<]
TUDelft

Delft University of Technology

TensorConvolutionPlus
A python package for distribution system flexibility area estimation

Chrysostomou, Demetris; Torres, José Luis Rueda; Cremer, Jochen Lorenz

DOI
10.1016/j.s0ftx.2025.102241

Publication date
2025

Document Version
Final published version

Published in
SoftwareX

Citation (APA)

Chrysostomou, D., Torres, J. L. R., & Cremer, J. L. (2025). TensorConvolutionPlus: A python package for
distribution system flexibility area estimation. SoftwareX, 31, Article 102241.
https://doi.org/10.1016/j.s0ftx.2025.102241

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.softx.2025.102241
https://doi.org/10.1016/j.softx.2025.102241

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

SoftwareX 31 (2025) 102241

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication
TensorConvolutionPlus: A python package for distribution system flexibility
area estimation

Demetris Chrysostomou‘” *, José Luis Rueda Torres, Jochen Lorenz Cremer
TU Delft, Department of Electrical Sustainable Energy, Delft, The Netherlands

ARTICLE INFO ABSTRACT
Keywords: Power system operators need new, efficient operational tools to use the flexibility of distributed resources and
Python package deal with the challenges of highly uncertain and variable power systems. Transmission system operators can

Flexibility area estimation
Distribution system flexibility
TSO-DSO coordination

consider the available flexibility in distribution systems (DSs) without breaching the DS constraints through
flexibility areas. However, there is an absence of open-source packages for flexibility area estimation. This
paper introduces TensorConvolutionPlus, a user-friendly Python-based package for flexibility area estimation.
The main features of TensorConvolutionPlus include estimating flexibility areas using the TensorConvolution+
algorithm, the power flow-based algorithm, an exhaustive PF-based algorithm, and an optimal power flow-
based algorithm. Additional features include adapting flexibility area estimations from different operating
conditions and including flexibility service providers offering discrete setpoints of flexibility. The TensorCon-
volutionPlus package facilitates a broader adaptation of flexibility estimation algorithms by system operators
and power system researchers.

Code metadata

v0.1.1
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00033

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule https://codeocean.com/capsule/4767295/tree/v1

Legal Code License CC-BY

Code versioning system used git

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies Python> 3.10, matplotlib> 3.8.2, networkx> 3.1, numpy> 1.24.3, pandapower> 2.13.1,
pandas> 1.5.3, scikit-learn> 1.3.0, scipy> 1.11.2, seaborn> 0.13.2, tntorch> 1.1.1,
torch> 2.0.1, tqdm> 4.66.1
https://demetris-ch.github.io/TensorConvolutionFlexibility/
D.Chrysostomou@tudelft.nl

Link to developer documentation/manual
Support email for questions

of these challenges. This flexibility corresponds to the RES or active
users changing their generation or consumption setpoints to support

1. Motivation and significance

Power systems encounter an operational transition as renewable
energy sources (RES) penetration rises, and the conventional genera-
tion output decreases. This operational transition includes coordinating
transmission system operators (TSOs) and distribution system operators
(DSOs). RES are mainly connected to distribution systems (DSs) and
have high variability and uncertainty, challenging the TSOs and DSOs
who need to maintain their system balance. However, RES and active
users in DSs can also offer flexibility to contribute to the reduction

* Corresponding author.
E-mail address: D.Chrysostomou@tudelft.nl (D. Chrysostomou).

https://doi.org/10.1016/j.softx.2025.102241

the system operators. The RES and active users that offer flexibility
constitute the flexibility service providers (FSPs). Therefore, TSOs and
DSOs need operational tools that can efficiently allow communicating
and using FSP flexibility [1,2].

TSO-DSO coordination approaches can be categorized in TSO-
managed, DSO-managed, or TSO-DSO hybrid models [3,4], with re-
cent TSO-DSO coordination approaches also developing multi-interval

Received 19 January 2025; Received in revised form 13 May 2025; Accepted 16 June 2025

Available online 26 June 2025

2352-7110/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0002-3564-4629
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00033
https://codeocean.com/capsule/4767295/tree/v1
https://demetris-ch.github.io/TensorConvolutionFlexibility/
mailto:D.Chrysostomou@tudelft.nl
mailto:D.Chrysostomou@tudelft.nl
https://doi.org/10.1016/j.softx.2025.102241
https://doi.org/10.1016/j.softx.2025.102241
http://creativecommons.org/licenses/by/4.0/

D. Chrysostomou et al.

TSO-DSO coordination [5]. The proposed package is focused on DSO-
managed coordination, where the DSO validates the feasibility and
aggregates the FSP flexibility to inform the TSO of the available,
feasible FSP services. The DSO can validate and aggregate the FSP
flexibility using Flexibility areas (FAs) [3]. FAs are areas in the active
(P) and reactive (Q) power plane, illustrating which setpoints TSOs
can achieve at a TSO-DSO interconnection node when utilizing feasible
flexibility from the DSs.

FA estimation approaches mainly apply power flows (PF) or op-
timal power flows (OPF) [6-16] to explore the limits of the offered
flexibility in the PQ space. PF-based algorithms are simple and consis-
tent but slow, whereas OPF-based algorithms are faster but can have
convergence issues. A recently proposed FA estimation algorithm, Ten-
sorConvolution+ [17], explores the limits and the density of feasible
flexibility shift combinations to reach each FA setpoint. TensorConvolu-
tion+ applies convolution and tensor operations to combine flexibility
shifts and evaluate their feasibility for the system’s technical con-
straints. Additional functionalities of the TensorConvolution+ approach
include storing tensors from prior estimations and adapting FAs for
altered operating conditions (OCs). Forecast errors in distribution sys-
tems can provide uncertainty in day ahead FA estimation, with recent
approaches exploring chance constraint [14], robust optimization [8,
18], or probabilistic [10,19-21] algorithms. The proposed package
implements deterministic FA estimation. Fast FA estimation algorithms
can potentially be used in close to real-time, reducing the impact of
forecast errors [7]. Existing FA estimation approaches include case
studies with real-world systems and data. For example [22] used data
from the French DSO whereas [23] used the Swiss TS. The proposed
software currently supports systems in the pandapower format. Thus,
users should import their systems in the pandapower format, or use the
existing pandapower systems.

The operational transition and data availability in power systems
provided opportunities for digitalizing power systems. This digitaliza-
tion corresponds to more intelligent, effective, green power grid oper-
ations [24]. Data-driven approaches for power system operations are
emerging with works on dynamic [25] and static simulations [26,27],
from protection gaps [25], to dynamic security assessment [28] and
probabilistic approaches [26]. The main drivers for change in power
systems are decarbonization, digitalization, and decentralization, with
flexibility as a key for decarbonization [29]. The digitalization of power
systems resulted in the emergence of open-source tools. Power systems
open-source tools include the PandaPower [30] in Python, PSAT [31]
in Matlab and GNU/Octave, MatPower [32] in Matlab. More recent
tools with increased efficiency include [33] in C++. As highlighted
by [30], software developed in languages with open-source licenses,
such as Python, C++, and Julia, can be used as stand-alone or extended
with other libraries. These advantages of open-source libraries drove
researchers to design more specialized power system-related packages
such as [34-37]. FA estimation is an emerging field in power engi-
neering that can improve the power system stability and utilization
of flexibility from decentralized resources. However, currently, there
are no open-source FA estimation packages. An open-source package
for FA estimation can accelerate the adoption of FAs by power system
operators and attract more researchers to this emerging field.

The developed Python-based package for FA estimation focuses
on the TensorConvolution+ algorithm [17] but also includes a tradi-
tional PF-based algorithm, an exhaustive PF-based algorithm, and an
OPF-based algorithm.

2. Software description

The software framework is implemented in Python. The package
can be installed from the Python package index (PyPi). The code im-
plementation is available on GitHub. The documentation for the pack-
age’s main functions, classes, supporting functions, and case studies is
available online and was built using the Sphinx library [38].

SoftwareX 31 (2025) 102241

The seven main software functionalities are two PF-based algo-
rithms, one OPF-based algorithm, and four versions of the Tensor-
Convolution+ algorithm. Fig. 1 illustrates the usage of the package
functionalities. The user calls the FA_Estimator script of the TensorCon-
volutionPlus package and selects one of the main functionalities. The
selected algorithm functionality estimates the FA and stores locally:

1. The FA image in a portable document format (PDF) file.

2. The FA results in a comma-separated values (CSV) file.

3. A text file with the simulation information on duration and
algorithm-specific details.

The tcp_plus_save tensors also includes additional files from the FA re-
sults. The user inputs depend on the functionality.

2.1. Software architecture

The proposed software architecture intends to allow efficient modi-
fication and expansion of specific sub-processes of the FA estimation
problem. Table 1 highlights the roles of the Python scripts imple-
menting the package functionalities. The json reader script checks if
each input is within the acceptable options to avoid erroneous results.
If json reader detects an unacceptable input, the FA estimation does
not begin, and the user is informed about the input causing the is-
sue and the acceptable values. Users can identify which scripts and
functionalities to modify or expand to fulfill additional needs. For
example, to add or modify the plotting functions of the package, one
would modify the plotting script. For more complex modifications, such
as adding different sampling techniques for the PF-based algorithms,
the data sampler and json reader would be the only scripts requiring
modification. The user could modify the sample from rng function in
data sampler to sample FSP shifts using a new distribution when the
new distribution keyword is selected. The json reader modification
corresponds to adding new acceptable options, the new sampling dis-
tribution keyword in self.distribution in the function tester of the class
SettingReader. An input outside the acceptable options in the json_reader
stops the process before the simulation to avoid erroneous or untested
results. This architecture also allows potential future expansions to new
FA estimation algorithms, where an additional script can be created
and integrated with the json reader and FA_Estimator scripts without
impacting other processes. For new FA estimation algorithms, the
json reader would need to create any new variables for the algorithms
in the _init_ of the class SettingReader, and add the acceptable options
for each variable in the tester function. The new algorithms should be
created as a new functionality in the FA_Estimator script. Depending on
the needs of the new algorithms, the user can call sampling functions
from the data sampler, plotting functions from the plotting script, or
other generic functions from the utils script.

The package’s GitHub repository includes the Python scripts under
the “src/TensorConvolutionPlus” directory. The package dependencies
include pandapower to perform PF and OPF operations, PyTorch for ten-
sor operations, SciPy for convolution operations, tntorch and scikit-learn
for additional TensorConvolution+ subprocesses. NumPy and pandas
are used for data storage, processing, and sampling, tgdm illustrates the
FA estimation progress, and matplotlib and seaborn generate the figures.

2.2. Software functionalities

The FA _Estimator script includes the main functionalities as in Fig.
2. The monte_carlo pf and exhaustive pf functions apply PF-based FA
estimation algorithms. The opf function applies the OPF-based FA
estimation. The tc plus, tc_plus merge, tc plus save_tensors, tc_plus adapt
functions perform different versions of the TensorConvolution+ algo-
rithm. The common inputs for all main functionalities are the net-
work pandapower object (net), the network name (net name), indices
of load FSPs (fsp_load indices), indices of distributed generation FSPs

D. Chrysostomou et al.

Table 1

Package script roles.

N>~

SoftwareX 31 (2025) 102241

\ 4

N

User TensorConvolutionPlus

FA image file

Fig. 1. TensorConvolutionPlus package usage through the script (

NP s

TensorConvolutionPlus L >

Fig. 2. Package main functions (

tc_plus_save_tensors

) relationship (

Script

Role

FA _Estimator

Package main script which includes the main
functionalities.

json_reader

(i) Read input settings and create a
SettingReader object with the algorithm
parameters.

(ii) Validate that the inputs are within the
acceptable options.

data_sampler

Sample flexibility shifts from flexibility
providers.

scenario_setup

Update network and SettingReader object based
on the algorithm input parameters.

opf

Perform the OPF-based FA estimation
algorithm.

monte_carlo

Perform the PF-based FA estimation algorithms.

conv_simulations

Perform the TensorConvolution+ algorithm
functionalities.

utils

Provide generic functions to the other scripts.

plotting

Generate figures of resulting FAs.

i o Selected
Fa_Estimator > . :
Functionality
-
<
n
1@ <
FA CSV file
) FA_Estimator and its main functionalities ().

monte_carlo_pf

exhaustive_pf

tc_plus

tc_plus_merge

tc_plus_adapt

opf

) with python scripts ().

(fso_dg indices), scenario type for initial topology and OCs (scenario_type),
and system constraints for maximum component loading [%]
(max_curr. per), maximum voltage [p.u.] (max volt pu), and minimum
voltage [p.u.] (min volt pu). All functionality inputs are optional. How-
ever, to estimate FAs, at least one distributed generation or load FSP is
required. The remaining scripts, at the right of Fig. 2, provide functions
and sub-processes to implement the main functionalities.

3. Implementation and empirical results

The main building blocks for the implemented FA estimation al-
gorithms are (i) initializing network and FA estimation settings, (ii)
performing simulations for FSP flexibility shifts on the network, (iii)
processing the simulation results, and (iv) plotting and storing the
simulation results. All functions have similar block (i), the Algorithm
1. The plotting functions differ between the functionalities.

3.1. PF-based functions

The PF-based functions differ from the FSP flexibility shift sam-
pling functions. Therefore, the main difference between the PF-based
functions is:

» monte _carlo pf uses a probability distribution (input) to obtain
no_samples (input) of flexibility shift combinations.

D. Chrysostomou et al.

Algorithm 1 Initialize network and FA estimation settings.

Require: fsp_load indices and/or fsp_dg indices,

initialize SettingReader object with estimation settings,

check if SettingReader has acceptable values,

if net is None then,
net «— pandapower network with name=net name,
change net topology and OC for scenario_type,

end if

return SettingReader with net.

+ exhaustive pf uses the increments dp, dq (inputs) for P and Q to
sample all possible discretized flexibility shift combinations.

Algorithm 2 illustrates the algorithm for both the PF-based functions
after the samples are obtained. The samples array includes the FSP shift
combination samples. PCC is the point of common coupling between
the TSO and the DSO.

Algorithm 2 PF-based FA estimation.

Require: samples, SettingReader, net,
init_ net < net,
for sample € samples do,
apply sample on net,
run PF on net,
if net OC are within system constraints then,
store sample index and PCC P, Q as feasible,
else
store sample index and PCC P, Q as not-feasible,
end if
net « init net,
end for
store FA PDF, CSV, and text file.

3.1.1. Empirical results

The PF-based functions can illustrate consistent performance under
various network structures and FSP combinations. However, as FSPs in-
crease, the performance deteriorates. The Monte-Carlo-based algorithm
could require large no_samples to capture the margins of the flexibility
area. The exhaustive PF-based algorithm can become intractable for
more than 3 FSPs and small dp, dg.

3.2. OPF-based function

The OPF-based algorithm applies four multi-objective optimizations
(MOO). These optimizations aim to identify the maximum feasible
active (Ppcc) and reactive power (Qpcc) at the PCC achieved using
the available flexibility as:

. max(aPpcc + (1 — a)Opcc),
. max(—aPpcc + (1 =)0 pce)s
. max(aPpcc + (@ — DO pcc),
. max(—aPpcc + (@ = 1)OQpce)-

AW N

The variable a € [0,1] provides a plane in which the active and
reactive power shifts are combined. Therefore, the algorithm iteratively
changes « in steps provided through the additional input the opf step.
For example, an opf step= 0.1 results in 11 iterations per MOO, thus 44
OPFs to estimate the FA.

3.2.1. Empirical results

The OPF-based function has convergence issues for different net-
work structures. The OPF-based function can converge for the radial
CIGRE MV network when ignoring transformer loading limitations but
might not converge in other networks, e.g., the Oberrhein network.

SoftwareX 31 (2025) 102241

These issues are due to the OPFs performed for each MOO failing to
converge to identify an optimal solution within the constraints and
network settings.

3.3. TensorConvolution+ functions

The TensorConvolution+ functions correspond to the algorithm pro-
posed in [17]. The function tc_plus corresponds to the generic approach
of the algorithm, whereas the rest accommodate specific use cases.

TensorConvolution+ initially creates samples of all flexibility shifts
for each FSP with increments dp, dq (inputs) for active and reactive
power, respectively. The samples do not include combinations of FSPs.
Thus, the number of samples increases linearly with the addition of
FSPs. The flex shape input characterizes the boundaries of each FSP
flexibility. Currently, the FSP shapes can be:

1. Smax: The FSP output apparent power cannot exceed its maxi-
mum apparent power, resulting in a semi-oval flexibility shape.

2. PQmax: The FSP active and reactive power outputs cannot ex-
ceed the maximum apparent power, resulting in a rectangular
flexibility shape.

Algorithm 3 tc plus FA estimation.

Require: samples, SettingReader, net,
init net < net,
Q7 « set of net components,
for sample € samples do,
run PF on sample and record impact on network components,
end for
QFSPs set of FSPs with capacity smaller than dp, dq,
impacts < the FSP impacts on each y € €7,
UFA « the unconstrained FA using convolutions on all FSP € QFSP,
@Q[SP « set of FSPs that impact y more than the sensitivity
thresholds,
Q7 « remove all y from " that cannot reach the system constraints
from the maximum FSP impacts,
for y € Q2 do,
Z, « apply tensor-convolution for all feasible 25" combina-
tions,
A, < sum =, in all dimensions except the first 2,
Y, < apply convolution between A, and the Q75 _QVF SP shifts,
end for

if Q7 = ¢ then,
FA <« uFA,
else

FA « the element-wise minimum between Y, Vy € Q7,

end if

normalize FA,

get axes of result and create a result data frame,

if QFSPs £ ¢ then,
F A, < bilinear interpolation on FA to increase its size,
FA,, < convolute FA; with the FSPs in QfSPs,
normalize FAj,,

end if

store FA PDF, CSV, and text file.

Using these samples and the outputs of Algorithm 1, the function
tc_plus performs Algorithm 3 to estimate and plot the FA. The Tensor-
Convolution+ algorithm applies convolutions to combine the flexibility
shifts between FSPs. However, as FAs consider the network constraint
limitations, the FA algorithm needs to first filter the feasible and non-
feasible combinations. Thus, for sensitive network components (close
to network constraints), TensorConvolution+ modifies the convolution
operation to avoid the summation step and stores the resulting impacts
from combined FSP shifts to tensors. The first two dimensions of the

D. Chrysostomou et al.

tensors correspond to the PCC active and reactive powers, whereas
the additional dimensions include the impact of a specific flexibility
combination on a sensitive network component. Following these ten-
sor operations, TensorConvolution+ filters out the FSP combinations
resulting in non-feasible conditions and sums all but the first two
tensor dimensions, as the convolution summation step.[17] provides
further illustrative and mathematical analysis of TensorConvolution+.
The main differences between tc plus, tc plus merge, tc plus save_tensors,
and tc plus adapt:

* tc plus_save_tensors stores extracted information and sensitivity
tensors locally. This functionality reduces the tensors’ memory
requirements using tensor train decomposition (TTD). This re-
duction causes delays and is therefore excluded from the tc plus
function.

tc_ plus_adapt does not sample flexibility shifts nor estimates net-
work component sensitives, as it adapts from the FA estimated in
previous simulations for the same FSP offers.

tc_ plus merge is useful when memory limitations do not allow
estimating FAs with the tc_plus function. The tc_plus merge function
estimates the electrical distance between all FSPs. When a net-
work component is sensitive to more than max FSPs (input), this
function merges the flexibility between the two electrically closest
components iteratively until the network component is sensitive
to max_FSPs.

3.3.1. Empirical results

The TensorConvolution+ functions perform computationally bet-
ter in GPUs, where tensor operations can be faster. Simulations in
different network topologies showcased consistent performance with
TensorConvolution+.

TensorConvolution+ can have memory issues and terminate the
simulation for networks with multiple components close to the system
constraints, small dp, dq, and increased FSPs. GPUs with higher VRAM
reduce these limitations. When memory issues persist, tc_plus merge can
mitigate these issues but could reduce the estimation accuracy.

4. Illustrative examples

All examples were performed using the A100 GPU in Google Co-
lab [39]. To use the package, the user can perform two steps. The first
step is installing the package through pip as:

1 pip install TensorConvolutionPlus

The second step is importing the package’s FA_Estimator in a Python
script as:

1 from TensorConvolutionPlus import FA_Estimator
as TCP

The user can use any main function from Fig. 2 using the imported
TCP. The following subsections showcase the main functions of the
package after the above steps.

4.1. PF and OPF functionalities

This section includes examples using the Monte Carlo PF, exhaustive
PF, and OPF functionalities. These examples used the Python script
code:

1 TCP.monte_carlo_pf (net_name=’MV Oberrhein0O’,
no_samples=1000, fsp_load_indices=[1, 2,
3], fsp_dg_indices=[1, 2, 3], distribution
=’Uniform’)

N

3 TCP.monte_carlo_pf(net_name=’MV OberrheinO’,
no_samples=6000, fsp_load_indices=[1, 2,
3], fsp_dg_indices=[1, 2, 3], distribution
=’Uniform’)

SoftwareX 31 (2025) 102241

5 TCP.monte_carlo_pf (net_name=’MV Oberrhein0O’,
no_samples=20000, fsp_load_indices=[1, 2,
3], fsp_dg_indices=[1, 2, 3], distribution
=’Uniform’)

7 TCP.monte_carlo_pf (net_name=’MV Oberrhein0O’,
no_samples=40000, fsp_load_indices=[1, 2,
3], fsp_dg_indices=[1, 2, 3], distribution
=’Uniform’)

9 TCP.exhaustive_pf(net_name=’MV OberrheinO’, dp
=0.01, dq=0.02, fsp_load_indices=[5],
fsp_dg_indices=[5])

11 TCP.opf (net_name=’CIGRE MV’, opf_step=0.1,
fsp_load_indices=[1, 4, 9], fsp_dg_indices
=[81)

Fig. 3 illustrates the expected output FA for each line respectively.
In terms of computational burden, the simulations required 55 s for
Fig. 3(a), 5 min and 5 s for Fig. 3(b), 18 min for Fig. 3(c), 36 min for
Fig. 3(d), 36 min and 18 s for Fig. 3(e), and 33.7 s for Fig. 3(f). Fig.
3(e) performed 43121 power flows and Fig. 3(f) executed 44 OPFs. The
Monte Carlo-based results showcase clearer FA margins for 20K and
40k samples than lower values. However, the number of samples for
clearer margins can also depend on the number of FSPs. Monte Carlo-
based functions can be better than the exhaustive PF-based function
in exploring FA margins for scenarios with more FSPs. Lowering the
resolution for the exhaustive approach for producing clear FA margins
can be intractable as FSPs increase.

4.2. TensorConvolution+

This section illustrates examples using the TensorConvolution+ FA
estimation functionality, using the Python lines:

1 TCP.tc_plus(net_name=’MV OberrheinO’,
fsp_load_indices=[1, 2, 3], dp=0.05, dq
=0.1, fsp_dg_indices=[1, 2, 3])

3 TCP.tc_plus(net_name=’MV OberrheinO’,
fsp_load_indices=[1, 2, 3], dp=0.075, dq
=0.15, fsp_dg_indices=[1, 2, 3])

5 TCP.tc_plus_merge(net_name=’MV Oberrhein0O’,
fsp_load_indices=[1, 2, 3], dp=0.025, dq
=0.05, fsp_dg_indices=[1, 2, 3], max_fsps
=5)

7 TCP.tc_plus(net_name=’MV OberrheinO’,
fsp_load_indices=[1, 2], dp=0.05, dq=0.1,
fsp_dg_indices=[1, 2, 3])

o TCP.tc_plus(net_name=’MV OberrheinO’,
fsp_load_indices=[1, 2], dp=0.025, dq
=0.05, fsp_dg_indices=[1, 2, 3])

11 TCP.tc_plus(net_name=’CIGRE MV,
fsp_load_indices=[3, 4, 5], dp=0.05, dq
=0.1, fsp_dg_indices=[8], non_linear_fsps

=[81)

Fig. 4 shows the expected output FAs from the above lines respec-
tively. Fig. 4(a) required 13.1 s whereas the second line reduces the
resolution, with Fig. 4(b) requiring 7.6 s. Increasing the resolution from
the first line to dp = 0.025,dq = 0.5 exceeded the A100 GPU memory,
stoping the simulation. Thus, running the tc_plus merge function merged
FSPs when more than 5 FSPs impacted a network component and
estimated the FA of Fig. 4(c) for this higher resolution in 37.9 s. The
fourth line reduced the number of FSPs to 5 from Fig. 4(a) with the

D. Chrysostomou et al.

same resolution, resulting in Fig. 5 in 9 s. Increasing the resolution of
Fig. 5 to dp = 0.025,dq = 0.5 did not cause memory issues for the GPU,
resulting in Fig. 4(e) in 26.5 s. The last line includes an FSP offering
discrete setpoints of flexibility. The input non_linear fsps specifies which
of the FSPs referenced in the fsp_dg indices can only offer 2 setpoints;
current output or full output reduction. The duration for Fig. 4(f) was

17.8 s.

QIMVAR]

Q[MVAR]

Q[MVAR]

55 b1

18 185
P[MW]

19

18 185
P[MW)]

(a) Monte Carlo PF with (b) Monte Carlo PF with (c) Monte Carlo PF with
20k samples.

1k samples.

18 18.5
PMW]

(d) Monte Carlo PF with

40k samples.

18.5
P[MW)]

(d)

19

19

Fig. 3. PF-based and OPF-based FA estimations.

Q[MVAR]

6k samples.

18.6

P[MW]

(e) Exhaustive PF

Q[MVAR]

16

15

14

13

12

Q[MVAR]

Q[MVAR]

mn|
\ ! o
43 44 45
P[MW]
(f) OPF
1003
1002
\ 10°
18.5 19
P[MW] DFC[-]
(c)
k| 100.3
100-2
\ 100
43 44
P[MW] DFC[-]

SoftwareX 31 (2025) 102241

Fig. 4. TensorConvolution+ algorithm examples with all linear FSPs in (a)-(e), merging of FSPs in (c) and one non-linear FSP in (f).

4.3. TensorConvolution+ adapt

To adapt FA estimations using estimations from expected or prior
operating conditions, TensorConvolution+ requires storing the relevant
information from these prior FA estimations locally. Therefore, the
package’s user should first call the tc_plus_save_tensors function to store

D. Chrysostomou et al.

the information. This function performs TTD to reduce the space re-
quired to store tensors but requires more extensive computational time
than tc plus to execute the additional TTD and storing operations. After
tc_plus_save tensors is executed, then tc plus_adapt can use the stored
information to estimate FAs for altered related OCs if the network
topology and FSPs are consistent. Bellow, an example script storing the
information, altering the operating conditions, and adapting the FA for
the new operating conditions:

1 # Stepl: Define the consistent FSPs for the
storing and adapting functions

fsp_load_indices = [1, 2, 3]

fsp_dg_indices = [1, 2, 3]

4+ # Step 2: Estimate the FA and store the
relevant information for adaptation

5 TCP.tc_plus_save_tensors(net_name=’MV
Oberrhein0’, fsp_load_indices=
fsp_load_indices, dp=0.05, dqg=0.1,
fsp_dg_indices=fsp_dg_indices)

¢ # Step 3: Modify the network operating
conditions

N

7 net, net_tmp = pn.mv_oberrhein(
separation_by_sub=True)

s net.load[’sn_mva’] = list(net.load[’p_mw’].pow
(2) .add(net.load[’q_mvar’].pow(2)) .pow
(0.5))

o net.load[’scaling’] = [1 for i in range(len(

net.load))]

10 net.sgen[’scaling’]
net.sgen))]

11 net.switch[’closed’] = [True for i in range(
len(net.switch))]

12 # Step 4: Fix the network structure

13 net = fix_net(net) # This function is included
in the documentation (C8 of Tab.1l)

14 # Step 5: Sample a new operating condition
with randomness

15 rng = np.random.RandomState (212)

16 net, rng = rand_resample(net, fsp_load_indices
, fsp_dg_indices, rng, 0.05, 0.01, 0.05,
0.01) # This function is included in the
documentation (C8 of Tab.1)

17 # Step 6: Adapt the FA using the locally
stored information

15 TCP.tc_plus_adapt (net=net, fsp_load_indices=
fsp_load_indices, fsp_dg_indices=
fsp_dg_indices)

19 # Step 7: Estimate the FA without adapting to
compare with the above-adapted result

20 TCP.tC_plus(net=net, fsp_load_indices=
fsp_load_indices, fsp_dg_indices=
fsp_dg_indices, dp=0.05, dq=0.1)

[1 for i in range(len(

The expected output FA from the storing function is the same as in
Fig. 4(a). However, this function also stores:

1. TTD results for 20 network components with total size 241 MB.

2. FA axes values with total size 2 KB.

3. Matrix of the unconstrained convolution results with total size 4
KB.

4. Dictionary with FSP impacts 382 KB.

5. Dictionary of impactful FSPs per network component 4 KB.

The storing function required 61 s. Fig. 5 illustrates the expected output
for the adapted FA and the FA without adaptation, i.e., not using the
stored information. The FAs of Fig. 5 have a high resemblance. The
GPU needed 1.4 s for the adapted FA of Fig. 5(a) and 10.4 s for the FA
of Fig. 5(b).

SoftwareX 31 (2025) 102241

—_— —
0.3
5 - i g . B - | 10
> > 100-2
2 =)
& = - <
6 61 |
| ! | ! | 10°
18 18.5 19 18.5 19
PMW] PMW] DFC[—]
(a) Adapted FA. (b) FA witouth adaptation.
Fig. 5. TensorConvolution+ example in adapted FA estimation.
5. Impact

TensorConvolutionPlus is the first open-source package for FA es-
timation. Users can execute the package functionalities with ease. The
package can estimate FAs only with two lines of Python code, importing
the package and calling the selected functionality. Existing power
systems-related libraries do not offer FA estimation functionalities, but
rather power flows and optimal power flows. Other FA frameworks
have been proposed to make use of such power flows. However, to
the best of the authors knowledge, this proposed package is the first
that focuses directly on the FA estimation algorithms and is ready to
use without requiring the implementation of FA algorithms. Existing
works have released code implementations for FA estimation [16,40,
41], but no dedicated FA package has been available. This package
release enhances FA estimation accessibility, reusability, and ease of
integration, providing a standardized and user-friendly solution. Never-
theless, the structure also allows using networks developed by the user.
The software design strengthens the potential for further expansion,
improvement, and adoption of FA estimation methods. The package
structure enables users to expand FA estimation subprocesses without
modifying other subprocesses. For example, possible expansions for the
PF-based functions include new shapes from the flexibility resources
or new sampling distributions for the Monte Carlo-based function.
These expansions should not impact Algorithm 2 but only the scripts
data sampler for the new sampling shapes or distributions, json reader
to accept the new input keywords, and FA_Estimator to obtain the new
inputs and call the new data_sampler functions.

The developed package includes different FA estimation approaches,
allowing users to select and identify the best-performing approach for
their tasks. Nevertheless, this package focuses on the TensorConvolu-
tion+ [17] algorithm, which can require more complex implementation
compared to OPF-based and PF-based algorithms. Through this pack-
age, researchers will be able to familiarize themselves with the FA
estimation topic and the TensorConvolution+ algorithm and further
advance the field of FA estimation. Similarly, power system operators
can use this package directly for their networks and case studies,
improving the potential of adopting FAs in their operations. Recent
publications explore the application of FA for improved TSO-DSO coor-
dination frameworks and more efficient real-time grid operation [3,23].
The proposed package can further facilitate these applications by
alleviating the burden of reimplementing the FA estimation algorithms.
Existing power system workflows in Python can integrate with the
proposed package if the systems are in a pandapower format. Power
system workflows in other languages or software such as DigSilent
or Matlab would first require integration with Python before using
TensorConvolutionPlus.

D. Chrysostomou et al.

5.1. Limitations

The main limitation of the released package is the absence of unit
testing for future package versions. Individual limitations from the
main functionalities include the GPU memory overflow for TensorCon-
volution+ and convergence failures for the OPF-based functionality.
For TensorConvolution+, the memory overflow can be reduced by
using the tc plus merge functionality. Another mitigation can extend the
increments dp, dq, resulting in lower resolution FAs. For the OPF-based
convergence failures, simplified OPF implementations might mitigate
the issues, but were not tested in the present package release.

6. Conclusions

Power system digitalization and developing open-source power sys-
tem specialized tools are significant for intelligent and effective power
grid operations. In the absence of open-source tools for FA estimation,
the developed package can improve the reachability and adoption of
TensorConvolution+ and FA estimation algorithms in academia and
industry. With a user-friendly structure, the package allows straight-
forward installation and execution of FA estimation.

The package documentation showcases example usages and details
on the scripts and their functions. The package structure diversifies
between FA sub-processes. This diversification allows users to better
understand and expand the FA estimation algorithms in specific sub-
processes, such as the FSP shapes, without impacting the remaining
sub-processes. This research is part of the MegaMind project which
involves Dutch system operators and grid companies. The package will
be pursued for integration with relevant industrial partners in future de-
velopments. Unit testing implementation will also be pursued in future
work to facilitate consistency in later package versions. Future package
expansions include implementing FA functionalities using alternative
power system tools and libraries, and comparing the performance to the
present functionalities. This package will be maintained with updates
reviewed annually. Pull requests are welcome and will be tested and
reviewed by the authors before merging. Improvement on the GPU
requirements of TensorConvolution+ and the OPF implementations will
also be pursued in future developments.

CRediT authorship contribution statement

Demetris Chrysostomou: Writing — review & editing, Writing —
original draft, Visualization, Validation, Software, Resources, Method-
ology, Investigation, Formal analysis, Data curation, Conceptualiza-
tion. José Luis Rueda Torres: Writing — review & editing, Writing —
original draft, Validation, Supervision, Project administration, Method-
ology, Conceptualization. Jochen Lorenz Cremer: Writing — review
& editing, Writing — original draft, Validation, Supervision, Project
administration, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is part of the research program ‘MegaMind - Measur-
ing, Gathering, Mining and Integrating Data for Self-management in the
Edge of the Electricity System’, (partly) financed by the Dutch Research
Council (NWO) through the Perspectief program under number P19-25.

SoftwareX 31 (2025) 102241
References

[1] Rodriguez Pérez N, Domingo JM, Lopez GL, et al. ICT architectures for TSO-DSO
coordination and data exchange: A European perspective. IEEE Trans Smart Grid
2023;14(2). http://dx.doi.org/10.1109/TSG.2022.3206092.

[2] Troncia M, Ruggeri S, Soma GG, Pilo F, Avila JPC, Muntoni D, et al. Strategic
decision-making support for distribution system planning with flexibility alter-
natives. Sustain Energy, Grids Networks 2023;35:101138. http://dx.doi.org/10.
1016/j.segan.2023.101138.

[38] Givisiez AG, Petrou K, Ochoa LF. A review on TSO-DSO coordination models
and solution techniques. Electr Power Syst Res 2020;189.

[4] Weng Y, Xie J, Wang P, Nguyen HD. Asymmetrically reciprocal effects and
congestion management in TSO-DSO coordination through feasibility regularizer.
IEEE Trans Power Syst 2023;38(2):1948-62. http://dx.doi.org/10.1109/TPWRS.
2022.3193052.

[5] Bakhtiari H, Hesamzadeh MR, Bunn DW. TSO-DSO operational coordina-
tion using a look-ahead multi-interval framework. IEEE Trans Power Syst
2023;38(5):4221-39. http://dx.doi.org/10.1109/TPWRS.2022.3219581.

[6] Silva J, Sumaili J, Bessa RJ, Seca L, Matos M, Miranda V. The challenges of
estimating the impact of distributed energy resources flexibility on the TSO/DSO
boundary node operating points. Comput Oper Res 2018;96.

[7] Capitanescu F. TSO-DSO interaction: Active distribution network power chart for
TSO ancillary services provision. Electr Power Syst Res 2018;163.

[8] Kalantar-Neyestanaki M, Sossan F, Bozorg M, Cherkaoui R. Characterizing the
reserve provision capability area of active distribution networks: A linear robust
optimization method. IEEE Trans Smart Grid 2019;11(3).

[9] Savvopoulos N, Evrenosoglu CY, Konstantinou T, Demiray T, Hatziargyriou N.
Contribution of residential PV and BESS to the operational flexibility at the
TSO-DSO interface. In: International conference on smart energy systems and
technologies. SEST, IEEE; 2021.

[10] Gonzalez DM, Hachenberger J, Hinker J, Rewald F, et al. Determination of the
time-dependent flexibility of active distribution networks to control their TSO-
DSO interconnection power flow. In: Power systems computation conference.
PSCC, IEEE; 2018.

[11] Savvopoulos N, Hatziargyriou N. An effective method to estimate the aggregated
flexibility at distribution level. IEEE Access 2023;11. http://dx.doi.org/10.1109/
ACCESS.2023.3262730.

[12] Prionistis G, Vournas C, Vrakopoulou M. A fast method to approximate the
flexibility region of an active distribution network in PQ space. In: IEEE belgrade
powerTech. 2023, http://dx.doi.org/10.1109/PowerTech55446.2023.10202983.

[13] Churkin A, Sanchez-Lopez M, Alizadeh MI, Capitanescu F, et al. Impacts of distri-
bution network reconfiguration on aggregated DER flexibility. In: IEEE belgrade
powerTech. 2023, http://dx.doi.org/10.1109/PowerTech55446.2023.10202791.

[14] Chen T, Song Y, Hill DJ, Lam AY. Enhancing flexibility at the transmission-
distribution interface with power flow routers. IEEE Trans Power Syst
2021;37(4).

[15] Bolfek M, Capuder T. An analysis of optimal power flow based formula-
tions regarding DSO-TSO flexibility provision. Int J Electr Power Energy Syst
2021;131.

[16] Chrysostomou D, Torres JLR, Cremer JL. Exploring operational flexibility of
active distribution networks with low observability. In: 2023 IEEE belgrade
powertech. IEEE; 2023.

[17] Chrysostomou D, Torres JLR, Cremer JL. Tensor convolution-based aggregated
flexibility estimation in active distribution systems. IEEE Trans Smart Grid 2024.
http://dx.doi.org/10.1109/TSG.2024.3453667.

[18] Savvopoulos N, Hatziargyriou N, Laaksonen H. A holistic approach to the
efficient estimation of operational flexibility from distributed resources. IEEE
Open Access J Power Energy 2024.

[19] Majumdar N, Kengkat P, Yermekbayev R, Hofmann L. Reliability parameterised
distribution grid flexibility aggregation considering renewable uncertainties. In:
2023 58th international universities power engineering conference. UPEC, 2023,
p. 1-6. http://dx.doi.org/10.1109/UPEC57427.2023.10294524.

[20] Ge S, Xu Z, Liu H, Gu C, Li F. Flexibility evaluation of active distribution
networks considering probabilistic characteristics of uncertain variables. IET
Gener Transm Distrib 2019;13(14):3148-57.

[21] Hui H, Bao M, Ding Y, Yan J, Song Y. Probabilistic integrated flexible regions
of multi-energy industrial parks: Conceptualization and characterization. Appl
Energy 2023;349:121521.

[22] Silva J, Sumaili J, Bessa RJ, Seca L, Matos MA, Miranda V, et al. Estimating the
active and reactive power flexibility area at the TSO-DSO interface. IEEE Trans
Power Syst 2018;33(5).

[23] Kalantar-Neyestanaki M, Cherkaoui R. Grid-cognizant TSO and DSO coordination
framework for active and reactive power flexibility exchange: The swiss case
study. Electr Power Syst Res 2024;235:110747. http://dx.doi.org/10.1016/j.epsr.
2024.110747.

[24] Cali U, Kuzlu M, Pipattanasomporn M, Kempf J, Bai L. Introduction to the
digitalization of power systems and markets. Digit Power Mark Syst using Energy
Informatics 2021.

[25] Fan R, Yin T, Yang K, Lian J, Buckheit J. New data-driven approach to
bridging power system protection gaps with deep learning. Electr Power Syst
Res 2022;208:107863.

http://dx.doi.org/10.1109/TSG.2022.3206092
http://dx.doi.org/10.1016/j.segan.2023.101138
http://dx.doi.org/10.1016/j.segan.2023.101138
http://dx.doi.org/10.1016/j.segan.2023.101138
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb3
http://dx.doi.org/10.1109/TPWRS.2022.3193052
http://dx.doi.org/10.1109/TPWRS.2022.3193052
http://dx.doi.org/10.1109/TPWRS.2022.3193052
http://dx.doi.org/10.1109/TPWRS.2022.3219581
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb9
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb10
http://dx.doi.org/10.1109/ACCESS.2023.3262730
http://dx.doi.org/10.1109/ACCESS.2023.3262730
http://dx.doi.org/10.1109/ACCESS.2023.3262730
http://dx.doi.org/10.1109/PowerTech55446.2023.10202983
http://dx.doi.org/10.1109/PowerTech55446.2023.10202791
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb14
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb15
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb16
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb16
http://dx.doi.org/10.1109/TSG.2024.3453667
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb18
http://dx.doi.org/10.1109/UPEC57427.2023.10294524
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb22
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb22
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb22
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb22
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb22
http://dx.doi.org/10.1016/j.epsr.2024.110747
http://dx.doi.org/10.1016/j.epsr.2024.110747
http://dx.doi.org/10.1016/j.epsr.2024.110747
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb24
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb25

D. Chrysostomou et al.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Ahmad T, Madonski R, Zhang D, Huang C, Mujeeb A. Data-driven probabilistic
machine learning in sustainable smart energy/smart energy systems: Key devel-
opments, challenges, and future research opportunities in the context of smart
grid paradigm. Renew Sustain Energy Rev 2022;160:112128.

Habib B, Isufi E, Breda Wv, Jongepier A, Cremer JL. Deep statistical solver
for distribution system state estimation. IEEE Trans Power Syst 2023. http:
//dx.doi.org/10.1109/TPWRS.2023.3290358.

Cremer JL, Strbac G. A machine-learning based probabilistic perspective on
dynamic security assessment. Int J Electr Power Energy Syst 2021;128:106571.
Di Silvestre ML, Favuzza S, Riva Sanseverino E, Zizzo G. How decarboniza-
tion, digitalization and decentralization are changing key power infrastructures.
Renew Sustain Energy Rev 2018;93. http://dx.doi.org/10.1016/j.rser.2018.05.
068.

Thurner L, Scheidler A, Schifer F, Menke J-H, Dollichon J, Meier F, et al.
Pandapower—an open-source python tool for convenient modeling, analysis, and
optimization of electric power systems. IEEE Trans Power Syst 2018;33(6).
Milano F. An open source power system analysis toolbox. IEEE Trans Power Syst
2005;20(3).

Zimmerman RD, Murillo-Sdnchez CE, Thomas RJ. MATPOWER: Steady-state
operations, planning, and analysis tools for power systems research and edu-
cation. IEEE Trans Power Syst 2011;26(1). http://dx.doi.org/10.1109/TPWRS.
2010.2051168.

Xiang Y, Salemink P, Stoeller B, Bharambe N, van Westering W. Power grid
model: a high-performance distribution grid calculation library. In: 27th interna-
tional conference on electricity distribution, Vol. 2023. 2023, http://dx.doi.org/
10.1049/icp.2023.0633.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SoftwareX 31 (2025) 102241

Johnston J, Henriquez-Auba R, Maluenda B, Fripp M. Switch 2.0: A modern
platform for planning high-renewable power systems. SoftwareX 2019;10. http:
//dx.doi.org/10.1016/j.s0ftx.2019.100251.

Mirz M, Vogel S, Reinke G, Monti A. Dpsim—A dynamic phasor real-time
simulator for power systems. SoftwareX 2019;10. http://dx.doi.org/10.1016/j.
softx.2019.100253.

Plietzsch A, Kogler R, Auer S, Merino J, de Muro AG, Life J, et al. PowerDy-
namics.jl—An experimentally validated open-source package for the dynamical
analysis of power grids. SoftwareX 2022;17. http://dx.doi.org/10.1016/j.softx.
2021.100861.

Ramos A, Alvarez EF, Lumbreras S. openTEPES: open-source transmission and
generation expansion planning. SoftwareX 2022;18.

Brandl G. Sphinx documentation. 2010, URL http://sphinx-doc.org/sphinx.pdf.
Bisong E, Bisong E. Google colaboratory. 2019, Building machine learning and
deep learning models on google cloud platform: a comprehensive guide for
beginners.

Papazoglou GK, Forouli AA, Bakirtzis EA, Biskas PN, Bakirtzis AG. Estimating
the feasible operating region of active distribution networks using the genetic
algorithm. In: 2023 IEEE PES gTD international conference and exposition. GTD,
IEEE; 2023, p. 182-7.

Churkin A, Kong W, Mancarella P, Cesefia EAM. Quantifying phase unbalance
and coordination impacts on distribution network flexibility. 2024, arXiv preprint
arXiv:2408.06516.

http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb26
http://dx.doi.org/10.1109/TPWRS.2023.3290358
http://dx.doi.org/10.1109/TPWRS.2023.3290358
http://dx.doi.org/10.1109/TPWRS.2023.3290358
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb28
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb28
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb28
http://dx.doi.org/10.1016/j.rser.2018.05.068
http://dx.doi.org/10.1016/j.rser.2018.05.068
http://dx.doi.org/10.1016/j.rser.2018.05.068
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb30
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb31
http://dx.doi.org/10.1109/TPWRS.2010.2051168
http://dx.doi.org/10.1109/TPWRS.2010.2051168
http://dx.doi.org/10.1109/TPWRS.2010.2051168
http://dx.doi.org/10.1049/icp.2023.0633
http://dx.doi.org/10.1049/icp.2023.0633
http://dx.doi.org/10.1049/icp.2023.0633
http://dx.doi.org/10.1016/j.softx.2019.100251
http://dx.doi.org/10.1016/j.softx.2019.100251
http://dx.doi.org/10.1016/j.softx.2019.100251
http://dx.doi.org/10.1016/j.softx.2019.100253
http://dx.doi.org/10.1016/j.softx.2019.100253
http://dx.doi.org/10.1016/j.softx.2019.100253
http://dx.doi.org/10.1016/j.softx.2021.100861
http://dx.doi.org/10.1016/j.softx.2021.100861
http://dx.doi.org/10.1016/j.softx.2021.100861
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb37
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb37
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb37
http://sphinx-doc.org/sphinx.pdf
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://refhub.elsevier.com/S2352-7110(25)00208-0/sb40
http://arxiv.org/abs/2408.06516

	TensorConvolutionPlus: A python package for distribution system flexibility area estimation
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Implementation and empirical results
	PF-based functions
	Empirical results

	OPF-based function
	Empirical results

	TensorConvolution+ functions
	Empirical results

	Illustrative examples
	PF and OPF Functionalities
	TensorConvolution+
	TensorConvolution+ Adapt

	Impact
	Limitations

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

