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Perturbations and sums of operators

In this chapter we address a couple of topics in the theory of H∞-calculus
centering around the question what can be said about an operator of the form
A+B whenA andB have certain “good” properties such as being (R-)sectorial
or admitting a bounded H∞-calculus. The chapter is divided into two sections.
The first considers the case where B is “smaller” than A in certain ways, and
the second considers the case where A and B are essentially on equal footing.
The results of this chapter play an important role in applications as well in
the further development of the abstract theory and will be needed in our
treatment, in the next to chapter, of the maximal regularity problem.

16.1 Sums of unbounded operators

In general it is a rather delicate problem to give a meaning to the operator
sum A+B when A and B are unbounded operators acting in a Banach space
X. The simplest approach is to define

D(A+B) := D(A) ∩ D(B),

(A+B)x := Ax+Bx, x ∈ D(A+B),
(16.1)

but in concrete cases this definition may be vacuous due to the possibility
that D(A) ∩ D(B) could be unreasonably small or even trivial, i.e., equal to
{0}. Various methods to deal with this problem have been developed, such
as the method of forms. In the context of evolution equations, the two prime
applications one has in mind are cases where either A is the linear operator
governing the equation, e.g., a linear differential operator in the space vari-
ables, and B is the derivative with respect to time, or both A and B are
differential operators in the space variable, typically with B being of lower
order than A. In both of these cases, the resolvent operators R(λ,A) and
R(µ,B) commute and D(A)∩D(B) is “large”, in that it contains all elements
of the form R(λ,A)R(µ,B)x with x ∈ X. In fact we have the following result.
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Proposition 16.1.1. If A and B are sectorial operators acting in X whose
resolvents commute, then D(A) ∩ D(B) is dense in both D(A) and D(B)

Proof. As a consequence of the resolvent commutation and Proposition 10.1.7
we have

lim
λ→−∞

λR(λ,A)R(µ,B)x = R(µ,B)x in D(B)

for all µ ∈ %(B) and

lim
µ→−∞

µR(λ,A)R(µ,B)x = R(λ,A)x in D(A)

for all λ ∈ %(A) �

It is for this reason that we will stick to the somewhat naive approach em-
bodied in (16.1); the operator sum A+B will always be understood as given
in this way.

Let us briefly clarify the meaning of the term ‘resolvent commutation’ used
in the above proposition. If commutation identity

R(λ,A)R(µ,B) = R(µ,B)R(λ,A)

holds for some λ ∈ %(A) and µ ∈ %(B), then it holds for all λ′ ∈ %(A)
and µ′ ∈ %(B) in the connected components of %(A) containing λ and µ,
respectively. This is an easy consequence of the Taylor series identities

R(λ′, A) =
∞∑
n=0

(λ− λ′)nR(λ,A)n+1,

R(µ′, B) =

∞∑
n=0

(µ− µ′)nR(µ,B)n+1,

which follow from repeated application of the resolvent identity (see Section
10.1.b). The following definition then suggests itself naturally:

Definition 16.1.2 (Resolvent commutation). The sectorial operators A
and B are said to resolvent commute when

R(λ,A)R(µ,B) = R(µ,B)R(λ,A)

holds for some (or equivalently, all) λ, µ in the connected set {Σσ ∩ {Στ for
some (or equivalently, all) ω(A) < σ < π and ω(B) < τ < π.

16.2 Perturbation theorems

When it comes to checking the boundedness of the H∞-calculus of concrete
operators, in particular elliptic differential operators, perturbation theorems
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are often the method of choice. Perturbation arguments compare a “compli-
cated” operator with a more “basic” operator such as the Laplace operator or
an elliptic operator with constant coefficients. In order to cover a multitude of
concrete situations we phrase these perturbation arguments in the framework
of sectorial operators and their scale of fractional domain spaces. The case of
lower-order perturbations of the form

L = A+B with B : D(Aα)→ X for some 0 < α < 1

(Theorem 16.2.7) is readily obtained from the corresponding theorem about
relatively bounded perturbations of the form

L = A+B with ‖Bx‖ 6 δ‖Ax‖ for small δ > 0

(Theorem 16.2.3). In contrast to sectoriality, boundedness of the H∞-funct-
ional calculus is not preserved under small relatively bounded perturbations,
unless additional relative boundedness assumptions are made with respect
to the fractional domains (Example 16.2.10 and Theorem 16.2.8). Analogous
perturbation theorems for R-sectorial operators are proved as well.

Because of their importance in applications, in particular for the study
of non-linear evolution equations, the literature on perturbation theorems is
extensive. We can present only a representative selection of such theorems
and some model applications serving as illustrations. Variants and extensions
of these results, in particular to elliptic operators and pseudo-differential op-
erators, will be discussed in the Notes.

We next introduce some notation which will be used throughout this chap-
ter and the next ones. Recalling from Definition 10.1.1 that an operator A is
called σ-sectorial if the set {λ 6= 0, | arg(λ)| > σ} is contained in the resolvent
set %(A) and

sup
λ 6=0, | arg(λ)|>σ

‖λR(λ,A)‖ <∞,

we define

Mσ,A := sup{‖λR(λ,A)‖ : λ 6= 0, | arg(λ)| > σ},

M̃σ,A := sup{‖AR(λ,A)‖ : λ 6= 0, | arg(λ)| > σ}.

When A is σ-R-sectorial (the definition being similar), for p ∈ [1,∞) we set

M̃
Rp
σ,A := Rp({λR(λ,A) : λ 6= 0, | arg(λ)| > σ}),

M̃
Rp
σ,A := Rp({AR(λ,A) : λ 6= 0, | arg(λ)| > σ}),

where Rp(T ) denote the R-bound with exponent p (see Remark 8.1.2).

16.2.a Perturbations of sectorial operators

To set the stage for the results to follow, we begin with an elementary per-
turbation result for sectorial operators.
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Proposition 16.2.1. If A is an σ-sectorial operator on X and B ∈ L (X) is
bounded, then for all λ0 >M‖B‖ the operator λ0 +A+B is σ-sectorial.

Proof. Set M := Mσ,A for brevity. Fix a non-zero λ ∈ C with | arg(λ)| > σ.
Then λ ∈ %(A) and ‖R(λ,A)‖ 6M/|λ|. Because

(λ− (A+B)) = (I −BR(λ,A))(λ−A)

and ‖BR(λ,A)‖ 6 M‖B‖/|λ|, for |λ| > M‖B‖ the operator I − BR(λ,A) is
invertible. For such λ it follows that λ ∈ %(A+B) and

R(λ,A+B) = R(λ,A)

∞∑
n=0

[BR(λ,A)]n

by the Neumann series. This gives the bound

‖R(λ,A+B)‖ 6 M

|λ|
1

1−M‖B‖/|λ|
=

M

|λ| −M‖B‖
,

valid for non-zero λ ∈ C satisfying | arg(λ)| > σ and |λ| > M‖B‖. Shifting
A+B over λ0 >M‖B‖, the result follows from this. �

The following lemma describes a useful technique that will enable us to deal
with lower-order and relatively bounded perturbations.

Lemma 16.2.2 (The method of continuity). Let E and F be Banach
spaces. Let (Lt)t∈[0,1] be a family of bounded linear operators from E into F
such that t 7→ Lt is continuous from [0, 1] into L (E,F ). Suppose furthermore
that there exists a constant C > 0 such that for all t ∈ [0, 1] and all x ∈ E we
have

‖x‖ 6 C‖Ltx‖.
Then L0 is surjective if and only if L1 is surjective.

Proof. Since [0, 1] is compact, t 7→ Lt is uniformly continuous. Therefore we
can find δ > 0 such that |t− s| < δ implies ‖Lt − Ls‖ 6 ε

2C .
The assumption of the lemma imply that the operators Lt are injective.

Now suppose that Ls is invertible for a given s ∈ [0, 1]. We will show that Lt
is invertible for all t ∈ [0, 1] satisfying |t − s| < δ. Clearly, this implies the
required result by an iteration argument.

Fix f ∈ F and let T : E → E be the mapping given by T (x) = y, where
y ∈ E is the unique solution to Lsy = f + Lsx − Ltx. We claim that T is a
uniform contraction. Indeed, by the assumed a priori estimate,

‖T (x1)− T (x2)‖ = ‖y1 − y2‖ 6 C‖Lsy1 − Lsy2‖

Since Lsy1 − Lsy2 = (Ls − Lt)(x1 − x2) we obtain

‖T (x1)− T (x2)‖ 6 C‖Ls − Lt‖ ‖x1 − x2‖ 6
1

2
‖x1 − x2‖.

This proves the claim. By the Banach fixed point theorem, T has a unique
fixed point x. It follows that Lsx = f + Lsx− Ltx, and hence Ltx = f . �
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As a first application of this lemma we prove the following result on relatively
bounded perturbations of sectorial operators.

Theorem 16.2.3 (Relatively bounded perturbations of sectorial op-
erators). Let A be an σ-sectorial operator, and let B : D(A)→ X be a linear
operator that satisfies

‖Bx‖ 6 δ‖Ax‖+K‖x‖, x ∈ D(A), (16.2)

where K > 0 and δ ∈ (0, 1) satisfies δM̃σ,A < 1. Then the operator A + B
with domain D(A+B) := D(A) is closed, and the following assertions hold:

(1) For all λ ∈ R large enough, λ+A+B is σ-sectorial.
(2) If (16.2) holds with K = 0, then A+B is σ-sectorial.

Proof. Observe that for all x ∈ D(A),

‖Ax‖ 6 ‖(A+B)x‖+ ‖Bx‖ 6 ‖(A+B)x‖+ δ‖Ax‖+K‖x‖. (16.3)

Therefore, (1− δ)‖Ax‖ 6 ‖(A+B)x‖+K‖x‖. By a routine argument, (16.2)
and (16.3) imply that A+B is closed.

We will prove both assertions at the same time by showing that λ0 +A+B
is sectorial for any fixed λ0 > 0 large enough, permitting λ0 = 0 if (16.2) holds
with K = 0.

Fix λ ∈ λ0 +Σσ. We will apply Lemma 16.2.2 to E = D(A), F = X, and
the operators Lt : D(A)→ X given by

Ltx := (λ+A+ tB)x, t ∈ [0, 1],

where D(A) will be equipped with the equivalent norm

|||x||| = ‖(λ− λ0)x‖+ ‖Ax‖.

We first prove the following a priori estimate: For all λ0 > 0 large enough
there exists a constant C > 0 such that

|||x||| 6 C‖Ltx‖, x ∈ D(A), t ∈ [0, 1]. (16.4)

Let x ∈ D(A) and set y := Ltx. Then (λ + A)x = y − tBx. Multiplying this
identity with A(λ+A)−1 on both sides and using (16.2), we obtain

‖Ax‖ 6 M̃σ,A‖y‖+ M̃σ,A‖Bx‖ 6 M̃σ,A‖y‖+ M̃σ,Aδ‖Ax‖+ M̃σ,AK‖x‖.

Since M̃σ,Aδ < 1, it follows that

‖Ax‖ 6 C0‖y‖+ C0K‖x‖, (16.5)

where C0 = M̃σ,A(1− M̃σ,Aδ)
−1. To estimate ‖x‖, writing λx = y− tBx−Ax

we find that
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|λ|‖x‖ 6 ‖y‖+ ‖Bx‖+ ‖Ax‖
6 ‖y‖+ (δ + 1)‖Ax‖+K‖x‖ 6 C1‖y‖+ C2K‖x‖

where C1 := 1 + (δ + 1)C0 and C2 := (δ + 1)C0 + 1, so that

‖x‖ 6 C1

|λ| − C2K
‖y‖ =: D‖y‖,

provided we take λ0 > C2K sufficiently large (in order that |λ| > C2K). Such
choices of λ0 imply that |λ− λ0| 6 Cσ|λ| and, together with (16.5),

|||x||| = ‖Ax‖+ ‖(λ− λ0)x‖ 6 C0‖y‖+ C0K‖x‖+ |λ− λ0|‖x‖
6 C0‖y‖+ C0K‖x‖+ Cσ(C1‖y‖+ C2K‖x‖)
6 C‖y‖ = C‖Ltx‖

where C := (C0 +CσC1) + (C0 +CσC2)DK, which is (16.4). Scrutinising the
proof, we see that λ0 = 0 can be allowed if (16.2) holds with K = 0.

Since L0 = λ+ A is surjective, Lemma 16.2.2 gives that L1 = λ+ A+ B
is surjective, and hence boundedly invertible by (16.4). Also by (16.4), for all
y ∈ X and λ ∈ λ0 +Σπ−σ (where we may take λ0 = 0 if K = 0),

‖(λ− λ0)(λ+A+B)−1y‖ 6 ‖λ(λ+A+B)−1y‖ 6 C‖y‖,

which proves λ0 +A+B is σ-sectorial. �

Theorem 16.2.4 (Relatively bounded perturbations of R-sectorial
operators). Let A be σ-R-sectorial, and suppose that B : D(A) → X is
a linear operator which satisfies

‖Bx‖ 6 δ‖Ax‖+K‖x‖, x ∈ D(A), (16.6)

where K > 0 and δ ∈ (0, 1] satisfies δM̃
Rp
σ,A < 1 for some p ∈ [1,∞). Then the

operator A + B with domain D(A + B) := D(A) is closed, and the following
assertions hold:

(1) For all λ ∈ R large enough, λ+A+B is σ-R-sectorial.
(2) If (16.6) holds with K = 0, then A+B is σ-R-sectorial.

Proof. The method of proof is similar to that of Theorem 16.2.3. Again we
will prove both assertions at the same time. Let (Ω,P) be a probability space
supporting a Rademacher sequence (εn)n>1. For notational convenience we
write ‖ · ‖p = ‖ · ‖Lp(Ω;X). We will show that λ0 +A+B is R-sectorial for all
λ0 > 0 large enough, and that we may take λ0 = 0 if (16.6) holds with K = 0.

The assumptions of the theorem imply those of Theorem 16.2.3, and there-
fore A+B satisfies its conclusions. It remains to prove the R-boundedness of
the set {

(λ− λ0)(λ+A+B)−1 : λ 6= 0, λ ∈ λ0 +Σπ−σ
}
.
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To this end let n > 1, non-zero λ1, . . . , λn ∈ λ0 +Σπ−σ, and y1, . . . , yn ∈ X be
arbitrary and fixed. Let xj ∈ X be the unique solution to (λj +A+B)xj = yj
for each j ∈ {1, . . . , n}. It suffices to show that there is a constant C > 0 such
that ∥∥∥ n∑

j=1

εj(λj − λ0)xj

∥∥∥
p
6 C

∥∥∥ n∑
j=1

εjyj

∥∥∥
p
.

Since Axj = A(λj +A)−1[yj −Bxj ], the R-sectoriality of A gives∥∥∥ n∑
j=1

εjAxj

∥∥∥
p
6M

∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+M
∥∥∥ n∑
j=1

εjBxj

∥∥∥
p

6M
∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+Mδ
∥∥∥ n∑
j=1

εjAxj

∥∥∥
p

+MK
∥∥∥ n∑
j=1

εjxj

∥∥∥
p
,

where M := M̃
Rp
σ,A for brevity. Therefore,

∥∥∥ n∑
j=1

εjAxj

∥∥∥
p
6 C0

∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+ C0K
∥∥∥ n∑
j=1

εjxj

∥∥∥
p
,

where C0 = CM(1− δM)−1. Since λjxj = yj −Bxj −Axj , we also find∥∥∥ n∑
j=1

εjλjxj

∥∥∥
p
6
∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+
∥∥∥ n∑
j=1

εjBxj

∥∥∥
p

+
∥∥∥ n∑
j=1

εjAxj

∥∥∥
p

6
∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+K
∥∥∥ n∑
j=1

εjxj

∥∥∥
p

+ (1 + δ)
∥∥∥ n∑
j=1

εjAxj

∥∥∥
p

6 C1

∥∥∥ n∑
j=1

εjyj

∥∥∥
p

+ C1K
∥∥∥ n∑
j=1

εjxj

∥∥∥
p
,

(16.7)

where C1 = 1 + (1 + δ)C0.
Next we claim that there exist D > 0 and λ0 > 0 such that

|λj − λ0| 6 D(|λj | − 2C1K), (16.8)

Writing λj = λ0 + reiφ with |φ| < π−σ, (16.8) can be equivalently written as

(r + 2DC1K)2 6 D2(λ2
0 + r2 + 2λ0r cosφ).

If |φ| 6 1
2π, then cosφ > 0 and the estimate holds with D =

√
2 and λ0 =

C1K. If 1
2π < |φ| < π, set δ := 1 + cosφ and note that δ ∈ (0, 1). It then

follows that
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λ2
0 + r2 + 2λ0r cosφ = λ2

0 + r2 − 2λ0r(1− δ)
= δ(λ2

0 + r) + (1− δ)(λ0 − r)2 > δ(λ2
0 + r2)

and the estimate holds with D =
√

8/δ and λ0 = DC1K. This proves the
claim.

The claim implies |(λj − λ0)/λj | 6 D and 2C1DK 6 D|λj |, and therefore
the Kahane contraction principle (see Theorem 6.1.13) implies∥∥∥ n∑

j=1

εj(λj − λ0)xj

∥∥∥
p

=
∥∥∥ n∑
j=1

εj
λj − λ0

λj
λjxj

∥∥∥
p
6 D

∥∥∥ n∑
j=1

εjλjxj

∥∥∥
p

and

2C1DK
∥∥∥ n∑
j=1

εjxj

∥∥∥
p
6 D

∥∥∥ n∑
j=1

εj |λj |xj
∥∥∥
p

= D
∥∥∥ n∑
j=1

εjλjxj

∥∥∥
p
.

Taking the averages of the last two estimates we obtain

1

2

∥∥∥ n∑
j=1

εj(λj − λ0)xj

∥∥∥
p
6 D

∥∥∥ n∑
j=1

εjλjxj

∥∥∥
p
− C1DK

∥∥∥ n∑
j=1

εjxj

∥∥∥
p

6 C1D
∥∥∥ n∑
j=1

εjyj

∥∥∥
p
,

where in the last step we applied (16.7). �

As a simple corollary to the above results we show that the smallness condi-
tions on the constants can be lifted in the case of lower order perturbations.
The notation is as in Appendix C.

Corollary 16.2.5 (Lower order perturbations of (R-)sectorial opera-
tors). Let A be sectorial (resp. R-sectorial) and let θ ∈ (0, 1). If

B : D(Aθ)→ X

is a bounded linear operator, then for all large enough λ ∈ R the operator
λ + A + B is sectorial (resp. R-sectorial) with ω(λ + A + B) 6 ω(A) (resp.
ωR(λ+A+B) 6 ωR(A)).

Proof. It suffices to check the conditions of Theorems 16.2.3 and 16.2.4. For
x ∈ D(A), by the interpolation estimate of Theorem 15.2.8 we obtain

‖Bx‖ 6 ‖B‖ ‖x‖D(Aθ) 6 ‖B‖ ‖x‖1−θ‖x‖θD(A).

Using the inequality a1−θbθ 6 (1− θ)a+ θb, for all ε > 0 we obtain

‖x‖1−θ‖x‖θD(A) 6 (1− θ)ε−
1

1−θ ‖x‖+ ε
1
θ ‖x‖D(A).

The result now follows by combining the estimates and choosing ε > 0 small
enough. �
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The same proof works if one assumes that B : (X,D(A))θ,p → X is a bounded
operator for some θ ∈ (0, 1) and p ∈ [1,∞], or that B : [X,D(A)]θ → X is a
bounded operator for some θ ∈ (0, 1). A similar remark applies to Theorem
16.2.8 below.

16.2.b Perturbations of the H∞-calculus

Having studied perturbations of sectorial and R-sectorial operators, we now
turn to perturbation of the H∞-calculus. The first proposition addresses shifts
by a positive multiple of the identity. In certain applications it enables one to
improve “for sufficiently large ν > 0” to “for all ν > 0”.

Proposition 16.2.6 (Perturbation by a multiple of the identity). Let
A be a sectorial operator on X.

(1) If A has a bounded H∞(Σσ)-calculus, then A+νI has a bounded H∞(Σσ)-
calculus for all ν > 0, and M∞σ,A+ν 6M

∞
σ,A.

(2) If A+ ν0I has a bounded H∞(Σσ)-calculus for some ν0 > 0, then A+ νI
has a bounded H∞(Σσ)-calculus for all ν > 0.

Proof. Assertion (1) is obtained by applying the bounded H∞-calculus of
A to the function fν(z) = f(z + ν), noting that fν(A) = f(A + ν); since
‖f(·+ν)‖H∞(Σσ) 6 ‖f‖H∞(Σσ), this also gives the bound for the boundedness
constants of the H∞-calculi.

For the proof of assertion (2) we fix ν > 0. Writing A+ν = (A+ε)+(ν−ε)
we see that there is no loss of generality in assuming that A is invertible. We
also may assume that 0 < ν < δ, where δ > 0 is to be specified later, for
once we have the converse for such ν the general case follows by repeated
application of the first part of the proposition.

For f ∈ H1(Σσ) ∩H∞(Σσ) consider

1

2πi

∫
Γ

f(λ)R(λ,A+ ν0) dλ− 1

2πi

∫
Γ

f(λ)R(λ,A+ ν) dλ

= (ν0 − ν)
1

2πi

∫
Γ

f(λ)R(λ,A+ ν)R(λ,A+ ν0) dλ

= (ν0 − ν)
1

2πi

∫
Γ

f(λ)R(λ,A+ ν)R(0, A+ ν0) dλ

+ (ν0 − ν)
1

2πi

∫
Γ

f(λ)R(λ,A+ ν)[R(λ,A+ ν0)−R(0, A+ ν0)] dλ

= (ν0 − ν)R(−ν0, A)
1

2πi

∫
Γ

f(λ)R(λ,A+ ν) dλ

− (ν0 − ν)
1

2πi

∫
Γ

λf(λ)R(λ,A+ ν)R(λ− ν0, A)R(−ν0, A) dλ.

If we call the last integral I(f), we have
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1

2πi

∫
Γ

f(λ)R(λ,A+ ν0) dλ

= [I + (ν0 − ν)R(−ν0, A)]
1

2πi

∫
Γ

f(λ)R(λ,A+ ν) dλ− (ν0 − ν)I(f).

For invertible A the operator −AR(−ν0, A) = I+ν0R(−ν0, A) is invertible
as well. Since the set of invertible operators is open in L (X), there exists an
r > 0 so small that I+(ν0−ν)R(−ν0, A) is invertible if ν‖R(−ν0, A)‖ < r, i.e.,
if ν < δ := r/‖R(−ν0, A)‖. Under this assumption we have the representation

f(A+ ν) = [I + (ν0 − ν)R(−ν0, A)]−1[f(A+ ν0) + (ν0 − ν)I(f)].

Hence

‖f(A+ ν)‖ 6
∥∥[I − (ν0 − ν)R(−ν0, A)]−1

∥∥(‖f(A+ ν0)‖+ (ν0 − ν)‖I(f)‖
)
.

(16.9)

By the assumptions we have ‖f(A + ν0)‖ 6 C‖f‖H∞(Σσ). We estimate the
integral I(f) by splitting it into Γ1 = Γ ∩ {|λ| 6 1} and Γ2 = Γ ∩ {|λ| > 1}
and using

R(λ− ν0, A) = (λ− ν0)−1[R(λ− ν0, A)A+ I].

This gives

I(f) =
1

2πi

∫
Γ1

λf(λ)R(λ,A+ ν)R(λ− ν0, A) dλ [R(−ν0, A)]

+
1

2πi

∫
Γ2

λf(λ)R(λ,A+ ν)(λ− ν0)−1R(λ− ν0, A) dλ [AR(−ν0, A)]

+
1

2πi

∫
Γ2

λf(λ)R(λ,A+ ν)R(−ν0, A)(λ− ν0)−1 dλ

= (I) + (II) + (III).

The integrals (I) and (II) can be estimated by C‖f‖H∞(Σσ) with constant C
only depending on A, ν0, σ. The third can be rewritten with the help of the
resolvent identity and Cauchy’s formula:

(III) =
1

2πi

∫
Γ2

f(λ)

λ− ν0
R(−ν0, A) dλ− 1

2πi

∫
Γ2

f(λ)

λ− ν0
R(λ,A+ ν) dλ

= f(ν0)R(−ν,A)− 1

2πi

∫
Γ1

f(λ)

λ− ν0
R(−ν0, A) dλ

− 1

2πi

∫
Γ2

f(λ)

λ− ν0
R(λ,A+ ν) dλ.

The two remaining integrals can again be estimated by C‖f‖H∞(Σσ) with
constant C only depending on A, ν0, σ. With (16.9) we arrive at

‖f(A+ ν)‖ 6 C ′‖f‖H∞(Σσ), f ∈ H1(Σσ) ∩H∞(Σσ),

thus completing the proof. �
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We continue with the following result for lower order perturbations.

Theorem 16.2.7 (Lower order perturbations of the H∞-calculus). Let
A be a sectorial operator and suppose that B is linear operator in X satisfying

D(Aα) ⊆ D(B)

and
‖Bx‖ 6 a‖Aαx‖+ b‖x‖, x ∈ D(A),

for suitable real numbers a, b > 0 and α ∈ (0, 1). If A has a bounded H∞(Σσ)-
calculus in X for some ω(A) < σ < π, then A+B+ν has a bounded H∞(Σσ)-
calculus in X for all sufficiently large ν > 0.

Proof. By Proposition 16.2.3, for large enough ν > 0 the operator A+B + ν
is sectorial and ω(A+B+ ν) 6 ω(A). By taking ν larger if necessary, we may
assume that 0 ∈ %(A+B + ν).

We start from the identity

R(λ,A+B + ν) = R(λ,A+ ν) +R(λ,A+B + ν)BR(λ,A+ ν)

= R(λ,A+ ν) +M(λ),

which may be verified by applying λ− (A+B + ν) on both sides, and where

M(λ) = R(λ,A+B + ν)[B(A+ ν)−α](A+ ν)αR(λ,A+ ν).

For functions f ∈ H1(Σσ) ∩H∞(Σσ) this gives the Dunford integral

f(A+B) = f(A) +
1

2πi

∫
Γη

f(λ)M(λ) dλ,

where the contour Γη = ∂Ση with ω(A) < η < σ is chosen as usual. Near the
origin, the integrand is bounded since we assumed that 0 ∈ %(A+B+ ν). For
large values of |λ| the integrand may be estimated pointwise by

‖f(λ)M(λ)‖ 6M1M2|λ|−α‖B(A+ ν)−α‖‖f‖H∞(Σσ),

since
M1 := sup{‖λR(λ,A+B + ν)‖ : | arg λ| = η}

is finite by sectoriality of A+B + ν and

M2 := sup{‖λ1−α(A+ ν)αR(λ,A+ ν)‖ : | arg λ| = η}

is finite by sectoriality of A + ν and Corollary 15.2.14. It follows that the
integral converges absolutely and its norm is bounded by a constant times
‖f‖H∞(Σσ). This completes the proof. �
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Our main perturbation theorem asserts that the H∞-calculus of an R-sectorial
operator is preserved under relatively bounded perturbations of the H∞-
calculus if we add an additional relative boundedness assumption in the frac-
tional domains scale.

Theorem 16.2.8 (Relatively bounded perturbations of the H∞-cal-
culus). Let A be a densely defined sectorial operator with a bounded H∞(Σσ)-
calculus and let B be a densely defined τ -R-sectorial operator on X, with

D(A) ⊆ D(B) and 0 ∈ %(A)

and satisfying the relative bound

(i) ‖Bx‖ 6 C0‖Ax‖ for all x ∈ D(A).

Suppose that at least one of the following two additional relative bounds is also
satisfied:

(ii) there exists an α ∈ (0, 1) such that B maps D(A1+α) into D(Aα) and

‖AαBx‖ 6 C1‖A1+αx‖, x ∈ D(A1+α);

(iii) there exists an α ∈ (0, 1) such that

‖A−αBx‖ 6 C1‖A1−αx‖, x ∈ D(A1−α).

Then, given the constant C1 in (ii) or (iii), there is a small enough constant
C > 0 so that if (i) holds with 0 6 C0 6 C, then A + B has a bounded
H∞(Σσ∨τ )-calculus.

If in (ii) or (iii) we have C1 < 1/M̃σ∨τ,A, then the condition 0 ∈ %(A) may
be replaced by the weaker condition that A be injective and B maps D(A1−α)
into D(A−α).

In the last line of the statement of the theorem, recall the notation M̃θ,A =
sup{‖AR(λ,A)‖ : λ 6= 0, ‖ arg(λ)| > θ}.

If X has the triangular contraction property, in particular if X is a UMD
space, then by Theorem 10.3.4 we have ωR(A) 6 ωH∞(A) and therefore the
theorem applies.

At the end of the section, an example will be presented which shows that
the additional assumptions (ii) and (iii) cannot be omitted.

We will reduce the theorem to the following technical lemma.

Lemma 16.2.9. Let A be a densely defined sectorial operator with a bounded
H∞(Σσ)-calculus and let B a densely defined R-sectorial operator on X. Let
ω(A) < σ < π and ωR(B) < τ < π, and set µ := max{σ, τ}. Suppose there
exists a holomorphic function M : {| arg(λ)| > µ} → L (X) with R-bounded
range and a β ∈ (0, 1) such that

R(λ,B) = R(λ,A) +AβR(λ,A)M(λ)A1−βR(λ,A), | arg(λ)| > µ. (16.10)

Then B has a bounded H∞(Σµ)-calculus.
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Proof. Our aim is to prove that there exists a function φ ∈ H1(Σµ) and a
constant C > 0 such that for all integers N > 1, all scalars ε−N , . . . , εN of
modulus one, and all t > 0 we have∥∥∥ ∑

|n|6N

εnφ(t2nB)
∥∥∥ 6 C.

Once we have this, it follows from Proposition 10.4.11 (and tracking angles in
its proof) that B has a bounded H∞(Σµ)-calculus.

Let µ < ν < π and consider the function ψν ∈ H1(Σµ) given by

ψν(z) =
z1/2

(eiν − z)1/2(2eiν − z)1/2
, z ∈ Σµ,

so that φν := ψ2
ν satisfies

φν(z) =
z

(eiν − z)(2eiν − z)
=

1

eiν − z
− 2

2eiν − z
.

By (16.10),

R(λ, t2nB) = t−12−nR(t−12−nλ,B)

= t−12−nR(t−12−nλ,A)

+ t−12−nAβR(t−12−nλ,A)M(t−12−nλ)A1−βR(t−12−nλ,A)

= R(λ, t2nA)

+ t2nAβR(λ, t2nA)M(t−12−nλ)A1−βR(λ, t2nA).

By Corollary 15.2.14, the right-hand side has decay of order |λ|−1 as |λ| → ∞
in the complement of Σµ. Hence, by Cauchy’s theorem and taking µ < τ < ν,

φν(t2nB) =
1

2πi

∫
∂Στ

φν(λ)R(λ, t2nB) dλ

= φν(t2nA) + t2nAβR(eiν , t2nA)M(t−12−neiν)A1−βR(eiν , t2nA)

− t2n+1AβR(2eiν , t2nA)M(t−12−n2eiν)A1−βR(2eiν , t2nA)

= φν(t2nA) + t2nAβR(eiν , t2nA)M(t−12−neiν)A1−βR(eiν , t2nA)

− t2n−1AβR(eiν , t2n−1A)M(t−12−(n−1)eiν)A1−βR(eiν , t2n−1A)

= φν(t2nA) + φβ,ν(t2nA)M(t−12−neiν)φ1−β,ν(t2nA)

− φβ,ν(t2n−1A)M(t−12−(n−1)eiν)φ1−β,ν(t2n−1A)

= (I) + (II) + (III),

(16.11)

where for α > 0 we define φα,ν ∈ H1(Σµ) by
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φα,ν(z) :=
zα

eiν − z
.

In the penultimate identity of (16.11) we used the identity

φα,ν(τA) = ταAαR(eiν , τA),

which follows from Propositions 15.1.12 and 15.2.6.
We estimate the terms (I)–(III) separately. We begin with (II). Fixing

x ∈ X, by randomisation with a Rademacher sequence (εn)n∈Z,∥∥∥ ∑
|n|6N

εnφβ,ν(t2nA)M(t−12−neiν)φ1−β,ν(t2nA)x
∥∥∥

= sup
‖x∗‖61

∣∣∣ ∑
|n|6N

εn〈M(t−12−neiν)φ1−β,ν(t2nA)x, φβ,ν(t2nA)∗x∗〉
∣∣∣

= sup
‖x∗‖61

∣∣∣E〈 ∑
|n|6N

εnεnM(t−12−neiν)φ1−β,ν(t2nA)x,
∑
|n|6N

εnφβ,ν(t2nA∗)x∗
〉∣∣∣

6 E
∥∥∥ ∑
|n|6N

εnεnM(t−12−neiν)φ1−β,ν(t2nA)x
∥∥∥

× sup
‖x∗‖61

E
∥∥∥ ∑
|n|6N

εnφβ,ν(t2nA∗)x∗
∥∥∥

.M E
∥∥∥ ∑
|n|6N

εnφ1−β,ν(t2nA)x
∥∥∥ sup
‖x∗‖61

E
∥∥∥ ∑
|n|6N

εnφβ,ν(t2nA∗)x∗
∥∥∥,

where the implicit constant in the last step is the R-boundedness constant of
M . Similarly, shifting the index by one and using the contraction principle,
we estimate (III) as follows:∥∥∥ ∑

|n|6N

εnφβ,ν(t2nA)M(t−12−neiν)φ1−β,ν(t2nA)x
∥∥∥

.M E
∥∥∥ ∑
|n|6N

εnφ1−β,ν(t2n−1A)x
∥∥∥ sup
‖x∗‖61

∥∥∥ ∑
|n|6N

εnφβ,ν(t2n−1A∗)x∗
∥∥∥

6 E
∥∥∥ ∑
|n|6N+1

εnφ1−β,ν(t2nA)x
∥∥∥ sup
‖x∗‖61

E
∥∥∥ ∑
|n|6N+1

εnφβ,ν(t2nA∗)x∗
∥∥∥.

By the same argument, for (I) we obtain∥∥∥ ∑
|n|6N

εnφν(t2nA)x
∥∥∥ 6 E

∥∥∥ ∑
|n|6N

εnψν(t2nA)x
∥∥∥.

Taking the supremum over N > 1 and t > 0, this proves the square function
bound
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sup
|n|>N

sup
t>0

∥∥∥ ∑
|n|6N

εnφν(t2nB)x
∥∥∥ 6 C‖x‖+ 2C ′ sup

t>0
‖x‖φ1−β ,A sup

‖x∗‖61

‖x∗‖φβ ,A∗

6 C ′′‖x‖,

where the estimate in the last step follows from the boundedness of the
H∞(Σσ)-calculus of A through Theorem 10.4.4. �

Proof of Theorem 16.2.8. By the second part of Theorem 16.2.4, assump-
tion (i) implies that A + B is σ-R-sectorial operator provided the small-
ness condition on C0 in (i) holds. Moreover, if we impose C0 < 1, then
for all x ∈ D(A + B) = D(A) we have ‖Ax‖ 6 ‖(A + B)x‖ + ‖Bx‖ 6
‖(A+B)x‖+C0‖Ax‖ and therefore ‖Ax‖ 6 (1−C0)−1‖(A+B)x‖, while at
the same time ‖(A+B)x‖ 6 ‖Ax‖+ ‖Bx‖ 6 (1 +C0)‖Ax. We conclude that

‖Ax‖ hC0
‖(A+B)x‖, x ∈ D(A+B) = D(A).

Furthermore, for λ ∈ {Σσ∨τ we have λ ∈ %(A+B) and the resolvent operator
is represented by the perturbation formula of Proposition 16.2.1,

R(λ,A+B) = R(λ,A)

∞∑
n=0

[BR(λ,A)]n, | arg λ| > σ ∨ τ, (16.12)

again provided C0 is small enough, for then ‖BR(λ,A)‖ 6 C0‖AR(λ,A)‖ 6
C0‖λR(λ,A)− I‖ 6 C0(1 +Mσ∨τ,A) < 1 and the series converges absolutely.

First we assume that (i) and (iii) hold. For the time being, we do not
assume that 0 ∈ %(A) (in which case A−1 is bounded by Corollary 15.2.10),
but only assume that A is invertible and B maps D(A1−α) into D(A−α). Then
U := A−αBAα−1 is bounded on X of norm ‖U‖ = C1 and we have

R(λ,A)BR(λ,A) = R(λ,A)AαUA1−αR(λ,A).

If C1 < M̃−1
σ∨τ,A, then the sum

M(λ) :=
∑
k>0

[UAR(λ,A)]kU

converges in operator norm and defines a holomorphic function for | arg λ| >
σ ∨ τ . We then can rewrite (16.12) in the form

R(λ,A+B) = R(λ,A) +AαR(λ,A)
∑
k>0

[UAR(λ,A)]kUA1−αR(λ,A)

= R(λ,A) +AαR(λ,A)M(λ)A1−αR(λ,A).

By the R-sectoriality of A and Proposition 8.1.24, the set {M(λ) : | arg(λ)| >
σ} is R-bounded. Thus we derived the representation required in Lemma
16.2.9 and we can conclude that A+B also has a bounded H∞(Σσ∨τ -calculus.
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It remains to prove that the smallness assumption C1 < M̃−1
σ∨τ,A can be

removed if 0 ∈ %(A). Under this assumption, let (i) and (iii) hold, but not

necessarily the smallness condition C1 < M̃−1
σ∨τ,A.

Using the scale of homogeneous fractional domain spaces Xα := D(Aα)
with norms ‖x‖Xα := ‖Aαx‖ (recall that we are assuming 0 ∈ %(A)) we can
restate our assumptions as stating that B extends to a bounded operator
from X1 to X and from X1−α to X−α, with norm at most C0 and C1 respec-
tively. By complex interpolation B acts as a bounded operator [X1, X1−α]θ
to [X,X−α]θ with norm 6 C1−θ

0 Cθ1 , 0 < θ < 1.
Since A has a bounded H∞-calculus and therefore bounded imaginary

powers, by Corollary 15.3.10 we have

[X1, X1−α]θ = X1−θα, [X,X−α]θ = X−θα

with equivalent norms, with equivalence constants which may be chosen in-
dependent of θ ∈ (0, 1). Thus we obtain that B acts as a bounded operator
from X1−θα to X−θα with norm . C1−θ

0 Cθ1 , 0 < θ < 1.
We can choose θ so small that B satisfies (iii) for α′ = θα with C ′1 <

M̃−1
σ∨τ,A no matter how big C1 was. This completes the proof of the case (iii).

Finally assume that (ii) holds for some α ∈ (0, 1). By Proposition 15.1.12
we have Aα−1 ⊆ AαA−1 and A1+α ⊆ AαA (in fact we have equality in the
second case by Theorem 15.2.5), and therefore

‖Aα−1Bx‖ = ‖AαA−1Bx‖ 6 C1‖A1+αA−1Bx‖ = C1‖AαBx‖

implies that (iii) holds for the exponent 1−α ∈ (0, 1) and x ∈ D(A1+α). Since
D(A1+α) is dense in D(Aα) by Proposition 15.1.13, (iii) holds for the exponent
1− α ∈ (0, 1) and x ∈ D(Aα). �

We conclude this section with an example, due to McIntosh and Yagi, shows
that boundedness of the H∞-calculus is not preserved by small relatively
bounded perturbations even when X is a Hilbert space. This shows that the
additional assumptions (ii) or (iii) in Theorem 16.2.7 cannot be omitted, no
matter how small the constant on (i) is chosen.

Example 16.2.10. We construct a bisectorial operator A on Hilbert space H
admitting a bounded bisectorial H∞-calculus with ωbi

H∞(A) = 0, such that
for any given ε > 0, an operator Bε on H exists which is relatively bounded
with respect to A, with ‖Bεx‖ 6 ε‖Ax‖, and such that A + Bε fails to have
a bounded bisectorial H∞-calculus. This operator moreover satisfies (A +
Bε)

2 = A2 + Cε, where C is relatively bounded with respect to A2, with
‖Cεx‖ 6 2ε‖A2x‖.

By the first part of Theorem 10.6.7, the operator A2 has a bounded H∞-
calculus with ωH∞(A) = 0. If A2 + Cε = (A + Bε)

2 had a bounded H∞-
calculus, then by the second part of Theorem 10.6.7 A + Bε would have a
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bounded bisectorial H∞-calculus, and this is not the case. We conclude that
A2 + Cε does not have a bounded H∞-calculus.

Let us proceed to the construction of the operators A and Bε. Fix ε > 0.
Omitting subscripts ε in what follows, for n = 1, 2, . . . we will construct
bounded operators An and Bn on a finite-dimensional Hn with the following
properties for any 0 < σ < 1

2π:

• An and An +Bn are σ-bisectorial with ‖Bn‖ 6 ε‖An‖;
• A2

n and (An +Bn)2 = A2
n + Cn with ‖Cn‖ 6 2ε‖A2

n‖;
• the spectra of An and An +Bn is contained in (−∞, 1] ∪ [1,∞);
• the resolvents of An and An +Bn satisfy

‖R(λ,An)‖ 6 1/=(λ), ‖R(λ,An +Bn)‖ 6 (1 + ε)/=(λ),

for all λ ∈ C \ R;
• An and An+Bn have contractive, respectively bounded, H∞(Σ±σ )-calculi;
• the spectral projections 1Σ±σ (An +Bn) have norm > n.

The counterexample with the stated properties is obtained by taking

H =
⊕
n>1

Hn, A :=
⊕
n>1

Tn, B :=
⊕
n>1

Bn, C :=
⊕
n>1

Cn.

The operator A has a contractive H∞(Σ±σ )-calculus. Furthermore, the in-
equalities ‖Bn‖ 6 ε‖An‖ imply that D(A) ⊆ D(B) and B is relatively bounded
with respect to A, with relative bound 6 ε. The operator A+B with domain
D(A + B) = D(A) doesn’t have a bounded H∞(Σbi

σ )-calculus: for if it had,
then the associated spectral projections would be bounded; but if they were,
then their restrictions to Hn would be uniformly bounded in n; but these
restrictions have norm > n.

We now turn to the details of the construction. Choose Nn > 1 so large

that 2ε
3π log(Nn + 1). On CNn+1 consider the matrices Tn = (t

(n)
jk )Nnj,k=0 and

Sn = (s
(n)
jk )Nnj,k=0 given by

t
(n)
jk = 2jδjk, s

(n)
jk :=

ε

π(k − j)
δj 6=k.

Then Tn is self-adjoint and SnTn is skew-adjoint. The self-adjoint matrix iSn
is the Nn × Nn Toeplitz matrix with generating function εθ/π, θ ∈ (−π, π),
that is, we have

sjk = f̂j−k, j, k = 0, . . . , Nn.

Since the norm of a Toeplitz matrix with bounded real-valued generating
function f is bounded by ‖f‖L∞(T), we see that ‖Sn‖ 6 ε.

The matrix Zn = (z
(n)
jk )Nnj,k=0 given by

z
(n)
jk =

2kε

π(k − j)(2j + 2k)
δj 6=k
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has norm

‖Zn‖ > ‖ZeNn‖ =
2Nnε

π

Nn−1∑
j=0

1

(Nn − j)(2j + 2Nn)

>
ε

π

2Nn

(2Nn−1 + 2Nn)

( 1

N n
+

1

Nn − 1
+ · · ·+ 1

)
>

2ε

3π
log(Nn + 1) > n,

(16.13)

where (en)Nnn=0 denote the standard unit vectors in CNn+1, and it satisfies

TnZn + ZnTn = SnTn. (16.14)

On Hn := CNn+1 × CNn+1 define the operators

An :=

[
Tn 0
0 −Tn

]
, Bn :=

[
0 SnTn
0 0

]
, P+

n :=

[
I Zn
0 0

]
, P−n :=

[
0 −Zn
0 I

]
.

One checks that

Bn =

[
0 Sn
0 0

] [
Tn 0
0 −Tn

]
=

[
0 Sn
0 0

]
An,

so
‖Bn‖ 6 ‖Sn‖‖An‖ 6 ε‖An‖.

Also, using that SnTn = −(TnSn)∗, we have

(An+Bn)2 =

[
T 2
n TnSnTn − SnT 2

n

0 T 2
n

]
= A2

n+

[
0 TnSnTn − SnT 2

n

0 0

]
=: A2

n+Cn

with
‖Cn‖ 6 ‖TnSnTn − SnT 2

n‖ 6 2‖Sn‖‖Tn‖2 6 2ε‖A2
n‖,

where we used that T ∗n = −Tn, so Tn is normal and therefore ‖Tn‖2 = ‖T 2‖.
Furthermore, one checks that σ(An) = σ(An +Bn) and

R(λ,An +Bn) =

[
R(λ, Tn) R(λ, Tn)SnTnR(λ,−Tn)

0 R(λ,−Tn)

]
(16.15)

for all λ ∈ %(An) = %(An +Bn). In particular,

σ(An +Bn) = σ(An)

= σ(Tn) ∪ σ(−Tn) = {1, 2, 4, . . . , 2Nn} ∪ {−1,−2,−4, . . . ,−2Nn}

By self-adjointness, for λ 6∈ R we have ‖An‖ 6 |=(λ)|−1, so An is σ-bisectorial
for all 0 < σ < 1

2π. By (16.15), for λ 6∈ R we have λ ∈ %(An + Bn), and for

λ 6∈ Σσ
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‖R(λ,An +Bn)‖ 6 |=(λ)|−1 + ‖R(λ, Tn)SnTnR(λ, Tn)‖ .σ (1 + ε)|=(λ)|−1.

It follows that An +Bn is σ-bisectorial for all 0 < σ < 1
2π.

The operators P+
n and P−n are projections,

P+
n + P−n = I, P+

n P
−
n = P−n P

+
n = 0,

and by (16.13) their norms satisfy

‖P+
n ‖ > ‖Zn‖ > n, ‖P−n ‖ > ‖Zn‖ > n.

To complete the construction we will show that

P±n = 1Σ±σ (An +Bn).

Indeed, using (16.14) and (16.15), for 0 < ν < σ we formally compute

1Σ±σ (An +Bn)

=
1

2πi

∫
∂Σ±ν

R(z,An +Bn) dz

=
1

2πi

∫
∂Σ±ν

[
R(z, Tn) R(z, Tn)SnTnR(z,−Tn)

0 R(z,−Tn)

]
dz

=
1

2πi

∫
∂Σ±ν

[
R(z, Tn) R(z, Tn)(TnZn + ZnTn)R(z,−Tn)

0 R(z,−Tn)

]
dz

=
1

2πi

∫
∂Σ±ν

[
R(z, Tn) R(z, Tn)Zn + ZnR(z,−Tn)

0 R(z,−Tn)x

]
dz

(∗)
=

[
I Zn
0 0

]
= P+

n ,

where (∗) is a consequence of Cauchy’s theorem, which gives

1

2πi

∫
∂Σ±ν

R(z, Tn) dz = I,
1

2πi

∫
∂Σ±ν

R(z,−Tn) dz = 0,

noting that σ(Tn) = {1, 2, 4, . . . , 2Nn} is contained in Σ+
σ . To make the

computation rigorous, one brings in additional terms ζk(Tn), where ζk(z) =
k
k+z −

1
1+kz as in Proposition 10.2.6, to be able to work with the Dunford cal-

culus for functions in H1(Σσ) ∩H∞(Σσ) throughout; one passes to the limit
k →∞ at the end. The proof that 1Σ±σ (An +Bn) = P−n is entirely similar.

16.3 Sum-of-operator theorems

The perturbations B studied in Section 16.2 have the property that D(B) is
contained in D(A), so that the sum the sum A + B may be defined unam-
biguously by the prescription (A + B)x := Ax + Bx. In all these cases, B is
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“small” in comparison with A. Under a resolvent commutation assumption,
in the present section we treat A and B on a more equal footing.

We begin with a general result (Theorem 16.3.2) which says that the sum
A + B of two resolvent commuting sectorial operators A and B satisfying
ω(A) + ω(B) < π always has a sectorial extension, and that this extension is
the closure of A+ B if both A and B are densely defined. In applications to
maximal regularity of solution of evolution equations – the topic of the last
two chapters of this book – more is needed, namely, that A+B is closed and
the following inequality holds:

‖Ax‖+ ‖Bx‖ 6 C‖(A+B)x‖, x ∈ D(A) ∩ D(B) (16.16)

with a constant C independent of x ∈ D(A) ∩ D(B). For later use we record
the simple fact that this inequality in fact implies closedness:

Proposition 16.3.1. If A and B are closed operators satisfying (16.16), then
the operator A+B with its natural domain D(A+B) = D(A)+D(B) is closed.

Proof. The proof is immediate: if xn → x and (A + B)xn → y, then (16.16)
implies that the sequences (Axn)n>1 and (Bxn)n>1 are Cauchy. The closed-
ness of A and B implies that x ∈ D(A)∩D(B) and y = limn→∞(A+B)xn =
Ax+Bx = limn→∞Axn + limn→∞Bxn = Ax+Bx = (A+B)x. �

As it turns out, the inequality (16.16) is rather delicate, and it only holds under
additional assumptions on A, B, and X. We have already encountered one
such situation: the Dore–Venni theorem (Theorem 15.4.11), which assumes
that A and B resolvent commute and have bounded imaginary powers, with
ωBIP(A)+ωBIP(B) < π, and the underlying Banach space X is a UMD space.
In applications, however, one if often confronted with the situation where
one of the operator is only (R-)sectorial, whilst the other operator has better
properties such as a bounded H∞-calculus. In the present section, for resolvent
commuting sectorial operators A and B acting in a Banach X we will prove
the following results:

• If A and B are densely defined, A has a bounded H∞-calculus and B is
R-sectorial, and if ωH∞(A) + ωR(B) < π, then A + B is densely defined
and sectorial, with

ω(A+B) 6 max{ωH∞(A), ωR(B)}

and the reverse triangle inequality (16.16) holds. If in addition X has the
triangular contraction property, then A+B is R-sectorial and

ωR(A+B) 6 max{ωH∞(A), ωR(B)}.

(Theorem 16.3.6).
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• If A and B are densely defined and have bounded H∞-calculi with
ωH∞(A) + ωH∞(B) < π and X has Pisier’s contraction property, then
A+B has a bounded H∞-calculus with

ωH∞(A+B) 6 max{ωH∞(A), ωH∞(B)}

and the reverse triangle inequality (16.16) holds (Theorem 16.3.10).
• If A has an absolute calculus with

ωabs(A) + ω(B) < π,

then the reverse triangle inequality (16.16) holds (Theorem 16.3.14). The
same conclusion holds if X is a Hilbert space, A has bounded imaginary
powers and B is densely defined, and ωBIP(A) + ω(B) < π (Theorem
16.3.15).

To conclude this section we provide an example of the type of applications
that will be studied in depth in the next two chapters and which indeed have
motivated the development of the abstract approach to sums of operators
presented here.

Suppose that −A generates a C0-semigroup on a Banach space X and
consider the inhomogeneous abstract Cauchy problem{

u′(t) +Au(t) = f(t), t ∈ [0, T ],

u(0) = 0.
(ACP)

As we will explain in the next chapter, a thorough understanding of this
problem is of paramount importance to the study of more general classes of
nonlinear, possibly time-dependent, evolution equations. In order to connect
(ACP) with operator sums we consider the weak derivative

Du := u′

viewed as a closed operator on Lp(0, T ;X) (with 1 6 p 6∞) with domain

D(D) := 0W
1,p(0, T ;X) =

{
u ∈W 1,p(0, T ;X) : u(0) = 0

}
It will be checked in the next chapter (see Section 17.3.c) that this operator
is sectorial of angle 1

2π. Using this operator, we can rewrite (ACP) as the
abstract operator equation

(D + Ã)u = f

in Lp(0, T ;X), where Ã is the natural extension of A to a closed operator

acting in X̃ := Lp(0, T ;X), defined on D(Ã) := Lp(0, T ;D(A)) by

(Ãf)(t) := A(f(t)), t ∈ (0, T ).

In the next chapter (see Propositions 17.3.14 and 17.3.15) we prove that the
following assertions are equivalent:
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(1) the inverse triangle inequality (16.16) holds, i.e., there is a constant C > 0
such that

‖Ãu‖p + ‖Du‖p 6 C‖(Ã+D)u‖p, u ∈ D(Ã) ∩ D(D);

(2) Ã+D is closed;

(3) Ã+D boundedly invertible;
(4) A has maximal Lp-regularity on (0, T ).

For the problem (ACP), maximal Lp-regularity means that the unique mild
solution of the problem, which is given in terms of the semigroup S generated
by −A as

u(t) =

∫ t

0

S(t− s)f(s) ds

belongs to Lp(0, T ;D(A)) ∩ 0W
1,p(0, T ;X) = D(Ã) ∩ D(D). As we will see

in the next chapter, the bounded invertibility of Ã + D corresponds to the
existence and uniqueness of mild solutions for (ACP). Maximal Lp-regularity
will be studied in depth in the next chapter, where also a version of the above
equivalences with (0, T ) replaced by R+ will be proved.

16.3.a The sum of two sectorial operators

We begin with a general result about sums of resolvent commuting operators.
It is not quite as useful as the deeper sums-of-operator theorems proved in the
next sections, but its virtue lies in the generality of its assumptions, namely,
it is only required that A and B are sectorial with ω(A) + ω(B) < π. The
price to be paid is that we do not obtain sectoriality, or even closedness, of
A + B, but only the weaker result that A + B has a sectorial extension. A
second reason to present this result in fair detail is that some techniques that
go into the proof will resurface in later proofs.

Theorem 16.3.2 (Sums of sectorial operators). If A and B are resolvent
commuting sectorial operators satisfying

ω(A) + ω(B) < π

then the operator A + B with its natural domain D(A + B) = D(A) + D(B)
has a closed extension to a sectorial operator C which satisfies

ω(C) 6 max{ω(A), ω(B)}.

Furthermore,

(1) If A or B is injective, then C is injective;
(2) If A and B are densely defined, then C is densely defined;
(3) If A and B are densely defined and A or B is standard sectorial, then C

is standard sectorial.
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If (2) holds (and hence if (3) holds), then C equals the closure of A+B.

The proof of this theorem will be given shortly. We first pause a brief moment
to explain why the condition

ω(A) + ω(B) < π

enters naturally in this theorem. Variants of this condition appear in all sum-
of-operator theorems we are about to encounter. Arguing naively, one would
like to realise the operator sum A+B through a ‘bivariate’ extended Dunford
calculus as (z+w)(A+B), where z+w is short-hand for the function (z, w) 7→
z + w. With this notation, to prove sectoriality of A + B one must estimate
the norms of

λR(λ,A+B) =
λ

λ− (z + w)
(A,B)

for all λ ∈ C in the complement of a sector Σω containing all sums z+w with
z ∈ Σσ and w ∈ Στ , where ω(A) < σ < π and ω(B) < τ < π as usual. But
the algebraic sum Σσ +Στ is a sector only if σ+ τ 6 π! Under this condition,
Σσ +Στ = Σmax{σ,τ}. In contrast, when σ+ τ > π the reader may check that
Σσ +Στ = C. Clearly, the condition σ + τ 6 π forces ω(A) + ω(B) < π, and
in that case we may replace σ and τ by slightly smaller values to arrange that
σ+ τ < π. Incidentally, this heuristic argument also shows that the inequality
ω(A+B) 6 max{ω(A), ω(B)} is natural to expect.

Let us now turn to the proof Theorem 16.3.2. Let A and B be resolvent
commuting sectorial operators in X satisfying ω(A) + ω(B) < π, and let
ω(A) < σ < π and ω(B) < τ < π be such that σ+ τ < π. The construction of
the sectorial operator C extending A+B is based on the following observation,
which makes use of the primary calculus involving the spaces E(Σ) introduced
in Section 15.1.a. For a holomorphic function h ∈ E(Σσ)⊗E(Στ ) of the form

h(z, w) =
N∑
n=1

fn(z)gn(w)

with all fn ∈ E(Σσ) and gn ∈ E(Στ ), we may define

h(A,B) :=

N∑
n=1

fn(A)gn(B).

It is not difficult that the operator h(A,B) is well defined, in the sense that it
does not depend on the particular representation of h. We now observe that

h(z, w) :=
z + w

(1 + z)(1 + w)
=
(

1− 1

1 + z

) 1

1 + w
+

1

1 + z

(
1− 1

1 + w

)
.

This identifies the left-hand side as an element of E(Σσ)⊗ E(Στ ). Thinking
of
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ρ(z, w) :=
1

(1 + z)(1 + w)

as a regulariser for the function (z, w) 7→ z + w, we define

C := (I +A)(I +B)h(A,B)

with domain

D(C) :=
{
x ∈ X : h(A,B)x ∈ R((I +B)−1(I +A)−1

}
.

A bit of algebra reveals that

• x ∈ D(C) ⇐⇒ (A+B)(I +B)−1(I +A)−1x ∈ R((I +B)−1(I +A)−1)

and, for x ∈ D(C),

Cx = (I +A)(I +B)(A+B)(I +B)−1(I +A)−1x.

From this equivalence, by a standard argument one deduces that

• C is closed.

Proof of Theorem 16.3.2. We will prove that C defined by the above proce-
dure has the required properties.

It is immediate from the definition that D(A)∩D(B) is contained in D(C);
this is the same as saying that C is an extension of A+B. In fact, a moment’s
reflection shows that

D(A) ∩ D(C) = D(A) ∩ D(B) = D(C) ∩ D(B). (16.17)

Choose ω(A) < σ < π and ω(B) < τ < π in such a way that σ + τ < π.
As was already observed above, the condition σ + τ < π implies that

Σσ +Στ := {z + w : z ∈ Σσ, w ∈ Στ} = Σmax{σ,τ}.

For z ∈ Σσ, w ∈ Στ , and λ ∈ C with max{σ, τ} < | arg(λ)| < π, we write

λ

λ− (z + w)
=

λ2

(λ− z)(λ− w)
+

λzw

(λ− (z + w))(λ− z)(λ− w)
.

These functions are holomorphic on Σσ ×Στ and one may check that

λR(λ,C) = λ2R(λ,A)R(λ,B) + fλ(A,B), (16.18)

where fλ(A,B) can be defined in terms of the function

fλ(z, w) :=
λzw

(λ− (z + w))(λ− z)(λ− w)

as the absolutely convergent Dunford integral
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fλ(A,B) :=
1

(2πi)2

∫
∂Στ

∫
∂Σσ

fλ(z, w)R(z,A)R(w,B) dz dw.

With µ := λ/|λ| we then have

‖fλ(A,B)‖ .σ,τ,A,B
∫
∂Στ

∫
∂Σσ

1

|µ− (z + w)||µ− z||µ− w|
|dz| |dw| (16.19)

and the sectoriality of C with angle ω(C) 6 ω now easily follows from the
fact that value of the integral on the right-hand side of (16.19) is uniformly
bounded with respect to µ on the arc {|µ| = 1, | arg(µ)| > max{σ, τ}.

Since the choices ω(A) < σ < π and ω(B) < τ < π and max{σ, τ} < ω < π
were arbitrary, it follows that ω(C) 6 max{ω(A), ω(B)}.

It remains to prove the assertions (1)–(3).

(1): Suppose that is injective and let x ∈ D(C) be such that Cx = 0. By
the definition of C, this means that h(A,B)x = (I+B)−1(I+A)−1y for some
y ∈ X and Cx = (I +A)(I +B)h(A,B)x = y = 0. Consider the function

g(z, w) =
z

(1 + z)2(z + w)
, z, w ∈ Σσ.

By the primary calculus, for fixed z ∈ Σσ we have

g(z,B) = z(1 + z)−2(z +B)−1.

Borrowing some terminology from the next subsection, this function belongs
to H1(Σσ; A ), where A is the set of operators in L (X) commuting with the
resolvent of A, and we may define a bounded operator g(A,B) through the
Dunford integral

g(A,B) :=
1

2πi

∫
∂Σν

z(1 + z)−2(z +B)−1(z −A)−1 dz.

In view of

(z +B)−1(z −A)−1C

= (z +B)−1(z −A)−1[(I +A)(I +B)h(A,B)]

= [(1 + z)(z −A)−1 − I][(1− z)(z +B)−1 + I]h(A,B)

= [(1 + z)(z −A)−1 − I][(1− z)(z +B)−1 + I](A+B)(I +A)−1(I +B)−1

= [(1 + z)(z −A)−1 − I][I − (I +A)−1][(1− z)(z +B)−1 + I](I +B)−1

+ [(1 + z)(z −A)−1 − I][(1− z)(z +B)−1 + I][I − (I +B)−1](I +A)−1

= (z −A)−1 − (z +B)−1,

where the last line follows by the resolvent identity. By Cauchy’s theorem,∫
∂Σν

z

(1 + z)2

(
(z −A)−1 − (z +B)−1

)
dz =

∫
∂Σν

z

(1 + z)2
(z −A)−1 dz
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= A(I +A)−2x

It follows that

0 = g(A,B)Cx = A(I +A)−2x.

Since A and (I −A)−1 are injective, this forces x = 0.
If B is injective and Cx = 0, the same argument (with the roles of A and

B reversed) again shows that x = 0.

(2): If A and B are densely defined, then so is C by (16.17). If x ∈ D(A),
then the vectors xn := n2(n+A)−1(n+B)−1x belong to D(A+B) and converge
to x in X as n→∞. Similarly, the vectors Cxn = n2(n+A)−1(n+B)−1Cx
converge to Cx in X as n→∞. This shows that D(A+B) is dense in D(C)
with respect to the graph norm.

(3): Suppose now that A and B are standard sectorial. Then D(A) and
D(B) are dense, and therefore D(C) is dense by (2). Furthermore, arguing
as in part (1) we see that for all x ∈ X we have g(A,B)x ∈ D(C) and
Cg(A,B)x = A(I + A)−2x. Since R(A(I + A)−2) = D(A) ∩ R(A), it follows
that D(A)∩R(A) ⊆ R(C) and therefore R(C) is dense. By Proposition 10.1.8,
this implies that D(C) ∩ R(C) is dense, i.e., C is standard sectorial. �

In the next proposition we assume that A and B are sectorial operators in X
satisfying ω(A) + ω(B) < π, and choose ω(A) < νA < σA < π, ω(B) < νB <
σA < π, and max{νA, νB} < ν < σ < π. The operator C is as in Theorem
16.3.2.

Proposition 16.3.3. Every λ 6∈ Σmax{σ,τ} belongs to %(C) and

%(A)R(λ,C)%(B) =
1

(2πi)2

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)

λ− (z + w)
R(z,A)R(w,B) dw dz.

In its stated form, the proposition will be useful in the proof of Theorem
16.3.10. It is clear from the proof that the proposition could be stated with
%(A), %(B), and R(λ,C) replaced by more general operators φ(A), ψ(B), and
f(A) under suitable conditions on the functions φ, ψ, and f . We leave the
details to the interested reader.

Proof. It has already been observed that every λ 6∈ Σmax{νA,νB} belongs to
the resolvent set of C, and by (16.18) (using the notation introduced there)
we have R(λ,C) = λR(λ,A)R(λ,B) + gλ(A,B), where

gλ(z, w) :=
zw

(λ− (z + w))(λ− z)(λ− w)
=

1

(λ− (z + w))
− λ

(λ− z)(λ− w)
.

(16.20)

Inserting this into the Dunford integral
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%(A)R(λ,C)%(B)

=
1

(2πi)2

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)R(z,A)R(λ,C)R(w,B) dw dz,

we see that this results in the sum of three integrals, where (I) corresponds
to the contribution λR(λ,A)R(λ,B), and (II) and (III) correspond to the
splitting of gλ by (16.20). By a simple computation involving Fubini’s theorem
and Cauchy’s theorem, the integrals (I) and (III) cancel, and the integral (II)
equals the one in the statement of the lemma. �

16.3.b Operator-valued H∞-calculus and closed sums

In this section we extend the Dunford calculus of a sectorial operator A to an
operator-valued Dunford calculus and study the question when this calculus
is bounded with respect to the H∞-norm. The idea is to obtain (16.16) from
the boundedness of the operator f(A,B) in terms of the function f(λ,B) =
B(λ + B)−1 in the operator-valued calculus. Loosely speaking, this gives a
way to define an operator “A(A+B)−1” even when A+B fails to be bounded
invertible. With the operator at hand, it is possible to run a rigorous version
of the estimate

‖Ax‖ = ‖A(A+B)−1(A+B)x‖ 6 C‖(A+B)x‖

with C = ‖A(A+B)−1‖. From this one also obtains the estimate

‖Bx‖ 6 ‖(A+B)x‖+ ‖Ax‖ 6 (1 + C)‖(A+B)x‖,

and together these estimates give (16.16), with implied constant 1 + 2C.
In what follows, A always denotes a sectorial operator on a Banach space

X, and we fix ω(A) < σ < π. Let A be a closed sub-algebra of L (X) resolvent
commuting with A, i.e.,

TR(z,A) = R(z,A)T for all T ∈ A and z ∈ %(A).

We then denote by H1(Σσ; A ) the space of all holomorphic functions F :
Σσ → A for which

‖F‖H1(Σσ ;A ) := sup
|ν|<σ

∫
R+

‖F (eiνt)‖ dt

t

is finite. It is easily checked that, which respect to this norm, H1(Σσ; A )
is a Banach space. For functions F ∈ H1(Σσ; A ) we can define a bounded
operator F (A) ∈ A by means of the operator-valued Dunford integral

F (A) =
1

2πi

∫
∂Σν

F (z)R(z,A) dz,
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where ω(A) < ν < σ. The resulting operator is independent of the particular
choice of ν, and it satisfies

‖f(A)‖ 6 Mσ,A

π
‖F‖H1(Σσ ;A ),

where Mσ,A = supλ∈{Σσ ‖λR(λ,A)‖.
As in Proposition 10.2.2, this calculus is multiplicative and satisfies the

following convergence property: if Fn, F ∈ H1(Σσ; A ) are uniformly bounded
and satisfy Fn(z)x→ F (z)x for all z ∈ Σσ and x ∈ X, then for all g ∈ H1(Σσ)
we have

lim
n→∞

(fng)(A)x = (fg)(A)x, x ∈ X.

Denote by H∞(Σσ; A ) the space of all holomorphic functions F : Σσ → A
for which the set {F (z) : z ∈ Σσ} is uniformly bounded. Endowed with the
norm

‖F‖H∞(Σσ ;A ) := sup{‖F (z)‖ : z ∈ Σσ},

this space is easily seen to be Banach space. In the same way one defines
RH∞(Σν ; A ) as the space of all holomorphic functions F : Σν → A for
which the set {F (z) : z ∈ Σν} is R-bounded. Endowed with the norm

‖F‖RH∞(Σσ ;A ) := R({F (z) : z ∈ Σσ})

(the R-bound of {F (z) : z ∈ Σσ}), this space is a Banach space.
The main result of this section is the following theorem.

Theorem 16.3.4. Let A be a sectorial operator on a Banach space X, let
ω(A) < σ < π, and suppose that A has a bounded H∞(Σσ)-calculus. Then
there exists a unique bounded linear mapping F 7→ F (A) from RH∞(Σσ; A )
into L (D(A) ∩ R(A)) with the following properties:

(1) For every function F ∈ RH∞(Σσ; A ) ∩ H1(Σσ; A ) the operator F (A)
coincides with the one defined by the Dunford integral;

(2) For all F,G ∈ RH∞(Σσ; A ) we have FG ∈ RH∞(Σσ; A ) and

(FG)(A) = F (A)G(A) = G(A)F (A);

(3) Whenever the functions Fn, F ∈ RH∞(Σσ; A ) are uniformly bounded and
satisfy Fn → F pointwise on Σσ, then limn→∞ Fn(A)x = F (A)x for all
x ∈ D(A) ∩ R(A).

Furthermore, if X has Pisier’s contraction property and T is an R-bounded
subset of A , then for all 0 < σ < ν < π the family{

F (A) : F ∈ RH∞(Σν ; A ), F (z) ∈ T for all z ∈ Σν
}

is R-bounded.
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Parts (2) and (3) are analogues of the corresponding results in Theorem
10.2.13 and the proofs are similar. The proof of (1), which is the non-trivial
part of the theorem, is based on an extension of Lemma 10.3.13, which states
that if A is a sectorial operator on a Banach space X and F ∈ H1(Σσ; A ) is
given, with ω(A) < σ < π, then for all ω(A) < ν < σ we have

F (A) =
1

2πi

∫
∂Σν

z1/2F (z)φz(A)
dz

z
, (16.21)

where φz(λ) := λ1/2/(z−λ). The proof is identical to that of Lemma 10.3.13;
all one needs to do is to replace H1(Σσ) by H1(Σσ; A ) throughout, and
so is the justification of the well-definedness of the operators φz(A) and the
convergence of integral on the right-hand side of (16.21).

We also need the following strengthening of Lemma 10.3.8:

Lemma 16.3.5. Let A be a sectorial operator on a Banach space X with a
bounded H∞-calculus, and let ωH∞(A) < ν < σ < π. Suppose φ, ψ ∈ H1(Σσ),
and let T ⊆ A be R-bounded. Then for all finite subsets F ⊆ Z, all scalars
|aj | 6 1 and operators Tj ∈ T (j ∈ F ), and all x ∈ D(A) ∩ R(A),

sup
t>0

∥∥∥∑
j∈F

ajTjφ(2jtA)ψ(2jtA)x
∥∥∥ 6 C‖φ‖H1(Σσ)‖ψ‖H1(Σσ)‖x‖,

where C is a constant depending only on ν, σ, and A.

Proof. Let A0 denote the part of A in X0 := D(A) ∩ R(A). This operator is
standard sectorial and has a bounded H∞-calculus, with the same bounds,
and the same holds for its adjoint A∗0. Let (εj)j∈Z be a Rademacher sequence.
For norm one vectors x ∈ X0 and x∗ ∈ X∗0 , and for any fixed t > 0 and finite
subset F ⊆ Z we may estimate∣∣∣〈∑

j∈F
ajTjφ(2jtA)ψ(2jtA)x, x∗

〉∣∣∣
=
∣∣∣∑
j∈F

aj〈Tjψ(2jtA0)x, φ(2jtA∗0)x∗〉
∣∣∣

=
∣∣∣E〈∑

j∈F
εjajTjψ(2jtA0)x,

∑
k∈F

εkφ(2ktA∗0)x∗
〉∣∣∣

6
(
E
∥∥∥∑
j∈F

εjajTjψ(2jtA0)x
∥∥∥2)1/2 (

E
∥∥∥∑
k∈F

εkφ(2ktA∗0)x∗
∥∥∥2)1/2

6 Kσ−ν(M∞ν,A)2R(T )‖φ‖H1(Σσ)‖ψ‖H1(Σσ)‖x‖‖x∗‖

using R-boundedness, the Kahane contraction principle, and Theorem 10.4.4
(and its notation) in the last step. The result now follows by taking the supre-
mum over all x∗ ∈ X∗0 of norm at most 1. �
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Proof of Theorem 16.3.4. Let ω(A) < ν < σ < π and let F be as in (1). As in
the proof of Theorem 10.3.4(3), for x ∈ D(A) ∩ R(A) and F ∈ H1(Σσ; A ) ∩
RH∞(Σσ; A ) we find

F (A)x =
∑
j∈Z

∑
ε=±1

1

2πi
εe−εiν/2

∫ 2

1

F (e−εiν2jt)φe−εiν (t−12−jA)x
dt

t
,

where φz(λ) = λ1/2/(z − λ). Then, with aj(ε) = εe−εiν/2,

‖F (A)x‖ 6 1

π
sup
ε=±1

sup
k>1

sup
t>0

∥∥∥ ∑
|j|6k

aj(ε)F (e−εiν2jt)φe−εiν (t−12−jA)x
∥∥∥.

Now we choose T to be the R-bounded range of F , and we let φ = ψ =
(φe−iν )1/2 if ε = 1 and φ = ψ = (φeiν )1/2 if ε = −1. Applying the lemma
twice, we obtain

‖F (A)x‖ 6 2

π
C max
ε=±1

‖φe−εiν‖H1(Σσ)‖x‖,

where C is the constant of the lemma.
The proofs of multiplicativity and the convergence property proceed as in

Theorem 10.2.13.
Regarding the final assertion, we may adapt the proof of Theorem 10.3.4(3),

replacing the scalar functions fn and f by A -valued functions Fn and F . �

As an application of the operator-valued calculus we prove a useful variant
of the Dore–Venni theorem (Theorem 15.4.11). In that theorem, both A and
B were assumed to have bounded imaginary powers and act in a UMD Ba-
nach space X. In the present theorem, we weaken the assumption on A and
strengthen the assumption on B.

Theorem 16.3.6 (The sum of an R-sectorial operator and an oper-
ator with bounded H∞-calculus). Let A and B be resolvent commuting
densely defined (respectively, standard) sectorial operators on a Banach space
X. Assume that A has a bounded H∞-calculus, B is R-sectorial, and

ωH∞(A) + ωR(B) < π.

Then A+B is a densely defined (respectively, standard) sectorial operator and

ω(A+B) 6 max{ωH∞(A), ωR(B)}.

Moreover, there exists a constant C > 0 such that

‖Ax‖+ ‖Bx‖ 6 C‖(A+B)x‖, x ∈ D(A) ∩ D(B). (16.22)

If X has the triangular contraction property, then A+B is R-sectorial with

ωR(A+B) 6 max{ωR(A), ωH∞(B)}.
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Proof. The idea is to define A(A+B)−1 and B(A+B)−1 as bounded operators
on D(A) ∩ R(A) using the operator-valued functional calculus for A.

Step 1 – We first assume that A and B are standard sectorial. Let A
denote the closed sub-algebra of L (X) comprised of all operators resolvent
commuting with A. Choose ωH∞(A) < σ < π and ωR(B) < τ < π and such
that σ + τ < π. We wish to apply the operator-valued calculus of A to the
function

F (z) := B(z +B)−1 = I − zR(z,−B).

This function belongs to RH∞(Σσ; A ) since the spectrum of −B is contained
in the closure of −Στ = {z ∈ C : | arg(z)| > π − τ} and σ < π − τ . Further-
more, the function

G(z) := ζn(z)2(z +B)ζn(B)2,

with ζn(z) = n
n+z −

1
1+nz as in Proposition 10.2.6, is easily seen to belong to

H1(Σσ; A ) ∩RH∞(Σσ; A ) by R-sectoriality. We have

(FG)(z) = F (z)G(z) = ζn(z)2Bζn(B)2,

and in the operator-valued Dunford calculus the operators G(A) and (FG)(A)
are given by

G(A) = Bζn(B)2ζn(A)2 +Aζn(A)2ζn(B)2,

(FG)(A) = Bζn(B)2ζn(A)2,

using resolvent commutation to do some rewriting. By the multiplicativity of
the operator-valued H∞-calculus of A we have

Bζn(B)2ζn(A)2 = (FG)(A) = F (A)G(A)

= F (A)
(
Bζn(B)2ζn(A)2 +Aζn(A)2ζn(B)2

)
.

The boundedness of the operator-valued H∞-calculus of A then gives, for
x ∈ D(A) ∩ D(B),

‖ζn(A)2ζn(B)2Bx‖ .σ,A
∥∥(ζn(A)2ζn(B)2Bx+ ζn(B)2ζn(A)2Ax

)∥∥
Letting n → ∞ and using A and B are standard sectorial, we obtain the
inequality

‖Bx‖ .σ,A ‖(A+B)x‖.

From this we also obtain

‖Ax‖ 6 ‖Bx‖+ ‖Ax+Bx‖ .σ,A ‖(A+B)x‖.

We have already observed in Proposition 16.3.1 that (16.22) implies the closed-
ness of A+B. The standard sectoriality of A+B now follows from Theorem
16.3.2.
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Step 2 – We now assume that A and B are densely defined, but not nec-
essarily standard sectorial. Then the operators Aε := A+ ε and Bε : +B + ε
are standard sectorial, and we may apply the above reasoning with Fε(z) :=
Bε(z+Bε)

−1 and Gε(z) := ζn(z)2(z+Bε)ζn(Bε)
2. This results in the estimate

‖Aεx‖+ ‖Bεx‖ .σ,A ‖(Aε +Bε)x‖

with an implied constant that is uniform in ε > 0 and independent of x. The
estimate

‖Ax‖+ ‖Bx‖ .σ,A ‖(A+B)x‖

follows from this by letting ε ↓ 0.

Step 3 – Suppose finally that X has the triangular contraction property.
From the proof of Theorem 16.3.2 (and keeping in mind that A + B equals
the operator C of that theorem by what we have already proved) we recall
the identity

λR(λ,A+B)

= λ2R(λ,A)R(λ,B) +
1

(2πi)2

∫
∂Στ

∫
∂Σσ

fλ(z, w)R(z,A)R(w,B) dz dw.

Outside the closure of Σσ+τ the operators λ2R(λ,A)R(λ,B) are R-bounded,
by the R-sectoriality of A (which follows from the second part of Theorem
10.3.4) and B (by assumption). The operators corresponding to the Dunford
integral with fλ are R-bounded by Theorem 8.5.2; the integrability properties
required to apply theorem have already been observed in the proof of Theorem
16.3.2 (see (16.19)). �

Since standard sectorial operators with a bounded H∞-calculus on a Banach
space with the triangular contraction property are R-sectorial with ωR(A) =
ωH∞(A) (see Corollary 10.4.10), we have the following corollary.

Corollary 16.3.7. Let A and B be resolvent commuting densely defined (re-
spectively, standard) sectorial operators with bounded H∞-calculi satisfying
ωH∞(A) + ωH∞(B) < π on a Banach space with the triangular contraction
property. Then A + B is a densely defined (respectively, standard) sectorial
operator and (16.22) holds.

16.3.c The joint H∞-calculus

As a first application of the operator-valued functional calculus we construct
the joint functional calculus of resolvent commuting standard sectorial oper-
ators.

Denote by H1(Σσ1
× · · · × Σσn) the space of holomorphic functions on

Σσ1 × · · · ×Σσn which obey the obvious integrability estimate extending the
case n = 1. For functions f ∈ H1(Σσ1×· · ·×Σσn) we define the joint Dunford
calculus by
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f(A1, . . . , An) =
( 1

2πi

)n ∫
∂Σνn

. . .

∫
∂Σν1

f(λ1, . . . , λn)
n∏
j=1

R(λj , Aj) dλ1 . . . dλn

(16.23)

where ω(Ai) < νi < σi for i = 1, . . . , n.
If n = 2, by Fubini’s theorem we can formally rewrite (16.23) as

f(A1, A2) =
1

2πi

∫
∂Σν1

( 1

2πi

∫
∂Σν2

f(λ1, λ2)R(λ2, A2) dλ2

)
R(λ1, A1) dλ1

=
1

2πi

∫
∂Σν1

f(λ1, A2)R(λ1, A1) dλ1

= Φ1(f(·, A2))(A1),

where Φ1 : g 7→ g(A1) denotes the operator-valued calculus of A1, provided of
course that all terms are well defined. This indicates the way how to extend
(16.23) to H∞(Σσ1 × · · · × Σσn) using induction where each of the operator
Aj has a bounded H∞-calculus. Here, H∞(Σσ1

×· · ·×Σσn) denotes the space
of bounded holomorphic functions on Σσ1

× · · · ×Σσn .
The following straightforward extension of Lemma 10.2.17 will be useful.

As before, by A we denote the set of bounded operators commuting with the
resolvent of A.

Lemma 16.3.8. Let A have a bounded H∞(Σσ)-calculus on X. Suppose that
f : [a, b]×Σσ → A is a measurable function with the following properties:

(i) z 7→ f(s, z) belongs to RH∞(Σσ; A ) for all s ∈ [a, b];

(ii) sup
|ν|<σ

∫ b

a

∫ ∞
0

‖f(s, eiνt)‖ dt

t
ds <∞.

Then the function g(z) =
∫ b
a
f(s, z) ds belongs to H∞(Σσ; A ) and

g(A)x =

∫ b

a

f(s,A)x ds, x ∈ X.

The straightforward proof is left to the reader.
We will now apply the operator-valued calculus to the sum-of-operators

problem next.

Theorem 16.3.9. Let A1, . . . , An be densely defined resolvent commuting sec-
torial operators on a Banach space X with the Pisier contraction princi-
ple, and assume that Aj has a bounded H∞(Σσj )-calculus, j = 1, . . . , n.
Then for σj < νj < π, (16.23) extends to an algebra homomorphism

Φ : H∞(Σν1 × · · · ×Σνn)→ L (D(A) ∩ R(A)) with the following convergence
property:
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If the functions fm, f are uniformly bounded in H∞(Σν1 × · · · ×
Σνn) and limm→∞ fm = f pointwise on Σν1 × · · · × Σνn , then
limm→∞ Φ(fm)x = Φ(f)x for all x ∈ D(A) ∩ R(A).

Moreover, the set of operators{
Φ(f) : f ∈ H∞(Σσ1 × · · · ×Σσn), ‖f‖∞ 6 1

}
is R-bounded.

Notation. In place of Φ(f) we shall write f(A1, . . . , An).

Proof. By Aj we denote the sub-algebra of all operators in L (X) that com-
mute with Aj and put A := A1 ∩ · · · ∩ An. Note that R(λ,Aj) ∈ A for
all j = 1, . . . , n. The case n = 1 follows from the general properties of the
H∞-calculus. Assume now that A2, . . . , An have a joint functional calculus
Ψ : H∞(Σσ2 × · · ·×Σσn)→ L (X) with the required properties. Since X has
Pisier’s contraction property, the set

T =
{
g(A2, . . . , An) : g ∈ H∞(Σσ2

× · · · ×Σσn), ‖g‖H∞ 6 1
}

is an R-bounded subset of A ⊆ A1 by Theorem 10.3.4(3). By Φ1 we denote
the operator-valued functional calculus of A1 defined on RH∞(Σσ1

; A1) as
constructed in Theorem 16.3.4.

Given a function f ∈ H1(Σσ1
× · · · × Σσn) ∩H∞(Σσ1

× · · · × Σσn) with
‖f‖H∞ 6 1, the set

{f(λ1, ·, . . . , ·) : λ1 ∈ Σσ1}

is uniformly bounded in H∞(Σσ2
× · · · ×Σσn). Hence

Ψ
[
f(λ1, ·, . . . , ·)

]
= f(λ1, A2, . . . , An) ∈ T for all λ1 ∈ Σσ1 .

Furthermore, the function

λ1 7→ f(λ1, A2, . . . , An)

=
( 1

2πi

)n−1
∫
∂Σν2

. . .

∫
∂Σνn

n∏
j=2

f(λ1, . . . , λn)R(λj , Aj) dλ2 . . . dλn

is holomorphic on Σσ1
. Again by Theorem 10.3.4(3), f(·, A2, . . . , An) ∈

RH∞(Σσ1 ; A1). Consequently we can define

Φ(f) = Φ1

(
f(·, A2, . . . , An)

)
using Theorem 16.3.13. We can extend this definition to arbitrary f ∈
H∞(Σσ1

×· · ·×Σσn). The required properties of Φ now follow from the corre-
sponding properties of Ψ and Φ1. For instance, Φ extends (16.23) by Fubini’s
theorem. To check the multiplicativity, choose f, g ∈ H∞(Σσ1 × · · · × Σσn).
Then
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Φ(f · g) = Φ1

(
(f · g)(·, A2, . . . , An)

)
= Φ1

(
f(·, A2, . . . , An) · g(·, A2, . . . , An)

)
= Φ1

(
f(·, A2, . . . , An)

)
Φ1

(
g(·, A2, . . . , An)

)
= Φ(f)Φ(g).

Also, if fm, f are bounded in H∞(Σσ1 × · · · ×Σσn) and fm → f pointwise as
m→∞, then by the convergence property of the operator-valued calculus of
A1 we have

lim
m→∞

fm(λ1, A2, . . . , An)x = f(λ1, A2, . . . , An)x

for every fixed λ1 ∈ Σσ1
and all x ∈ X. Now apply the convergence property

of Φ1 to Fm(λ) = fm(λ,A2, . . . , An) and F (λ) = f(λ,A2, . . . , An).
The final R-boundedness assertion follows directly from the final assertion

of Theorem 16.3.4. �

As an application we have the following variant of Corollary 16.3.7. This is
result is actually true for Banach space X with the triangular contraction
property; we refer to the Notes for a discussion of this fact.

Theorem 16.3.10. Let A and B be resolvent commuting standard sectorial
operators with bounded H∞-calculi satisfying ωH∞(A) + ωH∞(B) < π on a
Banach space X with Pisier’s contraction property. Then A + B admits a
bounded H∞-calculus with

ωH∞(A,B) 6 max{ωH∞(A), ωH∞(B)}.

For the proof we need a technical proposition. For the sake of its formulation,
the joint Dunford calculus of two resolvent commuting sectorial operators A
and B will be denoted by ΦA,B : f 7→ f(A,B), for functions f ∈ H1(Σσ) ×
H1(Στ ). Likewise, the operator-valued Dunford calculus of A will be denoted
by ΦA : F 7→ F (A), for operator-valued functions F ∈ H1(Σσ; A ) where A
is set of operators resolvent commuting with A.

Proposition 16.3.11. Let A and B be resolvent commuting sectorial op-
erators acting in a Banach space X satisfying ω(A) + ω(B) < π, and let
max{ω(A), ω(B)} < σ < π. Let C denote the operator sum of A and B as
constructed above. Then for all f ∈ H1(Σσ) we have

%(A)f(C)%(B) = ΦA,B((z, w) 7→ %(z)f(z + w)%(w))

= ΦA(z 7→ %(z)f(z +B)%(B)),

where %(z) = z/(1 + z)2.

Proof. By the definition of the joint Dunford calculus,

ΦA,B((z, w) 7→ %(z)(λ− (z + w))%(w))
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=
1

(2πi)2

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)

λ− (z + w)
R(z,A)R(w,B) dw dz.

On the other hand, by Proposition 16.3.3 and Cauchy’s theorem,

%(A)f(C)%(B)

=
1

2πi

∫
∂Σν

f(λ)%(A)R(λ,C)%(B) dλ

=
1

(2πi)3

∫
∂Σν

f(λ)

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)

λ− (z + w)
R(z,A)R(w,B) dw dz dλ

=
1

(2πi)2

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)

×
( 1

2πi

∫
∂Σν

f(λ)

λ− (z + w)
dλ
)
R(z,A)R(w,B) dw dz

=
1

(2πi)2

∫
∂ΣνA

∫
∂ΣνB

%(z)%(w)f(z + w)R(z,A)R(w,B) dw dz

which equals

= ΦA,B((z, w) 7→ %(z)f(z + w)%(w))

but also

=
1

2πi

∫
∂ΣνA

%(z)
( 1

2πi

∫
∂ΣνB

%(w)f(z + w)R(w,B) dw
)
R(z,A) dz

= ΦA(z 7→ %(z)f(z +B)%(B)).

�

Proof of Theorem 16.3.10. Since X has Pisier’s contraction property, A and
B admit R-bounded operator-valued H∞-calculi by Theorem 10.3.4. Choose
ω(A) < σA < π and ω(B) < σB < π such that σA + σB < π, and let
max{σA, σB} < σ < π. For f ∈ H∞(Σσ), the function

F (z, w) := f(z + w)

belongs to H∞(ΣσA) ×H∞(ΣσB ). Since B has an R-bounded H∞-calculus,
the set {F (z,B) : z ∈ ΣσA} is an R-bounded subset of the set A of bounded
operators resolvent commuting with A. Applying the operator-valued calculus
of A we obtain a bounded operator F (A,B) on D(A) ∩ R(A). By Proposition
16.3.11,

%(A)f(A+B)%(B) = %(A)F (A,B)%(B),

where %(z) = z/(1 + z)2. Since %(A) is injective and %(B) has dense range (we
assumed that A and B are standard sectorial), we conclude that f(A+B) =
F (A,B) is a bounded operator on D(A) ∩ R(A). The bound ‖f(A,B)‖ .
‖f‖H∞(Σσ) follows by tracing the steps of the proof. �
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Inspection of the proof shows that the ‘standard’ assumption on A may be
weakened to ‘densely defined and injective’. In reflexive spaces, however, these
conditions imply standardness (see Proposition 10.1.9).

16.3.d The absolute calculus and closed sums

The main result of this section (Theorem 16.3.13) provides a version of The-
orem 16.3.6 in which no assumption on the Banach space is needed, the as-
sumption on a A is weakened to sectoriality, and the assumption on B is
strengthened to having an absolute calculus.

Definition 16.3.12 (Absolute functional calculus). Let A be a sectorial
operator acting in a Banach space X, and let ω(A) < σ < π. We say that A
admits an absolute calculus on Σσ if there exist a constant M > 0 and g, h ∈
H1(Σσ)∩H∞(Σσ), with ‖h‖H1(Σσ) = 1, such that for all x, y ∈ D(A) ∩ R(A)
the validity of the estimate

‖h(tA)g(tA)x‖ 6 ‖g(tA)y‖ for all t > 0

implies ‖x‖ 6M‖y‖.

We denote

ωabs(A) := inf
{
σ ∈ (0, π) : A admits an absolute calculus on Σσ

}
.

Examples of classes of operators with an absolute calculus will be given in the
next subsection.

Theorem 16.3.13 (Absolute calculus implies operator-valued H∞-
calculus). Let A be a sectorial operator in a Banach space X, let ω(A) <
σ < π, and suppose that A admits an absolute calculus on Σσ. Then A ad-
mits a bounded operator-valued H∞(Σσ)-calculus. In particular, A admits a
bounded H∞(Σσ)-calculus.

Proof. Let g, h be as in Definition 16.3.12, and let F ∈ H1(Σσ; A ) ∩
H∞(Σσ; A ). Choose ω(A) < ν < σ. For z ∈ D(A) ∩ R(A) we estimate

‖h(tA)F (A)z‖ 6 1

2π

∫
∂Σν

|h(tλ)F (λ)|‖R(λ,A)z‖ |dλ|

6
Mν,A

2π
‖F‖∞

∫
∂Σν

|h(tλ)| |dλ|
|λ|
‖z‖

6
Mν,A

π
‖F‖∞‖z‖,

where Mν,A = supλ∈{Σν ‖λR(λ,A)‖ is finite by sectoriality. Now, given y ∈
D(A) ∩ R(A), we let x := F (A)y, note that x ∈ D(A) ∩ R(A), and apply the
estimate with z := g(tA)y to obtain
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‖h(tA)g(tA)x‖ 6 Mν,A

π
‖F‖∞‖‖g(tA)y‖.

By the absolute calculus, this implies

‖F (A)y‖ =
Mν,A

π
‖x‖ 6MMν,A

π
‖F‖∞‖y‖.

By the same argument as in the proof of Theorem 10.2.13, this proves the
first assertion.

The second assertion follows by taking F (λ) = f(λ)IX . �

Theorem 16.3.14 (Closedness from the absolute calculus). Let A and
B be resolvent commuting densely defined sectorial operators. If A has an
absolute calculus on Σσ and σ + ω(B) < π, then the operator A + B with
domain D(A+B) = D(A) ∩ D(B) is closed and

‖Ax‖+ ‖Bx‖ 6 C(A+B)x‖, x ∈ D(A) ∩ R(A).

Proof. By Theorem 16.3.13, A admits a bounded operator-valued H∞(Σσ)-
calculus. Since B is τ -sectorial, the family f(z,B) = −zR(−z,B), z ∈ Σπ−τ ,
is uniformly bounded and commutes with the resolvent of A. Now Theorem
16.3.13 implies that f(A,B) is well defined in the operator-valued calculus as
a bounded operator on X. The reverse Hölder inequality

‖Ax‖+ ‖Bx‖ 6 C‖(A+B)x‖, x ∈ D(A) ∩ D(B),

is obtained by same argument as in Theorem 16.3.6. It was already observed
that the closedness of A+B follows from it. �

We will prove in the next section (see Theorem 16.3.18) that a standard
sectorial operator on a Hilbert space has an absolute calculus if and only if it
has a bounded imaginary powers. Taking this for granted for now, as a special
case of Theorem 16.3.14 we recover the following classical result.

Theorem 16.3.15 (Da Prato–Grisvard). Let A and B be resolvent com-
muting sectorial operators in a Hilbert space H. If A has bounded imaginary
powers, B is densely defined, and ωBIP(A) + ω(B) < π, then the operator
A+B with domain D(A+B) = D(A) ∩ D(B) is closed and we have

‖Ax‖+ ‖Bx‖ 6 C‖(A+B)x‖, x ∈ D(A) ∩ D(B),

with C a constant independent of x.

Comparing this result with the Dore–Venni theorem, where both A and B are
assumed to have bounded imaginary powers, we observe that here, bounded-
ness of the imaginary powers is imposed only on A.
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16.3.e The absolute calculus and real interpolation

In this subsection and the next, we show connect the absolute calculus with
the theory of real interpolation. The crucial observation is contained in the
following theorem.

Theorem 16.3.16 (Lp-bounds imply absolute calculus). Let A be a sec-
torial operator in a Banach space X and let ω(A) < σ < π. Let 1 6 p 6 ∞,
and suppose that there exist φ ∈ H1(Σσ) ∩H∞(Σσ) such that

‖x‖φ,p :=
∥∥t 7→ φ(tA)x

∥∥
Lp(R+,

dt
t ;X)

, x ∈ D(A) ∩ R(A),

induces an equivalent norm on D(A) ∩ R(A), the finiteness of the norms on
the right-hand side being part of the assumptions. Then A has an absolute
calculus on Σσ.

The proof depends on the following lemma.

Lemma 16.3.17. Let A be a sectorial operator acting in X and let ω(A) <
σ < π. If for some p ∈ [1,∞] and some ψ ∈ H1(Σσ) ∩H∞(Σσ) one has t 7→
ψ(tA)x ∈ Lp(R+,

dt
t ;X) for all x ∈ D(A) ∩ R(A), then for all φ ∈ H1(Σσ) ∩

H∞(Σσ) one has t 7→ φ(tA)x ∈ Lp(R+,
dt
t ;X) for all x ∈ D(A) ∩ R(A) and

we have the equivalence of norms∥∥φ(·A)x
∥∥
Lp(R+,

dt
t ;X)

hφ,ψ,σ,A
∥∥ψ(·A)x

∥∥
Lp(R+,

dt
t ;X)

with implied constants independent of x.

Proof. Let ψ ∈ H1(Σσ) ∩ H∞(Σσ) have the properties as stated, and let
φ ∈ H1(Σσ) ∩H∞(Σσ) be arbitrary and fixed. Choose an auxiliary function
g ∈ H1(Σσ) such that ∫ ∞

0

g(t)ψ(t)
dt

t
= 1.

First we let x ∈ D(A) ∩ R(A). By the Calderón reproducing formula
(Proposition 10.2.5) and the multiplicativity of the Dunford calculus,∫ ∞

0

g(tA)ψ(tA)x
dt

t
= x (16.24)

with improper convergence of the left-hand side integral. Fix ω(A) < ν < σ.
For all s > 0 and 0 < r < R <∞, by Fubini’s theorem and multiplicativity

we have∫ R

r

φ(sA)g(tA)ψ(tA)x
dt

t
=

∫ R

r

( 1

2πi

∫
∂Σν

φ(sλ)g(tλ)R(λ,A) dλ
)
ψ(tA)x

dt

t

=
1

2πi

∫
∂Σν

φ(sλ)
(∫ R

r

g(tλ)R(λ,A)ψ(tA)x
dt

t

)
dλ.

(16.25)
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By (16.24) (with x replaced by φ(sA)x), upon passing to the limits r ↓ 0 and
R→∞ in (16.25) (using dominated convergence to deal with the right-hand
side) we obtain

φ(sA)x =

∫ ∞
0

φ(sA)g(tA)ψ(tA)x
dt

t

=

∫ ∞
0

( 1

2πi

∫
∂Σν

φ(sλ)g(tλ)R(λ,A) dλ
)
ψ(tA)x

dt

t

=
1

2πi

∫
∂Σν

φ(sλ)G(λ)x dλ

with

G(λ) :=

∫ ∞
0

g(tλ)R(λ,A)ψ(tA)
dt

t
.

Applying Young’s inequality for L1(R+,
dt
t ) twice (after parametrising ∂Σν

and substituting s 7→ s−1), we obtain that φ(·A)x ∈ Lp(R+,
dt
t ;X) and

∥∥φ(·A)x
∥∥
Lp(R+,

dt
t ;X)

6
Mν,A

π
‖φ‖H1(Σσ)‖g‖H1(Σσ)

∥∥ψ(·A)x
∥∥
Lp(R+,

dt
t ;X)

.

Now that we know that t 7→ φ(tA)x belongs to Lp(R+,
dt
t ;X), the opposite

norm estimate is obtained by reversing the roles of φ and ψ. This proves the
theorem for x ∈ D(A) ∩ R(A).

For x ∈ D(A) ∩ R(A) the result follows by approximation, noting that
ψ(tA)x‖Lp(R+,

dt
t ;X) 6 C‖x by a closed graph argument. �

Proof of Theorem 16.3.16. Fix functions g, h ∈ H1(Σσ) ∩ H∞(Σσ), with
‖h‖H1(Σσ) = 1 for some ω(A) < ν < σ, and assume that x, y ∈ D(A) ∩ R(A)
satisfy

‖h(tA)g(tA)x‖ 6 ‖g(tA)y‖, t > 0.

Let 1 6 p 6 ∞ and f ∈ Lp(R+; dt
t ;X) be as in the assumptions in the

theorem. Then, by Lemma 16.3.17, applied to φ = g and ψ = g · h, the
functions t 7→ g(tA)x, t 7→ h(tA)g(tA)x = (hg)(tA)x, and t 7→ g(tA)y belong
to Lp(R, dt

t ;X) and

‖x‖ h
∥∥f(·A)x

∥∥
Lp(R+,

dt
t ;X)

h
∥∥h(·A)g(·A)x

∥∥
Lp(R+,

dt
t ;X)

6
∥∥g(·A)y

∥∥
Lp(R+,

dt
t ;X)

h
∥∥f(·A)y

∥∥
Lp(R+,

dt
t ;X)

h ‖y‖

with implied constants independent of x and y. Hence, g and h satisfy the
condition in the definition of the absolute calculus. �

An immediate application if the following characterisation of the absolute
calculus in Hilbert spaces.
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Theorem 16.3.18 (Hilbert space case). For a standard sectorial operator
A acting in a Hilbert space H, the following assertions are equivalent:

(1) A has a bounded H∞-calculus;
(2) A has an absolute calculus;
(3) A has bounded imaginary powers.

In this situation we have

ωH∞(A) = ωabs(A) = ωBIP(A).

Further equivalences are obtained in Theorems 10.4.21 (square function es-
timates) and 10.4.22 (generation of a contraction semigroup with respect to
some equivalent Hilbertian norm).

Proof. The implication (2)⇒(1) has already been proved in Theorem 16.3.13.
The implication (1)⇒(2) follows from the same theorem, because the bound-
edness of the H∞-calculus of a sectorial operator on H implies the square
function bounds

‖x‖H h ‖t 7→ g(tA)x‖γ(L2(R+,
dt
t ),H) =

(∫ ∞
0

‖g(tA)x‖2 dt

t

)1/2

by Theorem 10.4.16 and Proposition 9.2.9.
For standard sectorial operators A, the equivalence (1)⇔(3) is contained

in Theorem 15.3.23. �

The main result of this section is Theorem 16.3.20 which asserts that invertible
sectorial operators have a bounded H∞-calculus on the real interpolation
spaces (X,D(A))θ,p. We begin with a general result which describes these
interpolation spaces in terms of the Dunford calculus of A.

Theorem 16.3.19 (Real interpolation spaces between X and D(A)).
Let 0 < θ < 1 and p ∈ [1,∞], and let A be a sectorial operator on X. Let
ω(A) < σ < π and suppose that 0 6= φ ∈ H1(Σσ) ∩H∞(Σσ) is such that the
function z 7→ z−1φ(z) belongs to H1(Σσ) ∩H∞(Σσ) as well. Then

(X,D(A))θ,p =
{
x ∈ X : t 7→ t−θφ(tA)x ∈ Lp(R+,

dt
t ;X)

}
with equivalence of norms

‖x‖(X,D(A))θ,p h ‖x‖+
∥∥t 7→ t−θφ(tA)x

∥∥
Lp(R+,

dt
t ;X)

,

where the implied constants only depend on σ, A, and φ. If 0 ∈ %(A), we also
have equivalence of homogeneous norms

‖x‖(X,D(A))θ,p h
∥∥t 7→ t−θφ(tA)x

∥∥
Lp(R+,

dt
t ;X)

.
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The theorem should be compared with the first part of Proposition K.4.1,
which asserts that If A is a sectorial operator in X, then

(X,D(A))θ,p =
{
x ∈ X : λ 7→ λθ‖GR(λ,G)x‖ ∈ Lp(R+,

dλ
λ )
}

with equivalence of norms

‖x‖(X,D(G))θ,p h ‖x‖+
∥∥∥λ 7→ λθ‖G(λ+G)−1x‖

∥∥∥
Lp(R+,

dλ
λ )
.

In the E(Σσ)-calculus of A we have G(λ+G)−1 = φ(λ−1G) with φ(z) = z/(z+
1). The case treated in Theorem L.2.4 corresponds to the choice φ(z) = ze−z.

Proof. ‘⊆’: For t > 0 and x = x0 + x1 with x0 ∈ X and x1 ∈ D(A), write

φ(tA)x = φ(tA)x0 + φ(tA)x1

and note that φ(tA)x1 ∈ D(A) with Aφ(tA)x1 = φ(tA)Ax1. Furthermore
write φ0(z) := φ(z) and φ1(z) := z−1φ(z). Then

‖φ(tA)x‖ 6 ‖φ(tA)x‖+ t‖(tA)−1φ(tA)Ax‖
= ‖φ0(tA)x‖+ t‖φ1(tA)Ax‖
6 Cσ,A

(
‖φ0‖H1(Σσ)‖x‖+ t‖φ1‖H1(Σσ)‖x‖D(A)

)
,

where Cσ,A is a constant only depending on σ and A. Taking the infimum
over all such decompositions, we obtain

‖φ(tA)x‖ 6 Cσ,A max{‖φ0‖H1(Σσ), ‖φ1‖H1(Σσ)}K(t, x;X,D(A)).

It follows that if x ∈ (X,D(A))θ,p, then t 7→ t−θφ(t, A)x ∈ Lp(R+,
dt
t ;X) and

‖t 7→ t−θφ(t, A)x‖Lp(R+,
dt
t ;X)

6 Cσ,A max{‖φ0‖H1(Σσ), ‖φ1‖H1(Σσ)}‖x‖(X,D(A))θ,p .

‘⊇’: Let x ∈ X be such that t 7→ t−θφ(tA)x belongs to Lp(R+,
dt
t ;X).

Choose f ∈ H1(Σσ) ∩ H∞(Σσ) in such a way that f1(z) := zf(z) belongs
to H1(Σσ) and the normalisation condition

∫∞
0
f(s)φ(s) ds

s = 1 is satisfied.
Noting that fφ ∈ H1(Σσ), for z ∈ Σσ we define

h(z) :=

∫ 1

0

f(sz)φ(sz)
ds

s
, g(z) :=

∫ ∞
1

f(sz)φ(sz)
ds

s
.

By substitution, g(z) + h(z) = 1 for all z ∈ Σσ.
The assumption t−θφ(tA)x ∈ Lp(R+,

dt
t ;X) implies that t−θ(fφ)(tA)x ∈

Lp(R+,
dt
t ;X) since ‖(fφ)(tA)x‖ = ‖f(tA)φ(tA)x‖ .σ,A ‖f‖H1(Σσ)‖φ(tA)x‖

by multiplicativity. Hölder’s inequality therefore implies that (fφ)(tA)x ∈
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Lp((0, 1), dt
t ;X) for every t > 0. Hence, as in the proof of Proposition 10.2.5

we have

h(tA)x =

∫ 1

0

(fφ)(stA)
ds

s
. (16.26)

Next, noting the identities

zg(z) =

∫ ∞
1

zf(sz)φ(sz)
ds

s
=

∫ ∞
1

s−1f1(sz)φ(sz)
ds

s
,

reasoning similarly as for h we have g(A)x ∈ D(A) and, for t > 0,

Ag(tA)x =

∫ ∞
1

(st)−1(f1φ)(stA)x
ds

s
=

∫ ∞
t

s−1(f1φ)(sA)x
ds

s
.

Accordingly, for the decomposition x = h(tA)x + g(tA)x ∈ X + D(A) we
obtain

K(t, x;X,D(A)) 6 ‖h(tA)x‖+ t‖g(tA)‖D(A)

= ‖h(tA)x‖+ t‖g(tA)x‖+ t‖Ag(tA)x‖

6 ‖h(tA)x‖+ t‖g(tA)x‖+ t
∥∥∥ ∫ ∞

t

s−1(f1φ)(sA)x
ds

s

∥∥∥.
(16.27)

We have t‖g(tA)x‖ .σ,A,φ t‖g‖H1(σσ)‖x‖. Trivially, we also have

K(t, x;X,D(A)) 6 ‖x‖,

By taking the minimum of these estimates, it follows that

K(t, x;X,D(A)) .σ,A,φ ‖h(tA)x‖+ min{1, t}‖x‖+ t
∥∥∥ ∫ ∞

t

s−1(f1φ)(sA)x
ds

s

∥∥∥
=: (I) + (II) + (III).

We will estimate (t−θ×) (I), (II), (III) separately.
For term (II) it is immediately clear that t−θ min{1, t}‖x‖ belongs to

Lp(R+,
dt
t ).

By (16.26) we may estimate term (I) by

‖h(tA)x‖ =
∥∥∥ ∫ 1

0

(fφ)(stA)
ds

s

∥∥∥ 6 ∫ t

0

‖(fφ)(sA)x‖ ds

s
=: σx(t).

We can now apply the first part of Hardy’s inequality (Lemma L.3.2) to obtain
that t 7→ t−θσx(t) ∈ Lp(R+,

dt
t ;X) and

‖t 7→ t−θσx(t)‖Lp(R+,
dt
t ;X) .σ,A

1

θ
‖t 7→ t−θ(fφ)(tA)x‖Lp(R+,

dt
t ;X)
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.σ,A
1

θ
‖f‖H1(Σσ)‖t 7→ t−θφ(tA)x‖Lp(R+,

dt
t ;X).

To estimate term (III), we note that

t
∥∥∥ ∫ ∞

t

s−1(f1φ)(sA)x
ds

s

∥∥∥ 6 ‖f1‖H1(Σσ)

∫ ∞
t

‖φ(sA)x‖ ds

s

by multiplicativity and since s > t on the domain of integration, Therefore,
by the second part of Lemma L.3.2,∥∥∥t 7→ t−θ

∫ ∞
t

ts−1(f1φ)(sA)x
ds

s

∥∥∥
Lp(R+,

dt
t ;X)

.σ,A
1

θ
‖f1‖H1(Σσ)‖t 7→ t−θφ(tA)x‖Lp(R+,

dt
t ;X).

Combining things, we have shown that t−θK(t, x;X,D(A)) belongs to
Lp(R+,

dt
t ) and

‖t−θK(t, x;X,D(A))‖Lp(R+,
dt
t ) .σ,A ‖x‖+ ‖t−θφ(tA)x‖L1(R+,

dt
t ;X).

This is the same as saying that x ∈ (X,D(A))θ,p and

‖x‖(X,D(A))θ,p .σ,A ‖cx‖+ ‖t−θφ(tA)x‖L1(R+,
dt
t ;X).

Finally, if 0 ∈ %(A) we may endow D(A) with the equivalent norm
x 7→ ‖Ax‖. In doing so, the term (II) disappears and the first equivalence
of homogeneous norms is obtained.

Suppose next that A is invertible, in (16.27) we can estimate

‖g(tA)x‖ 6 ‖A−1‖‖g(tA)Ax‖

and therefore the second term can be estimated in the same way at the third
term appearing in the second line of (16.27). �

Theorem 16.3.20 (Absolute calculus on real interpolation spaces).
Let A be a densely defined sectorial operator with 0 ∈ %(A). Then for all

1 6 p 6 ∞ and 0 < θ < 1, the part Aθ,p of A in the real interpolation space
(X,D(A))θ,p has an absolute calculus.

The proof of this theorem depends on the following lemma.

Lemma 16.3.21. Under the assumptions of the theorem, for every α < 1− θ
the norm

‖x‖α =
(∫ ∞

0

(
t−θζα(tA)x‖

)p dt

t

)1/p

with ζα(z) =
zα

(1 + z)2α
, (16.28)

is an equivalent norm on (X,D(A))θ,p.
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Proof. This is an immediate consequence of Theorem 16.3.20, as the condition
α > 1− θ ensures that the conditions of the theorem hold for ζα. �

Proof of Theorem 16.3.20. We write Y := (X,D(A))θ,p for brevity.

Step 1 – We begin by preparing two helpful estimates.
First, for all s, t > 0 we have

‖ζα(sA)ζα(tA)‖ 6 CA
(

min
{s
t
,
t

s

})α
. (16.29)

Indeed, by multiplicativity of the E(Σσ)-functional calculus and the identity

T : = (tA)α(1 + tA)−2α(sA)α(1 + sA)−2α

=
(s
t

)α(
A2α(t−1 +A)−2α

)(
(s−1)2α(s−1 +A)−2α

)
we obtain

‖T‖ 6
(s
t

)α
sup
t>0
‖A(t−1 +A)−1‖2α · sup

s>0
‖s−1(s−1 +A)−1‖2α 6 CA

(s
t

)α
.

Since the same estimate holds with s and t interchanged, this gives (16.29).
Second, for all s > 0, t ∈ [s, 2s], and x ∈ X we have

‖ζα(sA)x‖ = ‖ζα((s− t/2)A)ζ((t/2)A)x‖ 6 C‖ζα((t/2)A)x‖, (16.30)

where C = supr>0 ‖ζα(rA)‖ is finite by (10.9).

Step 2 – Now we turn to the actual proof of the theorem.
With the notation introduced above, we take g := ζ2α and h := ζδ, where

α ∈ N satisfies α > 1− θ and δ > 0. For x, y ∈ Y assume that

‖h(tA)g(tA)x‖Y 6 ‖g(tA)y‖Y , t > 0. (16.31)

Then for all s > 0,

‖ζ3α(sA)x‖ .
(
sθp
∫ 2s

s

t−θp
dt

t

)
‖ζ3α+δ(sA)x‖p

. sθp
∫ 2s

s

t−θp‖ζα((t/2)A)ζ2α+δ(sA)x‖p dt

t
(by (16.30))

= (2s)θp
∫ 4s

2s

t−θp‖ζα(tA)ζ2α+δ(sA)x‖p dt

t

. (2s)θp‖ζ2α+δ(sA)x‖pY (by (16.28))

= (2s)θp‖h(sA)g(sA)x‖pY
6 (2s)θp‖g(sA)y‖pY (by (16.31))

. (2s)θp
∫ ∞

0

t−θp‖ζα(tA)ζα(sA)ζα(sA)y‖p dt

t
(by (16.28))
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. ‖ζα(sA)y‖p
(

(2s)θp
∫ s

0

(
t−θp

( t
s

)αp dt

t

+ (2s)θp
∫ ∞
s

t−θp
(s
t

)αp dt

t

)
(by (16.29))

.θ,p ‖ζα(sA)y‖p

with implied constants depending on A, σ, θ, p, and α. Integrating the left-
and right-hand sides in this estimate with respect to s−θp ds

s and using (16.28)
twice, we see that ‖x‖Y . ‖y‖Y with implied constant independent of x and
y. This proves that Aθ,p has an absolute calculus on Y . �

Corollary 16.3.22 (Dore). If A is a densely defined sectorial operator on
X, with 0 ∈ %(A), then for all 1 6 p 6 ∞ and 0 < θ < 1, the part Aθ,p of A
in the real interpolation space (X,D(A))θ,p has a bounded H∞-calculus.

The invertibility assumption cannot be dropped in the corollary, and hence in
the theorem. Indeed, let A be a bounded sectorial operator without a bounded
H∞-calculus (such operators exist, even on a separable Hilbert space, by
Corollary 10.2.29). Then D(A) = X and therefore (X,D(A))θ,p = X for all
0 < θ < 1 and p ∈ [1,∞]. By assumption, A doesn’t have a bounded H∞-
calculus on this space.

16.4 Notes

Section 16.1

The problem of defining the sum of two unbounded operators A and B can
be approached from various angles. Besides the direct approach of defining
A+B as (the closure of) the operator given on D(A) ∩D(B) by (A+B)x =
Ax + Bx, which works well if A and B have commuting resolvents, various
other approaches can be taken. When A and B generate uniformly bounded
C0-semigroups S and T respectively, conditions can be formulated in order
that the limit in the Trotter product formula

V (t)x := lim
n→∞

(S(t/n)T (t/n))nx

exist for all x ∈ X, and defines a C0-semigroup whose generator C is the
closure of the operator A+B initially defined on D(A)∩D(B) by (A+B)x =
Ax+Bx Engel and Nagel [2000]; resolvent commutation is not needed in these
results. A different approach is the form method, suitable when A and B are
defined on a Hilbert space with inner product (·|·). This method in provides
conditions under which the (closure of the) sum c := a + b of the sesquilinear
forms

a(x, y) := (Ax|y), b(x, y) = (Bx|y)
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is associated with a closed operator C satisfying

c(x, y) = (Cx|y).

Like always, subtle domain questions have to be taken care of. A detailed treat-
ment is given in Kato [1995]; for a gentle introduction see, e.g., Van Neerven
[2022].

Section 16.2

In this section some classical perturbation theorems for sectorial operators
are extended to R-sectorial operators. Theorem 16.2.4 on relatively bounded
perturbations of R-sectorial operators is basically from Kunstmann and Weis
[2001], with some improvements of constants. More sophisticated perturbation
results using real interpolation are contained in Haak, Haase, and Kunstmann
[2006].

Proposition 16.2.6 on perturbations of the H∞ by multiples of the identity
and the main theorem of this section, Theorem 16.2.8 on relatively bounded
perturbations of the H∞-calculus, are from Kalton, Kunstmann, and Weis
[2006]. This paper contains a number of variants of the relative bounded-
ness conditions, some of them modelled after form perturbations. Part (iii) of
Theorem 16.2.8 was proved independently by Denk, Dore, Hieber, Prüss, and
Venni [2004]. The perturbation theorem 16.2.7 for lower order perturbations
of the H∞-calculus is due to Amann, Hieber, and Simonett [1994].

Example 16.2.10 is due to McIntosh and Yagi [1990]; a proof of the fact that
the norm of a Toeplitz matrix with bounded real-valued generating function
f is bounded by ‖f‖L∞(T) can be found in Garoni and Serra-Capizzano [2017,
Theorem 6.1]. A further example can be found in Kalton [2007]; see also the
review paper Batty [2009].

The philosophy behind some of these perturbation theorems is that the
boundedness of the H∞-calculus is encoded in the fractional domain spaces of
the operator in the following sense (see Kalton, Kunstmann, and Weis [2006]):
If A and B are two standard sectorial operators on a reflexive Banach space
X, and if for some 0 < α1 < α2 <

3
2 and j = {0, 1} we have

D(Aαj ) = D(Bαj ) and ‖Aαjx‖ h ‖Bαjx‖ (16.32)

for all x in this common domain, then if one of the operators has a bounded
H∞-calculus, then so does the other. Notice that there are no smallness as-
sumptions here.

The basic idea of the proofs of Theorem 16.2.8, the comparison theorem
just quoted, and their variants is to use the relative bounded or the equivalence
of norms of (16.32) to show the equivalence of the discrete square function
norms

x 7→
∥∥∥∑
j∈Z

εjφ(2jA)x
∥∥∥
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with the corresponding ones for B. Here, φ is usually of the form φ(z) =
zα(1 + z)n with α < n. The two conditions (ii) and (iii) of Theorem 16.2.8
and (16.32) correspond to the two sides of the square function estimate.

In Kalton, Kunstmann, and Weis [2006] it is also explained how to use
these perturbation theorems to establish the boundedness of the H∞-calculus
for rather general classes of elliptic operators on Hs,p(Rd) or Hs,p(D) for
smooth domains D ⊆ Rd with Lopatinskii–Shapiro boundary conditions. The
idea is to compare them to constant coefficients. A related approach is used in
Denk, Hieber, and Prüss [2003]. For more recent results the reader is referred
to the Notes of Chapter 17.

Let us mention two further topics related to the H∞-calculus and its per-
turbations.

Extrapolation of the H∞-calculus in the Lp-scale

We have seen in Chapter 11 that for singular integral it is often a successful
strategy to first prove a Hilbert space result, then prove a weaker result on
Lp0 or some endpoint of the Lp scale, and then extend the Hilbert space result
to Lp-spaces by interpolation between 2 and p0. This idea also proves fruitful
for perturbation theorems; see Kunstmann and Weis [2017]. As in the case
of classical singular integral operators, the Littlewood–Paley theory and so-
called off-diagonal estimates play a crucial role. Here, the “Littlewood–Paley
decomposition” of a standard sectorial operator B on a space Lp(S) with a
bounded H∞-calculus is expressed as the equivalence of norms

‖x‖Lp(S) h
∥∥∥(∑

j∈Z
|φ(2jB)x|2

)1/2∥∥∥
Lp(S)

for all x ∈ Lp(S). Given a second standard sectorial operator A on Lp(S), the
following R-boundedness condition expresses that A is “close” to B in terms
of the “ Littlewood–Paley pieces” φ(2jA) and φ(2jB):

R
(
φ(s2j+kA)ψ(t2kB) : j ∈ Z

)
. 2−βk (16.33)

for some β > 0 and all k ∈ Z and s, t ∈ [1, 2]. Kunstmann and Weis [2017]
contains the following theorem:

Theorem 16.4.1. Let A and B be standard sectorial operators consistently
defined on L2(S) and Lp0(S), with p0 ∈ (1,∞) \ {2}, and assume that A is
R-sectorial on Lp0(S) and B has a bounded H∞-calculus on both L2(S) and
Lp0(A). If (16.33) holds for p = 2, then A has a bounded H∞-calculus on
both L2(S) and all spaces Lp(S) with p between 2 and p0.

This theorem can be extended to the case where A is defined on a comple-
mented subspace of Lp and A is a “retract” of B in a suitable sense. In this
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way one can, for example, derive the boundedness of the H∞-calculus of the
Stokes operator on the Helmholtz space Lp0(D) from the boundedness of the
H∞-calculus of the Laplace operator on Lp(D), for bounded Lipschitz do-
mains D ⊆ Rd with d > 3 and | 12 −

1
p | <

1
2d (see Kunstmann and Weis

[2017]).

Scales of fractional domain spaces and interpolation

Let A be a standard sectorial operator and denote by Ẋα the completion of
D(Aα) with respect to the norm ‖x‖α := ‖Aαx‖ for α ∈ R. The methods
of Section 15.3.b show that a Hilbert space operator A has a bounded H∞-
calculus if and only if these fractional domain spaces can be identified with
the complex interpolation spaces

[Ẋα, Ẋβ ]θ = Ẋγ

with (1− θ)α+ θβ = γ for α 6= β and θ ∈ (0, 1). This is not true anymore in
Banach spaces, where complex interpolation is related to boundedness of the
imaginary powers, rather than the boundedness of the H∞-calculus. However,
such an identification is possible with the help of the γ-interpolation method
introduced in the Notes to Section 15.3. It is shown in Kalton, Kunstmann,
and Weis [2006, Section 5.3] that a standard γ-sectorial operator A on a
Banach space X with non-trivial type has a bounded H∞-calculus if and only
if

(Ẋα, Ẋβ)γθ = Ẋδ

with (1 − θ)α + θβ = δ for α 6= β and θ ∈ (0, 1). Even when A does not
have a bounded H∞-calculus, the spaces (Ẋα, Ẋβ)γθ can be identified with
certain square function spaces Hγ

s,A which are defined as the completion of
D(Am) ∩ R(Am), m > |s|+ 1, with respect to the norm∥∥t 7→ t−sφ(tA)x

∥∥
γ(R+,

dt
t ;X)

, x ∈ D(Am) ∩ R(Am)

for some φ ∈ H1(σσ) such that z 7→ z−sφ(z) still belongs to H1(σσ). Complete
proofs can be found in Kalton, Lorist, and Weis [2023].

Section 16.3

The operator-sum method as a purely functional analytic approach to evo-
lution equations goes back to Da Prato and Grisvard [1975], where already
Theorem 16.3.15 is proved. Our proof of Theorem 16.3.2 follows Haase [2006],
where further properties of the operator C extending A+B are discussed.

In the setting of Hilbert spaces, the operator-valued H∞-calculus was in-
troduced in Albrecht, Franks, and McIntosh [1998]. Theorem 16.3.4 is taken
from Kalton and Weis [2001]. It is implicit in Lancien and Le Merdy [1998]
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(see also Lancien, Lancien, and Le Merdy [1998, Remark 6.5] and Albrecht,
Franks, and McIntosh [1998]) that any sectorial operator on a Hilbert space
with a bounded H∞-calculus has a bounded operator-valued H∞-calculus.
In these papers the “right” method of proof for Theorem 16.3.4 was already
found, but the crucial ingredient of R-boundedness was still missing.

Theorem 16.3.6 is due to Kalton and Weis [2001]. In the next chapter, the
connections of Theorem 16.3.6 with maximal Lp-regularity will be discussed
in detail. As we will see in Volume IV, the operator-valued functional calculus
of Theorem 16.3.4 can be used to give a short proof for stochastic maximal Lp-
regularity; see Van Neerven, Veraar, and Weis [2015b]. In Clément and Prüss
[2001] it is shown that if A is an injective operator generating a bounded C0-
group on a UMD space X, and B is an invertible closed linear operator in X
resolvent commuting with A such that ±iB is R-sectorial, then the operator
A+B with domain D(A)∩D(B) is closed and invertible. If B is also sectorial
with angle ω(B) < 1

2π, then A+B is sectorial as well, and ω(A+B) < 1
2π.

Theorem 16.3.9 is due to Lancien, Lancien, and Le Merdy [1998], Lancien
and Le Merdy [1998], who extend an earlier result of Albrecht [1994] on Lp-
spaces with 1 < p <∞.

That Theorem 16.3.10 holds more generally for Banach spaces with the
triangular contraction property was shown by Le Merdy [2003].

The absolute functional calculus was introduced in Kalton and Kucherenko
[2010], where Theorems 16.3.13, 16.3.14, and 16.3.20 were proved. The defi-
nition of the absolute calculus may be a little off-putting if one is accustomed
to thinking in terms of spectral theory, but the benefits of this notion is con-
siderable:

• It implies an operator-valued H∞-calculus and sum-of-operators theorem
without the complexities of R-boundedness, just as in Hilbert spaces (see
Theorems 16.3.13 and 16.3.14).

• It leads to a simple sufficient condition for the abstract functional calculus
of a sectorial operator A in terms of the equivalence

‖x‖ h
(∫ ∞

0

‖φ(tA)x‖p dt

t

)1/p

(16.34)

(see Theorem 16.3.16, implicit in Kalton and Kucherenko [2010]). The
criterion already suffices for the common applications and it shows that
in L1, L2, and C(K) spaces the absolute functional calculus is equivalent
to the H∞-calculus; see Kalton and Kucherenko [2010]. It also shows that
the absolute calculus is mainly a tool for real interpolation spaces and non-
UMD spaces. Indeed, for every operator A with a bounded H∞-calculus
on Lp with 1 < p <∞ we have (cf. Section 10.4)

‖x‖p h
∥∥t 7→ φ(tA)x

∥∥
γ(R+,

dt
t ;X)

h
∥∥∥(∫ ∞

0

|φ(tA)x|2 dt

t

)1/2∥∥∥
p
,
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which is a norm decidedly different from (16.34) when p 6= 2. However, in
this setting it provides a unified approach to many results of Dore and Da
Prato–Grisvard.

• The absolute functional calculus can be characterised in terms of gen-
eralised real interpolation spaces, where the role of Lp(R+,

dt
t ) is taken

over by more general Banach function spaces E over R+. Essentially, a
standard sectorial operator A, acting on an intermediate spaces X for
a couple (X0, X), where X0 and X1 are appropriate fractional domain
spaces of X, has an absolute calculus if and only if X = (X0, X1)θ,E
for some θ ∈ (0, 1) and an appropriate choice of such a Banach function
space E; see Kalton and Kucherenko [2010], where a precise statement
of the result an be found. This characterisation of the absolute calcu-
lus compares nicely with the characterisation of the H∞-calculus through
the γ-interpolation method and the close relationship of bounded imag-
inary powers with the complex interpolation method described in the
previous chapter. A necessary condition for the existence of a Banach
function space E with X = (X0, X1)θ,E is the monotonicity of the K-
functional for the couple (X0, X1), in the sense that it has the property
that K(t, x;X0, X1) 6 K(t, y;X0, X1) for some x ∈ X0 + X1 and y ∈ X,
and all t > 0, then x ∈ X and ‖x‖X 6 c‖y‖X . In fact, this is where the
definition of the absolute calculus has its origin.

The proof of Theorem 16.3.19 follows Haase [2005], where some additional
details have been written out. The theorem also admits a homogeneous ver-
sion, which is presented in [Haase, 2006, Section 6.4]. A by-product of Theorem
16.3.19 is the equivalence of norms

‖x‖+ ‖t 7→ t−θφ(tA)x‖Lp(R+,
dt
t ;X) h ‖x‖+ ‖t 7→ t−θψ(tA)x‖Lp(R+,

dt
t ;X)

for functions φ, ψ ∈ H1(Σσ) ∩H∞(Σσ) satisfying the conditions of Theorem
16.3.19. Interestingly, this equivalence of norms remains true under somewhat
weaker conditions on φ and ψ; see Haase [2006, Theorem 6.4.2]. The proof
follows the lines of the equivalence of continuous square functions in Chapter
10, with simplifications due to the fact that various subtleties in the handling
of γ-norms can now be avoided. This more general version of the equivalence
of norms covers the function φ(z) = z/(z + 1) which is implicit in the first
part of Proposition K.4.1.

Corollary 16.3.22 is a classical result due to Dore [1999]. This result was
subsequently generalised to standard sectorial operators in Dore [2001], where
it was shown that such operators have a bounded H∞-calculus on (X,D(A)∩
R(A))θ,p; see also Kalton and Kucherenko [2010], who establish their absolute
functional calculus.

Sums of non-commuting operators

In Section 16.3 we studied the closedness (and further properties) of sums
of operator A + B under the assumption that A and B are resolvent com-
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muting. In this paragraph, we briefly comment on the closedness of sums
of non-commuting operators, provided suitable condition bounds and, some-
times, domain compatibility assumptions, are imposed on the commutator
[A,B] = AB−BA. The first such result was obtained by Da Prato and Gris-
vard [1975], who proved that the closure of A + B is invertible and sectorial
under commutator conditions. Closedness of A + B itself was proved under
further conditions in the case that X is a Hilbert space. Labbas and Terreni
[1987] obtained similar results under a different type of commutator condi-
tions, and Monniaux and Prüss [1997] proved a Dore–Veni type theorem for
non-commuting operators under the commutator condition of Labbas–Terreni.
In his PhD thesis, Štrkalj [2000] proved a version of Kalton and Weis [2001]
for non-commuting operators under the same condition as Labbas–Terreni in
the case that X is a B-convex space, and Prüss and Simonett [2007] proved
a similar result under either one of the above commutator conditions without
any restrictions on the space X. Moreover, under the condition that A and
B has a bounded H∞-calculus, with one of them R-bounded, it was shown
in this paper that A + B has a bounded H∞-calculus. Similar results were
proved under a different commutator conditions in Roidos [2018]. Products
of non-commuting operators have been considered in Štrkalj [2000], Haller-
Dintelmann and Hieber [2005].

Typical applications of these results include parabolic PDE on wedge or
cone domains, where an elliptic operator C can be split into two space direc-
tions to obtain simpler operators A andB. This type of application was worked
out in detail by Prüss and Simonett [2007], Prüss and Simonett [2006] and con-
tinued in Nau and Saal [2012], Maier and Saal [2014], Köhne, Saal, and West-
ermann [2021]. For another typical application to non-autonomous parabolic
problems, in which case ∂t and A(t) are non-commuting on Lp(0, T ;X), the
reader is referred to Di Giorgio, Lunardi, and Schnaubelt [2005a]. Applications
to hyperbolic problems appear in Alouini and Goubet [2014].

An interesting class of operator sums for non-commuting operators arises
in connection with (an abstract version of) the Weyl commutation relation
for position and momentum operators. The general theory of such operators
has an altogether different flavour due to its connections with the Heisenberg
group; the reader is referred to Putnam [1967] for a general overview. In
connection with the topics treated in this volume, the following result is worth
mentioning. Suppose two d-tuples of operators A = (A1, . . . , Ad) and B =
(B1, . . . , Bd) acting on a Banach space X are given such that iA1, . . . , iAd and
iB1, . . . , iBd generate bounded C0-groups satisfying the Weyl commutation
relations

eisAjeitAk = eitAkeisAj , eisBjeitBk = eitBkeisBj

eisAjeitBk = e−istδjkeitBkeisAj .

Here, for clarity of exposition, we use exponential notation for the C0-groups
involved. Under this condition, the operator sum
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1

2
(A2 +B2) =

1

2

d∑
j=1

A2
j +B2

j

is the abstract counterpart of the quantum harmonic oscillator. Under the
assumption that X is a UMD Banach lattice, it is shown in Van Neerven and
Portal [2020] (under an additional boundedness assumption of the Weyl cal-
culus associated with the pair (A,B)) and Van Neerven, Portal, and Sharma
[2023] that the operator 1

2 (A2 +B2)− 1
2d is R-sectoriality and has a bounded

of the H∞-calculus.
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