
Generalizability of Deep Domain Adaptation in case of Sample Selection Bias

Emiel Witting1†

Supervisor(s): Joana de Pinho Gonçalves1, Yasin Tepeli1

1EEMCS, Delft University of Technology, The Netherlands
†

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Emiel Witting
Final project course: CSE3000 Research Project
Thesis committee: Joana de Pinho Gonçalves, Julián Urbano Merino, Yasin Tepeli

An electronic version of this thesis is available at http://repository.tudelft.nl/.

1

Abstract
Domain adaptation allows machine learning mod-
els to perform well in a domain that is different
from the available train data. This non-trivial task
is approached in many ways and often relies on as-
sumptions about the source (train) and target (test)
domains. Unsupervised domain adaptation uses
unlabeled target data to mitigate a shift or bias dif-
ference between the domains. Deep domain adap-
tation (DDA) is a powerful class of these methods,
which utilizes deep learning to extract high-level
features that are common across the domains and
robust against the shift. These algorithms adapt
to a specific target domain. This has two possible
downsides. Firstly, the model might not generalize
and thus require retraining for each new domain.
Secondly, obtaining data for the target domain(s)
might be difficult. There can be situations where
both source and target domains originate from a
“global” domain, from which the samples are se-
lected in a biased way. We explore a new appli-
cation of existing DDA methods and answer the
question: How effective is deep domain adapta-
tion when adapting with the global domain, instead
of the target domain, in case of sample selection
bias?. Results with synthetic data show that where
target adaptation works, global adaptation also im-
proves accuracy compared to supervised learning,
although to a lesser extent.

1 Introduction
Supervised machine learning models optimize performance
on a set of “source” (train) samples, intending to generalize
to any sample during deployment or testing. This assumes
that the training samples are independent and identically dis-
tributed random variables of the “target” (test) domain. In
practice, however, this might not be the case. The shift be-
tween the domains can result in decreased performance when
a model is deployed.

Domain shift has been observed in multiple fields. For
example, a widely used biomedical sepsis prediction model
used a biased method of labelling training data. This caused
accuracy when deployed to be lower than the developers re-
ported [1][2]. Data sets used in computer vision also contain
biases. Models trained on one data set perform noticeably
worse on others when trying to classify the same object types
[3]. Furthermore, simulated environments can be used to train
robots, but the virtual environment may not be a perfect rep-
resentation of the real world [4].

Various so-called domain adaptation1 (DA) methods have
been successfully used to mitigate the shift between the
source and target domains [6][7][8]. Unsupervised domain
adaptation (UDA) methods use unlabeled target data to iden-
tify the shift [9]. A subclass of those, called deep domain

1In literature, domain adaptation is sometimes referred to by the
umbrella term ‘Transfer Learning’. The formal relation between
these two is explained well by Csurka [5].

adaptation (DDA), uses artificial neural networks to extract
input features that are robust against the domain shift. The
deep learning component makes it suitable for computer vi-
sion and other high-dimensional applications [5].

Shift between domains can be caused by selection bias
[10]. In the context of domain adaptation, this is usually in-
terpreted as the source domain being a biased selection of the
target domain. However, source and target data could both be
(differently) biased selections of another domain, which we
refer to as the “global” domain. In the aforementioned exam-
ple of bias in computer vision data sets, each individual data
set can be seen as a biased sample of all existing images on
the internet. The latter forms the global domain.

To the best of our knowledge, current (deep) domain adap-
tation methods adapt to specific target domains and do not
use the global domain. Adapting to the global domain could
be beneficial for two reasons. Firstly, it might promote gen-
eralization that carries over to any unseen target, alleviating
the need for data collection and retraining for each new target
domain. It might also be costly, or not possible at all, to col-
lect representative target data. We evaluate the applicability
of existing DDA methods to this novel use case. The main
research question is thus:

How effective is deep domain adaptation when
adapting to the global domain, instead of the tar-
get domain, in case of sample selection bias?

This is divided into two sub-questions:

1. How does adapting to global data affect DDA accuracy
in case of varying amounts of selection bias on features
only?

2. How does adapting to global data affect DDA accuracy
in case of selection bias that causes varying amounts of
shift in both features and labels?

The proposed global adaptation is compared against baselines
on synthetic data sets, with performance measured in terms
of accuracy on binary classification problems. To limit the
scope, two DDA methods are considered. The domain ad-
versarial neural network (DANN) [11] encodes the input fea-
tures such that labels can be classified, but a second classifier
network cannot distinguish the source from the target data.
The other method pre-trains a contractive autoencoder [12] to
extract latent features, on which a classifier is trained. This
classifier mitigates domain shift by minimizing a domain dis-
crepancy measure for one of the hidden layers [13][6].

The remainder of this paper is structured as follows. In
the next section, 2, background information on the algorithms
and their assumptions on bias type are discussed. Section 3
explains the experimental setup. The results are listed and
discussed in section 4. The main conclusions and recommen-
dations for future work are summarized in section 5. Lastly,
a critical reflection on this research and its reproducibility is
included in section 6

2 Background
It should be emphasized that there are many approaches to
(unsupervised) domain adaptation. These rely on different

2

assumptions about the shift between the source and target do-
mains. This is relevant, as it guided the choice of data sets
for the experiments in this research, and helps explain cer-
tain results. The following sections will therefore explain the
principles behind the methods and types of domain shift.

2.1 Deep Domain Adaptation
Unsupervised domain adaptation methods, which combine
labelled source data with unlabeled target data, can be cat-
egorized as either feature-based, sample-based or inference-
based [9]. Feature-based methods transform the input fea-
tures such that the same classifier trained with source data
also performs well on target data (Fig. 1). Under certain as-
sumptions, a transformation that aligns the distributions of
the source and target features has this property [14].

This research focuses on deep domain adaptation (DDA), a
class of feature-based methods utilizing deep learning. Deep
learning is especially suitable for high-dimensional data such
as images as it can leverage large (convolutional) networks
[5]. Due to this, the feature transformation is often from high
to low dimensional data. The process of aligning distribu-
tions through transformation can then also be interpreted as
extracting high-level features that are domain-invariant.

One of the two methods we chose to represent DDA is the
domain-adversarial neural network (DANN) [11]. This ar-
chitecture consists of an encoder network that feeds into both
a label classification2 head and a domain classification head
(Fig. 2). The encoder minimizes label classification loss Lc

while maximizing domain classification loss Ld, weighted by
trade-off parameter λ:

L = Lc − λLd (1)

Maximizing domain confusion implicitly aligns the distribu-
tions of encoded source and target features. This method
was chosen as it is the most straightforward and interpretable
model using the domain-adversarial network, but a range of
more advanced algorithms have been based on it [7].

The other DDA approach covered in this research uses
auto-encoders to extract the most relevant components of
data. This can be done with neural networks that compress
[12] and reconstruct the input features, or remove augmented
noise [16]. A label classifier can be trained simultaneously
on the encoded features to encourage useful representations
[6] (Fig. 3), using combined loss:

L = Ldec + wauxLaux (2)

Where Ldec is the reconstruction loss between the input and
the decoder output, which can be computed for every sam-
ple regardless of missing labels. The auxiliary classifier loss
Laux is only nonzero for the labelled source samples, and if
available, a small amount of labelled target samples. Parame-
ter waux determines the balance between the classification and
reconstruction power of the encoder.

This kind of encoding reduces irrelevant noise and extracts
common features when original inputs are high-dimensional.

2For consistency of this research, this is explained in terms of
label classification, but a regression network can also be used for
most methods.

However, it does not necessarily remove shifts between do-
mains. One method minimizes domain shift by introducing a
domain distance loss on one of the hidden layers of the clas-
sification network, during a so-called adaptation stage (Fig.
4) [6]. This uses maximum mean discrepancy (MMD) for the
loss, which is related to a statistical test to determine whether
two samples are from the same distribution [13]. Again, this
can be incorporated through a weighted sum of loss functions:

L = Lc + wMMDLMMD (3)

Where LMMD is the maximum mean discrepancy between the
activations of a hidden layer for source and target samples,
and wMMD is a constant weight parameter.

To summarize the two methods. DANN trains an encoder
network that both serves the role of extracting features and
removing domain shift, where the shift is quantified using a
domain classifier network. The second method trains an au-
toencoder just for extracting features, then removes leftover
domain shift in the second stage by minimizing a statistical
domain distance measure. Notable differences are, respec-
tively, the one-stage versus two-stage training and the deep
learning versus statistics-based domain shift measure.

As mentioned before, for all of the above to work, mitigat-
ing shift by aligning the features also has to align correspond-
ing class labels. This is not guaranteed with DANN, which is
discussed in more detail in Section 2.3 “A gap between the-
ory and algorithm” by Sicilia et al. [17]. That section also
mentions that the base DANN algorithm is not expected to
perform well when there is a shift in label balance between
domains.

Lastly, we note that DANN has already shown ability to
generalize with multiple domains. This was done with a mod-
ified architecture that combines labelled data from multiple
source domains [17] to improve the accuracy on a single tar-
get domain. However, this does not guarantee success for
our application, as ours uses one source domain and intends
to generalize to many target domains instead. Furthermore,
while the global domain might be interpreted as containing
multiple target domains, we lack the domain labels to distin-
guish them from each other.

2.2 Bias
The premise of this research is that the source and target do-
main are biased samples of a global domain. Sample selec-
tion bias is defined by Moreno-Torres et al. [18] as selecting
samples based on a random variable s, such that:

Pselected = P (s = 1 | x, y)
Pbiased(x, y) = Pselected · P (x, y)

(4)

For features x and labels y, where the original data is dis-
tributed according to P (x, y) and the biased to Pbiased(x, y).
Note that the biased data cannot contain samples that would
not exist in the original data (those where P (x, y) is zero).
The aforementioned study also defines different types of bias
and shifts based on that selection probability. For instance,
if the selection s only depends on x, independent of y, this
causes a “covariate shift”, with:

Pbiased(y | x) = P (y | x)
Pbiased(x) ̸= P (x)

(5)

3

Figure 1: Principle behind feature-based domain adaptation methods. Some transformation or encoding Φ aligns the feature distribution from
the source (XS) and the target domain (XT), removing shift. A classifier or regression model is trained on the encoded data. [15]

This does not change the conditional probability of labels:
the same part of the feature space will be associated with the
same label (proportion) for the original and the biased distri-
bution. In the context of classification models, this can also
be interpreted as the ideal decision boundary not changing.
However, if Pbiased(x) is low enough in some regions that no
samples are drawn from there, different decision boundaries
might be learned that only perform optimally on the limited
data.

As discussed before, the two DDA methods assume that
the same transformation that aligns features also aligns corre-
sponding labels. While it is not always mentioned explicitly3,
this seems to conversely imply that the features and labels of
the biased domain contain a joint transformation from those
of the original domain. Hence, “undoing” that transformation
based on the known features also undoes the equivalent shift
on the unknown labels.

This type of join shift of features and labels can be clas-
sified as a type of “concept shift” [18]. Concept shift occurs
when the selection is based on a dependent combination of x
and y such that:

P (x | y)biased ̸= P (x | y)
P (y)biased = P (y)

(6)

Besides the reason above, it can also be inferred that the al-
gorithms might be suited better for concept shift, as it guar-
antees by definition that class balance (P (y)) remains equal.
It has already been mentioned that at least DANN is sensitive
to this.

N.B. that these definitions were given in the context of the
source domain being a biased selection of the target domain.
The relative shift between two domains that are both biased
selections of a third global domain might have different prop-
erties.

3 Methodology
Deep domain adaptation methods were evaluated on synthetic
data sets, with induced bias. Section 3.2 describes the bias-
inducing procedures, DDA method implementation, are dis-

3For example, by Ben-David et al. [14], in section 3.1, the au-
thors justify the aligning of labels only with ”This embodies our
domain adaptation assumption”

cussed in 3.1, and the last section, 3.3, explains the evaluation
procedure.

3.1 Data Set Generation

Synthetic classification data sets, for later inducing bias, were
generated randomly. The generator4 creates a given amount
of clusters for each class, which are generated as normally
distributed points around the vertices of a hypercube. Af-
terwards, noise and interdependence between features are
added. For simplicity, the data sets were always binary clas-
sification problems. In early experiments, a feature space of
10 dimensions and 200 samples per domain was chosen arbi-
trarily. However, this led to strong overfitting, possibly due
to the curse of dimensionality [20]. This was resolved for the
final experiments after reducing the dimensions to five and
using 1000 samples per domain. The DDA methods are of-
ten based on extracting features and reducing dimensionality,
but reducing dimensions might lose too much information if
there are only five features. Therefore, two of the five fea-
tures were linear combinations of the first three, emulating
high-dimensional data that can be reduced. Note that this lin-
ear relationship does not necessarily hold after inducing bias.

Covariate shift
A covariate shift was induced for the first research sub-
question, regarding selection bias on features only. The ini-
tial data set was randomly split into global, source candidate
and target candidate samples. The global samples were left
unbiased. Source and target data were sampled with replace-
ment from their candidate sets, both proportional to a differ-
ent (multivariate) normal distribution over the features to in-
duce bias. The standard deviation, or scale, of these bias dis-
tributions, is defined by parameter σ and is the same for ev-
ery feature dimension. The means, or locations, are Euclidian
distance b apart, on opposite sides of the global mean. This
was done by computing the mean x of all data and a random
vector v of specified length b, then choosing the distribution
means as x+ v

2 and x− v
2 . Before these steps, the initial data

was normalized to have a standard deviation of one in each
dimension so that values for σ and b had a consistent effect.

4Using Scikit-learn’s make-classification [19]

4

Concept shift
For the second sub-question, a joint shift in features and cor-
responding labels was simulated. This will be called concept
shift, as described in section 2. Given the premise of this re-
search, the concept shift between source and target must be
caused by biased sampling from the global domain. We jus-
tify how this can occur and base our implementation on the
following assumption: There exist distinct pseudo-domains,
each being concept-shifted variations of each other. The
global domain consists of all these related pseudo-domains,
the source and target domains of specific ones. The distinct
pseudo-domains could for instance be medical images from
different scanners.

Thus, to induce bias, the initial data is first divided ran-
domly into a number of pseudo-domains. For the experi-
ments, this number was arbitrarily chosen to be four. Points
receive a different random translation in feature space for
each pseudo-domain. The translation in each dimension is
sampled uniformly from U(− b

2 ,
b
2), using bias parameter b.

Again, this was done after normalizing the initial data to have
a standard deviation of one. Note that, unlike the covariate
shift procedure, this does not guarantee that the shift is ex-
actly of distance b. Because it is random, it is possible for
two pseudo-domains to receive the same, or similar, transla-
tion and have little relative shift, even when b is large. The
random component was used with the purpose of distribut-
ing the pseudo-domains uniformly. If the translation length
was made constant, like in section 3.1, it would result in all
pseudo-domains lying on a hypersphere, with none in the cen-
tre.

Finally, global, source and target data were sampled from
the pseudo-domains. Global domain samples were drawn
randomly from all of them. The source and target domains
were each assigned a different pseudo-domain at random,
from which their data was sampled. The points that were al-
ready drawn for the global domain were excluded from this.

3.2 DDA Methods
The DANN implementation used a library [15] and works as
described in section 2. For more detail, we refer the reader
to the original paper on the algorithm [11]. The architec-
ture was mostly left at the default configuration, with the only
exception being the activation function of the last neuron of
the classifier head. By default, this was linear, but a sigmoid
function was chosen as it is more suitable for the binary clas-
sification task. For the same reason, the loss function corre-
sponding to that label classification neuron was changed from
mean-squared error to binary cross-entropy (see appendix A).
Figure 2 shows the resulting architecture used for all DANN
experiments.

The autoencoder method that was used follows the same
structure as the two-stage contractive autoencoder using max-
imum mean discrepancy by Li et al. [6], also described in
section 2. Compared to their architecture, ours (Fig. 3 and
4) is smaller and does not have convolutional layers. This is
partially due to our synthetic data sets being of lower dimen-
sions, but also to use a comparable architecture to DANN.
For instance, the (auxiliary) classifier network uses the ex-
act same architecture as DANN’s classifier. Furthermore, the

Figure 2: Architecture of the DANN method used in experiments,
where ”ReLU 10” indicates a network layer with 10 neurons and the
rectified linear unit activation function. The grey boxes show the
loss function that is minimized by the weights of each part of the
network.

transfer network for the autoencoder is the same as the en-
coder of DANN, which perform partially the same task as
discussed in section 2. The encoder network of three neurons
is smaller than the input of five, to achieve the contractive
autoencoder effect. MMD loss5 is computed between activa-
tions of the transfer layer across the source and target sam-
ples. the MMD minimization process was handled automat-
ically by the gradient descent framework that was used for
training the network [21]. While most of the problem formu-
lation is similar to that of Li et al., it should be noted that they
assume a small number of target labels are available, which
is not the case in this research.

3.3 Experimental setup
To evaluate the effectiveness of adapting to the global do-
main, accuracy on the target domain was measured with four
configurations: source-only, global adaptation, target adap-
tation, and target-only. Source-only and target-only form
the baselines that indicate the impact of the domain shift,
and the effectiveness of the two adaptation methods can be
judged by how well they bridge the (expected) gap between
target-only and source-only. We refer to this as the adapta-
tion gap. Normally, the DDA methods expect labelled source
data and unlabeled target data. Here, the adaptation methods
also use labelled source data, but either unlabeled global or
target data, respectively. Source-only and target-only repre-
sent supervised learning. To change as few variables as possi-
ble, the supervised models are emulated by reusing the DDA
model architectures and disabling adaptation. This was done

5Implemented using https://www.idiap.ch/software/bob/docs/
bob/bob.learn.tensorflow/v1.2.0/, see Gretton et al. [13] for the the-
oretical background.

5

Figure 3: Architecture of the autoencoder method during pre-
training, where ”Linear 5” indicates a network layer with 5 neurons
and the linear activation function. The grey boxes show the loss
function that is minimized by the weights of each part of the net-
work, with MSE standing for mean squared error.

by setting parameters λ and wMMD to zero for DANN and the
autoencoder, respectively. Furthermore, in the pre-training
stage of the autoencoder, it is given only source data or only
target data to reconstruct.

Performance in the case of covariate shift and concept shift,
as described in section 3.1, corresponds to the two research
sub-questions. To be able to give a better-informed answer,
strong and weak versions of both types of bias were tested,
totalling four bias configurations. Weak covariate shift used
σ = 1, b = 2, strong used σ = 0.75, b = 3. Weak concept
shift used b = 2, whereas strong concept shift used b = 4.
These values were chosen such that for weak shift the source
and target domains were (partially) overlapping, while strong
shift caused nearly no overlap. Overlap was expected to be
a possibly impactful factor, as both DDA methods are inher-
ently unable to make different predictions for source and tar-
get samples if they are in the same position in the feature
space.

For both methods, for each bias type and amount, for each
of the four configurations, target accuracy was measured.
First, parameters λ,wMMD, and waux were determined for
each combination (except when set to zero as discussed) by
fifteen trials of hyperparameter search [22], optimizing mean
target accuracy on ten data sets. With the best parameter val-
ues, target accuracy is measured again, this time on another
fifty data sets to aggregate in a final box plot. At all times, a
train-test split of 70% per domain was maintained for reliable
validation accuracy.

4 Results and Discussion
Before discussing the DDA method results, we quickly in-
spect some generated data sets, to demonstrate that the bias-

Figure 4: Architecture of the autoencoder method during adaptation,
where ”Linear 3” indicates a network layer with 3 neurons and the
linear activation function. The grey boxes show the loss function
that is minimized by the weights of each part of the network. The
MMD loss is based on the discrepancy between activations of the
transfer layer across the source and target samples. The encoder is
fixed and does not optimize any loss function at this stage.

inducing procedure works. For covariate shift (Fig. 5a and
5b), samples with similar features have the same label, re-
gardless of domain. However, the source and target samples
are clearly concentrated on different sides of the global data.
These two properties correspond to the definition in eq. 5.
For concept shift (Fig. 5c and 5b) it can be observed that the
source and target domains contain a similar pattern, but are
offset by a translation. Unlike with covariate shift, the label
balance seems to be preserved across domains, satisfying eq.
6. Lastly, it holds for every bias type that source and target
samples are always accompanied by similar global samples.
This shows that the source and target domains can indeed be
interpreted as selections of the global domain.

The experiments, as described previously, were run with
four configurations: source-only, global adaptation, target
adaptation and target-only. The results over fifty runs are vi-
sualized in box plots (Fig. 6). When the following sections
mention significance, this refers to a two-sided Welch’s t-test
[23], which compares means and accounts for unequal vari-
ance. The test assumes normally distributed data, so the result
should be considered less reliable when the box plots show a
skewed distribution. The accuracy of each configuration was
tested against source-only, totalling 24 comparisons. Bonfer-
roni correction for multiple testing was applied, yielding the
significance level α/m = 0.05/24 ≈ 0.002. Increases or de-
creases mentioned as accuracy percentages will always refer
to absolute differences, not proportions. Numeric results cor-
responding to the box plots and hyperparameter values can be
found in appendix B and C, respectively.

4.1 Covariate Shift
In the case of weak covariate shift (Fig. 6a and 6b), no config-
uration performed significantly better or worse than source-
only, regardless of algorithm. For stronger covariate shift
(Fig. 6c and 6d), the only significant difference is the increase
for target-only. This suggests that, depending on the strength
of the shift, there is either no significant adaptation gap or
there is but the adaptation methods do not improve compared
to supervised learning.

6

(a) (b) (c) (d)

Figure 5: Synthetic data sets that were generated by inducing bias in four different ways, starting with the same initial classification data. The
circle or cross-shaped markers denote the label, and the colour shows the domains that points were assigned to. The bias configuration is the
same as used in other experiments but the data is of lower dimension and with smaller sample counts, for visualization purposes. Axis scales
were set dynamically to fit all data.

It is straightforward to conclude from this that the adapta-
tion had no impact. However, these results are the best possi-
ble ones as found through hyperparameter optimization. No-
tably, the parameters that were found for the strong covariate
shift had low λ and wMMD (Table 2 and 3 in appendix). These
control the amount of adaptation, indicating that the best re-
sults are achieved when adaptation is decreased or disabled.
To confirm this hypothesis, the covariate experiments were
run again, using adaptation parameter values that worked well
for a strong concept shift. This showed that using adaptation
with DANN can indeed decrease accuracy for both weak and
strong covariate shifts (appendix B). The autoencoder method
also caused a decrease, but only with strong shift and target
adaptation.

Ineffective adaptation can be explained by the main as-
sumption of the DDA methods, that aligning features also
aligns the labels. In the case of covariate shift, the labels
across domains already are aligned (see Fig. 5a), so the op-
timal decision boundary for source data also works for target
data. Additional shifting of data and decision boundaries by
adaptation methods would then be unwarranted. The adapta-
tion gap for strong covariate shift could be caused by insuf-
ficient source data across the feature space for learning the
complete decision boundary.

4.2 Concept Shift
In the cases of concept shift, there was a significant adaptation
gap between source-only and target-only. For weak concept
shift (Fig. 6e and 6f) this was a difference of 20% or 21%
in median accuracy, for DANN and the autoencoder respec-
tively. For strong concept shift (Fig. 6g and 6h) the gap was
larger, with 34% and 28% differences. The adaptation gap
can be explained by the translated (pseudo-)domains having
translated labels, and corresponding optimal decision bound-
aries. The learned model for the source domain is then not
guaranteed to work for the target.

With DANN, target adaptation significantly improved per-
formance and covered a large part of the adaptation gap. This
is to be expected, as DANN is intended for target adaptation

and assumes this type of joint shift of features and labels. For
global adaptation, the approach we test in this research, the
accuracy also increased compared to supervised learning, al-
though by a smaller amount. In the case of a strong concept
shift, this was statistically significant, and the median accu-
racy increased by 19%. For weak concept shift, while having
an 8.5% increase of median, the difference was not statisti-
cally significant. At the risk of sacrificing scientific integrity,
however, we will tentatively consider it an improvement. This
is because we (1) consider the effects of strong and weak
concept shift to be positively dependent on each other, and
(2) the box plots show that source-only is skewed towards
low median accuracy, while global adaptation isn’t. These go
against the independence and normality assumptions of the
test [23] in favour of considering global adaptation an im-
provement. Finally, we combine this justification with the p-
value of 0.005 already being of a similar scale as the threshold
of 0.002. Note that no other significance test results would
change if the threshold was increased to this level. Regard-
less of significance, it should be noted that global adaptation
is less consistent than target adaptation, with standard devia-
tion being 2.7 or 2.3 times as large, for strong and weak shifts
respectively.

The autoencoder method with target adaptation also signif-
icantly increased accuracy in the case of strong concept shift,
by a 19% difference of medians. With a weaker concept shift,
there was an improvement of 8.6%, although not statistically
significant. We do not consider the corresponding p-value
of 0.030 close enough to the threshold to use the same jus-
tification as above to conclude otherwise. Global adaptation
yielded no significant improvements.

Comparing the two methods, adaptation with DANN
achieves better accuracy than the autoencoder for both global
and target adaptation. There are a few possible explanations
for this. Firstly, when the autoencoder pre-train stage com-
presses five-dimensional features into three dimensions, it is
possible that it loses information that would be necessary for
adaptation. Furthermore, in the adaptation stage, the DANN’s
adversarial domain classifier might be a more accurate mea-

7

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6: Accuracy on the target domain, after training DANN and the auto-encoder model with different configurations of unlabelled and
labelled set. Sonly and Tonly use only one labelled domain for supervised learning, source and target, respectively. For S → G and S → T ,
the left-hand side, source, is labelled, and the right-hand side, global or target, is unlabelled. Results were measured for different types and
amounts of bias, as indicated by their title. Each boxplot aggregates results across 50 datasets, outliers are not shown.

sure of domain shift than MMD loss, or produce better gra-
dients for guiding weights to an encoding that minimizes the
shift. Lastly, the DANN implementation used a public soft-
ware framework, unlike the autoencoder, suggesting that its
architecture has been tested and optimized based on more ex-
perience.

5 Conclusions and Future Work
To summarize, the main goal of this research was to assess
the effectiveness of existing deep domain adaptation (DDA)
methods when adapting to the global domain, of which both
source and target are biased selections. Results with synthetic
data sets showed that, given a suitable type of bias, global
adaptation can offer a significant improvement over super-
vised learning. However, global adaptation was less consis-
tent and effective than the usual target adaptation, so it should
be considered an inferior alternative. It might be used if target
adaptation is not feasible, due to lacking target data or having
too many target domains.

To elaborate on the suitable type of bias. This refers to a
collection of distinct domains existing, each containing a joint
shift in both features and corresponding labels relative to each
other (concept shift). The source and target were assumed
to be two specific domains, and the global domain contains
data from all of them. For selection bias on features only
(covariate shift), adaptation had either no impact or a negative

one. The premise of unsupervised domain adaptation is that
there is a lack of labelled target data. So it can be difficult
to estimate if a data set indeed has a suitable type of bias.
This is not necessarily unique to global adaptation, however,
the same issue holds for target adaptation. If a data set is
known to work well with target adaptation, this might indicate
that global adaptation could also work, although possibly to a
lesser extent.

Of the two methods used, the domain adversarial neural
network [11] was more effective. The other method was
based on an autoencoder and minimizing maximum mean
discrepancy [6], this was less effective at target adaptation
and yielded no significant adaptation when using the global
domain.

Since this novel approach is beneficial in some cases, fur-
ther research is warranted. This research was limited to syn-
thetic data sets and only two algorithms. The experiment can
be reproduced for a larger range of algorithms. This should
include unsupervised domain adaptation methods other than
DDA. Different data sets should be covered as well. For in-
stance, concept shift was represented by a translation on the
data, while any transformation that satisfies equation 6 is also
concept shift. Furthermore, a major benefit of deep domain
adaptation is allowing complex (convolutional) neural net-
works on high-dimensional data such as images. The data
used in this research was much simpler and of low dimen-

8

sion, being less representative of realistic DDA use cases.
Lastly, since none of the algorithms were designed for this
approach, some modifications might produce much better re-
sults. It could also be interesting to consider the case where
the global domain has domain labels. This is a realistic sce-
nario when the global domain consists of data sets from mul-
tiple sources, which are easily labelled during collection. A
modification to the DANN approach for multiple source do-
mains [17] might be used.

6 Responsible Research
We will briefly reflect on the reproducibility of this research
and other relevant ethical aspects. One important require-
ment is that the implementation of the DDA methods and the
bias-inducing procedures are reproducible. While briefly ex-
plored, the option of including a lengthy formal description in
pseudo-code was abandoned. This was because of the coun-
teractive effect it had on readability. For the exact implemen-
tation, readers could always refer to the source code that is
supplied with the text. In hindsight, however, this is not as
accessible. A better alternative could have been to include
an intuitive explanation in the main text, pseudo-code in the
appendix, and source code separately.

Several decisions have been made throughout the research
process that favoured simplicity. This includes using low-
dimensional data compared to i.e. images, applying only
translation for concept shift, or using DANN instead of more
advanced state-of-the-art alternatives. This was not only out
of necessity. Simpler data and algorithms allowed analysis
and interpretability to an extent that would not have been pos-
sible with complex and time-consuming alternatives. We do
acknowledge, as mentioned in section 5, that the lack of real-
istic tests diminishes the value of our conclusion.

Lastly, an obvious criticism of this research could be the
rejection of the outcome of a significance test in section 4.
As explained in that section, we do justify the reasoning for
assuming that this was indeed a false negative. This prac-
tice is risky however and can be a slippery slope. Allowing
yourself to use a justification for ignoring a statistical test re-
sult when it goes against your beliefs, is prone to confirma-
tion bias. In hindsight, the disagreement was mostly caused
by a difference in valuing false positives versus false nega-
tives. The Bonferroni correction drastically lowered the sig-
nificance threshold to ensure a low risk of false positives.
A better option would have been to use a less conservative
multiple-test correction method, that better reflected our val-
ues. Again, this can also be a slippery slope, if the signifi-
cance threshold is changed until it confirms the expectations
of the authors.

7 Code availability
Source code is available on GitHub: https://github.com/
EWitting/global-domain-adapation.

References
[1] Karandeep Singh, John Donnelly, and Jeffrey McCul-

lough. IHPI News. June 2021. URL: https://ihpi.umich.
edu / news / popular - sepsis - prediction - tool - less -
accurate-claimed.

[2] Andrew Wong et al. “External validation of a widely
implemented proprietary sepsis prediction model in
hospitalized patients”. In: JAMA Internal Medicine
181 (8 Aug. 2021), pp. 1065–1070. ISSN: 21686114.
DOI: 10.1001/jamainternmed.2021.2626.

[3] Antonio Torralba and Alexei A. Efros. “Unbiased look
at dataset bias”. In: CVPR 2011. 2011, pp. 1521–1528.
DOI: 10.1109/CVPR.2011.5995347.

[4] Lei Tai, Giuseppe Paolo, and Ming Liu. “Virtual-to-
real Deep Reinforcement Learning: Continuous Con-
trol of Mobile Robots for Mapless Navigation”. In:
CoRR abs/1703.00420 (2017). arXiv: 1703 . 00420.
URL: http://arxiv.org/abs/1703.00420.

[5] Gabriela Csurka. “A Comprehensive Survey on Do-
main Adaptation for Visual Applications”. In: Domain
Adaptation in Computer Vision Applications. Ed. by
Gabriela Csurka. Cham: Springer International Pub-
lishing, 2017, pp. 1–35. ISBN: 978-3-319-58347-1.
DOI: 10 . 1007 / 978 - 3 - 319 - 58347 - 1 1. URL: https :
//doi.org/10.1007/978-3-319-58347-1 1.

[6] Xiang Li et al. “Intelligent cross-machine fault diagno-
sis approach with deep auto-encoder and domain adap-
tation”. In: Neurocomputing 383 (Mar. 2020), pp. 235–
247. ISSN: 18728286. DOI: 10.1016/j.neucom.2019.
12.033.

[7] Yuchen Zhang et al. “Bridging Theory and Algorithm
for Domain Adaptation”. In: International Conference
on Machine Learning. Apr. 2019.

[8] Annegreet van Opbroek et al. “Transfer Learning Im-
proves Supervised Image Segmentation Across Imag-
ing Protocols”. In: IEEE Transactions on Medical
Imaging 34.5 (2015), pp. 1018–1030. DOI: 10.1109/
TMI.2014.2366792.

[9] Wouter M. Kouw and Marco Loog. “A Review of
Domain Adaptation without Target Labels”. In: IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence 43.3 (2021), pp. 766–785. DOI: 10 . 1109 /
TPAMI.2019.2945942.

[10] Palak, Harshita Mangotra, and Nidhi Goel. “Effect of
selection bias on Automatic Colonoscopy Polyp De-
tection”. In: Biomedical Signal Processing and Con-
trol 85 (Aug. 2023). ISSN: 17468108. DOI: 10.1016/j.
bspc.2023.104915.

[11] Yaroslav Ganin et al. “Domain-adversarial training
of neural networks”. In: Advances in Computer Vi-
sion and Pattern Recognition (9783319583464 2017),
pp. 189–209. ISSN: 21916594. DOI: 10.1007/978- 3-
319 - 58347 - 1 10 / FIGURES / 8. URL: https : / / link .
springer. com/chapter /10 .1007 /978- 3- 319- 58347-
1 10.

9

https://github.com/EWitting/global-domain-adapation
https://github.com/EWitting/global-domain-adapation
https://ihpi.umich.edu/news/popular-sepsis-prediction-tool-less-accurate-claimed
https://ihpi.umich.edu/news/popular-sepsis-prediction-tool-less-accurate-claimed
https://ihpi.umich.edu/news/popular-sepsis-prediction-tool-less-accurate-claimed
https://doi.org/10.1001/jamainternmed.2021.2626
https://doi.org/10.1109/CVPR.2011.5995347
https://arxiv.org/abs/1703.00420
http://arxiv.org/abs/1703.00420
https://doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1007/978-3-319-58347-1_1
https://doi.org/10.1016/j.neucom.2019.12.033
https://doi.org/10.1016/j.neucom.2019.12.033
https://doi.org/10.1109/TMI.2014.2366792
https://doi.org/10.1109/TMI.2014.2366792
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.1109/TPAMI.2019.2945942
https://doi.org/10.1016/j.bspc.2023.104915
https://doi.org/10.1016/j.bspc.2023.104915
https://doi.org/10.1007/978-3-319-58347-1_10/FIGURES/8
https://doi.org/10.1007/978-3-319-58347-1_10/FIGURES/8
https://link.springer.com/chapter/10.1007/978-3-319-58347-1_10
https://link.springer.com/chapter/10.1007/978-3-319-58347-1_10
https://link.springer.com/chapter/10.1007/978-3-319-58347-1_10

[12] Salah Rifai et al. “Contractive Auto-Encoders: Explicit
Invariance During Feature Extraction”. In: Proceed-
ings of the 28th International Conference on Machine
Learning, ICML 2011 (Jan. 2011).

[13] Arthur Gretton et al. “A Kernel Two-Sample Test”. In:
Journal of Machine Learning Research 13.25 (2012),
pp. 723–773. URL: http : / / jmlr . org / papers / v13 /
gretton12a.html.

[14] Shai Ben-David et al. “Analysis of representations for
domain adaptation”. In: Advances in Neural Informa-
tion Processing Systems (2007), pp. 137–144. ISSN:
10495258. DOI: 10.7551/MITPRESS/7503.003.0022.

[15] Antoine de Mathelin et al. “ADAPT: Awesome Do-
main Adaptation Python Toolbox”. In: arXiv preprint
arXiv:2107.03049 (2021).

[16] Chen Lu et al. “Fault diagnosis of rotary machinery
components using a stacked denoising autoencoder-
based health state identification”. In: Signal Process-
ing 130 (Jan. 2017), pp. 377–388. ISSN: 01651684.
DOI: 10.1016/j.sigpro.2016.07.028.

[17] Anthony Sicilia, Xingchen Zhao, and Seong Jae
Hwang. “Domain Adversarial Neural Networks for
Domain Generalization: When It Works and How to
Improve”. In: Machine Learning (Feb. 2021). ISSN:
15730565. DOI: 10.1007/s10994-023-06324-x. URL:
http://arxiv.org/abs/2102.03924.

[18] Jose G. Moreno-Torres et al. “A unifying view on
dataset shift in classification”. In: Pattern Recognition
45 (1 2012), pp. 521–530. ISSN: 00313203. DOI: 10.
1016/j.patcog.2011.06.019.

[19] F. Pedregosa et al. “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830.

[20] Tomaso Poggio et al. “Why and when can deep-but
not shallow-networks avoid the curse of dimensional-
ity: A review”. In: International Journal of Automation
and Computing 14 (5 Oct. 2017), pp. 503–519. ISSN:
17518520. DOI: 10.1007/s11633-017-1054-2.

[21] Martı́n Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. URL: https : / / www.
tensorflow.org/.

[22] Takuya Akiba et al. “Optuna: A Next-generation
Hyperparameter Optimization Framework”. In: (July
2019). URL: http://arxiv.org/abs/1907.10902.

[23] B. L. Welch. “The Generalization of ‘Student’s’ Prob-
lem when Several Different Population Variances are
Involved”. In: Biometrika 34.1/2 (1947), pp. 28–35.
ISSN: 00063444. URL: http : / /www. jstor.org / stable /
2332510 (visited on 06/25/2023).

10

http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://doi.org/10.7551/MITPRESS/7503.003.0022
https://doi.org/10.1016/j.sigpro.2016.07.028
https://doi.org/10.1007/s10994-023-06324-x
http://arxiv.org/abs/2102.03924
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1007/s11633-017-1054-2
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1907.10902
http://www.jstor.org/stable/2332510
http://www.jstor.org/stable/2332510

A Loss functions
Two loss functions are mentioned in this research: mean
squared error and binary cross-entropy. Mean squared error
computes the loss between two vectors and is equivalent to
the square of their Euclidian distance:

LMSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (7)

Where y is a true value and ŷ is a prediction, for a single n-
dimensional sample. Binary cross-entropy is related to clas-
sification probabilities, and computed as follows:

LBCE(y, ŷ) = y ln(ŷ) + (1− y) ln(1− ŷ) (8)

Where y is the binary label (exclusively 0 or 1) of a sample,
and ŷ is a prediction between 0 and 1.

B Supplementary Results

(a) (b)

(c) (d)

Figure 7: Accuracy on the target domain, after training DANN and
the auto-encoder model with different configurations of unlabelled
and labelled set. For this experiment, the adaptation parameters λ
and wMMD were set to those that hyperparameter optimization found
for strong concept shift. Sonly and Tonly use only one labelled do-
main for supervised learning, source and target, respectively. For
S → G and S → T , the left-hand side, source, is labelled, and the
right-hand side, global or target, is unlabelled. Results were mea-
sured for different types and amounts of bias, as indicated by their
title. Each boxplot aggregates results across 50 datasets, outliers are
not shown.

Shift type Model Config. Median Mean (stdev.) P-value

Con. Weak Autoencoder Sonly 0.639 0.655 (0.111)
Con. Weak Autoencoder S → G 0.647 0.666 (0.112) 0.6424
Con. Weak Autoencoder S → T 0.725 0.705 (0.112) 0.0297
Con. Weak Autoencoder Tonly 0.844 0.842 (0.034) 0.0000
Con. Weak DANN Sonly 0.676 0.688 (0.117)
Con. Weak DANN S → G 0.761 0.749 (0.093) 0.0050
Con. Weak DANN S → T 0.858 0.853 (0.035) 0.0000
Con. Weak DANN Tonly 0.871 0.870 (0.027) 0.0000
Con. Strong Autoencoder Sonly 0.549 0.603 (0.123)
Con. Strong Autoencoder S → G 0.613 0.617 (0.107) 0.5674
Con. Strong Autoencoder S → T 0.742 0.708 (0.120) 0.0000
Con. Strong Autoencoder Tonly 0.829 0.816 (0.061) 0.0000
Con. Strong DANN Sonly 0.529 0.601 (0.133)
Con. Strong DANN S → G 0.717 0.697 (0.113) 0.0002
Con. Strong DANN S → T 0.823 0.817 (0.055) 0.0000
Con. Strong DANN Tonly 0.873 0.869 (0.032) 0.0000
Cov. Weak Autoencoder Sonly 0.809 0.804 (0.063)
Cov. Weak Autoencoder S → G 0.814 0.813 (0.055) 0.4630
Cov. Weak Autoencoder S → T 0.816 0.817 (0.055) 0.2821
Cov. Weak Autoencoder Tonly 0.830 0.831 (0.042) 0.0140

Cov. Weak Autoencoder∗ Sonly 0.816 0.809 (0.055)
Cov. Weak Autoencoder∗ S → G 0.819 0.814 (0.055) 0.6519
Cov. Weak Autoencoder∗ S → T 0.813 0.807 (0.071) 0.9105
Cov. Weak Autoencoder∗ Tonly 0.837 0.829 (0.056) 0.0734

Cov. Weak DANN Sonly 0.831 0.823 (0.062)
Cov. Weak DANN S → G 0.831 0.824 (0.057) 0.9118
Cov. Weak DANN S → T 0.835 0.819 (0.063) 0.7936
Cov. Weak DANN Tonly 0.842 0.846 (0.046) 0.0316

Cov. Weak DANN∗ Sonly 0.834 0.822 (0.063)
Cov. Weak DANN∗ S → G 0.796 0.787 (0.078) 0.0149
Cov. Weak DANN∗ S → T 0.724 0.698 (0.144) 0.0000
Cov. Weak DANN∗ Tonly 0.844 0.847 (0.045) 0.0235

Cov. Strong Autoencoder Sonly 0.797 0.749 (0.161)
Cov. Strong Autoencoder S → G 0.774 0.730 (0.179) 0.5720
Cov. Strong Autoencoder S → T 0.803 0.741 (0.174) 0.8056
Cov. Strong Autoencoder Tonly 0.854 0.849 (0.059) 0.0001
Cov. Strong Autoencoder∗ Sonly 0.805 0.727 (0.185)
Cov. Strong Autoencoder∗ S → G 0.798 0.735 (0.164) 0.8089
Cov. Strong Autoencoder∗ S → T 0.682 0.608 (0.242) 0.0068
Cov. Strong Autoencoder∗ Tonly 0.850 0.846 (0.055) 0.0001
Cov. Strong DANN Sonly 0.816 0.802 (0.072)
Cov. Strong DANN S → G 0.801 0.786 (0.092) 0.3309
Cov. Strong DANN S → T 0.811 0.773 (0.111) 0.1195
Cov. Strong DANN Tonly 0.869 0.866 (0.050) 0.0000
Cov. Strong DANN∗ Sonly 0.803 0.767 (0.108)
Cov. Strong DANN∗ S → G 0.571 0.547 (0.222) 0.0000
Cov. Strong DANN∗ S → T 0.439 0.440 (0.216) 0.0000
Cov. Strong DANN∗ Tonly 0.870 0.862 (0.052) 0.0000

Table 1: Numeric results corresponding to the accuries reported in
figure 6 and 7. P-value corresponds to a two-sided Welch’s t-test
comparing to the Sonly configuration and is in bold if it is below the
significance threshold of 0.002. ∗ indicates that hyperparameters
found for strong concept shift were used.

11

C Parameters

Shift type Config. λ

Concept Weak Sonly 0
Concept Weak S → T 1.687
Concept Weak S → G 2.171
Concept Weak Tonly 0
Concept Strong Sonly 0
Concept Strong S → T 4.216
Concept Strong S → G 5.219
Concept Strong Tonly 0
Covariate Weak Sonly 0
Covariate Weak S → T 0.021
Covariate Weak S → G 0.004
Covariate Weak Tonly 0
Covariate Strong Sonly 0
Covariate Strong S → T 0.011
Covariate Strong S → G 0.071
Covariate Strong Tonly 0

Table 2: Parameter values used for DANN. Found through hyperpa-
rameter optimization, unless manually set, indicated by bold text

Shift type Config. waux wMMD

Concept Weak Sonly 8.853 0
Concept Weak S → T 8.004 6.055
Concept Weak S → G 9.683 3.967
Concept Weak Tonly 8.853 0
Concept Strong Sonly 6.499 0
Concept Strong S → T 7.253 9.561
Concept Strong S → G 5.409 3.407
Concept Strong Tonly 6.499 0
Covariate Weak Sonly 2.771 0
Covariate Weak S → T 9.865 2.339
Covariate Weak S → G 8.717 8.512
Covariate Weak Tonly 2.771 0
Covariate Strong Sonly 9.699 0
Covariate Strong S → T 9.750 0.151
Covariate Strong S → G 9.993 0.723
Covariate Strong Tonly 9.699 0

Table 3: Parameter values used for the autoencoder. Found through
hyperparameter optimization, unless manually set, indicated by bold
text

Parameter Value

Data sets per combination (optimization stage) 10
Data sets per combination (validation stage) 50
Epochs (optimization stage) 20
Epochs (validation stage) 30
Optimization trial count 15
Batch size 16

Table 4: remaining hyperparameter and configuration values that
were shared across the two models.

12

	Introduction
	Background
	Deep Domain Adaptation
	Bias

	Methodology
	Data Set Generation
	Covariate shift
	Concept shift

	DDA Methods
	Experimental setup

	Results and Discussion
	Covariate Shift
	Concept Shift

	Conclusions and Future Work
	Responsible Research
	Code availability
	Loss functions
	Supplementary Results
	Parameters

