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Abstract
Little to no research has been done on the
multi-agent path finding with waypoints problem
(MAPFW) even though it has many important real
world applications. In this paper we extend an ex-
isting algorithm for the multi-agent path finding
problem (MAPF) called M* [1]. We do so by or-
dering the waypoints using a Travelling salesman
problem solver before creating a policy for each
waypoint and the target. Lastly we extend the un-
derlying A* planner to keep track of the visited
waypoints. This results in the new WM* algorithm
which will be shown to be performing better than
other recently created algorithms with respect to
run-time while being optimal in the case of the or-
dered waypoint variant and near optimal in the un-
ordered variant.

1 Introduction
The multi-agent path finding problem (MAPF) problem is the
problem of finding a path of minimal cost for each agent from
their original location to their target location without having
any collisions with other agents [2]. To solve this problem ef-
ficiently is crucial with real life applications being robot nav-
igation in warehouses or the scheduling of public transport[1]
[3]. At the moment there are already many algorithms avail-
able that solve the MAPF problem such as conflict-based
search [4], branch-and-cut-and-price [5] and M* [1] [6].

Many of these algorithms are optimal but run in exponen-
tial time since MAPF is an NP-hard problem [7]. There are
some more efficient algorithms available at the cost of op-
timality. Selecting an algorithm to solve a specific MAPF
problem is often a trade off between the time to find a solution
and the quality of the solution. Even though we are able to
solve the general MAPF problem, not much research has been
done on the MAPF problem with extra constraints such as
waypoints. An exception is the multi-label A* algorithm [8]
which solves the MAPF problem with one waypoint, which
is known as the Multi-Agent Pickup-and-Delivery (MAPD)
problem.

In this paper we extend the M* algorithm to solve the
multi-agent path finding with waypoints problem (MAPFW).
This extended algorithm will be called WM*. To extend M*

we generate a policy for each waypoint and the target of ev-
ery agent and extend the underlying A* planner to keep track
of the visited waypoints. We then use sub-dimensional ex-
pansion [1] to find the solution with the lowest cost and with-
out collisions. To evaluate how well our proposed algorithm
solves the MAPFW problem we compare the results with the
results of recently developed algorithms [9] [10] [11] [12] on
a set of benchmarks.

WM* is shown to outperform these recently developed al-
gorithms on all benchmarks with respect to run time with the
cost being negligible larger than the optimal cost. WM* can
be further improved by making it recursively call itself or by
implementing an Operator Decomposition.

First we give a formal description of the problem, followed
by an explanation of the M* algorithm and my contribution.
Then we describe the experimental setup and show the results
of the new algorithm in section 4 where we also compare it
to recently developed algorithms. Section 5 reflects on the
ethical aspects of our research and discuss the reproducibility
of our methods. Lastly we summarize the research question
and answer it, while also giving some further questions and
ideas for improvements.

2 Background information
2.1 The MAPFW problem
In this section we define the MAPF problem and then de-
scribe the extension to the MAPFW problem. The MAPF
problem is a part of Graph Theory and in this paper it is de-
fined as an undirected graph G = (V,E), where V is a set
of vertices and E a set of undirected edges. Every vertex
also has a an edge to itself. Furthermore, the set A contains
agents and each agent a ∈ A has a start vertex and target
vertex sa, ta ∈ V . A path pa with cost c ∈ Z is a list of
locations (v0, v1, ..., vc−1) where v0 = sa and vc−1 = ta and
(vj , vj+1) ∈ E for all j ∈ 0, 1, ..., i− 2. The cost of a path
p is the sum of the traversed edges e 6= (ta, ta). So a solu-
tion for the MAPF problem consists of a path for each agent
where at any time step there are no collisions. A collision can
be either 2 agents who are at the same vertex at the same time
or when during the same time-step one agent traverses from
a ∈ V to b ∈ V while another agent traverses from a to b.
An optimal solution minimizes the total cost of all the paths
combined.
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For the MAPFW problem every agent is also assigned a
list of waypoints ∀w ∈ W ⊂ V which it has to visit. The
waypoints can be either ordered or unordered. If they are
ordered a path p is valid if it visits all the waypoints in the
order, but if they are unordered a path p is valid if it visits all
the waypoints.

2.2 The M* algorithm
Before we describe how we extended the M* algorithm [1]
[6] we explain how the M* algorithm works and the aspects
that we build on. The most important things to know and
where we build upon are the policies and the configurations.
The first thing the M* algorithm does is generating an op-
timal policy for every agent. That policy describes how to
reach the target from any node. The configurations are a data-
structure which stores the current location of every agent.
Moreover, a configuration has a cost, a backpropagation set,
a back pointer and a collision set. The cost describes the cost
to reach this configuration from the starting configurations.
The backpropagation set of configuration x contains config-
urations for which the planner has considered x a possible
successor. So when a configuration gets expanded it is added
to the backpropagation set of its neighbours. The back pointer
points to the predecessor configuration. The collision set of
configuration x is the sets of robots involved in a collision at
x or along a path passing through x already explored by the
planner.

M* relies on subdimensional expansion to find the best so-
lution. In the best case every agent is able to follow their
policy without colliding with other agents and the optimal
path is easily found. Otherwise it encounters a collision at
some configuration x. Then that collision is added to the col-
lision set of each configuration in the backpropagation set of
x. This is done recursively until that collision is already in
the collision set of that configuration. Then for configura-
tions with a non-empty collision set, the agents not in that set
follow their optimal policy and those not in the set consider
all neighbouring nodes. Since an agent can wait on a vertex
that is also considered as a neighbour. In the pseudocode this
is done by the get neighbours method. From this it is clear
to see that if all the agents are in the collision set the amount
of configurations expanded is 5 to the power of the number of
agents.

3 Your contribution
3.1 One waypoint
We first extend the M* algorithm to solve the MAPF problem
with one waypoint per agent before solving the ordered and
unordered MAPFW problem. To do so we compute an indi-
vidual optimal policy for every agent’s waypoint and target.
This means that from any vertex the shortest path and distance
to the way point and target are known. We will then extend
the configuration to also include a list called target indices
containing booleans that indicate whether agent with index
i has already visited the waypoint. This allows us to differ-
entiate between configurations with the same coordinates but
where one configuration has already visited one or more way-
points. The target indices also allow us to calculate a minimal

heuristic since for every agent you can sum the distance of the
agent’s vertex to the waypoint and the distance from the way-
point to the target vertex if the waypoint has not been visited.
In case the waypoint has been visited we just use the distance
from the agent’s vertex to the target vertex. Furthermore we
add an extra check before returning the final path, namely
whether every agent has visited its waypoint. If that is not the
case the algorithm keeps running until we encounter a config-
uration which is at the target and has visited all the waypoints
or there are no more configurations to expand.

The main body of the algorithm is still very similar to M*
since in the best case every agent just follows its optimal pol-
icy, first to the waypoint and then to the target vertex. In
cases where collisions occur we rely on sub dimensional ex-
pansion described in Section 2.2. This also means that the
given solution is optimal since the policies are optimal and
M* is optimal with optimal policies [1] [6].

3.2 Multiple ordered waypoints
Secondly we extend the algorithm to solve the ordered variant
of the MAPFW problem. In this variant every agents needs
to visit the waypoints in the order that is given to them. To do
this we start by computing an individual optimal policy for
every agent’s waypoints and target. Next we convert target
indices to a list of integers and we create a list of vertices
called targets. This is basically the list of waypoints with
the target appended to it. The current target is read from the
target list using the target indices. This allows us once again
to easily differentiate between configurations and calculate
a minimal heuristic. The main body of the algorithm is once
again the same and this is also still an optimal algorithm since
the policies are optimal and one can not change the order of
the waypoints.

3.3 Multiple unordered waypoints
Lastly we look at the unordered variant of the MAPFW prob-
lem. In this variant we are allowed to change the order of
the waypoints. The general idea here is the same as for the
ordered waypoint variant except that the order of the way
points can be changed. So we turn it into an ordered vari-
ant after changing the order of the waypoints. To change the
order of the waypoints an optimal Travelling Salesman Prob-
lem (TSP) solver will be used. The TSP problem finds a tour
given a graph where a tour is the shortest route which visits
every node and returns at the starting node.

This is extremely useful since we can create a graph per
agent where every waypoint, the starting vertex and target
vertex are the nodes. We can then calculate the distance be-
tween every node and turn those into weighted edges. To
force the tour to visit the start and end node in order an extra
node is added between the start and end node with the edges
having a weight of 0. Since the tour must visit every node it
must thus visit this extra node as well. Which then forces the
start and end node to be following each other although maybe
in the wrong order. In which case you must reverse the tour.

The generated tours are optimal and thus it is an optimal
order for the waypoints. Nonetheless this will not result in an
optimal algorithm for the unordered variant. This is because
we do not generate an optimal policy. Only an optimal order
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Algorithm 1 WM*

Generate an optimal policy for every waypoint
Sort the waypoints as described in Section 3.2
start.target indices← [0] ∗ n agents
start.cost← 0
open← vs
while open.empty = False do

current← open.pop() . Get the cheapest
configuration

if current = target & all the waypoints have been
visited then

[We found the solution]
return current.back ptr + current

for nbr ∈ get neighbours(current) do
nbr.target indices← current.target indices
Increment the target index for any agent that is on

their target waypoint in nbr
[φ returns the index of the agents in collision]
nbr.collisions.update(φ(nbr, current))
nbr.back set.append(current)
backpropagate(current, nbr.collisions, open)
f ← the cost of the move from current to nbr
if φ(nbr, current) = ∅ & current.cost + f <

nbr.cost then
nbr.cost← current.cost+ f
nbr.backptr ← current.back ptr + current
open.push(nbr)

end

for the starting configuration has been generated. To generate
an optimal policy would be unfeasible since in the worst case
it would require running an optimal TSP-solver from every
node for every subset of waypoints. We need to do this be-
cause of collisions an agent can wander off their optimal path
in which case a different order of waypoints might result in a
solution with less cost. The reason why this is unfeasible is
because TSP is an NP-hard problem. But using a TSP solver
at the start will still give a very close approximation to the
optimal solution.

We will also introduce the inflated WM* algorithm which
is extremely similar to the inflated M* algorithm [1] [6] since
we multiply the heuristic with some ε > 1. This reduces the
time needed to find a solution and the cost is ε∗ cost of WM*.
The inflated heuristic has two advantages, the first being that
it gives more priority to configurations closer to the target
solution. Because the heuristic is smaller there it gets less
influenced by the inflation. Secondly, these configurations
will generally have less collisions and thus inflated WM* will
generally run in a lower dimensionality.

4 Experimental Setup and Results
To gather results for the WM* algorithm [13] it was run on
benchmarks created on mapfw.nl. This website was made by
Stef Siekman and Noah Jadoenathmisier and contains both
single situation benchmarks (Figure 1) and benchmarks that
are randomly generated and increase in difficulty. First we
show the cost comparison between the algorithms to show

Figure 1: An example of a benchmark on mapfw.nl.

that although WM* is not optimal it is extremely close to
optimal and even in the case of the inflated WM* it is still
within that 10% extra cost. It is an extra 10% since we use
an ε of 1.1. Then we also show the results on the progres-
sive benchmarks of a random grid of 16x16, 32x32 or 64x64
where 20% of the locations is a wall with 5,10 or 13 way-
points with an increasing amount of agents. The algorithm
has 20 seconds to find a solution which is always available.
Such a small timeout still gave useful results but also allowed
us to test multiple versions. Lastly there are benchmark cre-
ated by Timon Bestebreur to compare the recently developed
algorithms on certain specific scenario’s. The results of those
will be discussed in [14].

The results of the individual benchmarks seen in Figure
4 and Figure 5 have been generated using an AMD Ryzen 5
3600 processor with 16GB RAM available and a WM* imple-
mentation in C++ [13]. The results of the progressive bench-
marks seen in Figure 2 and Figure 3 have been generated on
a 14 core Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz pro-
cessor with 8GB RAM available provided by the TU Delft us-
ing the python implementation of WM*[13]. This makes the
progressive benchmarks more easily comparable since every-
one has run those on the TU Delft server using python except
BCP which used C++.

As you can see in Figure 4 and Table 1 WM* is not al-
ways the optimal solution as we already showed but on aver-
age it is always really close and even inflated WM* is always
within 10% from the optimal cost. From Table 2 it is also
clear to see that in the worst case scenario the extra cost is
under 2,5% for WM* and under 5% for inflated WM*. As
expected WM* performs worse on maps with many choke
points such as corridors. This is because agents are unable
to change their order of waypoints. Thus if they all need to
go through the choke-point at the same time most agents will
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Figure 2: The results of the WM* algorithm on the progressive
benchmarks.

Figure 3: The results of the inflated WM* algorithm on the progres-
sive benchmarks.

wait near the choke-point while it is probably more efficient
to visit another waypoint first.

Furthermore, inflated WM* solves more individual bench-
marks as seen in Figure 4 because it is more target oriented.
This is also clear from Figure 2 and Figure 3 which shows
the results of the WM* algorithm in comparison to inflated
WM* on the progressive benchmarks. It is obvious that in-
flated WM* is able to solve instances on the same board with
more agents, with the number of maximum agents is gener-
ally twice as high for inflated WM*. One interesting thing to
note is that at the 64x64 map with 13 waypoints it drops down
from over 40 successful runs to 0 while only adding 2 extra
agents. We believe that this is caused by the TSP-solver tak-
ing up most of the 20 seconds. Then WM* has little time to
find the paths in a relatively large map which therefore is less
of a hinder in the 16x16 and 32x32 progressive benchmarks.

From Figure 5 you can also see that the run-times of WM*
and inflated WM* are generally rather low compared to the
other algorithms. The exception is the extension of the heuris-

Progressive benchmark WM* inflated WM*

32x32 5WP (#70) 0.02 0.36

32x32 10WP (#71) 0.02 0.28

32x32 13WP (#72) 0.04 0.21

Average grade (#79) 0.02 0.27

Chokepoints (#80) 0.30 0.50

Corridors (#81) 0.10 0.42

Waypoint overlap (#82) 0.05 0.29

Table 1: The average percentage increase of the cost of WM* and
inflated WM* in comparison to the optimal cost for different kind
of progressive benchmarks. The number behind them refer to the
benchmark number on mapfw.nl.

Progressive benchmark WM* inflated WM*

32x32 5WP (#70) 0.90 2.47

32x32 10WP (#71) 0.80 2.04

32x32 13WP (#72) 0.75 1.20

Average grade (#79) 0.67 1.92

Chokepoints (#80) 2.26 3.76

Corridors (#81) 2.16 4.56

Waypoint overlap (#82) 0.97 2.14

Table 2: The maximum percentage increase of the cost of WM* and
inflated WM* in comparison to the optimal cost for different kind
of progressive benchmarks. The number behind them refer to the
benchmark number on mapfw.nl.

tic algorithm Multi-Label A* [9], but this does show that in-
flated WM* is generally much faster at the expense of having
a solution that in the worst case has 10% extra cost compared
to the optimal solution. Yet in practive this is generally much
lower. There are some benchmarks where the run-time is
much worse, these are often problems with many agents that
will have collisions. This is the worst case since the algorithm
then becomes A* and explores n5 configurations where n is
the number of agents. This could be improved on as will be
discussed in section 6.

The generated results of WM* seem to be better than those
of other algorithms that solve the MAPFW problem. As you
can see in Figure 4 and Figure 5 and it is always close to the
minimal cost and it is also able to solve more benchmarks
then the optimal solvers. This is especially true for the in-
flated heuristic which is still within 10% of the optimal cost
and on average below 1% as seen in Table 1. Additionally
it is able to find solutions much faster because its a heuris-
tic approach. This is further reinforced by the progressive
benchmarks where inflated WM* is able to solve problems
with double the agents of WM* and with more agents than
the other recently developed algorithms.
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Figure 4: Heatmap comparing the costs for every algorithm’s cost for the benchmarks on mapfw.nl. The algorithms are on the y-axis and the
number of the benchmark on the x-axis. The colors are on a logarithmic scale so 1 is the minimum value since it can not show 0. Benchmarks
where the cost was the same for every algorithm have been left out.

Figure 5: Heatmap comparing the times for every algorithm’s time for the benchmarks on mapfw.nl. The algorithms are on the y-axis and the
number of the benchmark on the x-axis. The colors are on a logarithmic scale so 1 is the minimum value since it can not show 0.

5 Responsible Research
This research has little to do with ethics but it is really im-
portant to be able to reproduce the results of the experiments.
Therefore it is great that mapfw.nl hosts all the benchmarks
and tests that are run by all the versions of WM*. Therefore it
would be easy to confirm the results we have presented in this
paper by running the benchmarks with the source code [13].
Once again we want to remark that the individual benchmarks
results have been generated by the C++ implementation on
my own PC while those of the progressive benchmarks are
generated by the python implementation on a TU Delft server.
The impact of the server is not really severe since when I ran
the progressive benchmarks with the python implementation
on my own PC I got similar results to the ones presented in
this paper. The impact of the programming language is defi-
nitely notable though since C++ is on average twice as fast as
python for the individual benchmarks. Furthermore it should
be clear on how to write your own implementation of WM*
given the pseudocode and explanation presented. This in turn
should then give similar results on the benchmarks to the one
we have given in this paper.

6 Conclusions and Future Work
In this paper we presented a way to extend the M* algorithm
to solve the multi-agent path finding with waypoints prob-
lem (MAPFW). We consider both the ordered and unordered
version of the problem. For the unordered problem we or-
dered the waypoints based on an optimal TSP solver. Then
we used the order of waypoints to generate a policy per way-
point and for the target. Lastly we extended the underlying
A* planner to be able to keep track of the waypoints that
have been visited and still need to be visited. This resulted
in an algorithm called WM* that is able to solve the ordered
MAPFW optimally and the unordered variant close to opti-
mality. The performance of the algorithm depends heavily
on how many agents will collide when following their opti-

mal policy since in the worst case every agent collides and
it turns into a regular A* algorithm which is exponential in
the number of agents. Therefore we also introduced the in-
flated heuristic algorithm which solves problems way more
efficiently with only a maximum of 10% more cost compared
to the base algorithm. Given a square grid where 20% of the
locations is a wall and a fixed number of waypoints per agent
inflated WM* is able to solve problems with more agents
than other algorithms that solve MAPFW and twice as many
agents in as the base algorithm.

In the future we want to implement more variants of the M*
algorithm into the extended version. The major drawback of
the current algorithm is the amount of neighbours added in
case of many collisions which is exponential in the number
of agents that are in collision. This also leads to an extremely
large open set with many configurations having the same cost
+ heuristic. To solve the prior the original paper uses an Op-
erator Decomposition (OD) to create ODM*, and to solve
the latter Enhanced Partial Expansion A* is used to create
EPEM*. For the Operator Decomposition it is also wise to
look at Stef Siekman implementation for A* extended to the
MAPFW [11] since he implemented an Operator Decompo-
sition. Both ODM* and EPEM* can also be combined with
inflated heuristics to get that same speed up at the cost of a
maximum 10% of the original cost. They can also be com-
bined with recursive M* (rM*) where instead of a collision
set every configuration has a list of disjoint sets and uses re-
cursion to find the optimal path for the agents in the disjoint
sets.
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