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Abstract
The interactions between human and machines are now common in our daily life.

The audio data of human communication is a rich source of information, but it is con-
sidered privacy-invasive for machines to listen to it. By reducing sampling frequency, it
is possible to preserve privacy by making conversation unclear while still being possible
to detect if someone is speaking or not. The topic of this paper is to investigate how
low sampled frequency audio data hinders the detection of speech. To detect speaking,
voice activity detection has been applied, which is a technology in the signal process-
ing field that identifies which short segments of audio contain speakings. Two types
of state-of-art voice activity detector(VAD) were used for this experiment including a
supervised (pyannote) and two unsupervised (rVAD pitch and flatness mode) methods.
As a result, the unsupervised methods outperformed the supervised model, where rVAD
pitch mode has resulted in the best performance out of all three. More specifically, the
unsupervised VAD’s performance became lower as the sample rates decreased while the
supervised VAD did not work well at higher sample frequency. rVAD pitch mode at
sample rates of 8000Hz or higher was possible to perform at the almost same level as a
state-of-art supervised VAD that is trained in a similar data set. Furthermore, it was
able to perform as well as a modern unsupervised VAD at 2000Hz or higher sample
frequencies. At the sample rate of 1250Hz or lower, any VAD was not able to perform
at the same level as a state-of-art VAD. Regarding the privacy aspect, it is observed
that human ears detect speaking better than computers, where humans can understand
parts or all of the contents of speaking at 2000Hz or higher, which infers that current
technology is not enough to detect speech from downsampled privacy-preserving audio.
However, there is still a need for further research to verify the effects of the training
set and its sample frequencies for the supervised method and also proper scientific so-
cial experiments to test the ability of humans of speech detection for reduced sampled
audio.

1 Introduction
In our daily life, the interactions between machines and humans are getting more normal
and important. One way of such interactions is based on audio data of conversations and
many state-of-art technology processes this communication in an automatic way using dif-
ferent social audio signals. However, it is considered privacy-invasive for machines to listen
to and record what people are saying. Luckily, verbal conversation is not the only important
element. In fact, it is known that non-verbal social signals play important role in communi-
cation [1]. Therefore, it is important to investigate what and how we can approach sensing
non-verbal social signals from privacy-sensitive audio data.

An example of privacy-sensitive data collection is ConfLab[2]. This is a social exper-
imental event organized by the Socially Perceptive Computing Lab at Delft University of
Technology. This event is aimed to collect a variety of data, including acceleration, prox-
imity, video and audio. Its audio data is recorded at a low sample frequency of 1250Hz
so that it is enough to detect if someone is speaking but the contents are kept private.
They claimed that the contents are not recognizable by just listening to the audio but any
scientific justification were not given.

The reason why low sampled audio has such property of preserving privacy is that
the sampling frequency needs to be higher than a certain threshold value called Nyquist
frequency, otherwise, it is not possible to reproduce the original audio signal and causes
aliasing[3]. The ConfLab audio data is all sampled at 1250Hz and thus aliasing is occuring.
This is because the maximum frequency of human hearing is at around 20kHz[4] thus it at
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least needs 40kHz of sampling rate to be able to reconstruct the original continuous wave
according to the Shannon Sampling Theorem[3].

In order to detect the speaking by machines, the easiest approach is to use Voice Activity
Detector (VAD). There are many applications of VAD because the information of whether
someone is talking or not can be useful in many different scenes. For example, iPhone
from Apple has functionalities of triggering Apple’s personal assistant "Siri" with a voice
command. It keeps running a VAD at the backend to detect if someone is saying "Hey Siri"
[5]. Because it is a very important topic in the fields of social signal or audio processing,
there is a lot of research done to increase the efficiency and performance of voice activity
detection using different approaches including a supervised and an unsupervised model.

Even though researchers looked into speech detection techniques and there is a widely
known theory about sample frequency, there is not much research done in the past about
the topic of speech detection of low sample frequency audio data. Therefore, this research
aims to investigate how the reduction in sample frequency hinders the detection of speaking.
It is such an important topic to research now as society has strict eyes on privacy concerns
while social signal processing is now used on daily basis. By making this question clear, it
is possible to know at which the lowest sample frequency should be used to detect speech
automatically and what types of VADs should be used. As one of the essential aspects is
privacy, this research also looks into privacy concerns, not just technical perspectives. More
specifically, the difference between human and machines detecting speech are also discussed.

The hypothesis to the research question is that it gets harder and harder as the sample
rates are reduced because it gets more difficult to reconstruct the original sound wave because
of the loss of waves’ information at lower sample frequencies. In addition, the model of VAD
will affect the results of speaking detection as different implementations focus on different
parts of sound waves to detect speech. Lastly, it can be expected that an unsupervised
model outperforms a pre-trained supervised model since the training set is taken at normal
sample rates, which can make it harder to adapt to an unusual situation like downsampled
audio.

The structure of this paper is as followings. After this introductory chapter, the back-
ground information about this topic is provided in chapter 2 and then there will be a
description of what methods are used to test the hypothesis in chapter 3. In chapter 4,
the detailed experiment setups and results are shown. Next, the reflection of the ethical
perspectives of this research is discussed in chapter 5. Chapter 6 provides the discussion
of the results from both technical and privacy aspects and finally chapter 7 concludes this
research.

2 Background

2.1 Overview of Voice Activity Detectors (VAD)
Voice Activity Detection, also known as speech detection, is a technology in the audio
processing field that detects if someone is talking or not in a short segment of audio data. It is
widely used in practical applications, such as speech enhancement, transcription, estimating
signal-to-noise ratio, or speaker diarization[6]. In general, VAD takes digitized audio as an
input and first extracts particular features from the processed input. Then, the extracted
features will be inputted into a model that represents them in noise and speech. Finally,
based on a threshold of the model, it returns the final binary outcome of speech or not.
Fourier coefficients, periodicity and zero-crossing rates are often used as features but it

3



depends on each implementation. Likewise, various models are used including statistical
ones like Gaussian and Laplacian distribution, or other heuristics methods[7].

2.2 Wearable badges for social signal collections
Before the Socially Perceptive Computing Lab at Delft University of Technology carries
out Conflab events, a group of researchers at MIT has invented a wearable badge called
"Rhythm"[8]. It measures three kinds of signals in social interactions, namely vocal activity,
proximity to other badges and location. To collect vocal activity, it samples the sound signal
using a microphone at 700Hz sample rates, averages its amplitude and stores it in a chunk
every 50ms. By doing so, it is not possible to reconstruct the original audio, meaning it
preserves the speaker’s privacy. This data will be processed to a multi-step voice activity
detection algorithm, which detects speaking purely based on whether the signal has higher
energy than a threshold over a fixed-sized window. It is a good example of an application
of speech detection and downsampled privacy-sensitive audio data. However, since speech
detection is only dependent on the signal energy, its performance might not be as high as
a state-of-art VAD. Also, the explanation and scientific evidence of why they used 700Hz
sample rates were not given.

3 Methodology

3.1 Voice Activity Detectors (VADs)
In order to best answer the research question of "how does the reduction of in sample fre-
quency hinders speech detection completely", we will use two types of VAD and measure
how the performance of speaking detection changes by reducing sampling frequencies of
audio data. Here, we have decided to use a supervised VAD called "pyannote" and an un-
supervised VAD called "rVAD". These two are chosen because both of them are available
online and free to use, which makes it easier to reproduce the experiments. Also, they have
completely different implementations, which makes it possible to see how the implementa-
tions and models affect the performance of speech detection. Finally, both VADs represent
the performance of state-of-art speech detection technology as claimed in their papers[9, 10].

As briefly mentioned just now, these two VADs have completely different approaches
and methods for speech detection. The main difference between these two VADs is that
pyannote is supervised whereas rVAD is unsupervised. In general, a supervised model
usually works well under similar circumstances as it has been trained on, but it cannot
possibly function well in unexpected conditions[9]. Since many other research papers focused
on the performance of VADs in a setting where the tested and training audio data are
collected at the normal regular sampling frequency, it is possible to also look into whether
it is suitable to use such a supervised model for the speech detection at the lower sampling
frequencies in comparison to unsupervised model.

Firstly, pyannote provides a variety of multimedia processing tools including a supervised
voice activity detector(VAD) [11]. It implements a sequence labelling task of classifying a
given array of feature vectors to an array of labels, where yt = 0 indicates no speech
while yt = 1 as speech with help of Recurrent Neural Network (RNN), where it is used for
calculating the probability of speech by making use of low-level acoustic features and also
for a fusion and decision making [10, 12]. It has been trained on a data set called AMI
Meeting Corpus[13]. It consists of 100hours of meeting recordings sampled at 16kHz and
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includes both close and far talking to the microphone. Since it is collected during meetings,
there can be a couple of people talking simultaneously or some small noises, but background
music or noises of crowds is not present.

Next, rVAD is proposed by Zheng Hua Tan in 2019[9]. While most VADs out there are
supervised, he has implemented an unsupervised one that is robust to both stationary and
burst-like noise. The rVAD’s pitch segment detection algorithm has two modes: pitch and
flatness mode. For the pitch mode, its pipeline consists of two denoising filters and detects
speech or non-speech based on a posteriori signal-to-noise ratio(SNR) weighted energy dif-
ference. There are two roles of this first filter, which are not to estimate noise too much
because of the burst-like noise when a noise estimator of the second filter is applied and to
detect and remove noises of non-speech segments with high energy. The second denoising fil-
ter contributes to speech enhancement based on three different noise estimation approaches.
On the other hand, the flatness mode relies on spectral flatness and uses the SFT feature to
extract pitch. The difference between these two methods is that the flatness mode has much
less computational complexity but is slightly less accurate according to the research[9].

3.2 Dataset
The audio data used for the experiments, named March15LaRedBirthdayParty, were col-
lected at a social experiment event similar to ConfLab by the Socially Perceptive Computing
Lab at Delft University of Technology. Its audio contains mainly the following components:
silence, talking in Dutch, talking in English, and talking with noises in the background.
It consists of combinations of these elements with some noises of other people chatting or
music in the background.

3.3 Data preparation
For the experiments, we want to measure the performance of two VADs using audio data
which are sampled at different rates. However, by reducing the sampling frequency, the
audio data will lose some information. Instead of resampling the audio at different sampling
frequencies, we decided to use a low pass filter for practical convenience. Low pass filters
remove the high-frequency audio and remain the lower one. This way, it is possible to have
the same effect on audio as downsampling but the number of samples per second remains the
same. According to Shannon Sampling Theorem, the sampling frequency has to be greater
than twice the maximum frequency[3]. It means that a 10kHz low pass filter needs to be
applied, for example, if we want to simulate a downsampling of 20kHz.

3.4 Metrics
In order to evaluate the performance of VADs on different sampling frequencies, false alarm
rates (FAR), false rejection rates (FRR) and false error rates (FER) will be calculated using
the following definition:

FAR =
Total number of nonspeech frames mislabeled as speech

Total number of nonspeech frames

FRR =
Total number of speech frames mislabeled as nonspeech

Total number of speech frames

FER =
Total number of mislabeled frames

Total number of frames
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FAR, FRR and FER all indicate error rates so the lower the values are, the better they
are. They are chosen because some other research papers have used them to evaluate the
state-of-art VADs so it is convenient to make a comparison between them. The performance
is calculated by comparing it against the ground truth data. Here, we assumed that the result
of rVAD pitch mode using 44.1 kHz sampled audio is correct and thus treat as ground truth.
In fact, by manually inspecting the result and the original audio, it seems the performance is
fairly high with some minor mistakes. These mistakes are usually when someone is talking
at a small volume or loud background noise is present. Therefore, it can be predicted that
the metrics will result in a better score, meaning lower error rates, as the ground truth will
have some mistakes which are likely to be in favour of VADs.

4 Experimental Setup and Results

4.1 Experiment steps
The first step is to process audio. The original audio is shortened to 1-3 hours from 4 hours
long by removing the silence parts at the beginning and the end manually. Then, the audio
data is downsampled to different frequencies using low pass filters as explained in 3.3. The
values are the followings; 300, 350, 500, 800, 1250, 2000, 3150, 5000, 8000, 12000, 20000,
30000, 44100Hz. These values are chosen in such a way that the steps are logarithmic and
include 1250Hz and 800Hz. That completes the data process and it will be passed to the
two VADs. For rVAD, both modes of pitch and flatness are used.

rVAD returns a list of 1 (speech) and 0 (non-speech) per frame, where the frameshift is
10ms[9] by default. To process results data to be able to compare, the outputs of pyannote
are also converted into the same format as it originally returns a list of tuples containing
the start time and the end time when a speech is detected.

4.2 Experiment results
The results on table 1 represent average FAR, FFR and FER using 12 different 1-3 hours
long audio at different sample frequencies. Figure 1, 2 and 3 visualize how those rates
changed over different sample frequencies. Individual results of all 12 audio data are shown
in table 2 in Appendix A.

5 Responsible Research
It is important to be reproducible and ethical to ensure scientific integrity so this chapter
provides information about reproducibility and ethical aspect of this research.

The reproducibility of this research is assured by systematic use of libraries, such as
rVAD and pyannote, where both of them are publicly available online. The experiment
method can easily be repeated by following the steps as in 4.1 because it consists of a simple
low pass filtering process and python codes for pyannote and Matlab commands for rVAD
to execute the operations.

Next, about the ethical aspect, since March15LaRedBirthdayParty audio data contained
conversations of people at social events, and it has to be treated with extra attention to the
speakers’ privacy. Therefore, our research group had to sign the End User License Agreement
before having access to the database. It states that the data can only be used for academic
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Table 1: Performance of rVAD (unsupervised methods (pitch and flatness mode)) and pyan-
note (a supervised method) over different sample frequencies

Unsupervised Supervised
rVAD pitch rVAD flatness pyannote

Sample Frequency
(Hz) FAR (%) FRR (%) FER (%) FAR (%) FRR (%) FER (%) FAR (%) FRR (%) FER (%)

300 0.10 99.69 34.91 8.26 94.97 38.34 0.10 99.83 34.90
350 0.17 99.14 34.73 7.85 94.76 38.06 0.34 97.38 33.74
500 0.47 90.51 30.63 7.80 87.07 33.95 2.62 71.70 25.42
800 2.48 69.64 22.62 9.43 67.73 26.11 18.49 19.69 18.64
1250 3.42 42.29 13.68 10.41 40.98 17.24 29.64 14.38 24.54
2000 2.87 21.66 7.48 10.24 22.00 11.65 26.62 15.30 22.87
3150 2.38 12.18 4.65 10.41 15.12 10.05 35.60 11.45 26.38
5000 1.98 6.28 2.89 10.77 10.75 9.25 53.65 6.81 36.16
8000 0.91 2.93 1.39 10.95 9.44 9.06 58.88 6.12 39.38
12000 0.66 2.32 1.05 10.96 8.93 8.94 61.06 6.00 40.50
20000 0.51 1.81 0.81 10.96 8.47 8.83 67.22 4.95 44.30
30000 0.42 1.68 0.70 10.77 8.31 8.64 67.18 4.99 44.31
44100 0.00 0.00 0.00 11.13 8.58 8.94 68.69 4.72 45.34

Figure 1: FAR (False Alarm rates) over dif-
ferent sample frequencies

Figure 2: FRR (False Rejection rates) over
different sample frequencies

non-governmental research with non-commercial purposes. By signing, we had to agree to
several conditions including that the data set should not be distributed to the third person
and should not be used to identify persons. Additionally, the data should not be uploaded
online as there are risks of data leakage, therefore all experiments are run locally on our
personal computers. The results are only showing the performance of VADs in terms of
metrics as mentioned in 3.4 so there is no risk of data exposure. By obeying the agreement
and also being mindful of the sensitivity of the data, our research group has avoided unethical
use of resources.
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Figure 3: FER (False Error rates) over different sample frequencies

6 Discussion

6.1 Discussion of the results
As the figures in 4.2 show, there is a noticeable difference in performance between two
rVAD modes and Pyannote. For rVAD methods, they produced significantly smaller FAR
in comparison to pyannote at rates of 800Hz or higher. In addition, FAR of pyannote kept
increasing ranging from 0.10% to 68.69%, while rVAD flatness and pitch mode remained
almost steady and only a small fluctuation of around ± 2%. In other words, pyannote tends
to misclassify the non-speech segments as speech as sample frequencies increases, while it
does not change much of rVAD methods as shown in figure 1. In contrast to FAR, FRR over
different sample frequencies for rVAD and Pyannote had almost similar trends of decreasing
as the sample frequencies are lower but pyannote had a huge drop between 500 and 800Hz
whereas both rVAD modes had it between 500 and 2000Hz, which can be seen graphically
on 2.

FER is useful to compare the overall performance of VADs as it represents the total
error rate. As shown in figure 3, pyannote performed the best under 800Hz, but its FER
increased as sample frequencies increased from 800Hz or higher. On the other hand, both
rVAD modes resulted in decreasing trend as sample frequency increased. However, the pitch
mode outperformed the flatness mode, which was as expected as in what has been claimed
in 3.1.

Given the fact that the false alarm rate is 3.5% and missed detection, which is equivalent
to the false rejection rate, is 2.7%[10], it can be said that rVAD pitch mode with 8000Hz or
higher sample frequency works at a similar or higher level of supervised state-of-art speech
detection model. Also, rVAD pitch mode works at clean background noise with 6.90% of
FER[9], it can be also said that it is possible to detect speaking at 2000Hz sample rates
or higher at the almost similar level of the unsupervised speech detection model. In other
words, with the audio sampled at the lowest of 1250Hz or lower sample frequencies, the
detection of speaking is hindered using a state-of-art voice activity detector. It implies that
the ConfLab audio of 1250Hz sample rates is not enough to detect speaking.

As it has been discussed above and shown in table 1, pyannote has resulted in very poor
results compared to what has been shown in its research paper[10]. The main reason might
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be that the training set was too different from the experimental data set. The training
set was recorded at meetings so the background noises like music in our test set might have
affected the performance. Given the fact that pyannote has been trained on 16000Hz sampled
audio but the performance at that sampling frequency did not stand out, it seems that the
sampling frequency of training data does not have much effect on the final performance, but
it has to be experimentally verified to conclude that.

In summary, the unsupervised methods outperformed a supervised model. More specifi-
cally, the unsupervised VAD’s performance became lower as the sample rates decrease while
the supervised VAD did not work well at higher sample frequency as well. This is most
likely because of the mismatch between the supervised one’s training set and the test audio.
These results are the same as in the hypothesis as in 1. However, such a huge gap between
supervised and unsupervised methods was unexpected.

There are some aspects that this experiment could not cover. Firstly, the influence of
training set in the supervised method on the performance is unclear yet. Even though
pyannote resulted in a completely different trend for FRR and FER, the information from
the results and the experiment is not enough to fully explain the causes. To clarify that, an
experiment can be performed with a training set from similar data as the test set. At the
same time, the sample rates of the training set can be changed so that it is possible to find
out the effect of the sample frequency of the training set on performance. Also, it is worth
studying with other VADs with different models to be able to generalize more and find the
best approach for low sampled data.

6.2 Difference between a human and a computer
As explained in chapter 1, having computers listening to what people are saying is considered
privacy-invasive so it is important to discuss whether there is a gap between humans and
machines in terms of speech detection.

For human ears, it is possible to easily detect if someone is speaking or not until 800Hz
sample rates. This is why the ConfLab website claimed that 1250Hz sampled audio is
privacy-preserving but is enough to detect speech. It is partially possible to detect the
content of the speech at 2000Hz but it becomes impossible for lower frequencies. For all
frequencies higher than 2000Hz, it is possible to understand what people are saying to a
large extent even if they are speaking in the background. However, from this experiment,
we found that at least a 2000Hz sample rate is necessary to detect speech by a computer.
This implies that the technology of the current state-of-art VAD seems not up to the level of
being used with privacy-preserving downsampled audio, which is most likely collected under
2000Hz.

As a limitation of this discussion, this observation is not a result of proper scientific
or social experiments, so it is very subjective and it is not possible to generalize to the
entire population. Therefore, to examine this topic scientifically, human experiments with
a sufficient number of people need to be done to properly test speech detection abilities of
low sample frequency.

7 Conclusion
In this research, how the low sampled audio data hinders the detection of speech was made
clear. Two approaches of unsupervised (rVAD pitch and flatness mode) and another su-
pervised method (pyannote) were used for the experiments. As a result, the unsupervised
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methods outperformed the supervised model, where rVAD pitch mode has resulted in the
best performance out of all three. More specifically, the unsupervised VAD’s performance
became lower as the sample rates decreased while the supervised VAD did not work well at
higher sample frequency. rVAD pitch mode at sample rates of 8000Hz or higher was possible
to perform at the almost same level as a state-of-art supervised VAD that is trained in a
similar data set. Furthermore, it was able to perform as well as a modern unsupervised VAD
at 2000Hz or higher sample frequencies. At the sample rate of 1250Hz or lower, any VAD
was not able to perform at the same level as a state-of-art VAD. This implies that it is not
possible to detect speech from ConfLab audio which is sampled at 1250Hz. There is still
room for further research to verify the effects of the training set and its sample frequencies to
make the reasons clear why the supervised method ended up with such unexpected results.

Additionally, human ears detect speaking better than computers, where humans can
understand parts or all of the contents of speaking at 2000Hz or higher, which implies
that current technology is not up to the level of detecting speech with computers by using
downsampled privacy-preserving audio. However, this is just an observation from listening
to the audio so scientific social experiments to test the ability of humans of speech detection
for reduced sampled audio is worth investigating.

Appendix A Results of individual audio data

Table 2: Results (FAR, FRR, FER) of rVAD and pyannote for all
individual audio files over different sample frequencies

Unsupervised Supervised
Audio File rVAD pitch mode rVAD flatness mode Pyannote

Sample
rates
(Hz)

File
index

FAR
(Hz)

FRR
(Hz)

FER
(Hz)

FAR
(Hz)

FRR
(Hz)

FER
(Hz)

FAR
(Hz)

FRR
(Hz)

FER
(Hz)

300 1 0.01 99.99 46.76 11.17 94.26 50.03 0.00 99.99 46.76
300 2 0.05 99.87 51.15 10.57 93.80 53.18 0.10 99.29 50.88
300 3 0.02 99.95 45.00 10.04 94.15 47.89 0.14 99.99 45.07
300 4 0.01 99.98 52.71 7.82 95.45 54.02 0.20 99.30 52.45
300 5 0.11 99.57 31.78 9.34 96.48 37.08 0.07 99.53 31.74
300 6 0.02 99.94 37.41 10.64 94.92 42.17 0.00 100.00 37.42
300 7 0.00 99.99 33.48 4.05 92.88 33.79 0.00 100.00 33.48
300 8 0.37 99.35 25.91 7.75 95.36 30.36 0.18 99.89 25.91
300 9 0.03 99.97 16.75 5.25 95.71 20.39 0.00 100.00 16.73
300 10 0.08 99.87 36.27 10.04 96.17 41.27 0.00 100.00 36.27
300 11 0.16 99.12 30.29 5.84 96.44 33.42 0.38 100.00 30.71
300 12 0.29 98.65 11.38 6.59 94.05 16.45 0.09 99.98 11.36
350 1 0.01 99.88 46.71 10.80 94.69 50.03 0.19 97.65 45.76
350 2 0.18 97.07 49.78 10.44 92.82 52.61 1.12 84.24 43.67
350 3 0.10 99.74 44.94 9.74 94.53 47.90 0.02 98.95 44.54
350 4 0.02 99.81 52.63 8.26 95.26 54.13 2.68 88.21 47.77
350 5 0.21 98.58 31.53 6.73 97.00 35.47 0.00 100.00 31.84
350 6 0.08 99.46 37.26 10.38 95.03 42.06 0.00 100.00 37.42
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350 7 0.04 99.86 33.46 4.88 91.35 33.83 0.00 100.00 33.48
350 8 0.63 98.58 25.91 5.32 96.31 28.81 0.00 100.00 25.81
350 9 0.16 99.77 16.83 8.20 93.10 22.41 0.00 100.00 16.73
350 10 0.20 99.02 36.04 7.66 96.93 40.04 0.00 100.00 36.27
350 11 0.17 99.12 30.30 5.31 96.79 33.16 0.09 99.47 30.34
350 12 0.20 98.81 11.32 6.49 93.27 16.28 0.00 100.00 11.28
500 1 0.49 90.72 42.68 8.70 92.96 48.10 1.75 72.47 34.82
500 2 1.91 22.45 12.42 11.06 6.76 8.86 7.59 41.52 24.96
500 3 0.38 94.81 42.88 9.85 94.54 47.97 2.75 65.40 30.94
500 4 0.31 91.25 48.25 11.52 85.40 50.47 2.36 69.08 37.54
500 5 0.20 98.42 31.47 7.28 96.99 35.84 2.87 69.49 24.08
500 6 0.24 98.27 36.92 7.30 97.03 40.88 1.13 71.59 27.49
500 7 0.36 98.43 33.19 6.61 92.81 35.47 1.05 82.15 28.20
500 8 0.46 98.36 25.72 5.39 96.38 28.87 4.09 80.47 23.80
500 9 0.50 98.61 16.91 7.42 94.02 21.91 1.77 91.15 16.73
500 10 0.23 97.75 35.59 5.91 96.74 38.85 2.62 73.41 28.29
500 11 0.30 98.08 30.07 5.53 97.04 33.39 2.60 48.63 16.62
500 12 0.32 98.95 11.44 7.01 94.17 16.85 0.92 95.04 11.53
800 1 4.51 24.03 13.64 13.73 18.13 15.78 14.27 17.75 15.90
800 2 4.74 8.73 6.78 13.37 2.32 7.71 30.36 7.12 18.46
800 3 3.61 29.13 15.10 12.04 23.91 17.38 17.32 15.85 16.66
800 4 3.98 41.60 23.81 14.59 35.70 25.72 15.33 31.48 23.84
800 5 1.68 96.57 31.89 7.89 96.98 36.26 15.94 15.10 15.68
800 6 1.87 91.89 35.55 8.81 94.26 40.78 16.12 9.88 13.78
800 7 1.60 91.94 31.85 7.85 89.99 35.35 7.47 19.45 11.48
800 8 1.79 95.87 26.07 6.19 95.89 29.34 36.98 14.65 31.22
800 9 1.65 96.40 17.50 7.96 94.70 22.47 23.40 40.90 26.33
800 10 1.45 94.76 35.29 7.35 94.81 39.07 10.64 13.58 11.71
800 11 1.46 68.31 21.81 6.45 73.74 26.93 3.67 18.13 8.07
800 12 1.46 96.41 12.17 6.88 92.37 16.52 30.34 32.39 30.57
1250 1 6.92 11.91 9.25 17.16 7.20 12.50 23.17 15.75 19.70
1250 2 4.21 5.94 5.09 11.78 1.62 6.58 38.77 5.86 21.92
1250 3 4.91 14.68 9.31 13.12 8.58 11.08 31.88 11.73 22.81
1250 4 7.48 18.22 13.14 19.33 12.95 15.96 21.00 28.70 25.06
1250 5 1.91 60.57 20.59 8.57 66.64 27.06 28.63 10.27 22.78
1250 6 2.08 22.53 9.73 7.66 17.40 11.30 36.27 6.70 25.21
1250 7 2.12 54.62 19.70 9.32 55.14 24.66 14.40 14.38 14.39
1250 8 2.22 75.04 21.01 6.85 81.99 26.24 46.66 10.82 37.41
1250 9 2.58 92.85 17.69 8.23 92.76 22.38 39.61 20.14 36.35
1250 10 2.57 51.97 20.48 8.12 51.71 23.93 25.51 8.03 19.17
1250 11 2.04 19.76 7.44 7.94 14.40 9.91 10.10 15.36 11.70
1250 12 2.05 79.41 10.78 6.86 81.40 15.27 39.69 24.79 38.01
2000 1 3.92 7.12 5.42 15.22 4.65 10.28 19.22 15.73 17.59
2000 2 2.49 2.85 2.67 11.13 1.36 6.13 39.72 5.94 22.43
2000 3 3.14 8.23 5.43 12.47 4.77 9.01 26.19 13.57 20.51
2000 4 6.51 8.78 7.71 19.32 5.54 12.05 22.63 28.61 25.78
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2000 5 2.10 22.69 8.65 9.39 25.37 14.48 26.23 10.48 21.22
2000 6 2.10 8.41 4.46 6.35 3.62 5.33 29.14 8.01 21.23
2000 7 2.28 18.98 7.87 9.91 13.48 11.10 10.38 17.43 12.74
2000 8 2.66 39.50 12.17 7.78 48.94 18.40 42.59 11.99 34.69
2000 9 1.95 64.81 12.47 7.74 74.11 18.84 36.88 23.32 34.61
2000 10 2.85 25.58 11.10 8.88 25.46 14.89 19.62 9.41 15.92
2000 11 2.51 12.35 5.51 8.07 7.07 7.76 7.71 16.52 10.39
2000 12 1.91 40.61 6.28 6.66 49.61 11.51 39.14 22.61 37.28
3150 1 2.88 5.52 4.11 13.26 4.51 9.17 38.03 8.59 24.26
3150 2 2.75 1.58 2.15 11.26 1.27 6.14 50.53 4.53 26.98
3150 3 2.39 5.07 3.60 12.52 4.10 8.73 46.37 8.12 29.15
3150 4 4.17 4.73 4.47 20.23 3.39 11.35 41.80 13.35 26.80
3150 5 2.41 10.58 5.02 10.49 14.05 11.62 33.70 8.44 25.65
3150 6 1.20 4.65 2.49 6.44 3.00 5.15 44.58 5.54 29.97
3150 7 2.10 7.98 4.07 10.44 8.10 9.66 14.32 15.08 14.57
3150 8 2.40 23.91 7.95 7.90 33.38 14.48 45.19 10.00 36.10
3150 9 1.85 40.41 8.30 7.78 53.30 15.40 41.93 18.23 37.97
3150 10 2.53 11.74 5.87 9.41 13.44 10.87 24.40 8.58 18.67
3150 11 1.73 6.45 3.17 7.95 6.20 7.42 8.77 14.31 10.46
3150 12 2.18 23.49 4.58 7.25 36.70 10.58 37.62 22.69 35.94
5000 1 1.47 2.96 2.17 12.77 4.25 8.79 64.89 3.71 36.28
5000 2 2.12 1.07 1.58 11.46 1.20 6.20 59.59 3.13 30.69
5000 3 2.01 2.50 2.23 13.58 3.55 9.06 76.15 3.51 43.46
5000 4 3.20 2.66 2.91 20.71 2.51 11.12 61.64 4.97 31.77
5000 5 2.36 5.82 3.46 11.41 11.00 11.28 55.28 4.29 39.05
5000 6 1.06 2.15 1.47 6.78 2.41 5.15 59.50 3.88 38.69
5000 7 2.02 4.57 2.88 10.75 6.38 9.29 33.28 11.12 25.86
5000 8 1.71 9.53 3.73 8.43 21.66 11.85 60.82 5.51 46.54
5000 9 1.52 18.80 4.41 7.73 34.60 12.22 55.32 9.21 47.61
5000 10 2.76 7.28 4.40 9.65 6.22 8.40 49.46 4.52 33.16
5000 11 1.97 3.90 2.56 8.28 5.51 7.44 22.92 9.77 18.91
5000 12 1.53 14.10 2.94 7.70 29.78 10.19 44.89 18.09 41.87
8000 1 0.61 1.93 1.23 13.48 3.85 8.98 67.39 4.00 37.75
8000 2 0.97 0.65 0.81 11.53 1.17 6.23 63.99 3.18 32.86
8000 3 0.63 1.13 0.85 13.95 3.39 9.20 81.49 2.80 46.07
8000 4 1.26 1.55 1.41 20.65 2.15 10.90 64.28 4.41 32.72
8000 5 0.95 2.87 1.56 11.52 9.97 11.02 61.76 3.56 43.23
8000 6 0.57 1.24 0.82 6.82 2.30 5.13 61.87 4.33 40.34
8000 7 1.18 2.87 1.75 10.88 5.35 9.03 37.23 10.01 28.12
8000 8 1.12 5.23 2.18 8.74 18.15 11.17 67.00 4.55 50.88
8000 9 0.89 6.90 1.89 8.04 26.36 11.11 58.62 8.83 50.29
8000 10 0.83 2.06 1.28 9.99 5.89 8.50 65.15 2.96 42.60
8000 11 0.87 1.70 1.12 8.19 5.26 7.29 29.79 8.25 23.23
8000 12 1.06 6.97 1.73 7.66 29.42 10.11 48.03 16.53 44.47
12000 1 0.39 0.80 0.58 13.74 3.61 9.01 72.77 2.62 39.97
12000 2 0.20 0.37 0.29 11.55 1.18 6.24 68.80 2.65 34.94
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12000 3 0.39 0.66 0.51 14.07 3.24 9.20 86.79 1.56 48.43
12000 4 0.71 1.03 0.88 20.82 1.97 10.88 69.86 3.30 34.77
12000 5 0.92 3.73 1.82 11.65 9.89 11.09 62.12 3.75 43.54
12000 6 0.37 1.01 0.61 6.80 2.24 5.09 63.61 3.71 41.20
12000 7 1.13 2.38 1.55 10.70 5.12 8.83 35.84 11.14 27.57
12000 8 0.73 4.15 1.61 8.57 17.45 10.86 66.21 5.07 50.43
12000 9 0.71 4.36 1.32 7.90 24.21 10.63 59.88 9.55 51.46
12000 10 0.49 1.24 0.76 10.21 5.56 8.52 65.32 3.35 42.84
12000 11 0.77 1.43 0.97 8.13 5.30 7.27 32.18 9.16 25.17
12000 12 1.08 6.69 1.71 7.35 27.39 9.61 49.40 16.08 45.64
20000 1 0.21 0.37 0.28 13.88 3.37 8.96 77.63 2.51 42.50
20000 2 0.13 0.28 0.21 11.51 1.20 6.23 73.85 2.09 37.12
20000 3 0.16 0.27 0.21 14.10 3.21 9.20 89.70 1.54 50.02
20000 4 0.47 0.45 0.46 21.05 1.88 10.94 75.42 2.65 37.06
20000 5 1.15 3.37 1.85 11.59 9.40 10.90 69.41 2.72 48.18
20000 6 0.27 0.73 0.45 6.87 2.23 5.14 68.26 3.31 43.95
20000 7 1.00 2.06 1.35 10.73 5.10 8.84 42.34 8.97 31.16
20000 8 0.49 3.18 1.19 8.76 16.23 10.69 71.31 4.64 54.11
20000 9 0.61 3.59 1.11 7.72 23.95 10.44 64.73 7.40 55.14
20000 10 0.27 0.93 0.51 10.34 5.19 8.47 76.62 2.80 49.85
20000 11 0.61 1.19 0.79 7.99 5.20 7.14 40.47 8.24 30.66
20000 12 0.81 5.36 1.32 6.99 24.74 8.99 56.92 12.48 51.91
30000 1 0.14 0.23 0.18 13.86 3.29 8.92 77.96 2.38 42.62
30000 2 0.07 0.24 0.16 11.48 1.20 6.22 73.26 2.28 36.92
30000 3 0.12 0.21 0.16 14.08 3.24 9.20 89.54 1.59 49.96
30000 4 0.24 0.33 0.29 20.98 1.88 10.91 75.36 2.69 37.05
30000 5 0.99 3.24 1.71 11.49 8.98 10.69 69.50 2.66 48.22
30000 6 0.29 0.59 0.40 6.81 2.23 5.10 68.08 3.31 43.85
30000 7 0.66 1.75 1.02 10.49 5.11 8.69 42.00 9.16 31.01
30000 8 0.42 3.03 1.09 8.48 15.87 10.39 71.06 4.64 53.92
30000 9 0.52 3.39 1.00 7.51 23.04 10.11 65.26 7.43 55.59
30000 10 0.19 0.89 0.45 10.16 5.17 8.35 76.92 2.79 50.04
30000 11 0.57 1.12 0.73 7.39 4.84 6.61 40.02 8.11 30.31
30000 12 0.78 5.11 1.27 6.46 24.86 8.53 57.22 12.79 52.21
44100 1 0.00 0.00 0.00 13.99 3.23 8.96 77.74 2.45 42.53
44100 2 0.00 0.00 0.00 11.51 1.19 6.23 74.08 2.20 37.28
44100 3 0.00 0.00 0.00 14.16 3.33 9.28 90.15 1.42 50.22
44100 4 0.00 0.00 0.00 21.34 1.87 11.08 75.54 2.63 37.10
44100 5 0.00 0.00 0.00 11.68 9.52 10.99 71.30 2.71 49.46
44100 6 0.00 0.00 0.00 7.12 2.14 5.25 69.84 3.18 44.90
44100 7 0.00 0.00 0.00 10.78 5.22 8.92 43.27 8.73 31.71
44100 8 0.00 0.00 0.00 8.81 14.29 10.22 72.71 4.49 55.10
44100 9 0.00 0.00 0.00 7.85 23.49 10.47 66.48 6.87 56.51
44100 10 0.00 0.00 0.00 10.51 5.58 8.73 77.78 2.72 50.56
44100 11 0.00 0.00 0.00 8.39 5.39 7.47 44.19 7.65 33.07
44100 12 0.00 0.00 0.00 7.42 27.76 9.71 61.21 11.55 55.61
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