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ABSTRACT

In situ strain evolution during laser welding has been measured by means of digital image corre-
lation to assess the susceptibility of an advanced high strength automotive steel to solidification
cracking. A novel method realised using auxiliary illumination and optical narrow bandpass fil-
ter allowed strain measurements as close as 1.5 mm from the fusion boundary with good spatial
and temporal resolution. A finite-element thermomechanical model of the welding process sup-
ports the experimentally measured transverse strain. The validated finite-element numerical
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model can be used to assess the local strain and associated stress conditions which influences

weldability and in particular, solidification cracking.

Introduction

In the last decades, laser beam welding has become
increasingly popular in the automotive industry. The
high power density (~ 101 Wm™2) facilitates the
welding of steels at high speed, thereby increasing pro-
ductivity. During welding, materials experience non-
uniform heating and cooling cycles; this results in
the development of stresses, deformation and distor-
tion. Apart from metallurgical effects, the evolution of
strains and stresses in the weld and heat-affected zone
determines the weldability of an alloy. An important
indicator of weldability is its resistance to cracking,
either in the weld or in the heat-affected zone. One
of the major defects encountered in the casting and
welding industries is hot tearing, also referred to as
solidification cracking [1,2]. Accurate determination of
local strain and associated stresses produced during
welding is important to generate a better understanding
of welding-induced deformation and defect formation,
including solidification cracking.

One of the methods to measure full-field displace-
ment and strain during a thermomechanical process is
digital image correlation (DIC). With this technique,
camera(s) acquire digital images of a random speckle
pattern on a specimen during the deformation pro-
cess. To correlate the reference image and the deformed
image, an image is divided into subsets of pixels. These
subsets are tracked to obtain displacement in the hori-
zontal and vertical directions [3]. The DIC technique
has been used to measure strains at grain level [4],
study failure in thermal barrier coatings [5], investigate

fatigue cracks [6], etc. DIC is generally applied ex situ
for welding-related measurements. In situ studies are
hindered by the intense light emitted during welding,
which renders observation close to the fusion bound-
ary difficult. There are only a few reported studies in
which the in situ strains are measured during weld-
ing [7-10]. In these studies, displacement fields were
measured either far from the weld centreline or on the
underside of the specimen to minimise the effect of
intense light and heat.

In this work, the DIC technique is applied on the
upper surface close to a weld to measure in situ trans-
verse strain fields during laser welding of a commercial
advanced high strength automotive steel (AHSS).

Experimental set-up

Bead-on-plate welding experiments were performed
using a 3 kW Nd:YAG laser in the keyhole mode. A laser
power of 1100 W and a welding speed of 10 mms™!
were used in all the experiments. Rectangular trans-
formation induced plasticity (TRIP) steel sheets of
dimensions 90 x 45 mm? and 1.25 mm thickness were
welded. The chemical composition of the steel is C —
0.19, Mn - 1.63, Al - 1.1 and Si - 0.35 (all in weight
%). The experimental arrangement used in this work is
shown schematically in Figure 1(a). This figure includes
the coordinate system used for DIC measurements. The
starting beam position was at x =0 mm, y =13 mm and
t=0s. The distance of the laser beam from the free
edge was maintained at 13 mm. Similar bead-on-plate
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Figure 1. (a) Schematic of the laser bead-on-plate welding and DIC measurement set-up, (b) Typical emission spectra of an Nd:YAG
laser plume on an iron-based specimen. The graph is replotted from [11]. The position of the optical narrow bandpass filter in this
spectrum is also indicated, (c) Simulated and experimental temperature cycle. Here, T(1) refers to the measured temperature cycle at
a distance of 3 mm from the weld centreline towards the free edge. T(2) and T(3) are the measured temperature cycles at a distance
of 2.5 and 4 mm from the weld centreline towards the constrained edge.

experiments are conducted as standard tests to deter-
mine the hot cracking susceptibility of steels used in the
automotive sector [12]. Random speckle patterns were
applied on the top surface using a high-temperature
commercial paint. The paint can withstand tempera-
ture up to 1100°C. The temperature during the weld-
ing process was measured at several positions close to
the fusion boundary by spot-welded K-type thermo-
couples. A full penetration weld bead with a width of
2.8 mm was obtained.

A LIMESS Q-400-3D DIC system [13] along with
a commercial software package Istra 4D was used to
capture and analyse images at a frame rate of 8 Hz.
Before carrying out image correlation on the speci-
men surface, calibration of the DIC cameras was car-
ried out using 10 images of a translated and rotated
planar dot pattern of known spacing. A typical emis-
sion spectra of the laser plume on an iron-based spec-
imen are shown in Figure 1(b) [11]. To minimise
the effect of intensity of laser plume light, two auxil-
iary high intensity 30 W LEDs with a wavelength of
450 nm were used to illuminate the top surface of the

specimen. Corresponding optical narrow bandpass fil-
ters with a centre wavelength of 450 nm and a full-
width half maxima (FWHM) of 10nm were placed
in front of the lenses to minimise the effect of plume
light. This approach allowed measurement of displace-
ment fields as close as 1.5-2mm from the fusion
boundary.

Modelling approach

A finite-element (FE)-based thermal elasto-plastic
model of the welding process was developed to com-
plement the understanding of experimental results.
After validation, the FE-model can be used to ascertain
strain fields in regions where laboratory experimen-
tal measurements are impractical. A sequentially cou-
pled 3D FE thermal elasto-plastic model with isotropic
hardening was developed to numerically calculate the
temperature and the strain fields for the laser bead-on-
plate welding process. In the first step, a heat transfer
analysis was conducted to retrieve the time-dependent
temperature field.



wV (travel speed)

Conical heat source

Figure 2. Schematic of the 3D Gaussian conical heat source
used in this work.

A 3D conical heat source with Gaussian distribution,
as shown in Figure 2, was adapted to describe the laser
beam heat input [14,15]. The power density distribu-
tion at any plane perpendicular to the z-axis may be
expressed as

—372
QU = QU eXP ( 2 ) (1&)
rO
with
r=/x*+y? (1b)
and
To = 1o — W) (1c)
(ze — zi)

where Q, is the total volumetric heat flux in Wm™3,
Qo is the maximum heat source intensity in W m3,r
is the radial coordinate of interior point, r, and r; are
the top and bottom radius of the conical heat source,
respectively. z, and z; are the z coordinates of the top
and bottom surfaces, respectively. The height of the
cone, i.e. z, — z; was assumed to be the thickness of the
steel sheet and r,, r; were adjusted to obtain the weld
dimensions observed experimentally.

Subsequently, the temperature field history was
applied as a thermal load for simulating the thermome-
chanical response of the material. This kind of sequen-
tial coupling approach is common in welding research
[16-20]. Commercial software, COMSOL™ was used
for this purpose. Quadratic elements with a minimum
mesh size of 0.3 x 0.5 mm? and depth 1 mm were used.

The thermophysical and mechanical properties of
the TRIP steel used in this model were taken from
[21], based on a steel with a similar chemical com-
position. Latent heat during the solid-to-liquid (and
vice versa) phase transformation is included in the
temperature-dependent-specific heat capacity of the
material. The release of latent heat during solidifica-
tion is based on the phase fraction obtained using the
Scheil-Gulliver solidification approximation. The ther-
mal expansion coefficient (@) in the two phase region
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is also assumed to be dependent on the phase fractions.
Thermo-Calc™ was used to obtain the temperature-
dependent phase fraction data based on the chemical
composition of the steel.

In the mechanical analysis, the translational and
rotational displacements at the fixed edges of the sheet
were constrained. The out-of-plane movement on the
surfaces in contact with the clamp was also set to zero.

Results and discussion

Figure 1(c) shows the measured and simulated thermal
cycle at thermocouple locations T(1), T(2) and T(3),
respectively. T(1) refers to the measured temperature
cycle at a distance of 3 mm from the weld centreline
towards the free edge. T(2) and T(3) are the measured
temperature cycles at a distance of 2.5 and 4 mm from
the weld centreline towards the constrained edge. Good
agreement was found between the experimental and
simulated thermal cycles. Therefore, time-temperature
profiles in the heat transfer model were subsequently
imported to the thermomechanical model and the ther-
momechanical response of the material was simulated.

Figure 3(a) shows the spatial distribution of trans-
verse strain (in %) at t=3.0s on a surface 2 mm from
the fusion boundary. The top image shows the numer-
ically computed distribution. The bottom image over-
laying the speckle pattern shows the experimentally
measured distribution. At some locations, black spots
are seen in the strain map. The measurement could not
be performed at these locations due to data distortion
caused by fume and spatter.

The transverse strain (TS) field during welding was
measured at t=1.75s and t=2.25s along lines H1
and H2 parallel to the weld (Figure 1(a)) of length
20mm and at a distance of 2mm and 5.5mm from
the fusion boundary, respectively. The starting coordi-
nates of lines H1, H2 are (10, 9.5) mm and (10, 6) mm,
respectively. Temporal evolution of transverse strain
was measured at points P1 (10, 9) mm P2 (22.5, 10) mm
and P3 (30,9) mm. The coordinates of the points are
mentioned in the brackets. Transverse strain data at
these locations were also extracted from the FE-based
numerical study.

Figure 3(b,c) show both the experimentally mea-
sured and numerically computed distribution of trans-
verse strain (in %) along lines H1 and H2 at t=1.75s
and t=2.25s. The strain distribution measured by
the DIC technique is comparable with the numerical
results. Owing to the optical filtering of the intense
laser plume light, a good spatial resolution close to the
fusion boundary is achieved. Deviation of the numeri-
cally obtained transverse strain distribution along line
H1 at t=2.25s compared to the experimental results
could be due to the underestimated thermal conduc-
tivity. At t=1.75s, the laser beam is at a distance of
7.5 mm from the starting points of lines H1 and H2. At
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Figure 3. (a) Spatial distribution of transverse strain (in %) at t = 3.0 s. Top image shows the distribution calculated using the FE-
based model. The bottom image overlaying the speckle pattern shows the strain distribution measured using the DIC technique.
The coordinate system used is the same as that used in Figure 1(a), (b) experimentally measured and numerically computed spatial
distribution of transverse strain (in %) along the line H1 and H2 at t = 1.75 s, () experimentally measured and numerically computed
spatial distribution of transverse strain (in %) along the line H1 and H2 at t = 2.25s, (d) experimentally measured and numerically
computed temporal distribution of transverse strain (in %) at P1, (e) experimentally measured and numerically computed tempo-
ral distribution of transverse strain (in %) at P2, (f) experimentally measured and numerically computed temporal distribution of

transverse strain (in %) at P3.

this time, the measured transverse strain decreases at
a rate of ~ 6.8 x 10~* mm along the line H1, while it
decreases at a rate of &~ 2.9 x 10~* mm along the line
H2. At a distance of ~2.5mm in front of the laser
beam, the transverse strain approaches zero. As the
laser beam progresses further into the specimen, the
transverse strain gradient along H1 and H2 direction
decreases.

Figure 3(d-f) shows the measured and computed
temporal transverse strain evolution at points P1, P2
and P3, respectively. The strain reaches a peak value
when the laser beam approaches these positions. There
is reasonable agreement between the experimental and
numerical results. Numerically calculated peak trans-
verse strain in the case of P3 was 0.0083, while the
measured peak strain was 0.0093. Compared to P2 and
P3, a large noise in transverse strain was observed at
P1. This could be due to the loss of DIC data integrity
in close proximity of P1 during welding. Error in
displacement measurement of a subset occurs when
comparing images with insufficient viable data. Other
potential error sources of the DIC technique are dis-
cussed in [22].

The initial existence of steep gradients in transverse
strain near the start of the weld increases the suscep-
tibility to weld solidification cracking. Traditionally,
the amount of strain experienced by the weld metal is
difficult to estimate in view of complex geometric and
thermal conditions. Hence controlled strain applied on

a geometrically simple specimen is preferred for the
evaluation of cracking tendency. Several tests exist that
satisty the above condition, such as the varestraint test,
the PVR test (programmierter Verformungsrisstest)
and the sigmajig test [23]. However, local conditions in
the mushy zone that lead to solidification cracking are
controlled, to a significant degree, by the development
of the local macroscopic stress/strain conditions in the
crack susceptible region [24]. The capability to mea-
sure strain (rates) close to the fusion boundary makes
it possible to obtain information on strains in the weld
region.

The two-step approach of experimentally measuring
strain field and using a validated FE-based numerical
model allows prediction of local critical stress/strain
that leads to solidification cracking. As an example, the
temporal evolution of transverse strain at a point P4
with coordinates (22.5, 10.5) mm, i.e. ~ 1 mm from the
fusion boundary was calculated using the validated FE-
based numerical model (Figure 4). To compare, tempo-
ral transverse strain evolution at P2 is also plotted. As
expected, at P4 the transverse strain is higher than that
at P2.

Summary

In summary, an approach to measure in situ strain
fields on the top side of a welded specimen close to the
fusion boundary is introduced. This method, based on
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external illumination and filters, allows measurement
of strain fields with good spatial and temporal reso-
lution as close as 1.5mm from the fusion boundary.
A validated FE-based numerical model can be useful
in estimating local stress/strain conditions that prevail
during welding. This model can be used to ascertain the
strain/stress field in regions where laboratory experi-
mental measurements are impractical.
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