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Abstract

Swing options give contract holders the right to modify amounts of future delivery
of certain commodities, such as electricity or gas. In this paper, we assume that
these options can be exercised at any time before the end of the contract, and more
than once. However, a recovery time between any two consecutive exercise dates is
incorporated as a constraint to avoid continuous exercise. We introduce an efficient
way of pricing these swing options, based on the Fourier cosine expansion method,
which is especially suitable when the underlying is modeled by a Lévy process.

1 Introduction

A swing option usually consists of two contract parts: a future part and a swing part. The
future contract guarantees that the option seller delivers certain amounts of a commodity
(base load) to the option buyer at certain times, T0 < T1 ≤ T2 · · · ≤ TN ≤ T , with T the
maturity time. The swing part gives the option buyer the right to order extra or deliver
back amounts. Usually, the motivation behind the purchase of a swing option is to hedge
away the uncertainty in the future demand of a commodity. The future part of a swing
option can be priced as the discounted expected price of the underlying commodity at
the delivery times, whereas the swing part, the focus of the present paper, can vary in
contract complexity and is most interesting from a numerical point-of-view.

In the literature the swing option is often modeled as a Bermudan-style option with
swing actions being allowed at the (fixed) delivery times of the base load, combined with
some constraints. Pflug and Broussev [8] model the bid and ask prices as the least accept-
able contract price and the maximal expected profit over demand patterns, respectively,
and those prices are determined by stochastic programming. They present an algorithm
to find the equilibrium prices from a game theoretic point-of-view.

Jaillet, Ronn and Tompaidis [10] use a trinomial forest model where a so-called usage
level is discretized. Their model is a multiple layer tree which captures the information
of the number of exercise rights remaining, the total amount exercised, and the price
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scenario. By a swing action one moves from one tree to another. A discrete binomial
methodology is also applied by Lari-Lavassani, Simchi and Ware [14], where a transition
probability matrix is used to calculate the expected profit, to be maximized over different
swing actions at each time step.

Carmona and Touzi [13] view swing options as American-style contingent claims with
multiple exercise opportunities and address the problem from the perspective of multiple
optimal stopping problems, dealt with by means of Monte Carlo methods and Malliavin
calculus. They focus on the Black-Scholes dynamics. Zeghal and Mnif [12] extend that
method to Lévy processes.

Unlike the models in which swing actions are only allowed at discrete times, Dahlgren [1]
proposes a continuous time model to price the commodity-based swing options. Here the
option buyer can exercise the swing option any time before expiry, and more than once,
with an upper bound for the maximum amount of additional commodity that can be or-
dered or delivered back (specified in the contract). After a swing action, the option buyer
cannot exercise again unless a recovery time, τR(D, t), has elapsed, where D represents the
amount of commodity and t is the exercise time. This recovery time can be constant, or
dependent on the amount of the last swing action. Dahlgren [1] connects the price of the
swing option to a system of discrete variational inequalities of Hamilton-Jacobi-Bellman-
type, that are solved by means of finite elements and a projected successive over-relaxation
(PSOR) algorithm [15]. A combination of dynamic programming and a finite difference
approximation of the resulting partial integro-differential equation (PIDE) under Lévy
jump processes has been presented in [11].

The purpose of the present paper is to develop an efficient alternative solution method
for the continuous time model in [1], which is at least competitive with PIDE solvers or
Monte Carlo methods in terms of efficiency, accuracy and flexibility. Our solution method
for the swing option is based on dynamic programming, backward recursion and Fourier
cosine expansions, as in [2, 3]. For the dynamics of the underlying prices, we employ the
Ornstein-Uhlenbeck mean-reverting process, commonly used in commodity derivatives,
and the CGMY Lévy jump process [7]. The present work can be seen as a generalization,
in terms of the financial products, of the work in [2, 3].

This report is organized as follows. Details of swing options are presented in Section 2.
In Section 3, our contribution to pricing swing options is described in detail. We consider
both constant and state-dependent recovery times. Numerical results are presented in
Section 4. We focus in this paper on the algorithmic description, which is somewhat
technical at places. An error analysis is not included here, but it is included in [2, 3]
for European and Bermudan options, which are the building blocks of the present swing
option algorithm.

2 Details of the Swing Option

In our discussion, we ignore the future part of the swing option and concentrate on the
swing part. Whenever we mention the term ’swing option’, it indicates the swing part of
the option.
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2.1 Contract Details

As a start, our assumptions for the swing option are listed below.

� We adopt the concept of recovery time, denoted by τR(D), which means that if the
option buyer has already exercised the swing option with an amount D at time point
t, he/she has to wait τR(D) time before a next swing action can be conducted. Two
different models of recovery time will be discussed:

– Constant recovery time: If D 6= 0, τR(D) ≡ C, where C is constant.

– State-dependent recovery time: Here the recovery time is assumed to be an
increasing function of D and independent of time t, i.e. τR(D) = f(D).

Moreover, τR(D) = 0 if and only if D = 0, and this statement holds for both types
of recovery time.

� A swing option can be exercised at any time after a recovery time delay until the
expiry date T . It implies that we deal with an American-style continuous problem.

� With the constraint of recovery time, a swing option can be exercised more than
once before expiry.

� The amount of commodity at each swing action, D, is assumed to range from
−L, · · · ,−1, 0, 1, · · · , L, where a negative amount implies back delivery and a pos-
itive amount means ordering. The upper bound, L, is necessary as otherwise it
may be optimal to order or deliver back an infinite amount of commodity, and thus
receive an unrealistic profit.

� The price the option holder has to pay for ordering extra units of the commodity is
given by: 

S if S ≤ Ka

Ka if Ka ≤ S ≤ Smax

S − (Smax −Ka) if S ≥ Smax,

Here S is the price of the underlying commodity, based on a Stochastic Differential
Equation (SDE) for St, and the values of the strikes Ka and Smax are specified in
the contract.

� The price the option holder will receive for delivering back units of the commodity
is 

Kd − Smin + S if S ≤ Smin

Kd if Smin ≤ S ≤ Kd

S if S ≥ Kd,

where the values of the strikes Kd and Smin are also specified in the contract.

Based on the last two assumptions the payoff function of a swing option is of the form:

g(S, T,D) = D · (max(S −Ka, 0)−max(S − Smax, 0)
+ max(Kd − S, 0)−max(Smin − S, 0)) , (1)
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with S = S(T ). This implies that there can be no profit unless the price of the underlying
fluctuates below or above the thresholds Kd or Ka. The two other thresholds, Smin and
Smax, are defined to protect an option writer against extreme fluctuations, see [1]. Figure 1
shows an example of the payoff for varying S and D.

Figure 1: Example of a payoff of a swing option with Smin = 20,Kd = 35,Ka = 45, and
Smax = 80, and S and D varying.

2.2 Pricing Details

Assume that the first possible time at which a swing action is allowed 1 is T0: 0 < T0 < T .
Let

ns := min{n|n ∈ IN+, n ≥ (T − T0)/τR(1)}, (2)

where τR(1) is the recovery time when D = 1. Then ns represents the maximum number
of swing actions that can be performed in the interval [T0, T ].

We set t∗k := T − kτR(1), so that t∗k is the last point in time for which we can have
k + 1 swing actions, k = 1, · · · , ns − 1. Moreover, let Ik = (t∗k, T ] and Ins = [T0, T ] as
shown in Figure 2 2.

On I1, there is only one chance left for a swing action, which implies that the recovery
time has no further influence for the future. Hence, if it is profitable to exercise the swing
option during (t∗1, T ] one should exercise the maximum possible amount, L. In this time
interval the only issue which needs to be decided is the optimal exercise time. So, the
problem is equivalent to an American-style option pricing problem, and the swing option
value for any t ∈ (t∗1, T ] is equal to the value of an American option, starting from t and
expiring at T , with payoff g(S, t′, L), t′ ∈ (t, T ].

At any time t ∈ Ik+1\Ik, where t 6= t∗k, k = 1, · · · , ns − 1, see Figure 2, the option
holder basically has two choices: Either exercise the swing option at any time in [t, t∗k] or

1If T0 > T we deal with a futures contract, and with T0 = T the price of the swing option is just the
payoff, g(S, T, 0), if a swing action is not profitable, and g(S, T, L) otherwise.

2A division of the time interval into portions Ik+1\Ik was first proposed by M. Dahlgren in [1]. Our
analysis is based on the appendix in [1].
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Figure 2: Notation for the division of the time axis and the maximum remaining number
of swing rights.

not exercise until t+k , the time point directly after t∗k:

t+k = lim
δ↓0

t∗k + δ.

Note here that the length of interval Ik+1\Ik equals τR(1), the recovery time for
D = 1. It is therefore not possible to exercise more than once within Ik+1\Ik. In the
case of exercise, the problem reduces to the decision of the optimal exercise time within
Ik+1\Ik. So, for each possible amount, D, the problem is equivalent to an American-style
option problem, starting at t ∈ Ik+1\Ik and ending at t∗k, with payoff

g(S, t′, D) = g(S, t′, D) + φt′
D(S, t′), t′ ∈ [t, t∗k], t ∈ Ik+1\Ik (3)

where
φt′

D(S, t′) = e−rτR(D)ES,t′(v(S, t′ + τR(D))), (4)

and ES,t′ represents the conditional expectation of v(S, t′ + τR(D)) given S(t′).
For each possible value of D, i.e., D = −L, · · · , L, we compute the corresponding

values of the swing option at t, assuming that D commodities are bought/sold within
Ik+1\Ik, by an American-style option pricing method. After taking the maximum over all
values of D, we obtain the swing option value at t ∈ Ik+1\Ik with t 6= t∗k if exercise takes
place before t+k . We denote the corresponding option value by v1(S, t).

On the other hand, if the option holder decides not to exercise before t+k he/she has
an option worth the discounted expected value:

v2(S, t) = e−r(t+k −t)ES,t(v(S, t+k )), t ∈ Ik+1\Ik (5)
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where
v(S, t+k ) = lim

δ↓0
v(S, t∗k + δ).

The value v(S, t+k ) with t+k ∈ Ik\Ik−1, is already obtained at the latest step in the backward
recursion. After another, European-type, backward recursion procedure (5), value v2(S, t)
is obtained. From the view of a profit maximizing agent, we find that

v(S, t) = max (v1(S, t), v2(S, t)), t ∈ Ik+1\Ik

Moreover, at each t∗k, the last time point to perform k + 1 swing actions, which is also in
Ik+1\Ik, the option value is the maximum of the payoff g(S, t∗k, D) from (3), over all values
of D, and the value of v(S, t+k ).

Finally, for t ∈ [0, T0), a time interval in which swing actions are not yet allowed, we
have

v(S, t) = e−r(T0−t)ES,t(v(S, T0)),

which is computed by one step of a European option pricing algorithm.

This concludes the global description of the algorithm for the swing option pricing
method.

Summarizing, we can distinguish two major parts in the pricing algorithm:

� For t ∈ (t∗1, T ], we are faced with an American option pricing problem with payoff
g(S, t,D), given by (1), which can take five different forms in five different regions
of the spot price of the underlying (see Figure 1). As mentioned, if it is profitable
to exercise the swing option in this time interval, then Dopt = L. Hence the swing
option price is the maximum of g(S, t, L) and the continuation value.

� For the other time regions t ∈ [T0, t
∗
1), we compute the following two quantities and

compare them within each time region Ik+1\Ik:

– The value of an American option, v1(S, t), with payoff ḡ(S, t,D) := g(S, t,D)+
φt

D(S, t), as in (3), and φt
D as in (4).

– The discounted value v2(S, t) = ES,t(v(S, t+k )).

For the values v(S, t+k ) we only have to calculate the value of v1(S, t+k ). This is due

to the fact that the discounted value of ES,t(v(S, t+k−1)) equals φt+k
D=1(S, t

+
k ) which is

less than (or equal to) the payoff with D = 1 (since g is non-negative), and thus less
than (or equal to) the corresponding American option value, v1(S, t+k ).

2.3 Commodity Processes

The commodity underlying for the swing option is modeled by a stochastic differential
equation for x(t) = lnS(t). State variables x and y are defined as the logarithms of the
asset price, S(t):

x := ln(S(tm−1)) and y := ln(S(tm)),
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respectively. Consequently, (1) can be rewritten (keeping the same notation, g, for the
function based on x(t)) as

g(x, t,D) := D · (max(ex −Ka, 0)−max(ex − Smax, 0)
+ max(Kd − ex, 0)−max(Smin − ex, 0)) , (6)

with x = x(t). Function g from Equation (3) can be generalized accordingly, also keeping
the same notation, ḡ, for the function based on x(t).

Two underlying processes are considered in this section, an exponential Ornstein-
Uhlenbeck (OU) mean-reverting process and a CGMY Lévy jump process.

For the exponential OU process, the log-asset process x(t) = log(S(t)) is assumed to
be mean-reverting:

dx(t) = κ(x(t)− x̄)dt+ σdW (t), (7)

where κ is speed of mean-reversion, x̄ is long term mean and σ is the volatility. Moreover,
under the risk-neutral measure, we should adjust x̄ by subtracting a market price of risk
parameter λ from x̄, as in [1].

The characteristic function, ϕ(ω;x), of the conditional probability density function,
f(y|x), is defined as:

ϕ(ω;x) = E(eiωy|x). (8)

The well-known characteristic function for the OU process reads:

ϕOU (ω; τ) = exp (x0Bx(ω, τ) +A(ω, τ)),

with {
Bx(ω, τ) = iωe−κτ ,
A(ω, τ) = 1

4κ
(
e−2κτ − e−κτ

) (
ω2σ2 + ωeκτ

(
ωσ2 − 4iκx

))
.

(9)

The CGMY process, as defined in [7], is a Lévy jump process, a generalization of the
Variance Gamma process, with as the characteristic function:

ϕCGMY = exp(iωx0)ψCGMY (ω, t) (10)

with
ψCGMY (ω, t) = exp(tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]). (11)

It is governed by four parameters. Parameter Y < 2 controls whether the process has
finite or infinite activity. Parameter C > 0 controls the kurtosis of the distribution and
the non-negative parameters G,M give control over the rate of exponential decay on the
right and left side of the density, respectively.

So, we deal with general characteristic functions of the form:

ϕ(ω; t) = exp(βiωx0) · ψ(ω, t), (12)

in which, for the OU process β takes the value e−κ∆t whereas for Lévy processes β = 1.
The first term in the expression of the characteristic function for the OU process contains
the term β = exp (x0iωe−κτ ), which is not equal to one. As a result, the Fast Fourier
Transform cannot be implemented in a straightforward way (as explained in Section 3
below).
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3 Fourier Cosine Algorithm for Swing Options

In Section 2, we argued that the price of a swing option can be obtained by a series of
Bermudan- and American-style option pricing procedures. In [2,3] an efficient algorithm,
based on the Fourier cosine series expansion (called the COS algorithm), for European
and Bermudan early-exercise options was developed. The COS algorithm can be applied
to processes for which the characteristic function is available. In this section, we briefly
review the COS algorithm, and extend it to pricing swing options.

3.1 Fourier Cosine Expansions

Starting from the risk-neutral valuation formula

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy,

where v(x, t) is the option value, and x, y can be any increasing functions of the underlying,
S(t), at t0 and T , respectively, and ∆t = T − t0. We truncate the integration range to
[a, b], so that

v(x, t0) ≈ e−r∆t

∫ b

a
v(y, T )f(y|x)dy, (13)

with |
∫

R f(y|x)dy −
∫ b
a f(y|x)dy| < TOL.

We take the following integration range, from [2]:

[a, b] :=
[
c1 − 10

√
c2 +

√
c4, c1 + 10

√
c2 +

√
c4

]
, (14)

where cn denote the nth cumulant of logS.
The conditional density function of the underlying is approximated via the character-

istic function by a truncated Fourier cosine expansion, as follows:

f(y|x) ≈ 2
b− a

∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x) exp (−i akπ

b− a
)) cos (kπ

y − a

b− a
), (15)

where Re denotes taking the real part of the input argument.
The prime at the sum symbol in (15) indicates that the first term in the expansion

is multiplied by one-half. Replacing f(y|x) in (13) by its approximation in (15) and
interchanging integration and summation gives us the COS algorithm to approximate the
value of a European option [2]:

v(x, t0) = e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk, (16)

where

Vk =
2

b− a

∫ b

a
v(y, T ) cos (kπ

y − a

b− a
)dy

is the Fourier cosine coefficient of v(y, T ), which is available in closed form for several
European option payoff functions.
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Formula (16) can be directly applied to calculate the value of a European option, but
it also forms the basis for the pricing of Bermudan options.

For a Bermudan option the COS algorithm was generalized in [3] as follows: Choose
tm, m = 1, 2, · · · ,M, as the “early-exercise dates”. The backward recursion dynamic
programming scheme for a Bermudan option with M exercise dates and T = tM then
reads:

For m = M,M− 1, . . . , 2,{
c(x, tm−1) = e−r∆t

∫
R v(y, tm)f(y|x)dy,

v(x, tm−1) = max (payoff, c(x, tm−1)) ,
(17)

followed by

v(x, t0) = e−r∆t

∫
R
v(y, t1)f(y|x)dy. (18)

Functions v(x, t), c(x, t) and “payoff” are the option value, the continuation value and the
payoff at time t, respectively.

The Fourier cosine series expansion coefficients, Vk, are now time-dependent and their
computation requires an efficient algorithm. The algorithm to compute Vk for swing
options is discussed in detail in Sections 3.2 and 3.3.

The value of an American option can be obtained by the backward recursion proce-
dure for discrete Bermudan options, explained above, in combination with a Richardson
extrapolation procedure. In particular, a four-point repeated Richardson extrapolation
scheme using the prices of Bermudan options for four different numbers of exercise dates,
M, 2M, 4M, 8M,

v̂AM (M) =
1
21

(64v̂(8M)− 56v̂(4M) + 14v̂(2M)− v̂(M)) , (19)

has been successfully applied in [3, 4]. Here, v̂(M) denotes the Bermudan option value,
v(x, t0) from (18) with M exercise dates; v̂AM (M) is the approximation for the American
option price with the extrapolation based on M exercise dates.

The COS algorithm exhibits an exponential convergence rate for European and Bermu-
dan options, for asset processes whose conditional density f(y|x) ∈ C∞((a, b) ⊂ R).

In the following subsections we generalize the COS algorithm to pricing swing options.

Remark 3.1. Subscript k in t∗k, as well as in t+k , decreases, from ns − 1 to 1, if we move
forward in time, with t from 0 to T , see Figure 2. In contrast, subscript m, denoting the
early-exercise dates, in tm increases and goes from 1 to M if we move forward in time.
Further, there are NR = τR(1)/∆t ≡ τR(1)M/T early-exercise dates in each time interval
Ik+1\Ik, i.e. between time points t∗k+1 and t∗k.

3.2 Algorithm for the Last Time Interval, t ∈ I1

We start the detailed description of our pricing algorithm for swing options by considering
the last time interval, defined as I1, see Figure 2.

As mentioned in Subsection 2.2, in I1, the swing option is equivalent to an American
option. We can thus generalize the algorithm based on the Fourier cosine expansions for
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Bermudan options to the swing option payoff and combine it with a 4-point repeated
Richardson extrapolation to obtain an approximation of an American option price.

3.2.1 Fourier Cosine Coefficients

At tM = T , we have for the Fourier cosine coefficients of the swing option value:

Vk(tM) = Gk(a, ln(Kd), D) +Gk(ln(Ka), b,D), (20)

with D = L, and a, b as in (13). Here

Gk(x1, x2, D) =
2

b− a

∫ x2

x1

g(x, tM, D) cos(kπ
x− a

b− a
)dx (21)

is the Fourier cosine coefficient of the swing option payoff.
In detail, we find, with D = L:

Vk(tM) =
2L
b− a

((Kd − Smin)ψk(a, ln(Smin))

+ Kdψk(ln(Smin), ln(Kd))− χk(ln(Smin), ln(Kd))
+ χk(ln(Ka), ln(Smax))−Kaψk(ln(Ka), ln(Smax))
+ (Smax −Ka)ψk(ln(Smax), b)) , (22)

with

χk(x1, x2) =
1

1 + ( kπ
b−a)2

(
cos(kπ

x2 − a

b− a
)ex2 − cos(kπ

x1 − a

b− a
)ex1

+
kπ

b− a

(
sin(kπ

x2 − a

b− a
)ex2 − sin(kπ

x1 − a

b− a
)ex1

))
, (23)

and

ψk(x1, x2) =
(

sin(kπ
x2 − a

b− a
)− sin(kπ

x1 − a

b− a
)
)
b− a

kπ
, (k 6= 0), (24)

and for k = 0, ψk(x1, x2) = x2 − x1.
At each time step, tm, m = M−1, · · · , 2, as in the case of a regular Bermudan option,

the log-asset values for which the payoff equals the continuation value are determined by
Newton’s method. Based on these values we can determine the maximum of the two, as
in (17). In the case of the swing option, there are two early-exercise points at each time
step, as it is profitable to exercise the option when the underlying is less than Kd or larger
than Ka. We denote the lower and upper early-exercise points for time tm by xd

m and xa
m,

respectively. To determine the two early-exercise points by Newton’s method, we need
the values of c(x, tm), g(x, tm, D), ∂c(x, tm)/∂x, and ∂g(x, tm, D)/∂x with the help of the
following formulae:

c(x, tm) = e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(tm+1). (25)

∂c(x, tm)
∂x

= e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x) · iβ kπ

b− a
· e−ikπ a

b−a )Vk(tm+1), (26)
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with ϕ(ω;x) in (25) and (26) defined in (8). Function g is defined in (6) and its derivative
is given by the following expression:

∂g(x, tm, D)
∂x

=


−Dex, if ln(Smin) ≤ x ≤ ln(Kd),
Dex, if ln(Ka) ≤ x ≤ ln(Smax),
0, otherwise.

(27)

Once xd
m and xa

m are determined, we split the Fourier coefficients Vk into three parts, for
m = M− 1, · · · , 1:

Vk(tm) = Gk(a, xd
m, D) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b,D),

with the Fourier cosine coefficient of the continuation value given by:

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

c(x, tm) cos(kπ
x− a

b− a
)dx, (28)

and c(x, tm) defined in (25), so that the value of Vk(tm) is obtained from Vk(tm+1).
From basic calculus we have that, if xd

m < ln(Smin),

Gk(a, xd
m, D) = D · 2

b− a
(Kd − Smin)ψk(a, xd

m), (29)

and otherwise,

Gk(a, xd
m, D) = D · 2

b− a
((Kd − Smin)ψk(a, ln(Smin))

+ Kdψk(ln(Smin), xd
m)− χk(ln(Smin), xd

m)). (30)

If xa
m > ln(Smax), we have

Gk(xa
m, b,D) = D · 2

b− a
(Smax −Ka)ψ(xa

m, b), (31)

and otherwise,

Gk(xa
m, b,D) = D · 2

b− a
(χk(xa

m, ln(Smax))−Kaψk(xa
m, ln(Smax))

+ (Smax −Ka)ψk(ln(Smax), b)), (32)

where χk and ψk are defined by (23) and (24), respectively.
Next we discuss the computation of Ck(xd

m, x
a
m, tm) in (28). To determine the value

of Ck(x1, x2, tm), we have to compute:

Ck(x1, x2, tm) = − i

π
· e−r∆t

∑′N−1

j=0
Re(φ(

jπ

b− a
)Vj(tm+1) ·

(M c
k,j(x1, x2) +M s

k,j(x1, x2))). (33)

We can write the equations (33) as a matrix-vector product representation, i.e.,

C(x1, x2, tm) =
e−r∆t

π
Im {(Mc +Ms)u} , (34)
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where Im {·} denotes taking the imaginary part of the input argument, and

u := {uj}N−1
j=0 , uj := ϕ

(
jπ

b− a

)
Vj(tm+1), u0 =

1
2
ϕ (0)V0(tm+1). (35)

Based on the general characteristic function from (12), the matrix elements of M c
k,j(x1, x2)

and M s
k,j(x1, x2) read:

M c
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ + k)

[
exp

(
((jβ + k)x2 − (j + k)a)πi

b− a

)
−

exp
(

((jβ + k)x1 − (j + k)a)πi
b− a

)]
, otherwise.

(36)

and

M s
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ − k)

[
exp

(
((jβ − k)x2 − (j − k)a)πi

b− a

)
−

exp
(

((jβ − k)x1 − (j − k)a)πi
b− a

)]
, otherwise.

(37)

The matrices Ms and Mc have a Toeplitz and Hankel structure, respectively, only if
Ms(i, j) = Ms(i+ 1, j + 1) and Mc(i, j) = Mc(i− 1, j − 1). In that case, the Fast Fourier
Transform can be applied directly for highly efficient matrix-vector multiplication [3], and
the resulting computational complexity 3 will be O(N log2N). We obtain however terms
of the form jβ − k, jβ + k in the matrix elements in (36) and (37), in particular for the
OU process with β 6= 1, instead of terms with j − k, j + k as obtained for the Lévy jump
processes, with β = 1 in (12). Terms with β /∈ IN ∪ {0} hamper an efficient computation
of the matrix-vector products, leading to computations with O(N2) complexity. For the
mean-reverting OU process and the parameter values of interest here, however, we can
resort to a reformulated process, as described in Appendix A.

Since the computation of Gk(x1, x2) is linear in N , the overall complexity to determine
the Vk-coefficients is dominated by the computation of C(x1, x2, tm), whose complexity is
O(N log2N) with the FFT. As a result, the overall computational complexity for pricing
a Bermudan option with M exercise dates is O((M−1)N log2N), as the work needed for
the final step, from t1 to t0, is O(N).

Although the algorithm above is only the first step towards solving the pricing prob-
lem, it can also be viewed as the complete algorithm for swing options if the option holder
is only allowed to conduct a swing action once.

3.3 Algorithm for Interval t ∈ Ins\I1

Recall that ns represents the upper bound for the number of swing rights that can be
exercised, as defined in (2). In the time interval Ins\I1, the option holder has more than

3To be precise, we need three times of the forward Fast Fourier Transform (FFT ) and twice the Inverse
Fast Fourier Transform (FFT−1).
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one possibility to exercise the swing option. Therefore, apart from the exercise time, the
optimal number of commodities to be exercised, D, should also be determined, due to its
influence on the recovery time.

Remark 3.2. In our discussion we deal with the following three functions:

� c(x, tm), the continuation value, which is typically continuous and differentiable.
Moreover, its derivative is usually also continuous.

� g(x, tm, D), the payoff, which is continuous and piecewise differentiable (see Fig-
ure 1).

� v(x, tm), the option value, which is piecewise continuous in time. v(x, t) jumps at t∗k
where the number of swing rights is decreased by 1.

Note that for any k = 1, · · · , ns − 1, the equality v(t∗k) = v(t+k ) may not be satisfied,
since the number of possible exercise times is reduced by 1 from t∗k to t+k . However,
numerically we assume that t+k is “arbitrarily close” to t∗k. They are considered to lie at
the same discrete time point. So, we assume t∗k − t = t+k − t, so that c(x, t∗k) = c(x, t+k )
and v(x, t∗k) ≥ v(x, t+k ).

Under these assumptions we have that

e−r(t∗k−t)Ex,t(v(x, t∗k)) ≥ e−r(t+k −t)Ex,t(v(x, t+k ))

3.3.1 Model Analysis

By Q and Qk we denote the continuous interval {(x, t)|x ≥ 0, t ∈ [T0, t
∗
1]} and the discrete

set {(x, t)|x ≥ 0, t ∈ [T0, t
∗
1], t ≡ t∗k := T − kτR(1), k = 1, · · · , ns − 1}, respectively.

The swing option value for (x, t) ∈ Q\Qk is then given by

v(x, t) = max(max
D

ṽAM (ḡ(x, t,D)), e−r(t+k −t)Ex,t(v(x, t+k ))), (x, t) ∈ Q\Qk (38)

where ṽAM (ḡ(x, t,D)) represents the value of an American-style option in any interval
Ik+1\Ik with payoff ḡ(x, t,D) = g(x, t,D) + φt

D(x, t).

The quantity e−r(t+k −t)Ex,t(v(x, t+k )) represents the value of a European option, which
cannot be larger than the American option. The term e−r(t+k −t)Ex,t(v(x, t+k )) is therefore
implicitly already included in the first term in (38), so that we find, for (38),

v(x, t) = max
D

ṽAM (g(x, t,D) + φt
D(x, t))

= max
D

(max(g(x, t,D) + φt
D(x, t), c(x, t)))

= max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)), (x, t) ∈ Q\Qk, (39)

where c(x, t) is the continuation value. Therefore, the price for (x, t) ∈ Q\Qk is reduced
to the maximum of American option values over D, i.e. v1(x, t) as defined in Section 2.2.

On the other hand, for (x, t∗k) ∈ Qk, the value v(x, t∗k) is defined by

v(x, t∗k) = max(max
D

ḡ(x, t∗k, D), v(x, t+k )). (40)
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After application of (39) to the right-hand side of (40), we can rewrite (40) as

v(x, t∗k) = max(max
D

ḡ(x, t∗k, D),max
D

ḡ(x, t+k , D), c(x, t+k )), (41)

where we assume c(x, t+k ) = c(x, t∗k), and ḡ is as in (3),(4).
If t∗k+τR(D) ∈ Q\Qk, with the number of exercise possibilities the same for t∗k+τR(D)

and t+k + τR(D), we have v(x, t∗k + τR(D)) = v(x, t+k + τR(D)). If t∗k + τR(D) ∈ Qk, we
have v(x, t∗k + τR(D)) ≥ v(x, t+k + τR(D)).

So, v(x, t∗k + τR(D)) ≥ v(x, t+k + τR(D)) for any x, thus from (4) we have φt∗k
D(x, t∗k) ≥

φ
t+k
D (x, t+k ). Equation (41) is now given by:

v(x, t∗k) = max(max
D

g(x, t∗k, D) + φ
t∗k
D(x, t∗k), c(x, t

∗
k)) (42)

As a result, from (39) and (42), we find that for all t ∈ [T0, t
∗
1]:

v(x, t) = max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)) (43)

Equation (43) tells us that the swing option is an American-style option with recovery
time and multiple exercise opportunities. Its pricing algorithm is therefore different from
a standard American option. Instead of taking the maximum of the payoff and the con-
tinuation value, we take the maximum over the resulting payoff for all possible values of
D, and the continuation value from the previous time step. Another difference is that for
any amount, D, the payoff also includes the term φt

D(x, t) from an earlier time step.
It is easy to determine the value of g(x, t,D) for any x, t,D according to (6). We

therefore focus on the values φt
D(x, t) and c(x, t), which are both obtained in the recursion

of Fourier cosine coefficients Vk. To calculate c(x, tm), one only needs the value of Vk(tm+1),
like in the case of a Bermudan option. However, to compute the value of φt

D(x, t) we need
the coefficients Vk(t+ τR(D)), that depend on the function for the recovery time.

Remark 3.3. In time interval t ∈ [0, T0] swing actions are not yet allowed. Therefore, we
have:

v(t, x) = e−r(T0−t)
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(T0),

where Vk(T0) is obtained by a backward recursion procedure.

3.3.2 The Early-exercise Points

In this section we consider the state-dependent recovery time, τR(D), which is assumed
to be an increasing function of D.

The option value is obtained by means of a backward recursion on Vk(tm),m = M−
1, · · · , 1. At each time step, as shown in Section 3.3.1, the payoff, ḡ(x, tm, D), for all
possible values of D and the continuation value, c(x, tm), are compared. The largest value
represents the swing option value at tm. We therefore need to identify the following regions
in our pricing domain:

� AD, D = 1, · · · , L: the regions in which exercising the swing option with D com-
modity units will result in the highest profit g(x, tm, D) + φtm

D (x, tm).
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� Ac: The region in which c(x, t) is the maximum. In other words, with the commodity
price in Ac, it is profitable not to exercise the swing option.

With these regions determined, the Fourier cosine coefficients, Vk(tm), for the swing option
can be determined with a splitting, as follows,

Vk(tm) =
2

b− a

(∫
Ac

c(x, tm+1) cos(
kπ(x− a)
b− a

)dx

+
L∑

D=1

∫
AD

g(x, tm, D) cos(
kπ(x− a)
b− a

)dx

)
(44)

We now describe the procedure to locate the different regions Ac and AD, D = 1, · · · , L.
As an example, let us first look at the payoff functions for two values D = D1 and
D = D2 where D1 > D2, shown in Figure 3. Points xd(D1, D2) and xa(D1, D2) denotes

Figure 3: Payoff function g + φ for two different D.

the “early-exercise points”, where the strategy of exercising D1 or D2 units results in the
same ḡ-values. Between xd(D1, D2) and xa(D1, D2), the value for D2 is largest, in other
words, it is profitable to exercise a smaller amount of commodity. Beyond xd(D1, D2) and
xa(D1, D2), it is profitable to exercise the larger amount D1.

Remark 3.4. A rough explanation of the behavior of the two payoff functions in Figure 3 is
as follows. The payoff is a sum of g(x, t,D) and φt

D(x, t). For D increasing, the true payoff
g(x, t,D) increases, but the quantity φt

D(x, t) decreases because of the longer recovery time
penalty. So, if g(x, t,D) is the largest term in the sum, it is profitable to exercise with a
larger value of D, whereas if φt

D(x, t) is the dominating part, it is profitable to exercise
the smaller amount.

From the payoff in Figure 1 we see that payoff g equals zero when asset price S is
between Kd and Ka, so that the quantity φt

D will be the main contribution. With S goes
beyond Kd and Ka, payoff g increases and contributes more to the sum. Note that this
explanation as well as the behavior of the two different payoff functions in Figure 3, form
the basis for any two payoff functions with different D-values.

Based on the insight in Remark 3.4, let us look at a second simple example with
L = 4 and determine A2, i.e. the region where it is profitable to exercise with D = 2.
The example is detailed in Figure 4, where the relation between the payoffs for any two
different amounts of commodity is graphically sketched.
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In the figure, a zero “0”, implies taking the continuation value c(x, t). xd(2, Dj),
xa(2, Dj), j = 0, 1, 3, 4 are the two sets of points where D = Dj returns the same payoff
value as D = 2. In order to determine the region A2, we need to find the sub-regions in
which D = 2 gives the largest payoff compared to the other D-values.

Figure 4: An example to illustrate the exercise region A2 with L = 4.

The value D = 2 returns a larger value than c(x, t), if x < xd(2, 0) or x > xa(2, 0);
Similarly, D = 2 returns a larger value than D = 1, if x < xd(2, 1) or x > xa(2, 1). So,
D = 2 returns larger values than both c(x, t) and D = 1, if x is either smaller than both
xd(2, 0) and xd(2, 1), or larger than both xa(2, 0) and xa(2, 1). To determine these regions
we compute the following early-exercise points (see again Figure 4 for the values of U and
W for this example):

� U := min(xd(2, 0), xd(2, 1)) ≡ xd(2, 1),

� W := max(xa(2, 0), xa(2, 1)) ≡ xa(2, 0).

D = 2 now returns a larger value for x < U or x > W .

We proceed in the same spirit: To make sure that D = 2 returns larger values than
D = 3 and D = 4, x should be larger than both xd(2, 3) and xd(2, 4), or smaller than both
xa(2, 3) and xa(2, 4). This is again related to the global behavior of the payoff functions
with D1 > D2, as in Figure 3. Therefore we calculate

� P := max(xd(2, 3), xd(2, 4)) ≡ xd(2, 3)

� Q := min(xa(2, 3), xa(2, 4)) ≡ xa(2, 4)
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Now D = 2 returns a larger value than D = 3 and D = 4 for x > P or x < Q.
So, D = 2 returns the largest value, if P < x < U or W < x < Q; Therefore,

A2 = [P,U ] ∪ [W,Q], as shown in Figure 4.
More generally, for each D = 1, · · · , L, we determine:

PD = max
j>D

xd(D, j), QD = min
j>D

xa(D, j), UD = min
j<D

xd(D, j), WD = max
j<D

xa(D, j),

and set AD = [PD, UD] ∪ [WD, QD]. Here PD, QD represent the early-exercise interval
boundaries, within which exercising D units of commodity returns a larger payoff than
exercising more units. UD,WD are the left and right boundary, respectively, beyond
which exercising D units returns a larger value than when fewer or no units are exercised.
Similarly, we have

AL = [a,min
j<L

xd(L, j)] ∪ [max
j<L

xa(L, j), b],

Ac = [max
j>0

xd(0, j),min
j>0

xa(0, j)]

All early-exercise points, xd(D, j), xa(D, j), j = 0, . . . , L, are computed by Newton’s
method.

With the regions Ac and AD, D = 1, · · · , L fixed, Equation (44) can be rewritten as:

Vk(tm) = Ck( max
j=1,··· ,L

xd(0, j), min
j=1,··· ,L

xa(0, j), tm) +
L∑

D=1

Gk(PD, UD, D)

+
L∑

D=1

Gk(WD, QD, D) +Gk(a, min
j=0,··· ,L−1

xd(L, j), L)

+ Gk( max
j=0,··· ,L−1

xa(L, j), b, L). (45)

The computation of Ck(x1, x2, tm) in (45) is as in (34). The Gk differ from the expres-
sions (29) ,. . . , (32), which will be described in detail in Subsection 3.3.3.

In the Newton procedure to find the points xd(Di, Dj) and xa(Di, Dj) we need to find
the values of c(x, tm), g(x, tm, D), ∂c/∂x and ∂g/∂x as in Subsection 3.2. The values of
φtm

D (x, tm) and ∂φtm
D /∂x are found by:

φtm
D (x, tm) = e−rτR(D)

∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x, τR(D))e−ikπ a

b−a )Vk(tm + τR(D)),

∂φtm
D

∂x
= e−rτR(D)

∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x, τR(D)) · iβ kπ

b− a
e−ikπ a

b−a )

·Vk(tm + τR(D)).

Remark 3.5 (Computation of Vk(tm + τR(D))). To calculate Vk(tm + τR(D)), we de-
termine a time step, ∆t, so that T − t and τR(D) are both time points. So, we set
M = T − t/∆t,ND = τR(D)/∆t, D = 1, · · · , L. For tm + τR(D) = tm + ND∆t ≤ T ,
the value Vk(tm + τR(D)) = Vk(tm+ND

). The values Vk(tm + τR(D)) = 0 for all k if
tm +ND∆t > T . In that case, φtm

D and ∂φtm
D /∂x are zero, as they are linear combinations

of Vk(tm + τR(D)). In this setting, Vk(tm) and Vk(tm + τR(D)), D = 1, · · · , L can be
determined in one recursion, in which the intermediate values of Vk need to be stored for
later use.

17



3.3.3 Calculation of Gk(x1, x2, D)

The terms Gk in (44) are split into two parts, i.e.

Gk(x1, x2, D) = Gk,g(x1, x2, D) +Gk,c(x1, x2, D),

withGk,g from an instantaneous profit g(x, tm, D), andGk,c the part generated by φtm
D (x, tm),

i.e., the continuation value from time point tm + τR(D), as defined in (4).
Equations (29) and (30) can be used to compute Gk,g(a,minj<L x

d(L, j), L) and
Gk,g(PD, UD, D), D = 1, · · · , L, unless PD > ln(Smin) where we use,

Gk,g(PD, UD, D) = D · 2
b− a

(Kdψk(PD, UD)− χk(PD, UD)).

Similarly, the quantities Gk(maxj<L x
a(L, j), b, L) and Gk(WD, QD, D), D = 1, · · · , L can

be computed by (31) and (32), unless if QD < ln(Smax) for which we have

Gk,g(WD, QD, D) = i · 2
b− a

(χk(WD, QD)−Kaψk(WD, QD)).

Finally, the quantity Gk,c(x1, x2, D) can be obtained by (34), replacing ∆t and Vj(tm+1)
by τR(D) and Vj(tm + τR(D)), respectively.

Remark 3.6 (Constant recovery time). If the recovery time does not depend on D, we call
the recovery time constant. This can be viewed as a special case of the pricing method
discussed above. As additional profit is not related to an extra penalty, if it is profitable
to exercise the swing option, we have Dopt ≡ L from a profit maximizing point-of-view.
Hence, at any point in time, we have either D = 0, or D = L.

Newton’s method is now applied to determine two early-exercise points xd
m and xa

m,
so that

c(xd
m, tm) = g(xd

m, tm, L) + φtm
L (xd

m, tm),

and
c(xa

m, tm) = g(xa
m, tm, L) + φtm

L (xa
m, tm),

with D = L and τR(D) constant. Then Vk(tm) is split into three parts,

Vk(tm) = Gk(a, xd
m, L) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b, L),

that can be calculated as in the case of state-dependent recovery time.

4 Numerical Results

In this section we demonstrate the performance of our pricing algorithm for swing options
with constant and dynamic recovery times. The CPU used is an Intel (R) Core (TM) 2 Duo
CPU E6550 2.33GHz, Cache size 4MB, and the algorithm is programmed in MATLAB
7.5. The two sub-sections to follow present results with two different types of recovery
time:

� Constant recovery time is in Subsection 4.1: If D 6= 0, we set τR(D, t) = 1
4 , as in [1].

In other words, the option holder needs to wait 3 months between two consecutive
swing actions, independent of the time point of exercise or the size D.
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� State-dependent recovery time is in Subsection 4.2: We assume τR(D, t) = D/12
which implies that if the option holder exercises the swing option with D units,
he/she has to wait D months before the option can be exercised again.

Parameter sets used for numerical examples are (unless stated otherwise):

CGMY C = 1, G = 5,M = 5, Y = 1.5, r = 0.05, (46)
OU : κ = 0.301, x̄ = 3.150, σ = 0.334, r = 0.05, (47)

where for the OU process the value of x̄ is under the Q-measure. The values set for the
OU process is as in [1]. The values for CGMY, in particular Y > 1 (infinite activity jump
process) are known to be particularly difficult for PIDE solvers. We will see here that
these CGMY parameters do not pose any problem for the swing option COS method.

In the numerical experiments we further choose Smin = 10,Kd = 20,Ka = 25, Smax =
50, T0 = 0. The choice T0 = 0 does not pose any restrictions on the algorithm, as we can
simply change it to any T0 > 0.

4.1 Constant Recovery Time

First of all, American-style swing option values under the CGMY and OU processes, with
L = 5, are presented in Figure 5, with as independent variables S and t; v(S(t), t) is the
swing option value. Jumps in the swing option values are observed at T − t = 0.25, T − t =
0.5 and T − t = 0.75. This can be explained by the fact that at these time points the
maximum number of times the holder can exercise, ns, is reduced by one. For instance,
time point T − t = 0.5 is the last time point at which an option holder can exercise up to
three times. For any t > T − 0.5, the holder cannot exercise more than twice.

(a) OU (b) CGMY

Figure 5: American-style swing option values under the OU and CGMY processes with
constant recovery time, τR(D) = 0.25.

Due to the constant recovery time, we should exercise L = 5 units if it is profitable
to exercise. Hence for S > 50, with Ka = 25, the profit would be L · (50 − 25) = 125.
When T − t ≈ 1, we have at maximum four possibilities to exercise, which is the reason
for option values as high as 500 in Figure 5.

Next, we discuss the convergence behavior of the option values over N , the number of
terms in the Fourier cosine series. Again the CGMY and OU processes are used, with the
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parameters in (46), (47). The remaining parameters are τR = 0.25, T − t = 1,M = 12;
S0 = 8 is set for the CGMY experiment and S0 = exp(x̄) for the OU problem.

In Table 1 it is shown that the swing option pricing algorithm under CGMY, with the
parameters chosen, takes only 0.0367 seconds to converge to one basis point. A similar
convergence is observed for OU process4 as also shown in Table 1.

N 64 96 128 160 192
CGMY option value 99.9362 53.8713 220.7021 220.7021 220.7021

CPU time (sec.) 0.0232 0.0303 0.0367 0.0467 0.0526

N 96 128 160 192 224
OU option value 51.3677 49.6984 53.4784 53.4784 53.4784
CPU time (sec.) 0.0429 0.0432 0.0493 0.0527 0.0587

Table 1: Swing option prices and CPU time under the CGMY and the OU process, with
parameter sets (46), (47).

An American option can be viewed as a Bermudan option with M→∞. In Table 2
the performance of two methods to approximate an American-style swing option is com-
pared. One method is the direct approximation by means of Bermudan-style options, by
increasing M, whereas the second method is based on the repeated Richardson 4-point
extrapolation technique (19) on Bermudan-style swing options with four different numbers
of exercise opportunities. In Table 2, the column denoting “P (N/2)” gives the computed
values of the Bermudan-style options with M = N/2. For the values obtained with the
Richardson extrapolation we use M = 16 in (19) (so, 2M = 32, 4M = 64, 8M = 128).

The CGMY model is used here with the parameters r, C,G,M, Y, from (46) , and
T − t = 0.5, S0 = 8, Smin = 10, Smax = 50,Kd = 20,Ka = 25. As illustrated in Ta-

n = log2N
P (N/2) Richardson

option value CPU time option value CPU time
7 137.423 0.27 137.395 0.59
8 137.408 0.53 137.390 0.99
9 137.399 2.00 137.390 1.79
10 137.394 8.39 137.390 3.40
11 137.392 39.55 137.390 6.68
12 137.391 203.27 137.390 13.21

Table 2: Convergence over M and comparison between two approximation methods for
American-style swing option.

ble 2, to converge to an error of O(10−4), one would require 203 seconds with the direct
approximation method, and approximately one second with the extrapolation technique.

4We used the reformulated characteristic function to accelerate the algorithm for the OU process, see
Appendix A
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4.2 State-Dependent Recovery Time

We now consider the case where the recovery time depends on the amount D. We use the
CGMY model with the parameters from (46). Figure 6a compares the swing option prices
with three upper bounds of D: L = 8, 10, 12. A higher upper bound typically results
in higher option values, because a higher upper bound implies more possibilities for an
option holder at each exercise date.

In the case of a constant recovery time we find (not shown) that higher values of L
always give rise to higher option values. In the case of state-dependent recovery time,
τR(D), an exception is observed for the parameters under consideration, when 25 ≤ S ≤
30. In that case L = 10 results in higher option values than L = 12, see Figure 6a. In
this interval, g(x, t,D) is small and φt

D(x, t) is the dominant part of the profit. Larger
D-values lead to smaller φt

D-values. However, with S further on the left side of Kd or at
the right side of Ka, function g(x, t,D) starts to dominate and larger L-values give higher
swing option values.

(a) Varying amount L (b) Varying recovery time τR(D)

Figure 6: CGMY process, T−t = 1; Left: Different values for L, and fixed τR(D, t) = 1
12D;

Right: Different Recovery time, and fixed L = 5.

Figure 6b illustrates the influence of the recovery time on the swing option value.
Here we compare τR(D) = 1

12D with τR(D) = 1
6D, which corresponds to one month (solid

line) or two months (dashed line) penalty time for each unit exercised. Figure 6b shows
that longer recovery time gives lower option prices. In other words, if one can wait after
exercising one pays less for the swing option 5.

Table 3 shows how the option value and optimal value of D (i.e., Dopt) change over
time. Here we take L = 8, and S0 = 8, a case where the option is deep in-the-money. As
expected, jumps in the optimal D-values are observed at t∗k = T − kτR(1).

Recovery time τR(D) = 1
12D implies that if we exercise k or fewer units at t∗k, we can

exercise once more before expiry T , whereas if we exercise more than k units, we cannot
exercise again before T . In other words, at t∗k, φ

t
D > 0 for D ≤ k and φt

D = 0 otherwise.

Note that at the time points t = T and T − t = 1/24, the optimal value equals
Dopt = L = 8. For t = T this is due to the arbitrage-free condition and the profit
maximization principle, whereas for T − t = 1/24 the time left is so small that, in our

5Similarly, smaller recovery times result in higher option prices with constant recovery time.
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setting, there is only one chance left for a swing action (φt
D = 0 for all D, k). One should

then choose the largest D-value allowed to get an optimal profit.

T-t option value Dopt T-t option value Dopt

0 80 8 8/24 110.587 4
1/24 80 8 9/24 111.556 4
2/24 85.489 1 10/24 120.572 5
3/24 85.794 1 11/24 121.806 5
4/24 92.441 2 12/24 130.769 6
5/24 93.116 2 13/24 132.224 6
6/24 101.058 3 14/24 141.051 7
7/24 102.371 3 15/24 142.690 7

Table 3: Dopt over time L = 8, S0 = 8, τR = D
12 .

Figure 7 shows how Dopt changes w.r.t. the underlying price, with L = 8, T − t =
1, τR(D) = 1

12D. As S goes beyond Kd and Ka, Dopt tends to increase, because in this
region the payoff g(x, t,D) dominates in the term g(x, t,D) + φt

D(x, t). Between S = 20
and S = 25, Dopt = 0, since g(x, t,D) = 0 for all D > 0 in this interval.

Figure 7: Dopt over underlying price, L = 8, T − t = 1, τR(D) = 1
12D

Next, the convergence of the swing option value over N , and the corresponding CPU
time for the CGMY process, with S0 = 8, T − t = 1 and different upper bounds L, are
presented in Table 4. With N = 256 the swing option algorithm reaches basis point
accuracy. Table 4 also illustrates that the algorithm is flexible regarding the variation
in parameter L. Large L-values result in higher CPU times, since an increasing number
of early-exercise points needs to be determined, and more Ck- and Gk-terms have to be
computed.

In the next experiment, we use the CGMY model with Y = 0.5 (other parameters as
in (46)). We compare for American-style swing option values, with the state-dependent
recovery time, the approximation obtained by the 4–point Richardson extrapolation with
the direct approximation, obtained with Bermudan option values with M increasing.
Table 5 shows that the 4–point Richardson extrapolation is much more efficient than the
direct method, and that both methods converge to the same American swing option values.
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N 128 256 512

L=2 option price 128.7532 136.8724 136.8724
CPU time 0.0868 0.1669 0.2466

L=5 option price 138.2815 150.0041 150.0041
CPU time 0.3943 0.6505 1.1660

L=10 option price 186.6296 199.6870 199.6870
CPU time 1.4428 2.4115 4.3819

Table 4: Swing option values for CGMY process, dynamic recovery time, S0 = 8, T−t = 1.

Convergence of the Richardson extrapolation is already observed with M, the number of
exercise dates in (19) equal to 6. Larger values of M give the same extrapolation result.

Bermudan approximation Richardson approximation
M = N/2 option value CPU time N option value CPU time

128 93.9501 5.7391 64 93.9710 1.6077
256 93.9710 20.1821 128 93.9707 2.3621
512 93.9707 77.0859 256 93.9707 3.9196

Table 5: Convergence over M and comparison between two approximation methods for
American-style swing option, CGMY model, S0 = 10, L = 5, Y = 0.5.

5 Conclusions

In this report, we presented an efficient, flexible and robust pricing algorithm for swing
options with early-exercise features. It performs well for different swing contracts with
varying flexibility in upper bounds of exercise amount and recovery times. The algorithm
is based on Fourier cosine series expansions, and can be applied to swing option pricing
under different commodity processes, such as CGMY, other Lévy processes, or under the
OU process. For Lévy processes the Fast Fourier Transform can be applied in the backward
recursion procedure, which gives us Bermudan-style swing option prices accurate to one
basis point in milli-seconds for constant recovery time, and in less than one to three
seconds for dynamic recovery time with different values of L. The Richardson 4-point
extrapolation technique can be used to price American-style swing options efficiently.

Acknowledgment We thank Lech A. Grzelak for his help in reformulating the char-
acteristic function for the OU process.
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A Reformulated Characteristic Function for OU Process

For pricing Bermudan-style options under Lévy processes the Fast Fourier Transform can
be applied for a highly efficient computation. This is unfortunately not the case for
such options under the OU process (7), so that the resulting computational complexity is
O(M− 1)N2.

Here we present a first remedy to be able to also price Bermudan options under an
OU process highly efficiently, however, only for special parameter sets. It is known from
the literature that the OU process, x(t), admits the solution:

x(t) = x0e−κt + x
(
1− e−κt

)
+

∫ t

0
σeκ(s−t)dW (s),
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i.e., x(t) is normally distributed, i.e.: x(t) ∼ N (E(x(t)),Var(x(t))), with:

E(x(t)|F0) = x0e−κt + x
(
1− e−κt

)
, (48)

Var(x(t)|F0) =
σ2

2κ
(
1− e−2κt

)
. (49)

Therefore, we can reformulate the OU process, and define a process y(t) in the following
way:

dy(t) = κ(x̄− x0)e−κtdt+ σe−κtdW (t), y0 = x0

Then y(t) is distribution-wise equal to OU process x(t), whose characteristic function is

ϕY (ω, t) = eiωy0+A(ω,t) (50)

where
A(ω, t) =

ω

4κ
e−2κt(1− eκt)(ωσ2 + eκt(4i(y0 − x̄)κ+ ωσ2)) (51)

Since y0 appears in (51), we still cannot perform the integral computations fully efficiently.
However, due to the mean-reversion, the underlying will return to its long term mean, x̄,
after a certain time. In our swing option experiments, we set S0 = exp(x̄), which has a very
favorable effect on the characteristic function. By fixing y0 = x̄ in (51) and applying (50),
the FFT can be applied and the computational complexity is reduced toO(M−1)N log2N ,
like in the case of Lévy processes. The error due to the approximation is, compared to the
computation with the original characteristic function of the OU process, less than a basis
point.

With arbitrary initial value, y0, the approximation is still valid and accurate, in par-
ticular for large speed of mean reversion, κ, and small volatility, σ. For other parameter
sets, it is recommended to use the original OU characteristic function. Improvement of
this is a topic of future research.
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