
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Iris - A knowledge Graph-based
chatbot for Explaining Robotic
Scenario Information to Human
Operators in a Retail Setting
Master Thesis

Ke Xu



Iris - A knowledge Graph-based
chatbot for Explaining Robotic

Scenario Information to Human
Operators in a Retail Setting

Master Thesis

by

Ke Xu
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday March 21, 2023 at 10:00 AM.

Student number: 5290864
Thesis committee: Dr. Carlos Hernández Corbato, TU Delft, supervisor, chair

Dr. Yke Bauke Eisma, TU Delft, committee member
PhD candidate Corrado Pezzato, TU Delft, committee member

This thesis is confidential and cannot be made public until August 31, 2024.



Acknowledgement

With this thesis, I will obtain my master’s degree in Robotics at Delft University of Technology. I would
like to extend my deep gratitude to all those who have offered me a lot of help and support in the whole
process of my thesis project. This valuable learning and reflection opportunity will act as a starting point
in my future study.

First and foremost, my sincere thanks go to Dr. Carlos Hernández Corbato, my supervisor, who
always offered valuable comments and suggestions in our meetings with patience and understanding.
With his expertise and supervision during my study, I could accomplish this project.

Also, I owe thanks to my colleague Yuan Sen, who helped and encouraged me throughout the
thesis writing. Besides, I appreciate all participants involved in my experiment and the continuous
support from people in KAS Group.

Last but not least, I sincerely express my gratitude to my family and friends, who always take care
of my anxiety, frustrations and happiness.

Ke Xu
Delft, March 2023

i



Iris - A knowledge Graph-based chatbot for Explaining Robotic
Scenario Information to Human Operators in a Retail Setting

K. Xu, S. Yuan and Carlos Hernández Corbato

Abstract—The problem of assisting users in comprehending
the robotic scenario information in a retail setting has been
studied. To design the system, an integrated ontology composed
of several IEEE standard ontologies and a labelled property
graph (LPG)-based ontology modified from the Web Ontology
Language (OWL)-based ontology was proposed to symbolize
information in the robotic environment. Then, a knowledge graph
(KG)-based chatbot was developed to provide natural language
interaction with users. A case study in a retail setting was
designed, and the results were analyzed. The effectiveness of our
designed system has been experimentally validated in both static
and dynamic scenarios, with at least 1.5 times improvements.

Index Terms—Ontology, Knowledge Representation, Knowl-
edge Graph, Chatbot, Human-Robot Interaction, Rasa

I. INTRODUCTION

W ITH the advent of robots and intelligent agents, their
intelligent behaviours have been explored to provide

convenience in many domains. As the agent functions as a
mediator in consequential decision-making, the agent’s ex-
plainability is essential for the end-user to take informed,
accountable actions [1]. The purpose of explanations is either
to help users gain confidence or establish trust towards the
system has been suggested in [2]. Most research focuses
on algorithmic transparency as a method of overcoming
the opaqueness of black-box algorithms [3]. However, other
studies explored the effectiveness of direct verbal or non-
verbal explanations on robot behaviours towards human trust
and understanding [4], [5], [6], [7]. These studies provided
systems with transparency by facilitating user understanding
of the agent’s intent, behaviour, plans and decision-making
process [8]. Inspired by their work, the system’s explainability
has been extended to real-time robotics scenario knowledge
containing static environment and dynamic task information
in this work.

A knowledge graph-based chabot named Iris to ground our
idea by interpreting robotic scenario information for users has
been presented. The framework includes a ROS environment
(RE) module to gather robotic task data generated in ROS
stimulation; a knowledge graph (KG) module for storing the
knowledge of robotic scenario data in a constructed database
management system (DBMS); and a conversational agent (CA)
module that retrieves corresponding information based on
recognised entities and intentions from user utterances to form
responses. Furthermore, a case study is adopted to examine the
effectiveness of the designed chatbot in a retail setting.

The main contributions of the paper are listed as follows:
1) This paper proposed an integrated ontology composed

of several IEEE standard ontologies and modified the
Web Ontology Language (OWL)-based ontology [9] to

labelled property graph (LPG)-based ontology [10], [11],
making it useful for symbolizing robotic environment
knowledge.

2) A KG-based chatbot was proposed to solve the difficult
comprehension between the users and robotic scenario
information.

3) A case study in a retail setting is designed to evaluate
the performance and effectiveness of the system.

The rest of the article is organized as follows. In section II,
some related work about knowledge representation in human-
robot interaction (HRI) and conversational interaction in HRI
are provided. The proposed methods are demonstrated in
section IV. The designed experiment and the evaluation results
are summarised in section V. Finally, conclusions are drawn
in section VI.

II. RELATED WORK

Human-robot interaction (HRI) has become the key com-
ponent in current robot applications. Its applications can be
divided roughly into three categories if only robots under the
narrow definition are considered: 1) human supervisory control
of robots, 2) telerobotics in specific domains and 3) human-
robot social interaction [12]. With the spreading use of robots
in daily human life, research on the third interaction mode has
emerged in recent years [13]. Among various information ex-
change approaches in human-robot social interaction, spoken
language interaction has the potential to be the most natural
and efficient way [14].

Hence, we consider conversational interaction as a solution
to implement the explainability of robotic scenario informa-
tion. Motivated by this goal, the system must first have a
representation of the environment’s knowledge. Then, natural
language processing (NLP) technology is used to complete
the interaction progress and assist users in comprehending
scenario-related information. The following sections sum-
marise related research on knowledge representation (KR) in
HRI and conversational interaction in HRI.

A. Knowledge Representation in HRI

A semantic model based on first-order logic was proposed
in [15], which only suits a simple scene containing limited
objects. A task ontology for an elderly-care dialogue system
with the help of caretakers was adopted in [16], where the
ontologies are task-oriented with a structured hierarchy to
indicate tasks and subtasks for the system to execute. To over-
come the problem of limited conversational topics, an extended
method for the knowledge base (KB) in run-time dialogue
interaction was described in [17]. The method followed an
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OWL2 ontology framework based on description logic [18] to
encode concepts in TBox at a generic, culture-agnostic level
and instances in Culture-Specific ABox and Person-Specific
ABox to adapt the cultural background of users. It is worth
noting that knowledge representation is used in these studies
as a way of inferring robot task execution, which is contrary
to our purpose of storing environmental knowledge for access
by the conversational agent.

Compared with the above methods, KG proposed by Google
[19] emphasises the relationship between data, which represent
entities and relationships graphically and intuitively [20]. Be-
sides, it includes information about specific individuals based
on its schema-ontology that models only general types of
things with certain properties [21]. Due to these modelling
advantages, it was chosen as the KR method to construct a
human-readable KB for the interactive assistant in this project.

B. Conversational interaction in HRI

The Dialogflow platform and its supportive Natural Lan-
guage API were used to capture the intent and entities from
users’ utterances [17]. In addition to using the development
platform directly, some natural language understanding (NLU)
algorithms were implemented to enable conversational inter-
action. Deep semantic role labelling (SRL) [22] was adopted
to determine the predicate-argument structure in users’ in-
structions to command robotic tasks for industrial robots [23].
Conditional random field (CRF) [24] was utilized to extract
task-related information from instructions in [25], whereas
sense2vec [26] generated an executable command in robot
control language (RCL) [27]. Except for the first study, which
addressed the social needs of the elderly, the above research
focused on commanding robots to complete tasks through
human instructions. These systems were task-oriented and
performed well in interactions with brief sentences.

In our case, however, it is necessary to maintain a mem-
orised dialogue to provide users with the robotic scenario
information. Therefore, a chatbot is proposed to implement
the environment’s explainability. Chatbots can be divided
into three categories according to their response mechanisms.
Information retrieval-based systems [28] are commonly used
for frequently asked questions (FAQ) that retrieve standard
answers to common questions. Generative-based systems [29],
[30] are primarily used in chit-chat chatbots to maintain user
conversations. Knowledge graph-based systems [31], [32] are
suitable for task-oriented dialogue based on domain knowl-
edge, thus selected in this work.

III. BACKGROUND

The previous section highlighted a KG-based chatbot as a
promising method for implementing the system’s explainabil-
ity of real-time robotics scenario information. Generally, there
are two approaches to building the knowledge graph: top-
down and bottom-up [33]. The top-down approach requires
a small group of experts to design top-level and domain-
specific ontology patterns as the schema of the KG, such as
WordNet [34], and Cyc [35], which is appropriate when there

is profound comprehension of the domain’s knowledge hier-
archy. Conversely, the bottom-up approach derives concepts
and relationships from semi-structured data using automated
extraction technologies such as DBpedia [36] and YAGO [37],
necessitating constant, high-quality data sources for schema
management and update.

A. Standardized Ontology for Robotics

We adopt the top-down approach to constructing KGs based
on recent research on standardized robotic domain-specific
ontologies, such as Core Ontology for Robotics and Automa-
tion (CORA)-related ontologies (containing Suggested Upper
Merged Ontology (SUMO) [38]-CORA, CORAX, PRARTS
and POS) [39], ERAS ontology [40] and Task ontology [41].

• SUMO-CORA: SUMO-CORA ontology is a set of on-
tologies where the concepts of CORA and SUMO over-
lap, which defines basic upper-level categories to help us
model further progress in robotic scenarios.

• CORA & CORAX & POS & PRARTS: CORA &
CORAX ontologies define the majority of concepts in
robotics and automation (R&A). CORA ontology in-
cludes three general components: RobotGroup, Robot and
RobotSystem, whereas CORAX ontology defines some
not-so-generic but essential robotics concepts. PRARTS
comprises concepts that can represent robot parts. Finally,
POS ontology defines concepts for objects’ pose, posi-
tion, and orientation properties.

• ERAS: ERAS ontology considers the ethical usage of
robotic techniques based on CORA ontology.

• TO: Task ontology focuses on the task implementation
terminology as an extension of CORA ontology.

B. Knowledge Graph Storage

Once the schema of KG is built by ontology, real-world data
can be stored graphically. Resource Description Framework
(RDF) [42] (e.g., Jena [43]) and labelled property graph (LPG)
databases (e.g., Neo4j [44] and ArangoDB*) are emerging
technologies for storing graph-structured data [45]. Barrasa
identifies three important distinctions between RDF and prop-
erty graphs [46]: (1) RDF does not uniquely identify instances
of the same relationships; (2) RDF does not qualify instances
of relationships; (3) RDF can have multivalued properties —
triples with the same subject and predicate but for different
objects, whereas the LPG only employs arrays for the same
purpose. Due to these distinctions, LPG databases provide
more efficient storage with compact and intuitive structures
optimised for efficient graph traversal.

IV. METHOD

A. System Architecture

To bridge between human operators and robots for the sys-
tem’s explainability in real-time robotics scenario knowledge,
we proposed a knowledge graph-based framework including
three main modules: conversational agent (CA), knowledge

*ArangoDB homepage
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graph (KG) and ROS environment (RE) module, as shown in
Figure 1, which aims to help users comprehend the robotic
scenario information (e.g., environment and execution infor-
mation) in natural language.

1) ROS Environment module: In RE module, ROS actions
are adopted to generate and execute plans for robotic tasks
using actionlib† package in Robot Operating System (ROS)
environment. The black box is the newly implemented com-
ponent to obtain raw robotic data, while the blue box was
the previous work of the lab [47] for task planning. An
Active Inference Server issues tasks to specific action servers
(move, look, pick and place) according to the plan made
by the Decision Making Agent using active inference [48]
after the Perception Server performs the symbolic perception
of the current robotic environment. During the execution of
the robot’s tasks, ROS topics published by action clients and
servers will be subscribed by a create dynamic kg Node as
raw scenario knowledge.

2) Knowledge Graph Module: The robotic scenario data
obtained in RE module are stored as graphs in the Neo4j
database management system (DBMS) based on the predefined
ontology (schema) through Py2neo library ‡. The ontologies
constitute the schema of KG taking advantage of the Neo4j
APOC library, which will be described in the next sub-chapter.
Notably, users can directly access generated KG graphs in
Neo4j Browser, which communicates with the Neo4j DBMS
using the Neo4j JavaScript Driver through the Bolt Protocol.

3) Conversational Agent Module: CA model here refers
to the chatbot. It is developed using Rasa [49] framework
to interpret user queries and extract corresponding informa-
tion from Neo4j DBMS using Neo4j Python Driver to form
appropriate responses. Rasa Open Source is responsible for
intent classification and entity recognition supported by NLU
Pipeline as well as dialogue management specified by Dia-
logue Policies. With Rasa SDK, action servers are customized
to retrieve relevant information from KGs, and compose events
and responses. Finally, the Agent component in Rasa Open
Source provides an interface for the above Rasa functionalities
and handles a channel to reach users.

B. Knowledge Representation Pipeline

We adopted the knowledge graph as the knowledge repre-
sentation method since machines can easily store and compre-
hend real-world data to provide humans with query services
due to its efficient and intuitive layout.

1) Intergrated Ontology for Robotics and Automation:
Since some standard and well-defined ontologies exist for
representing knowledge in a robotic context, we adopted
the up-bottom approach to construct knowledge graphs for
specifically symbolizing robotic environment knowledge. To
form an ontology that takes into account the physical robotic
environments, agent plans and robotic tasks, we selected some
concepts from CORA-related ontologies (containing SUMO-
CORA, CORAX, PRARTS and POS), ERAS ontology and

†http://wiki.ros.org/actionlib
‡https://py2neo.org/

Task ontology to form a Integrated Ontology for Robotics
and Automation (IORA), and an overview of the main con-
cepts is shown in Figure 2. Among them, SUMO-CORA
defines the general concepts to describe a domain; CORA
and CORAX specify the robotic domain; ERAS considers
the plan generated by the intelligent agent; and TO further
focuses on the task-oriented robotic domain. Using IORA, we
could symbolize knowledge in a task-oriented robot scenario.
In the next section, the pipeline for adapting CORA-related
ontologies in OWL [9] syntax to the graph database will be
introduced.

2) Knowledge Storage Pipeline: Compared with RDF data
model using knowledge representation languages such as
RDFS [50] and OWL, LPG database model is more in line
with the logic of people’s understanding towards the entities
and their relationships in the real world. Besides, it uses
arrays to represent multiple properties of subjects and predicts,
which equips a more compact structure for efficient user query
and understanding. Hence, Neo4j, an object-oriented graph
database management system (DBMS) with flexible network
structures to store the knowledge of the robotic scenario
was adopted, including static environment information and
dynamic execution information.

We accessed the OWL file of CORA-related ontologies
(SUMO-CORA, CORA, CORAX, PRARTS and POS) through
the open source GitHub repository § to obtain all the entities
and axioms. However, these OWL-based ontologies should be
translated to LPG format before adapting them to the schema
of knowledge graphs, shown in Figure 2. First, the OWL-based
files were imported to Neo4j DMBS by the neosemantics
(n10s) - a toolkit that enables the use of RDF and its associated
vocabularies in Neo4j. After this operation, the ontologies
were stored in the DBMS in the graph format with 147 nodes
and 249 relationships.

However, the classes and properties defined in OWL should
be translated into nodes and relationships in LPG. The four
steps in the following table were carried out to achieve
the translation using Neo4j APOC library. Considering the
different syntax of OWL and LPG, the main changes were:
1) The default node labels (class description owl:Class
and object property owl:ObjectProperty in OWL)and re-
lationship types (class axioms such as rdfs:subClassOf
and property axioms rdfs:subPropertyOf in OWL) gen-
erated after importing ontologies to Neo4j were renamed
to be consistent with OWL styles. 2) Property restrictions
owl:Restriction, including value constraints and cardinality
constraints on owl:ObjectProperty between two owl:Class
were transformed into two properties restrictionType and
cardinalityV al of owl:ObjectProperty relationships. 3)
To solve the problem that the rdfs:subPropertyOf could
not be preserved after converting owl:ObjectProperty into
edges in LPG, we projected rdfs:subPropertyOf be-
tween owl:ObjectProperty into a subgraph separately. 4)
Only owl:Class will be kept as nodes in LPG while

§IEEE1872-owl - GitHub repository
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Fig. 1. System architecture of Iris: The direction of the arrow in the figure is the direction of information transmission. Black lines illustrate the main
workflow between three modules: 1) There are two interactive ways between the user and the system, including communicating with a chatbot and accessing
generated knowledge graphs. 2) Robotic data in ROS Environment module is stored in Neo4j DBMS using Py2neo library. 3) Generated knowledge graphs
can be accessed by Rasa action servers through Neo4j Python Driver. 4) Users can chat with Iris to query robotic scenario information from KGs either
through Input & Output Channels such as Rasa shell and Rasa REST channel.

Fig. 2. Overview of the main concepts in our IORA

owl:ObjectProperty and rdfs:subClassOf will be relation-
ships between nodes. Finally, the translated 92 nodes and
137 relationships were filtered manually along with several
necessary concepts from ERAS and TO to form our ICRA-
LPG. As it is shown in Figure 4 (only main concepts are
included here), ICRA-LPG contains 40 nodes with three prop-
erties {name, comment, uri} from {CORA, CORAX, ERAS,
SUMO-CORA, TO} labels and 71 relationships with four
properties {name, propCharacteristics, restrictionType, uri},
which were ready to model most of the real data for the robotic
environment.

Fig. 3. Pipeline to adapt OWL-based ontologies to LPG-based schema

Translate Rules
Step 1: rename the node labels and relationship types
in OWL, such as n4sch SCO → rdfs:subClassOf ,
n4sch SPO → rdfs:subPropertyOf .
Step 2: add property restrictions owl:Restriction (value
constraint and cardinality constraint) as properties of
owl:ObjectProperty nodes.
Step 3: project rdfs:subPropertyOf relationships between
owl:ObjectProperty nodes as a subgraph.
Step 4: change the main RDFS construct (owl:Class) ←
[rdfs:range] - (owl:ObjectProperty) - [rdfs:domain]
→ (owl:Class) to LPG construct (owl:Class) -
(owl:ObjectProperty) → (owl:Class).

C. Chatbot Pipeline

In our lab, a robotic manipulator with a mobile base is
used to perform stacking and picking tasks in a retail setting,
shown in Figure 5. We expect that the chatbot could assist
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Fig. 4. ICRA-LPG in Neo4j Browser: Main 26 concepts and 42 relationships between them from standard ontologies, including CORA-related
ontologies(SUMO-CORA, CORA, CORAX and POS), ERAS and TO in different colours are illustrated in the centre of the graph, while legends are
displayed on the right.

users in comprehending robotic scenario information, which
is anticipated to have the following capabilities:

• Given queries about information of static retailing en-
vironment, such as product properties (e.g., mass and
position), the chatbot should be able to answer them
correctly.

• Given queries about dynamic robot tasks, such as task
details and execution status, the chatbot should be able
to provide unambiguous responses to users.

Based on these goals, a task-oriented assistant with access
to knowledge of the retail environment was designed. Rasa -
a machine learning & rule-based framework [49] was adopted
as the development platform due to its power NLU pipelines
and dialogue policies supported by Rasa Open Source, while
flexible, customized action services provided by Rasa SDK.
The intents and entities in the user’s utterances will be
identified by Rasa NLU, following by action services queried
the knowledge graphs encoding scenario information to obtain
the required information. The assistant will then formulate
responses according to dialogue policies [51] and predefined
response templates, which reach users through its input &
output channels.

1) NLU Pipeline: The following components already em-
bedded in Rasa to ensure the recognition performance in the
case of limited training data were selected for this study:
(1) the pre-trained language model SpacyNLP [52] including
SpacyTokenizer and SpacyFeaturizer are used for tokenization
and word embedding; (2) DIETClassifier [53] is adopted
for intent classification and entity extraction. Besides, (3)
the default FallbackClassifier allows the assistant to handle
incoming messages with low NLU confidence, while (4) En-
titySynonymMapper helps the system map recognized entities
to predefined entities. the primary intents and some training
examples fed into Rasa was shown in Table I. The intentions

Fig. 5. The retail environment in our Lab

above the horizontal line are for the users’ inquiries about
some pre-stored and static environmental knowledge, such as
the products and their properties in stores, while others are to
help people understand the changing and dynamic execution
information when the robot is doing specific tasks, including
queries about products’ location and task/action status. The
content in square brackets is a training example, and the
content in parentheses specifies its entity type. To store entity
values recognized from users’ utterances, We defined 7 entity
types, including object type, object, attribute, property,
furniture, task and subtask.

2) Action Server: Several action servers were customized
to query Neo4j DBMS in [54] language through Py2neo
library and dispatch appropriate messages based on pre-
defined answering templates to the user. The functional action
servers and corresponding query templates in Cypher are
shown in Table II. The actions above the horizontal line query
the knowledge graph that stores knowledge about products,
whereas the actions below query the knowledge graph that
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TABLE I
NLU TRAINING DATA EXAMPLES

Intent Training example

query environment Give me some background on AIRLab.
introduce chatbot Who am I talking with?
chatbot capability What can you do?
query product in env What [items](object type) are in the environment?
query product property Tell me [mass](attribute) of [yogurt](object)

query specific product
Do the environment contains [flower](object)?
Tell me [more](property) about [yogurt](object).
What type of [properties](property) can I ask?

query product location where I could find [juice](object)?
query product furniture What products on the [shelf 1](furniture)?
query specific task I want to know about [task2](task).
query current task What is the current task?
query previous task Give me an overview of previous tasks.
query specific action tell me [first subtask](subtask) of [task 3](task).
query current action What are you doing now?
query previous action What did you do in the last subtask?

stores information about tasks.

TABLE II
NLU TRAINING DATA EXAMPLES

Action server Cypher template

product in env MATCH (o:{object type} {attrs}) RETURN o
product property MATCH (o:Object) WHERE o.name=? RETURN properties(o)
specific product
product location MATCH (o:Object)-[r*2]- (p:PositionRegion) WHERE o.name=?
product furniture MATCH (o:Object)-[r*2]- (p:PositionRegion) WHERE p.value=?
specific task MATCH (t:Task)-[r*2]-(a:‘Agent Plan‘) WHERE t.name=? RETURN t,a
current task MATCH (t:Task)-[r*2]-(a:‘Agent Plan‘) Where t.status=’ACTIVE’
previous task MATCH (t:Task)-[r*2]-(a:‘Agent Plan‘) Where p.status=’SUCCEEDED’
specific action MATCH (a:‘Agent Plan‘)-[r*3]- (s:Subtask) WHERE s.name and s.partof
current action MATCH (a:‘Agent Plan‘)-[r*3]- (s:Subtask) WHERE s.status=’ACTIVE’
previous action MATCH (s1:Subtask)-[r*2]-(s2:Subtask) WHERE s1.status=’ACTIVE’

V. EXPERIMENTS

To evaluate the effectiveness of Iris, participants were
invited to conduct the designed experiments, including two
simulated scenarios: Scenario 1 and Scenario 2.

A. Design

The first scenario was static, containing information on
6 products in stimulated retail environment, as shown in
Figure 6. The corresponding concepts and relationships which
related to product information from ICRA-LPG are selected
as the schema of real-world data. The light green nodes are
products with Object label in the environment, the blue nodes
store their position properties with labels PositionMeasure
(position in global coordinate) and PositionRegion (region
in the environment); while dark green nodes are corresponding
poses to grab those products with PoseMeasure. The right
bottom of the graph provides an example of detailed properties
of milk, such as its mass is 1.2 kg, and its position is located
in Table2. While the second scenario was dynamic, containing
three robotics tasks: 1) the robot is at the place where milk
is located; 2) the robot holds hagelslag and 3) the tea box is
in the robot’s basket. To finish the above tasks, the robot will

Fig. 6. Scenario 1: static product information in KG

continuously perform some subtasks (actions). As it is shown
in Figure 7, concepts Agent, AgentP lan, PlanAction, Task
and Subtask from ICRA-LPG store information of plan
generated by the decision-making agent and task execution.
The right bottom of this graph also gives an example of plan
execution information. To reach the final state the tea box is
in the basket of task 3, the plan contains three actions move
to reach tea box, pick tea box and place it in the basket.
Therefore, subtask 3 is the last action place in basket of
task 3.

We recruited four groups of participants with a robotics
background (approximately 5 to 15 people per group), Group
1: only look at the real-time output information about detailed
task execution in Linux terminals when running three robotic
tasks mentioned above (duration of this procedure is 5 min-
utes); Group 2: only interact with Iris to obtain static retailing
environment and dynamic robot task information (duration of
each procedure is 5 minutes, so 10 mins in total); Group 3:
only look at pre-stored static KG and dynamically generated
KG to access the same scenario information as Group 2; Group
4: interact with chatbot (the same as Group 2) & look at the
two KGs to understand scenario information (duration of this
procedure is 5 minutes). The participants’ comprehension of
the two robotic scenarios varied based on the intuitiveness of
each interaction procedure they encountered. Therefore, some
hypotheses were made as follows:

• Hypothesis 1: The information that users only get from
the terminal is limited, so they cannot understand the
three tasks very clearly, while interacting with Iris or
looking at knowledge graphs will help users comprehend
the two scenarios.

• Hypothesis 2: Users who are exposed to Iris and knowl-
edge graphs will have the deepest understanding towards
the two scenarios.

The questionnaire shown in Table VI, Table VII and Ta-
ble VIII was designed to verify hypotheses based on their
memory of what they obtained during the interaction. The
questionnaire is divided into two parts: 1) about the static
retailing environment and 2) about the dynamic robot tasks. In
terms of the static retailing environment, people were be asked
to remember and fill the mass, ID, pose location, position and
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Fig. 7. Scenario 2: dynamic execution information in KG

perishable of six products in the simulated scenarios, while
the dynamic tasks’ part includes the subtasks of each task,
the order of tasks, objects of tasks and the final location of
products after all the tasks. The Linux group only filled the
second part and is compared with the other group’s second part
results. Furthermore, an additional questionnaire is required
for those groups chatting with the Rasa assistant to evaluate
the chatbot’s performance.

B. Results

In total, 33 participants were invited for the experiments,
7 people for Linux, 11 for chatbot, 7 for KG, and 8 for KG
plus chatbot. Some examples of chat history in Scenario 1 and
Scenario 2 from Group 2 and Group 4 are shown in Figure 8.

To evaluate the repeatability and the consistency of different
groups for the same quantitative experiment, the Intraclass
correlation coefficient (ICC) [55] was introduced here. The
result is given in Table. III. The four groups, except for the KG,
are larger than 0.75 with confidence p < 0.001, which proves
the good repeatability in the three groups. The KG group is
marginally lower with ICC 0.72 and confidence p < 0.001,
achieving decent repeatability. The differences come from that
the people in KG group are asked to remember two knowledge
graphs in total 10 minutes, thus some may focus more on static
question while some not.

TABLE III
THE EVALUATION OF THE CONSISTENCY FOR FOUR GROUPS

Group Index (num of people) ICC Confidence probability

Linux (7) 0.8998 p < 4.61e− 7
Chatbot (11) 0.7931 p < 5.41e− 6
KG (7) 0.7242 p < 3.07e− 4
KG plus chatbot (8) 0.8701 p < 6.35e− 10

The accuracy of participants’ answers to questions in the
questionnaire in Scenario 1 and Scenario 2 are calculated to
evaluate the effectiveness of the proposed Iris. It is calculated
with a weighted sum to compensate for the different difficulties
of the questions, i.e., the position with a higher weight than
the perishable. The results are given in Table. IV. The Linux
group only has access to dynamic tasks, so it is compared with
other groups within this field, and achieving the worst result
as in hypothesis 1. The chatbot outperforms the Linux group
slightly in the dynamic experiments because some participants

(a) Chat history of Scenario 1 (b) Chat history of Scenario 2

Fig. 8. Chat history of static information & dynamic information

are chatting with the chatbot instead of focusing on the goal,
as mentioned. The KG group has higher accuracy than the
chatbot group in the dynamic test, while it is reversed in the
static test. This is partly expected as the question asked for
the dynamic test is directly related to the knowledge graph,
while the chatbot group needs extra effort to combine the
asked question to get the answer. Another reason is that some
questions are not even asked by the participant but are still
calculated here for a fair comparison to maintaining the total
weight sum equal to one. The proposed KG plus chatbot group
achieves better results compared with the chatbot and the KG
groups, as we expected, which proves our proposed pipeline
for assisting humans in AIRlab retail setting.

TABLE IV
THE EVALUATION OF THE ACCURACY FOR FOUR GROUPS

Type Group Accuracy

Static
Chatbot 0.2915
KG 0.2868
KG plus chatbot 0.4407

Dynamic

Linux 0.3915
chatbot 0.4512
KG 0.6323
KG plus chatbot 0.6821

To evaluate the performance of the proposed chatbot, the
PARAdigm for DIalogue System Evaluation (PARADISE)
[56], as one of the most extensively utilized frameworks for
combining different levels of evaluation is used here. The
weights for the individual questionnaire questions for different
subjective variables are set as (i) system usability 0.25, (ii)
clarity 0.25, (iii) naturalness 0.05, (iv) friendliness 0.1, (v)
robustness to misunderstandings 0.2, and (vi) willingness to
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use the system again 0.15, corresponding to the designed
questionnaire directly. The answers for each question from
strongly disagree and strongly agree are projected to the
interval [−3, 3].

P = (α ∗ N (k))−
∑
i

wi ∗ N (ci) (1)

where P is the performance score calculated with the weighted
answer from the questionnaire, k is obtained confusion matrix,
designed with intent and entity of the chatbot performances,
with each weighted 0.55 and 0.45. ci, i ∈ [1 : 4] is the cost,
includes the total number of system and users’ turns, time per
turn, reprompt numbers, inappropriate response, α and wi is
the regressed weight, and N is a Z score normalization.

The evaluations are based on different types of tasks and
different groups, as shown in Table. V. The KG plus chatbot
achieves better performance than only chatbot because it
will be helpful if people intuitively understand the working
principle behind the chatbot. Also, the dynamic task is more
complicated than the static one, and it is expected that the
score will decrease in the chatbot group. On the other hand,
it is interesting to see that the performances for the KG plus
chatbot group are highly improved, meaning that understand-
ing KG will help people to tackle complex tasks.

TABLE V
THE EVALUATION OF THE ACCURACY FOR FOUR GROUPS

Type Group People number Performances

Static Chatbot 4 2.80e-16
KG plus chatbot 7 1.59e-15

Dynamic Chatbot 5 1.97e-16
KG plus chatbot 7 1.84e-15

VI. CONCLUSION

In this paper, we developed a KG-based chatbot to assist
users in comprehending robotic scenario information, includ-
ing static environmental information and dynamic task infor-
mation. The proposed chatbot is able to explain the complex
environmental knowledge to users in natural language or by
KG compared with other NLP technology only commands the
robot to perform specific tasks in HRI. Based on the back-
ground of AIRLab Delft, several IEEE standard ontologies are
extracted and ICRA-LPG schema is adapted as a task-oriented
ontology for a retail setting.

A case study was conducted, and a significant improvement
can be obtained with our designed system, at least 1.5 times
improvement for both static and dynamic scenarios. It is noted
that the proposed task-oriented ontology plays a great role in
assisting users with dynamic tasks. The proposed chatbot could
be enhanced to update static information and command the
robot to complete tasks in a bidirectional approach in future
work. In addition, the potential enhancement of human trust
towards the robotic environment provided by this system can
also be a meaningful research direction.
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APPENDIX

TABLE VI
QUESTIONNAIRE FOR CHATBOT EVALUATION: GROUP2 & GROUP4

Question List
Strongly

disagree

Strongly

agree

Item 1 2 3 4 5 6 7

1 The chatbot responds too slowly. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

2 It was easy to lose track of where you are in the interaction. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

3 It is easy to learn how to use the chatbot. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

4 The chabot’s responses were accurate. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

5 The chatbot didn’t always do what I wanted. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

6 The chatbot was organized and logical. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

7 The chatbot was understandable. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

8 The interaction with the chatbot was consistent. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

9 The chatbot used everyday words. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

10 The chatbot’s response sounded enthusiastic. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

11 I felt comfortable using the system. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

12 The chatbot seemed friendly. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

13 I was able to recover easily from errors. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

14 The chatbot made a few errors. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

15 I felt in control of the interaction with the chatbot. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

16 I would be likely to use this system again. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

17 The system was useful. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

18 The chatbot would help me be more productive. ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
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TABLE VII
QUESTIONNAIRE FOR STATIC PRODUCT INFORMATION: GROUP 2 & GROUP 3 & GROUP4

Item ID mass Pose to grab Position Perishable

Milk

Tea box

Hageslag

Yogurt

Juice

Ice cream

TABLE VIII
QUESTIONNAIRE FOR DYNAMIC ROBOT TASKS: GROUP 1 & GROUP 2 & GROUP 3 & GROUP4

1 What is robot’s first task ? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure

2 What is robot’s second task ? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure

3 What is robot’s third task ? ⃝ Move ⃝ Pick ⃝ Place ⃝ Not sure

4 Which products are robot’s first task ? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

5 Which products are robot’s second task ? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

6 Which products are robot’s third task ? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

7 Which products are on the Table 1 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

8 Which products are on the Table 2 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

9 Which products are on the Shelf 1 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

9 Which products are on the Shelf 2 at the end? ⃝ Milk ⃝ Tea box ⃝Hageslag ⃝ Yogurt ⃝ Juice ⃝ Ice cream ⃝ Not sure

10 What’s your age Please write your answer:

level 1 2 3 4 5 6 7

10 What your professional level with ROS ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

11 What your professional level with Knowledge graph ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
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