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Abstract

Roads are important for many urban planning applications, such as traffic modelling and
delivery vehicle routing. At present, most available datasets represent roads only as centre-
lines. This is particularily true for OpenStreetMap which provides, among many features,
road networks at worldwide coverage. Furthermore, most approaches for creating more
detailed networks, such as carriageways or lanes, focus on doing so from sources that are
not easy to acquire, such as satellite imagery or LiIDAR scans. In this paper we present a
methodology to create carriageways based on OpenStreetMap’s centrelines and open
access areal representations (i.e. polygons) to determine which roads should be repre-
sented as two individual carriageways. We applied our methodology in five areas across
four different countries with different built environments. We analysed the outcome in a
delivery routing problem to evaluate the validity of our results. Our results suggest that this
method can be effectively applied to create carriageways anywhere in the world, as long
as there is sufficient coverage by OpenStreetMap and an areal representation dataset of
roads.

Introduction

Roads are a significant aspect of the built environment and are an important consideration for
urban planners. They are an essential input in a variety of applications including urban traffic
modelling [1], cycle accident analysis [2], vehicle routing [3], and municipal road mainte-
nance, including: de-icing, weed control, road markings and road lighting [4].

Roads are usually modelled as networks at various representation levels (Fig 1): centrelines,
carriageways, and lanes [5]. [6] examined various road applications and evaluated the repre-
sentation level required for analysis. The results of the analysis indicated that there is no “one-
size-fits-all” solution to road modelling. This is inline with other city objects, like buildings [7].
Therefore, an important aspect of designing as solution for a particular application consists of
selecting or preparing data at the appropriate representation level.

There are several data generation methodologies in existence for the modelling of roads.
For most use cases, the automatic reconstruction of road networks has mainly focused on
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Fig 1. The various portions of a road as can be represented from an areal view.

https://doi.org/10.1371/journal.pone.0262801.g001

generating the centrelines of roads, often from satellite imagery (see Section Procedural gener-
ation of road data). While for many applications this is sufficient, there are certain cases—such
as road maintenance or traffic simulation—where this is not enough. For these applications,
carriageway representation is required for a meaningful analysis.

In contrast to carriageways, there is an abundance of existing datasets of road centrelines,
both within governmental spatial data infrastructures and as open data (e.g. OpenStreetMap).
To satisfy the requirements of use cases as stated above, there is an increased push for develop-
ing multi-representation datasets for roads, such as for institutions in the Netherlands [8],
which can be created through an automated process.

In this paper we present a novel reconstruction algorithm for deriving an approximation of
carriageways from centrelines (Section Automatically reconstructing carriageways from a
combination of linear and areal roads). The methodology creates carriageways for centrelines
that fit two flows of traffic and also focuses on reconstructing the network at intersections,
especially complex ones, that are not trivial to create. We implemented our methodology in
the Python programming language that runs as a Jupyter notebook (Section Implementation).
Our methodology utilises the popular open data source of OpenStreetMap which makes our
approach geographically agnostic and allows us to reconstruct carriageways of roads anywhere
in the world. We tested our prototype with datasets from The Hague, Netherlands; Helsinki,
Finland; Poznan, Poland; Shawinigan, Canada; and Toronto, Canada (Section Analysis of the
reconstructed carriageways network). Both our code and data are openly available. Finally, we
validate the quality of our reconstruction by using the network in a routing algorithm (Section
Network analysis).

Related work
Procedural generation of road data

There are only a few studies that address carriageway-level modelling and a further few that
address lane-level modelling. The majority of literature in the field of generating road datasets
focuses on generating the datasets from satellite and aerial images. The focus is often on gener-
ating centrelines from road polygons, extracting the shape of roads, and/or building a road
network with edges and nodes [9-11]. There is also a large body of work on reconstructing
road networks based on GPS traces/trajectories [12-14]. GPS can also be used in combination
with dead reckoning (calculating the current position of a moving object by using a previously
determined position), inertial navigation systems, cameras and/or LiDAR [15, 16]. One study
combined the acquisition trajectory from an autonomous vehicle with a professionally sur-
veyed road network to derive a lane-level network [17]. A similar study harnessed OpenStreet-
Map (OSM) with local sensor information from 3D LiDAR as well as a positioning system to
generate a lane-level dataset [18].
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Roads in 3D city models

From a roads modelling perspective, there is an overlap with the 3D city models domain on
investigating and evaluating the practicality of multiple representations of road networks in
one dataset. Within the realm of 3D city models, the concept of modelling features at various
levels of representation has been heavily investigated, and is referred to as the Level of Detail
(LoD). Furthermore, 3D city models support the storage of roads as areal or linear features

in multiple LoDs. This is defined in both CityJSON [19] and CityGML [20], the most popular
3D city models standards. Therefore, we can draw a direct mapping between road network
representation type (i.e. centrelines, carriageways and lanes) and the LoDs of roads in 3D city
models.

While both standards define the concept of LoDs, the storage of multiple LoDs of roads in
one dataset is an ongoing development and is being refined to address the needs of practition-
ers [5]. The work of [21] recommends for LoDs to be driven more by road surface semantics
than geometry, this includes footpaths, road markings, road damage, etc. [5] instead focused
on a more strictly geometric definition for LoDs, and linking them to modelling transportation
at the road, carriageway, and lane level.

Based on this refined concept of LoDs, [6] examined applications by evaluating the appro-
priate LoD representation required for different analyses, see Table 1. The work examined
both areal and linear representations and found that different applications had varying needs,
meaning that a one-size-fits-all road dataset is not realistic.

OpenStreetMap

OpenStreetMap (OSM) is open-access data that is generated by volunteers who contribute
and maintain data about roads, railway stations, and various points of interest, around the
globe [22]. The data does not stop at country borders and therefore OSM supports a generic
modelling approach. OSM is based on crowdsourcing geospatial information and thereby
opens the domain to all users without restricting it to the traditional cartographers or geogra-
phers [23].

Features in OSM are referred to as elements. Elements are of three types: nodes

(points), ways (linear features and area boundaries), and relations (representations of
how elements relate to each other) [24]. Elements can have one or more associated tags,
these describe the meaning of a particular e lement, i.e. the attributes. There are guidelines

Table 1. Road data representation level required by potential applications. Table based on the work of [6].

Linear Areal

Centrelines Carriageways Lanes Centrelines Carriageways Lanes
Road repair X
De-icing roads X X X X
Disaster management X X
Surface heat monitoring X X
Air quality monitoring X X X
Visibility analysis X X
Noise mapping X X X X
Traffic light configuration X X
Traffic simulations X X X X
Routing / navigation X X X
Autonomous driving X X
https://doi.org/10.1371/journal.pone.0262801.t001
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Fig 2. Screenshot of the OpenStreetMap web viewer. The data is visualised based on the semantics that are derived from the elements tags. For
example, road width is implied based on the road’s type, so the map renders these lines with the respective thickness. (Reprented from
OpenStreetMap under a CC BY License, with permission from OpenStreetMap, original copyright OpenStreetMap contributors.).

https://doi.org/10.1371/journal.pone.0262801.9002

about how attributes should be used to semantically mark the elements; for instance, a way is
considered a road when the tag “highway” is set to a value from a predefined list of road
types. The semantics can be used, then, to make a styled map for visualization purposes deriv-
ing, for instance, the colour and width of roads from their attributes (Fig 2). In case of areal
objects (such as buildings and green spaces) the area is represented by a closed way that
defines its boundaries and the tags of the way are used to describe the semantics and attri-
butes of the area.

OSM is frequently compared to commercial and governmental datasets, and due to the
active maintenance and regular contribution efforts of OSM volunteers, it is often faster to
reflect real-world changes and tends to have more information. In a German road network
study, it was found that the difference between the OSM date and a comparable proprietary
dataset was only 9% [25]. Furthermore, the analysis uncovered that OSM data exceeded the
information provided by the proprietary dataset by 27% [25]. They identified that there is
OSM is actively utilised with an active community generating software [26-28], assessing
errors [29-31], and applying it in use cases [32-34].

Automatically reconstructing carriageways from a combination of
linear and areal roads

Our objective is to reconstruct the carriageway representation of roads from centrelines. We
require as input data: a) the linear representation of the centrelines of a transportation network
(i.e. road lines from OSM), and b) the areal representation of a transportation network (i.e.
polygons). The most important attributes necessary for identifying the presence of carriage-
ways are: a) the OSM attribute for two-way traffic, and b) the road width, which we calculate
as a part of our methodology using the areal representation. An overview of the process can be
seen in Fig 3.
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e Areal Dataset

l OSM Linear Dataset
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Fig 3. The main structure of the reconstruction methodology. Light grey rectangles represent data; dark grey
trapeziums represent preprocessing steps; red trapeziums represent the iterations of our the main methodology.

https://doi.org/10.1371/journal.pone.0262801.9003

Important terminology

Road A real world feature with surfaces that facilitate transportation, primarily for automotive
vehicles. A road spans from intersection to intersection.

Road segment A part of the road that might distinguish itself from the rest of the roads due to
some property (e.g. width or transportation type).

Linear Representation® A transportation dataset with roads represented as a network.

Areal Representation A transportation dataset with the traversable portion of roads repre-
sented as a polygon with measurable areas and widths.

Centreline (CL) An edge of a network that represents the centreline of a road segment. In our
case, this is the OSM data.

Carriageway (CW) An edge of a network that represent the individual streams of traffic flow
in a road. Dual carriageways allow for bi-directional traffic in two different flows, while sin-
gle carriageways either allow traffic flow in one direction, or they allow bi-directional traffic
through the same stream.

Intersection Any point in a transportation network that intersects with more than two roads.
We consider intersections to be nodes of the network of centrelines that have a degree of
three or higher.
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Edge In a network, an edge is an independent linear feature within the dataset. The edge repre-
sents a road segment as a centreline or a carriageway.

Node In a network, a node is a vertex incident to one or more edges.

Degree of node Represents the number of incident edges of nodes. For instance, a node that is
incident to three edges is of degree three.

Neighbours For an edge A, neighbours are considered any edges that share an incident node
with A. An edge should have at least one neighbour, otherwise it is not connected to the
main network.

Weakly connected component In a network, a weakly connected component represents a
subset of the network for which every node can reach at least one other node of this subset.

* Representation can be for centrelines or carriageways.

Filtering. As described in Section, OSM data is composed of elements of which roads
are just a subset. Specifically, road segments are represented as linear elements among oth-
ers, such as building footprints and land use areas (which are represented as closed polylines).
To extract only the roads, we filter the original data so that we keep only those lines that have a
value of the highway tag indicating that it is some form of a motorway. The following values
of highway were kept:

e primary

o secondary

e motorway

o trunk

« tertiary

« unclassified

o residential

« motorway_link
« trunk_link

o primary_link

« secondary_link
o tertiary_link

« living_street

* service

o pedestrian

« bus_guideway
« escape

« raceway

e road
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Table 2. Connected components within the OSM data per area.

Number of Connected Components | Percent of edges within the largest Connected Component

The Hague 96 99.2%
Helsinki 376 97.5%
Poznan 106 99.2%
Shawinigan 6 98.1%
Toronto 56 99.7%

https://doi.org/10.1371/journal.pone.0262801.t002

After we ensure the data contain only the types of roads that we want to investigate, we fur-
ther refine the area of the network spatially. This is because the original data is downloaded
based on the bounding box of the areal representation boundaries. In order to minimize the
road features that are out of the area of interest, we compute the convex hull of the areal repre-
sentation and select only the road features that intersect with it.

To ensure that the filtered roads compose a connected network, we do a basic network anal-
ysis to compute the individual weakly connected components. All edges within a connected
component can reach each other and are therefore connected. Given that we extract data
based on a convex hull, it is likely that we may inadvertently extract roads that are not con-
nected to any/many other roads. We noticed that in all five areas we analysed, the largest
weakly connected component contains over 97% of the nodes (see Table 2) therefore we filter
the network further to exclude the edges and nodes that do not belong to it.

Road width calculation

OSM stores as an attribute whether an edge permits bi-directional traffic. This however does
not automatically mean that the road segment that the centreline represents has the space for
two physical carriageways. Especially in Europe, there are many narrow roads in low-traffic
areas where the road should still be modelled as a single carriageway despite allowing for bi-
directional traffic. We believe that excluding these types of edges from the carriageway recon-
struction (i.e. keeping them as simple centrelines) is an approach that is more aligned with the
real-world representation and better mimics actual driving conditions. Therefore, road width
calculations per centreline are necessary to determine whether a road segment is wide enough
to be considered a dual carriageway. We use the logic that lanes tend to be 3.5 meters wide and
therefore a dual carriageway road should be approximately at least 7 meters wide.

We calculate the road width based on the areal representation datasets according to the
work of [35]. The approach was developed specifically for the BGT (Dutch: Basisregistratie
Grootschalige Topografie, English: Key Register Large-Scale Topography) as areal representa-
tion of the Netherlands and NWB (Dutch: Nationaal Wegenbestand, English: National Road
Database) as linear representation. We adapted it to run with the linear OSM data and any
areal input file.

The algorithm segments every edge in the OSM input data into 11 parts of equal length. At
each cut a ‘measuring line’ is created transversely to the longitudinal direction, which results
in 10 measuring lines per edge (Fig 4). The width of the road at this location is determined by
the length of the intersection of the measurement line with the road polygons that it intersects.
Four values are calculated for each edge: mean, minimum, and maximum width, as well as the
standard deviation. Then, the final width is computed by excluding outliers based on the stan-
dard deviation and only computing the mean of the values inside this range.

This algorithm takes into account that there are cases where the centrelines and the poly-
gons might not overlap perfectly (Fig 5). To overcome this issue, the algorithm always chooses
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Fig 4. Lines used to calculate the road width (excerpt of Toronto). For every centreline (black solid line) there are
nine perpendicular lines (black thin dotted lines) that are created, which are intersected with the polygons of the roads
so that their length can be used to measure the width at the specific point.

https://doi.org/10.1371/journal.pone.0262801.9004

the measuring line that is closer to the centreline, ignoring if it intersects the original centreline
or not. We identified that for our datasets the percentage corresponds to the combined length
of centrelines inside polygons related to the overall length of centrelines that overlap with the
underlying polygons is around 70% (except for Helsinki where the overlap is only at 54% due
to many small roads missing from the areal representation). Therefore, this is an important
feature of the algorithm that allows us to have a robust output of road width calculation.

Reconstruction

We generate a carriageways dataset by iterating over the edges of the network six times (Fig 6).
During each iteration, we process and deal with one edge at a time and make specific decisions
based on the edge and its neighbours. When we do an iteration, the algorithm is only aware of
the current status of the edge being processed and the status of its neighbours prior to com-
mencing the iteration. We ignore any transformation that may have already altered the adja-
cent edges within the current iteration. Not only does this speed up the processing time, but it
also ensures that the reconstruction result is not influenced by the processing order of edges.
Therefore, all edges are processed with the same logic based on a specific iteration step.

Fig 5. Example of an imperfect overlap between the areal and linear datasets in Poznan. Centrelines and polygons
sometimes only partially overlap. This does not affect the road width calculation, as the closest perpendicular lines will
be used regardless of the centreline’s overlap with the polygon.

https://doi.org/10.1371/journal.pone.0262801.9005
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Fig 6. Common intersection types in linear networks and their state during the six iterations of our methodology. The rows represent 5 different
cases (taken from OSM). Note: the inputs of steps 3 through 6 are omitted for the matter of simplicity.

https://doi.org/10.1371/journal.pone.0262801.g006

First iteration—Offset. In this step the basic carriageways’ geometry is created by offset-
ting the centrelines based on their directionality and the road width calculated (Section).
Therefore, an edge can only be classified as a dual carriageway if it is bi-directional (based on
its attributes) and wide enough. We assume that lanes are 3.5 meters wide and therefore a dual
carriageway should be around 7 meters or more. We relax this rule to 6 meters given that there
are various approaches to modelling the areal representation of roads. Specifically the presence
of traffic islands is often recorded as holes in the datasets which reduces the width calculation.

We use the adjusted mean (i.e. mean excluding outliers) calculation of the road width to
determine if a road segment is at least 6 meters wide and use an upper threshold of 15 meters.
The latter was necessary because high values were found to occur in two situations. First, in
many polygon datasets, intersections are modelled as one large polygon, and given that some
datasets attributed large portions of a road segment to the intersection area, this created very
wide polygons (see Section for details). Second, some datasets model parking areas or squares
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as one large polygon which were not possible to filter due to inconsistent attribute names.
Therefore, these were also accounted for with the upper threshold.

For edges that fall below the threshold of 6 meters or above the thresholds of 15 meters, we
check the neighbouring edges to determine how to classify them. If both neighbours are classi-
fied as a dual carriageway then the edge is considered a dual carriageway and given the mini-
mum average width between the two neighbouring road segments. This is only possible for
edges that are not at intersections and for which we can assume a continuation of a road. We
also deal with edges that are in between two intersections and have a road width beyond the
upper threshold. If these edges with width less than 6 meters are less than 20 meters in length
and are neighbouring at least one dual carriageway then they are also classified as a dual
carriageway.

If an edge meets all the criteria described above then it is considered to be a dual carriage-
way. We then reconstruct the carriageways with two edges that are offset from the centreline
based on the road width (Fig 6 (Column 1)). The carriageway edges are offset 25% of the road
width in both directions from the road centreline. This is to model the carriageway edge as the
centreline of the carriageway.

Second iteration—Join. In this step, we join the endpoints of the new offset edges with
the endpoints of their continuations. This is because edges that have been offset in the previous
step will lose connectivity with their continuous neighbours for one of two reasons: either the
neighbour is also a dual carriageway and, therefore, its offset endpoints will probably not
match with the endpoints of the new offset because of their different in width; or the neighbour
is a single carriageway, therefore it only has one endpoint which needs to be connected to the
two endpoints of the carriageways. As a result, during this iteration we restore network con-
nectivity between these edges. First, if the continuation of a dual carriageway edge is also a
dual, then the midpoint between their two end points is calculated and the end points are
adjusted to ensure that the two roads are now connected. If the continuation is a single car-
riageway then “forks” are created between the dual carriageway and the single carriageway.
This is done by trimming the end points of the dual carriageway by 1 meter and joining the
new end points to the end point of the single carriageway.

We have to clarify that a continuation is considered to be the neighbouring edge that is clas-
sified as the next edge of the same road. Therefore, if two edges are only linked with each other
(via a 2-degree node) we count one as the continuation of the other. If an edge reaches an
intersection, then we compute the continuation as the one that seems more likely to belong to
the same road; this means that in most cases the edge with an angle closest to 180° is chosen,
with only some exceptions where the directionality of road can be used to pick a better candi-
date. For instance, in an intersection of three roads were not all three edges have the same
directionality we choose the link the two one-ways or two dual carriageways to be the continu-
ation of each other.

Third iteration—Trim and split. This step is used to trim or split parts of the edges that
end up in intersection, in order to ensure that new nodes are added when the geometries of
the new edges intersect. An intersection is classified as a node at which 3 or more centrelines
meet. When a centreline becomes a dual carriageway, then its new edges are expected to inter-
sect with other lines that it meets in the intersection (especially in perpendicular roads). Fur-
thermore, this step is particularly important for intersections involving a mixture of dual and
single carriageways. Dual carriageways are cut at the point at which they intersect with a road
edge, the portion that is in the intersection is trimmed and removed because a different geom-
etry will be introduced at the next step (Fig 6 (B/C3)). Edges representing single carriageways
are either split or trimmed: when their continuation is a dual carriageway they are split at the
point at which they intersect an edge because this will ensure that it is will still have network
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connectivity with that edge (Fig 6 (B3)); in any other case, they are trimmed so that a new seg-
ment is going to be created in their place (Fig 6 (E3)).

Fourth iteration—Extend. In this step, new edges are being created to connect the parts
that were previously trimmed in order to recover the connectivity of the network. In cases
where three dual carriageways meet, a “fork” is formed between the three (Fig 6 (C4)). A
“fork” is also formed when a dual carriageway becomes a single carriageway in an intersection
(Fig 6 (B4)). A single carriageway that meets two dual carriageways also extends to the opposite
carriageway (Fig 6 (E4)).

Fifth iteration—Snap. This step is to simplify the geometry of an intersection where a
dual carriageway ends to a perpendicular single carriageway. In this case, we snap the “fork”
pieces to the perpendicular road (Fig 6 (D5)). To do this, we identify the second-to-last point
of the carriageway (i.e. the point at the base of the small “fork”) and we compute its projection
to the closest neighbouring edges in the intersection. Then, we move this node to its projection
and we replace the last segment (which was previously a straight line) so that its geometry
matches the same part of the neighbouring edge (e.g. if the line was ending to a curved inter-
secting line, then the last part of the new snapped edge will also follow the curve).

Sixth iteration—Connect. In this step, we add diagonal edges in four-way intersections of
dual carriageways to ensure that traversing the new road carriageway network can better
reflect realistic transport behaviour (Fig 6 (A6)). We, also, add new edges to connect the ends
of the two carriageways of a road segment that were previously a dead end, to ensure that flow
of traffic from one carriageway to another is possible.

Addressing specific cases

The aforementioned methodology deals with all cases of intersections that occurred through
the five datasets that we processed. Nevertheless, with each new dataset we learned of regional
built environment differences that affected previous assumptions we made about our method-
ology. Therefore, for each of those we had to adopt our methodology accordingly, either
adjusting our algorithm away from our previous false assumptions or by treating them as spe-
cial cases. These cases (Fig 7) include:

1. Three dual carriageways meeting with non 90° angles (Fig 7 (1)), where identifying contin-
uations have been proven relatively problematic. Initially, we assumed it would suffice to
choose the line that is closest to the 180° for each of the edges involved. Nevertheless, this
proved to cause issues in degenerate cases where the continuation of every edge was
assigned to a single other edge and there was no single pair of edges that were marked as
opposite continuations. In order to deal with this scenario, we compute continuations at
two steps: first we pick candidates based on the initial logic (i.e. closer to straight next seg-
ments); then we ensure that we only allow an edge to pick another as a continuation as
soon as the other also picks this as such. Finally, we wrote a specific logic to deal with
3-degree intersections of dual carriageways.

2. Two dual carriageways meeting at a 3-degree intersection with a 90° angle (Fig 7 (2a-b)).
This case posed many challenges as to which decisions would make a useful outcome, from
a geometric standpoint. This is because of two issues: first, the two dual carriageways had to
be joined in such a way that their width is not altered (which was the case when we moved
their endpoints to the middle of their distance); and second, the single carriageway should
remain as much intact as possible, so the dual carriageways had to use it as a reference on
how to be shaped. In order to achieve this, we decided that the outer side of the dual turn
would have to construct an additional segment between one of the two dual roads and the
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Fig 7. Five special cases that affected our methodology: (1) three dual carriageways with unclear continuations;
(2) a three-way intersection where two dual carriageways meet a single but the duals are perpendicular; (3) a dual
carriageway that is crossing an existing merging dual carriageway from OSM; (4) exit lane from a dual
carriageway; and (5) small segment that crosses the same road in both ends.

https://doi.org/10.1371/journal.pone.0262801.9007

intersection of the other dual road with the single one. This causes the single carriageway to
move from its original endpoint, which is something we tried to avoid in most cases, but
creates a more realistic output.

3. A created dual carriageway that crosses an dual carriageway already modelled in OSM (Fig
7 (3)), which is a special case of the general problem of dual carriageways that are already
modelled as such in OSM. We did not find a trivial solution to identifying these OSM dual
carriageways in order to treat them similarly to the dual carriageways constructed by our
algorithm, which could have created a more realistic outcome in some cases. Therefore, we
compromised with treating them as single carriageway roads. As shown in Fig 8 this might
not seem as realistic as it could have, but it retains a network connectivity.

Fig 8. Mismatch between existing dual carriageways in OSM and our reconstructed dual carriageways.

https://doi.org/10.1371/journal.pone.0262801.9008
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Table 3. Statistics related to errors.

Network Measures

Number of connected components (cc)
Percentage of edges in the biggest cc

Number of false dead ends

False dead ends as a percentage of all dead ends

False dead ends as a percentage of all nodes

https://doi.org/10.1371/journal.pone.0262801.t003

4.

Exit lanes from one carriageway of a dual road (Fig 7 (4)) are relatively unique both in mat-
ters of network topology (i.e. how they connect with the network) and geometry (their
angle and the segments they intersect). In matters of topology, exit lanes are arbitrary
regarding their connectivity with the other side of the road; should they cross the dual car-
riageway or not? In theory, OSM can contain such complex turning restriction information
in its nodes, but due to the scope of the research we did not use them (neither did we find
such information in some nodes that we investigated). While we could have tried to apply
certain heuristics in order to classify exit lanes, we decided it would have been a complex
and, possibly, unreliable process with little gain. Therefore, we chose to treat them as single
carriageway edges that can always cross both sides of the road. Geometrically, exit lanes
sometimes crossed the new carriageways at a later segment than the original one. This is
due to their relatively small angle with the original road that they divert from, which means
that if the original road segment is short, then the exit lane might cross the carriageway of
the next segment instead. In our methodology, though, we were only testing for intersection
of immediate neighbours, therefore those intersections where not detected leaving the exit
lanes intact and breaking the network (as no node was created between the exit lane and
the new carriageway). To overcome this, we added an extra rule where for short segments
(we put a threshold of 7.5m) we also include their neighbours’ neighbours geometry in the
trimming and extending iteration.

. Side roads that intersect the same dual carriageway road segment twice (Fig 7 (5)), were

proven a degenerate case. Similarly to exit lanes, they were proven challenging both for
topology and geometry. We chose to assume that these cases should be just trimmed and
not allowed to cross both carriageways, because in most cases these where small segments
which are expected to be just side roads and not big segments that allow for turns.

Identification of errors

In order to validate our results and ensure a connected network we focused on identifying
major errors in the final dataset. To achieve this, we used two metrics:

1.

The number of weakly connected components (from now on, only referred as “connected
components”), which is computed in order to ensure that either the whole network is fully
connected, or that at least the overwhelming majority of edges belong to one component.

The number of false dead ends introduced in the carriageways network. In this context,
false dead ends are nodes of the centrelines network that were of degree higher than two,
but after the reconstruction they became dead ends (i.e. 1-degree nodes).

Table 3 lists the values of these metrics for the carriageways that we produced. While there

were new connected components introduced into our network, the vast majority of edges
remain in one main connected component. We also consider the percentage of false dead ends
to be relatively low across all datasets (less than 10% of dead ends or 1% of all nodes).

The Hague Helsinki Poznan Shawinigan Toronto
29 17 13 17 213
99.96% 99.89% 99.96% 99.91% 99.93%
187 316 198 76 912
3.14% 2.04% 1.97% 8.35% 5.67%
0.28% 0.25% 0.24% 0.66% 0.41%
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Fig 9. Examples of loops at the end of roads in Toronto which result in false dead ends.
https://doi.org/10.1371/journal.pone.0262801.9009

Our investigation determined that the majority of small individual connected components
and false dead ends are related to two cases: a) loops which are normally at the end of a road
(Fig 9); and b) complex intersections that can be considered degenerate cases. We chose not to
address these issues because loops do not significantly affect the overall connectivity of the net-
work, while for complex intersections we only address cases to the extent to which our script
can work with worldwide datasets and not degenerate cases that can occur due to the peculiari-
ties of certain areas. In addition to these, the aforementioned metrics can highlight possible
issues with the manipulation of geometries that can be caused due to limited precision of coor-
dinates. This issue can affect operations such as the calculation of a point on a line, which can
occur depending on the environment in which the notebook is run or due to limitations of the
libraries used.

Implementation

We implemented our methodology in Python in an openly available Jupyter notebook (Fig
10). Users only need to provide the areal representation for their area of interest. The road
width calculation is done with a PostGIS script that is called directly from the Python script.
The main libraries utilised are geopandas [36], osmnx [28], networkx [37] and shapely [38].

Once the areal representation of roads is loaded as a geopandas data frame, the convex hull
is calculated in order to utilise osmnx to extract the OpenStreetMap (OSM) data for the same
area. A UUID is computed for every edge in the OSM network.

The final step of our implementation generates metadata that documents all of the process-
ing steps and input data. This ensures output data can be discoverable and analysed in fitness-
for-purpose analysis based on a specific use case.

Computational complexity

The computational complexity of the proposed methodology relies on the complexity of the
width calculation and the individual iterations that compose it. This is as follows:

Width calculation: The width calculation iterates through all centrelines and uses a R-Tree
index to identify neighbouring polygons. For simplicity, we assume that both centrelines
and polygons are of magnitude n. Given the complexity of an R-Tree index lookup, which
is O(log n), the overall complexity of the loop is of O(n log n) complexity.
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~ Jupyter processing Last Checkpoint: 0/11/2020 (unsaved changes) [
Fle  Edt  View st  Cal Kemsl  Wigets Help Tuses| | Pyion3 O
B+ % @B 4 v PR B C P Vakdown v | @
We calculate the amount of ual carriageways:
In [25]: 1 def is_dual(f):
Returns True if this is a dual carriageway.

is is computed based on the count of LineStrings in the feature's
geometry.
return len(f[ carriage ways'].geoms) > 1
len(roads_init[roads_init.progress_apply(is_dual, axis=1)])

To0ss I <:50/505 (010<000, 7 51

Join carriageways
Now, we join the individual network segments with each other:

1. if both are single carriageway there is nothing to do
2. if both are dual carriageways then we compute the midpoint of the end and start node and we join them there
3. f one is single and another is dual then we join the dual to the end node of the single one (making a triangle).

We also identify between in d join them.

In [26]: from shapely.ops import substring, linemerge
from shapely.geometry import LineString, MultiLineString
import numpy as np
import warnings

def is_first_vertex(f, u_nodeid):
return £['u'] == u_nodeid

Fig 10. View of the Jupyter output while running the script.
https://doi.org/10.1371/journal.pone.0262801.g010

First iteration: The first iteration is a loop over all the centrelines with no additional complex-
ity per iteration, therefore the complexity of this step is O(n).

Iterations 2-6: All other iterations are a loop of n centrelines in which every iteration relies on
a lookup of neighbours in the network, which is of O(log n) complexity. Therefore, the
overall complexity of this step is O(n log n).

Therefore the overall complexity of the methodology is:

O(nlogn) (1)

Analysis of the reconstructed carriageways network

We tested our methodology with five different datasets across different regions. We processed
The Hague, Netherlands; Helsinki, Finland; Poznan, Poland; Shawinigan, Canada; and
Toronto, Canada. These were selected due to their differences in region and differences in size
between the towns and cities. As the smallest area we have rural Shawinigan, with just over
5000 centrelines, and on the opposite scale we have urban Toronto with over 140,000 centre-
lines. With this diversity in areas we expect to have captured various different built environ-
ments and therefore vastly different road models. Although, it should also be said that choice
was rather limited due to the lack of widely available open areal datasets.

Fig 11 presents the centrelines for the five datasets and their respective directionality graphs
[39]. The five areas present different characteristics: The Hague has a relatively complex and
irregular shape while maintaining a grid structure of roads; Helsinki has a more sparse net-
work of roads and an equal distribution of roads orientation; Toronto is the densest area of all
and as close to a grid as possible; Poznan is more similar to Helsinki regarding its density and
orientation distribution, although it is slightly more irregularly shaped; and Shawinigan holds
a more urban shape while portraying smaller grid structures which can be seen on its direc-
tionality graph.
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The Hague Helsinki Toronto

Poznan Shawinigan

e

s

Fig 11. Overview of the datasets analysed and their road orientation. Overview of the datasets analysed and their roads’ orientation graphs. Plots
produced using [40]. (Reprented from OpenStreetMap under a CC BY License, with permission from OpenStreetMap, original copyright
OpenStreetMap contributors.).

https://doi.org/10.1371/journal.pone.0262801.g011

Network metrics

Table 4 depicts various network measures to describe the input datasets, the carriageways we
generated, and the differences between centrelines and carriageways. We used as our starting
point the network measures as developed by [41].

The metrics allow us to see the impact of regional differences. It is evident that there are
differences between Europe and Canada which can be observed from the proportion of dual
carriageways. Toronto (36%) and Shawinigan (61%) have the highest proportions, which is
unsurprising given the impact of cars on the development of Canadian cities. Furthermore,
Shawinigan has the highest proportion of all; this is reflective of the space that such rural low-
density communities have access to. Another value that highlights these regional differences is
the road width calculation where the road width medians are much larger in Canada (> 8.5m)
than in Europe (< 7m).

The metrics assist in comparing between the centrelines from OSM and the carriageways
that we generated. A large difference between the two datasets is the change in length. While
across all the datasets the total length increased, the lengths per edge actually decreased. This
can be explained by the trimming and splitting that our reconstruction methodology relies on,
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Table 4. Network measures of the road datasets and comparisons between them. Lengths and areas are measured in m and m?, respectively.

The Hague Helsinki Poznan Shawinigan Toronto
Centerlines (CLs)
Number of Edges 55450 93360 67194 5045 144942
Length—Mean 47.49 30.18 51.18 182.64 64.92
Length—Standard Deviation 64.53 45.61 76.77 361.74 84.44
Length—Median 29.69 16.25 26.45 93.66 39.14
Length—Total 2633566.97 2817813.7 3438957.8 921415.07 9410358.11
Edge Density 0.01596 0.01037 0.00806 0.00134 0.01287
Area to CLs Length Ratio 5.38 4.19 5.5 7.63 7.34
Number of Intersections 46001 85620 57920 3694 114095
Intersection Density 0.00028 0.00032 0.00014 0.00001 0.00016
Node Degree—Mean 3.21 3.14 3.13 3.26 3.17
Node Degree—Standard Deviation 0.43 0.37 0.36 0.45 0.39
Node Degree—Median 3 3 3 3 3
Node Degree—Mode 3 3 3 3 3
Number of Dead-ends 5405 14765 9383 564 12868
Areal Data
Area of Convex Hull 165056810.8 271700741.4 426737497.5 688531584.5 731087991.7
Number of Polygons 55362 40572 14091 4443 66911
Polygon Area—Mean 256.08 290.96 1341.75 1582.44 1032.14
Polygon Area—Standard Deviation 560.89 1023.94 6002 4022.6 3364.6
Polygon Area—Median 121.6 10.45 415.43 968.75 567.7
Polygon Area—Total 14177035.12 11805016.15 18906653.51 7030788.4 69061449.35
Number of Polygons to Number of CLs Ratio 0.998 0.43 0.21 0.88 0.46
CLs to Polygon Overlap 72% 54% 68% 63% 74%
Area to CLs Length Ratio 5.38 4.19 5.5 7.63 7.34
Road Width
Road Width—Mean 10.48 8.97 8.69 9.07 10.35
Road Width—Standard Deviation 11.54 9.16 8.23 5.72 9.86
Road Width—Median 6.86 6.95 6.75 9.22 8.59
Road Width (Excluding Outliers)—Mean 7.34 8.17 7.68 9.55 8.86
Road Width (Excluding Outliers)—Standard Deviation 3.11 2.81 2.94 2.56 2.62
Road Width (Excluding Outliers)—Median 6.6 7.59 7.1 9.5 8.65
Number of CLs Classified as Two-way in OSM 34470 74360 52085 4454 120017
Proportion of Two-way CLs 62% 80% 78% 88% 83%
Number of High Road Width Outliers 12456 21288 13142 495 37919
Proportion of High Road Width Outliers 22% 23% 20% 10% 26%
Number of Low Road Width Outliers 10513 30831 16911 799 43161
Proportion of Low Road Width Outliers 19% 33% 25% 16% 30%
Number of CLs Converted to Dual CWs 11775 25591 14422 3099 51881
Proportion of CLs Converted to Dual CW's 21% 27% 21% 61% 36%
Proportion of Two-way CLs Converted to Dual CWs 34% 34% 28% 70% 43%
Carriageways (CWs)
Number of Edges in CWs Dataset 86079 146907 103027 17736 309394
CWs to CLs Ratio 1.55 1.57 1.53 3.52 2.13
CWs Length—Mean 36.96 24 40.42 84.27 44.79
CWs Length—Standard Deviation 57.6 40.5 69.09 268.74 75.11
CWs Length—Median 18.43 10.98 16.09 6.09 12.93

(Continued)
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Table 4. (Continued)

CWs Length—Total

CWs Density

CWs to CLs Total Length Difference

CWs to CLs Total Length Difference (%)
CWs to CLs Mean Edge Length Difference
CWs to CLs Mean Edge Length Difference (%)
Number of Intersections

Intersection Density

Node Degree—Mean

Node Degree—Standard Deviation

Node Degree—Median

Node Degree—Mode

Number of Dead-ends

CWs to CLs Intersections Change (%)

https://doi.org/10.1371/journal.pone.0262801.t004

The Hague Helsinki Poznan Shawinigan Toronto
3181560.22 3526219.63 4164786.21 1494554.89 13857188.88
0.01928 0.01298 0.00976 0.00217 0.01895
547993.25 708405.94 725828.41 573139.82 4446830.77
21% 25% 21% 62% 47%
-10.53 -6.18 -10.76 -98.37 -20.14
-22% -20% -21% -54% -31%
67315 124056 82484 11586 221199
0.00041 0.00046 0.00019 0.00002 0.0003
3.37 3.42 3.37 4.01 3.68
0.53 0.55 0.54 0.66 0.66
3 3 3 4 4
3 3 3 4 4
5958 15515 10072 910 16092
146% 145% 142% 314% 194%

as well as the introduction of small segments in the intersections. With respect to the nodes’
complexity we noticed an increase in average nodes degrees for all datasets, but in different
proportion between European and Canadian cities; all five datasets have a similar mean and
median degree of around 3 in the original network, but the first ones only show a slight
increase in mean, while the second showed a significant increase in node complexity moving
their median up to 4. This is, also, underlined by the increase in number of intersections,
where Shawinigan and Toronto showed a higher percentage of new intersections (i.e. nodes of
3 degrees or higher). We can link this to the differences in directionality between the areas (Fig
11) as cities with more irregular orientations are more prone to simple three-way intersections
which are not often not altered during the creation of a dataset; in contrast, four-way intersec-
tions create many more nodes (e.g. four 4-degree nodes for an intersection where all incident
roads create carriageways) which further skews the average.

Another interesting observation we made is that although the five cities do not differ greatly
regarding the percentage of centrelines that are classified as two ways in OSM (mostly around
80%, except for The Hague), the same division between European and Canadian countries is
evident with respect to the proportion of two-way centrelines that were converted to dual car-
riageways. Even more so, it is evident that Shawinigan demonstrates an outstanding increase
in carriageways, compared to centrelines, possibly due to its rural setting. Although there is
some correlation to the mean and median road width of the datasets and the final proportion
of carriageways to centrelines, this cannot be linked directly as, for example, The Hague has a
noticeably lower average road width than Helsinki and Poznan but they have very similar pro-
portions of carriageways to centrelines. We believe that the urban nature of these three datasets
and our heuristics that sometimes override the road width to avoid unnecessary dual carriage-
ways must have been a significant factor there.

Network analysis

In order to examine the difference between datasets and regions, we tested our results in a net-
work analysis scenario, with grocery deliveries as a case study. Delivering groceries requires
accurate routing models given that grocery goods are often perishable and must be delivered
to customers at a designated time. Furthermore, a network analysis problem allows us to
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Table 5. Summary of the network analysis input parameters and results for centrelines and carriageways.

Population

Number of Stores

Number of Buildings

Average Drive Distance—CL (km)

Average Drive Distance—CW (km)

Median Drive Distance—CL (km)

Median Drive Distance—CW (km)

Standard Deviation Drive Distance—CL (km)
Standard Deviation Drive Distance—CW (km)
Total Distance—CL (km)

Total Distance—CW (km)

Change in Total Distance (km)

Change in Total Distance (%)

Average Change in Distance (m)

Median Change in Distance (m)

Largest Decrease in Distance (km)

Largest Increase in Distance (km)

Shortest Route—CL (m)

Shortest Route—CW (m)

Longest Route—CL (km)

Longest Route—CW (km)

Number of Building-Store Allocation Changes

https://doi.org/10.1371/journal.pone.0262801.t005

The Hague Helsinki Poznan Shawinigan Toronto
514,861 631,695 540,365 50,060 2,930,000
5 6 5 1 29
260,785 62,639 121,015 18,823 414,374
3.05 4.00 5.39 7.46 2.63
3.12 4.15 5.46 7.55 2.73
2.88 3.90 5.12 7.21 2.52
2.94 3.96 5.17 7.29 2.61
1.40 2.16 2.61 4.67 1.30
1.43 2.27 2.61 4.71 1.32
790,155.16 243,553.41 650,473.92 139,999.65 1,082,166.88
807,992.48 254,360.66 658,817.20 141,747.06 1,123,323.21

17,837.32 10,807.25 8,343.28 1,747.416 41,156.33
+2% +4% +1% +1% +4%
68.91 176.5 69.09 93.06 99.97
20.47 22.67 12.50 -3.96 25.24
3.23 2.96 1.24 2.36 3.67
4.53 5.98 4.06 2.95 3.34
4.05 15.02 1.68 32.67 1.87
4.82 15.01 1.68 18.21 5.42
8.93 11.18 15.04 28.60 9.86
9.07 11.81 15.05 46.09 9.87

2076 (0.80%) 1666 (2.66%) 1903 (1.57%) - 8595 (2.07%)

validate the created carriageways network and to check for connectivity. We assume that there
is roughly one large chain grocery store for 100,000 people [42] and based on the population
we generated random points to act as grocery store locations. We accessed building outlines
from OSM and generated a centroid per building to act as delivery locations. We ran a net-
work analysis to see the fastest estimated drive time required per store to building. Only the
biggest weakly connected component of the outcome of the reconstruction was used in the
network analysis, to ensure that there is proper connectivity between all nodes. The analysis
calculates the drive time from every store to every building but we filter so that we only analyse
the shortest route for every building. We compared the results between the road centrelines
and the carriageways (results in Table 5). Analysis was run with the QNEAT3 plugin in QGIS
3.14 [43].

As is clear from the analysis there are mainly small differences in the averages between cen-
trelines and carriageways. The mean and median drive distance between all datasets is very
similar despite the difference in detail between the two datasets. This highlights that the overall
connectivity of the network is sufficiently preserved. Nevertheless, there are some individual
routes that seem to have significant changes; we noticed that there can be decreases and
increases in driving distance of one to six kilometres for individual routes, which is an impor-
tant change for the specific routes. We believe that this highlights how specific cases can be
greatly impacted by the difference in the details of a network and this should be taken into
account based on the application for which the network is intended for. In addition, while the
difference in the total distance of all routes might not be large as a percentage, the absolute val-
ues are still large enough to affect applications such as fuel consumption.
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When analysing the results of the network analysis it is important to remember that the use
case dictates the geometric level of detail required. In the case of grocery delivery routing,
where precise distances are required to route the multiple delivery orders on a given day, car-
riageways may provide more realistic routing scenarios. Furthermore, in an industry where
preparing to deliver on time requires models to account for the worst-case scenario vs. the best
case scenario, carriageways provide a more conservative routing calculation. On the other
hand, the processing time for routing on carriageways is larger than for centrelines, so if the
goal of the use case is to do a more simple analysis (e.g. routing for scenic routes) then centre-
lines provide a faster solution.

Finally, the geometric level of detail can have implications for customers that live in-
between two stores. Customer to store allocation could significantly affect creating retail catch-
ment areas. As seen in Table 5, between 0.8% and 2.66% of customers experienced a change in
the store they were allocated to. This can have implications given that different stores may
have different product ranges which may impact customer shopping decisions e.g. the avail-
ability of international food products.

Discussion

Our methodology reconstructs carriageways from initial centrelines based on the calculated
width, and focuses mainly on solving the reconstruction of edges near intersections which
proved to be the most complex. This is because there is diversity in the types of intersections,
not only in topology (i.e. degrees of nodes and the number of carriageways of incident roads),
but also in geometry. In our implementation we solved all cases that we consider to be most
common and ensure that the algorithm can be applied to multiple datasets around the world,
creating a robust enough output to be used for network analysis. Nevertheless, we did encoun-
ter some degenerate cases that we did not solve, especially in areas with irregular shapes of net-
works such as in The Hague, and we expect that this can occur when our methodology is
applied to other areas. This is more prominent due to the nature of crowdsourced data, such as
OSM, with which one is bound to encounter many surprising new road cases, deviant cases
that break all the logic of the aforementioned methodology. This work was based on a balanc-
ing act of dealing with such deviant cases and adjusting for others, sometimes at a small cost to
aesthetics (Fig 12).

Working with OSM proved to have its own influence on our research, due to its varying
nature and the sometimes inconsistent manner in which roads are modelled. One of the issues
we encountered was that sometimes dual carriageways were already drawn as individual lines
in the original dataset (see Fig 8). Ideally, these existing carriageways should be identified and,
when they connect, linked with our newly created carriageways. However, this is not a trivial
process as it would require heuristics, in this case geometry, topology, and/or semantics (e.g.
name of road), which could be used to group lines together. Not only is this not a trivial task,
this would make the process more prone to errors. In addition, adjusting the geometry of these
existing carriageways to join the new ones would be challenging in itself. Nevertheless, we
expect that our statistics might be slightly skewed towards a lower number of dual carriage-
ways, but given that these OSM modelled dual carriageways are not that common we do not
think this is a big concern.

Another interesting observation about using OSM data is the dynamic nature of the data.
Given that OSM is constantly being updated and our notebook always downloads the data
directly from their service, we expect that running the exact same script multiple times will
have different results. This is not only with respect to permanent changes in roads, but some-
times temporary changes as well. For example, in one instance of running our algorithm for
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Fig 12. Fixing overall topology in the network was prioritised over pure aesthetics. Comparing Iteration 2 with Iteration 5 for a single to dual
carriageway in an intersection.

https://doi.org/10.1371/journal.pone.0262801.9012

Helsinki we realized that a whole neighbourhood was disjointed from the rest of the network
because the one edge that was connecting them was a road temporarily closed at the time,
which lead to this neighbourhood being an individual connected component and being
excluded from the rest of the analysis.

An important part of our algorithm is the calculation of road widths, which affects the rest
of the process. While it is essentially just a single step which was not solved by us, we encoun-
tered the complexity of the issue, and we realized it is not a straightforward or trivial problem
to solve. Roads can be of variable width along their entire length and the way they are modelled
in their areal representation can greatly influence this (Fig 13); how often roads are subdivided
into polygons, intersections represented as one or multiple polygons, or how polygons are
designed to represent physical areas can all greatly affect the outcome of a width calculation.
For example, in The Hague we noticed that there were many road polygons with some rectan-
gular holes in them (representing placeholders for transport objects such as traffic islands), so
based on the road width calculation methodology these holes might have skewed the width of
the entire road.

There is a high degree of variation in the resulting road widths for our datasets (Fig 14),
which can be explained by the factors we mentioned before. The result is that sometimes the
width computed was unreliable, especially close to intersections (Fig 15). In these cases, we
tried to use topology to improve the outcome of the decision between dual and single carriage-
ways, so if only the last part of a road section is defined as a dual carriageway while the rest is
not then we mark it as a single carriageway.

With respect to the actual construction of edges in our algorithm, we noticed that the sim-
ple notion that edges are road segments can be misleading. This is because sometimes edges
do not represent actual roads, but only serve the purpose of connectivity. For example, in cases
of roads with two carriageways that are separated through a traffic island, there can be multiple
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Fig 13. The different approaches to modelling intersections, clockwise from top left: The Hague, Helsinki,
Shawinigan, and Toronto.

https://doi.org/10.1371/journal.pone.0262801.g013

edges that represent a simple break of the traffic island. Our algorithm assumes these edges are
roads and their width counts, but they only represent traffic flow instead of an actual road so
their geometry (hence, their road width calculation) is irrelevant. We tried to exclude these
edges from our calculation by applying a rule that when a short edge connects two nodes of
degree higher than two, then we do not modify it.

Our methodology is iterative: for every processing step we are iterating through all edges
and compute the outcome for the next step. This ensures that all edges are treated equally,
meaning that they know the exact state of the rest of the network prior to this step. While this

100-

il¢;;4i

.
The Hague Helsnki  Poznan Shawinigan The Hague Helsinki Poznaf Shawinigan Toronto

Width
Width

Fig 14. The range of road width values per area in our study. Figure A is all road width values. Figure B is road width
values excluding outliers.

https://doi.org/10.1371/journal.pone.0262801.9014
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Fig 15. A false “roundabout” generated based on the impact of the road width tolerance.

https://doi.org/10.1371/journal.pone.0262801.9015

guarantees consistency between the network (two edges in a similar environment get the same
output despite the order that they are processed), it poses some limitations to our solution
because sometimes when processing an edge we need to have information about how their
neighbouring edges will be affected by this step as well. This creates a recursion that could
become endless, therefore when this occurred we solved it by introducing multiple passes of
the same step. For example, during the first iteration (carriageway creation) where we some-
times use the information of neighbouring edges’ width to decide whether the current edge is
a single or a dual carriageway, we encountered the problem that an edge might consider the
neighbours to be single carriageway, but they ended up being dual (due to the influence of
their neighbours). We decided to only do two passes for this calculation, because there is no
finite solution to this problem.

Due to the iterative process, we were only able to use certain network characteristics with
respect to every individual edge. Nevertheless, occasionally we had to rely on some geometric
information (such as the angle between lines) to determine how to process the current edge.
However, there is further information about the nodes themselves (i.e. the intersections) that
could have further helped the algorithm. For example, knowing whether a three-way intersec-
tion is of a T or a Y shape could have replaced our existing angle calculations between edges
and might have had better results. Although, this would be possible if the iterations were based
on nodes, instead of edges.

Finally, flyovers are an important aspect to consider, especially when dealing with a 2D
dataset. Flyovers impact network modelling because it is important to pay attention that nodes
are not simply placed where two edges cross each other, where in cases of flyovers would indi-
cate incorrect connectivity. We were concerned that flyovers would skew our road width cal-
culations due to discrepancies we identified between grade separation classifications in linear
and areal datasets. We were also concerned that identifying which polygons truly overlap with
which road edges would be a difficult task. In the end, we found flyovers not to be an issue
for our methodology because it was determined that OSM models flyovers as one-way lanes
which we do not process.
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Conclusions

In this paper we presented a novel approach to automatically create an approximation of car-
riageways from centrelines of roads. We applied our algorithm to five areas in different coun-
tries (The Hague, The Netherlands; Helsinki, Finland; Poznan, Poland; Shawinigan, Canada;
Toronto, Canada) using data from OpenStreetMap and local areal representations to compute
the road widths (to determine which centrelines should be converted to dual carriageways).
Our method demonstrates that it is possible to produce a useful network of carriageways based
on a procedural process and heuristics.

In many studies, related to modelling carriageways, the generation method is often separate
to the centreline generation. In other cases it is a purely manual method where various levels
of detail are acquired by topographers or surveyors for a specific case study. Our study has
examined how to generate carriageways from centrelines with the aim that the datasets can
still be linked together for usage in various applications. Furthermore, many carriageway crea-
tion studies often focus on employing expensive technology, such as laser scanning, while we
hope to harness the power of open data to generate the data easily. We believe that by automat-
ing this process and allowing it to run based on an open dataset that is available worldwide,
such as OSM, we can democratise the process of creating carriageways consistently.

Our methodology was developed to be generic enough in order to ensure that it is geo-
graphically and application independent. Our main goal was to ensure that a valid and con-
nected network is created, which can be easily adopted to work with any centerlines network
dataset.

Future work

Our current approach uses an areal representation to compute road widths in order to derive
the number of carriageways for every road edge. We currently only focus on one road width
value but it may be beneficial to look at several other values such as median, maximum, mini-
mum, and standard deviation to see whether we can determine a more thorough road width
calculation. Also, while we rely on having areal representations, these datasets are not widely
available everywhere in the world, so our code could easily be adjusted in order to omit calcu-
lating road width and to instead derive the number of carriageways based on semantics (e.g.
the type of road and its length).

Furthermore, our approach is currently tailored towards regions where forward-moving
traffic is on the right-side of the road. While it would be fairly easy to adapt our methodology
to work with left-side forward-moving traffic, due to the lack in availability of open areal repre-
sentation datasets for such regions, we decided to leave this for future work. Adjusting the
existing solution to work with left-side traffic will be trivial.

Finally, we briefly investigated the possibility of creating lanes, but it became evident to us
that such a process comes with more challenges and different challenges than carriageway cre-
ation. This is because lanes are closer related to geometry, in the sense that they are often not
symmetric (such as with carriageways) and they require much more detailed information espe-
cially with respect to road width calculations. Therefore, future work can focus on computing
more detailed width information about roads and creating lanes based on the geometric char-
acteristics of the areal representation of roads. Lane generation will also require an investiga-
tion into whether lanes should be generated from centrelines or from carriageways.
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