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Abstract
Given the ubiquity of AI-based decisions that af-
fect individuals’ lives, providing transparent expla-
nations about algorithms is ethically sound and of-
ten legally mandatory. How do individuals strate-
gically adapt following explanations? What are the
consequences of adaptation for algorithmic accu-
racy? We simulate the interplay between explana-
tions shared by an Institution (e.g. a bank) and the
dynamics of strategic adaptation by Individuals re-
acting to such feedback. Our model identifies key
aspects related to strategic adaptation and the chal-
lenges that an institution could face as it attempts to
provide explanations. Resorting to an agent-based
approach, our model scrutinizes: i) the impact of
transparency in explanations, ii) the interaction be-
tween faking behavior and detection capacity and
iii) the role of behavior imitation. We find that the
risks of transparent explanations are alleviated if ef-
fective methods to detect faking behaviors are in
place. Furthermore, we observe that behavioral im-
itation — as often happens across societies — can
alleviate malicious adaptation and contribute to ac-
curacy, even after transparent explanations.

1 Introduction
Building ethical algorithms is increasingly important in
multiple domains, including the banking sector [Citron
and Pasquale, 2014]. The expanding use of AI has been
accompanied by ethical concerns emanating from both
intended and unintended consequences of such use and
applications, especially when AI-models impact humans in
high-stake decisions. In this context, a fundamental aspect
is the role of an ethically sound recourse, that in some cases
may also be legally mandatory [Citron and Pasquale, 2014;
Goodman and Flaxman, 2017; Wachter et al., 2017].

While explanations are desirable, introducing recourse into
decision-making guided by AI-applications poses challenges
due to the ensuing adaptation process by humans. Consider
the example of loan applications in banking: if costumers
have access to the details of the algorithmic decision assign-
ing a credit score, they might use that information to adapt

and improve their condition in the future (e.g., on financial
variables like savings, income, loan value) or try to game the
algorithm (e.g., providing misleading or false information).
It becomes fundamental to ensure that recourse and expla-
nations are not misused and to prevent manipulation in the
decision-making processes in order to avoid wrong decisions
(e.g. through disinformation, gaming or faking behaviors)
[Dalvi et al., 2004; Barreno et al., 2006; Hardt et al., 2016;
Akyol et al., 2016; Bambauer and Zarsky, 2018; Hu et al.,
2019; Molnar, 2020]. Thus, from the perspective of an insti-
tution deploying algorithms, it is of utmost interest to over-
come the tension between two ethical obligations: providing
explanations to individuals without compromising the effec-
tiveness and benefits of algorithms for society. This is a non-
trivial problem which poses an ethical dilemma linking mul-
tiple dimensions: the algorithm, societal norms, individuals’
adaptation, and the service at stake.

This paper proposes a mathematical framework to study
the mentioned ethical dilemma by focusing on the interplay
between the feedback shared by an Institution (e.g. a bank)
and the strategic adaptation behaviors of Individuals subject
to a generic classification model. We perform an analysis
through an agent-based simulation approach. This enables us
to assess the key issues related to strategic classification in the
context of AI and their impact on the risks that the Institution
could face resulting from the recourse provided. We use a
binary classification model and study the effects of feedback,
imitation and detection in countering faking behaviors via an
illustrative example. We focus on: i) the role of noise in feed-
back/explanations provided by the Institution, ii) detection
of gaming by Individuals and iii) adaptation through imita-
tion of behaviors within a population. We find that the risks
of transparent explanations regarding strategic manipulation
(faking) are alleviated if effective methods to detect faking
behaviors are in place and if individuals in a population are
influenced by other individuals through imitation. Within the
specific context of credit decision modeling in banking, the
proposed framework represents a formal basis for the Insti-
tution to identify key factors to analyze and remedies to de-
velop.1

1Supplementary Information available at: https://github.com/
fp-santos/strategic-classification-imitation. An extended abstract of
this paper appears in the Proc. of AAMAS’22 [Barsotti et al., 2022].
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1.1 Related Work
The problem we explore is closely related to the problem
of adversarial [Dalvi et al., 2004] and strategic classification
[Hardt et al., 2016], where the goal is to define a learning al-
gorithm that is robust against the strategic adaption of individ-
uals (so-called strategy-robust learning). The work by [Hardt
et al., 2016] framed the problem of strategic classification as a
two-person sequential game between a Jury (Institution) and
a Contestant (Individual). The authors assume that first the
Jury trains a classifier, based on a sample of labeled individu-
als, and then Contestants adapt by changing their features at a
cost. The authors prove that, if the Jury has some information
about the Contestants’ cost functions, and if such functions
have certain properties (i.e., are separable) a Jury can define
a classifier that is robust against strategic adaptation.

Our work is related with [Kleinberg and Raghavan, 2020]
in explicitly distinguishing gaming from improvement. The
authors consider the interaction between an Evaluator (Insti-
tution) and an Agent (Individual). The agents can explicitly
decide to place effort in improving features that contribute to
their success (self-improvement) or features that are arbitrary.
The goal is to understand whether the evaluator can design
rules that induce agents to improve rather than gaming. The
authors show that improving rules exist when agents cannot
easily transfer effort from improvement to gaming. Here we
focus on a setting where individuals find cheaper to game than
to improve, in the absence of extra mechanisms. Introducing
the possibility that gaming can be detected allows us to in-
terpolate between a scenario where successfully transferring
effort from improving to gaming is always possible (no detec-
tion) to a scenario where it is impossible (effective detection).

Also disentangling gaming from improving, Miller et al.
distinguish causal features (i.e., that can change the true label
of individuals) and non-causal features [Miller et al., 2020].
By considering real and observable features, we consider, re-
spectively, a causal and non-causal feature. We do not per-
form any causal analysis; we focus, instead, on the distance
between the causal and non-causal feature to explicitly study
detection mechanisms that depend on such distance.

Recent works also consider imitation in strategic classi-
fication [Bechavod et al., 2021; Ghalme et al., 2021]. In
[Bechavod et al., 2021], the authors formulate the problem of
strategic classification as a principal-agent game in a popula-
tion composed of multiple groups. Notably, the model pro-
posed assumes that the classifier used by institutions is not
fully known to individuals, who try to guess it through infor-
mation gathered from peers. The focus of [Bechavod et al.,
2021] is on how improvement occurs in multiple sub-groups,
when individuals, depending on their group, can differ in their
improvement costs and pool of peers to imitate. Differently
from our setting, Bechavod et al. assume that individuals
imitate information about the threshold and not directly ac-
tions. Agents are still assumed to be fully rational: they
construct an estimate for the deployed rule, and then adapt
through empirical risk minimization. Imitation is also con-
sidered in [Ghalme et al., 2021], where agents use imitation
to infer information about the classifier used by the Institu-
tion and best respond based on the information obtained. In
our model, we assume that individuals directly imitate the

behavior of others (behavioral imitation) rather than copy-
ing information available to infer the classification thresh-
old. Here individuals do not necessarily best-respond to the
(incomplete) knowledge they have about the classifier used
by the institution: some agents (imitators) resort to adapta-
tion through a combination of best-response and social learn-
ing. In both real and artificial systems, imitation and social
learning are pointed as major drivers of behavior adaptation
and norms formation [Sen and Airiau, 2007; Banerjee, 1992;
Bikhchandani et al., 1992]. Transparency in strategic classi-
fication is also studied in [Akyol et al., 2016].

Also related with our work is a recent call to consider
noisy adaptation by individuals in strategic classification [Ja-
gadeesan et al., 2021]. As highlighted above, we consider
a model that deviates from the classic rational best-response
model. We assume that individuals have imperfect informa-
tion and adapt influenced by the behaviors of others in a pop-
ulation. We interpret noise to be a measure of transparency
controlled by the Institution, yet the same formalism can be
interpreted as a noisy response by individuals.

Finally, our paper is linked with literature on strate-
gyproof regression and classification [Dekel et al., 2010;
Meir et al., 2012; Krishnaswamy et al., 2021] — aiming at
designing estimators that performs well, when agents may
misreport labeled examples — and trust manipulation —
where the goal is to design scalable trust mechanisms that are
robust to manipulation by strategic agents [Yu et al., 2013].

Building on top of the previous literature, our paper con-
tributes along three main directions:

1. We propose a mathematical framework to evaluate the
impacts of strategic classification under arbitrary levels
of transparency, while providing a basis to apply multi-
agent simulations to study when faking behaviors are ex-
pected to be detrimental.

2. We study the role of detection mechanisms and the role
of behavior imitation for different levels of feedback
transparency.

3. We provide results suggesting that detection and imita-
tion alleviate the risks of strategic adaptation to algo-
rithmic decisions.

2 Model
Let us assume an environment where two types of agents ex-
ist: Institution and Individual. The goal of the Institution
is to accurately classify individuals in order to provide them
some service (e.g., a bank deciding to offer a loan based on
credit score, or a college deciding to admit a student). At
time t, a generic Individual i is characterized by a (normal-
ized) real feature value x1(i, t) ∈ [0, 1] (e.g., real income)
and a (normalized) observable feature value x2(i, t) ∈ [0, 1]
(e.g., declared income, possibly cheating). We assume that
the Institution does not have perfect access to the information
regarding the individuals’ real states. A mismatch between
the real and the observable feature can result from individ-
uals providing erroneous information (faking) or Institutions
implementing not accurate scoring methods. We assume that:
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Figure 1: We consider a population of N Individuals being classi-
fied by one Institution. Circles represent Individuals – red/full disks
are classified as positive and blue/circles are classified as negative.
Individuals are located in a feature space, where the horizontal axis
represents their real feature (x1) and the vertical axis represents the
feature observable by the Institution and used in classification (x2).
The institution aims at accurately classifying individuals in order to
provide a service (e.g., concede a loan). Classification is based on
the observable feature and actual success is based on the real fea-
ture. After an initial classification step (left panel), individuals can
adapt their real feature (improve) or just adapt their observable fea-
ture (fake), as shown in the right panel.

i) the probability of success by individuals (e.g., repay a loan)
only depends on the real feature x1; ii) the classifier set by the
Institution is only function of the observable feature x2.

The model works as follows: The Institution runs the
internal classification model and then shares some feedback
with Individuals. The accuracy level of the feedback pro-
vided is tuned by a specific parameter in our model, allowing
to assess scenarios ranging from full transparency (i.e.,
Individuals have full information about the exact position
of the Institution decision boundary) to full obscurity (i.e.,
individuals can only guess where the decision boundary lies).
With such knowledge, Individuals are allowed to act upon the
way they were classified: Individuals classified as negative
can change their features at a cost. Importantly, they can
decide to pay a higher cost to improve (i.e., increasing the
real feature x1) or fake (i.e., only improving the observable
feature x2). This is reflected in the evaluation metrics of
interest to the institution — widespread faking behaviors are
likely to increase the number of False Positives (FP ). In the
case of a credit scoring model, FP represents Individuals
classified as non-risky while actually being risky (e.g. not
able to repay). This baseline setting is depicted in Fig. 1.
Depending on the specific domain and modelling approach,
the classification problem solved by the Institution can be
arbitrarily complex. From an ethical perspective, we are
interested in mitigating the risks that inaccurate feedback
could create and the interplay between these effects and
strategic adaptation. We assume that the expected probability
of success by individuals (e.g., repaying a loan or having
success in college) grows with x1 and the classification
by the Institution consists in setting a threshold θ defining
the values of x2 above which individuals are classified as
positive (i.e., granted the loan or admitted to college).

Probability of success. Let us consider a generic Individual
i having a (normalized) real feature x1(i, t) ∈ [0, 1], and a
(normalized) observable feature x2(i, t) ∈ [0, 1] at time t. We
denote with ρi(x1(i, t)) ∈ [0, 1] the probability of success
of Individual i at time t which depends on the real feature
x1(i, t) as follows

ρi(x1(i, t)) =

{
1

1+e1/ϵ(0.5−x1(i,t)) , if ϵ > 0

H(x1(i, t)− 0.5), if ϵ = 0,
(1)

with ϵ ∈ ℜ+
0 capturing the noise between the real feature

and the probability of success. Function ρi(x1(i, t)) was also
called the true or target classifier [Hardt et al., 2016]. Func-
tion H(·) is the Heaviside step function defined as

H(x) =

{
1, if x ≥ 0

0, if x < 0.
(2)

Based on the value of the noise parameter ϵ, observe that as
ϵ becomes very large (ϵ → ∞), the probability of success of
individuals gets closer to a value of 0.5 as limiting behavior,
regardless of their real feature x1(i, t), for all Individuals i.

Conversely, for ϵ → 0 all individuals with x1 ≥ 0.5 will
successfully repay the loan (or, in general, be successful).
That is why in the special case of ϵ = 0 we assume a Heavi-
side functional form.

The Institution sets the classification threshold θ for the
model assigning a score Si(x2(i, t)) to each Individual i,
which defines the binary classification outcome Θi ∈ {0, 1}.
We assume that the Institution provides an explanation and
offers a recourse to Individuals for which Θi = 0, i.e. those
receiving a score below the threshold:

Θi(Si(x2(i, t)); θ) =

{
1, if Si(x2(i, t)) ≥ θ

0, if Si(x2(i, t)) < θ.
(3)

Given the partial information available to Individuals, we
assume that a generic Individual i could try to infer the
classification threshold set by the Institution

Inference on the classification threshold. A generic In-
dividual i, with real feature x1(i, t) and observable feature
x2(i, t) at time t, infers the classification threshold θi used by
the Institution via the estimate θ̂i defined as

θ̂i = max(Si(x2(i, t)), N ∼ (θ, σ)), (4)

where N ∼ (θ, σ) represents a value sampled from a Normal
distribution with mean θ and standard deviation σ. Parameter
σ controls for the accuracy of the feedback provided by the
Institution. For the sake of simplicity, here we assume that
the scoring function value equals the value of the normalized
observable feature x2(i, t), e.g. Si(x2(i, t)) := x2(i, t). The
information regarding x2(i, t) is known to the Individual.

Observe that a high value of σ means that individuals
cannot do better than randomly guessing the threshold
used by the Institution. On the contrary, a low value of σ
implies that individuals have exact information about the
real threshold θ and consider strategic adaptation accordingly.
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Faking information and probability of detection. After
information is provided and individuals form their perception
of the threshold used by the Institution, θ̂i, individuals take
their adaptation decisions. Let us use

f(i, t) = x2(i, t)− x1(i, t), f(i, t) ∈ [0, 1], (5)

as the amount of fake information provided at time t by Indi-
vidual i, measured as the difference between the observable
feature and the real feature for the same individual. We de-
note with d[f(i, t)] given by

d[f(i, t)] = f(i, t)1/ϕ, ϕ ≥ 0, (6)

the probability of detection for Individual i at time t. Since
f(i, t) ∈ [0, 1], we introduce parameter ϕ as a measure of
detection effectiveness. If ϕ = 1, we assume a linear de-
pendence of the detection probability on the amount of fake
information; if ϕ → +∞ detection never fails and faking is
always identified; if ϕ → 0 detection always fails. The shape
of this function is represented in Fig. 3. Note that we re-
strict our analysis to x1(i, t) ≤ x2(i, t) as x1(i, t) > x2(i, t)
would imply that individuals are hiding their true potential to
be classified as positive by the algorithm and would be trivial
for individuals to set, at no cost, their observable feature (x2)
to match the real feature (x1).

Based on the explanation provided, individuals adapt.
This decision depends on: i) utility maximization comprising
the costs and benefits associated to each choice, and ii)
behavior imitation. Next we introduce the cost functions
and the adjustment mechanism based on utility maximization.

Cost functions. Let us denote with cι, cf , respectively, the
cost of improving and faking regarding the information pro-
vided; cd denotes the cost of being detected. In order to study
the impacts of the different costs, we define the following cost
functions:

cf = k · cι, cd = (1 + k) · cι, k ∈ [0, 1], cι ≥ 0. (7)

The cost of faking, cf , results from, e.g., the effort of
cheating on an exam, committing plagiarism or declaring
non-existent income. In all cases, it is clear that there is
some cost involved that is naturally much lower than the
cost of honestly improving. The cost of being detected, cd,
is imputed when an individual fakes and is detected, e.g.,
resulting in suspension from college, a fine or an audit. In
principle costs can vary independently (as studied in online
Supplementary Information), however, by controlling k
we can interpolate between extreme scenarios in terms of
challenge degree to the Institution: i) Individuals are unlikely
to improve (e.g. k = 0, assuming faking is cheap and
detection cost is low) and ii) Individuals are likely to improve
(e.g. k = 1, assuming faking is as expensive as improvement
and detection costs are high).

Utility. Let us consider the set of Individuals i for which
Θi(Si(x2(i, t)); θ) = 0, e.g. who received a negative classi-
fication. For each Individual i in this set, let us consider the
estimate about the decision threshold θ̂i in Eq. (4) and the
detection mechanism with probability of detection d[f(i, t)]

in Eq. (6). Based on the feedback received from the bank,
these individuals define at time t+1 the new pair of features,
potentially different from the original one. We assume that
individuals decide the vector of features at time t+1, namely
x⃗(i, t + 1) = (x1(i, t + 1), x2(i, t + 1)), by maximizing the
(expected) utility function u(i, t+ 1), given as:

u(i, t+ 1) = (1− d[f(i, t+ 1)])Θ̂i(Si(x2(i, t+ 1)); θ̂i)b

−∆1(i, t+ 1)cι − f(i, t+ 1)cf − d[f(i, t+ 1)]cd,
(8)

with ∆1(i, t+1) indicating the variation in the information
regarding the real feature

∆1(i, t+ 1) := (x1(i, t+ 1)− x1(i, t)). (9)

Notice that Θi(Si(x2(i, t)); θ) provides the output of the
bank’s binary classification model; Θ̂i(Si(x2(i, t + 1)); θ̂i)
indicates the estimate on the expected classification done by
Individual i; f(i, t + 1) is given in Eq. (5) and d[f(i, t + 1)]
refers to Eq. (6). Parameter b ≥ 0 indicates the benefit of
receiving a ”positive” classification, i.e. Θ(·) = 1, while
cι, cf , denote, respectively, the cost of improving or faking
and cd the cost incurred after being detected.

Each term of the expected utility function can be explained
as follows. We assume that individuals receive a benefit b if
they are classified as positive and are not detected to be fak-
ing, (1−d[f(i, t+ 1)])·Θ̂i(Si(x2(i, t+1)); θ̂i)·b; individuals
pay an improvement cost cι for each unit of improvement in
the information regarding their real feature, ∆1(i, t+ 1) · cι;
individuals pay a faking cost cf for each unit of change in
their observable feature alone, f(i, t + 1) · cf ; and, finally,
individuals pay a detection cost cd in the case of faking and
effective detection, d[f(i, t)] ·cd. Note that, if faking does not
occur, the last term of the utility function is null, i.e. individu-
als expect to never pay any detection cost since d[f(i, t)] = 0.

Remark. If 1) there is no detection mechanism
(d[f(i, t)] = 0) and 2) faking can be implemented at
no cost (cf = 0), the expected utility in Eq. (8) simplifies to:

u(i, t+ 1) = Θ̂i(Si(x2(i, t+ 1)); θ̂i) · b−∆1(i, t+ 1) · cι.

In this scenario, utility increases with x2(i, t + 1) and de-
creases with (x1(i, t + 1) − x1(i, t)): individuals maximize
the expected utility by increasing x2 without modifying x1

— that is, faking without improving. For the Institution (e.g.,
a bank), this means that Individuals that were initially ac-
curately classified as positive are expected to repay the loan
whereas those that decided to adapt are expected to fail in re-
paying the loan and constitute FP . In the context of strategic
adaptation modelling, we introduce: 1) utility maximization
and implement it through a standard optimization process in
a 2-D (x1, x2) space, 2) the possibility of imitation.

Imitation. Let us assume that a set I of individuals in the
population decide to imitate (is influenced by) the behavior of
others individuals in the population. Let us denote with u⃗∗

m(i)
the vector resulting from utility maximization by individual i
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Figure 2: Panel A reports the difference in the number of False Positives after and before strategic adaptation (∆FP ). This occurs for
different cost scenarios k = {0.1, 0.3, 0.5, 0.7, 0.9}. The cost functions are introduced in Eq. (7). Panels B and C elaborate on the impacts
of strategic classification for two values of feedback noise: B) transparent feedback (low noise, σ = 0.02) and C) noisy feedback (high noise,
σ = 0.4). We represent individuals’ strategic adaptation along both their real feature (x1(i, t), horizontal axis) and the observable feature
(x2(i, t), vertical axis). This provides extra insight on why transparency results in higher ∆FP . Parameters: N = 100, b = 1.0, cι = 3.0,
ϵ = 0, ϕ = 1/3, α = 0, k = 0.5 (B and C). Results in A are an average over 103 runs starting from random initial conditions.

Figure 3: Detection mechanism. The probability that an individual
is detected depends on the extent of the faking behavior (recall Eq.
(5): f(i, t) = x1(i, t)−x2(i, t)) and detection effectiveness ϕ. This
plot refers to Eq. (6) and shows that, in general, detection probability
increases with f(i, t) and ϕ.

and u⃗P the vector resulting from the average behavior of a
randomly observed pool P of individuals in the population.
We assume that imitators in I adapt their behavior by setting

x⃗(i, t+1) = x⃗(i, t)+ (1−α) · u⃗∗
m(i)+α · u⃗P , α ∈ [0, 1],

(10)
where parameter α works as imitation strength in the adap-
tation process of imitators. Vector u⃗P is taken as the mean
adaptation vector of P ∈ {0, 1, ..., N − I} individuals ran-
domly sampled from the pool of N − I individuals that are
first-movers and act without imitating others.

Limiting the set of imitators and individuals to be imitated
assumes that, in a population, not everyone has the same visi-
bility and likelihood to be influenced by others. Section 3 dis-
cusses the results of the simulation study performed by means
of the proposed analytical setting.

3 Results
Transparent feedback and faking behaviors. We explore
how providing transparent feedback may impact the strategic
adaptation of Individuals. The plot depicted in Fig. 2 shows

the riskiness potentially associated to transparency/accuracy
of the feedback shared by the Institution. Providing exact
information about the classification threshold θ used by the
Institution for the internal classification model increases the
chance that individuals decide to react to the feedback by pro-
viding a new value of their observable feature x2(i, t + 1)
higher than the previous one. We assume that Individuals
can modify the observable feature with or without modifying
the real feature — faking results from the mismatch between
the observable and real feature e.g. x2(i, t) − x1(i, t). Here
we assume that the Institution does not retrain the classifier
Θ(·) in (t, t + 1]. As a consequence, more individuals can
be erroneously classified as positive (i.e., the number of FP
increases).

Panel A of Fig. 2 highlights that increasing σ, the level of
noise in feedback/recourse, decreases the difference in FP
before and after strategic adaptation (∆FP ). This occurs for
different costs scenarios k = {0.1, 0.3, 0.5, 0.7, 0.9}. Recall
that Eq. (7) introduces the cost functions as cf = k · cι and
cd = (1 + k) · cι: increasing k makes it harder to fake and
more costly to be detected.

Given a certain level of feedback noise, namely fixing
σ = {0.02, 0.4}, Panels B and C further explore the drivers
behind ”why” transparency results in a higher number of FP .
When feedback is transparent and individuals have the in-
formation regarding the decision boundary of the Institution,
Individuals close to the boundary increase their observable
feature just by the amount needed to be classified as posi-
tive; Individuals far away from the boundary do not attempt
to fake and will be again classified as negative by the Institu-
tion (Panel B). Conversely, if feedback is noisy and individ-
uals have uncertainty about the real decision threshold θ of
the Institution, they attempt to maximize utility according to
their random guess θ̂i. Individuals overestimating the thresh-
old can be dissuaded from spending hight costs to increase
their observable feature; Individuals increasing their observ-
able feature, yet undershooting the real decision threshold,
will still be classified as negative. Overall, this results in a
lower ∆FP (Panel C).
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Figure 4: A) The role of detection effectiveness in mitigating the risks of transparent feedback. We report the difference between the number
of False Positives after and before the strategic adaptation, i.e. ∆FP . B) The role of imitation. Increasing the number of imitators (I , vertical
axis) and imitation strength (α, horizontal axis) reduces ∆FP . C) Imitation also contributes to increase the variation in True Positives (∆TP )
after strategic adaptation, relative to the variation in False Positives, i.e., ∆TP/(∆TP + ∆FP ). Parameters used: N = 100, b = 1.0,
cι = 3.0, ϵ = 0, k = 0.5, α = 0 (Panel A) and σ = 0.001, ϕ = 0.7 (Panels B and C). Average over 400 runs.

Transparent feedback is ethically desirable as part of a re-
sponsible corporate practice: a recourse should be provided
by the Institution to the Individuals. Thus, our analysis in-
vestigates how to identify mechanisms to mitigate the risks
associated with sharing transparent feedback. One of these
mechanisms is detecting faking behaviors, which can be per-
formed with varying levels of effectiveness. As defined in Eq.
(6), we implement detection effectiveness via the scaling fac-
tor ϕ that relates detection probability to the magnitude of the
faking behavior (Fig. 3).

Fig. 4A reports the difference in the number of FP after
and before strategic adaptation: the risks of transparent feed-
back can be mitigated if the Institution implements effective
(faking) detection mechanisms. The proposed modelling ap-
proach captures this via the detection probability d[f(i, t)]
given in Eq. (6) and further explained in Fig. 3: reduc-
ing feedback noise (vertical axis) can increase the number of
False Positives FP ; however, such risk is contingent on the
effectiveness of the detection mechanisms used. If detection
is effective (high ϕ, horizontal axis), providing transparent
feedback does not increase FP .

Utility maximization, strategic adaptation and imitation.
Individuals can resort to utility maximization and social
learning alike, in order to adapt [Banerjee, 1992; Bikhchan-
dani et al., 1992]. In Fig. 4B and C we assume that a set
I of individuals (Imitators) are going to be influenced by the
behavior of others in the population. As such, they will place
some weight on the adaptation process of the individuals they
observe. We assume that imitators in the population adapt
with an imitation strength α (Eq. 10).

We let parameters (I, α) vary in Fig. 4B and C. We can
observe that a larger pool of imitators (high I , vertical axis)
and high imitation strength (high α, horizontal axis) reduce
the increase in the number of False Positives after strategic
adaptation. As an intuition, this might happen given that im-
itation has a different impact on those close and further away
from the decision boundary: Individuals that are closer to the
boundary (and who can easily increase x2 to be classified as
positive) alter their observable feature to a lesser extent by im-
itating those that are too far away from the decision boundary
and that do not even attempt to adapt. On the other hand, in-
dividuals that are far away from the boundary might imitate

those that are closer to the boundary (thus adapting by slightly
increasing x2), leading to an overall increase in faking behav-
iors. Because these individuals are too far from the decision
threshold, however, even if they fake through imitation they
will not adapt enough to be classified as positive. In online
Supplementary Information we show that this conclusion ex-
tends to other values of ϕ, ϵ and more complex scenarios.

4 Conclusion
We propose a framework to explore the interplay between ex-
planations and strategic adaptation by Individuals within the
context of a generic classification model. Given the increased
use of AI in multiple high-stake domains, this approach helps
assessing key aspects related to strategic classification and
their implications in terms of ethical AI and risk management.
By considering interactions among multiple stakeholders (In-
dividuals and Institution) and Individuals’ social embedding
(through imitation), this work contributes to a recent scien-
tific trend in designing ethical multiagent systems taking into
account their broader socio-technical context [Murukannaiah
et al., 2020; Chopra and Singh, 2018]. We present an illus-
trative example on credit applications and a critical analysis
of the dilemma therein. Based on the simulation study, our
results highlight that behavior imitation (prevalent in society)
and fraud detection capacity are two key factors to shape the
dynamics in this context. This suggests different directions
for further research to facilitate the ethical use of AI: un-
derstanding the normative factors shaping the imitation pat-
terns in a society; developing techniques to improve the ca-
pacity to spot fraudulent behavior; studying how biases im-
pact imitation processes in strategic adaptation to algorithms
[Santos et al., 2021]; or even relating the faking/improving
dilemma with cooperation and fairness dilemmas, whose
mechanisms have been extensively studied in evolutionary
game theory and human-AI interactions [Santos et al., 2019;
Shirado and Christakis, 2020; Domingos et al., 2021].
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