4 5 5 4 3 4.25

SNG 5 3 4 1 4 2 3 2 3.50

30 dB

None 4 5 5 3 5 5 4 3 4.25
α-10 AEF 5 1 4 2 2 4 4 3 3.13
α-17.5 AEF 4 3 3 4 4 4 4 4 3.75
α-25 AEF 3 3 3 4 5 5 4 3 3.75

SNG 3 3 3 3 3 3 3 3 3.00

25 dB

None 4 5 5 4 5 4 4 3 4.25
α-10 AEF 5 5 5 2 4 4 4 2 3.88
α-17.5 AEF 4 3 4 4 3 4 3 4 3.63
α-25 AEF 4 5 4 3 4 4 4 4 4.00

SNG 3 2 2 3 2 1 1 1 1.88

Glockenspiel

None None 3 2 4 5 4 5 3 3 3.63

35 dB

None 4 2 2 1 4 2 4 2 2.63
α-10 AEF 4 3 3 1 3 3 4 3 3.00
α-17.5 AEF 4 2 4 5 4 5 5 5 4.25
α-25 AEF 4 4 4 1 4 3 5 3 3.50

SNG 4 5 4 5 4 5 5 5 4.63

30 dB

None 4 1 2 2 3 2 3 2 2.38
α-10 AEF 5 2 3 5 5 4 3 3 3.75
α-17.5 AEF 3 5 5 3 5 5 4 4 4.25
α-25 AEF 4 1 3 5 4 4 4 3 3.50

SNG 4 4 4 5 5 5 5 5 4.63

25 dB

None 4 1 1 2 3 1 4 1 2.13
α-10 AEF 4 2 4 5 4 4 5 4 4.00
α-17.5 AEF 4 2 3 4 5 3 4 4 3.63
α-25 AEF 4 4 4 3 4 5 4 4 4.00

SNG 4 4 4 5 4 5 2 5 4.13
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C.2 Background opinion scores

Table C.2: Individual opinion scores in the B-category given for all files in the audio library. The
average B-score is shown in bold text. Note that participants rated only one third of the files on the
B-category, based on which team they were in; the results of all three teams are bundled here for

convenience of presentation.

Instrument Added noise Processing
Background score
Participant

1 2 3 4 5 6 7 8 Avg.

Claves

None None 5 5 4 1 4 2 1 2 3.00

35 dB

None 3 5 4 4 3 2 4 2 3.38
α-10 AEF 4 5 3 5 4 3 4 4 4.00
α-17.5 AEF 3 5 4 5 5 3 5 4 4.25
α-25 AEF 3 4 1 2 3 2 1 4 2.50

SNG 5 5 3 1 4 3 4 5 3.75

30 dB

None 3 3 3 3 1 2 1 1 2.13
α-10 AEF 3 3 3 4 4 5 3 3 3.50
α-17.5 AEF 4 4 3 4 5 3 5 2 3.75
α-25 AEF 3 4 2 3 4 4 3 2 3.13

SNG 3 5 5 5 4 5 5 5 4.63

25 dB

None 1 3 2 4 3 2 2 3 2.50
α-10 AEF 2 3 2 2 2 2 2 1 2.00
α-17.5 AEF 3 3 2 2 3 2 4 2 2.63
α-25 AEF 2 2 1 2 2 1 2 2 1.75

SNG 5 5 4 5 4 3 5 4 4.38

Guitar

None None 5 5 5 5 5 5 5 5 5.00

35 dB

None 3 4 4 3 4 2 2 3 3.13
α-10 AEF 4 4 4 4 4 2 4 3 3.63
α-17.5 AEF 2 4 3 2 2 3 2 3 2.63
α-25 AEF 4 5 5 5 4 3 4 4 4.25

SNG 5 5 5 5 5 5 5 4 4.88

30 dB

None 1 2 3 5 3 2 1 1 2.25
α-10 AEF 3 2 2 3 2 3 4 2 2.63
α-17.5 AEF 3 3 3 3 3 3 3 3 3.00
α-25 AEF 2 2 2 2 4 3 2 2 2.38

SNG 5 5 4 5 4 4 5 3 4.38

25 dB

None 3 1 1 1 1 1 1 1 1.25
α-10 AEF 2 2 1 1 1 2 1 1 1.38
α-17.5 AEF 1 2 2 1 2 3 2 2 1.88
α-25 AEF 2 4 3 2 3 2 2 2 2.50

SNG 3 2 3 3 2 2 4 3 2.75
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Instrument Added noise Processing
Background score
Participant

1 2 3 4 5 6 7 8 Avg.

Singing

None None 5 5 4 5 5 5 5 5 4.88

35 dB

None 1 1 1 2 1 4 2 2 1.75
α-10 AEF 4 3 3 5 4 3 2 4 3.50
α-17.5 AEF 3 3 3 3 3 3 2 3 2.88
α-25 AEF 4 4 5 5 3 3 3 3 3.75

SNG 5 5 2 5 5 4 4 4 4.25

30 dB

None 2 1 2 1 1 2 1 1 1.38
α-10 AEF 1 1 2 1 1 4 3 1 1.75
α-17.5 AEF 3 3 5 4 4 4 2 4 3.63
α-25 AEF 2 2 4 4 3 2 3 2 2.75

SNG 4 5 3 5 5 4 4 4 4.25

25 dB

None 1 1 1 1 2 1 1 1 1.13
α-10 AEF 2 1 2 1 2 2 1 1 1.50
α-17.5 AEF 2 3 5 4 4 3 3 3 3.38
α-25 AEF 1 1 4 4 4 3 2 2 2.63

SNG 3 4 2 4 3 3 2 4 3.13

Glockenspiel

None None 5 4 5 3 5 4 5 4 4.38

35 dB

None 3 4 3 3 3 3 3 2 3.00
α-10 AEF 4 5 3 3 5 3 4 2 3.63
α-17.5 AEF 4 2 3 2 4 2 4 3 3.00
α-25 AEF 5 5 3 4 5 3 4 4 4.13

SNG 5 5 4 5 4 5 5 5 4.75

30 dB

None 2 2 2 2 2 4 2 2 2.25
α-10 AEF 3 2 5 2 4 4 3 2 3.13
α-17.5 AEF 4 5 4 5 5 3 4 4 4.25
α-25 AEF 4 3 4 2 2 4 4 3 3.25

SNG 5 5 4 1 4 4 5 4 4.00

25 dB

None 1 2 1 1 1 2 1 1 1.25
α-10 AEF 2 2 3 3 4 3 3 3 2.88
α-17.5 AEF 3 3 2 3 2 2 4 2 2.63
α-25 AEF 3 4 3 3 4 2 2 2 2.88

SNG 4 5 3 5 3 4 5 4 4.13
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C.3 Overall opinion scores

Table C.3: Individual opinion scores in the O-category given for all files in the audio library. The
average O-score is shown in bold text. Note that participants rated only one third of the files on the
O-category, based on which team they were in; the results of all three teams are bundled here for

convenience of presentation.

Instrument Added noise Processing
Overall score

Participant
1 2 3 4 5 6 7 8 Avg.

Claves

None None 4 3 4 5 4 4 4 5 4.13

35 dB

None 3 3 3 2 2 3 2 2 1.63
α-10 AEF 3 3 3 2 2 2 3 4 3.25
α-17.5 AEF 3 4 3 2 4 3 4 3 3.25
α-25 AEF 5 5 3 5 4 4 4 4 3.13

SNG 5 4 3 5 3 5 4 5 4.13

30 dB

None 2 2 2 4 3 2 2 3 2.50
α-10 AEF 4 4 2 4 2 4 4 3 3.38
α-17.5 AEF 4 5 5 5 5 4 4 5 4.63
α-25 AEF 4 5 4 5 4 2 4 4 4.00

SNG 4 5 4 2 5 3 5 4 4.00

25 dB

None 1 3 1 1 1 3 2 1 1.63
α-10 AEF 4 4 3 5 4 1 2 3 3.25
α-17.5 AEF 3 4 3 5 4 2 2 3 3.25
α-25 AEF 3 4 2 2 2 5 4 3 3.13

SNG 5 5 4 3 4 3 5 4 4.13

Guitar

None None 5 5 5 5 5 5 4 5 4.88

35 dB

None 2 2 2 3 3 3 3 3 2.63
α-10 AEF 3 3 2 3 4 4 3 3 3.13
α-17.5 AEF 4 5 3 3 4 4 4 4 3.88
α-25 AEF 3 5 3 3 3 3 4 4 3.50

SNG 4 5 4 1 5 2 5 4 3.75

30 dB

None 1 4 1 1 1 2 2 1 1.63
α-10 AEF 4 3 5 5 5 2 4 4 4.00
α-17.5 AEF 2.5 3 3 3 3 5 5 3 3.44
α-25 AEF 4 5 4 4 4 3 3 3 3.75

SNG 4 5 4 2 4 3 4 4 3.75

25 dB

None 2 1 2 4 2 1 1 1 1.75
α-10 AEF 3 3 3 3 3 2 1 2 2.50
α-17.5 AEF 3 3 3 3 4 2 2 3 2.88
α-25 AEF 3 1 3 3 4 4 3 2 2.88

SNG 4 3 2 3 4 4 2 2 3.00
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Instrument Added noise Processing
Overall score

Participant
1 2 3 4 5 6 7 8 Avg.

Singing

None None 4 4 4 5 5 5 4 4 4.38

35 dB

None 3 2 2 3 2 1 1 1 1.88
α-10 AEF 2 3 4 4 2 4 3 2 3.00
α-17.5 AEF 2.5 4 2 2 3 4 3 2 2.81
α-25 AEF 3 4 3 3 5 1 3 4 3.25

SNG 3 3 3 5 5 5 2 3 3.63

30 dB

None 1 1 2 4 2 2 1 1 1.75
α-10 AEF 3 2 2 2 4 2 1 3 2.38
α-17.5 AEF 3 3 1 2 2 3 4 3 2.63
α-25 AEF 3 3 1 3 2 3 3 3 2.63

SNG 2 2 3 4 4 4 5 3 3.38

25 dB

None 1 1 2 5 2 1 1 1 1.75
α-10 AEF 2 1 3 4 3 3 1 2 2.38
α-17.5 AEF 2 3 1 2 1 3 2 2 2.00
α-25 AEF 2 2 1 2 1 3 3 2 2.00

SNG 2 3 2 4 3 2 3 2 2.63

Glockenspiel

None None 5 5 4 4 4 4 4 5 4.38

35 dB

None 3 3 4 5 3 2 3 2 3.13
α-10 AEF 5 3 4 5 4 3 3 3 3.75
α-17.5 AEF 4 5 4 3 5 4 4 3 4.00
α-25 AEF 4 3 4 5 5 4 5 4 4.25

SNG 5 2 3 1 3 3 3 2 2.75

30 dB

None 3 2 3 4 2 2 2 2 2.50
α-10 AEF 3 4 3 2 4 4 5 3 3.50
α-17.5 AEF 3 2 5 3 3 5 3 2 3.25
α-25 AEF 3 4 3 3 4 3 3 3 3.25

SNG 5 5 4 4 3 5 4 5 4.38

25 dB

None 3 2 1 2 2 1 1 1 1.63
α-10 AEF 2 3 2 2 1 3 2 3 2.25
α-17.5 AEF 4 4 3 4 5 3 2 4 3.63
α-25 AEF 2 1 3 3 4 3 2 3 2.63

SNG 4 4 3 1 5 3 5 3 3.50
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Appendix D:

Subjective test instructions



Audio evaluation test

In this experiment you will be evaluating and rating the quality of audio samples. The audio
consists of 4 short recordings of acoustic guitar, claves (a wooden percussive instrument
commonly used in Cuban music), a glockenspiel (related to the xylophone), and the sung voice.
You will hear multiple versions of the same recordings: some have been submerged in noise of
different volumes, and some have been processed.
The file names are structured, and could for example look like ’5_B.wav’. The first number
shows you which ’trial’ the file is in, the letter shows you what you should be rating the audio
on.
The test is subdivided in 21 trials. Trials consist of three short audio fragments (except for the
last one, which has four), so within each trial, you will give three (or four) ratings; one for
each of the audio fragments.
For the sample whose name ends with an M, you are instructed to pay attention only to the
music signal, and rate how distorted or unnatural it sounds to you. From the list below,
please choose the numbered phrase that best corresponds to your opinion of the music alone,
and type this in the cell with the same name on the excel sheet.

Attending only to the music signal, select which of the fol-
lowing best describes the music fragment you just heard.

the music signal in this sample was

5. - Not distorted, completely natural

4. - Slightly distorted, almost natural

3. - Somewhat distorted or unnatural

2. - Fairly distorted or unnatural

1. - Very distorted or unnatural

For the sound fragment whose name ends with a B, you are instructed to pay attention only
to the background and rate how noticeable or intrusive the background sounds to you. Use
the rating scale provided in the second table, and pick the numbered phrase from the list that
best describes how you perceive the background alone. Please fill in this number in the cell
with the same name in the excel rating sheet.
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Attending only to the background, select which of the fol-
lowing best describes the music fragment you just heard.

the background in this sample was

5. - Not noticeable

4. - Slightly noticeable

3. - Noticeable, but not intrusive

2. - Somewhat intrusive

1. - Very intrusive

Finally, the last file in each trial has a name that ends with an O. For these files, I want you to
listen to the audio fragment and rate your opinion on the overall quality of the sound
fragment. Maybe pretend that someone is showing you their recording in Soundtrap, so take
both the music signal and the background noise into account. As before, please fill your rating
in the corresponding space in the rating sheet.

Select which of the following best corresponds to your overall
quality rating of the audio file you heard, for the purposes
of a user’s project in Soundtrap.

the overall recording quality in this sample was

5. - Excellent

4. - Good

3. - Fair

2. - Poor

1. - Bad

The test as a whole should take around 25-30 minutes. Please do it at your convenience; you
are allowed to do it in one or multiple sittings, so feel free to take a break in between when
necessary. I do strongly encourage the use of headphones or external speakers over the use of
lower-quality earphones or computer built-in speakers, but use whatever you have available.
You are allowed to play the files multiple times and jump back and forth if that helps you form
your opinion, just make sure you fill in your rating in the right place. If you have any questions
or if anything seems weird, don’t hesitate to let me know.
Thank you very much for participating!
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