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A Psycho-Acoustical Experiment Using a Stereo Dipole for Spatial 
Impression of Music Signals 

Benedetto Nastasi – Delft University of Technology, The Netherlands – benedetto.nastasi@outlook.com   
Massimiliano Manfren – University of Southampton, United Kingdom – m.manfren@soton.ac.uk  
Francesca Merli – University of Bologna, Italy – francesca.merli8@unibo.it 

Abstract 
Acoustic performance of concert halls and opera houses 

is usually assessed by measuring the BIRs (Binaural Im-
pulse Responses). Anechoic music convoluted with BIRs 

constitutes the virtual sound in the way it is played in the 
sound field, i.e. the room. From BIRs, the IACC (Inter-

Aural Cross Correlation) can be computed. This para-
meter makes it possible to evaluate the spaciousness of 

the hall. However, the calculation of the IACC value is 
affected by the convolution technique used as well as the 

kind of musical motif. For example, in the same concert 
hall, the BIR provides three different IACC values in the 

case of three different motifs played in it. This study has 
conducted a psycho-acoustic experiment by using a vir-

tual sound field representation produced by the stereo 
dipole technique in a listening room. In the experimental 

set-up there were two  or four loudspeakers, correspond-
ing to the single stereo-dipole or the dual stereo-dipole, 

respectively. By cancelling the cross-talk pathways (i.e. 
from left loudspeaker to right ear), the parallel sound 

presentation creates a 3D sound field for listeners sitting 
in the target point. The invert Kirkeby method was 

adopted to determine the inverse filters. Finally, the au-
ralization technique with measured BIRs in theatres was 

utilized and the virtual sound field was generated in the 
Arlecchino listening room (Bologna, Italy), a low rever-

beration room equipped with an Ambisonic system. In 
the virtual sound field, the BIR was recorded again by the 

same dummy head used during the measurement in the 
theatres. The similarity between real and virtual sound 

fields was evaluated by comparing some acoustic param-
eters. The stereo-dipole technique demonstrates a good 

degree of accuracy of the sound field appearance. More-
over, the accuracy of the sound field appearance was 

analysed using two musical motifs and three musical 
instruments, comparing the values of the IACC calculat-

ed by echoic music with the virtual echoic music. 

1. Introduction 

In general, acoustical qualities of concert halls and 
opera houses are evaluated on the basis of BIRs 
(Binaural Impulse Responses) measured in them. 
The anechoic music convoluted with BIRs realizes 
the virtual sound as it was played in the sound 
field (Shimokura et al., 2011; Tronchin, 2012; Tron-
chin et al., 2020). The IACC (Interaural Cross Cor-
relation) calculated from the BIRs represents one of 
the parameters to evaluate the spaciousness of 
halls. However, the value of the IACC is changed 
by the convolution technique according to the kind 
of musical motif used (Farina and Tronchin, 2000; 
Tronchin, 2013). For example, one BIR measured in 
the concert hall in Tsuyama (Japan) presents an 
IACC value of 0.16 whilst the IACC value of the 
symphony ”Royal Pavane” (Orlando Gibbons) 
convoluted with that BIRs is 0.39 and the IACC 
value of the symphony “Symphonietta n14 the 
fourth movement” (Malcolm Arnold) convoluted 
with that BIR is 0.32. A proper evaluation of acous-
tic quality is also important for other purposes, 
such as retrofitting design (Caniato et al., 2019; 
Fabbri et al., 2014; Fabbri and Tronchin, 2015; 
Mancini et al., 2017; Tronchin et al., 2014, 2016 and 
2018; Tronchin and Fabbri, 2017). The aim of this 
study is to conduct the psycho-acoustical experi-
ment by using a virtual sound field representation 
by a stereo dipole technique in a listening room. 
The stereo-dipole technique is realized using two 
or four loudspeakers (corresponding to single ste-
reo-dipole or dual stereo-dipole). The calculation 
of proper inverse filters, by means of the Kirkeby 
method, makes it possible to reproduce the virtual 
sound field by means of the (dual) stereo dipole 
method, avoiding cross-talk paths. In this study, 

213



Benedetto Nastasi, Massimiliano Manfren, Francesca Merli 
 

the psychoacoustic experiments were conducted 
using the stereo-dipole technique, considering 
measured BIRs in theatres, virtually reproduced in 
the Arlecchino listening room located at the Uni-
versity of Bologna, Italy. This listening room was 
previously redecorated and equipped with the 
Ambisonic reproducing system. After having cal-
culated the inverse filters, the virtual sound field of 
the rooms was obtained and the BIRs were record-
ed again by the same dummy head used during the 
measurement in the theatres. The similarity be-
tween the real and the virtual sound fields was 
evaluated by comparing some acoustical param-
eters (SPL, EDT, IACC etc) calculated using real 
and virtual BIRs. These acoustical parameters were 
compared and the results suggest that the stereo-
dipole has a good degree of accuracy of the sound 
field appearance (Farina and Tronchin, 2005 and 
2013; Tronchin and Coli, 2015). In this further 
study, we examine the accuracy of the sound field 
appearance using some musical motifs, comparing 
the values of the IACC calculated by “echoic mu-
sic” and “virtual echoic music”. The echoic music 
indicates the anechoic musical signal convoluted 
with a BIR measured in a hall, while the virtual 
echoic music indicates the recorded echoic musical 
signal by means of the single stereo-dipole. Using 
MIDI, the anechoic musical signals are composed 
by considering two different melodies and three 
kinds of musical instruments. The IACC of a long 
continuous music motif was calculated by sliding 
the fixed integration interval along time (Tronchin 
and Coli, 2015). 

2. Materials and Methods 

2.1 IACC (Interaural Cross Correlation) 

When sound is propagated from a sound source, 
the signals received at the left and right ears of a 
listener are different. Interaural cross-correlation 
function (IACF) represents the interdependence be-
tween left (right) signal at the origin and the right 
(left) signal at a delay of 1ms. The IACC is one 
maximum value in the IACF. The IACC can be ex-
pressed by 

 

 

(1) 

where 2T is the integral interval, τ is the time de-
lay, and pl(t) and pr(t) are signals obtained at left 
and right ears. In the case of evaluating a sound 
field, the pl(t) and pr(t) are corresponding to the 
impulse responses recorded at the left and right ear 
positions of a dummy head. 

2.2 Acoustical Parameters Based on the 
IACC 

In some research, the IACC has been modified 
based on the auditory nerve process or the acousti-
cal characteristics of the musical performances in a 
hall. 
Ando (1998) proposed that the IACF should be 
calculated with pl’(t) and pr’(t) which are obtained 
after passing through the A-weighting filter, which 
corresponds approximately to the sensitivity of the 
human ear (Tronchin, 2013). These calculative 
steps are based on the auditory-brain model for 
subjective responses. Unlike the spectral filtering, 
the IACCE is calculated in the limited integration 
time in 80 ms (Shimokura et al., 2011). The early 
part of the signal, such as EDT (Early Decay Time),  
is often evaluated to be important because most 
symphonic compositions include successive notes 
changing rapidly. The IACCE3 is taken into account 
both for the spectral and temporal limitation. A 
signal is divided into one-octave spectral bands, 
and the values of the IACC are led from each band-
passed signal limited to an integration time of 
80 ms. The IACCE3 is the IACC averaged with the 
results of the bands whose center frequencies are 
0.5, 1, and 2 kHz because the spectral energy of a 
symphony distributes mainly around 0.5-2 kHz. To 
evaluate concert halls or musical instruments and 
opera houses acoustically, Farina utilized the IAC-
CE5, while Hidaka and Ando utilized the IACCE3 
(Ando, 1998; Farina, 2001; Farina et al., 1998). As a 
result, a correlation between IACCE and subjective 
evaluation of the halls was found by Farina. In 
another research, the IACCE3 was found with a 
high correlation with a rank order of the halls’ 
acoustical qualities by Hidaka et al. This controver-
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sial results can be explained by several reasons 
(e.g. diverse assessments or subjects). However, it 
is noteworthy that the IACC values chosen by 
them were computed referring to the BIRs of dif-
ferent frequency ranges. 

2.3 Acoustical Characteristic of a Signal 

Ando proposed τ1 and τe to determine temporal 
acoustical characteristics of musical performances 
and adopted them for virtual sound reconstruc-
tions (Ando, 1998; Tronchin and Knight, 2016). A 
normalized autocorrelation function (ACF) was 
used to extract τ1 and τe as follows: 
 

 
(2) 

Where 
 

 
(3) 

2T is the integral interval, τ is the time delay, and 
p’(t) is an original acoustical signal after passing 
through the A-weighting filter. τ1 is a delay time of 
the first positive peak, and τe is an effective dura-
tion of the ACF, defined by the delay time where 
the envelope of the normalized ACF becomes and, 
then, remains smaller than 0.1 as depicted in Fig. 1. 
The value of τ1 indicates the pitch of the signal, and 
the value of τe represents repetitive features, which 
corresponds to different kinds of musical instru-
ments, tempo of the motif and the pattern of play-
ing, such as legato or staccato. Generally, a fast 
tempo or a snap playing makes the τe shorter. 
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Fig. 1 – (a) Definition of τ 1 in normalized ACF; (b) Definition of τ 
e in normalized ACF in logarithm scale 

During a performance of music, the acoustic char-
acteristics (e.g. pitch and tempo) varies as a func-
tion of time. For  observing the fluctuation of 
acoustical characteristics, it is necessary to run the 
ACF. The running ACF is defined by: 
 

 

 
(4) 

Where 
 

 
(5) 

 
After passing, the normalized ACF of p’(t) was 
calculated in the range of integral interval 2T once 
passed through the A-weighting filter. 2T slides 
along the duration of the motif. The structure of 
the running ACF is reported in Fig. 2. 
 

2T

Time

Music

φ(τ;t)
φ(τ;t+∆t)

φ(τ;t+2∆t)
φ(τ;t+3∆t)

∆t: Running step

t

 

Fig. 2 – Running ACF of long musical motif 

2.4 3D Sound Representation by  
Stereo-Dipole 

2.4.1 BIR of the theatre 
In this study, we utilize two kinds of BIR (“BIRn1” 
and “BIRn2”) measured in the traditional Italian 
opera house, Teatro Nuovo in Spoleto (Italy). In the 
acoustical measurement, the sound source and the 
receivers are an omnidirectional speaker (LookLine 
dodecahedral configuration) and a dummy head 
(Sennheiser), respectively. The loudspeaker was 
located in the two positions of the stage; one near 
(BIRn1) and another one far (BIRn2) from the 
frontal edge of the stage, and the dummy head was 
located in one position in the middle of the stalls. 
The values of the IACC of all-passed BIRn1 and 
BIRn2 are 0.39 and 0.26, and IACCE3 of the BIRs are 
0.32 and 0.24, respectively.  
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Fig. 3 – IACC of BIRn1 (○) and BIRn2 (●) as a function of 
frequency band 

Fig. 3 shows the spectral characteristics of the 
IACC in these BIRs. 

2.4.2 Anechoic musical motifs 
Three kinds of an anechoic musical motifs were 
used: “Melody A by trumpet”, “Melody A by 
piano”, and “Melody B by organ”. The scores of 
Melody A and Melody B are shown in Fig. 4. These 
anechoic musical motifs were generated by MIDI. 
The duration of the musical motifs is 30 s. 
 
(a)

(b)  

Fig. 4 – (a) Scores of Melody A (b) Scores of Melody B 

To observe the acoustical characteristics of these 
anechoic musical signals, the running ACF calcula-
tion (see Equations (4) and (5)) was carried out 
along the signal duration. Fig. 5 shows the changes 
of τ1 and τe in the early 5 s. The integral interval 
(2T) and the running step are 1 s and 0.1 s, 
respectively. Although the trends of “Melody B by 
piano” were included in Fig. 5 for comparison 
reasons, this musical motif is not employed in this 
stereo-dipole examination.  
 

 

τ e
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(b)

 

 

 

Fig. 5 – (Different symbols indicate different musical motifs: (-): 
Melody A by trumpet; (●): Melody A by piano; (×): Melody B by 
organ; (○): Melody B by piano. (a) Acoustical parameters for 5 s. 
τ1 (b) Acoustical parameters for 5 s. τe 

It has to be noticed that τ1 is affected by the differ-
ence in musical instruments (trumpet, organ or 
piano) and τe is mainly affected by the difference in 
melody (Melody A or B). 
Since both τ1 and τe changes dynamically over time 
as shown in Fig. 5, it is not easy to determine a 
unique representative value to express distinctly 
the differences between these musical motifs. Par-
ticularly, the values of τe increase to a high value, 
so that the mean value of τe is meaningless. In this 
study, the 300 values obtained by the running ACF 
in a rate of 0.1 s along the duration of 30s are 
converted into the histogram, and the repre-
sentative values are determined by the 50 % 
probability of cumulative frequency. These values 
are termed “τ1 (50%)” and “τe (50%)”, and they are 
listed in Table 1.  
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Table 1 – Anechoic musical motifs and their τ1 (50%) [ms] and τe 
(50%) [ms] 

Musical motif τ1 (50%) [ms] τe (50%) [ms] 

Melody A by piano 1.33 246.5 

Melody A by trumpet 0.88 54.9 

Melody B by organ 0.46 526.7 

Melody B by piano 1.94 308.8 

2.5 Procedure of Dual Stereo-Dipole 

2.5.1 Measurement in Arlecchino listening 
room  

The single stereo-dipole representations were car-
ried out in an Arlecchino listening room at Univer-
sity of Bologna (Italy). Two loudspeakers (Montar-
bo W400A) were located in front of a dummy head 
(Sennheiser) as reported in Fig. 6, whereas the 
other two loudspeakers (Montarbo W400A) were 
located to the rear of it. To obtain the BIRs in the 
listening room, a log swept-sine signal was gener-
ated by Adobe Audition and was presented by the 
two loudspeakers alternately. 
 

237 cm

plus minus 10 deg

Door

Window, curtain

Window,
curtain

Absorptive material

h = 1.2 m

h = 1.1 m

 

Fig. 6 – Arrangement of two loudspeakers and a dummy head in 
the Arlecchino listening room 

After deconvolution of the signals recorded by the 
dummy head, the impulse response of the listening 
room can be obtained respectively for the left and 
right loudspeakers. The envelopes of impulse re-
sponses are smoothed in order to remove extra 
reflections and to leave only the direct sound. 

2.5.2 Generation of cross-talk canceling filter 
The smoothed impulse response was converted 
into cross-talk cancelling filter by using the plug-in 
of “Invert Kirkeby”1 in Adobe Audition. Table 2 

shows the calculation conditions of the Invert 
Kirkeby plug-in. 

Table 2 – Properties of Invert Kirkeby plug-in 

Filter length [sample] 2048 

IN-band parameter 1 

OUT-band parameter 10 

Lower cut freq. [Hz] 80 

High cut freq. [Hz] 16000 

Width 0.33 

2.5.3 Presentation 
The “anechoic music” was convoluted with the im-
pulse responses of the theatres. Conversely, the 
“echoic music” was convoluted again by the cross-
talk cancelling filters based on the impulse re-
sponse of the listening room. The resulted signals 
were presented by the two loudspeakers at the 
same time, and the sounds were recorded by the 
dummy head under almost the same conditions as 
when the impulse response of the Arlecchino lis-
tening room was measured. The recorded musical 
motifs are defined by “virtual echoic music”. 

3. Results 

During a musical performance, the IACC values 
vary as a function of time. The observation of the 
IACC fluctuation is helped by running IACF like 
the running ACF (Farina and Tronchin, 2013; Tron-
chin, 2013). Then, the IACF was computed in the 
range of integral interval 2T (1 s) that is sliding 
(step: 0.1 s) along the duration of the motif (30 s) 
after passing through the A-weighting filter. Fig. 7 
compares the temporal fluctuation of the IACC 
produced by the running IACF in the cases of the 
echoic music (thick line) and the virtual echoic mu-
sic (thin line). For Melody A by piano, the values of 
IACC are similar among the echoic and virtual 
echoic music, although it is difficult to observe the 
synchronous change.  
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Fig. 7 – Running IACF as a function of time. The thick and thin 
lines indicate echoic and virtual echoic music, respectively. The 
red dotted line indicates the values of IACC calculated from the 
all-passed BIRs 

For Melody A by trumpet, the differences between 
them are evident. For Melody B played by organ, 
the IACCs at some moments are quite different 
from each other; however, some IACCs simultane-
ously fluctuate between the echoic and virtual ech-
oic music. In a further step, we compared the dif-
ferent distribution of IACC between the echoic and 
virtual echoic music. It is unlikely that listeners 
follow the dynamical change of IACC; they are 
more likely to judge the spaciousness inclusively 
during musical performances. The running IACC 
arranged on a long time is converted into a histo-
gram, and the cumulative frequency is rearranged 
along the IACC. Fig. 8 shows the results. The 
distribution of IACC is close when the sound 
source is Melody B by organ. On the other hand, in 
the case of Melody A by trumpet, the distributions 
of IACC are more different from each other. More-
over, the results show that the case of BIRn2 can 
represent the vertical echoic music more accurately 
than the case of BIRn1. 
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Fig. 7 Cumulative frequencies as a function of IACC of the echoic music (▲) and the virtual echoic music (○). The red dotted line indicates the 
values of IACC calculated from the all-passed BIRs 

In this study, the gap of IACC between the echoic 
and virtual echoic music was evaluated with 
 
 

 
(6) 

 

 
where IACCechoic(x) and IACCvechoic(x) are the values 
of the IACC calculated from the echoic music and 
the virtual echoic music in the probability x %. The 
errors can be seen in Table 3. It is important that 
the accuracy of the stereo-dipole is dependent not 
only on the kinds of BIRs, but also on the kinds of 
musical motifs. Although the kind of melody is the 
same, the errors in Melody A by piano and Melody 
A by trumpet are different. Although the kinds of 
motif are not enough to support the statistical sig-

nificance, the error values have a good correlation 
with τe (50%) extracted from anechoic musical mo-
tifs. 

Table 3 – Errors of IACC arranged in terms of BIR and musical 
motif 

Musical motif BIRn1 BIRn2 

Melody A by piano 0.07 0.03 

Melody A by trumpet 0.16 0.10 

Melody B by organ 0.04 0.03 
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Fig. 8 – Errors of IACC as a function of τe(50%) of anechoic mu-
sical motif 

4. Conclusion 

Ando developed a running ACF and IACF calcula-
tion of long continuous signal and proposed the 
effective duration, τe, extracted from the ACF of an 
anechoic musical signal to quantify the acoustical 
characteristics of it (Ando, 1998). These studies 
commonly emphasize the usefulness of τe in blend-
ing musical motif and sound field. In this study, 
three kinds of anechoic musical signals were em-
ployed to examine the accuracy of sound field rep-
resentation by the stereo-dipole with a view to 
conducting the subjective experiment judging spa-
tial impression of echoic musical motifs. The error 
of the IACC ranges from 0.03 to 0.16; this result 
seems to suggest that the stereo-dipole systemized 
in the listening room can reproduce the virtual 
sound field of the opera house, Teatro Nuovo di 
Spoleto, with a high correlation. The accuracy of 
results is dependent both on the kinds of BIR and 
on the kinds of the musical motif. It is interesting 
that the anechoic musical signal with longer τe im-
proves the accuracy of stereo-dipole representa-
tion. 
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