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CONVOLUTIONAL FILTERING IN SIMPLICIAL COMPLEXES

Elvin Isufi and Maosheng Yang

ABSTRACT

This paper proposes convolutional filtering for data whose structure
can be modeled by a simplicial complex (SC). SCs are mathemati-
cal tools that not only capture pairwise relationships as graphs but
account also for higher-order network structures. These filters are
built by following the shift-and-sum principle of the convolution op-
eration and rely on the Hodge-Laplacians to shift the signal within
the simplex. But since in SCs we have also inter-simplex coupling,
we use the incidence matrices to transfer the signal in adjacent sim-
plices and build a filter bank to jointly filter signals from different
levels. We prove some interesting properties for the proposed filter
bank, including permutation and orientation equivariance, a compu-
tational complexity that is linear in the SC dimension, and a spectral
interpretation using the simplicial Fourier transform. We illustrate
the proposed approach with numerical experiments.

Index Terms— Hodge Laplacian, simplicial filter, topological
signal processing.

1. INTRODUCTION

Processing data with an irregular structure has been the center of
the research attention in the last decade, generalizing signal process-
ing [1] and neural network techniques [2] to graphs. One common
factor behind the success of these two directions is the concept of
graph filtering, that extends the convolution operation from the Eu-
clidean domain to the graph domain [3–5]. However, graph filters
exploit only pair-wise relationships in the network and consider the
data as signals over its vertices. But data often live on higher-order
network structures such as edges and triangles [6–8]. Typical exam-
ples include water flows in water networks or traffic flows in trans-
portation networks.

To deal with this type of data and account for their structure,
the more recent research attention has shifted towards data process-
ing with a simplicial structure [8–11], i.e., data living over edges,
triangles, and so on. The work in [12] considers the problem of
flow denoising via simplicial regularization, while [13] focused on
flow interpolation. Authors in [7] introduced the concept of sim-
plicial Fourier transform (SFT), which shows that the approaches
in [12, 13] behave as low-pass filtering. To further increase the filter
flexibility, the work in [14] used the shift-and-sum principle to de-
velop convolutional simplicial filtering via polynomials in the Hodge
Laplacian [6]. In parallel, [15] proposed the simplicial convolutional
networks by extending the popular graph neural networks (GNNs) to
the simplex. The aggregation function in [15] respects the convolu-
tion principle, and it is a particular case of the filter in [14]. Other
simplicial neural networks include [16–18], which, although built
on the principle of message passing [19] can be seen as an order one
simplicial convolution nested into point-wise nonlinearities.

Faculty of Electrical Engineering, Mathematics and Computer Science,
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Despite the emerging success, simplicial convolutional filters
operate only within a simplicial level and process only one type
of simplicial signal. Consequently, they are agnostic to the full SC
structure since simplicial signals have not only intra-simplex prox-
imities but also inter-simplex proximities [6]. E.g., a simplicial con-
volutional filter operating over the edge space processes only edge
signals but ignores the effect of the adjacent vertex and triangle sig-
nals. For instance, in a water network we may have missing edge
flow measurements but not nodal pressures; hence, we could use the
latter and the SC coupling to infer the edge signals. To account for
such a coupling in a principled way, we extend [14] to a filter bank
to process jointly all SC signals.

Our specific contribution is threefold: i) we propose a filter bank
composed of simplicial convolutional filters to process jointly sig-
nals living on different simplicial levels; ii) we show the filter bank
operates by using local information and it is equivariant to permuta-
tions and orientations in the simplex; iii) we characterize the spectral
response of the filter bank and show how the different simplicial sig-
nals are filtered only in different simplicial frequencies.

2. SIMPLICIAL SIGNAL PROCESSING

In this section, we first lay down some basic concepts about simpli-
cial complexes. Then, we discuss the simplicial signals.

2.1. Geometry of Simplicial Complexes
Given a set of vertices V = {1, . . . , N}, a k−simplex Sk is a subset
of V containing k+1 distinct elements. Typical simplices are the 0-
simplex including a node, the 1−simplex including an edge, and the
2−simplex including a triangle [6]. A simplicial complex of order
K, XK , is a collection of simplices such that for any k−simplex
Sk, it includes any subset Sk−1 ⊂ Sk for all k = 0, . . . ,K. The
number of k−simplices inXK isNk. A simplicial complex of order
K = 2 formed by two disjoint triangles N2 = 2, includes all their
edges N1=6 and nodes N0=6. We also say two simplices Sk and
Sk+1 are adjacent if they belong to the same SC.

We represent the proximities between the different simplices via
the incidence matrices Bk ∈ RNk−1×Nk , which have as row index
the (k − 1)−simplices and as column index the k−simplices. For
instance, B1 is the vertex-to-edge incidence matrix and B2 is the
edge-to-triangle incidence matrix.
Property 1. Two adjacent incidence matrices Bk and Bk+1 satisfy
the boundary condition BkBk+1 = 0 for all k ≥ 1 [6].

Using the incidence matrices, we can fully represent the struc-
ture of the SC by the Hodge Laplacian matrices,

L0 = B1B
>
1

Lk = Lk` + Lku = B>k Bk + Bk+1B
>
k+1 k=1,. . .,K−1

LK = B>KBK .

(1)

That is, the zero-Hodge Laplacian L0 = B1B
>
1 is the popular

graph Laplacian and indicates vertex proximities based on their
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upper-adjacency via an edge [4]. All the intermediate Laplacians
Lk comprise two terms: the lower Laplacian Lk` := B>k Bk that
captures lower-adjacencies of k−simplices; and the upper Laplacian
Lku :=Bk+1Bk+1 that captures upper-adjacencies of k−simplices.
E.g., in an SC of order K = 2 two edges are lower-adjacent if they
have a common vertex and upper-adjacent if they belong to the same
triangle. The K−th Hodge Laplacian LK = B>KBK has only the
lower-adjacencies since the SC is of order K.

2.2. Signals over Simplicial Complexes
We are interested in processing signals residing over the different
simplicial levels by accounting for the overall structure of the sim-
plicial complex. A k−simplicial signal, for short a k−signal, xk is a
mapping from the k−simplex to the real set RNk , xk : Sk → RNk .
We will collect the k−signal in vector xk = [xk1 , . . . , x

k
Nk

]>, where
xki is the signal on the ith simplex. The 0−signal resides over the
vertices and matches the graph signal [4]. Likewise, the 1−signal
resides over the edges, the 2−signal over the triangles, and so on.
We will also refer to the collection of all k−signals x0, . . . ,xK as a
simplicial complex signal.

Given the simplicial adjacencies within an SC [cf. (1)] and the
coupling between a simplicial complex and its signal, processing SC
signals requires exploiting these interactions altogether. We do so
by using the Hodge Laplacians in (1) and their Hodge decomposi-
tion [6]. The Hodge decomposition decomposes space RNk of a
k−signal into three orthogonal subspaces

RNk = im(B>k )⊕ im(Bk+1)⊕ ker(Lk) (2)

where im(·) and ker(·) are the image and kernels spaces of a matrix
and ⊕ is the direct sum of vector spaces. This implies that for any
k−signal xk we can find three signals xk−1, xk

h , and xk+1 of order
k − 1, k, and k + 1, respectively such that we can write xk as the
sum of three orthogonal components

xk = B>k xk−1 + Bk+1x
k+1 + xk

h . (3)

This decomposition shows how the inter-simplex coupling imposed
by the Hodge Laplacians in (1) translates into an inter-signal cou-
pling. Specifically:

• Operation xk
g := B>k xk−1 ∈ im(B>k ) transforms a k−1 sig-

nal xk−1 into the upper-simplex. Likewise, we can consider
the opposite operation xk−1

div = Bkxk which transforms a
k−signal into a signal in the lower k − 1 simplex. Particu-
larizing to k = 1, we have that x1

g = B>1 x0 is an edge flow
induced by differentiating the vertex signals x0; and we refer
to as the gradient flow. Likewise, x0

div := B1x
1 is a vertex

signal obtained by computing the net flow of each node; and
we refer to as the divergence component.

• Operation xk
cur := Bk+1x

k+1 ∈ im(Bk+1) transforms a k+
1 signal xk+1 into the lower-simplex. Likewise, through the
adjoint B>k+1 we can transform a k−signal into the upper-
simplex as xk+1

c := B>k+1x
k. Particularizing again to k = 1,

signal x1
cur = B2x

2 contains edge flows induced by triangle
flows x2; and it is called a curl flow. Likewise, signal x2

c =
B>2 x1 is a flow circulating along the triangles computed from
edge flows.

• Signal xk
h ∈ ker(Lk) is called the harmonic component and it

is that part of a k−signals that cannot be induced from the ad-
jacent simplex signals. We can get the harmonic component
by solving Lkxk

h = 0.

Given this inter-simplex coupling between different k−signals,
we next leverage the shift-and-sum principle and the Hodge Laplaca-
ians (1) to induce an intra-simplex coupling and develop a principled
convolutional filter for SC signals.

3. FILTERS ON SIMPLICIAL COMPLEXES

3.1. Simplicial Convolutional Filters

For a k−signal xk over a simplex Sk with Hodge Laplacian Lk,
k = 1, . . . ,K − 1, a simplicial convolution is defined as

yk =

( L1∑
l1=0

αl1Ll1
k` +

L2∑
l2=0

βl2Ll2
ku

)
xk (4)

where α0, . . . , αL1 and β0, . . . , βL2 are parameters and L1, L2

are the convolutional orders in the lower-Laplacian Lk` and upper-
Laplacian Lku, respectively. Defining then the simplicial convolu-
tional filtering matrix

H(Lk) :=

( L1∑
l1=0

αl1Ll1
k` +

L2∑
l2=0

βl2Ll2
ku

)
(5)

we can write (4) as yk = H(Lk)x
k. The qualifier convolution

comes from the fact that in (4) we are shifting the input xk over
simplex Sk using both its lower- and upper-adjacencies, weight-
ing each shift, and summing all shifted versions. This is analo-
gous to the convolutional operator in discrete-time signal process-
ing [20] and in graph signal processing [3]. Filter H(Lk) is the
sum of two polynomials because of the form of the Hodge Lapla-
cian Lk [cf. (1)] and of Property 1 (i.e., cross-terms are not present
since Ll1

k`L
l2
ku = 0). For k = 0 the simplicial convolutional fil-

ter reduces to the graph filter H(L0) =
∑L

l=0 αlL
l
0` [3] and for

k = K to H(LK) =
∑L

l=0 βlL
l
K` because LK comprises only

lower-adjacencies.
It follows from (4) that a simplicial convolutional filter acts on

the k−signal and propagates neighboring information within sim-
plex Sk by leveraging paths either via lower- or upper-adjacencies.
Computing the output in (4) implies accounting for a local informa-
tion from at most L = max{L1, L2} hops away following either of
these paths [14]. Exploiting the recursions Ll1

k`x
k = Lk`(L

l1−1
k` xk)

and Ll2
kuxk = Lku(L

l2−1
ku xk) the cost of running a simplicial con-

volution is of order O(LNk).
But filter (5) ignores any influence of signals in the adjacent sim-

plices. Since different signals x0, . . . ,xK influence each other via
the SC localities, we extend filter (5) to account for the latter. For
instance, in a water network we may want to process jointly mea-
surements over the junctions (nodes), flows over pipes (edges), and
catchments (triangles) to infer an output related to edge flows [21].

3.2. Simplicial Complex Filter Bank

Given an SC signal x0, . . . ,xK , we define an SC filter bank as that
generating the output SC signal

y0 = H0(L0)x
0 + H1(L0)B1x

1

yk = H0(Lk)B
>
k xk−1 + H1(Lk)x

k + H2(Lk)Bk+1x
k+1

yK = H0(LK)B>KxK−1 + H1(LK)xK

(6)

where filters Hi(Lk) are of the form in (5) and subscript i indicates
they have different coefficients.
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This SC filter bank is local in two directions. First, it is in-
tra-simplex local since filters Hi(Lk) capture information up to
L−hops away within the k−simplex. Second, it is inter-simplex
local since computing output yk implies accounting also for the
adjacent (k − 1)−signal xk−1 and (k + 1)−signal xk+1. The
0−output signal is computed by (graph) filtering with H0(L0) the
vertex signal x0 and by (graph) filtering with H1(L0) the diver-
gence signal x0

div = B1x
1. Likewise, we can write the input-output

relation for the 1−output signal as

y1 = H0(L1)x
1
g + H1(L1)x

1 + H2(L1)x
1
cur (7)

which is now simplicial filtering the gradient flow (induced by node
signals) x1

g = B>1 x0, the input edge flow signals x1, and the curl
flow induced by triangle signals x1

cur := B2x
2. The same discussion

extends to any simplex Sk. This joint locality explores the compu-
tational benefits of the simplicial convolutional filter [cf. (5)] and
getting the output SC signal y0, . . . ,yK with a computational cost
of order O(KLN), where N = max{N0, . . . , NK} is the maxi-
mum number simplices. The linear complexity inN makes the filter
bank in (6) practical even for SCs of large dimension, which links
well with the linear-complexity of graph filters [22, 23].
Invariances. As we process graph signals with an arbitrary node la-
beling, also in SCs we have simplicial signals with arbitrary labeling
of the nodes and with an arbitrary orientation of the flows [8]. Thus,
studying the invariances of the filer bank (6) shows how it exploits
the symmetries in the simplicial complexes.

Proposition 1 (Permutation equivariance). Let XK be a simplicial
complex and consider the permutation matrices Pk as those belong-
ing to the set

P = {Pk ∈ {0, 1}Nk×Nk : Pk1 = 1,P>k 1 = 1, k ≥ 0}.

Permutation matrices Pk are such that products x̃k = P>k xk are
reorderings of the entries of xk and that the permuted Hodge Lapla-
cian L̃k = P>k LkPk is a reordering of the rows and columns of Lk.
The simplicial complex filter bank in (6) is permutation equivariant.

Proof. (Sketch) Consider the kth input-output relation in (6). The
permutation matrices Pk transform the incidence matrices as B̃k =

P>k−1BkPk and B̃k+1 = P>k Bk+1Pk+1. Then, using the identify
P>k Pk = PkP>k = I, the permuted lower- and upper-Laplacians
are respectively L̃k` = P>k Lk`Pk and L̃ku = P>k+1LkuPk+1.
Consequently, we can write H(L̃k) = P>k H(Lk)Pk. Using the
above, we can apply the permuted filters to the permuted inputs
x̃k−1 = P>k−1x

k−1, x̃k = P>k xk, and x̃k+1 = P>k+1x
k+1 and

prove that the output is permuted likewise, i.e., ỹk = P>k yk.

Proposition 2 (Orientation equivariance). Let XK be a simplicial
complex of order K and consider the orientation matrices Dk as
those belonging to the set

D = {Dk = diag(dk) : dk ∈ {±1}Nk , k ≥ 1,d0 = 1}.

Orientation matrices Dk are such that products x̃k = D>k xk are
reorientations of the flow directions in vectors xk and that the reori-
ented Hodge Laplacian is given by L̃k = DkLkDk. The simplicial
complex filter bank in (6) is orientation equivariant.

Proof. (Sketch) Consider the kth input-output relation in (6). The
orientation matrices Dk transform the incidence matrices as B̃k =
Dk−1BkDk and B̃k+1 = DkBk+1Dk+1. Using then the identity

DkDk = I, the oriented lower- and upper-Laplacians are respec-
tively L̃k` = DkLk`Dk and L̃ku = Dk+1LkuDk+1, which in turn
leads to the oriented filters H(L̃k) = DkH(Lk)Dk. Using direct
substitutions and simple algebra we can prove ỹk = Dkyk.

Proposition 1 (resp. 2) implies that if relabel the SC (resp. reori-
ent the flows) and apply the filter bank (6), the output is a relabeled
(resp. reoriented) version of the output we would have gotten by ap-
plying the filter bank before relabelling (resp. reorientation). These
equivariances also imply that we can learn the filter bank to process a
given simplicial complex by seeing as examples only permuted and
reoriented versions of it. I.e., if two parts of the SC are topologi-
cally identical and the simplices support identical signal flows, an
SC filter bank yields identical outputs. These findings generalize the
permutation equivariance seen for graph filters [5, 24].

Remark 1. When operating on signals transformed from lower-
/upper-adjacent simplices, the simplicial filter bank uses only
lower/upper- Laplacians. Consider the expression for yk for k =
1, . . . ,K − 1 in (6). The first term reduces to H0(Lk)B

>
k xk−1 =

H0(Lk`)B
>
k xk−1 + β00B

>
k xk−1 because of Property 1. Likewise,

the third term reduces to H2(Lk)Bk+1x
k+1 = α20Bk+1x

k+1 +
H2(Lku)Bk+1x

k+1. That is, a signal coming from lower simplices
does not propagate into upper-adjacency paths and viceversa.

4. FREQUENCY RESPONSE

We now analyze the properties of the SC filter bank in the spectral
domain to give further insight into its filtering behavior.

4.1. Simplicial Fourier Transform

The k−th Hodge Laplacian can be eigendecomposed as Lk =
UkΛkU>k , where matrix Uk = [uk1, . . . ,ukNk ] collects the
eigenvectors and Λk = diag(λk1, . . . , λkNk ) the eigenvalues on the
main diagonal. For a k−signal xk, the simplicial Fourier transform
(SFT) is defined as x̂k = U>k xk [7]. The inverse SFT is xk = Ux̂k.
We refer to the eigenvalues λki as the simplicial frequencies. The
SFT generalizes the graph Fourier transform [7].

The eigenvectors of Lk span the three subspaces of the Hodge
decomposition [cf. (2)]. That is, there exists some orthogonal
eigenvectors Ugk ∈ RNk×Ng that span im(B>k ), Uck ∈ RNk×Nc

that span im(Bk+1), and Uhk ∈ RNk×Nh that span ker(Lk).
We collect the corresponding eigenvalues (simplicial frequen-
cies) in sets Qg = {λg1, . . . , λgNg}, Qc = {λc1, . . . , λcNc}, and
Qh = {λh1 = 0, . . . , λhNh = 0}. Using these eigenvectors, we
can project k−signals onto the respective spectral components as:
x̂k

g = U>gkxk, x̂k
c = U>ckxk, and x̂k

h = U>hkxk, which show how
the simplicial Fourier coefficients are spread among the three types
of simplicial frequencies. Next, we shall see how the simplicial filter
bank acts on these projections and achieves the desired filtering.

4.2. Frequency Response of SC Filters

To understand the spectral behavior of filter bank (6), we need first
to understand the spectral behavior of the simplicial convolutional
filter (5). Using the above discussion and the eigendecomposition of
the kth Hodge Laplacian, the frequency response of the simplicial
convolutional filter (5) is

Ĥ(λki) =


α0 + β0 for λki ∈ Qh

β0 +
∑L1

l1=0 αl1λ
l1
i for λki ∈ Qg

α0 +
∑L2

l2=0 βl2λ
l2
i for λki ∈ Qc

. (8)
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Fig. 1: Data-driven approximation of inverse filtering. The � mark-
ers are the inverse filters, the×markers are their approximation with
the filter bank (6). a) node filters k = 1; b) edge filters k = 1 for the
gradient and curl influences; c) edge filters k = 1 for the curl and
gradient frequencies; d) triangle filters k = 2.

That is, we have independent control on the simplicial frequencies
Qg through α0, . . . , αL1 and on Qc through β0, . . . , βL2 but we
have no independent control on the simplicial frequencies Qh [14].
The filter input-output relationship at the ith frequency is ŷki =

Ĥ(λi)x̂
k
i ; i.e., it respects the convolution theorem by operating a

point-wise multiplication in the SFT domain.
Using these insights, let us now analyze the frequency behavior

of the kth input-output relation in (6). From Remark 1, we can write
the kth branch as

yk=H0(Lk )̀x
k
g+β00x

k
g +H1(Lk)x

k+α20x
k
cur+H2(Lku)x

k
cur (9)

Using the SFT, its relation with the Hodge decomposition [cf. (2)],
and the filter response in (8), the ith input-output spectral relation is

ŷki=


α00x̂

k
gi + β00x̂

k
gi + Ĥ1(λki)x̂

k
i + α20x̂

k
curi

+α20x̂
k
curi + β20x̂

k
curi for λki ∈ Qh

Ĥ0(λki)x̂
k
gi + Ĥ1(λki)x̂

k
i for λki ∈ Qg

Ĥ1(λki)x̂
k
i + Ĥ2(λki)x̂

k
curi for λki ∈ Qc

(10)

where x̂kgi is the ith SFT coefficient of xk
g = B>k xk−1 and x̂kcuri

is the ith SFT coefficient of xk
cur = Bk+1x

k+1. This implies that
filtering the signal from lower-adjacent simplices B>k xk−1 does not
play a role in the filter response over Qc and likewise filtering the
signal from upper-adjacent simplices B>k xk−1 does not play a role
in the filter response overQg. This is intuitive because, for example,
for k = 1, edge flows induced from a node signal have no curl
components (being curl-free), and the edge flows induced from a
triangle signal have no gradient components (being divergence-free).

5. NUMERICAL RESULTS
We test the proposed filter bank for two tasks. First, we use it to fit
inverse SC filtering in a data-driven approach. Second, we imple-
ment a heat kernel diffusion on SC with a low complexity. For both
experiments, we generated an alpha SC of 29 nodes, 71 edges and
43 triangles with Gudhi toolbox [25, 26].
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Fig. 2: GHD based on the kernel approximation by SC filter banks.
Top three (from left to right): node, edge, and triangle indicator input
signals, respectively. Bottom three (from left to right): the diffused
results on nodes, edges and triangles.

Model fitting. We generated 10 training samples (xk,yk) for k =
0, 1, 2 by inputing a random simplicial singal xk drawn from a zero-
mean normal distribution, and outputting yk based on model (6). We
considered rational filters Gi(Lk) = H−1

m (Lk)Hn(Lk) withm and
n indicate different filter parameters. By stacking the shifted input
and output training samples, we can solve least-squares problems to
design an SC filter bank (6) to fit the desired model parametrized by
Gi(Lk). With filter orders between 4 and 7, we achieved NMSEs
of 0.03, 0.01 and 0.02 for k = 0, 1, 2, respectively, while with the
simple simplicial filter [14] we get errors of at least one order higher
(resp. 0.3, 0.68, and 0.9). Fig. 1 further shows how the different
rational filter responses are well-approximated by the filter bank.
Generalized heat diffusion (GHD). The GHD is used to smooth
meshes and identify key signatures in them [27]. The GHD behaves
as an SC filter of the form G(Lk) = exp(−γkL2

k) which is com-
putationaly heavy to compute because of the exponential matrix. In-
stead, we use its analytic frequency response Ĝ(λ) = exp(−γkλ2

k)
and universally approximate it with the convolutional filters [14],
with an approximation error smaller than 0.1 but with an implemen-
tation cost of around two orders lower. Then, we used such filters
for the filter bank in (6) with γ0 = 0.3, γ1 = 0.05, and γ2 = 0.5 to
see how indicator input signals xk diffuse within their simplices and
in the neighboring ones, illustrated in Fig. 2. We also observe that if
γk is large, the diffusion on the k-simplices attenuates faster, which
is expected from the frequency response Ĝ(λ).

6. CONCLUSION

We proposed a simplicial complex convolutional filter bank that can
process signals defined on different levels of the SC by capturing
both their intra- and inter-simplex proximities. The intra-simplex
proximities are captured by leveraging the shift-and-sum principle
of the convolutional operation via the Hodge Laplacian matrices of
a simplicial complex. Instead, the inter-simplex proximities are cap-
tured by leveraging the incidence matrices to transform the signal
onto adjacent simplices and then filter with a simplicial filter defined
on the adjacent simplices. We show the proposed filter bank is local
and equivariant to both permutations in the simplex labeling and flow
orientation. We also analyze the filter bank in the simplicial spectral
domain and show it acts as a point-wise multiplication between the
filter’s frequency response and the simplicial Fourier transform of
the signal, respecting the convolution principle.
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