

Delft University of Technology

Quantum computing in practice: fault-tolerant protocols and circuit-mapping techniques

Lao, Lingling

DOI
10.4233/uuid:8c60ac7e-ee2f-4090-abeb-5b5daab6ea36
Publication date
2019
Document Version
Final published version
Citation (APA)
Lao, L. (2019). Quantum computing in practice: fault-tolerant protocols and circuit-mapping techniques.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:8c60ac7e-ee2f-4090-
abeb-5b5daab6ea36

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:8c60ac7e-ee2f-4090-abeb-5b5daab6ea36
https://doi.org/10.4233/uuid:8c60ac7e-ee2f-4090-abeb-5b5daab6ea36
https://doi.org/10.4233/uuid:8c60ac7e-ee2f-4090-abeb-5b5daab6ea36

LIN
G

LIN
G

 LA
O

LINGLING LAO

Q
U

A
N

TU
M

 C
O

M
P

U
TIN

G
 IN

 P
R

A
C

TIC
E

: FA
U

LT-TO
LE

R
A

N
T P

R
O

TO
C

O
LS A

N
D

 C
IR

C
U

IT-M
A

P
P

IN
G

 TE
C

H
N

IQ
U

E
S

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

LINGLING LAO

INVITATION
You are cordially invited to
attend the public defence
of my PhD thesis entitled

Quantum Computing
in Practice:

Fault-Tolerant
Protocols and

Circuit-Mapping
Techniques

on Monday,
2nd of Dec 2019

at 10:00 am in the
Senaatszaal of the Aula

Mekelweg 5, Delft

A brief presentation will
be given at 9:30 am

You are also welcomed
to attend the reception

that will take place
after the defence

ISBN:978-94-028-1838-3

LIN
G

LIN
G

 LA
O

LINGLING LAO

Q
U

A
N

TU
M

 C
O

M
P

U
TIN

G
 IN

 P
R

A
C

TIC
E

: FA
U

LT-TO
LE

R
A

N
T P

R
O

TO
C

O
LS A

N
D

 C
IR

C
U

IT-M
A

P
P

IN
G

 TE
C

H
N

IQ
U

E
S

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

LINGLING LAO

INVITATION
You are cordially invited to
attend the public defence
of my PhD thesis entitled

Quantum Computing
in Practice:

Fault-Tolerant
Protocols and

Circuit-Mapping
Techniques

on Monday,
2nd of Dec 2019

at 10:00 am in the
Senaatszaal of the Aula

Mekelweg 5, Delft

A brief presentation will
be given at 9:30 am

You are also welcomed
to attend the reception

that will take place
after the defence

ISBN:978-94-028-1838-3

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Monday 2 December 2019 at 10:00 o’clock

by

Lingling LAO

Master of Engineering in Communication and Information System,
Northwestern Polytechnical University, Xi’an, China,

born in Qiqihar, Heilongjiang Province, China.

http://prof.dr.ir/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. K.L.M. Bertels Delft University of Technology, promotor
Dr. C. Garcia Almudever Delft University of Technology, copromotor

Independent members:
Prof. dr. R.T. König Technical University of Munich, Germany
Prof. dr. H.M. Buhrman University of Amsterdam
Prof. dr. ir. L.M.K. Vandersypen Delft University of Technology
Prof. dr. L. DiCarlo Delft University of Technology
Prof. dr. B.M. Terhal Delft University of Technology

This research was funded by the China Scholarship Council (CSC), and also supported
by the Delft University of Technology.

Keywords: Fault-tolerant quantum computing, Quantum error correction, Quan-
tum circuit mapping, Quantum computer architecture, Surface code.

Printed by: Ipskamp Printing

Cover by: Lingling Lao

Copyright © 2019 by Lingling Lao

ISBN:978-94-028-1838-3

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

To my family

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Making quantum computing fault-tolerant 2
1.2 Making quantum circuits executable . 3
1.3 Chapter overview . 3

2 Background 7
2.1 Basics of quantum computing . 8

2.1.1 Quantum bits . 8
2.1.2 Quantum operations. 9
2.1.3 Universality . 11
2.1.4 The stabilizer formalism . 11

2.2 Quantum error correction and fault-tolerant computation 12
2.2.1 The stabilizer codes . 12
2.2.2 The surface code . 13
2.2.3 Fault-tolerant quantum computation 14

2.3 Mapping of quantum circuits . 15
2.3.1 Hardware constraints . 15
2.3.2 The mapping procedure . 16

3 Fault-tolerant Computation based on Surface Codes 19
3.1 Introduction . 20
3.2 Code deformation and lattice surgery . 21

3.2.1 Code deformation . 21
3.2.2 Lattice surgery . 23

3.3 Gauge fixing. 25
3.4 Fault-tolerance analysis with gauge fixing. 26

3.4.1 Fault-tolerance of code deformation 26
3.4.2 Code deformation examples . 28

3.5 Numerics . 30
3.6 Discussion & conclusion . 33
3.7 Appendix . 34

3.7.1 Code conversion as gauge fixing 34
3.7.2 Disparity in error rates of CNOT gates 35

vii

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

viii CONTENTS

4 Mapping of Lattice Surgery-based Quantum Circuits on Surface Code Archi-
tectures 39
4.1 Introduction . 40
4.2 FT quantum computing. 42

4.2.1 Fault-tolerant mechanisms . 42
4.2.2 Implications on the mapping problem 43

4.3 Qubit plane architecture . 43
4.4 Quantum circuit mapping . 46

4.4.1 Scheduling operations . 47
4.4.2 Placing and routing qubits . 48

4.5 Metrics and benchmarks . 51
4.6 Results . 52
4.7 Conclusion . 55
4.8 Appendix . 56

4.8.1 Lattice surgery-based CNOT . 56
4.8.2 Lattice surgery-based movement 57
4.8.3 FT library . 58
4.8.4 Hand-optimized mapping example 59
4.8.5 Initial placements . 60

5 A Control Microarchitecture for Fault-Tolerant Quantum Computing 63
5.1 Introduction . 64
5.2 Fault-tolerant quantum computing . 65

5.2.1 Quantum error correction . 65
5.2.2 Fault-tolerant logical operations 66

5.3 Quantum control microarchitecture . 68
5.4 Fault-Tolerant control microarchitecture 69

5.4.1 Qubit addressing. 69
5.4.2 Fault-tolerant logical operations 71
5.4.3 Quantum error decoding. 73
5.4.4 Measurement result unit . 74

5.5 Lattice surgery instantiation . 75
5.6 Discussion and conclusion . 76

6 Fault-tolerant Quantum Error Correction on Near-term Quantum Proces-
sors using Flag and Bridge Qubits 81
6.1 Introduction . 82
6.2 Flag-based quantum error correction . 83
6.3 Flag-bridge quantum error correction 85

6.3.1 Flag-bridge syndrome extraction circuits 85
6.3.2 Fault-tolerant protocol for flag-bridge error correction 87

6.4 Steane code error correction onto two qubit processor topologies 89
6.4.1 Mapping . 90
6.4.2 Numerics . 92

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

CONTENTS ix

6.5 Other applications of the flag-bridge circuits 92
6.5.1 Flag-bridge QEC for the five-qubit code 92
6.5.2 Flag-bridge circuits for FT computation 92

6.6 Discussion and conclusion . 95
6.7 Implementation of LUT and NN decoders 96

7 Mapping of Quantum Circuits onto NISQ Superconducting Processors 99
7.1 Introduction . 100
7.2 Quantum hardware constraints . 102

7.2.1 Elementary gate set . 102
7.2.2 Processor topology. 104
7.2.3 Classical control constraints . 104

7.3 Mapping quantum algorithms: The Qmap mapper 106
7.3.1 Overview of the Qmap mapper. 106
7.3.2 Initial placement. 106
7.3.3 Qubit router . 108
7.3.4 RC-scheduler . 110
7.3.5 Decomposition and optimization 111

7.4 Qmap evaluation . 111
7.4.1 Benchmarks . 112
7.4.2 Mapping results . 112

7.5 Related work . 118
7.6 Conclusion and discussion . 122

8 Conclusion and outlook 125
8.1 Conclusion . 126
8.2 Outlook . 128

References 131

Acknowledgements 145

Curriculum Vitæ 149

List of Publications 151

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 10PDF page: 10PDF page: 10PDF page: 10

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 11PDF page: 11PDF page: 11PDF page: 11

SUMMARY

Quantum computing promises to solve some problems that are intractable by classical
computers. Several quantum processors based on different technologies and consisting
of a few tens of noisy qubits have already been developed. However, qubits are fragile
as they tend to decohere extremely quickly and quantum operations are faulty, making
reliable computation very difficult. Moreover, quantum processors have hardware con-
straints such as limited qubit connectivity and shared classical control, making quan-
tum algorithms not directly executable. This thesis focuses on some of the challenges of
the implementation of quantum algorithms on near-term intermediate-scale and future
large-scale quantum processors. More precisely, it investigates how to perform reliable
quantum computation using fault-tolerant protocols and how to execute quantum algo-
rithms on hardware-constrained processors using circuit-mapping techniques.

The first part of this thesis investigates the execution of large-scale quantum algo-
rithms that requires quantum error correction (QEC) and fault-tolerant mechanisms. We
focus on the rotated surface code which is one of the most promising QEC codes because
of its high error threshold and simple structure that only requires 2D nearest-neighbor
(NN) interactions. Firstly, the implementation of a universal set of logical operations is
introduced. This includes the transversal initialization and measurement in the compu-
tational basis, the CNOT gate using lattice surgery, the Hadamard gate based on code de-
formation, and the S and T gates that require magic state preparation. In Chapter 3, we
propose to formulate the lattice-surgery-based and code-deformation-based operations
as special cases of the gauge fixing technique. We show that, by using gauge fixing, the
measurement and decoding schemes for these protocols become obvious and the anal-
ysis of their fault tolerance is considerably simplified. We also numerically demonstrate
the accuracy of this approach and evaluate the fault tolerance of some logical operations
using the Gottesman-Knill formalism.

The construction of surface codes only requires 2D NN interactions between phys-
ical qubits, which can be directly supported by many quantum processors. However,
the lattice-surgery-based implementation of CNOT gates on surface codes has specific
requirements on the layouts of logical qubits. Logical qubits that need to interact and
are not placed in such neighboring positions need to be moved for execution, leading
to overhead in terms of both qubit resources and execution time. Reducing spatial-
temporal costs becomes critical since it is beneficial to decrease the failure rate of quan-
tum computation. To this purpose, we propose two scalable qubit plane architectures
for efficiently managing qubit resources and supporting communication between logi-
cal qubits in Chapter 4. We also develop mapping passes including placement and rout-
ing of logical qubits as well as scheduling of logical operations to make lattice-surgery-
based quantum circuits executable meanwhile minimizing the movement overhead and
exploiting the maximum parallelism. In addition, in Chapter 5 a quantum control mi-
croarchitecture that can support quantum error correction and fault-tolerant logical op-

xi

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 12PDF page: 12PDF page: 12PDF page: 12

xii SUMMARY

erations and provide flexibility and scalability is presented.
Although the surface code is promising due to its high threshold and local connectiv-

ity, it requires many physical qubits to encode one logical qubits, which is unfeasible to
be applied on Noisy-Intermediate-Scale Quantum (NISQ) processors. The second part
of this thesis focuses on quantum computation on NISQ processors. We first investigate
quantum error correction protocols that can be used to demonstrate fault tolerance on
these processors, taking into account not only the limited number of noisy qubits but
also the limited qubit connectivity. In Chapter 6, we combine flag fault tolerance with
qubit mapping techniques to enable an efficient flag-bridge approach which can allow
FT QEC on connectivity-constrained processors with no or low qubit overhead. We fur-
ther present QEC examples of the Steane code on two quantum processor topologies
and numerically analyze their fault tolerance.

Additionally, these NISQ processors are also expected to be used for running some
small quantum applications that can solve practical problems. To do so, quantum cir-
cuits have to be adapted to the hardware constraints imposed by quantum processors.
The procedure to compile physical quantum circuits (without QEC) into ones that are
executable on NISQ processors is termed as the circuit mapping problem on the physi-
cal level. Moreover, due to the noisy property of NISQ devices, it is crucial to minimize
the mapping overhead in terms of number of qubits, number of gates, and circuit depth.
In Chapter 7, a mapper called Qmap is developed to make quantum circuits executable
with low overhead. Except the qubit connectivity and the elementary gate set, Qmap
also considers the limitations imposed by the shared classical control electronics, which
has not been investigated by prior works. All these device characteristics are described
in a configuration file, providing the flexibility that Qmap can target different quantum
processors. To evaluate the performance of the proposed mapper, we map a variety of
quantum benchmarks on two different superconducting quantum processors.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 13PDF page: 13PDF page: 13PDF page: 13

SAMENVATTING

Quantum computing belooft een aantal problemen op te lossen die onoplosbaar zijn
met een klassieke computer. Verschillende quantum processors gebaseerd op verschil-
lende technologieën en bestaande uit enkele tientallen imperfecte qubits zijn al ontwik-
keld. Qubits zijn echter fragiel omdat ze de neiging hebben om extreem snel te decohe-
ren en omdat quantumoperaties imperfect zijn, waardoor een betrouwbare berekening
erg moeilijk is. Bovendien hebben quantum processors hardware beperkingen zoals be-
perkte qubit connectiviteit en gedeelde klassieke controle, waardoor quantumalgorit-
men niet direct uitvoerbaar zijn. Dit proefschrift richt zich op enkele uitdagingen van
de implementatie van quantumalgoritmen op middelgrote en toekomstige grootscha-
lige quantum processors op de korte termijn. Om preciezer te zijn, het onderzoekt hoe
betrouwbare quantum computing kan worden uitgevoerd met behulp van fouttolerante
(FT) protocollen en hoe quantumalgoritmen kunnen worden uitgevoerd op hardware-
beperkte processoren met circuit-mapping technieken.

Het eerste deel van dit proefschrift onderzoekt de uitvoering van grootschalige quan-
tumalgoritmen die quantumfoutcorrectie (QEC) en FT mechanismen vereisen. We rich-
ten ons op de rotated surface code, een van de meest veelbelovende QEC-codes vanwege
de hoge foutdrempel en de eenvoudige structuur die alleen 2D-naburige (NN) interac-
ties vereist. Ten eerste wordt de implementatie van een universele set logische opera-
ties geïntroduceerd. Dit omvat de transversale initialisatie en meting in de computa-
tional basis, de CNOT gate met behulp van lattice surgery, de Hadamard-gate op basis
van code deformation en de S en T -gates die voorbereiding van een magische staat
vereisen. In Hoofdstuk 3 stellen we voor om de op lattice surgery en code deformation
gebaseerde operaties te formuleren als speciale gevallen van de gauge fixing techniek.
We laten zien dat, door het gebruik van gauge fixing, de meet- en decoderingsschema’s
voor deze protocollen duidelijk worden en de analyse van hun fouttolerantie aanzien-
lijk wordt vereenvoudigd. We demonstreren ook numeriek de nauwkeurigheid van deze
aanpak en evalueren de fouttolerantie van sommige logische operaties met behulp van
het Gottesman-Knill-formalism.

De constructie van surface codes vereist alleen 2D NN-interacties tussen fysieke qu-
bits, die direct door veel quantum processors kunnen worden ondersteund. De op lat-
tice surgery gebaseerde implementatie van CNOT gates op surface codes heeft echter
specifieke vereisten voor de lay-outs van logische qubits. Logische qubits die moeten in-
terageren en niet in dergelijke aangrenzende posities worden geplaatst, moeten worden
verplaatst voor uitvoering, wat leidt tot overhead in termen van zowel qubit-bronnen als
uitvoeringstijd. Het verlagen van de ruimtelijk-temporele kosten wordt van cruciaal be-
lang, omdat het gunstig is om het faalpercentage van quantumberekening te verlagen.
Voor dit doel presenteren we twee schaalbare qubit lay-outs voor het efficiënt beheren
van qubit-bronnen en voor ondersteuning van communicatie tussen logische qubits in
Hoofdstuk 4. We ontwikkelen ook mapping passages inclusief plaatsing en routing van

xiii

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

xiv SAMENVATTING

logische qubits, evenals scheduling van logische bewerkingen om op lattice surgery ge-
baseerde quantumcircuits uitvoerbaar te maken en ondertussen de overhead te mini-
maliseren en de maximale parallelliteit te benutten. Bovendien wordt in Hoofdstuk 5
een quantumcontrolemicroarchitectuur gepresenteerd die QEC en fouttolerante logi-
sche bewerkingen kan ondersteunen en flexibiliteit en schaalbaarheid biedt.

Hoewel de surface code veelbelovend is vanwege de hoge drempel en lokale connec-
tiviteit, vereist het veel fysieke qubits om één logische qubit te coderen, wat niet haal-
baar is voor toepassing op Noisy-Intermediate-Scale Quantum (NISQ) processors. Het
tweede deel van dit proefschrift richt zich op quantumberekening op NISQ-processors.
We onderzoeken eerst quantumfoutcorrectieprotocollen die kunnen worden gebruikt
om fouttolerantie op deze processors aan te tonen, waarbij we niet alleen rekening hou-
den met het beperkte aantal imperfecte qubits, maar ook met de beperkte qubit-connect-
iviteit. In Hoofdstuk 6 combineren we flag fouttolerantie met qubit mappingtechnieken
om een efficiënte flag-bridge aanpak mogelijk te maken die FT QEC mogelijk maakt op
processoren met beperkte connectiviteit met geen of lage qubit overhead. We presen-
teren verder QEC-voorbeelden van de Steane-code op twee quantum processor typolo-
gieën en analyseren numeriek hun fouttolerantie.

Bovendien wordt verwacht dat deze NISQ-processors ook worden gebruikt voor het
uitvoeren van enkele kleine quantumtoepassingen die praktische problemen kunnen
oplossen. Om dit te doen, moeten quantumcircuits worden aangepast aan de hardwa-
rebeperkingen die worden opgelegd door quantum processors. De procedure om fy-
sieke quantumcircuits (zonder QEC) te compileren tot circuits die uitvoerbaar zijn op
NISQ-processors, wordt het circuit mapping probleem op fysiek niveau genoemd. Bo-
vendien is het vanwege de imperfecte eigenschappen van NISQ-apparaten van cruciaal
belang om de mappingoverhead te minimaliseren in termen van aantal qubits, aantal
gates en circuitdiepte. In Hoofdstuk 7 is een mapper genaamd Qmap ontwikkeld om
quantumcircuits uitvoerbaar te maken met lage overhead. Naast qubit-connectiviteit
en de elementary gate set, houdt Qmap ook rekening met de beperkingen die worden
opgelegd door de gedeelde klassieke besturingselektronica, die niet is onderzocht door
eerdere werken. Al deze processor eigenschappen worden beschreven in een configu-
ratiebestand, dat de flexibiliteit biedt die Qmap op verschillende quantum processors
kan richten. Om de prestaties van de voorgestelde mapper te evalueren, brengen we een
aantal quantumbenchmarks in kaart op twee verschillende supergeleidende quantum
processors.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

1
INTRODUCTION

This chapter provides an introduction to this dissertation. We discuss the challenges one
faces when building a quantum computer. Firstly, we talk about the fragility of quantum
systems, leading to the challenge of making quantum computing fault-tolerant. Further-
more, we introduce the hardware limitations in real quantum processors, making quan-
tum circuits not directly executable. Afterwards, we shortly describe the individual chap-
ters.

1

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 16PDF page: 16PDF page: 16PDF page: 16

1

2 1. INTRODUCTION

Q UANTUM computing can achieve higher performance than classical computing by
exploiting superposition and entanglement. For example, it can provide exponen-

tial speedup when solving certain problems such as prime factorization [1] and polyno-
mial speedup for many others [2] compared to their best known classical counterparts.
The development of a quantum computer requires to bring together the expertise of
multiple disciplines that include: physics, mathematics, electrical and computer engi-
neering. Experimentalists are working on the fabrication of quantum hardware based on
different technologies such as superconducting circuits [3, 4, 5], quantum dots [6, 7, 8],
nitrogen-vacancy centers [9, 10], and trapped ions [11, 12]. Their main challenges in-
clude increasing qubit coherence time, improving gate fidelities, and achieving scalabil-
ity. Since quantum systems are error-prone, another challenge is to develop quantum
error correction (QEC) protocols to perform reliable quantum computation. Theorists
are working on the design of QEC codes that require simple error syndrome extraction
schemes and allow efficient implementation of a universal set of fault-tolerant (FT) op-
erations. Furthermore, quantum algorithms expressed in a high-level language need
to be compiled into a series of instructions that are executable on quantum processors.
These processors have many hardware restrictions such as a finite number of elementary
gates, limited qubit connectivity, and shared electronic control. Electrical and computer
engineers focus on the definition and development of an overall quantum system archi-
tecture that bridges the gap between quantum algorithms and quantum processors.

This thesis will deal with two of the challenges when building a quantum computer:
how to make quantum computing fault-tolerant and how to make quantum circuits ex-
ecutable on quantum processors.

1.1. MAKING QUANTUM COMPUTING FAULT-TOLERANT
Quantum algorithms can solve many problems that are intractable by classical comput-
ers. However, the Achilles’ heel of quantum computing is the fragility of qubits as they
tend to decohere extremely fast (loss of information due to the interaction with envi-
ronment). Moreover, quantum operations are faulty, which makes reliable computation
more difficult. For instance, superconducting qubits may have coherence times of tens
of microseconds and gate fidelity around 99.9% [3, 4, 13, 14]. Quantum error correction
schemes can make quantum computing fault-tolerant by encoding one logical qubit into
many physical qubits and applying FT logical operations on these logical qubits.

The surface code (SC) is one of the most promising QEC codes. It has high toler-
ance to errors (error threshold is near 1% [15]) and requires a 2D structure with nearest-
neighbor (NN) connectivity which is realizable in current and near-term quantum tech-
nologies [16, 17]. The performance of surface-code-based quantum memories (i.e. idling
logical qubits) has been well-studied, but the performance of quantum computation
(i.e. logical operations) has not been extensively analyzed by numerical simulations.
Many mechanisms for performing FT operations using surface codes have been pro-
posed, including lattice surgery [18, 19] and code deformation [20]. Characterizing these
schemes in terms of their error thresholds and spatial-temporal cost is then very valuable
for a practical implementation of reliable quantum computing. This thesis will discuss
the FT implementation of a universal set of logical operations on rotated planar sur-
face codes including some novel approaches like lattice rotation. Moreover, numerical

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

1.2. MAKING QUANTUM CIRCUITS EXECUTABLE

1

3

simulation results will be provided to further verify these FT schemes and analyze their
fault-tolerance.

Although the surface code is suitable for implementing large-scale fault-tolerant quan-
tum computation, it requires many physical qubits to encode a single logical qubit. This
high qubit overhead makes it unfeasible for demonstrating fault tolerance in near-term
quantum processors that consist of a small number of noisy qubits, known as Noisy In-
termediate Scale Quantum (NISQ) processors [21]. Therefore, quantum error correction
with low qubit overhead is desirable. In this thesis, we will investigate alternative QEC
codes that can be potentially applied in current and near-term quantum processors. We
will also design an error correction scheme to enable an efficient implementation of FT
QEC in small experiments.

1.2. MAKING QUANTUM CIRCUITS EXECUTABLE
When building conventional computing platforms, the overall system architecture is de-
fined according to different layers going from algorithms, compilers, and runtime sup-
port to the definition of an instruction set architecture, corresponding micro-architecture,
and circuit implementation using a universal set of gates. A quantum computer will be
defined similarly as shown in Figure 1.1 [22].

This stack of layers allows going from quantum algorithms to a specific series of sig-
nals that operate on the quantum processor as follows: first, quantum algorithms (based
on the circuit model in this thesis) are described by a high-level programming language.
Such a representation is normally hardware-agnostic, that is, it is not aware of the limi-
tations imposed by the underlying quantum processors such as the elementary gate set,
qubit topology, and electronic control. Therefore, a process known as mapping is re-
quired to adapt quantum circuits to the quantum processor constraints. This mapping
can be performed by the compiler which outputs a series of instructions that belong to
the quantum instruction set architecture. Afterwards, the microarchitecture takes these
instructions as input and generates the proper signals which will be finally applied on
the target qubits.

This thesis focuses on the mapping of quantum circuits. The mapping procedure is
composed of several modules, including initial placement of qubits, routing of qubits,
and scheduling of operations. Mapping will increase the circuit size, which in turn leads
to higher failure rates. Reducing mapping overhead is crucial for implementing quan-
tum algorithms reliably, especially in the NISQ era. In this thesis, we will develop a map-
per that makes physical quantum circuits executable on NISQ devices. Furthermore, as
stated above, quantum error correction is necessary for large-scale quantum computa-
tion. We will also analyze the implications of surface-code-based error correction on
the circuit mapping problem. Then we will present approaches to efficiently map logi-
cal circuits onto qubit topologies with NN interactions. In addition, we will investigate
microarchitectural blocks that are required to support execution of logical operations.

1.3. CHAPTER OVERVIEW
This thesis consists of eight chapters. Chapters 1 and 2 provide the motivation and back-
ground information of this thesis. Chapters 3 to 7 are the main chapters and can be

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 18PDF page: 18PDF page: 18PDF page: 18

1

4 1. INTRODUCTION

Figure 1.1: The quantum system stack.

divided into two parts. Part I (Chapters 3-5) focuses on large-scale fault-tolerant quan-
tum computing based on surface codes. Part II (Chapters 6 and 7) discusses quantum
computing in NISQ processors.

In Chapter 2, we first introduce the basics of quantum computing and the main ideas
of quantum error correction. Then, we explain how to perform fault-tolerant error cor-
rection and computation on rotated surface codes. In addition, we also discuss the need
of quantum circuit mapping passes.

In Chapter 3, we show the fault-tolerant implementation of a universal set of logical
operations (initialization, measurement, H ,S,T , and CNOT) on rotated surface codes.
We formulate fault-tolerant techniques like lattice surgery and code deformation as spe-
cial cases of gauge fixing. This formalism simplifies the fault-tolerance analysis of measu-
rement-based protocols and provides clear guidance of their error correction procedure.
Numerical simulation results are also provided to further verify this formalism and eval-
uate the fault-tolerance of these logical operations.

In Chapter 4, we analyze the implications of surface-code-based quantum compu-
tation on the circuit mapping problem. We propose two surface-code qubit plane archi-
tectures to support logical operations based on lattice surgery. Then, we develop a full
mapping procedure for executing quantum circuits onto these architectures.

In Chapter 5, we introduce the architectural challenges of performing fault-tolerant
quantum computing based on rotated surface codes with logical operations implemented
by the techniques described in Chapter 3. We envision a control microarchitecture that
can support these logical operations.

In Chapter 6, we investigate fault-tolerant quantum error correction schemes that
can be applied on NISQ processors with small amount of qubits and limited connectiv-
ity. We propose a flag-bridge approach to enable the implementation of distance-3 QEC
codes. Furthermore, we show how to perform the Steane code error correction on two
different current superconducting processors and analyze their performance numeri-
cally.

In Chapter 7, we propose a mapper to make physical (without quantum error cor-
rection) quantum circuits executable on NISQ processors that have many hardware con-
straints. The constraints include the elementary gate set, qubit connectivity, and classi-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 19PDF page: 19PDF page: 19PDF page: 19

1.3. CHAPTER OVERVIEW

1

5

cal electronic control. We evaluate the proposed mapper on two different superconduct-
ing processors.

Finally, we conclude this thesis and discuss future research work in Chapter 8.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 21PDF page: 21PDF page: 21PDF page: 21

2
BACKGROUND

This preliminary chapter provides the basic notions of quantum computing. We first de-
scribe the evolution of quantum systems using the unitary matrix multiplication method.
Then we introduce a more efficient representation called stabilizer formalism, which will
be used in the discussion of the surface-code-based error correction and fault-tolerant
computation. In addition, we also describe the procedure of mapping quantum circuits
onto real quantum processors.

7

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 22PDF page: 22PDF page: 22PDF page: 22

2

8 2. BACKGROUND

T His chapter introduces the background information of this thesis. It starts with the
introduction of the basics of quantum computing including quantum states and a

universal set of quantum gates in Section 2.1. Since quantum systems are error prone,
quantum error correction and fault tolerance are required for reliably implementing
quantum algorithms. In Section 2.2, we first explain the idea of quantum error cor-
rection and introduce a family of QEC codes called stabilizer codes. Then, we focus
on fault-tolerant quantum computation based on surface codes. In Section 2.3, after
presenting the hardware limitations of real quantum processors, we discuss the need of
mapping passes to make quantum circuits executable. For more detailed information
about quantum computation and quantum error correction, we refer readers to the ex-
cellent textbook by Nielsen and Chuang [23].

2.1. BASICS OF QUANTUM COMPUTING

2.1.1. QUANTUM BITS
The basic units of information in classical computing are bits. They have exclusive states,
that is, a bit can only be in either 0 or 1 state. Analogous to classical computation,
quantum computation is also built upon a two-level quantum system called quantum
bit or qubit. Qubits however can be in a superposition of basis states |0〉 and |1〉: |ψ〉 =
α |0〉+β |1〉 where |〉 is called a ket and its dual 〈| is called a bra. α and β are called proba-
bility amplitudes and they are complex numbers. |α|2 and |β|2 represent the probability
of getting the result ‘0’ or ‘1’ respectively when measuring the qubit in the computational
basis, and |α|2 + |β|2=1. It means the state of a qubit is a unit vector in a 2-dimensional
complex vector space V2. Normally, states |0〉 and |1〉 are described by

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
.

A simple way of visualizing a single qubit state is using the Bloch sphere as shown
in Figure 2.1. In this case, the probability amplitudes are given by α = cos(θ/2) and β =
eiϕ sin(θ/2). For example, the |0〉 and |1〉 basis states correspond to ϕ = 0,θ = 0 and
ϕ= 0,θ =π, respectively.

Similarly, a state of a composite quantum system made up of n qubits can be in the
superposition of all the 2n possible states: |ψ〉 =α0 |0 · · ·00〉+α1 |0 · · ·01〉+· · ·+α2n−1 |1. . .11〉,
where αi ∈C and

∑ |αi |2 = 1. Note that |0 · · ·00〉 = |0〉⊗ · · ·⊗ |0〉⊗ |0〉, where ⊗ denotes the
tensor product operator. If a composite state cannot be written as a tensor product of
separate states, then it is an entangled state. In contrast, a classical n-bit system can only
be in one of 2n states at any point in time. Superposition provides a large state space,
which is the essence of quantum speedup compared to classical computing. Moreover,
if a quantum system can be represented by a vector state, that is, a definite state, then it
is called pure state. However, sometimes a quantum state may not be known, that is, a
mixture of multiple pure states |ψi 〉 with corresponding probability pi , then it is called
mixed state. A formulation to describe both pure states and mixed states is the density
matrix representation,

ρ ≡∑
i

pi |ψi 〉〈ψi | ,

where ρ is positive and tr
(
ρ
)= 1.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

2.1. BASICS OF QUANTUM COMPUTING

2

9

z

y

x

0

1

1

2
0 i 11

2
0 i 1

1

2
0 1

1

2
0 1

Figure 2.1: Geometrical representation of a single qubit using a Bloch sphere. The points on the surface and
the interior points of the sphere correspond to pure states and mixed states, respectively.

2.1.2. QUANTUM OPERATIONS
Quantum algorithms can solve problems that are intractable by classical computers.
One way to describe quantum algorithms is the quantum circuit representation, which is
composed of qubits and quantum operations. In classical computing, logical operations
are performed by gates such as (N)AND, (N)OR, (X)OR or NOT. These gates are described
by truth tables and most of them only run forward (not reversible). In addition, any com-
binatorial logic function can be realized with only NAND or NOR gates, which are called
universal logic gates. In quantum computing qubit states are manipulated by applying
quantum operations including state initialization, quantum gates, and measurement.
Any quantum gate is reversible and can be represented by a 2n × 2n unitary matrix U ,
that is, UU † = I , where U † is the Hermitian conjugate operator of U and n is the number
of qubits it acts on. The evolution of unitary U on a quantum system represented by a
vector state |ψ〉 and a density matrix ρ can be described respectively as

|ψ〉 U→U |ψ〉
and

ρ
U→UρU †.

Some of the most commonly used quantum gates are single-qubit gates and multi-
qubit gates.

Single-qubit gates: Any single-qubit gate can be seen as a rotation of the Bloch
sphere around some of the axis by an angle θ. For instance, Pauli X , Y , and Z gates
are a rotation of the Bloch sphere around the x̂-axis, ŷ-axis, and ẑ-axis by π (Figure 2.1),
respectively. The matrix representation of single-qubit gates including Identity (I), Pauli
X ,Y , Z , Hadamard (H), S,T are described as follows:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

H = 1�
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0
0 eiπ/4

]
.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 24PDF page: 24PDF page: 24PDF page: 24

2

10 2. BACKGROUND

The group that is generated by all the Pauli matrices (I , X ,Y , Z) is called the Pauli
group. The Pauli group on one qubit is defined by

P1 = {±1,±i }× {I , X ,Y , Z }.

Then the n-qubit Pauli group, Pn , is generated by the tensor product of all 1-qubit Pauli
group Pi , i ∈ {1,2, · · · ,n}. Moreover, any two elements of the Pauli group either commute
or anti-commute. If two operators A and B commute, then

[A,B] = AB −B A = 0.

If they anti-commute then
{A,B} = AB +B A = 0.

Where [A,B] and {A,B} are called commutator and anti-commutator, respectively. For
example, the Pauli gates X ,Y , Z anti-commute with each other, that is,

{X ,Y } = 0,{X , Z } = 0,{Z ,Y } = 0.

Multi-qubit gates: Commonly used multi-qubit gates include two-qubit gates such
as the controlled-not (CNOT) and the controlled-phase (CZ) and three-qubit gates like the
controlled-controlled-not gate (Toffoli). The CNOT gate is the equivalent of the classical
XOR gate that flips the target qubit when the control qubit is |1〉, and otherwise leaves it
unchanged. Similarly, the CZ gate performs a Z operation on the target qubit only if the
control qubit is |1〉. The matrix representation of the controlled-not and the controlled-
phase gates are:

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ , CZ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ .

Measurements: Different from quantum gates, quantum measurements are not re-
versible. A measurement will project a quantum system into one of the basis states,
destroying the superposition. As mentioned previously, measuring a single qubit |ψ〉 =
α |0〉+β |1〉 in the computational (or Z) basis will project the qubit to either |0〉 state with
probability |α|2 or |1〉 state with probability |β|2, yielding the corresponding measure-
ment outcomes 0 and 1, respectively. One can also measure a single qubit in any other
basis, provided that the basis states are orthonormal such that |α|2 +|β|2 = 1. For exam-
ple, the orthonormal basis states of the X basis are |+〉 and |−〉. Analogously, one can
also measure multiple qubits in any orthonormal basis. A quantum measurement can
be described by a collection of measurement operators, {Mm}, where m indicates the
corresponding measurement outcome and

∑
m M †

m Mm = I . Assume this measurement
is applied on a quantum state described by the density matrix ρ, then the probability of
obtaining measurement outcome m is

p(m) = tr (M †
m Mmρ),

and the state after measurement is

M †
mρMm

tr (M †
m Mmρ)

.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

2.1. BASICS OF QUANTUM COMPUTING

2

11

2.1.3. UNIVERSALITY

In order to be able to implement any quantum circuit, a universal set of quantum gates
is required. One universality construction is that any quantum gate can be exactly de-
scribed by single-qubit and CNOT gates. However, not all the gates can be efficiently
implemented with high fidelity in real quantum processors and only a finite number of
of gates can be predefined. For instance, in the superconducting processor in [24], nor-
mally the single-qubit gates are limited to X (Y)-axis rotations with certain angles and
the primitive two-qubit gate is the controlled-phase gate. Therefore, a discrete univer-
sal set of quantum gates is required to perform quantum computation, meaning that any
arbitrary quantum gate can be approximately implemented by a finite sequence of those
gates. The discrete universal gate set choice depends on the quantum hardware and QEC
schemes. One of the most popular universal set of quantum gates is {H ,S,T , CNOT}. Any
given high-level circuit needs to be decomposed into one which only contains the gates
belonging to the universal set. For instance, the Toffoli gate can be implemented by us-
ing gates in {H ,S,T , CNOT} as shown in Figure 2.2.

• • • • • T

• ≡ • • T † T † S

H T † T T † T H

Figure 2.2: The decomposition circuit of the Toffoli gate.

2.1.4. THE STABILIZER FORMALISM

We have introduced the vector state and the density matrix methods to describe quan-
tum states in the vector spaces. We also use the unitary operators to describe the dy-
namics of these states. However, a unitary that acts on a n-qubit system needs to be
described by a 2n × 2n matrix, which is difficult or impossible to simulate in classical
computers for a large number n. In this section, we provide an introduction of another
way of describing quantum systems, called stabilizer formalism [25]. The stabilizer for-
malism describes quantum states efficiently by using the operators that stabilize them (a
unitary U stabilizes a pure state |ψ〉 if U |ψ〉 = |ψ〉). For instance, the states |0〉 and |+〉 are
stabilized by the operators Z and X , respectively. If a n-qubit vector space Vs is stabilized
by S which is a subgroup of Pn , then every state in Vs is stabilized by every element of S
and S is called the stabilizer of Vs . Note that S must be Abelian, so that any two operators
in S commute with each other and −I must not be in S. In addition, a stabilizer group
S can be described by its generators g1, · · · , gl , which are a subset of stabilizers that can
generate any stabilizer in S by multiplication. The stabilizer group S can be written as
S = 〈

g1, · · · , gl
〉

.
Furthermore, the dynamics of a quantum system can also be described efficiently

by this formalism. Instead of computing how a unitary affects the vector state, we only
need to compute how it transforms the stabilizer generators of this state. For example,

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 26PDF page: 26PDF page: 26PDF page: 26

2

12 2. BACKGROUND

the Hadamard gate interchanges states |0〉 and |+〉. We can describe this transformation
by

H X H † = Z , H Z H † = X .

Similarly, the transformation properties of other gates are as follows:

SX S† = Y , SZ S† = Z ;

CNOTX1CNOT† = X1X2, CNOTX2CNOT† = X2, CNOTZ1CNOT† = Z1, CNOTZ2CNOT† = Z1Z2.

The gate set {H ,S, CNOT} generates a popular gate group called Clifford group. The Clif-
ford group is the normalizer of the Pauli group, that is, it transforms each element of the
Pauli group to an element of the Pauli group under conjugation. A quantum computa-
tion which only involves Clifford gates, stabilizer state preparation, and computational
basis measurement can be efficiently simulated by classical computers using the stabi-
lizer formalism according to the Gottesman-Knill theorem [25]. We will use the stabilizer
formalism to describe some quantum error correction codes and quantum computation
in this thesis.

2.2. QUANTUM ERROR CORRECTION AND FAULT-TOLERANT COM-
PUTATION

2.2.1. THE STABILIZER CODES
The idea of quantum error correction is to encode a logical qubit into several physical
qubits called data qubits such that the logical qubit is reliable even though these physical
qubits are imperfect. The possible errors are detected by performing error syndrome
extraction or measurement (ESM) using additional ancilla qubits. The measurement
outcomes of ancillas are called syndromes. A decoding algorithm is applied to identify
highly probable errors based on the observed syndromes. The number of errors that
can be detected and corrected is determined by the code distance d which is defined by
the minimum number of physical operations required to perform a logical operation.
Many kinds of QEC codes have been developed, such as concatenated codes like the
Steane code [26], subsystem codes like Bacon-Shor codes [27], and topological codes
like surface codes [15] derived from Kitaev’s toric code [28].

The Steane code, Bacon-Shor codes, the surface code and many other QEC codes be-
long to a code class called stabilizer codes [29]. A stabilizer code that encodes k logical
qubits into n physical qubits is defined using a stabilizer group S that has n−k indepen-
dent generators, S = 〈

g1, · · · , gn−k
〉

. It means the states of all data qubits are stabilized by

S and form a codespace T = {|ψ〉 |M |ψ〉 = |ψ〉 , |ψ〉 ∈ (
C2

)⊗n
,∀M ∈ S}. We denote such a

code C (S). A logical X operator and a logical Z operator of C (S) anti-commute with each
other, but they commute with all the stabilizers. Moreover, error syndrome extraction is
performed by measuring all stabilizer generators. If an error E ∈ Pn anti-commutes with
a stabilizer, then it can be detected since the measurement result of this stabilizer will
be nontrivial. If an error E belongs to S, then it is harmless since it does not change
the code space. However, if an error E commutes with all the stabilizers but is not in S,
then it is a bad error and cannot be detected. To summarize, for a stabilizer code C (S)
and a set of Pauli errors {E j }, {E j } is a correctable error set if E †

j Ek ∉ N (S)− S, where

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 27PDF page: 27PDF page: 27PDF page: 27

2.2. QUANTUM ERROR CORRECTION AND FAULT-TOLERANT COMPUTATION

2

13

X Z
D1

D2

D3

D4

D5

D6

D7

D8

D9

A1 A2

A3

A4

A5

A6

A7 A8

(a) (b)

Figure 2.3: (a) The qubit layout for the rotated distance-3 surface code where data qubits are on the vertices
(solid circles) and ancilla qubits are on the plaquettes (open circles). The purple (pink) squares and semi-
circles represent stabilizers of the form X (Z)⊗4 and X (Z)⊗2, respectively. (b) Circuits for measuring X - and
Z -stabilizers (XD5,D2,D4,D1 and ZD6,D3,D5,D2).

N (S) = {g | g s = sg , s ∈ S} is the normalizer of S. In addition, the distance of the code
C (S) is the minimum weight of an operator in N (S)−S.

2.2.2. THE SURFACE CODE

The surface code is a topological stabilizer code implemented on a 2-dimensional array
of physical qubits with only NN interactions as shown in Figure 2.3a. It consists of two
types of qubits, data qubits (solid circles) for storing computational information, and
ancilla qubits (open circles) used to perform stabilizer measurement. Each ancilla qubit
is coupled to 2 or 4 data qubits, depending on the stabilizer size. Each data qubit inter-
acts with 2 or 4 ancillas in two differently colored plaquettes, which correspond to two
types of stabilizers, X -stabilizers for detecting Z errors, and Z -stabilizers for detecting
X errors. For instance, an error XD2 will result in −1 syndromes on stabilizers ZD1,D2

and ZD2,D3,D5,D6. The circuits to perform X - and Z -stabilizer measurement are shown
on Figure 2.3b. We define a SC cycle as the interval between the starting points of two
consecutive ESM. In principle, one only needs one SC cycle to detect data errors. How-
ever, errors can also occur on measurement qubits and may change the syndromes of
measured stabilizers. At least d SC cycles are required to detect both data (in space) and
measurement (in time) errors [30]. Decoding algorithms such as minimum weight per-
fect matching [31, 32, 33], re-normalization group [34], tensor networks [35], and neural
networks [36, 37] can be used to identify the possible errors which lead to observed syn-
dromes with high probability [30]. Rather than physically performing these corrections
which will introduce more errors to the quantum system, errors can be tracked by clas-
sical control software [30] such as ‘Pauli Frame’ [38].

In surface codes, there are two main ways of encoding a single logical qubit, using
a planar or a defect approach. For the planar approach, an entire patch is used to en-
code just one logical qubit as shown in Figure 2.3a. The defect logical qubit is realized
by creating two Z-cut holes (turn off Z-stabilizers) or X-cut holes (turn off X-stabilizers),
more details can be found in [15]. Planar surface codes require fewer physical qubits to

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

2

14 2. BACKGROUND

encode one logical qubit for the same code distance compared to the defect approach.
This is why current quantum technologies in which qubits are scarce resources are pur-
suing the realization of planar SC quantum hardware [39]. This thesis will only focus on
planar surface codes.

2.2.3. FAULT-TOLERANT QUANTUM COMPUTATION

Quantum error correction could recover quantum states from errors, which is useful for
storing and transmitting quantum information. However, it is not sufficient for realiz-
ing reliable quantum computers since the encoding and computing processes will in-
evitably introduce errors that can propagate and accumulate through quantum opera-
tions, causing the whole computation to fail. Therefore, fault-tolerance is necessary for
the implementation of both quantum error correction and quantum computation. A
procedure is fault-tolerant if one single error cannot spread more than one error to each
code block. The most robust and efficient method to fault-tolerantly perform logical
operations is the transversal implementation, that is, performing bit-wise or pair-wise
physical operations on the data qubits of the code. In planar SC, initialization, measure-
ment, Pauli gates, and H can be implemented transversally. For example, the X and Z on
SC-17 (Figure 2.3a) can be realized by performing XD1,D2,D3 and ZD1,D4,D7. In principle,
a FT CNOT gate between two planar surface code qubits can be implemented transver-
sally. However, this transversal CNOT requires a 3D architecture, which is not realizable
in current quantum technologies that have 2D architectures with nearest-neighbor qubit
connectivity. Alternatively, a FT CNOT gate can be achieved by a technique called lattice
surgery [18] that complies to the 2D NN interaction constraint. The detailed implemen-
tation of lattice-surgery-based CNOT gates will be introduced in Chapter 2.

To complete a universal set of gates on surface codes, one also needs to implement
a logical T gate in surface codes. The FT implementation of a T gate in surface code re-
quires ancillary qubits prepared in specific states called magic states. Similarly, a logical
S gate also has to be implemented indirectly. The circuits to perform a logical S and a
logical T using magic states are shown in Figure 2.4 [40]. Magic states |Y 〉 and |A〉 need to
be prepared for S and T , respectively. One can prepare these magic states by using an in-
jection procedure that can be implemented by measurement-based operations [18, 19].
However, the state injection procedure is not fault-tolerant and injected states need to
be purified by another procedure called state distillation [40, 41, 42, 43, 44]. However,
magic state distillation is a non-deterministic procedure, it must be repeated until the
measurement results indicate one state is successfully purified. The success probabil-
ity of distillation (Ps) depends on the logical error rate on input states (p), and once
it succeeds, the infidelity of the accepted state will be suppressed (e.g., the infidelity is
suppressed to O(p3) in [15]). Moreover, multiple rounds of successful distillation may
be required to achieve the desired state infidelity O(pn). Therefore, magic state distilla-
tion is extremely resource- and time-consuming. In fact, it may be the most expensive
procedure in quantum computing.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 29PDF page: 29PDF page: 29PDF page: 29

2.3. MAPPING OF QUANTUM CIRCUITS

2

15

|ψ〉
|Y 〉 H H

S |ψ〉
|Y 〉

(a)

|A〉
|ψ〉

S

[
I
XZ

]
T |ψ〉

(b)

Figure 2.4: The circuits to perform a logical S (a) and a logical T (b).

2.3. MAPPING OF QUANTUM CIRCUITS

2.3.1. HARDWARE CONSTRAINTS

When adopting the circuit model as a computational model, quantum algorithms can be
represented by quantum circuits consisting of qubits and gates. These circuits are nor-
mally hardware-agnostic and cannot be directly executed on real quantum processors
that have many hardware constraints, including the followings:

• Elementary gate set: To enable the implementation of any quantum circuit, a uni-
versal set of quantum operations including qubit preparation and measurement,
single-qubit rotations, and multi-qubit gates, are required. However, generally
only a finite number of quantum gates with relatively high fidelity are predefined
on real quantum processors, composing the elementary gate set. For instance, X
and Y rotations with ± 45, ± 90 and± 180 degrees, and control-phase gates are nor-
mally predefined on the superconducting processor in [24]. Therefore, any given
quantum circuits need to be decomposed into one which only consists of the pre-
defined elementary gates.

• Qubit connectivity: One of the most promising physical qubit layouts that is being
pursued for many quantum technologies like superconducting qubits [16, 45] and
quantum dots [17, 46], is a 2D architecture that only allows nearest-neighbor inter-
actions. Non-neighboring qubits need to be moved to be adjacent for interacting,
which can be implemented by either physical movement of qubits (e.g., ion shut-
tling in ion trap quantum processors [47]) or virtual movement through quantum
operations (e.g., exchanging the states of two qubits by SWAP gates). These move-
ment operations will result in an overhead in the number of qubits and gates as
well as in the execution time (latency) of the circuit, decreasing the reliability of a
given quantum algorithm.

• Classical control: classical electronics are required for controlling and operating
the qubits. Using a dedicated instrument per qubit is not scalable and very expen-
sive approach. For a practical fabric of quantum processors, it is necessary to sim-
plify classical control hardware, which restricts the control signals for implement-
ing quantum operations and in turn limits the possible parallelism of quantum
operations. For example, three microwave frequencies are used for single-qubit
control and eight detuning frequencies are used for two-qubit gates in a super-
conducting surface-code fabric [39].

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 30PDF page: 30PDF page: 30PDF page: 30

2

16 2. BACKGROUND

2.3.2. THE MAPPING PROCEDURE

All these constraints may vary between different quantum technologies and different
processors. To comply with these hardware constraints when implementing quantum
algorithms, a procedure called mapping of quantum circuits is therefore required. The
mapping includes placement and routing of qubits as well as scheduling of operations.
That is, it places virtual qubits in the circuit to hardware qubits in the processor; it finds
routing paths to move non-neighboring qubits to be adjacent for interaction; and it
schedules quantum operations to exploit available parallelism with respect to the data
dependencies. The implementation details of each mapping module will be explained in
Chapter 4 and Chapter 7. The mapping of quantum circuits will result in an overhead in
terms of the number of operations, circuit depth, and circuit latency (the real execution
time of a circuit). Therefore, reducing the overhead caused by the mapping procedure
will be crucial to improve the reliability of quantum algorithms.

Figure 2.5: Mapping of a quantum circuit onto a 2D NN architecture, the circuit and its QASM description are
shown on the top. Operations in the same bracket (QASM code) correspond to the gates that can be performed
in parallel (separated by dashed lines in the circuit).

An example of mapping a (physical) quantum circuit onto a 2D NN architecture con-
sisting of 3×3 qubits, including placement and routing of qubits as well as scheduling
operations, is shown in Figure 2.5. In this example only the qubit connectivity constraint
is considered and it assumes that all the operations take one time-step. The given circuit
is first scheduled in an as-soon-as-possible manner as shown in the middle of Figure 2.5
where the operations between two dashed lines are performed at the same timestep. It

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

2.3. MAPPING OF QUANTUM CIRCUITS

2

17

will take five timesteps to execute this circuit if the connectivity constraint is not consid-
ered. This circuit is also described by a quantum assembly (QASM) language [23, 48]. The
QASM description of the pre-scheduled circuit is shown on the top, where the operations
inside the same bracket are performed in parallel. Furthermore, an initial placement of
these seven qubits is shown in the layout at timestep 1. All the operations scheduled at
timesteps 0 to 3 can be directly performed on this layout. However, in order to perform
the CNOT gates on (q0, q5) and (q2, q3) at timestep 4, two SWAP gates (in red) need to be
inserted to route qubits to be adjacent. The layouts of qubit change during the routing
procedure as shown on the bottom of Figure 2.5. In total, four SWAP gates are inserted
for mapping this circuit, increasing the number of operations and the circuit timesteps
from 14 to 18 and from 5 to 7, respectively.

As we will show in this thesis, the mapping procedure is required not only for run-
ning quantum algorithms in current and near-term processors where no QEC is used
(Chapter 7), but also for performing fault-tolerant quantum computation using QEC in
large-scale devices. This is because 1) the syndrome extraction circuits of a quantum
error correction code have requirements on the connectivity between physical qubits
(e.g. the surface code requires 2D NN interactions); 2) the fault-tolerant implementation
of logical operations causes extra constraints at the logical level (e.g. a lattice-surgery-
based CNOT on rotated planar surface codes requires the logical qubits to be placed in
specific neighboring positions.). The mapping of surface-code-based quantum circuits
will be discussed in Chapter 4.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 33PDF page: 33PDF page: 33PDF page: 33

3
FAULT-TOLERANT COMPUTATION

BASED ON SURFACE CODES

The large-scale execution of quantum algorithms requires basic quantum operations to
be implemented fault-tolerantly. The most popular technique for accomplishing this, us-
ing the devices that can be realized in the near term, uses stabilizer codes which can be
embedded in a planar layout. The set of fault-tolerant operations which can be executed
in these systems using unitary gates is typically very limited. This has driven the devel-
opment of measurement-based schemes for performing logical operations in these codes,
known as lattice surgery and code deformation. In parallel, gauge fixing has emerged as
a measurement-based method for performing universal gate sets in subsystem stabilizer
codes. In this chapter, we show that lattice surgery and code deformation can be expressed
as special cases of gauge fixing, permitting a simple and rigorous test for fault-tolerance
together with simple guiding principles for the implementation of these operations. We
demonstrate the accuracy of this method numerically with examples based on the surface
code, some of which are novel.

The results of this chapter have been published in C. Vuillot*, L. Lao*, B. Criger, C. G. Almudever, K. Bertels, B.
Terhal, Code deformation and lattice surgery are gauge fixing, New Journal of Physics 21, 033028 (2019).
*Those authors contribute equally to this paper. In particular, L. Lao was involved in all the conceptual under-
standing of the gauge fixing idea and executed the numerical work.

19

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 34PDF page: 34PDF page: 34PDF page: 34

3

20 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

3.1. INTRODUCTION

Q UANTUM computers can implement algorithms which are much faster than their
classical counterparts, with exponential speedup for problems such as prime fac-

torization [1], and polynomial speedup for many others [2]. The main obstacle to con-
structing a large-scale quantum computer is decoherence, which partially randomizes
quantum states and operations. Although state-of-the-art coherence times are now ap-
preciably longer than gate times [4, 3], they remain too short for useful quantum com-
putation.

To counter the effect of decoherence on quantum states which are stored or ma-
nipulated imperfectly, we can encode logical qubit states into several physical qubits,
and perform non-destructive multi-qubit measurements of the resulting system to ex-
tract information about which errors have occurred, called the syndrome. The spaces of
multi-qubit states used to encode these logical states are called quantum error-correcting
codes, and their ability to correct errors is measured by the distance d , which is the num-
ber of independent errors (or error weight) necessary to alter the state of the logical
qubits without being detected. In order to use one of these codes in practice, it is also
necessary to account for the effect of decoherence on operations. For example, a syn-
drome measurement may involve a sequence of entangling gates, and the error caused
by a faulty gate on a small set of qubits in the beginning of the circuit may propagate onto
many qubits, producing a high-weight error, increasing the likelihood of a logical error.
Measurement results can also be corrupted by decoherence, so syndrome extraction of-
ten has to be repeated. In order to prevent error propagation during repeated measure-
ment, syndrome extraction circuits must be designed such that a small number of faults
(from imperfect gates or memory errors on data qubits) will result in a small number of
errors on the physical qubits, which can be corrected using noisy syndromes. Given a
family of codes of different distances, we can determine a threshold error rate, the rate
beneath which codes with higher distance produce lower logical error probabilities.

Several such families of quantum error-correcting codes have been developed, in-
cluding concatenated codes [26, 49], subsystem codes such as Bacon-Shor codes [27],
and 2D topological codes. The most prominent 2D topological codes are surface codes
[15] derived from Kitaev’s toric code [28], which we will focus on in the remainder of this
manuscript. 2D topological codes can be implemented using entangling gates which are
local in two dimensions, allowing fault-tolerance in near-term devices which have lim-
ited connectivity. In addition, 2D topological codes generally have high fault-tolerant
memory thresholds, with the surface code having the highest at ∼ 1% [50].

These advantages come at a cost, however. While other 2D topological codes permit
certain single-qubit logical operations to be implemented transversally, the surface code
does not. In addition, the constraint that computation be carried out in a single plane
does not permit two-qubit physical gates to be carried out between physical qubits in
different code blocks, precluding the two-qubit gates which, in principle, can be carried
out transversally.

These two restrictions have led to the design of measurement-based protocols for
performing single- and two-qubit logical gates by making gradual changes to the under-
lying stabilizer code. Measurement-based protocols that implement single-qubit gates
are typically called code deformation [20], and protocols that involve multiple logical

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 35PDF page: 35PDF page: 35PDF page: 35

3.2. CODE DEFORMATION AND LATTICE SURGERY

3

21

qubits are usually called lattice surgery [18]. A separate measurement-based technique,
called gauge fixing [51], can be applied to subsystem codes, which have operators which
can be added to or removed from the stabilizer group as desired, the so-called gauge
operators. During gauge fixing, the stabilizer generators of the subsystem code remain
unchanged, and can be used to detect and correct errors; so decoding is unaffected by
gauge fixing. This is in contrast to code deformation and lattice surgery, where it is not a
priori clear which measurement results to incorporate into decoding, or how to process
them. Recently, many different code deformation and lattice surgery techniques have
been devised, most of which use tailor-made analysis or decoding techniques, see e.g.
[19, 52, 53, 54, 55, 56, 57, 58].

In this chapter, we phrase existing lattice surgery and code deformation protocols
as special cases of gauge fixing, showing that the underlying subsystem code dictates
the fault-tolerance properties of the protocol. This perspective can simplify the analysis
of new measurement-based protocols, provided that they are based on stabilizer codes
whose distances can be easily calculated. Also, knowing the stabilizer of the underlying
subsystem code results in clear guidelines for decoding using the measurement results
produced by such a protocol.

The remainder of this chapter is organized as follows. In Section 3.2, we review the
ideas behind code deformation and lattice surgery. In Section 3.3, we review the formal-
ism of gauge fixing. Following this, in Section 3.4, we formulate lattice surgery and code
deformation operations as gauge fixing, demonstrating that fault-tolerant code defor-
mation protocols are in fact based on high-distance subsystem codes. We also show this
explicitly using both well-known and novel protocols. In Section 3.5, we numerically de-
termine the performance of these protocols. We conclude and discuss potential future
research in Section 3.6.

In all figures in this chapter, qubits are located on the vertices of the drawn lattice.
We refer to the local generators of the stabilizer group of the surface code as stabilizers
or checks. In the figures, black regions signify X -stabilizers and light gray regions Z -
stabilizers, with no stabilizers measured on white plaquettes.

3.2. CODE DEFORMATION AND LATTICE SURGERY

3.2.1. CODE DEFORMATION

Code deformation is a technique to convert one code into another by making a series of
changes to the set of stabilizer generators to be measured in each round of error correc-
tion.

Typically, these protocols use ancilla prepared in entangled and/or encoded states as
a resource. Also, a typical code deformation sequence proceeds gradually, first expand-
ing the code into a large intermediate code by entangling the original code block with
the ancilla, then disentangling some of the qubits (which may include some or all of the
original data qubits), producing a final code which can then be used for further compu-
tation. The initial and final code may differ in their logical operators, in which case the
deformation performs a logical operation. Also, the initial and final code may differ in
their position or orientation within a larger quantum computer.

For example, consider the proposed fault-tolerant procedure for lattice rotation of

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 36PDF page: 36PDF page: 36PDF page: 36

3

22 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

(a) (b) (c)

(d) (e)

d× d

(f)

Figure 3.1: Fault-tolerant procedure for rotating a surface code by 90◦ and reflecting it about the x axis (see
[18, Figure 10] for the corresponding protocol using smooth/rough boundaries). (a) Initial layout where the
5×5 lattice is to be rotated, the three 3×4 patches are ancillas in fixed states, fully specified by the stabilizers
shown. (b) Intermediate lattice, this step is required to expand the lattice fault-tolerantly. (c) Fully expanded
lattice. (d) and (e) Splitting operations performed to shrink the lattice. (f) By using the two steps from (a) to
(c) at the same time on all corners, one can grow a lattice from distance d to 3d −4. The surrounding ancillary
patches have (d −2)× (d −1) qubits each.

surface codes shown in Figure 3.1, similar to the one presented in [30]. One can see five
steps which gradually modify the surface code patch starting at the bottom right of Fig-
ure 3.1a and ending at the top left of Figure 3.1e in a different orientation. First, three
ancillary patches are prepared in fixed states, and placed near the upper left corner of
the target patch. Then, the patch undergoes a two-step growing operation, followed by
a two-step shrinking operation. Advancing one step is done by measuring the operators
corresponding to the new stabilizers, some of which anti-commute with the old ones.
Measurement of these new stabilizers will return ±1 values at random. This means that
additional corrections, unrelated to errors that may have occurred, are needed in order
to enter the new code space (the mutual +1-eigenspace of all new stabilizers). Moreover,
to account for noisy operations, one must simultaneously perform error correction. Af-
ter one is confident that the encoded state is in the new code space, one can proceed to
the next step.

In Section 3.4, we will demonstrate that, following these five steps, one can fault-
tolerantly protect the logical information at all times with a distance-5 code. We also
show that the distance would be reduced to 3 if one were to omit step (Figure 3.2b), going
directly from (Figure 3.2a) to (Figure 3.2c), as one would do when directly adapting the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 37PDF page: 37PDF page: 37PDF page: 37

3.2. CODE DEFORMATION AND LATTICE SURGERY

3

23

(a) (b) (c)

Figure 3.2: A procedure to flip a lattice using code deformation. (a) The lattice to be flipped, and the physical
qubits prepared in |+〉 states. (b) The flip operation is realized by merging the original lattice with the phys-
ical qubits below. (c) Subsequently measuring the physical qubits at the top in the X basis finishes the flip
operation.

established surface code rotation method from [18] to rotated surface codes.
This lattice rotation followed by the lattice flip in Figure 3.2 are useful for performing

a transversal Hadamard gate. The transversal Hadamard gate on a surface code patch,
performed by applying a Hadamard gate on each qubit, interchanges X and Z plaque-
ttes. This code transformation can be undone by a lattice rotation, followed by a lattice
flip. Moreover, part of this rotation procedure can be used to grow a code with distance
d to a code with distance (3d −4) in two steps by simultaneously growing all corners, see
Figure 3.1f.

This type of code deformation does not, in itself, perform logical operations, but can
be used to move patches of code or to convert between codes where different gates are
transversal [53]. Other code deformation procedures such as moving holes or twists do
perform unitary logical Clifford operations [55, 59, 60]. In the next section, we present
another similar procedure which executes a logical measurement.

3.2.2. LATTICE SURGERY
Lattice surgery is a particular measurement-based procedure that acts non-trivially on
logical information. By going through two steps of deformation, it implements a joint
measurement of logical operators, typically X 1X 2 or Z 1Z 2, where X j and Z j denote the

logical operators of the logical qubit j . We will focus on the Z 1Z 2 measurement and
review the protocol used for the surface code [18, 19].

Consider two patches of L ×L rotated surface code, as in Figure 3.3a. Each has a Z
along the boundary which faces the other patch. In the merge step, one measures the
intermediary Z -plaquettes (in pink in Figure 3.3b). These plaquettes are such that the
product of all outcomes is the outcome of the Z 1Z 2 measurement, but any subset of
these outcomes produces a random result when multiplied together. This ensures that
the only non-stabilizer operator whose eigenvalue can be inferred from these measure-
ments is Z 1Z 2. These measurements do not commute with the weight-2 X stabilizers at
the joint boundary (in Figure 3.3a). The Gottesman-Knill theorem [25] prescribes how
to update the stabilizer after such measurements, namely we only retain elements in

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 38PDF page: 38PDF page: 38PDF page: 38

3

24 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

(a)

Merge−−−−→

(b)

Split−−−→

(c)

Figure 3.3: Lattice surgery for the rotated surface code. Grey plaquettes show Z -stabilizers, black plaquettes
represent X -stabilizers. A ‘±’ label indicates a random sign for the corresponding plaquette in the stabilizer
group. (a) Initial layout, two rotated surface codes. (b) The merged lattice, which is a surface code with random
± signs on the newly-measured (red) plaquettes. (c) The split lattices, in which the original stabilizers are
measured again. Random ± signs are produced on the boundary X -stabilizers.

the original stabilizer group which do commute with the newly measured stabilizers.
This implies that the code becomes a 2L × L patch of surface code, apart from some
minus signs on the newly-measured Z -checks. This merge step is very similar to the ro-
tation presented before, except that some logical information is gained in the process
and the additional corrections which fix the state into the new code space may involve
one of the original logical operators (when the number of intermediary plaquettes with
−1 eigenvalues is odd). To finish the protocol, the original code space must be restored
by performing a splitting operation, measuring the original stabilizers of the two sep-
arate patches instead of the intermediary Z -plaquettes. Those Z -plaquettes, as in the
merge step, anticommute with the boundary X -stabilizers, and will be removed from
the stabilizer group. Their product, equal to Z 1Z 2, does commute, and will remain as
a stabilizer of the final state. In addition, the boundary X -plaquettes will have random
± signs which are perfectly correlated between facing pairs. Therefore, one can elimi-
nate these ± signs by applying some of the former stabilizers (those supported on the
intermediary Z -plaquettes).

One can check that depending on the outcome (±1) of the logical Z 1Z 2 measure-
ment, the merge and split operations, respectively M± and S± can be expressed as

M+ = |0〉〈00|+ |1〉〈11| , S+ = |00〉〈0|+ |11〉〈1| , (3.1)

M− = |0〉〈01|+ |1〉〈10| , S− = |01〉〈0|+ |10〉〈1| . (3.2)

They are related to the projections, P±, onto the ±1 eigenspace of Z 1Z 2 by composition:

P+ = S+ ◦M+, P− = S− ◦M−.

In particular, lattice surgery allows us to implement the measurement-based CNOT gate
[61] in a 2D layout with only local operations as shown in Figure 3.4. We note that a

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

3.3. GAUGE FIXING

3

25

|C〉
|0〉
|T 〉

(−1)a

MXX

(−1)b

MZZ
(−1)c

MX

Za+c

Zc

Xb

|C〉
|+〉
|T 〉

(−1)a

MZZ (−1)b

MXX

(−1)c

MZ

Zb

Xc

Xa+c

(a)

C

A T

(b)

Figure 3.4: (a) Two equivalent measurement-based circuits for the CNOT gate. (b) The qubit layout for a
CNOT gate between two surface-code qubits. C is the control qubit, T is the target qubit, and A is a logical
ancilla.

more general set of operations which can be implemented by lattice surgery can be con-
structed using the relation between the merge and split operations considered here and
the three-legged nodes of the ZX-calculus [62]. For the purposes of this work, however,
we will limit our discussion to CNOT gates.

3.3. GAUGE FIXING
Gauge fixing [51] is an approach which has been used to implement universal fault-
tolerant gate sets in subsystem codes [63]. A subsystem code is equivalent to a stabilizer
code in which some of the logical qubits are not used to carry any logical information.
These logical qubits are called gauge qubits and they can be acted on or measured with-
out disturbing the states of the other logical qubits, which are used to store and process
quantum information. Then, one way to formally define a subsystem code, C , is to de-
fine a subgroup of the Pauli group, called the gauge group G , containing all the Pauli sta-
bilizers as well as the Pauli operators defining the gauge qubits. This subgroup is non-
Abelian as it contains anti-commuting Pauli operator pairs which represent the gauge
qubit logical operators. The stabilizer group, S , can be derived from G as its center,
denoted Z(·), i.e. containing all elements in G which mutually commute

S = Z(G) =C (G)∩G , (3.3)

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

3

26 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

where C (G) denotes the centralizer of G in the Pauli group, i.e. all elements in the Pauli
group with commute with all elements in G . Elements in G which are not in S are the
Pauli operators acting non-trivially on the gauge qubits: this is the set of gauge operators
Lg

Lg =G \S . (3.4)

Following this, one can define operators for the actual logical qubits which by definition
are elements in C (S) \ S . If these operators act trivially on the gauge qubits, we call
these bare logical operators. Bare logical operators can be multiplied by elements in Lg

to become dressed logical operators which also act on the gauge qubits. We can write

Lbare =C (G) \G , Ldressed =C (S) \G . (3.5)

Note that with this definition we have, Lbare ⊂ Ldressed. The distance of the subsystem
code C is the smallest weight of any of its logical operators,

dC = min
	∈Ldressed

wt(). (3.6)

One advantage of subsystem codes is that to measure stabilizers, one is free to mea-
sure any set of checks in the gauge group as long as this set generates the stabilizer group.
By measuring elements in the full gauge group, one can put the gauge qubits in specific
states, permitting different sets of transversal logical gates. This act of putting the gauge
qubits in a specific state is called gauge fixing. The idea is to measure a commuting
subset of gauge operators (all the Z -type gauge operators, for example), obtaining ±1
outcomes and applying the anticommuting, or conjugate partner operator (an X -type
gauge operator in the example), wherever a −1 outcome has been obtained. In the ex-
ample, this would fix all gauge qubits to the |0〉 state. While the gauge is fixed in this way,
the Z -type gauge operators become elements of the stabilizer group, so S is augmented
to some larger Abelian subgroup of G . In Section 3.7.1, we will show an example of how
code conversion between the �7, 1, 3� Steane code to the �15, 7, 3� Reed-Muller code can
be viewed as gauge fixing.

3.4. FAULT-TOLERANCE ANALYSIS WITH GAUGE FIXING
In this section, we will briefly show that one can use gauge fixing to analyze the fault tol-
erance of both code deformation and lattice surgery operations. A more detailed analysis
can be found in [64].

3.4.1. FAULT-TOLERANCE OF CODE DEFORMATION
We consider the QEC codes before and after an operation, represented by Cold and Cnew,
with stabilizer groups Sold and Snew. Both codes are fully defined on the same set of
qubits. The logical operators of each code are defined as

Lold =C (Sold) \Sold , Lnew =C (Snew) \Snew.

We first need to define a joint subsystem code C̃ from these two codes. The general
idea is that the gauge group of C̃ , G̃ , is generated by both Sold and Snew, so

G̃ = 〈Sold,Snew〉.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

3.4. FAULT-TOLERANCE ANALYSIS WITH GAUGE FIXING

3

27

The center of G̃ , denoted S̃ , gives the stabilizer group of our subsystem code C̃ . The
elements in G̃\S̃ are gauge operators, we denote them L̃g . Note that L̃g does not nec-
essarily contain the full algebra for a definite number of gauge qubits. There could be
some Pauli operators in the gauge group whose anti-commuting counterparts are not.
For example, this is the case in the lattice surgery merge, where G contains a represen-
tative of Z 1Z 2 but not any X 1 or X 2. In that case we extend G̃ and L̃g to G and Lg by
adding the missing anti-commuting counterparts, fully defining the underlying subsys-
tem code C . The gauge group G whose center is solely

Z(G) =S =Sold ∩Snew.

Then, the logical operation that transforms Cold into Cnew is realized by fixing some
gauge operators in Lg = G\S . The group Mfix ≡ G̃ \ Sold is the set of all fixed gauge
operators. Once the subsystem code C is defined, one can verify the fault tolerance of
this operation by checking three criteria:

1. Code distance: The distance of the subsystem code, C , must be large enough for
the desired protection. Ideally it matches the distances of Cold and Cnew so the
degree of protection is not reduced during the deformation step.

2. Error correction: The error correction procedure follows that of the subsystem
code C through the code deformation step.

3. Gauge fixing: To fix the gauge, one has to use operators exclusively from Lg .

More specifically, criterion 2 means that to perform error correction, one has to re-
construct from the measurements of Snew the syndrome given by S . Importantly, cri-
teria 2 and 3 demonstrate that the processes of error correction and that of gauge fix-
ing are two separate processes with different functionality. Both processes require the
application of Pauli operators (in hardware or in software) to make sure that stabilizer
measurements are corrected to have outcome +1. The error correction process does this
to correct for errors, while the gauge-fixing process does this to move from Cold to Cnew.
This description holds for one step of deformation, so that for each step in a sequence of
deformations one has to examine the corresponding subsystem code C and its distance.

In addition, this discussion assumes that stabilizer measurements are perfect. When
one considers noisy syndrome measurements, one needs to ensure that both the stabi-
lizer outcomes and the state of the gauge qubits can be learned reliably. For 2D stabilizer
codes such as the surface code this is simply done by repeating the measurements. To
process this repeated measurement information for the surface code, one no longer uses
the syndrome but the difference syndrome: the difference syndrome is marked as non-
trivial (we say that a defect is present) only when the syndrome value changes from the
previous round of measurement. This difference syndrome or defect gives information
about both qubit errors as well as measurement errors. The construction of difference
syndrome of a code deformation procedure is shown in Figure 3.5. The first round of
measurement of Snew at time Td does not have a previous value to compare to in or-
der to construct a difference syndrome. Therefore, one can only construct defects for
S . Immediately after this step, one can derive the difference syndrome of the full Snew,

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

3

28 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

placing defects accordingly. Using defects before and after Td , one processes error infor-
mation to infer the value of the gauge operators in Mfix at time Tg , thus fixing the gauge
at Tg .

Figure 3.5: Schematic drawing of a code deformation procedure with repeated noisy measurements, with time
increasing upwards. Td designates the time step at which the code deformation (the switch from measuring
the checks of Sold to those of Snew) is performed. Tg is the time at which one is confident enough about
the state of the gauge qubits, taking into account errors, to fix their states. This means that, after Tg , another
logical computation can be performed.

In the remainder of this section, we apply this formalism to the code deformation
and lattice surgery operations discussed earlier.

3.4.2. CODE DEFORMATION EXAMPLES

GROW OPERATIONS

(a)

X ′
1

X ′
2

X ′
3 X ′

4

Z ′
1

Z ′
2

Z ′
3 Z ′

4

X

Z

(b)

Figure 3.6: Description of the subsystem code, C , which holds during the first step of the grow operation de-
picted in Figure 3.1a and Figure 3.1b. (a) Generators for the stabilizer group, S , of C . (b) Generators for the
whole gauge group G of C . Highlighted in red and blue, respectively, are gauge operators, elements of Lg , of

Z -type and X -type, respectively. The logical operators, X , Z ∈Lbare, are also represented in brighter colors.

Gauge fixing, when applied to the growing operations of Figure 3.1 and Figure 3.2,

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

3.4. FAULT-TOLERANCE ANALYSIS WITH GAUGE FIXING

3

29

reveals an underlying subsystem code with a small number of widely-spaced holes and
large boundaries, resulting in a high distance. The stabilizer group, S , as well as the
gauge operators, Lg , for the subsystem code C which governs the deformation from
Figure 3.1a to Figure 3.1b, are shown in Figure 3.6.

In all figures of this chapter, light blue and light red patches individually represent
X -type and Z -type gauge operators, and bright blue and bright red qubit chains are X
and Z operators respectively. The grow operation is changing the gauge from one in
which the gauge operators not overlapping between the initially separate patches are
fixed, denoted as

{
X ′

1, X ′
2, Z ′

3, Z ′
4

}
in Figure 3.6b, to one in which the overlapping ones

are fixed, denoted as
{

Z ′
1, Z ′

2, X ′
3, X ′

4

}
in Figure 3.6b. The distance of C is still 5, matching

the distance of the initial code.
Now consider what happens if we would go directly from Figure 3.1a to Figure 3.1c.

The stabilizers and the gauge operators for this operation are shown in Figure 3.7. Sim-
ilarly, one fixes the gauge going from separate patches to a single patch. The distance
of the subsystem code for this operation is only 3. Indeed one of the minimum-weight
dressed logical operators is the Z on the qubits in the green box in Figure 3.7b. That
means that, in order to preserve the code distance, one should perform the intermedi-
ary step.

(a)

X ′
1

X ′
2

X ′
3

X ′
4

X ′
5

X ′
6 X ′

7

Z ′
1

Z ′
2

Z ′
3

Z ′
4

Z ′
5

Z ′
6 Z ′

7

X

Z

(b)

Figure 3.7: The operators of the subsystem code for the one-step grow operation from Figure 3.1a to Figure 3.1c,
skipping Figure 3.1b: (a) The stabilizers which generate S and (b) the whole gauge group, G , with highlighted
gauge operators and logical operators.

THE MERGING AND SPLITTING OPERATIONS

In this section, we interpret the joint measurement of Z Z by lattice surgery in Figure 3.3b
as gauge fixing. The stabilizer group S is generated by all the stabilizers in Figure 3.8a.
The gauge operators, Lg , of the gauge group are given by three representatives of the
logical X of the top patch and the intermediary Z plaquettes that anti-commute with
them. They are denoted as

〈
X ′

1, Z ′
1, X ′

2, Z ′
2, X ′

3, Z ′
3

〉
in Figure 3.8b. Representatives of the

bare logical operators, X , Z ∈Lbare, are the logical Z of the bottom patch and the logical
X of the merged patch (joining the very top to the very bottom), see Figure 3.8b. The
merge and split operations are realized by fixing some gauge operators of Lg , resulting

in new codes Cmerged or Csplit, respectively. Note that the weight of X of the subsystem

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

3

30 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

(a)

X ′
1 X

′
2 X ′

3

Z ′
1 Z ′

2 Z ′
3

X

Z

(b)
(c) (d)

Figure 3.8: The operators of the subsystem code, C , for the joint measurement Z Z . (a) The generators of
stabilizer group S . (b) The highlighted operators are either gauge operators in Lg or logical operators in
Lbare. We start in the gauge where the products X ′

1 X ′
2 and X ′

2 X ′
3 are fixed, and end in the gauge where Z ′

1, Z ′
2,

and Z ′
3 are fixed. The distance of the subsystem code is 5, since one can construct a logical X with this weight

by multiplying it with X gauge operators. (c) and (d) Two different scenarios with errors of weight d/2 with the
same observed measurements.

code, C , is only d and not 2d which is the distance for X of the merged code. Indeed, by
using the gauge operators like X ′

1 and stabilizers, one can construct a dressed logical X of
weight d . Another way of seeing this is by realizing that one cannot distinguish between
two errors of weight d/2 depicted in Figure 3.8c and Figure 3.8d. In the first one, the
logical measurement outcome is −1 and there is a string of d/2 X -errors from the bottom
to the middle of the bottom patch. In the second one the logical measurement outcome
is +1 and there is a string of d/2 X -errors from the middle of the bottom patch and the
middle (changing the observed logical measurement outcome to −1). Note also that
when performing the splitting operation, one wants to correct the −1 outcomes for some
of the intermediary X stabilizers. They are gauge operators equivalent to, say X ′

1X ′
2. They

have to be corrected using the Z gauge operators, say Z ′
1 in this case. Otherwise one

would introduce a logical Z error.

3.5. NUMERICS
To numerically evaluate the fault-tolerance of quantum computation on rotated pla-
nar surface codes, we simulate logical measurement, rotation, and logical CNOT, us-
ing the Gottesman-Knill formalism [25]. These simulations are carried out using two
different error models, the phenomenological model and the circuit-based model. The
phenomenological error model inserts independent X and Z errors on data qubits with
equal probability p, and measurements output the wrong classical value with probabil-
ity p. The circuit error model inserts errors with probability p after each operation of the
error correction circuit as follows: each single-qubit gate is followed by a X , Y , or Z with
probability p/3, each two-qubit gate is followed by an element of {I , X ,Y , Z }

⊗
2\{I I } with

probability p/15, and each measurement returns the wrong result with probability p. In
this work, except when stated otherwise, the initial logical qubits are prepared without

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

3.5. NUMERICS

3

31

errors when simulating these logical operations.
In Section 3.4.1, we have introduced how to construct defects (difference syndromes)

for a code deformation step and how to process these defects to infer errors and fix gauge
operators (Figure 3.5). For a realistic implementation of logical operations, a decoder
will infer errors in a time window which may include Td or Tg , by processing the de-
fects within the window. This means the decoder should be able to match defects across
time boundaries, e.g., the defects before and after code deformation time Td . In addi-
tion, it needs to construct matching graphs with edges whose endpoints are on different
lattices, e.g., defects of Snew may be matched to virtual defects beyond the past-time
boundary Td . However, such a decoder is difficult to implement. In our simulations, we
insert perfect measurement rounds after blocks of d rounds of measurement (Figure 3.9)
for ease of implementation, where d is the distance of the underlying subsystem code.
A decoder using the minimum-weight perfect matching (MWPM) algorithm is used and
its performance for a fault-tolerant memory operation, that is, d noisy QEC cycles fol-
lowed by 1 noiseless cycle, is shown in Figure 3.10. For each operation (except for plain
surgery), 105 (104) iterations were run per point and confidence intervals at 99.9% are
plotted in the figures.

Figure 3.9: The simulated version of a code deformation procedure in Figure 3.5. A perfect round (a small time
window from red to black dashed lines) is inserted after each block of noisy d rounds of stabilizer measure-
ments. One processes the defects for Sold and corrects errors before the code deformation step Td . Then the
defects for S are constructed at time Td to time Tg and the ‘defects’ for Mfix are constructed one round of
measurement later. At time Tg , one processes error information to infer the value of the gauge operators and
then fixes the gauge.

Single-qubit operations: Transversal operations (preparation, Pauli gates, measure-
ment) are usually realized by performing qubit-wise physical operations. They are in-
trinsically fault-tolerant and their logical error rates will be only slightly higher than a
logical identity gate (memory). Notably, a transversal MZ (MX) measurement does not
require quantum error correction cycles (i.e., Td = Tg) since error syndromes of Z (X)-
stabilizers can be reconstructed from the measurement outcomes of data qubits, this is
also the case for the logical measurement step of plain surgery. For instance, one can
measure all the data qubits in the Z basis to realize a MZ on a planar surface code. After-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

3

32 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

2 2.5 3·10−2
0

0.1

0.2

0.3

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of a MWPM decoder, Phenomenological

d = 3
d = 5
d = 7

(a)

1 3.5 6·10−3
0

0.1

0.2

0.3

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of a MWPM decoder, Circuit-level

d = 3
d = 5
d = 7

(b)

Figure 3.10: Numerical simulations of a fault-tolerant memory operation with the phenomenological error
model near its threshold (∼ 2.75% (a) and the circuit-level error model near its threshold (∼ 0.5% (b).

5 · 10−2 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of logical measurements

d = 3
d = 5
d = 7

Figure 3.11: Numerical simulations of a transversal MZ measurement near its threshold (∼ 10%).

wards, one can compute the Z -syndromes by multiplying the outcomes of correspond-
ing data qubits of each Z -stabilizer and then correct the X errors and deduce the value
of Z . The performance of a MZ measurement for planar surface codes is shown in Fig-

ure 3.11. In this simulation, we first prepare a logical qubit in state |0〉 without errors and
then perform a MZ measurement on it with physical measurement error probability p.
We further numerically simulate the proposed rotating procedure (Figure 3.1) and show
the results in Figure 3.12. For the phenomenological error model, the error threshold of
a rotation is slightly lower than the threshold of quantum memory. For the circuit-level
error model, its threshold is similar to that of quantum memory.

Two-qubit operations: We also simulate the measurement-based CNOT circuits in
Figure 3.4a where the split operations of the first joint measurements are parallelized
with the merge operations of the second joint measurements (see the decomposed cir-
cuits in Section 3.7.2). The overall error rates and the error thresholds for a CNOT gate

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

3.6. DISCUSSION & CONCLUSION

3

33

2 2.5 3·10−2
0

0.2

0.4

0.6

0.8

1

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of rotation, Phenomenological

d = 3
d = 5
d = 7

(a)

1 3.5 6·10−3

0

0.2

0.4

0.6

0.8

1

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of rotation, Circuit-level

d = 3
d = 5
d = 7

(b)

Figure 3.12: Numerical simulations of the rotation procedure in Figure 3.1 without a final flip operation. (a) and
(b) The logical error rates of the rotation procedure with phenomenological error model (The error threshold
is around ∼ 2.5%) and circuit error model (The error threshold is around ∼ 0.45%), respectively.

2 2.5 3·10−2
0

0.2

0.4

0.6

0.8

1

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of CNOT s, Phenomenological

d = 3
d = 5
d = 7

(a)

1 3.5 6·10−3
0

0.2

0.4

0.6

0.8

1

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of CNOT s, Circuit-level

d = 3
d = 5
d = 7

(b)

Figure 3.13: Numerical simulations of a measurement-based CNOT gate by lattice surgery (The top circuit in
Figure 3.4a). (a) Total error rates for CNOT gates with the phenomenological error model near the threshold
(∼ 2.7%). (b) Total error rates for CNOT gates with the circuit-level error model near the threshold (∼ 0.45%).

by lattice surgery are shown in Figure 3.13. For each error model, the error threshold
of CNOT gates is similar to the threshold of quantum memory. Moreover, logical errors
propagate through the measurement-based CNOT circuits, leading to a disparity of log-
ical error rates on control and target qubits, which is demonstrated numerically in Sec-
tion 3.7.2.

3.6. DISCUSSION & CONCLUSION
We have illustrated how to describe current measurement-based operations in 2D topo-
logical quantum computing using the gauge fixing technique. We have shown that, by

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

3

34 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

using the formalism of gauge fixing, the fault tolerance analysis of these code deforma-
tion and lattice surgery protocols is considerably simplified, their error correction and
gauge fixing schemes also become clear. Furthermore, we numerically examined this
method with examples on planar surface codes, including some well-known operations
such as lattice-surgery-based CNOT gates and some novel protocols such as lattice ro-
tation. Although this gauge fixing formalism does not provide direct guidelines on how
to design code deformation protocols for a desired logical operation, it does provide an
easy way to check the fault-tolerance of protocols and search for new ones via iterations
of trial and error.

Moreover, this formalism applies not only to 2D topological codes, but more gener-
ally to any stabilizer code. In the general case (non-topological codes), the analysis of
fault-tolerance in the presence of measurement errors becomes more involved, in par-
ticular with respect to how much repetition is really needed, see for example [65, 66]. We
leave for future work how to obtain general and simple criteria for fault-tolerance.

3.7. APPENDIX

3.7.1. CODE CONVERSION AS GAUGE FIXING
To see the utility of gauge fixing for analyzing code conversion protocols, we consider
two protocols for converting from the �7, 1, 3� Steane code to the �15, 7, 3� Reed-Muller
code with six gauge Z operators fixed (see Figure 3.14 for the stabilizers and gauge op-
erators that define these codes). The first, from Anderson et al [67], is based on the

Steane stabilizers Reed-Muller stabilizersReed-Muller Gauge Operators

Figure 3.14: stabilizers of the Steane and Reed-Muller codes, and Z gauge operators of the Reed-Muller code.
Red tinting on a face or volume indicates the presence of a Z operator on the vertices which make up that
face or volume. For example, there are six Reed-Muller gauge operators of the form Z⊗4, supported on the
red-tinted quadrilaterals seen on the right. Green tinting indicates the presence of both an X and a Z stabilizer
operator.

realization that the state |ψ〉Steane ⊗ 1�
2

(|0〉Steane |0〉+ |1〉Steane |1〉
)

is a code state of the

Reed-Muller code with its horizontal X gauge logical operators fixed, see top-right of
Figure 3.15. Conversion from the Steane code to the Reed-Muller code then involves
fault-tolerantly preparing the eight-qubit ancilla state and fixing the three appropriate
Z gauge operators. The state is always stabilized by the Reed-Muller stabilizers, whose
eigenvalues can be reconstructed from the checks which are measured at every round,
preserving the code distance and allowing error correction by syndrome decoding.

The second scheme, from Colladay and Mueller [68], is not based on gauge fixing,

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

3.7. APPENDIX

3

35

and begins with the eight qubits needed for conversion initialized in the state |0〉⊗8. This
ensures that the initial checks anticommute with any potential X stabilizer supported on
the final eight qubits, so that the only operators whose eigenvalues can be reconstructed
from the measured operators are Z operators, preventing the correction of Z errors (see
Figure 3.15 for a graphical comparison of these code conversion protocols). The differ-
ence in fault tolerance between these two protocols which accomplish the same task
provides us with a good motive to incorporate subsystem codes into the analysis of code
deformation and lattice surgery, considered in the main text.

Examining the Criterion 1 from Figure 3.4.1, one can see that the Anderson scheme
has an underlying subsystem code with distance 3, whereas not having any X -stabilizers,
the Colladay scheme has an underlying subsystem code with distance 1.

Initial Checks (Sold) Final Checks (Snew) stabilizers (S) Gauge Operators (Lg)

Figure 3.15: Comparison between Steane-to-Reed-Muller conversion schemes from [67] (top) and [68] (bot-
tom). Red and green tinting match Figure 3.14, blue tinting indicates an X operator supported on the vertices
of the tinted face or volume. Tinted vertices/edges indicate weight-one/two operators supported on the tinted
vertex/edge. In the Anderson scheme, the subsystem code which applies during the code deformation is made
explicit; it is the distance-three Reed-Muller code. The Colladay scheme, however, does not have any X opera-
tors in the relevant stabilizer, S , so the distance of the relevant subsystem code is only 1, see Figure 3.4. Note:
Gauge operators in the top right should also be present in the bottom right, they are not drawn here for clarity.

3.7.2. DISPARITY IN ERROR RATES OF CNOT GATES
A joint measurement is realized by performing a merge and a split operation in sequence.
In our simulation, the circuits in Figure 3.4a are decomposed into the ones in Figure 3.16.
Figure 3.17 shows that the rates of X /Z errors on the control and target qubits are dif-
ferent for the rotated surface code with d = 5. This disparity can be explained using a
toy model to account for propagation of logical errors through measurement-controlled
corrections.

In this toy model, identity gates result in an X or Z error with probability p (Y er-
rors are assumed to occur with probability ∼ p2, since the minimum-weight Y operator

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

3

36 3. FAULT-TOLERANT COMPUTATION BASED ON SURFACE CODES

has weight 2d −1 in the surface code). The merge operations are modeled as ideal joint
measurements, followed by an error of the form X ⊗1, 1⊗X , Z ⊗1, or 1⊗Z , each oc-
curring with probability p, since these are the likeliest logical errors. If a logical Pauli
error occurs, it propagates forward through the circuit, changing the measured eigen-
value for any measurement operator with which it anticommutes. For example, if an
X ⊗1 error occurs after the MX X operation in Figure 3.4a (in which the ancilla begins in
the |0〉 state), the measured value b will be mapped to 1−b, causing an X operator to be
incorrectly applied to the target qubit at the end of the CNOT. It is easy to confirm that
there are 7 such first-order errors which result in an X error on the target qubit, 6 errors
which result in a Z error on the control qubit, and 3 errors which result in the other log-
ical errors shown in Figure 3.17a and Figure 3.17c (a similar analysis holds for the error
rates shown in Figure 3.17b and Figure 3.17d). The biased logical error rates predicted
by this simplified model are in good agreement with the logical error rates observed in
simulation, shown in Figure 3.17. Preventing this bias from growing during the execu-
tion of a long algorithm, by appropriate selection of decomposition for CNOTs, is likely
an important step in the design of high-performance fault-tolerant circuits for quantum
computation.

(a)

|C〉
|0〉
|T 〉

I

(−1)a

MergeXX

(−1)b

MergeZZ

I

I

I

I

(−1)c

MX

Za+c

Zc

Xb

(b)

|C〉
|+〉
|T 〉 I

(−1)a

MergeZZ

(−1)b

MergeXX

I I

I

I

(−1)c

MZ

Zb

Xc

Xa+c

Figure 3.16: The decomposed circuits (a) and (b) of the top and bottom measurement-based CNOT circuits in
Figure 3.4a.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 51PDF page: 51PDF page: 51PDF page: 51

3.7. APPENDIX

3

37

(a)

2 2.5 3·10−2
0

0.1

0.2

0.3

0.4

0.5

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Ancilla
∣∣0〉, Phenomenological

Xcontrol

Zcontrol

Xtarget

Ztarget

(b)

2 2.5 3·10−2
0

0.1

0.2

0.3

0.4

0.5

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Ancilla |+〉, Phenomenological

Xcontrol

Zcontrol

Xtarget

Ztarget

(c)

1 3.5 6·10−3
0

0.1

0.2

0.3

0.4

0.5

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Ancilla
∣∣0〉, Circuit-level

Xcontrol

Zcontrol

Xtarget

Ztarget

(d)

1 3.5 6·10−3
0

0.1

0.2

0.3

0.4

0.5

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Ancilla |+〉, Circuit-level

Xcontrol

Zcontrol

Xtarget

Ztarget

Figure 3.17: X and Z error rates on the control and target qubits for lattice-surgery-based CNOT operations at
distance 5. (a) and (b) correspond to the phenomenological error model, (c) and (d) correspond to the circuit-
based error model. The disparity in error rates is explained by error propagation through the measurement-
based circuit implementing the CNOT.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 53PDF page: 53PDF page: 53PDF page: 53

4
MAPPING OF LATTICE

SURGERY-BASED QUANTUM

CIRCUITS ON SURFACE CODE

ARCHITECTURES

Quantum error correction (QEC) and fault-tolerant (FT) mechanisms are essential for re-
liable quantum computing. However, QEC considerably increases the computation size
and FT implementation has specific requirements on qubit layouts, causing both resource
and time overhead. Reducing spatial-temporal costs becomes critical since it is beneficial
to decrease the failure rate of quantum computation. To this purpose, scalable qubit plane
architectures and efficient mapping passes including placement and routing of qubits as
well as scheduling of operations are needed. This chapter proposes a full mapping pro-
cess to execute lattice surgery-based quantum circuits on two surface code architectures,
namely a checkerboard and a tile-based one. We show that the checkerboard architecture
is twice as qubit-efficient but the tile-based one requires lower communication overhead
in terms of both operation overhead (up to ∼ 86%) and latency overhead (up to ∼ 79%).

The contents of this chapter have been published in L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Kham-
massi, K. Bertels, C. G. Almudever, Mapping Lattice Surgery-based Quantum Circuits onto Surface Code Archi-
tectures, Quantum Science and Technology 4(1), 015005 (2019).

39

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 54PDF page: 54PDF page: 54PDF page: 54

4

40
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

4.1. INTRODUCTION

B Y exploiting superposition and entanglement, quantum computing can outperform
classical computing while solving certain problems. For example, quantum com-

puters can factor large numbers using Shor’s algorithm with an exponential speedup
over its best classical counterparts [1]. When adopting the circuit model as a compu-
tational model, algorithms can be described by quantum circuits consisting of qubits
and gates. Such a circuit representation is hardware agnostic and assumes, for instance,
that any arbitrary interaction between qubits is possible and both qubits and gates are
reliable.

However, real quantum processors have specific constraints that must be complied
to when executing a quantum algorithm, a procedure for mapping quantum circuits is
therefore required. One of the main constraints in current quantum experimental plat-
forms is the limited connectivity between qubits. A promising qubit structure that is
being pursued for many quantum technologies like superconductors [16, 39] and quan-
tum dots [17, 46], is a 2D grid architecture that only allows nearest-neighbor (NN) in-
teractions. Other 2D qubit structures such as the quantum processors from IBM [14],
Google [69], and Rigetti [45] have even more restrictive connectivity constraints. This
means that non-neighboring or non-connected qubits need to be moved or routed to be
adjacent for interacting -i.e. performing a two-qubit gate, resulting in an overhead in the
number of operations as well as the execution time (latency) of the circuit.

Placing frequently interacting qubits close to each other combined with efficient
routing techniques -e.g. shortest path- can help to reduce the movement overhead. In
addition, exploiting available parallelism of operations will reduce the overall execution
time of the circuit. Note that reducing the number of operations and the total circuit
latency will be of benefit to decrease the failure rate of computation [70, 71]. Therefore,
efficiently mapping quantum circuits on a specific qubit structure, including placement
and routing of qubits and scheduling of operations, is necessary for reliable quantum
computation. Many works have been done to map physical quantum circuits on differ-
ent qubit structures. [72, 73, 74, 75, 76, 77, 78, 79] propose algorithms to map physical
circuits on quantum processors with 2D NN structures. [80, 81, 82] and [83] respectively
focus on IBM and Rigetti processors which both only support interactions on dedicated
neighbors.

Moreover, quantum hardware is error prone, that is, the qubits loose their states (or
decohere) extremely fast and quantum operations are faulty. For instance, supercon-
ducting qubits decohere in tens of microseconds [4] and quantum operations have error
rates ∼ 0.1% [3] compared to ∼ 10−15 for CMOS based devices. Therefore, quantum er-
ror correction (QEC) and fault-tolerant (FT) mechanisms are needed to protect quantum
states from errors and make quantum computing FT. This is achieved by encoding a log-
ical qubit into multiple error prone physical qubits and applying FT (logical) operations
on such logical qubits [23]. However, QEC significantly increases the computation size
up to four orders of magnitude [15]. Furthermore, this FT implementation may lead
to more and/or different constraints on the encoded logical circuits, e.g., interaction re-
strictions between two logical qubits. Consequently, the mapping of fault-tolerant quan-
tum circuits may become more difficult because it should consider both physical-level
and logical-level constraints. In addition, it may require the definition of a virtual layer

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 55PDF page: 55PDF page: 55PDF page: 55

4.1. INTRODUCTION

4

41

called qubit plane architecture to provide scalable management of qubits and support
fast execution of fault-tolerant operations.

Several papers [84, 85, 86, 87, 88, 89] have discussed how to map FT quantum circuits
onto 2D quantum architectures based on concatenated codes such as the Steane code.
However, not many papers focus on the surface code (SC) [90], currently one of the most
promising QEC codes. [91, 92, 93] optimize quantum circuits based on defect surface
codes in terms of geometrical volume defined by the product of # qubits and # gates (or
time) of the circuit. [94] evaluates both planar and defect surface codes in terms of qubit
resources and circuit latency. However, they assume two-qubit gates (CNOT) between
two planar qubits (qubits are encoded in planar codes) can be performed transversally,
which is an over-optimistic assumption given the limited connectivity in current quan-
tum technologies. Fortunately, a technique called lattice surgery [18, 19] can be used to
perform a two-qubit gate between two planar qubits in a 2D NN architecture. Neverthe-
less, the mapping of quantum circuits based on lattice surgery and the required qubit
plane architecture have been hardly researched. [18] introduces a scalable qubit archi-
tecture for efficiently supporting lattice surgery-based two-qubit gates. [95] proves that
the optimization of lattice surgery-based quantum circuits on its geometrical volume is
NP-hard. This chapter will focus on the mapping of lattice surgery-based quantum cir-
cuits onto surface code qubit architectures. The contributions of this chapter are the
following:

• We derive the logical-level constraints of the mapping process when the lattice
surgery is used to perform FT operations on planar surface codes. We further pro-
vide the quantification of these logical operations, which are used for the mapping
passes.

• Based on the qubit plane architecture presented in [18], we propose two differ-
ent qubit architectures, namely a checkerboard architecture and a tile-based one,
that support lattice surgery-based operations. For the tile-based architecture, we
present an approach to fault-tolerantly swap tiles by lattice surgery, which is 3x
faster than a standard SWAP operation by 3 consecutive logical CNOT gates. In ad-
dition, we also apply similar techniques to perform a FT CNOT gate between tiles
where logical data qubits are not located in the required positions.

• We propose a full mapping procedure, including placement and routing of qubits
and scheduling of operations, to map FT quantum circuits onto the two presented
qubit architectures and evaluate these architectures on their communication over-
head.

The chapter is organized as follows. Section 4.2 introduces the basics of FT quan-
tum computing. We introduce two qubit plane architectures of interest in Section 4.3
followed by the proposed mapping passes in Section 4.4. The evaluation metrics and
benchmarks are shown in Section 4.5. The experimental results are discussed in Sec-
tion 4.6. Section 4.7 concludes.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 56PDF page: 56PDF page: 56PDF page: 56

4

42
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

4.2. FT QUANTUM COMPUTING
The surface code is one of the most promising QEC codes because of its high tolerance
to errors (around 1%) and its simple 2D structure with only NN interactions as shown
in Figure 2.3. In surface codes, there are two main ways of encoding a single logical
qubit, using a planar [30] or a defect approach [96]. In the planar SC, a single lattice is
used to encode one logical qubit. In the defect SC, a logical qubit is realized by creating
defects in a lattice. However, the planar SC requires less physical qubits to encode one
logical qubit for the same code distance. In the near-term implementation of quantum
computing, qubits are scarce resources and current quantum technologies are pursuing
a realization of planar SC quantum hardware [39]. This chapter therefore focuses on the
planar surface code. Note that the FT implementation of the defect SC [15, 96, 59, 97]
differs from the planar SC, leading to different implications on the mapping procedure.

C

A T

X

Z
0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(a)

C

A

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(b)

C

A

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

(c)

Figure 4.1: (a) Three planar SC-based logical qubits with d = 3. A 90-degree elbow-shaped qubit layout is
required for implementing a lattice surgery-based CNOT gate between qubits ‘C’ and ‘T’. ‘C’ is the control qubit,
‘T’ is the target qubit, and ‘A’ is the ancilla qubit in either |0〉 or |+〉 state. (b) The integrated lattice ‘AC’ and (c)
the separated lattices ‘A’ and ‘C’, after merging and splitting ‘A’ and ‘C’, respectively.

4.2.1. FAULT-TOLERANT MECHANISMS
Figure 4.1a shows three logical qubits based on a distance-3 planar SC and they are la-
beled as ‘A’, ‘T’ and ‘C’, respectively. Each logical qubit consists of 17 physical qubits and
has two types of boundaries, Z -boundaries and X -boundaries. For instance, in lattice ‘A’,
the left and right boundaries are Z -type and the top and bottom boundaries are X -type.
In the planar SC, initialization, measurement, Pauli gates, and H can be implemented
transversally, i.e., applying bitwise physical operations on a subset of the data qubits,
and then performing QEC cycles to detect and correct errors. The FT implementation
of S and T gates in surface codes requires a non-deterministic procedure called magic
state distillation. Since the S and T gates can be performed only if their corresponding
magic states have been delivered, an online or dynamic scheduling and run-time rout-
ing may be required for efficient circuit execution [93]. In this chapter, we assume magic
states have been prepared and properly allocated whenever S and T gates need to be
performed.

In principle, a FT logical CNOT gate between two planar logical qubits can be per-
formed transversally, i.e., applying pairwise physical CNOT gates to the data qubits in
the two lattices. However, this transversal CNOT cannot be realized in current quan-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 57PDF page: 57PDF page: 57PDF page: 57

4.3. QUBIT PLANE ARCHITECTURE

4

43

tum technologies which only allow NN interactions in 2D architectures. Alternatively,
a measurement-based procedure [61] which is equivalent to a CNOT gate can be applied
and its circuit representations are shown in Figure 3.4a. The joint measurement MX X

(MZ Z) is realized by first merging two logical qubits and then splitting them, where their
adjacent boundaries are Z -(X -)type boundaries. The outcomes of these measurements
will determine whether the corresponding Pauli corrections should be applied (see Sec-
tion 4.8.1 for more details).

The qubit layout for performing the measurement-based CNOT gate in the 2D NN
architecture is shown in Figure 4.1a. The realization of the top circuit in Figure 3.4a is
achieved as follows: 1) lattices ‘A’ and ‘C’ are merged and then split; 2) lattices ‘A’ and ‘T’
are merged and then split; and 3) measure ‘A’. The merge and split operations are imple-
mented by a technique called lattice surgery [18, 19]. For instance, the merge and split
of lattice ‘A’ and ‘C’ are implemented by performing ESM on the integrated lattice (Fig-
ure 4.1b) and on the separated lattices (Figure 4.1c), respectively. In general, a surgery-
based CNOT takes 4d +1 SC cycles. It is worth mentioning that a split operation between
qubits ‘A’ and ‘C’(‘T’) can happen simultaneously with a merge operation between qubits
‘A’ and ‘T’(‘C’). Furthermore, a split operation between two qubits and a measurement
on one of them can be performed in parallel. By exploiting the parallelism, the execution
time in SC cycles can be reduced to 3d .

4.2.2. IMPLICATIONS ON THE MAPPING PROBLEM

Based on the FT implementation of logical operations on planar surface codes, we derive
the following constraints that must be taken into account by the mapping process as well
as its implications.

Constraints: 1) The physical 2D NN interaction constraint is intrinsically satisfied
by the construction of surface codes, thus the physical-level mapping becomes trivial;
2) A surgery-based CNOT gate requires that the qubits ‘C’ and ‘T’ together with the an-
cilla qubit ‘A’ are placed in particular neighboring positions, forming a 90-degree elbow-
shaped layout.

Implications: 1) Logical qubits that need to interact and are not placed in such
neighboring positions need to be moved, for instance by means of SWAP operations. The
movement of qubits introduces overhead in terms of both qubit resources and execution
time; 2) Therefore, in lattice surgery-based SC quantum computing, it is essential to pre-
define a qubit plane architecture for efficiently managing qubit resources and support-
ing communication between logical qubits; 3) In addition, operations for moving qubits
should be defined; 4) It is necessary to initially place highly interacting logical qubits as
close as possible and apply routing techniques to find the communication paths.

Based on the above observations, we will introduce two slightly different plane ar-
chitectures and mapping passes for efficient execution of lattice surgery-based quantum
circuits in the following sections.

4.3. QUBIT PLANE ARCHITECTURE
A qubit plane architecture is a virtual layer that organizes the qubits in different special-
ized and pre-defined areas such as communication, computation and storage [86, 88].

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

4

44
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

Figure 4.2: The qubit plane architecture proposed in [18] for lattice surgery-based planar surface codes, where
each patch can hold one logical qubit shown in Figure 4.1a.

(a) (b)

Figure 4.3: (a) The checkerboard architecture (c-arch) and (b) the tile-based architecture (t-arch).

Qubit architectures should be able to manage qubit resources efficiently and provide fast
execution of any quantum circuit.

In [18], a layout that supports lattice surgery-based CNOT gates on planar surface
codes is presented. As shown in Figure 4.2, it consists of several patches. The gray
patches of the lattice are used for allowing qubits to perform CNOT operations, whereas
the pink patches are used for holding logical data qubits. Then, only 1/4 of the available
patches contains logical data qubits. Based on this layout, we propose two slightly differ-
ent qubit plane architectures, the tile-based architecture (t-arch) and the checkerboard
architecture (c-arch) as shown in Figure 4.3. The pink and blue patches are where logi-
cal data qubits containing information can be allocated (data patches), whereas the gray
patches are assisting logical qubits (ancilla patches) that are used for performing logical
CNOT gates and for communication. These two architectures differ in: i) the number of
logical data qubits that can allocate, ii) the way movement operations are implemented,
iii) the steps required for performing a CNOT between neighboring logical data qubits,
and iv) the number of neighbors.

Logical data qubit allocation: In the checkerboard architecture, logical data qubits

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 59PDF page: 59PDF page: 59PDF page: 59

4.3. QUBIT PLANE ARCHITECTURE

4

45

(a) (b) (c) (d)

Figure 4.4: A t-SWAP between tiles 1 and 2. (a) Logical qubits are in patches A1 and D2. (b) Merge A1, B1 and
D2, C2; (c) merge B1, A2 and C2,D1, and measure D2, A1; (d) measure B1, C2.

(a) (b) (c)

(d) (e)

Figure 4.5: A t-CNOT between tiles 1 and 2. (a) Control and target qubits are in patches A1 and D2 (b) Merge
A1, B1 and D2, C2; (c) measure A1 and D2 and merge D1, C2; (d) merge B1,D1; (e) measure D1. The CNOT is
performed in steps c), d) and e).

can be assigned to any of the pink patches, that is, 1/2 of the total patches are used
to hold data qubits. In the tile-based architecture, a lined area consisting of 4 logical
patches is defined as a basic computation tile and at most one logical data qubit can be
allocated in each tile, that is, in either the pink or the blue patch. Then, only 1/4 of the
total number of patches can be used for allocating logical data qubits.

Movement operations: One typical way to move physical qubits is through SWAP
operations in which the state of the qubits is exchanged. Usually, a SWAP gate is imple-
mented by applying 3 consecutive CNOT gates. The same principle can be applied for
moving logical qubits. In this case a logical SWAP is realized by performing 3 consecutive
lattice surgery-based CNOT gates, which is extremely time-consuming (9d SC cycles). In
the checkerboard architecture, we will use such a swap method called c-SWAP for mov-
ing logical qubits because of the limited number of ancilla patches. In the tile-based
architecture, we propose to use a faster movement operation, which is analogous to the
measurement-based procedure for CNOT gates, to swap data information between two
horizontally or vertically adjacent tiles. This swap operation called t-SWAP only takes 1x
logical CNOT gate time regardless of locations where data qubits are allocated inside the
tiles -i.e. blue or pink patches. It is realized by ’moving’ qubits to neighboring horizontal
and vertical patches (see Section 4.8.2). Figure 4.4 shows an example of how to swap two
logical data qubits placed in adjacent tiles by using the t-SWAP operation. Similarly, one
can perform a t-SWAP between any other pair of patches in the horizontally or vertically
adjacent tiles.

CNOT operations: As mentioned in Section 4.2, the control and target qubits need to
be placed in patches that form a 90-degree elbow-shaped in order to perform a lattice

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

4

46
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

surgery-based CNOT. In the checkerboard architecture, two neighboring data patches
are always in such 90-degree locations so that a lattice surgery-based CNOT gate can
be directly performed between them. We called this operation c-CNOT and it is im-
plemented by 3 steps, taking 3d SC cycles as described in the previous section. How-
ever, in the tile-based architecture, a CNOT operation called t-CNOT between two data
qubits placed in horizontally, vertically, or diagonally adjacent tiles may need some pre-
processing, depending on where data qubits are allocated. If the control and target log-
ical qubits are already placed in patches forming a 90-degree shape, then one can per-
form the CNOT directly, e.g., patch D1 with patches A4, A2, A5. Otherwise, logical data
qubits need to be moved to the required locations before performing the CNOT gate as
shown in Figure 4.5.

Similarly, one can perform a t-CNOT between any other pair of patches in adjacent
tiles. The t-CNOT with and without pre-processing takes 4d and 3d SC cycles, respec-
tively. In the results section, we will assume that a t-CNOT always takes 4d SC cycles for
simplicity.

Number of neighbors: In the checkerboard architecture one data patch can only in-
teract with 4 adjacent data patches, e.g., the neighbors of patch 8 are 4,5,10,11 in Figure
4.3a. As mentioned in Section 4.2, a logical ancilla is required for performing a lattice
surgery-based CNOT gate. To avoid ancilla conflicts when performing multiple logical
CNOT gates simultaneously in the checkerboard, only the upper ancilla patch adjacent
to the two interacting data patches can be used. For instance, ancilla 1 (2) will be used
when performing a CNOT between data qubits 2 and 4 (2 and 5). In the tile-based ar-
chitecture, one tile can interact with at most 8 neighbors, e.g., the neighbors of tile 5 are
1,2,3,4,6,7,8,9. However, logical CNOT gates between data qubits in tiles 1 and 5, and
between data qubits in tiles 2 and 4 cannot be performed simultaneously because of an-
cilla conflicts. To avoid such conflicts for now, we only assume 6 neighbors per tile; we
remove the right-top and left-bottom neighbors of each tile, e.g., remove tiles 3 and 7
from the neighbor list of tile 5.

In the next section, we will introduce the procedure for mapping lattice surgery-
based quantum circuits onto both qubit architectures. We will then evaluate their com-
munication overhead in terms of both operation overhead and latency overhead in Sec-
tion 4.6 .

4.4. QUANTUM CIRCUIT MAPPING
The mapping of quantum circuits involves initial placement and routing of qubits and
scheduling of operations. The need for QEC significantly enlarges the circuit size, which
makes the mapping problem even more complex. For instance, in surface codes one
logical qubit is encoded into O(d 2) physical qubits and one lattice-surgery-based logical
operation is implemented by O(d 3) physical operations, where d is the code distance.
Therefore, we propose to perform the mapping of quantum circuits before going to the
physical implementation of logical qubits and operations. It means that each logical
qubit is treated as one single unit, and each logical operation is regarded as one single
instruction. Once the mapping is finished, logical operations need to be expanded into
the corresponding physical operations. We use a library to translate each logical oper-
ation into pre-scheduled physical quantum operations (see Section 4.8.3). During the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 61PDF page: 61PDF page: 61PDF page: 61

4.4. QUANTUM CIRCUIT MAPPING

4

47

Table 4.1: The execution time in SC cycles of different logical operations, d is the code distance.

Init & MSMT Pauli H S T
Cycles 1 1 4d 14d 17d

c-CNOT c-CNOT t-CNOT t-SWAP
Cycles 3d 9d 4d 3d

translation, the address of underlying physical qubits corresponding to a logical qubit
can be retrieved by maintaining a q-symbol table [22].

Table 4.1 depicts the execution time of different logical operations on planar surface
codes expressed in SC cycles. It includes single-qubit operations as well as the two-qubit
operations used in both qubit architectures presented previously. The execution time of
different operations is used in the scheduling and routing passes. Furthermore, we will
use these numbers for calculating the overall circuit latency in Section 5.

In order to illustrate the different steps in the mapping of quantum circuits, we will
use the circuit in Figure 4.6a described by a quantum assembly language (QASM). This is
the encoding circuit of the 7-qubit Steane code �7, 1, 3� and it can also be used to distill
the magic states for S gates [15]. In this case, we assume each qubit is a logical qubit
encoded by a distance-7 planar SC and each operation is a FT operation implemented
by the techniques in Section 4.2 and Section 4.3.

4.4.1. SCHEDULING OPERATIONS
The objective of the scheduling problem is to minimize the total execution time (circuit
latency) of quantum algorithms meanwhile keeping the correctness of the program se-
mantics. Similar to instruction scheduling in classical processors, the correctness can be
achieved by respecting the data dependency [98] between quantum operations. Analo-
gous to classical computing, two kinds of data dependency can be defined for quantum
computing: true dependency, which is the dependency between two single-qubit gates
and between a single-qubit gate and a CNOT gate, and name dependency, which is the
dependency between two CNOT gates which have the same control (or target) qubit.

We convert a QASM-described quantum circuit into a data flow-based weighted di-
rected graph, which is called Quantum Operation Dependency Graph (QODG) and shown
in Figure 4.6b. In this graph G(VG ,EG), each operation is denoted using a node vi , and
the data dependency arising from two consecutive operations on a same qubit, e.g., vi

followed by v j , is represented using a directed edge e(vi , v j). VG and EG are the node set
and edge set of G , respectively. We also define E 1

G and E 2
G as the collection of edges that

exhibits true and name dependency, respectively. Svi represents the starting time of op-
eration vi and Tvi indicates its latency. The scheduling objective is to minimize the total
circuit latency (Formula 4.1) while preserving the data dependency between operations
(Formula 4.2).

min sup
∀vi∈VG

(Svi +Tvi) (4.1)

subject to (Svi +Tvi) � Sv j , ∀e(vi , v j) ∈ EG (4.2)

Note that two CNOT gates which share the same control or the same target qubit are
commutable, meaning that they can be executed in any order except in parallel. This

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 62PDF page: 62PDF page: 62PDF page: 62

4

48
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

(a) (b) (c)

Figure 4.6: The QASM description of the Steane �7, 1, 3� encoding circuit and its QODG. (a) The serial QASM
representation; (b) The QODG; and (c) The scheduled parallel QASM representation. ‘qwait’ is an instruction
specifies the waiting time until the next instruction can be issued.

commutation property has not been considered in previous works [89, 72, 73, 74, 75,
76, 84, 85, 86, 87, 88]. In this chapter, we take commuted CNOT gates into account and
replace the optimization condition 4.2 with conditions 4.3 and 4.4:

Svi +Tvi � Sv j , ∀e(vi , v j) ∈ E 1
G (4.3)

(Svi −Sv j) � Tv j or (Sv j −Svi) � Tvi , ∀e(vi , v j) ∈ E 2
G (4.4)

With respect to different dependencies, the scheduler will exploit parallelism and
output the operation sequence with timing information, which is an as-soon-as-possible
(ASAP) schedule. An as-late-as-possible (ALAP) schedule can be also easily implemented
by scheduling operations in the reverse order (Figure 4.6c).

4.4.2. PLACING AND ROUTING QUBITS
The QAP-model for initial placement of qubits: The goal of qubit placement is to find an
optimal initial placement of the qubits that minimizes communication overhead. Sim-
ilar to the placement approaches in [76, 86, 99], the initial placement problem is for-
mulated as a quadratic assignment problem (QAP) with the communication overhead
represented using the Manhattan distance:

min

(
m∑

i=1

m∑
j=1

n∑
k=1

n∑
l=1

ci j kl xi k x j l

)
(4.5)

subject to
m∑

i=1
xi k = 1, ∀k = 1, · · ·n (4.6)

n∑
k=1

xi k = 1, ∀i = 1, · · ·m (4.7)

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

4.4. QUANTUM CIRCUIT MAPPING

4

49

(a) (b)

Figure 4.7: The initial placements of the Steane �7, 1, 3� encoding circuit in (a) the tile-based architecture which
has 3×3 tiles and (b) the checkerboard architecture which has 3×3 data patches in the dashed region (rotated
by 45 degrees).

xi k = {0,1} (4.8)

where m(n) is the number of locations(qubits), xi k(j l) = 1 or 0 indicates whether qubit
k(l) is assigned to location i (j) or not, ci j kl = Di j Rkl is the cost of separately assigning
qubit k and l to locations i and j . Di j is the Manhattan distance between locations i and
j , and Rkl is the number of interactions between qubits k and l in the circuit. Constraints
4.6 and 4.7 ensure a one-to-one mapping from qubits to locations. A location is a tile
in the tile-based architecture and a data patch in the checkerboard architecture. For
instance, the initial placements of the Steane �7, 1, 3� encoding circuit in the m = 3×3
tile-based architecture and the m = 3×3 checkerboard architecture are shown in Figure
4.7.

In this chapter, the scheduling and QAP models are solved with integer linear pro-
gramming (ILP). The scheduling uses the linearization method by [100], and the QAP
uses the method proposed by [101]. ILP can only solve small-scale problems in reason-
able time as the ones used in this chapter. Nevertheless, for near-term implementation
in FT quantum computing, these numbers largely suffice. For large-scale circuits, one
can either partition a large circuit into several smaller ones or apply heuristic algorithms
to efficiently solve these mapping models [72, 73, 74, 76, 84, 85, 87].

The routing algorithm: The introduced two SC qubit architectures require routing
of qubits, which involves finding communication paths and inserting the correspond-
ing movement operations, for instance by means of the SWAP operations. An efficient
routing should minimize the number of inserted movement operations as well as the
increased latency. In this chapter, qubits are routed based on a sliding window (buffer)
principle as shown in Algorithm 1. The algorithm will find a path for the first not NN
instruction- i.e. CNOT operation in which qubits are not NN- inside the buffer. We
adopted the breadth-first search (BFS) algorithm to find all possible shortest paths. Then,
in order to select the communication path the algorithm looks back and forward. The
look-back finds the maximum interleaving of movement instructions (SWAP) with pre-
vious instructions. The look-ahead will look how the positions of the qubits involved in
a certain path is changed and how it affects future two-qubit operations; that is, we want
to avoid to move away qubits that are already close to each other and need to interact in

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

4

50
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

Algorithm 1 Routing algorithm

Input: Defined qubit architecture and its size,
initial placement, scheduled QASM-file

Output: Routed QASM-file
1: Define instruction buffer, B , length l = window size
2: Fill B with instructions from input-QASM
3: while B is not empty do
4: # Check if an instruction (i ns) is NN
5: for i ns in B [0 : l/2] do
6: # If an instruction is not NN, start routing
7: if i ns is not NN then
8: # Find different paths
9: paths = all shortest paths for i ns based on BFS

10: # Look-back
11: for p in paths do
12: p.l eng th = #cycles from in p − #cycles p can

interleave with instruction in B [0 : i ns]

13: # Look-ahead to other ins (o_i)
14: for p in paths do
15: Place qubits based on p
16: p.l eng th +=∑

o_i∈B [i ns:l] shortest path
for o_i in #cycles

17: Insert path with min. length and update placement
18: Break for-loop

19: Reschedule B [0 : i ns]
20: Write B [0] to output-QASM
21: Fill B from input-QASM with qubit placement

the future. Once the path is selected, the instructions inside the buffer will be resched-
uled using the ASAP strategy. Then the buffer will output routing instructions and will
be fed with new ones. This process repeats until all CNOT gates can be performed in the
pre-defined qubit architecture.

The results of routing the Steane �7, 1, 3� encoding circuit onto the tile-based and
checkerboard architectures are shown in Figure 4.8 and Figure 4.9, respectively. The in-
puts of the routing process include 1) the pre-scheduled circuit using an ALAP approach
in Figure 4.6c; 2) the initial placement in a pre-defined architecture in Figure 4.7. The
routing process selects the communication path and inserts SWAP operations when two
qubits for a coming CNOT gate are not neighbors and then the qubit layout is changed.
Figures 4.8 and 4.9 show the final circuits with the intermediate qubit layouts after a full
mapping procedure on the tile-based architecture and the checkerboard architecture
respectively. Note that the operations inside each dashed block will be executed on the
qubit layout marked in the same color and the current layout will be transformed into
the next one after performing the inserted SWAP operation(s). Moreover, the final cir-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

4.5. METRICS AND BENCHMARKS

4

51

Figure 4.8: The final circuit and the intermediate qubit layouts after mapping the Steane �7, 1, 3� encoding
circuit onto the tile-based architecture.

cuits after routing are totally different from the original circuit with an ALAP scheduling.
This is because the operations inside each routing buffer has been rescheduled using
an ASAP approach. For comparison purposes, a hand-optimized mapping of the Steane
�7, 1, 3� encoding circuit on the 3×3 tile-based architecture is described in Section 4.8.4,
including ALAP pre-scheduling, initial placement, and routing.

4.5. METRICS AND BENCHMARKS
In order to evaluate the impact of the mapping passes as well as the proposed qubit plane
architectures we define the following metrics:

Qubit efficiency Eq : It is calculated as Eq = #Dat a
#AllQubi t s ; where # AllQubits refers to the

total number of logical qubits in a predefined qubit architecture for executing a quantum
algorithm, including both logical data qubits and logical ancilla qubits, and # Data is the
number of logical data qubits.

Circuit latency: It is the total execution time of a quantum algorithm in SC cycles.
Even though reducing the circuit latency may have an overall negligible impact on the ex-
ponential performance improvement, it may be important for the algorithms with poly-
nomial speedup. More importantly, shorter latency will also decrease the failure rate of
the executed circuit.

Latency overhead: It is the percentage of latency used for moving qubits, and it is
calculated as LR−LS

LS
; where LR and LS are the circuit latency with and without consider-

ing routing qubits, respectively.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 66PDF page: 66PDF page: 66PDF page: 66

4

52
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

Figure 4.9: The final circuit and the intermediate qubit layouts after mapping the Steane �7, 1, 3� encoding
circuit onto the checkerboard architecture.

Operation overhead: It is the percentage of inserted movement operations and it
is calculated as #SW APs

#Gates ; where # Gates is the number of operations of the quantum al-
gorithm which has not been routed (see Table 4.2) and # SWAPs is the total number of
SWAP operations that are inserted for routing qubits. Reducing the number of opera-
tions for qubit communication helps to improve the computation fidelity.

Communication overhead: It is expressed in terms of both operation overhead and
latency overhead.

The benchmarks used for this mapping evaluation are shown in Table 4.2 from Qlib
[102] and RevLib [103]. These circuits are decomposed into ones which only contain
the gates from the fault-tolerantly implementable universal set {Pauli, H , CNOT,S,T } on
surface codes. We characterize these benchmarks in terms of percentage of CNOT gates
Rcg = #C NOTs

#Gates , percentage of edges which have name dependency (E 2
G) in the QODG

Rcd =
∣∣E 2

G

∣∣
|EG | , and percentage of expensive T,T † and S,S† gates Rt sg = (#Ss+#Ts+#S†s+#T †s)

#Gates .
The first two benchmarks are encoding circuits of different QEC codes which are used
for preparing magic states on SC [15]. Table 4.2 also shows the size (R ×C) of a qubit
plane architecture, where R and C represent the number of data qubits in the x axis and
y axis of the defined qubit plane architecture, respectively.

4.6. RESULTS
We map the benchmarks shown in Table 4.2 onto the two introduced qubit architectures
using the proposed mapping passes. As shown in Table 4.1, the execution time of dif-
ferent operations is determined by the code distance d which is a tunable parameter of

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

4.6. RESULTS

4

53

Table 4.2: Quantum algorithm benchmarks

Benchmarks # Qubits # Gates #CNOT Rcg% Rcd% Rtsg% Size
7-enc 7 21 12 52.38 42.55 0 3×3

15-enc 15 53 35 64.15 60.17 0 4×4
Adder0-5 16 306 126 41.18 26.1 48.0 4×4
Adder1-8 18 289 129 44.64 22.38 45.3 5×5

Adder1-16 34 577 257 44.54 22.16 44.9 6×6
Multiply4 21 1655 722 43.63 18.20 44.4 5×5

Shor15 11 4792 1788 37.31 21.03 48.4 4×3
sqrt7 15 7630 3089 40.48 6.41 43.72 4×4
sqrt8 12 3009 1314 43.67 4.63 43.50 4×3
ham7 7 320 149 35.63 5.67 41.56 3×3
hwb5 5 233 107 45.92 5.52 42.06 3×2
hwb6 6 1336 598 44.76 5.26 42.96 3×2
hwb7 7 6723 2952 43.91 4.64 43.62 3×3
rd73 10 230 104 45.22 4.61 42.61 4×3
rd84 15 343 154 44.90 4.63 42.86 4×4

Figure 4.10: Comparison of the scheduling models with and without considering the commutation property
(d = 3).

Figure 4.11: Comparison of the scheduling models with and without considering the commutation property
(d = 7).

the mapping procedure. In this section, only the mapping results for a distance-3 and a
distance-7 planar SC are presented, the results for other distances will be similar.

We first analyze the impact of the CNOT commutation property (Section 4.4.1) on the
latency of scheduled quantum circuits. We only show the results for the ALAP schedul-
ing as they are similar to the ASAP scheduling. Figure 4.10 (4.11) compares the proposed
scheduling models for distance 3 (distance 7) with and without taking the commutation

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

4

54
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

property into account. For the encoding circuits, the scheduling considering commu-
tation can significantly reduce the circuit latency, 28.1% (23.7%) for 7-enc and 34.4%
(34.5%) for 15-enc, compared to the scheduling without considering commutation. This
is because they have a high percentage of commutable CNOT gates (Rcd) meanwhile
the percentage of expensive gates (Rt sg) is much lower (0). In contrast, for the other
benchmarks the benefit of considering commutation is negligible, up to ∼ 4% (∼ 4%) for
adder0-5.

Figure 4.12: Comparison of mapping FT circuits onto different qubit architectures (d = 3). The latency over-
head for the first two circuits are larger than 1 as shown in the sub-figure.

Figure 4.13: Comparison of mapping FT circuits onto different qubit architectures (d = 7).

Furthermore, we perform the full mapping procedure proposed in Section 4.4, in-
cluding scheduling, placement and routing, on both the tile-based architecture (t-arch)
and the checkerboard architecture (c-arch). The scheduling is implemented by the ALAP
approach with considering commutation property. The initial placement is achieved
by either the smart approach based on Manhattan distance or the naive method which
places qubits in order. Note that the effect of initial placement is not always important
[89], depending on the benchmarks (see Section 4.8.5). In this section, the best mapping
result of the above two placement approaches for each benchmark is chosen.

Communication overhead: As mentioned previously, the mapping process results in
an increase of the number of quantum operations (operation overhead) as well as in an
increase in the circuit latency (latency overhead). We evaluate the communication over-
head of mapping quantum circuits on different qubit plane architectures, namely the
tile-based architecture (t-arch) and the checkerboard architecture (c-arch). Figures 4.12
and 4.13 show the comparison between t-arch and c-arch for distance 3 and 7 surface

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

4.7. CONCLUSION

4

55

codes, respectively. The mapping results for both distances are similar and the t-arch
achieves less communication overhead because it has a higher number of nearest neigh-
bors.

The operation overhead in the t-arch compared to the c-arch is reduced by 20.0%
(7-enc) up to 81.4% (hwb5) for d = 3 and by 8.0% (15-enc) up to 86.4% (hwb5) for d = 7 .
The latency overhead when mapping on the t-arch shows a reduction of 3.2% (adder1-8),
16.3% (multiply-4) and up to 69.1% (7-enc) for distance 3. And 1.0% (adder1-8), 25.6%
(shor-15) and up to 79.4% (7-enc) for distance 7. Note that this latency reduction is not
only due to the less number of movement operations but also due to the use of much
faster movements (t-SWAP) although the CNOT gates (t-CNOT) are slightly slower.

Qubit efficiency: As mentioned in Section 4.3, 1/4 and ∼ 1/2 of the total number of
patches are used for allocating logical data qubits in the tile-based architecture and the
checkerboard architecture, respectively. Therefore, the qubit efficiency in the t-arch is
Eq = 1/4 and the qubit efficiency in the c-arch is Eq ≈ 1/2.

Based on the above observations, we can conclude that although the tile-based archi-
tecture is less qubit efficient than the checkerboard architecture, it can also substantially
reduce the communication overhead in terms of operation overhead (up to ∼ 86%) and
latency overhead (up to ∼ 79%). As we mentioned previously, decreasing the communi-
cation overhead helps to improve the computation fidelity. Therefore, one may have to
compromise between qubit efficiency and communication overhead for the realization
of quantum algorithms.

4.7. CONCLUSION

We have proposed two SC qubit plane architectures to efficiently support the execu-
tion of lattice surgery-based quantum circuits. We developed a full procedure for map-
ping small-scale quantum algorithms onto these two SC architectures. The experimen-
tal results show the following observations. First, the proposed scheduling considering
the commutation property provides faster circuit execution than the scheduling with-
out considering commutation. Secondly, the mapping procedure causes communica-
tion overhead in terms of both operation overhead and latency overhead. Moreover,
the communication overhead highly depends on how qubits are organized and moved,
that is, the qubit plane architectures. The tile-based architecture considerably decreases
the number of movements and also supports faster execution compared to the checker-
board though it is less qubit-efficient.

As future work, we will focus on heuristic scheduling and placement algorithms as
well as different routing techniques for large-scale quantum benchmarks. Furthermore,
we will conssider the dynamics of quantum computation such as magic state distillation
for S or T gates and qubit routing for performing ‘neighboring’ CNOT gates. Then we will
investigate their implications on quantum circuit mapping. In addition, we will investi-
gate different qubit architectures, for instance, an architecture with specialized commu-
nication channels for moving qubits and pre-defined regions for preparing magic states.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

4

56
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

4.8. APPENDIX

4.8.1. LATTICE SURGERY-BASED CNOT
A CNOT is a gate applying on two qubits, the target qubit undergoes an X gate only if
the control qubit is in |1〉. One way to validate a CNOT implementation is to check the
transformation of logical X and Z operators using the Heisenberg representation [25] as
follows:

C NOT †(X ⊗ I)C NOT = X ⊗X (4.9)

C NOT †(I ⊗X)C NOT = I ⊗X (4.10)

C NOT †(Z ⊗ I)C NOT = Z ⊗ I (4.11)

C NOT †(I ⊗Z)C NOT = Z ⊗Z (4.12)

For instance, the CNOT gate transforms an X in the control qubit into the target qubit
in Equation (4.9). We can verify the measurement-based procedure [61], which is de-
scribed by the circuits in Figure 3.4a, by examining these transformations ((4.9)-(4.12))
as shown in Equations (4.13) and (4.14) respectively. These equations illustrate how dif-
ferent measurements transform stabilizers and logical operators. ‘C’, ‘T’, and ‘A’ represent
the control, target, and ancillary qubit, respectively. ‘S’ and ‘L’ represent the stabilizers
and logical operators, respectively. For example, after performing measurements MI X X

in (4.13), the stabilizer I Z I is transformed into (−1)MI X X I X X and the logical operator
I I Z is transformed into I Z Z . Equations (4.13) and (4.14) show that the measurement-
based procedure does satisfy the transform relations in Equations (4.9)-(4.12) and it is
thus equivalent to a CNOT.

C AT
S I Z I (−1)MI X X I X X (−1)MZ Z I Z Z I (−1)MI X I I X I
L X I I X I I (−1)MI X X X X X (−1)MI X X +MI X I X I X

Z I I
MI X X→ Z I I

MZ Z I→ Z I I
MI X I→ Z I I

I I X I I X I I X I I X
I I Z I Z Z I Z Z (−1)MZ Z I Z I Z

(4.13)

C AT
S I X I (−1)MZ Z I Z Z I (−1)MI X X I X X (−1)MI Z I I Z I
L X I I X X I X X I (−1)MI X X X I X

Z I I
MZ Z I→ Z I I

MI X X→ Z I I
MI Z I→ Z I I

I I X I I X I I X I I X
I I Z I I Z (−1)MZ Z I Z Z Z (−1)MZ Z I +MI Z I Z I Z

(4.14)

The joint measurement MX X (MZ Z) is realized by merge and split operations using
lattice surgery [18, 19]. The basic operations of lattice surgery are to stop measuring
some existing stabilizers and start to measure some new stabilizers. For example, the
merge operation for MZ Z on the qubits ‘A’ and ‘C’ in Figure 4.1a is performed by ceasing
to measure X7X8 and X10X11, starting to measure Z6Z7Z9Z10, Z8Z11 and X7X8X10X11,
that is, performing d rounds of ESM on the merged lattice in Figure 4.1b. This means the
two lattices ‘A’ and ‘C ’ are integrated into one single lattice. Similarly, the split operation

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

4.8. APPENDIX

4

57

is implemented by ceasing to measure Z6Z7Z9Z10, Z8Z11 and X7X8X10X11, starting to
measure stabilizer X7X8 and X10X11 , that is, performing d rounds of ESM individually
on each lattice ‘A’ and ‘C ’ in Figure 4.1c. The splitting procedure divides the merged
lattice back into two lattices. Afterwards, one needs to read out the outcome of each joint
measurement for further logical Pauli corrections. The measurement result of MZ Z is
interpreted into 0 (1) if the number of ‘−’ syndromes from the new stabilizers Z6Z7Z9Z10

and Z8Z11 during the merge is even (odd).

4.8.2. LATTICE SURGERY-BASED MOVEMENT

The lattice surgery-based joint measurements can be used to ‘move’ logical qubits to
other locations. As mentioned previously, the adjacent boundaries should be in both X -
or Z -type when performing such a joint measurement. Assuming that the qubit patches
in the same row (column) of the tile-based architecture in Figure 4.3b have Z−(X -)type
adjacent boundaries, we introduce two basic movements: horizontal movement (Fig-
ure 4.14) and vertical movement (Figure 4.15). A logical state in A can be moved to its
horizontally (vertically) adjacent position B (C) by first performing a joint measurement
MX X (MZ Z) between A and B (C) followed by a Z (X) measurement on A. This hori-
zontal (vertical) movements mimics the procedure in Equation (4.15) (Equation (4.16)),
that is, the logical operators in patch A are transformed into patch B (C). It means that
the logical state in A is moved to patch B (C). One can progressively move one logical
state from one patch to the other by applying these horizontal movements and vertical
movements as shown in Figure 4.16.

(a) (b) (c)

Figure 4.14: (a) Patch A is a logical qubit in state |ψ〉 and patch B is an ancilla in state |0〉. First perform the joint
measurement MX X realized by a merge (b) and a split (c), then perform the measurement MZ on patch A, the
state |ψ〉 is moved to patch B.

(a) (b) (c)

Figure 4.15: (a) Patch A is a logical qubit in state |ψ〉 and patch C is an ancilla in state |+〉. First perform the
joint measurement MZ Z realized by a merge (b) and a split (c), then perform the measurement MX on patch
A, the state |ψ〉 is moved to patch C.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 72PDF page: 72PDF page: 72PDF page: 72

4

58
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

AB
S I Z (−1)MX X X X (−1)MZ I Z I
L X I MX X X I MZ I (−1)MX X I X

Z I Z Z (−1)MZ I I Z

(4.15)

AC
S I X (−1)MZ Z Z Z (−1)MX I X I
L X I MZ Z X X MX I (−1)MX I I X

Z I Z I (−1)MZ Z I Z

(4.16)

(a) (b) (c) (d)

Figure 4.16: (a) Patch A is a logical qubit in state |ψ〉, patch B and D are ancillas in states |0〉 and |+〉, respectively.
The state |ψ〉 is moved to patch D in 3d SC cycles as follows: (b) First perform the joint measurement MZ Z
between A and B; (c) and (d) then perform the joint measurement MX X between B and D and finally perform
the measurement MX on patch A.

4.8.3. FT LIBRARY
After the logical-level mapping, the physical-level mapping becomes trivial for several
reasons. First, there is no need to place and route physical qubits since surface codes
intrinsically satisfy the 2D NN constraint. Secondly, as discussed in Section 4.2, each of
the universal set of logical operations (preparation, measurement, Pauli, H, CNOT, S and
T gates) on planar SC is implemented by a certain series of SC cycles.

As shown in Figure 4.17, each cycle is composed of two time slots, one blue slot for
performing physical single-qubit gates and one gray slot for performing one round of
ESM. Depending on the logical operation, a single-qubit gate such as Identity, Pauli gates
or H gate needs to be performed during each blue slot. For instance, a logical X gate on
the distance-3 planar surface code (Figure 2.3a) can be realized by one SC cycle, that
is, first performing bit-wise physical X gates on qubits D1,D2,D3 (blue slot) and then
performing 1 round of ESM (gray slot). Therefore, a library can be built to translate each
logical operation into pre-scheduled physical quantum operations. Since the operations
in a blue slot are bit-wise and performed in parallel, one only need to pre-schedule the
operations of error syndrome measurement.

The ESM circuits for X and Z stabilizers are shown in Figure 2.3b. One full round of
ESM on the distance-3 planar surface code (Figure 2.3a) is scheduled and performed as
follows (in QASM):
{ prepz A2 | prepz A7 | prepz A5}
{ h A2 | h A7 | h A5 | prepz A1 | prepz A3 | prepz A6}
{ cnot A2, D5 | cnot A7, D9 | cnot A5, D7 | cnot D2, A1 | cnot D6, A3 | cnot D8, A6 | prepz A8 | prepz A4}

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

4.8. APPENDIX

4

59

Figure 4.17: The decomposition of logical operations into SC cycles.

(a) (b)

Figure 4.18: The hand-optimized (a) scheduling and (b) initial placement in a 3×3 tile-based architecture of
the Steane �7, 1, 3� encoding circuit.

{ cnot A2, D2 | cnot A7, D6 | cnot A5, D4 | cnot D9, A8 | cnot D3, A3 | cnot D5, A6 | h A4}
{ cnot A2, D4 | cnot A7, D8 | cnot A4, D6 | cnot D1, A1 | cnot D5, A3 | cnot D7, A6 | h A5}
{ cnot A2, D1 | cnot A7, D5 | cnot A4, D3 | cnot D8, A8 | cnot D2, A3 | cnot D4, A6 | measure A1 | measure A5}
{ h A2 | h A4 | h A7 | measure A3 | measure A6 | measure A8}
{ measure A2 | measure A4 | measure A7}

However, a more realistic scheduling needs to consider the underlying hardware con-
straints such as the allowed primitive operations, their execution time, frequency multi-
plexing, etc. A scalable scheme for executing the ESM of surface code on superconduct-
ing qubits with NN coupling can be found in [39].

4.8.4. HAND-OPTIMIZED MAPPING EXAMPLE

In this section, we show a hand-optimized mapping of the Steane �7, 1, 3� encoding cir-
cuit in the 3 × 3 tile-based architecture. Using the Quantum Operation Dependency
Graph shown in Figure 4.6b, instructions have been scheduled in an ALAP manner (Fig-
ure 4.18a). In addition, qubits have been placed in the lattice based on the number and
frequency of interactions (Figure 4.18b). For the routing, one of the shortest paths is
‘randomly’ selected, resulting in the insertion of SWAPs shown in Figure 4.19. Compared
with the proposed mapping procedure, the hand-optimized approach shows an increase
of the communication overhead in terms of both latency overhead (15.9%) and opera-
tion overhead (25%).

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

4

60
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

Figure 4.19: The final circuit and the intermediate qubit layouts after manually mapping the Steane �7, 1, 3�
encoding circuit onto the tile-based architecture.

4.8.5. INITIAL PLACEMENTS

Figure 4.20: Comparison of mapping FT circuits with different initial placements on the checkerboard archi-
tecture (d = 3).

In this section, we examine how initial placement affects the mapping results.
Figures 4.20 and 4.21 show the comparison of the proposed smart placement based

on Manhattan distance with a naive placement which locates qubits in order, where
logical qubits are encoded by the distance-3 surface code. For some benchmarks, the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

4.8. APPENDIX

4

61

Figure 4.21: Comparison of mapping FT circuits with different initial placements on the tile-based architecture
(d = 3).

Figure 4.22: Comparison of mapping FT circuits with different initial placements on the checkerboard archi-
tecture (d = 7).

Figure 4.23: Comparison of mapping FT circuits with different initial placements on the tile-based architecture
(d = 7).

use of the smart initial placement effectively decreases the operation overhead on both
the c-arch and the t-arch, from ∼ 8.3% up to 37.5% (rd84, adder0-5, multiply-4, rd73,
adder1-8, adder1-16, 15-enc) and from ∼ 7.4% up to 50% (adder1-8, hwb7, shor-15,
multiply-4, rd84, adder1-16, 7-enc, 15-enc), respectively. Furthermore, the smart place-
ment approach reduces the latency overhead of the c-arch and t-arch by 7.0% to 31.1%
(rd73, shor-15, rd84, multiply-4, ham7, adder1-8, 7-enc, adder0-5, 15-enc) and by 7.4%
to 62.3% (shor-15, adder1-16, hwb7, sqrt7, 15-enc, adder0-5, 7-enc), respectively. How-
ever, for other benchmarks, the smart placements provide marginal reductions or even
increases in communication overhead on both qubit architectures. This is because the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 76PDF page: 76PDF page: 76PDF page: 76

4

62
4. MAPPING OF LATTICE SURGERY-BASED QUANTUM CIRCUITS ON SURFACE CODE

ARCHITECTURES

position of the qubits will change after each SWAP operation, and the possible benefit
of the smart initial placement will progressively disappear as the circuit execution ad-
vances.

Figures 4.22 and 4.23 show similar results for distance-7 surface code. For some
benchmarks, the use of smart initial placements can effectively decrease the communi-
cation overhead compared to naive placements. The smart initial placement decreases
the operation overhead on the c-arch and the t-arch, from ∼ 15.8% up to 51.0% (adder1-
16, rd84, adder0-5, adder1-8, 7-enc, 15-enc) and from ∼ 6.7% up to 33.3% (adder0-5,
rd84, ham7, adder1-16, multiply-4, 15-enc, adder1-8, 7-enc), respectively. Moreover,
the smart placement approach reduces the latency overhead of the c-arch and t-arch by
10.2% to 31.1% (shor-15, multiply-4, rd73, rd84, 7-enc, adder1-8, 15-enc, adder0-5) and
by 5.7% to 74.7% (rd73, adder1-8, 15-enc, adder0-5, 7-enc), respectively. However, for
other benchmarks, the benefits from smart initial placements disappear on both qubit
architectures.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

5
A CONTROL MICROARCHITECTURE

FOR FAULT-TOLERANT QUANTUM

COMPUTING

Quantum computers can solve problems that are inefficiently solved by best known clas-
sical algorithms, such as integer factorization. A fully programmable quantum computer
requires a quantum control microarchitecture that connects the quantum software and
hardware. Previous research has proposed a Quantum Instruction Set Architecture (QISA)
and a quantum control microarchitecture, which targets Noisy Intermediate-Scale Quan-
tum (NISQ) devices without fault-tolerance. However, fault-tolerant (FT) quantum com-
puting requires FT implementation of logical operations, and repeated quantum error cor-
rection, possibly at runtime. Though highly patterned, the amount of required (physical)
operations to perform logical operations is ample, which cannot be well executed by exist-
ing quantum control microarchitectures.

In this chapter, we propose a control microarchitecture that can efficiently support fault-
tolerant quantum computing based on the rotated planar surface code with logical op-
erations implemented by lattice surgery. It highlights a two-level address mechanism
which enables a clean compilation model for a large number of qubits, and microarchi-
tectural support for quantum error correction at runtime, which can significantly reduce
the quantum program codesize and present better scalability.

The contents of this chapter have been published in X. Fu*, L. Lao*, K. Bertels, C. G. Almudever, A Control Mi-
croarchitecture for Fault-tolerant Quantum Computing, Microprocessors and Microsystems 70, 21-30 (2019).
*Those authors contribute equally to this paper.

63

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

5

64 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

5.1. INTRODUCTION
Quantum computers are promising because of their capability of solving problems that
are currently inefficiently solved by classical computers, such as integer factorization [1]
and quantum chemistry simulation [104, 105]. A fully programmable quantum com-
puter based on the circuit model [23] requires a seamless collaboration between quan-
tum software and quantum hardware with a quantum instruction set architecture (QISA)
and quantum control microarchitecture serving as an interface [106] .

Due to the short coherence time of qubits and the erroneous quantum operations,
fault-tolerant quantum computing (FTQC) based on quantum error correction (QEC) is
essential to implement large-scale quantum algorithms. The basic idea of QEC is to en-
code quantum information into a logical qubit using a group of physical qubits accord-
ing to some encoding scheme called quantum error correction code (QECC). To achieve
fault-tolerance, it requires periodically detecting and (if necessary) correcting possible
quantum errors through a highly patterned process called error syndrome measurement
(ESM). In addition, quantum operations on such logical qubits should be implemented
by a series of physical operations in such a way that individual errors of physical opera-
tions will not ruin the information stored in the logical qubits. As a consequence, FTQC
dramatically increases the number of required physical qubits and the number of phys-
ical operations.

However, quantum control microarchitectures and QISAs proposed by recent re-
search [106, 107] mainly target Noisy Intermediate-Scale Quantum (NISQ) devices with
around fifty to hundreds of qubits [21], where quantum error correction is not applied.
The QISA required by FTQC can be different to that required by NISQ technology be-
cause of the following reasons.

• Quantum algorithms targeting NISQ technology directly operate on individual phys-
ical qubits without QEC. In contrast, quantum algorithms operate on logical qubits
in FTQC. The microarchitecture should support not only logical operations but
also individual physical operations, which are required to implement some logical
operations such as initialization [15].

• QEC introduces more complex classical computational tasks at runtime, such as
quantum error decoding and error tracking using Pauli frame [108, 109], which
require the support of new instructions in the QISA and new blocks at the control
microarchitecture.

• The quantum error correction process requires repeated physical operations on
qubits. It significantly increases the number of quantum operations on qubits per
unit time and aggravates the quantum operation issue rate problem [106] con-
fronting the control microarchitecture.

It is an open challenge to develop a scalable and flexible control microarchitecture
that can satisfy the requirement of quantum error correction and fault-tolerant logical
operations. This chapter envisions a Fault-Tolerant Quantum MicroArchitecture, FT-
QuMA, for the rotated planar surface code with logical operations implemented by lat-
tice surgery [19]. The main contributions of this chapter are the following:

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 79PDF page: 79PDF page: 79PDF page: 79

5.2. FAULT-TOLERANT QUANTUM COMPUTING

5

65

• We introduce the concept virtual memory into quantum computing with microar-
chitectural support, which contributes to a clean compilation model independent
of the actual physical addresses of qubits that can vary from device to device;

• We propose a scheme to support quantum error detection and correction at the
microarchitecture level, which can enable flexible planar-surface-code-based fault-
tolerant logical operations implemented by lattice surgery;

• We propose a hardware mechanism that substantially reduces the codesize of the
executable to enable efficient execution of quantum instructions.

5.2. FAULT-TOLERANT QUANTUM COMPUTING

5.2.1. QUANTUM ERROR CORRECTION

Qubits are fragile and quantum operations are erroneous. QEC can protect quantum
states against errors by encoding one logical qubit into several physical qubits, which
are called data qubits. Logical operations can be implemented by a series of physical
operations on the physical qubits in such a way so that individual errors can be detected
and corrected to achieve fault-tolerance. Non-destructive error syndrome measurement
is periodically performed with the assistance of ancillary qubits, called ancilla qubits, to
discretize quantum errors and extract the error syndromes. Afterwards, quantum error
decoding is applied to find the likely errors based on the observed syndromes [30, 110,
111, 36, 112]. The capability of a QECC to detect and correct errors is characterized by the
distance d , which is defined as the minimum number of physical operations required to
implement a logical operation.

The surface code [28, 15] is a two-dimensional (2D) topological stabilizer code of
which ESM is realized by measuring low-weight stabilizers, that is applicable on near-
term quantum devices with limited connectivity. Moreover, the surface code has high
tolerance to errors with an error threshold around 1%, which can be achieved by sev-
eral quantum technologies such as superconducting qubits. This chapter focuses on the
rotated planar surface code and investigates its implications on a quantum microarchi-
tecture. The qubit layout of a distance-3 rotated planar surface code is shown in Fig-
ure 2.3a. The circuits for performing X - and Z -stabilizer measurements are shown in
Figure 2.3b. It is worth mentioning that these two-qubit gates need to be performed in
a specific order to ensure fault tolerance, i.e., an ‘S’-shape order and an ‘N’-shape order
for X - and Z -stabilizers, respectively [113]. Both circuits end with a measurement on
the ancilla qubit. The measurement results (binary values), or error syndromes, are then
forwarded to a classical module, where decoding algorithms such as minimum weight
perfect matching [31, 32, 33] are used to identify the possible errors with high likelihood
and propose the corresponding corrections. Rather than physically performing these
corrections, which may introduce more errors to the quantum system, classical control
logic can track these errors using a technique called Pauli frame [108] that can be imple-
mented in the microarchitecture [109].

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

5

66 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

5.2.2. FAULT-TOLERANT LOGICAL OPERATIONS
A circuit-model-based universal quantum computer requires at least a universal set of
logical operations [23]. For the rotated planar surface code, such an implementable set
includes:

1. The preparation, measurement, and Pauli gates, which can be implemented transver-
sally;

2. The H gate and CNOT gate, which can be implemented using lattice surgery;

3. The S gate and T gate, requiring magic state distillation.

Note that, other surface code schemes such as twists [114, 58] and defects [15, 56]
have a different implementation of logical operations.

TRANSVERSAL LOGICAL OPERATIONS

In planar surface codes, logical Pauli gates, preparation (|0〉 or |+〉) and measurement (in
the X or Z basis) can be implemented transversally [15], i.e. applying bitwise operations
to data qubits of the logical qubit followed by 0 - d rounds of ESM to decode errors. For
example, the logical X and Z on a distance-3 surface code (e.g., lattice ‘C’ in Figure 2.3a)
can be realized by performing XD1XD2XD3 and ZD1ZD4ZD7 followed by 3 rounds of ESM,
respectively. Note that in This chapter, unless otherwise specified, logical preparation
refers to the preparation of state |0〉 or |+〉, and logical measurement means measuring
in the X or Z basis.

LOGICAL CNOT & H GATES

In order to perform logical CNOT gates in a 2D layout with only nearest-neighbor (NN)
interactions, Gottesman [61] proposed a measurement-based procedure which can be
implemented by the circuit shown in Figure 3.4a. The qubit layout for performing such
a logical CNOT gate on a distance-3 planar surface code is shown in Figure 4.1a. The
joint measurement MX X or MZ Z is realized by first merging the lattices of these two
logical qubits and then splitting them using a technique called lattice surgery [18, 19].
For example, the merge operation required by MZ Z is realized by performing d rounds
of ESM on the merged lattice of the two logical qubits as shown in Figure 4.1b. After the
merge, the two logical qubits ‘A’ and ‘C’ are integrated into one single lattice. Similarly,
the splitting operation is implemented by performing d rounds of ESM individually on
each lattice ‘A’ and ‘C’ in Figure 4.1c. The splitting procedure divides the merged lattice
back into two lattices. After the merging and splitting operation, the joint measurement
result can be retrieved by multiplying the measurement results of some new stabilizers
introduced by the merged lattice after correcting all errors, which will be used for further
logical Pauli corrections (Figure 3.4a). For instance, the measurement result of MZ Z is
the multiplication of the outcomes of the two newly-introduced Z stabilizers (framed) in
Figure 4.1b. In total, ∼ 3d rounds of ESM are performed to realize a lattice-surgery-based
CNOT gate.

Note that the error decoding for lattice-surgery-based operations may differ from the
decoding for the standard error correction cycles (see [64] for more technical details). For

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

5.2. FAULT-TOLERANT QUANTUM COMPUTING

5

67

the merged lattice in Figure 4.1b, detecting Z errors requires decoding over the measure-
ment outcomes of all the X -stabilizers in the merged lattice, but detecting X errors only
requires decoding over the measurement outcomes of all the Z -stabilizers in the original
two separate lattices.

In principle, the logical H gates on a planar surface code can be implemented transver-
sally. Afterwards, the X - and Z -stabilizers will be exchanged. The location of X - and Z -
stabilizers of each lattice – which property we name the base ancilla type (see Figure 5.3)
– should be kept track of to generate the correct ESM circuits. A logical CNOT can only
be performed between two lattices whose base ancilla types are the same. For exam-
ple, the logical qubit ‘C’ and ‘T’ in Figure 4.1a have the same base ancilla type so that
a logical CNOT gate can be directly performed between them. If the base ancilla types
are different, one of the lattices should be rotated by 90° to align the base ancilla types
before a logical CNOT gate. Previous works have proposed several lattice-surgery-based
approaches to rotate a planar surface code [30, 18, 56, 64]. Though the concrete steps of
these approaches differ and involve different physical qubits surrounding the lattice, all
these approaches share the same elementary operation patterns, i.e., single-qubit oper-
ations on individual qubits and ESM. Since it is not clear which approach presents better
performance, we will not consider how to support the detailed steps for rotating a planar
surface code in this chapter and instead only ensure the elementary operation patterns
can be supported by our envisioned microarchitecture.

LOGICAL S AND T GATES

The logical S and T gates on the rotated planar surface codes can be realized by perform-
ing a series of other logical operations, including the previously mentioned operations
(measurement, Pauli, CNOT, and H) and another operation called magic state prepara-
tion. Magic states cannot be fault-tolerantly prepared using the transversal approach
for logical state |0〉 or |+〉, they are prepared by two procedures: (i) state injection and
(ii) magic state distillation. We refer readers to [15] for details and only summarize the
elementary operation patterns required by magic state preparation as following:

• State injection is realized by applying physical operations on the data qubits of the
lattice followed by several rounds of ESM.

• State distillation is implemented by logical circuits which only consist of logical
preparation, measurement, Pauli, CNOT, and H .

SUMMARY

As a conclusion, the elementary operation patterns of all logical operations in these three
categories can be classified into 1) physical operations on individual physical qubits, and
2) several rounds of ESM on lattices of which the size and base ancilla type can be ad-
justed at runtime. Since several rounds of ESM are required after most operations, a
round of ESM is a frequently-used operation pattern, which implies ample space for op-
timization in the architectural and microarchitectural design. In the following sections,
we will discuss how to efficiently support the execution of ESM and fault-tolerant oper-
ations in the control microarchitecture.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

5

68 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

5.3. QUANTUM CONTROL MICROARCHITECTURE
To bridge the gap between quantum software and hardware, our previous work pro-
posed the quantum control microarchitecture, QuMA [106]. QuMA can take as input
instructions belonging to the quantum microinstruction set QuMIS, and generate the
required signals to control superconducting qubits. To address the problem that QuMIS
is too low-level and tightly bound to the hardware implementation, we upgraded QuMA
into QuMA_v2 to support the executable QISA, eQASM [107]. eQASM, supported by
QuMA_v2, features two kinds of runtime feedback, a Very-Long-Instruction-Word (VLIW)
architecture, Single-Operation-Multiple-Qubit (SOMQ) execution, and flexible quantum
operation definition. We briefly introduce the working principles of QuMA_v2 (Figure 5.1
excluding the dashed blocks) in this section and refer readers to [107] for detailed expla-
nation.

QuMA_v2 is a heterogeneous architecture consisting of a conventional processor as
the host, such as an Intel Xeon processor, and a quantum processor as the accelera-
tor. The host CPU executes the classical part of the quantum program, and loads the
quantum kernel(s) into the quantum processor for execution via the shared instruction
memory and data memory. Besides quantum instructions, the quantum kernel can also
contain auxiliary classical instructions. Auxiliary classical instructions are in charge of
classical register update and program flow control including feedback based on qubit
measurement results, which are processed by the classical pipeline. Quantum instruc-
tions, which are at the physical level, are sent to the quantum instruction decoder and
following modules (together called the quantum pipeline) for further process.

The quantum pipeline can be divided into several stages to execute quantum in-
structions. The first stage, framed by the virtual address domain, decodes quantum in-
structions, resolves operation address and outputs as result quantum micro-operations
for corresponding qubits. As a VLIW architecture, an eQASM instruction can contain
multiple quantum operations, with each processed by a VLIW lane (VLIW pipelane).
The microcode unit translates each quantum operation into one or multiple quantum
micro-operations according to the control store content. The control store can be con-
figured by the programmer, which enables flexible quantum operation definition at com-
pile time. eQASM adopts SOMQ, an indirect address mechanism where every quantum
operation takes a target register as the parameter, which stores a list of qubits or qubit
pairs serving as the target of the quantum operation. The quantum microinstruction
buffer resolves the target address, and assigns every quantum micro-operation to the
corresponding target qubit(s). Because the timing of quantum operations is fully de-
scribed by the instructions, every micro-operation is associated with a particular timing
point generated from waiting instructions, which is handled by the timestamp manager.
The operation combination unit merges the micro-operations from different VLIM pipe-
lanes, and output them to corresponding qubits.

The second stage, framed by the physical address domain, mainly performs three
tasks. First, operating a qubit may require the collaboration of multiple analog devices in
the analog-digital interface, and a single analog device may also control multiple qubits.
The device event distributor reorganizes micro-operations into device operations to trig-
ger the corresponding devices. Second, device operations with the timing information
are buffered at the queues of the timing control unit awaiting execution. The tim-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

5.4. FAULT-TOLERANT CONTROL MICROARCHITECTURE

5

69

ing controller then triggers every device operation at its expected timing point. Third,
the fast conditional execution unit allows executing or canceling single-qubit micro-
operations based on a flag derived from the last measurement results of the same qubit
using predefined combinatorial logic.

The analog-digital interface (ADI) is the boundary between the digital signals and
analog signals. Once there comes micro-operations from the fast conditional execution
unit, the codeword triggered pulse generation module, consisting of one or multiple
analog devices, generates analog pulses to apply the corresponding quantum opera-
tions on the qubits. Regarding measurement, the measurement discrimination unit
infers the measurement results of qubits based on the reflected analog waveform from
the qubits, which results are used by the fast conditional execution unit and the classical
pipeline for feedback.

Limited by the quantum operation issue rate, QuMA_v2 can only control tens of
qubits. As mentioned previously, the amount of required qubits and operations can
be significantly increased when implementing FTQC, which is a big challenge for the
microarchitecture. To support efficient execution of massive quantum instructions re-
quired by FTQC, we envision a fault-tolerant control microarchitecture, FT-QuMA, based
on QuMA_v2 , which is described in the next section.

5.4. FAULT-TOLERANT CONTROL MICROARCHITECTURE
Figure 5.1 gives an overview of the proposed fault-tolerant control microarchitecture FT-
QuMA. It is upgraded from QuMA_v2 with the dashed blocks highlighting the modules
and mechanisms introduced to support large-scale FTQC. The QECC chosen is the ro-
tated planar surface code with logical operations implemented with lattice surgery.

As we have seen, each logical operation can be fault-tolerantly implemented by some
physical operations and several rounds (or no rounds) of ESM. The fault-tolerant transla-
tion from logical operations to physical operations and ESM is explained in detail in [115],
which can be done by the compiler. Then, instructions accepted by FT-QuMA are quan-
tum operations at the physical level and ESMs on corresponding lattices which can be
processed by the microarchitecture as explained in Section 5.4.2.

To make the compiler independent of actual physical qubit address, which enables
a clear compilation model for large-scale quantum computing, FT-QuMA adopts virtual
memory as used by classical computers. It supports fault-tolerant quantum computing
by providing essential features for flexible logical operation description, efficient ESM
circuit generation, quantum error decoding (QED), and Pauli frame, etc. Note, the user
can turn off all modules related to QEC, and FT-QuMA can work properly as well, but
at the physical level without support for fault-tolerant quantum computing. Modules
shared by QuMA_v2 and FT-QuMA work in the same way unless otherwise specified.

5.4.1. QUBIT ADDRESSING

VIRTUAL ADDRESS AND PHYSICAL ADDRESS

To enable a simple compilation model for large-scale fault-tolerant quantum comput-
ing, two kinds of addresses are used: the virtual address and the physical address. It is
assumed that the quantum compiler works with qubits on a virtual 2D array with NN

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

5

70 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

interaction among qubits. The virtual address has the format qv = (i , x, y), where i is
the index address of the qubit and (x, y) is the Cartesian coordinates of the qubit on the
virtual array. The index address is unique for every qubit and is used by quantum in-
structions and the microarchitecture to identify the target qubit(s) of each quantum op-
eration. It can be determined just by counting qubits from bottom to top and from left
to right in the virtual 2D array as shown in Figure 5.2. It can also be calculated from the
Cartesian coordinates and vice versa, or a look-up table can be used to store the map-
ping between each other. The Cartesian coordinates are included as part of the address
because they provide a straightforward method to determine what qubits are part of a
logical qubit, the type of each qubit (data qubit, X ancilla, or Z ancilla), and the actual
operations required by ESM. For instance, assuming a distance-d logical qubit is imple-
mented by a square lattice, and the data qubit on the bottom left corner of this logical
qubit has a virtual Cartesian coordinates of (x0, y0). Then all data qubits of this logical
qubit can be found at (x0+2i , y0+2 j), where i , j ∈ {0,1, · · · ,d}. Knowing what kind of log-
ical qubit is (see Figure 5.3), the locations of ancilla qubits and the corresponding types
can also be determined in a similar way. In addition, the coordinates of neighbouring
data qubits of each ancilla qubit as well as the physical operations required to perform
ESM can be calculated, according to the circuits as shown in Figure 2.3b.

As shown in Figure 5.2, the virtual qubit array (red frame) is mapped to a lattice of the
same size on the physical qubit array when initializing the quantum program on an ac-
tual quantum platform before execution. Every qubit also gets a physical qubit address
qp = (î , x̂, ŷ) at this step. Assuming the mapping process keeps the orientation of the axes
of the qubit array, then the mapping can be determined by, e.g., recording the physical
coordinates qp = (x̂0, ŷ0) of the virtual qubit (0, 0, 0). The Cartesian coordinates between
the virtual address and the physical address can be translated using the relationship:

(x̂, ŷ) = (x, y)+ (x̂0, ŷ0) (5.1)

The physical address of qubits may vary when executing the program on different
platforms. By using the virtual address, the compilation process can be independent of
the actual physical qubit address, which contributes to a cleaner compilation model.

MICROARCHITECTURAL SUPPORT

The quantum instructions input to FT-QuMA use virtual addresses. As shown in Fig-
ure 5.1, modules in the virtual address domain works in the same way as explained in
Section 5.3. They are relatively technology-independent and work with the virtual ad-
dress. The virtual-physical address translation module translates the virtual address into
the physical one according to Euqation (5.1). In the physical address domain, the mod-
ules are mostly technology-dependent and work with the physical address. In this way,
the virtual address domain is clearly separated from the physical address domain. For
instance, the measurement discrimination unit returns measurement results associated
with physical addresses, which will be translated by the virtual-physical address trans-
lation module into virtual addresses and later sent to the classical pipeline for further
process.

Note, the virtual address and physical address are only used by the physical qubits,
and each logical qubit uses only one but unique logical identifier throughout the mi-
croarchitecture, which will be explained in the next subsection.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

5.4. FAULT-TOLERANT CONTROL MICROARCHITECTURE

5

71

5.4.2. FAULT-TOLERANT LOGICAL OPERATIONS
As explained in Section 5.2.2, the elementary operation patterns required by the logical
operations include physical operations on individual physical qubits, and several rounds
of ESM on lattices. The keys to achieve fault-tolerance are to 1) measure the active sta-
bilizers (ESM), and 2) decode and correct the errors at runtime. Lattice surgery needs to
turn on (start to measure) and off (cease to measure) some stabilizers at different QEC
cycles, which should be supported by the microarchitecture. Besides, the microarchitec-
ture should be able to decode quantum errors at real-time as well.

Targeting these goals, FT-QuMA maintains a qubit symbol table (Q symbol table) that
keeps track of the status of all logical qubits and it is used to determine active stabilizers.
In addition, as we will explain in the following sections, FT-QuMA includes a QEC cycle
generator, a quantum error decoder module and a logical measurement unit. It also in-
cludes a Pauli frame unit for keeping track of quantum errors on data qubits at runtime,
which is well explained in [109] and will not be further explained here for brevity.

QUBIT SYMBOL TABLE

The microarchitecture should be able to know what logical qubits are being used (ac-
tive), where they are, and the type of each physical qubit (data, X -ancilla, or Z -ancilla).
The qubit symbol table (see Table 5.1) tracks which logical qubits are active, with ‘1’ and
‘0’ representing active and inactive, respectively. As shown in Figure 5.2, there are three
active logical qubits, L1, L2, and L3, where the subscription is the logical identifier (logi-
cal QID).

To generate correct instructions for ESM, the following configuration of logical qubits
should be updated at runtime:

• Since a logical qubit can vary its size during lattice surgery, the size (d1 ×d2) (size
column in Table 5.1) of each logical qubit should be recorded, where d1 and d2 are
the number of data qubits of this logical qubit along x- and y-axis, respectively. As
shown in Figure 5.2, logical qubit L1 has a size of 3×3 (orange dots) while logical
qubit L3 has a size of 3×6.

• The location of each logical qubit (location column in Table 5.1) is essential to de-
termine what physical qubits are used to implement such a logical qubit. The lo-
cation of logical qubit Li can be determined by recording the virtual coordinates
(XLi ,YLi) of the data qubit at the bottom left corner of this logical qubit. For ex-
ample, the location of logical qubit L1 is (2,2).

• A logical qubit with the same data qubits can use different ancilla qubits for dif-
ferent purposes in lattice surgery. Take the distance-3 surface code as an example
and as shown in Figure 5.3, there are in total four different flavors for the same
logical qubit, which can be distinguished using two flags: the base ancilla type and
the chirality. This information is required to determine what physical qubits are
used as ancilla and what types they are.

Lattice surgery requires performing joint measurements over nearby logical qubits
to realize a logical CNOT gate. As explained in Section 5.2.2, the final result of the joint

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

5

72 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

measurement is the product of measurement results of the new X - or Z -stabilizers in-
troduced by the merging operation. To enable the logical joint measurement and quan-
tum error decoding, which two logical children qubits (children column in Table 5.1) are
merged into which larger parent logical qubit (parent column in Table 5.1) should be
recorded at runtime as well. For instance, logical children qubits 1 and 2 in Table 5.1 are
merged into their parent qubit 4.

An example of the qubit symbol table for the logical qubits in Figure 5.2 is shown in
Table 5.1. When necessary, another table could be provided to inversely map the physical
or virtual qubit addresses to logical identifiers.

Table 5.1: An example of the qubit symbol table, with the content recording the status of logical qubits in
Figure 5.2.

Logical
QID

Active Location Size
Base Ancilla

Type
Chirality Parent Children

1 1 (2, 2) (3, 3) X Left 4 -
2 1 (2, 8) (3, 3) X Right 4 -
3 1 (10, 2) (3, 6) Z Right - -
4 0 (2, 2) (3, 6) X Right - [1, 2]

Based on the qubit symbol table, the hardware can deduct which physical qubits
are used by each logical qubit, and the type of each physical qubit. Furthermore, all
operations required by ESM can be determined according to the ESM circuits as shown
in Figure 2.3b.

QEC CYCLE GENERATOR

As explained in Section 5.2, fault-tolerant logical operations are performed by perform-
ing some physical operations followed by several rounds of ESM. In addition, ESM is also
required by QEC. As a result, most of the physical operations are used to perform ESM.
Before discussing the QEC cycle generator, we will give a rough estimation of the number
of physical operations required for ESM on all logical qubits.

In the following estimate, each logical qubit is encoded in a rotated planar surface
code with a distance of d . Such a logical qubit consists of d ×d data qubits and d 2 −1
ancilla qubits for measuring X - or Z -stabilizers. As d increases, the weight-2 stabilizers
only occupies around 2/d of all stabilizers, and most stabilizers are weight-4 that run the
corresponding ESM circuit consisting of eight or six physical operations (Figure 2.3b).
During lattice surgery, some stabilizers on the edge of logical qubits can be turned on or
off, which may slight increase or decrease the number of physical operations required
by ESM. For simplicity, it is assumed the total number of physical operations for ESM is
not affected by lattice surgery. ESM should be performed with the active stabilizers of
logical qubits repeatedly at every cycle, no matter a logical operation is being performed
or not. Hence, instead of estimating the number of physical operations for ESM during
the entire program, we only need to roughly estimate the physical operations required
to perform one round of ESM:

N C
op ≈ Np ×NL ×d 2, (5.2)

where NL is the number of logical qubits and Np = 7 is the average number of physical
operations in each ESM circuit as shown in Figure 2.3b.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

5.4. FAULT-TOLERANT CONTROL MICROARCHITECTURE

5

73

As can be seen, the number of physical operations and then instructions that need
to be generated, explode as the d and/or NL increase. Though the quantum compiler
can generate the instructions for these physical operations, it cannot scale up because
the quantum operation issue rate is a bottleneck for the QuMA microarchitecture [106].
In other words, the required instructions are too many to be fetched from the instruc-
tion memory for processing due to a limited instruction bandwidth. It highly requires
the microarchitecture to generate physical operations for ESM to alleviate the quantum
operation issue rate problem.

FT-QuMA introduces a special instruction, Gen_ESM L_i, which triggers the hard-
ware to generate all physical operations to perform one round of ESM over the logical
qubit Li . This method is feasible based on the following observation. Given the location
and size of a logical qubit in the qubit symbol table, the data qubits of this logical qubit
can be determined. Based on the base ancilla type and chirality, the ancilla qubits and
their type (hence the stabilizers) can be determined. Then, the microarchitecture can
automatically generate a series of physical quantum operations with expected timing to
implement the ESM circuit for each stabilizer according to Figure 2.3b. Note that, virtual
(and then physical) index addresses are used in these quantum operations.

While translating the original quantum algorithm into the the fault-tolerant imple-
mentation, the compiler generates a Gen_ESM L_i instruction for every round of ESM on
every active logical qubit in the binary. Once Gen_ESM L_i instruction is fetched during
execution, this instructions triggers the QEC cycle generator after instruction decoding.
The QEC cycle generator reads the location, size, base ancilla type, and the chirality of
the target logical qubit Li , based on which the physical operations with precise timing
for ESM can be generated and sent to the timing control unit awaiting execution. By us-
ing the proposed method, the required number of instructions (N M

ins) used for one round
of ESM is substantially reduced to

N M
ins ≈ NL. (5.3)

The comparison between these two methods is shown in Figure 5.4. When d = 30, N M
ins

is four orders of magnitude less than N C
op.

It is worth noting that, Tannu et al. [116] also proposed a similar idea, which adopts
a microcode-based method to generate the instructions for ESM in the hardware. The
microcode-based method can support not only planar surface codes but also defect-
based surface codes.

5.4.3. QUANTUM ERROR DECODING
After a particular number of rounds of ESM have been applied on a logical qubit, the
quantum error decoder is responsible for inferring the possible errors based on the syn-
dromes, i.e, the stabilizer measurement results. Although the Pauli frame can keep track
of the identified errors, the decoding process must be as fast as possible, because the
qubit measurement results stored in the measurement result unit should contain the
correct values after error correction to support runtime feedback. For example, in an
implementation of the Shor’s algorithm [117], some X gates are conditioned on the re-
sults of previous measurements to reduce the number of required qubits. Therefore, the
error decoding process is required to be fast enough so that the computation will not

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

5

74 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

be delayed, leading to more accumulated errors or even a failure of the computation.
Ideally, the quantum error decoder decodes the error syndromes generated by d rounds
of ESM using less time than the duration of these ESM circuits. To achieve such high
speed, the decoding unit can decode errors based on, e.g., Blossom algorithm [110] or
neural networks [36, 112, 111].

In order to support quantum error decoding, FT-QuMA introduces another special
instruction, Decode_ESM L_i type. It triggers the quantum error decoder to perform de-
coding over the type syndromes of the last rounds of ESM for the logical qubit Li , where
type can be X , Z , or X Z . The syndrome type should be specified in the decoding in-
struction because the decoding lattices for X - and Z -syndromes may be different for a
lattice surgery-based operation (Section 5.2.2). Once the Decode_ESM L_i type instruc-
tion is fetched during execution, the QEC cycle generator reads the entry of the logical
qubit Li in the qubit symbol table, which information is finally sent to trigger the quan-
tum error decoder at the expected timing point by the timing control unit. The quantum
error decoder contains multiple instances of the decoding unit. Each decoding instance
is triggered by one Decode_ESM L_i type instruction with the logical qubit information.
Based on this information, the decoding instance can determine which physical qubits
are used as X - or Z -ancilla qubits, and detect the errors that may happen in that logical
qubit. Note, a distributed implementation of the quantum error decoder can be easily
parallelized and has better scalability.

5.4.4. MEASUREMENT RESULT UNIT

There are two kinds of logical measurements used by planar surface codes based on lat-
tice surgery: the measurement of a single logical qubit and the joint measurement of
two logical qubits. (1) The measurement of a single logical qubit is realized by measur-
ing all the data qubits and later classically checking the parity of these data qubits to
perform error correction. After removing the detected errors, the logical measurement
result is calculated by multiplying the measurement outcomes of all data qubits of the
logical qubit. (2) The joint measurement of two logical qubits is realized by a merge
operation followed by a split operation using lattice surgery (Section 5.2.2). After error
correction, the joint measurement outcome is calculated by multiplying the outcomes
of some newly measured stabilizers.

To be able to perform both measurements, two measurement instructions are de-
fined. The Single_Msmt_Result L_i instruction is used to trigger the measurement result
unit to discriminate the result of measuring the logical qubit Li . After decoding, address
translation and awaiting execution, every Single_Msmt_Result L_i instruction fetched
from the instruction memory finally triggers the measurement result unit at a precise
timing to perform error correction, and calculates the logical measurement result for
logical qubit Li . Note that the entry of this logical qubit in the qubit symbol table is also
sent to the measurement result unit.

To support the joint measurement of two logical qubits, the instruction Joint_Msmt_
Result L_i, L_j is introduced. After performing error correction for a joint measurement,
the Joint_Msmt_ Result L_i, L_j instruction triggers the measurement result unit to mul-
tiply the outcomes of newly measured stabilizers in the lattice merged from Li and L j .

The measurement result can be read by the classical pipeline for feedback, e.g., di-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

5.5. LATTICE SURGERY INSTANTIATION

5

75

recting the following program flow. The result can also be sent to the host CPU via the
data memory. Note that the logical measurement unit also stores the latest measurement
result of each physical qubit to enable feedback at the physical level.

5.5. LATTICE SURGERY INSTANTIATION
In this section, we illustrate how the proposed control microarchitecture can efficiently
support surface-code-based FTQC by lattice surgery. The joint measurement MZ Z be-
tween qubits ‘A’ and ‘C’ in Figure 4.1 using the control microarchitecture is performed as
following:

1. First, the status of these two logical qubits before the joint measurement is shown
in Table 5.2. Then d Gen_ESM L_i instructions are issued. Each instruction trig-
gers the generation of physical operations for one round of ESM on active logical
qubit Li (i ∈ {1,2}). Afterwards, the instruction Decode_ESM L_i XZ will trigger the
quantum error decoder to decode errors for logical qubit Li (i ∈ {1,2}).

2. In order to perform the merging operation in Figure 4.1b, the status of logical
qubits will be updated into the ones in Table 5.3. Similarly, d Gen_ESM L_4 in-
structions will be issued to perform d rounds of ESM on the active qubit in Ta-
ble 5.3, i.e., L4. Note that the decoding for merging and splitting operations are
different from the general QEC procedure. To perform fault-tolerant decoding for
the merging operation, instructions Decode_ESM L_4 X, Decode_ESM L_1 Z, and
Decode_ESML_2 Z will be issued. Moreover, the instruction Joint_Msmt_Result L_-
1, L_2 will trigger the measurement result unit to calculate the result of joint mea-
surement MZ Z .

3. To perform the splitting operation in Figure 4.1c, the qubit symbol table should
be reverted to the status as shown in Table 5.2. Then d Gen_ESM L_i instructions
should be issued for each logical qubit (i ∈ {1,2}) to trigger d rounds of ESM. The
decoding process for the splitting operation is the same as the merging operation.
Hence, the same three instructions will be issued, i.e., instructions Decode_ESM-
L_4 X, Decode_ESM L_1 Z, and Decode_ESM L_2 Z. Note, even though the logical
qubit L4 is inactive, the decoding for Z -syndromes should be still performed over
the lattice corresponding to L4.

After steps (1) to (3) have been done, the joint measurement over logical qubit L1 and L2

is completed.

Table 5.2: The initial status of logical qubits ‘A’ and ‘C’ before performing a merging operation in Figure 4.1a.

Logical
QID

Active Location Size
Base Ancilla

Type
Chirality Parent Children

1 (‘C’) 1 (2, 2) (3, 3) X Left 4 -
2 (‘A’) 1 (2, 8) (3, 3) X Right 4 -

4 (‘AC’) 0 (2, 2) (3, 6) X Right - [1,2]

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

5

76 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

Table 5.3: The status of logical qubits ‘A’ and ‘C’ after performing a merge operation in Figure 4.1b.

Logical
QID

Active Location Size
Base Ancilla

Type
Chirality Parent Children

1 (‘C’) 0 (2, 2) (3, 3) X Left 4 -
2 (‘A’) 0 (2, 8) (3, 3) X Right 4 -

4 (‘AC’) 1 (2, 2) (3, 6) X Right - [1,2]

5.6. DISCUSSION AND CONCLUSION
A quantum instruction set architecture with a quantum control microarchitecture is re-
quired to bridge the gap between quantum software and quantum hardware. Previ-
ous research in this field mainly focused on NISQ devices with relatively low number
of qubits and no quantum error correction is used. However, as the number of qubits
increases, quantum error correction and fault-tolerant mechanisms will be included to
achieve reliable quantum computation.

In This chapter, we present a microarchitecture, FT-QuMA, to support the execu-
tion of fault-tolerant logical operations for a specific QEC code (the rotated planar sur-
face code) with logical operations based on lattice surgery. We adopt the concept virtual
memory from classical computing to quantum computing to provide a clean compila-
tion model, which is independent of the actual physical addresses of qubits that can vary
from device to device. With the support of ESM circuit generation and quantum error
decoding at runtime, the codesize of the fault-tolerant implementation of the quantum
program can be significantly reduced.

Our proposal is an early-stage attempt to define the architectural blocks and instruc-
tions required to perform fault-tolerant quantum computation. Hence, there can be
better designs of the entire architecture and these architectural blocks, which can be
used after a comprehensive evaluation. In addition, FT-QuMA has been specifically de-
signed for rotated planar surface codes and lattice-surgery-based operations, and will
have some limitations if other QEC schemes are used as we will discuss in this section.

One of the main questions when designing the interface between software and hard-
ware is how to divide the task between them. There is a trade-off between what tasks
to allocate on the compiler and on the microarchitecture. In this chapter, we propose
that the compiler translates fault-tolerant logical operations to physical operations and
ESM instructions. The main advantage of this approach is its flexibility. When using
a different way to implement fault-tolerant logical operations or even a different QEC
code, modification is only required in the software to change the routine which decom-
poses logical operations into corresponding lower-level operations. As aforementioned,
other approaches are possible. For instance, the compiler could directly output logical
instructions, leaving the task of generating the corresponding physical operations as well
as the ESM operations to the microarchitecture. This method further abstracts away the
low-level details of the underlying qubit array, which leaves a simpler interface to the
software. However, it poses a big challenge in the microarchitecture design to translate
logical operations to physical operations, which is cumbersome to change to suit other
logical operation implementation scheme. Hence, it is less flexible than the one pro-
posed in This chapter.

In our design, the compiler also generates ESM instructions for every active logical

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

5.6. DISCUSSION AND CONCLUSION

5

77

qubit as well as decodi ng instructions. Both of them might be also automatically gen-
erated by the microarchitecture, but it requires further design to ensure that instructions
on different logical qubits are properly synchronized.

As mentioned, the proposed FT-QuMA has been designed for the rotated planar sur-
face code and currently it can only support logical operations on regular rectangle lay-
outs. Note that, some logical operations may change the lattices from regular rectangles
to irregular shapes. In addition, other encoding schemes such as the twisted surface
code and the defect surface code use a different implementation of logical operations.
They may also operate on irregular lattice layouts, which will require to add some ex-
tra information in the qubit symbol table. What modifications should be made on the
control microarchitecture for supporting these irregular shapes and other mechanisms
when different QEC schemes are considered needs further investigation. Future work
will also involve the development of the hardware blocks in FT-QuMA that support the
virtual memory and fault-tolerant quantum computing, and verify FT-QuMA on our de-
veloping full-stack simulator, called quantum virtual machine, which can simulate not
only the qubit state evolution but also the execution of quantum instructions on the mi-
croarchitecture.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

5

78 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

F
igu

re
5.1:

O
verview

o
f

th
e

E
n

visio
n

ed
Fau

lt-To
leran

t
Q

u
an

tu
m

C
o

n
tro

l
M

icro
arch

itectu
re,

F
T-Q

u
M

A
,

w
h

ich
is

u
p

grad
ed

fro
m

Q
u

M
A

_v2,
w

ith
th

e
d

ash
ed

b
lo

cks
h

igh
ligh

tin
g

th
e

ch
an

ges.B
lack

th
in

lin
es

in
d

icate
d

igitalsign
als

an
d

gray
th

ick
lin

es
an

alo
g

sign
als.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

5.6. DISCUSSION AND CONCLUSION

5

79

Figure 5.2: Virtual qubits mapped on physical qubits. Red is for the virtual address space and black for the
physical address space.

Figure 5.3: Four flavors of a distance-3 surface code logical qubit using the same data qubits. It is assumed that
redundant ancilla qubits are not used. The chirality of the logical qubit is left (right) when the physical qubit
at (XL +1,YL −1) ((XL +3,YL −1)) is used as an ancilla qubit, where (XL ,YL) is the location of the logical qubit.
The base ancilla type is X (Z) when the ancilla qubit at (XL +1,YL −1) or (XL +3,YL −1) is an X (Z) ancilla.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

5

80 5. A CONTROL MICROARCHITECTURE FOR FAULT-TOLERANT QUANTUM COMPUTING

Figure 5.4: The number of instructions for performing one round of ESM on all active logical qubits through
compiler generation (top) and hardware generation (bottom).

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

6
FAULT-TOLERANT QUANTUM

ERROR CORRECTION ON

NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND

BRIDGE QUBITS

Fault-tolerant (FT) computation by using quantum error correction (QEC) is essential for
realizing large-scale quantum algorithms. Devices are expected to have enough qubits
to demonstrate aspects of fault tolerance in the near future. However, these near-term
quantum processors will only contain a small amount of noisy qubits and allow limited
qubit connectivity. Fault-tolerant schemes that not only have low qubit overhead but also
comply with geometrical interaction constraints are therefore necessary. In this chapter,
we combine flag fault tolerance with qubit routing techniques to enable an efficient flag-
bridge approach to implement FT QEC on near-term devices. We further show an example
of performing the Steane code error correction on two current superconducting processors
and numerically analyze their performance with circuit level noise. The simulation results
show that the QEC circuits that measure more stabilizers in parallel have lower logical er-
ror rates. We also observe that the Steane code can outperform the distance-3 surface code
using flag-bridge error correction. In addition, we foresee potential applications of the
flag-bridge approach such as FT computation using lattice surgery and code deformation
techniques.

This chapter is based on L. Lao, C. G. Almudever, Fault-tolerant Quantum Error Correction on Near-term Pro-
cessors using Flag and Bridge Qubits, arXiv:1909.07628 (2019).

81

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

6

82
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

6.1. INTRODUCTION
Near-term quantum processors will consist of fifty to a few hundred noisy qubits and
allow a limited number of faulty gates. They are also known as Noisy-Intermediate-Scale
Quantum (NISQ) [21] processors. For instance, Google, IBM, and Intel have respectively
announced 72-qubit [118], 50-qubit [119], and 49-qubit [120] superconducting proces-
sors which have coherence times of ∼ 100 microseconds and two-qubit gate error rates
near 0.1% [16]. Many efforts have been focusing on designing special quantum appli-
cations [121, 122] and developing compilation techniques [106, 123] such that one can
solve practical problems and even demonstrate quantum supremacy on NISQ proces-
sors only using noisy bare qubits.

However, fault tolerance will be necessary to reliably implement large-scale quan-
tum algorithms. This can be achieved through the use of active quantum error correc-
tion (QEC). The idea of QEC is to encode one logical qubit into many physical qubits and
repeatedly perform syndrome extraction to detect and correct errors. Both the encoding
and error detection procedure should be fault-tolerant (FT). Furthermore, operations on
these logical qubits need to be performed fault-tolerantly. Although the high qubit over-
head of QEC makes it difficult to realize scalable FT computation in the near future, we
can begin to learn how fault tolerance works in practice. The first step is to demonstrate
fault-tolerant quantum error correction, that is, FT quantum memory.

General fault-tolerant quantum error correction protocols such as those from Shor
[124], Steane [125], and Knill [126] can be applied to various stabilizer codes. How-
ever, these error correction schemes all require many ancilla qubits, which are scarce
resources in near-term quantum processors. In order to perform FT QEC with low qubit
overhead, a new error correction protocol has been proposed [114, 127, 128, 129]. It re-
places a non-FT syndrome extraction circuit by a circuit which can detect correlated (or
hook) errors by adding only one or a few extra ancilla qubits, called flag qubits.

This flag QEC scheme provides an efficient way to demonstrate fault tolerance in
small experiments. However, many orthodox flag circuits couple one qubit to many oth-
ers, requiring high-degree qubit connectivity. It is difficult or even impossible to directly
map available flag circuits onto near-term quantum processors which have geometrical
interaction constraints such as the nearest-neighbor connectivity in superconducting
processors [14, 39, 130]. One may need to apply extra operations such as SWAP gates to
move qubits to be adjacent, increasing the circuit size in terms of depth and total gate
number, or even circuit width. More importantly, the resulting circuit may not be fault-
tolerant, or produce higher error rates when used.

In this chapter, we extend the set of available flag circuits to a variety of equivalent
circuits that can perform the same stabilizer measurement fault-tolerantly. In these cir-
cuits, the flag qubits are also used as bridges to cope with the connectivity constraints,
called flag-bridge qubits. Using these circuits, one can fault-tolerantly map a QEC code
to a given processor with low overhead by choosing appropriate flag-bridge circuits. We
also develop a simulation framework to automate the procedure of fault tolerance check-
ing, decoder design (including a look-up-table decoder and a neural-network decoder)
for given flag-bridge circuits of some low-distance QEC codes. This automation is de-
sirable for demonstrating fault-tolerant quantum error correction in small experiments.
Moreover, we present mapping examples of the Steane code on two different qubit pro-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 97PDF page: 97PDF page: 97PDF page: 97

6.2. FLAG-BASED QUANTUM ERROR CORRECTION

6

83

cessor topologies and analyze their fault tolerance numerically. In addition, we show
the proposed flag-bridge approach can be applied to FT computation implemented by
lattice surgery and code deformation techniques.

The rest of this chapter is organized as follows. We first review the basics of flag-based
quantum error correction in Section 6.2. Then we introduce the proposed flag-bridge
approach in Section 6.3. Afterwards, the mapping of the Steane code onto two qubit pro-
cessor topologies and corresponding numerical results are shown in Section 6.4. More-
over, we provide the potential applications of flag-bridge circuits in Section 6.5. Finally,
Section 6.6 concludes the chapter.

6.2. FLAG-BASED QUANTUM ERROR CORRECTION
In this section, we briefly introduce the flag-based error syndrome extraction for stabi-
lizer codes. For more details, we refer the readers to [114, 127, 128, 129, 131].

Figure 6.1 shows the circuits for measuring a weight-4 Z -stabilizer (or check), similar
circuits can be derived for measuring other Pauli operators. In all the circuits presented
in this chapter, a CNOT gate between a data qubit and an ancilla qubit is called an s-
CNOT (in black) and a CNOT gate between two ancilla qubits is called an f-CNOT (in blue).
Generally, the syndrome for this Z -check can be extracted using the circuit with only one
ancilla qubit (Figure 6.1a). However, this circuit is not fault-tolerant because one single
fault could cause 2 or more data errors. These correlated errors may lead to failures of
some QEC codes. The surface code is an exception which can correct these hook errors
if the two-qubit gates are performed in a specific order [15]. In order to perform fault-
tolerant quantum error correction, one can use the flag circuits in Figures 6.1b and 6.1c
that only add one extra ancilla qubit. When there is no fault, each of these flag circuits
behaves the same as the non-FT one. When there is a fault that can lead to hook errors,
it will yield a non-trivial measurement outcome of the flag qubit such that the hook er-
rors are detected. For instance, if the same fault in Figure 6.1a happens in the circuit of
Figure 6.1b, then the measurement of qubit f will be ‘1’ (raising a flag).

a

b

c

d

s |0〉
Z

Z

Z

Z

(a)

a

b

c

d

s |0〉
f |+〉 X

Z

(b)

a

b

c

d

s |0〉
f |+〉

Z

X

(c)

Figure 6.1: The syndrome extraction circuits for the Za,b,c,d operator, where s is the syndrome qubit and f is
the flag qubit. (a) The circuit only using one syndrome ancilla may not be fault-tolerant. For example, one
fault (Zs) on the second CNOT gate could lead to correlated weight-2 errors on data qubits (Za , Zb), which may
not be correctable. (b) and (c) The flag-based circuits can detect these hook errors [114, 127, 128].

Flag-based quantum error correction can be applied to many codes such as the [[5,1,3]]
code, Hamming codes, surface codes, color codes, etc. For example, fault-tolerant QEC
for the smallest color code, the Steane code in Figure 6.2, can be realized as follows: first
measure each stabilizer generator one by one using flag circuits similar to those in Fig-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

6

84
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

Figure 6.2: (Left) The qubit layout of the �7, 1, 3� Steane code. Data qubits are on the vertices and each pla-
quette represents two stabilizers: one weight-4 X -stabilizer and one weight-4 Z -stabilizer. (Right) all the six
stabilizer generators and logical X and Z operators.

s1 |0〉
s2 |0〉
f |+〉

Z

Z

X

(a)

s1 |0〉
s2 |0〉
s3 |0〉
f |+〉

Z

Z

Z

X

(b)

Figure 6.3: Flag circuits [127, 129] for (a) measuring two weight-4 Z -checks in parallel using three ancillas and
(b) measuring three weight-4 Z -checks in parallel using four ancillas.

ure 6.1; if a flag raises or a syndrome appears, then stop this round1 and sequentially
measure all the stabilizers using the non-FT syndrome extraction circuit. Note that if
connectivity is fixed, we cannot necessarily change the syndrome measurement circuit
all of a sudden. One can use only two ancilla qubits to perform FT QEC for the Steane
code at the cost of using more time steps. However, many quantum systems have very
short coherence times [4, 3, 14]. Parallelizing stabilizer measurement will be beneficial
to achieve lower logical error rates. Chao and Reichardt [127, 129] have proposed several
circuits to perform two or three parity checks in parallel for the Steane code. The circuits
they propose for measuring two and three Z -checks at the same time using only one flag
qubit are shown in Figure 6.3. As shown, more ancilla qubits are required to achieve this
parallelism compared to the sequential stabilizer measurement circuits. This implies
there is a trade-off between the number of qubits required and the number of stabilizers
that can be measured simultaneously.

Flag-based syndrome extraction is promising for demonstrating quantum error cor-
rection and fault tolerance in small quantum experiments because of its low qubit over-
head. However, current or near-term quantum processors have many hardware limita-
tions. One of the main constraints is the degree of qubit connectivity, that is, one qubit

1A full round of error syndrome extraction is defined as measuring all the stabilizer generators of the code for
one time.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 99PDF page: 99PDF page: 99PDF page: 99

6.3. FLAG-BRIDGE QUANTUM ERROR CORRECTION

6

85

can only interact with a limited number of other qubits. It is challenging to map existing
flag circuits onto connectivity-constrained processors meanwhile maintaining the fault
tolerance with low costs. For instance, the ancilla qubit s of the flag circuit in Figure 6.1b
needs to interact with five qubits, which cannot be supported in a grid topology where
each qubit only has at most four neighbors such as the one in [39]. In this chapter, we
propose a flag-bridge approach to solve this mapping problem, which will be explained
in the next section.

6.3. FLAG-BRIDGE QUANTUM ERROR CORRECTION
In this section, we illustrate the proposed flag-bridge approach which allows fault-tolerant
quantum error correction with low qubit overhead on connectivity-limited quantum
processors.

6.3.1. FLAG-BRIDGE SYNDROME EXTRACTION CIRCUITS
We provide a microscopic explanation of how a flag-based circuit can perform a specific
stabilizer measurement using the stabilizer formalism [25]. We will use the circuit in Fig-
ure 6.1c as an example. A flag syndrome extraction circuit can be understood as a circuit
that replaces the bare ancilla qubit by an ‘encoded’ ancilla up to gate commutation. As
shown in Figure 6.1c, the first blue CNOT gate entangles ancilla qubit s and qubit f (the
encoding procedure), encoding a logical ancilla in a �2, 1, 1� error detection code whose
stabilizer is 〈

Xs ⊗X f
〉

and logical operators are 〈
X = Xs , Z = Zs ⊗Z f

〉
.

This logical qubit is fixed in the Z basis. Then one can perform stabilizer measurement
using this logical ancilla. Assume the four data qubits (a,b,c,d) are initially stabilized by
(−1)y Za,b,c,d (Za ⊗Zb ⊗Zc ⊗Zd), the four subsequent s-CNOT gates between data qubits
and ancilla qubits will keep the stabilizers of all the qubits invariant, which are,〈

Xs ⊗X f , (−1)y Z4,5,6,7
〉

,

but it will gradually transform the logical operators into〈
X = Xs , Z = Zs ⊗Z f ⊗ (−1)y Z4,5,6,7

〉
.

More generally, since X f and Xs have the same effect on the encoded ancilla state, one
can perform each s-CNOT gate between the particular data qubit with any ancilla qubit.
Specifically, in the encoded ancilla area, ks and k f s-CNOT gates can be applied on ancil-
las s and f respectively, where ks and k f are integers and ks +k f = 4. For example, the
circuit shown in Figure 6.4a also performs a weight-4 Z−stabilizer measurement equiv-
alent to this circuit (Figure 6.1c), where ks = 3 and k f = 1.

Afterwards, the last f-CNOT (the decoding circuit) disentangles these two ancillas,
leading to the final stabilizer to be 〈

(−1)y Z4,5,6,7
〉

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 100PDF page: 100PDF page: 100PDF page: 100

6

86
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

and the logical operators of these ancillas to be〈
X f , (−1)y Zs

〉
.

This means the readout y of measurement Mz on ancilla s indicates the measurement
result of the stabilizer Za,b,c,d . Therefore, this circuit indeed measures a weight-4 Z -
check. Besides, the measurement result of ancilla f implies the syndrome of the �2, 1, 1�
code, that is, it can detect one single Z error that occurs on any ancilla and then raises a
flag.

Once a flag circuit based on the above approach is generated, one can transform it
into other equivalent ones that can perform the same stabilizer measurement by ap-
plying gate commutation, e.g., the circuit in Figure 6.1b. Note that the circuits gener-
ated by commuting gates may not be fault-tolerant. Moreover, one can use a larger ‘en-
coded’ ancilla to measure a weight-n Z -check (similar circuits can be applied to other
Pauli operators). This logical ancilla is encoded by m physical qubits denoted by a set
Q = {1,2, · · · ,m}, where one is syndrome qubit (Qs = {1}) and the other m − 1 are flag
qubits (Q f = {2, · · · ,m}). The underlying error detection code �m, 1, 1� has stabilizers〈

X j ⊗Xk
〉

, j ∈Qs ,k ∈Q f

and logical operators 〈
X = X j , Z =⊗

i
Zi

〉
, i , j ∈Q.

Similar to the two-ancilla flag circuits, this weight-n check can be distributed to all m
ancillas, ki s-CNOT gates will be applied on ancilla i , where

∑m
i=1 ki = n. For example, the

circuit in Figure 6.4b measures one weight-4 Z -stabilizer using one syndrome qubit (s)
and two flag qubits (f1, f2), each qubit only needs to interact with at most three others.

In addition, one can also measure p Z -checks in parallel by encoding p logical ancil-
las into m physical ancillas. The underlying

�
m, p, 1

�
code is stabilized by〈

Xi ⊗
⊗

j
X j

〉
, i ∈Q f , j ∈Qs .

Its p logical operators are〈
Xk = Xi , Zk = Zi ⊗Z j

〉
, i , j ∈Q, i < j .

Where, Qs is the set of p syndrome qubits and Q f is the set of m − p flag qubits. After
the encoding of ancilla qubits, one can simply assign all the s-CNOT gates for performing
one check to a particular syndrome qubit. In this parallel syndrome extraction case, one
can reduce the total number of s-CNOT gates by applying gate commutation when two or
more checks are performed on the same data qubit(s). Figure 6.3a and Figure 6.3b show
the flag circuits to measure two and three checks of the Steane code in parallel by using
ancillas encoded in a �3, 2, 1� code and in a �4, 3, 1� code, respectively, These circuits use
fewer s-CNOT gates than required by commuting some CNOT gates out of the encoded
area (Generally 4 s-CNOT gates are needed for each weight-4 check).

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

6.3. FLAG-BRIDGE QUANTUM ERROR CORRECTION

6

87

Moreover, one can achieve this gate reduction by distributing some s-CNOT gates to
flag qubits, which can even help to reduce the circuit depth. Figure 6.5a shows the ex-
ample circuit that measures two checks of the Steane code in parallel but uses fewer
timesteps than Figure 6.3a. Note that the s-CNOT distribution for parallel syndrome mea-
surement needs to be designed carefully since one flag qubit is used for flagging multiple
checks. This distribution also depends on the decoding procedure of the

�
m, p, 1

�
code.

Figure 6.5b shows the example circuit that measures three checks using fewer timesteps
than Figure 6.3b.

By employing the ideas of encoding ancillas, distributing s-CNOT, and commuting
gates, we can generate more equivalent syndrome extraction circuits that have differ-
ent connectivity requirements. Note that not all the equivalent circuits generated using
this approach are fault-tolerant. The fault tolerance can be checked based on the error
correction protocol, which will be explained in the next section. For these FT circuits, an-
cillas are not only used as syndrome and flag qubits to detect errors, but also as bridges
to allow the interaction between data qubits and the encoded ancilla block. Such a syn-
drome extraction circuit is called a flag-bridge circuit.

s |0〉
f |+〉

Z

X

(a)

s |0〉
f1 |+〉
f2 |+〉 X

Z

X

(b)

Figure 6.4: Flag-bridge circuits for measuring one weight-4 Z -check using (a) two ancillas and (b) three ancil-
las.

s1 |0〉
s2 |0〉
f |+〉

Z

Z

X

(a)

s1 |0〉
s2 |0〉
s3 |0〉
f |+〉

Z

Z

Z

X

(b)

Figure 6.5: Flag-bridge circuits which measure (a) two and (b) three weight-4 Z -checks in parallel.

6.3.2. FAULT-TOLERANT PROTOCOL FOR FLAG-BRIDGE ERROR CORRECTION

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 102PDF page: 102PDF page: 102PDF page: 102

6

88
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

FT QEC CONDITION

For distance-3 codes, a QEC circuit is fault-tolerant if it can either immediately correct
all errors from a single fault or only leave a weight-1 error to the next cycle. A formal
condition of FT flag-bridge quantum error correction for distance-3 codes, similar to the
flag error correction in [128], can be defined as follows:

Consider a stabilizer code S = 〈
g1, g2, · · · , gr

〉
and its QEC circuit C which is com-

posed of the flag-bridge circuits for measuring the stabilizer generators, that is, C ={
c(g1),c(g2), · · · ,c(gr)

}
, where c(gi) is the flag circuit of measuring stabilizer gi . Note

that the total number of flag-bridge circuits is smaller than r if several stabilizers are
measured simultaneously in one flag-bridge circuit. For all generators g , all pairs of el-
ements E ,E ′ ∈ E (g) satisfy s f (E) �= s f (E ′) or E ∼ E ′, where E (g) is the set of all errors
caused by one fault, s f (E) is the syndrome and flag string caused by E . We define E ∼ E ′
to mean that there is an element g in S such that E ′ ∝ g E , that is, these errors are
stabilizer-equivalent.

Based on this criterion, we check the fault tolerance of each generated QEC circuit
C through a brute-force simulation under circuit level noise, analogous to [114]. It is
implemented by injecting each individual fault from a circuit-based error model on ev-
ery single-qubit or two-qubit gate in a given QEC circuit and then collecting the final
syndromes and flags. If there are two or more sets of errors which lead to the same
syndrome-flag string but do not yield a stabilizer when multiplied, then this QEC cir-
cuit is not fault-tolerant.

FT QEC PROCEDURE

A full cycle of fault-tolerant error correction for distance-3 codes using flag-bridge cir-
cuits can be performed as follows:

1. For the first round of syndrome extraction, each circuit c(gi) ∈ C is sequentially
performed. If there are non-trivial flags f 1

i or non-trivial syndromes s1
i of c(gi),

then this round will be terminated and another full round for all circuits in C will
be performed. All the syndromes s2 = ⋃

i s2
i and flags f 2 = ⋃

i f 2
i of the second

round will be collected.

2. If f 1
i is not empty, one can decode using f 1

i and s2 (and f 2). If f 1
i is empty, but

s1
i is not empty, one can decode using s2 (and f 2). Otherwise, no corrections are

needed.

In this FT QEC procedure, we use flag-bridge circuits for both rounds of syndrome
extraction because of the connectivity constraint, which is different from the ones pro-
posed in [127, 128, 129], where non-FT syndrome extraction circuits that use only one
ancilla are executed for the second round.

ERROR DECODERS

Normally, error correction of topological codes like surface codes have special struc-
tures for the measured syndromes so that one can use heuristic algorithms to find high-
probability errors. These types of decoders such as the minimum weight perfect match-
ing decoder [132] and the belief propagation decoder [133] can be applied to the same
QEC code with different distances. However, the flag-bridge error correction circuits of a

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

6.4. STEANE CODE ERROR CORRECTION ONTO TWO QUBIT PROCESSOR TOPOLOGIES

6

89

QEC code for a specific quantum platform are ad hoc. Different circuits may be chosen
based on the qubit topology, leading to different error-syndrome patterns and in turn
requiring different decoding strategies. It is difficult to design heuristic decoding algo-
rithms that can be applied to various syndrome extraction circuits. Since flag-bridge
circuits are likely to be used for low-distance codes in small experiments, a simple de-
coding solution is to create a look-up table (LUT) for each QEC circuit. A LUT decoder
can find the most likely Pauli errors from a single fault that leads to the observed syn-
dromes and flags. LUT decoders can be easily derived from the brute-force checking
procedure [114].

Another type of decoders are the neural-network (NN) decoders [36, 37, 134, 135].
They can provide high-speed decoding, be adaptable to different error models, and be
more easily implemented on hardware. Moreover, a NN decoder can be developed by
training the network using only input-output pairs without any knowledge of the QEC
code, making it favorable for flag-bridge circuits. For example, the inputs of a NN de-
coder are the observed syndromes and its outputs can be the actual physical errors that
have occurred. The implementation details of the LUT decoder and the NN decoder can
be found in Section 6.7.

In this chapter, we design a simulation framework to automate the procedure of fault
tolerance checking, LUT generation, and NN decoder training for given flag-bridge syn-
drome extraction circuits of the Steane code. This automation is desirable for demon-
strating fault-tolerant quantum error correction in near-term processors which may have
different geometrical interaction constraints.

6.4. STEANE CODE ERROR CORRECTION ONTO TWO QUBIT PRO-
CESSOR TOPOLOGIES

(a) (b)

Figure 6.6: (a) The Surface-17 topology and (b) the IBM-20 topology, where each node represents a qubit, and
each edge indicates the connectivity between two qubits.

In this section, we show how to map the Steane code error correction onto two differ-
ent processors with limited connectivity using the proposed flag-bridge circuits, namely,
the Surface-17 transmon processor (Surface-17) [39] and the IBM Q Tokyo processor
(IBM-20) [14] (Figure 6.6). Furthermore, we numerically analyze each flag-bridge quan-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

6

90
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

tum error correction procedure under circuit level noise. This error model inserts de-
polarizing errors after each operation in a flag-bridge circuit as follows: 1) each single-
qubit gate is followed by a X , Y , or Z with probability p/3; 2) each two-qubit gate is fol-
lowed by an element of {I , X ,Y , Z }

⊗
2\{I I } with probability p/15; 3) the preparation or

measurement in the Z basis is flipped with probability p. The elementary Clifford oper-
ations used in this simulation are preparation and measurement in the Z basis, H and
CNOT gates. Other operations need to be further decomposed into these elementary
operations. For example, each control-phase gate is replaced by two H gates and one
CNOT gate.

6.4.1. MAPPING
Many current and NISQ processors have geometrical connectivity constraints, that is,
each qubit can only interact with a few neighbors. It is challenging or even impossible
to directly perform existing flag-based quantum error correction without adding more
operations and/or without losing fault tolerance. For example, the flag circuit which
measures one weight-4 Z -stabilizer of the Steane code in Figure 6.1b cannot be directly
executed on the Surface-17 topology (Figure 6.6a) but can be supported by the IBM-
20 topology (Figure 6.6b). This is because qubit s needs to interact with 5 qubits but
in Surface-17 each qubit has at most 4 neighbors. The flag circuit in Figure 6.1c can
be performed on both processor topologies. However, a full round of error syndrome
extraction requires all the stabilizer generators of the Steane code to be measured. The
full syndrome extraction using only these two flag circuits (Figure 6.1b and Figure 6.1c)
can be directly performed on the IBM-20 topology (e.g., a mapping in Figure 6.8a) but
not on the Surface-17 topology.

4

1

7

5

3

6/-

-/6

2/-

-/2

(a) Steane-cl-L1

4

1

7

5

2

3

6

(b) Steane-c2-L1

Figure 6.7: Mapping of the Steane code onto the Surface-17 topology, where the qubits labelled with num-
bers are data qubits and the qubits in the colored blocks are ancillas. (a) The mapping using the two-ancilla
flag-bridge circuits in Figures 6.1c and 6.4a in which only one stabilizer is measured at a time; (b) The map-
ping using the three-ancilla flag-bridge circuits in Figures 6.4b and 6.5a that measure one and two stabilizers,
respectively.

As mentioned above, all the flag-bridge circuits shown in this chapter are used to
measure Z stabilizers, similar circuits with the same ancillas can be derived for measur-
ing X -stabilizers. Figures 6.7 and 6.8 show examples of mapping the Steane code error
correction using the flag-bridge circuits onto the Surface-17 topology and the IBM-20

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

6.4. STEANE CODE ERROR CORRECTION ONTO TWO QUBIT PROCESSOR TOPOLOGIES

6

91

5

4 7

1

2

3

6
(a) Steane-cl-L2

1

5

4

7

2

6

3

(b) Steane-c2-L2

1

5 4

7

2

6

3

(c) Steane-c3-L2

Figure 6.8: Mapping of the Steane code onto the IBM-20 topology (a) using the flag-bridge circuits in Fig-
ures 6.1c and 6.4a; (b) using the flag-bridge circuits in Figures 6.4b and 6.5a; (c) using the four-ancilla flag-
bridge circuit in Figure 6.5b to measure three stabilizers simultaneously.

topology, respectively.

In these mapping figures, the qubits in each red, blue, or green block are the ancil-
las in each flag-bridge circuit and they are used to measure the corresponding X (or Z)-
stabilizer in the same color plaquette in Figure 6.2. The flag-bridge qubits in the yellow
block are used to measure the X (or Z)-stabilizers in both red and green plaquettes. The
flag-bridge qubits in the gray block measure the X (or Z)-stabilizers in all three plaque-
ttes. The X and Z stabilizers are measured separately, more specifically, one first mea-
sures all the stabilizers in one type and then measures the other type. Furthermore, each
of the flag-bridge circuits for the Steane code error correction need to be executed se-
quentially. On the Surface-17 topology, one can measure all the stabilizers of the Steane
code one by one when using the mapping in Figure 6.7a. Maximally two stabilizers can
be measured in parallel in this topology as shown in Figure 6.7b. In contrast, three X (Z)-
stabilizers can be measured at the same time on the IBM-20 topology (Figure 6.8c).

The circuit characterization of one full round of syndrome extraction for the Steane
code when using different mappings is shown in Table 6.1. This characterization in-
cludes the total number of ancilla qubits, the total number of operations and timesteps,
and the number of f-CNOT and s-CNOT gates. For comparison, we also show these pa-
rameters of the distance-3 surface code (SC d=3). As shown in Table 6.1, the circuits
which can measure more stabilizers simultaneously require fewer operations and fewer
timesteps. Moreover, though the distance-3 surface code uses more ancilla qubits, it
always needs fewer operations and fewer timesteps than the Steane code.

Ancillas # Operations # f-CNOTs # s-CNOTs # Timesteps
Steane-c1-L1 6 72 12 24 50
Steane-c1-L2 6 72 12 24 48
Steane-c2-L1 6 72 16 20 40
Steane-c2-L2 5 62 12 20 36
Steane-c3-L2 4 54 12 18 26

SC d=3 8 48 0 24 8

Table 6.1: Comparison of the quantum error correction circuits when different mappings are applied.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

6

92
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

6.4.2. NUMERICS

We further compare different mapping circuits in terms of their fault tolerance, which is
analyzed by numerical simulation under circuit level noise. For each point in the numer-
ics, 106 iterations of a full QEC cycle have been run and confidence intervals at 99.9% are
plotted. Moreover, NN decoders are used for this comparison since it has better perfor-
mance than LUT decoders (see Figures 6.9a and 6.14). As shown in Figure 6.9, for the
Steane code, the circuits that can measure more stabilizers in parallel have lower logical
error rates, likely because they consist of fewer operations and require fewer timesteps.
Moreover, when there are no idling errors (pI = 0 in Figure 6.9a) or a small probabil-
ity of idling errors (pI = 0.01p in Figure 6.9b), the Steane code can achieve similar per-
formance to, or even outperform, the distance-3 surface code by parallelizing stabilizer
measurements. This is because the circuit for the surface code error correction consists
of more s-CNOT gates than the QEC circuits that can measure several stabilizers in par-
allel for the Steane code. When idling errors are significant, we observe that the circuit
with fewer timesteps results in lower logical error rates (as shown in Figures 6.9c and 6.9d
for pI = 0.1p and pI = p respectively).

6.5. OTHER APPLICATIONS OF THE FLAG-BRIDGE CIRCUITS
In this section, we foresee some possible applications of the flag-bridge circuits includ-
ing both fault-tolerant quantum error correction and fault-tolerant quantum computa-
tion.

6.5.1. FLAG-BRIDGE QEC FOR THE FIVE-QUBIT CODE

Analogous to the flag circuits, the flag-bridge circuits can also be applied to other distance-
3 error correction codes such as the �8, 3, 3�, �10, 4, 3�, �11, 5, 3�, �5, 1, 3� codes, Ham-
ming codes

�
2r −1, 2r −1−2r, 3

�
, etc. In this section, we consider the �5, 1, 3� code as

an example. This code has four stabilizers, which are cyclic permutations of X Z Z X I .
Figure 6.10 shows the flag-bridge circuits that can measure an X Z Z X stabilizer fault-
tolerantly. Each stabilizer of the 5-qubit code can be measured using these circuits up
to data qubit permutation. Similar circuits using three ancillas to measure one stabilizer
are also proposed in [114]. All these circuits have different connectivity requirements. By
selecting and combining some of them, one can map the 5-qubit code error correction
onto different qubit topologies. Figure 6.11 shows the mapping of the 5-qubit code to
the Surface-17 processor topology using the two-ancilla flag-bridge circuits and the IBM
Q Melbourne (IBM-16) processor topology using the three-ancilla flag-bridge circuits.

6.5.2. FLAG-BRIDGE CIRCUITS FOR FT COMPUTATION

The geometrical interaction constraint in near-term quantum processors also limits the
fault-tolerant implementation of logical operations. For instance, a fault-tolerant CNOT

gate in planar surface codes and color codes in principle can be implemented transver-
sally in a 3D structure, that is, performing pair-wise CNOT gates between data qubits
of the two lattices. However, this transversal CNOT is not realizable in near-term quan-
tum technologies because of the local qubit connectivity limitation in a 2D architec-
ture. Measurement-based protocols such as lattice surgery [18, 19] and code deforma-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

6.5. OTHER APPLICATIONS OF THE FLAG-BRIDGE CIRCUITS

6

93

1 1.5 2·10−3

1

2

3

·10−3

Physical error probability

Lo
gi

ca
le

rr
o

r
ra

te
NND, pI = 0

Steane-c1-L1
Steane-c1-L2
Steane-c2-L1
Steane-c2-L2
Steane-c3-L2
distance-3 SC

(a)

1 1.5 2·10−3

1

2

3

·10−3

Physical error probability

Lo
gi

ca
le

rr
o

r
ra

te

NND, pI = 0.01p

Steane-c1-L1
Steane-c1-L2
Steane-c2-L1
Steane-c2-L2
Steane-c3-L2
distance-3 SC

(b)

0.5 1 1.5·10−3

0

2

4

·10−3

Physical error probability

Lo
gi

ca
le

rr
o

r
ra

te

NND, pI = 0.1p

Steane-c1-L1
Steane-c1-L2
Steane-c2-L1
Steane-c2-L2
Steane-c3-L2
distance-3 SC

(c)

0.5 1 1.5·10−3

0

5 ·10−2

0.1

Physical error probability

Lo
gi

ca
le

rr
o

r
ra

te

NND, pI = p

Steane-c1-L1
Steane-c1-L2
Steane-c2-L1
Steane-c2-L2
Steane-c3-L2
distance-3 SC

(d)

Figure 6.9: Numerical simulation of the Steane code error correction based on different flag-bridge circuits
using neural network decoders. The circuit level noise (p1 = p2 = pM) with (pI �= 0) or without idling errors
(pI �= 0).

tion [20, 64] have been proposed to comply with the 2D local interaction constraint.
Figures 6.12 and 6.13 show the qubit layouts for performing lattice-surgery-based op-
erations on the distance-3 surface code and the distance-3 color code (the Steane code),
respectively. The details of implementing logical operations by lattice surgery can be
found in [18, 19].

As shown in Figure 6.12, the merge operations can be directly performed on a 2D
grid topology. As mentioned previously, the stabilizer measurement of surface codes
can be realized by only using the one-ancilla circuit similar to Figure 6.1a. However, one
ancilla qubit (the circled one in Figure 6.12b) is used by two stabilizers from different
lattices during the split operation. One may have to measure these two stabilizers se-
quentially, which leads to more timesteps and in turn may result in higher logical error
rates. To preserve parallelism of the stabilizer measurement, we propose to use the qubit
layout in Figure 6.12c. By using this layout, one can measure all the stabilizers in paral-
lel when splitting lattices since they no longer share ancillas. One can also perform the
merge operation by replacing the original syndrome extraction circuit using one ancilla

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

6

94
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

s |0〉
f |+〉 X

Z

(a)

f |0〉
s |+〉

Z

X

(b)

f |0〉
s |+〉

Z

X

(c)

f1 |0〉
f2 |0〉
s |+〉

Z

Z

X

(d)

Figure 6.10: Fault-tolerant circuits for performing an X Z Z X -check: (a), (b), (c) using 2 ancillas but requir-
ing different connectivity;(d) using three ancillas, similar circuits can be generated by re-distributing the s-
CNOT gates for each weight-4 check to different ancillas as mentioned in Section 6.3.

43

5

2

1

(a)

43

5

2

1

(b)

Figure 6.11: Map the 5-qubit code onto (a) the Surface-17 processor topology by combining the two-ancilla
flag-bridge circuits in Figure 6.10 and (b) the IBM-16 processor topology using the three-ancilla circuit in Fig-
ure 6.10d.

with the proposed flag-bridge circuits using two ancillas (Figure 6.1c) where ancillas are
connected by dash lines in Figure 6.12c . Similar mapping can be applied to other code-
deformation-based operations on surface codes.

Furthermore, lattice-surgery-based operations for the Steane code in Figure 6.13a
cannot be directly realized in a 2D grid topology. Similar to the mapping in Figure 6.7b,
one can map these operations fault-tolerantly using the three-ancilla flag-bridge circuits
as shown in Figure 6.13b. Compared to the distance-3 surface code, the Steane code
can achieve Clifford gates transversally. Moreover, it requires fewer qubits for both FT
error correction and FT computation, which may be preferable for demonstrating fault

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

6.6. DISCUSSION AND CONCLUSION

6

95

tolerance in small experiments.

(a) (b) (c)

Figure 6.12: Mapping lattice surgery-based operations for the distance-3 surface code using flag-bridge cir-
cuits. Each red (blue) plaquette represents a weight-4 or weight-2 X (Z)-stabilizer. Data qubits are on the
vertices and ancilla qubits are on the plaquettes. (a) and (b) Initial layouts for performing a merge and a split
operation using lattice surgery, respectively. (c) The layout after mapping using the two-ancilla flag-bridge
circuits.

(a) (b)

Figure 6.13: Mapping lattice surgery-based operations for the Steane code using flag-bridge circuits. (a) Initial
layout, where the gray plaqeuttes are only one type stabilizers, depending on the joint measurement needs to
be performed. Data qubits are on the vertices and ancilla qubits are on the plaquettes. (b) Mapping to a grid
topology similar to Figure 6.7b.

6.6. DISCUSSION AND CONCLUSION
We have shown that flag circuits can be interpreted as replacing bare ancillas by encoded
ancillas in an error detection code. Based on this formulation, we proposed a flag-bridge
approach to perform fault-tolerant quantum error correction for distance-3 codes on
connectivity-constrained near-term quantum processors with low overhead. Further-
more, we mapped the Steane code error correction onto two current qubit topologies
using the flag-bridge circuits. The numerical simulation results show that QEC circuits
that can measure more stabilizers in parallel achieve lower logical error rates, providing
insights for fabricating processors with more connectivity. Moreover, we also showed the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

6

96
6. FAULT-TOLERANT QUANTUM ERROR CORRECTION ON NEAR-TERM QUANTUM

PROCESSORS USING FLAG AND BRIDGE QUBITS

flag-bridge circuits can be applied to the 5-qubit code and lattice-surgery-based opera-
tions for the surface codes and the Steane code. In addition, we have observed that the
Steane code that use fewer qubits even outperforms the distance-3 surface code when
qubit idling errors are negligible. Since the Steane code also allows transversal Clifford
gates, it may be a better candidate than the distance-3 surface code for demonstrat-
ing fault tolerance in small experiments. However, because the numerics in this chap-
ter were carried out with Pauli errors, it will be interesting to test these circuits using
more realistic error models. Furthermore, the mapping procedure In this chapter was
hand-optimized. Future work will focus on automating the fault-tolerant mapping of
flag-bridge quantum error correction onto given processors. Besides, we also need to
investigate the extendibility and scalability to higher distance codes and fault-tolerant
computation.

6.7. IMPLEMENTATION OF LUT AND NN DECODERS
Based on the FT QEC procedure for distance-3 codes in Section 6.3, decoding is only
needed when two rounds of syndrome extraction (SE) are performed (the first round
has non-trivial syndromes or flags). If there is only non-trivial syndromes (no flags) in
the first round, then the decoders will only decode using the measurement results in
the second round. If there is any non-trivial flag in the first round, then the decoders will
decode using these flags and the measurement results in the second round. For the mea-
surement information in the second round, the simple LUT decoder only considers the
results of syndrome qubits, which is enough for correcting all the errors caused by one
fault. In contrast, the NN decoder also takes the flags of the second round into account.
This means the NN decoder could potentially correct some errors caused by more faults,
outperforming the LUT decoder.

As mentioned previously, we use a brute-force search to check the fault tolerance of
flag-bridge circuits. After this search, all the errors from one single fault and the cor-
responding syndrome-flag (SF) string are collected. For FT flag-bridge circuits, these
error-SF pairs can be directly used to design a LUT decoder. Two look-up tables need
to be created. One is used for the case where only syndromes are observed in the first
round of SE with a size 2ms , ms is the total number of syndrome qubits in the QEC circuit
C = {

c(g1),c(g2), · · · ,c(gr)
}
. Note that if the same ancilla qubits are re-used in different

cg , they are still considered as different syndrome qubits, similarly for flag qubits. The
other table is to decode for the case where flags are raised in the first round of SE, which
has a size of

∑
i 2m fi 2ms , m fi is the total number of flag qubits in cgi . The LUT decoder

is designed to correct all single faults, but not to correct the most likely two faults cor-
respond to measured syndromes. The performance of different flag-bridge circuits for
the Steane code using LUT decoders is shown in Figure 6.14. As can be seen, the QEC
circuits that can achieve more parallelism of stabilizer measurement have lower logical
error rates.

The NN decoder: Decoding can be seen as a classification problem, that is, given the
observed syndromes, the decoder identifies the error or the logical coset of the error that
has occurred. It has been shown that neural networks are versatile tools for decoding
topological quantum error correction codes [134, 36, 135, 37]. The inputs xi for a neural
network decoder are the syndromes (and flags for flag QEC). In this chapter, two rounds

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

6.7. IMPLEMENTATION OF LUT AND NN DECODERS

6

97

of syndromes and flags will be collected when using the flag-bridge error correction for
distance-3 codes. Therefore, the size of input layer will be 2×m, m is the total number
of syndrome and flag-bridge qubits. In this chapter, the outputs yi are the suggested
physical errors which can result in the given syndromes and flags. For a CSS code with
n data qubits, the size of output layer is set to be 2 × n, which can describe whether
a X or/and a Z error has occurred on each data qubit. The neural network will find
an approximate function f : x → y to describe the input-output relation from the set
of training data {(xi , yi)}. Note that for large-distance codes, it is more efficient to use
logical errors as outputs and a simple decoder (e.g., LUT decoder) is required to generate
the logical error information.

In this chapter, a simple NN decoder using the Tensorflow library [136] is developed
to analyze the fault tolerance of different flag-bridge circuits. We use the ‘sigmoid’ acti-
vation function for the output layer and 105 syndrome-error pairs at physical error rate
(PER) around 0.01 are sampled for each training, more details of the designed NN de-
coder are described in Table 6.2. Since the focus of this chapter is to evaluate the flag-
bridge quantum error correction, we leave the performance and speed optimization of
NN decoders for future work.

0.5 1 1.5·10−3

0

1

2

3

·10−3

Physical error probability

Lo
gi

ca
le

rr
o

r
ra

te

LUTD, pI = 0

Steane-c1-L1
Steane-c1-L2
Steane-c2-L1
Steane-c2-L2
Steane-c3-L2
distance-3 SC

Figure 6.14: Performance of the LUT decoder for the Steane code under circuit level noise without idling errors.

Loss
function

Hidden
layers

Activation function
Optimizer

Learning
rate

Batch
size

PER Samples
Output

layer
hidden

layer
cross-

entropy
3 sigmoid

ReLU
(tanh)

Adam
(Nadam)

0.002 50 ∼ 0.01 105

Table 6.2: The implementation details of the NN decoder.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

7
MAPPING OF QUANTUM CIRCUITS

ONTO NISQ SUPERCONDUCTING

PROCESSORS

Several quantum processors consisting of a few tens of noisy qubits have already been con-
structed, and are called Noisy Intermediate-Scale Quantum (NISQ) devices. Their low
number of qubits precludes the use of quantum error correction procedures, and so only
small size quantum algorithms can be successfully run. These quantum algorithms need
to be compiled to respect the constraints imposed by the quantum processor; this is known
as the mapping problem. This mapping will result in an increase of the number of gates
and of the circuit depth, decreasing the algorithm’s success rate.

In this chapter, we present a mapper called Qmap that makes quantum circuits executable
on the Surface-17 processor. It takes into account not only the elementary gate set and
qubit connectivity constraints but also the restrictions imposed by the use of shared clas-
sical control, which have not been considered so far. Qmap is embedded in the OpenQL
compiler and uses a configuration file where the processor’s characteristics are described
and that makes it capable of targeting different quantum processors. To show this flex-
ibility and evaluate its performance, we map 56 quantum benchmarks on two different
superconducting quantum processors, the Surface-17 (17 qubits) and the IBM Q Tokyo (20
qubits), while using different routing strategies.

This chapter is based on L. Lao, D. M. Manzano, J. van Someren, I. Ashraf, C. G. Almudever, Mapping of quan-
tum circuits onto NISQ superconducting processors, arXiv:1908.04226 (2019).

99

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

7

100 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

7.1. INTRODUCTION
Quantum computers promise to solve a certain set of complex problems that are in-
tractable by the best known classical algorithms, the most famous example being the
factorization of large numbers using Shor’s algorithm [137]. However, a fault-tolerant
(FT) large-scale quantum computer with thousands or even millions of qubits will be
required to solve such a kind of problem [15, 138].

Quantum computing is still far away from that as it is now just entering the Noisy
Intermediate-Scale Quantum (NISQ) era [21]. This refers to exploiting quantum proces-
sors consisting of only 50 to a few hundreds of noisy qubits - i.e qubits with a relatively
short coherence time and faulty gates [3, 14]. Due to the limited number of qubits,
hardly or no quantum error correction (QEC) will be used in the next coming years pos-
ing a limitation on the size of the quantum applications that will be successfully run
on NISQ processors. Nevertheless, these processors will still be useful to explore quan-
tum physics, and implement small quantum algorithms that will hopefully demonstrate
quantum advantage [21]. For running near-term quantum applications on noisy quan-
tum devices, it is thus crucial to minimize their size in terms of circuit width (number of
qubits), number of gates, and circuit depth (number of cycles or steps) [71, 139].

In addition, these quantum applications have to be adapted to the hardware con-
straints imposed by current quantum processors. The main constraints include:

• Elementary gate set: Generally only a limited set of quantum gates that can be re-
alized with relatively high fidelity will be predefined on a quantum device. Each
quantum technology may support a specific universal set of single-qubit and two-
qubit gates. For instance, some superconducting quantum technologies have CZ as
an elementary two-qubit gate [140, 141].

• Qubit connectivity: quantum technologies such as superconducting qubits [14,
16, 45, 69] and quantum dots [17, 46] arrange their qubits in 2D architectures with
nearest-neighbor (NN) interactions. This means that only neighboring qubits can
interact or in other words, qubits are required to be adjacent for performing a two-
qubit gate. In other technologies such as trapped-ion qubits, they are fully con-
nected and allow all-to-all interactions [12].

• Classical control: classical electronics are required for controlling and operating
the qubits. Using a dedicated instrument per qubit is not scalable and very ex-
pensive approach. Therefore, shared control is required especially when building
scalable quantum processors. For instance, a single Arbitrary Waveform Generator
(AWG) is used for operating on a group of qubits and several qubits are measured
through the same feedline [142, 143]. This limits the possible parallelism of quan-
tum operations, leading to longer latencies and a larger circuit depth.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

7.1. INTRODUCTION

7

101

All these constraints may vary between different qubit implementations and even
within the same quantum technology. In order to meet them, a mapping procedure
is required to transform a hardware-agnostic quantum circuit into a hardware-aware
version that can be run on a given quantum processor. Mapping will: i) map virtual
qubits (qubits in the circuit) to hardware qubits (physical qubits in the processor), ii)
route qubits to move non-adjacent qubits to neighboring positions when they need to
interact. For this purpose, the path that the qubits will follow needs to be determined
and movement operations such as shuttling in trapped ion and Si-spin quantum pro-
cessors [47, 46], and SWAPs in superconducting quantum processors will be inserted
accordingly. Note that routing will increase the number of operations as well as the cir-
cuit depth. iii) Schedule the operations respecting not only the dependencies between
them but also the classical control constraints. In addition, gates will be decomposed to
elementary gates and the circuit will be optimized at different stages of the compilation
process. For NISQ processors it is key to minimize the mapping overhead such that the
resulting circuit still has a high reliability and success rate. Note that the higher the num-
ber of gates and/or the circuit depth, the higher the failure rate of computation and thus
the lower the reliability of the circuit.

Different solutions have been proposed to map quantum circuits onto current and
NISQ processors. [72, 73, 74, 75, 76, 77, 78, 79, 144] map quantum algorithms onto pro-
cessors with a 2D grid structure. [80, 82, 81, 145, 146, 147, 148, 149] and [83, 130, 149]
propose mapping algorithms targeting IBM and Rigetti processors, respectively. Most
of the works done so far focus on quantum processors that do not have scalable archi-
tectures and mainly consider the connectivity constraint and the elementary gate set.
Furthermore, they do not consider other hardware information such as gate duration
and shared classical control that should be also taken into account to make quantum
applications executable [39, 143].

This paper is the first to map quantum circuits to the Surface-17 processor, a scal-
able processor with a surface code architecture. It presents a mapper called Qmap that
takes into account all three types of constraints: the elementary set of gates with cor-
responding duration, qubit connectivity, and control electronics. Qmap is composed
of several modules, including initial placement of qubits, routing of qubits, and gate
scheduling, together with decomposition and optimization steps. It is embedded in the
OpenQL compiler 1 [150] and quantum hardware information is described in a config-
uration file that is used by all compiler passes, providing the flexibility to be applied to
different quantum simulators and underlying processors. The mapper takes as input
a quantum program written in OpenQL (C++ or Python), maps and optimizes the cor-
responding quantum circuit for the given quantum platform and generates executable
low-level QASM-like code [151]. The mapper is used not only for mapping quantum cir-
cuits to the Surface-17 processor but also to the IBM Q Tokyo chip [14] to show its uni-
versality. Several benchmarks that differ in number of qubits and gates are evaluated.
We analyze the overhead caused by mapping in terms of the number of extra gates and
circuit depth/latency when using different routing strategies. The main contributions of

1OpenQL is an open-source quantum programming language and compiler developed by the Quantum Com-
puter Architecture Lab/QuTech, Delft University of Technology. The Qmap mapper will be included in the
next OpenQL release.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

7

102 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

this paper are the following:

• We have developed a mapper (Qmap) for a scalable superconducting quantum
processor such as the Surface-17. The mapper considers not only common pro-
cessor constraints such as the choice of the elementary gate set and the qubit con-
nectivity but also gate execution time (gate duration) and classical control con-
straints resulting from using control electronics that are shared among qubits.

• With the goal of supporting several quantum processors, our mapper has been
embedded in the OpenQL compiler. It can target different quantum chips by us-
ing a configuration file in which the constraints of the processor are described.
This flexibility allows performing a comparative analysis between them and giving
some directions for building future quantum machines. We compile 56 bench-
marks taken from RevLib [152] and QLib [102] onto two quantum processors, the
Surface-17 and the IBM Q Tokyo processors.

• The developed mapper supports different routing strategies. Three of them are
used and evaluated in this chapter (Trivial, MinPath and MinRC). After mapping
using the best router, the circuit latency can increase up to 260% and the overhead
in the number of gates can be as high as 78.1% for the Surface-17 processor.

• Our mapper uses not only SWAP operations (3 CNOTs) for moving qubits but also
MOVE operations (2 CNOTs) when possible. The use of MOVEs helps to reduce the
number of gates and the circuit latency up to 38.9% and 29%, respectively.

• A numerical analysis on how the mapping affects the reliability of some small
quantum circuits when mapped to the Surface-17 chip is also presented. They
show a fidelity decrease that ranges from 1.8% to 13.8%.

The rest of this paper is organized as follows. We first describe all the hardware pa-
rameters that will be considered in this chapter in Section 7.2. Then the proposed map-
ping procedure and corresponding routing algorithms are introduced in Section 7.3 and
evaluated in Section 7.4. We summarize related works in Section 7.5. Finally, Section 7.6
concludes the paper and discusses future work.

7.2. QUANTUM HARDWARE CONSTRAINTS
In this section, the hardware constraints of the superconducting Surface-17 and the IBM
Q Tokyo quantum processors will be briefly introduced, including the primitive gates
that can be directly performed, the topology of the processor which limits interactions
between qubits, and the constraints caused by the classical control electronics which
impose extra limitations on the parallelism of the operations.

7.2.1. ELEMENTARY GATE SET
In order to run any quantum circuit, a universal set of operations needs to be imple-
mented. In superconducting quantum processors, these operations commonly are mea-
surement, single-qubit rotations, and multi-qubit gates.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

7.2. QUANTUM HARDWARE CONSTRAINTS

7

103

Surface-17 processor: In principle, any kind of single-qubit rotation can be per-
formed on the Surface-17 processor. However, an uncountable number of gates cannot
be predefined. In this chapter, we will limit single qubit gates to X and Y rotations (eas-
ier to implement), and more specifically ± 45, ± 90 and ± 180 degrees will be used in
our decompositions. The primitive two-qubit gate in transmon is the conditional-phase
(CZ) gate. Table 7.1 shows the gate duration (gate execution time) of single-qubit gates,
CZ gate and measurement (in the Z basis) [24]. After mapping, the output circuit will
only contain operations that belong to this elementary gate set. The decomposition for
Z , H ,S,S†,T,T †, CNOT, SWAP and MOVE gates into the elementary gates shown in Ta-
ble 7.1 can be found in Figure 7.1.

Table 7.1: The gate duration in cycles (each cycle represent 20 nanoseconds) of the elementary gates in the
Surface-17 processor.

Gate type Duration
RX (±45,±90,±180) 1 cycle
RY (±45,±90,±180) 1 cycle

CZ 2 cycles
MZ 15 cycles

Z ≡ X Y H ≡ Y-90 Z ≡ Z Y+90 ≡ X Y-90

T ≡ H X+45 H ≡ Y+90 X+45 Y-90

T † ≡ H X−45 H ≡ Y+90 X−45 Y-90

S ≡ H X+90 H ≡ Y+90 X+90 Y-90

S† ≡ H X+90 H ≡ Y+90 X−90 Y-90

• ≡ •
Y−90 • Y+90

× ≡ • • ≡ • Y−90 • Y+90 •
× • Y−90 • Y+90 • Y−90 • Y+90

|ψ〉
Umv

|0〉 ≡ • ≡ • Y−90 • Y+90

|0〉 |ψ〉 • Y−90 • Y+90 •

Figure 7.1: Gate decomposition into primitives (Table 7.1) supported in the superconducting SC-17 processor.
Umv is the MOVE operation.

IBM Q Tokyo (IBM-20): The elementary gates supported by the IBM Q processors
are any single-qubit rotation U (θ,φ,λ) = RZ (φ)RY (θ)RZ (λ) and the conditional-NOT
(CNOT) gate. This means that the gate set { Pauli, H ,S,S†,T,T †, CNOT} can be directly

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

7

104 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

supported without further decomposition. In this chapter, we do not take the gate dura-
tion of the IBM Q Tokyo processor into account since the authors did not find the dura-
tion of two-qubit gates of this device by the time of writing this thesis.

7.2.2. PROCESSOR TOPOLOGY

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

(a)

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

(b)

Figure 7.2: (a) Schematic of the realization of the Surface-17 processor and (b) the topology of the IBM Q Tokyo
processor

Figure 7.2 shows the topology of the Surface-17 and the IBM Q Tokyo processors,
where nodes represent the qubits and edges represent the ‘connections’ (resonators) be-
tween them. Two-qubit gates can only be performed between connected qubits, i.e.,
nearest-neighbouring qubits. This implies that qubits that have to interact but are not
placed in neighbouring positions will need to be moved to be adjacent. Quantum states
in superconducting technology are usually moved using SWAP gates. A SWAP gate is
implemented by three CNOTs that in the case of the Surface-17 processor need to be
further decomposed into CZ and RY gates as shown in Figure 7.1. In this chapter, we
also consider the use of a MOVE operation which only requires two CNOTs (see Figure
7.1). Note that a MOVE operation requires that the ‘destination’ qubit where the quan-
tum state needs to be moved to, is in the |0〉 state. As mentioned, moving qubits results
in an overhead in terms of number of operations and circuit depth, which in turn will
decrease the circuit reliability.

7.2.3. CLASSICAL CONTROL CONSTRAINTS

In principle, any qubit in a processor can be operated individually and then any com-
bination of single-qubit and two-qubit operations can be performed in parallel. How-
ever, scalable quantum processors use classical control electronics with channels that
are shared among several qubits. Here we will describe how the classical control elec-
tronics used in the Surface-17 processor affect the parallelism of operations. The classi-
cal control constraints for the IBM Q Tokyo processor were not found by the authors and
therefore they will not be considered in this chapter.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

7.2. QUANTUM HARDWARE CONSTRAINTS

7

105

Single-qubit gates: Single-qubit gates on transmons are performed by using microwave
pulses. In Surface-17, these pulses are applied at a few fixed specific frequencies to en-
sure scalability and precise control. The three frequencies used in Surface-17 are shown
in Figure 7.2a: single-qubit gates on red, blue and pink colored qubits are performed
at frequencies f1, f2, and f3, respectively [39]. In this chapter, we assume that same-
frequency qubits are operated by the same microwave source or arbitrary waveform gen-
erator and a vector switch matrix (VSM) is used for distributing the control pulses to the
corresponding qubits [142].

The consequence of this is that one can perform the same single-qubit gate on all
or some of the qubits that share a frequency, but one cannot perform different single-
qubit gates at the same time on these qubits (as these would require other pulses to be
generated). For instance, an X gate can be performed simultaneously on any of the pink
qubits (7, 8 and 9) but not an X and a Y operation.

Measurement: Measuring the qubits is done by using feedlines each of which is cou-
pled to multiple qubits [39]. In Figure 7.2a, qubits in the same dashed rectangle are us-
ing the same feedline, e.g., qubits 13 and 16 will be measured through the same feedline.
Because measurement takes several steps in sequence, measurement of a qubit cannot
start when another qubit coupled to the same feedline is being measured, but any com-
bination of qubits that are coupled to the same feedline can be measured simultaneously
at a given time. For instance, qubits 13 and 16 can be measured at time t0, but it is not
possible to start measuring qubit 13 at time t0 and then measure qubit 16 at time t1 if the
previous measurement has not finished.

Two-qubit gates: As mentioned, in the processor of Figure 7.2a each qubit belongs to
one of three frequency groups f1 > f2 > f3, colored red, blue and pink, respectively;
links between neighboring qubits are either between qubits from f1 and f2, or between
qubits from f2 and f3, i.e. between a higher frequency qubit and a next lower one. In be-

tween additional frequencies are defined: f1 > f i nt
1 > f2 > f par k

2 > f i nt
2 > f3 > f par k

3 (see
the frequency arrangement and the example interactions presented in Figure 5 of [39]);
each qubit can be individually driven with one of the frequencies of its group. A CZ gate
between two neighboring qubits is realized by lowering the frequency of the higher fre-
quency qubit near to the frequency of the lower one. For instance, a CZ gate between
qubits 3 and 0 is performed by detuning qubit 3 from f1 to f i nt

1 , which is near to f2, the
frequency of qubit 0. However, CZ gates will occur between any two neighboring qubits
which have close frequencies and share a connection, e.g. between qubits 3 and 6 in the
given example. To avoid this, the qubits that are not involved in the CZ gate must be kept

out of the way. In this example, q6 is detuned to a lower parking frequency, f par k
2 . Note

that qubits in parking frequencies cannot engage in any two-qubit or single-qubit gate.
In addition, qubit 2 must stay at f1 when qubits 3 and 0 perform a CZ, to avoid interac-
tion between qubits 2 and 0. This example shows that the implementation of two-qubit
gates poses some limitations on gate parallelism.

The hardware characteristics described in this section are included in a configuration
file (in json format) that is used by all modules of the mapper.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

7

106 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

7.3. MAPPING QUANTUM ALGORITHMS: THE QMAP MAPPER
Mapping means to transform the original quantum circuit that describes the quantum
algorithm and is hardware-agnostic to an equivalent one that can be executed on the
target quantum processor. To this purpose, the mapping process has to be aware of the
constraints imposed by the physical implementation of the quantum processor. These
include the set of elementary gates that is supported, the allowed qubit interactions that
are determined by the processor topology, and the limited concurrency of multi-gate
execution because of classical control constraints. Because of mapping, the number of
operations that are required to implement the given algorithm as well as the circuit depth
are likely to increase, decreasing the reliability of the algorithm. An efficient mapping is
then key, especially in NISQ processors where noise sets a limit on the maximum size of
a computation that can be run successfully.

7.3.1. OVERVIEW OF THE QMAP MAPPER
The Qmap mapper developed in this chapter is embedded in the OpenQL compiler
[150]. We show its flow in Figure 7.3. Its input is a quantum circuit written in OpenQL
(C++ or Python). The OpenQL compiler reads and parses it to a QASM-level intermediate
representation. Qmap then performs the mapping and optimization of the quantum cir-
cuit based on the information provided in a configuration file that includes the processor
topology (connectivity and number of qubits), its elementary gate set, gate decomposi-
tion rules, the duration of each gate, and the classical control constraints. After mapping,
QASM-like code is generated. Currently, the OpenQL compiler is capable of generating
cQASM [151] that can be executed on our QX simulator [153] as well as eQASM [107], a
QASM-like executable code that can target the Surface-17 processor. The generation of
other QASM-like languages will be part of future extensions of the OpenQL compiler.

Note that as the characteristics of the quantum processor are described in a config-
uration file that is provided to the mapper, Qmap can easily target different quantum
devices just by providing it with different configuration files with appropriate parame-
ters.

The modules of Qmap will be discussed in the next sections. We refer to the qubits in
the quantum circuit as virtual qubits (others call them program qubits or logical qubits).
These need to be mapped to the qubits in the quantum processor called physical, real or
hardware qubits or locations.

7.3.2. INITIAL PLACEMENT
Qubits are preferably placed initially such that highly interacting qubits are placed next
to each other. Qmap tries to find an initial placement that minimizes the number of
qubit movements by using the Integer Linear Programming (ILP) algorithm presented in
[115]. Similar to the placement approaches in [76, 86, 99], the initial placement problem
is formulated as a quadratic assignment problem (QAP) with the communication over-
head between qubits modeled by their distance minus 1. Such an initial placement im-
plementation can only solve small-scale problems in reasonable time. Even though for
near-term implementations these numbers largely suffice, for large-scale circuits, one
can either partition a large circuit into several smaller ones or apply heuristic algorithms
to efficiently solve these mapping models [72, 73, 74, 76, 84, 85, 87]. Other works solve

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

7.3. MAPPING QUANTUM ALGORITHMS: THE QMAP MAPPER

7

107

Figure 7.3: Overview of the Qmap mapper embedded in the OpenQL compiler.

(a) (b)

Figure 7.4: An example circuit consisting of 6 qubits and 15 gates. (a) Its circuit description (top) and its vir-
tual to physical qubits mapping (bottom) for the Surface-17 processor after initial placement; (b) Its cQASM
representation before routing and scheduling.

this initial placement problem by using a Satisfiability Modulo Theories (SMT) solver
[154].

An example circuit, its virtual to physical qubits mapping found by the initial place-
ment module and the cQASM code before routing and scheduling are shown in Fig-
ure 7.4.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

7

108 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

7.3.3. QUBIT ROUTER
It is unlikely to find an initial placement in which all interactions between the qubits are
satisfied. That is, not all the qubits that will perform a two-qubit gate can be placed in
neighboring positions. Therefore, they will have to be moved during computation. For
instance, based on the initial placement of qubits proposed in Figure 7.4a, the first 6
CNOTs of the circuit can be performed directly as qubits are NN, but the last 2 CNOTs
will require qubits to be routed to adjacent positions. Routing refers to the task of finding
a series of movements that enables the execution of two-qubit gates on a given processor
topology with low communication overhead. To do so, several routing paths are explored
and one is selected based on various optimization criteria such as the number of added
movement operations, increase of circuit depth, or decrease of circuit reliability [80, 81,
82, 145, 146, 147, 148, 130, 83, 155, 154]. Then, the corresponding movement operations
are inserted.

In this chapter next to and after the ILP-based initial placement, a heuristic algo-
rithm is used to perform this routing task. It is a graph-based heuristic of which the
objective is to achieve the shortest circuit latency and therefore the highest instruction-
level parallelism. Algorithm 2 shows the pseudo code of our routing algorithm; it finds
all two-qubit gates in which qubits are not nearest-neighbors and inserts the required
movement operations to make them adjacent. As mentioned in Section 7.2.2 we use
SWAPs as well as MOVE operations for moving qubits. The algorithm works as follows:

1. From the QASM representation of the quantum circuit a Quantum Operation De-
pendency Graph (QODG) G(VG ,EG) is constructed, in which each operation is de-
noted by a node vi ∈VG , and the data dependency between two operations vi and
v j is represented by a directed edge e(vi , v j) ∈ EG with weight wi that represents
the duration of operation vi . Pseudo source and sink nodes are added to the start
and end to simplify starting and stopping iteration over the graph. The QODG of
the circuit in Figure 7.4a is shown in Figure 7.5a.

2. The router algorithm starts by mapping the pseudo source node and then selecting
all available operations from the input QODG, that is, the operations that do not
depend on any not yet mapped operation. As long as among these are single-qubit
gates or two-qubit gates with qubits that are NN, these are mapped first and a new
set of available operations is computed. Mapping a (NN) gate implies replacing
virtual qubit operands by their physical counterparts according to the table simi-
lar to the one shown in Figure 7.4a and decomposing it to its primitives when the
configuration specifies so. After that, only non-NN two-qubit gates remain in the
available set. The router, looking ahead to all not yet mapped operations of the
circuit, selects from this availability set the ones which are most critical in the re-
maining dependency graph since they have the highest likelihood to extend the
circuit when mapped in an inefficient way or when delayed. When there are sev-
eral of these equally critical, it takes of these the first in the input circuit to map.
After mapping it, it recomputes the set of available operations and runs the algo-
rithm until there are no available operations anymore.

3. When mapping a non-NN two-qubit gate, all shortest paths between the qubits
involved in this gate are considered. During Qmap initialization time, the distance

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

7.3. MAPPING QUANTUM ALGORITHMS: THE QMAP MAPPER

7

109

(i.e. the length of the shortest path) between each pair of qubits has been com-
puted using the Floyd-Warshall algorithm. Finding all shortest paths between a
pair of qubits at mapping-time is done by a breadth-first search (BFS), selecting
only path extensions which decrease the distance between the qubits. For each
shortest path, several movement sets are computed. Each movement set con-
sists of a sequence of movements that brings the two qubits to adjacent positions.
That is, qubits can meet in any neighboring position within the path. Note that all
movement sets would lead to adding an equal minimum number of movements
to the circuit. To choose the best movement set, several strategies can be used that
differ in how the movement set is selected and what constraints are considered. In
this chapter, we consider three to be compared and evaluated:

MinRCRouter: As shown in Algorithm 3, this routing strategy evaluates all move-
ment sets by looking back to the previously mapped operations and interleaving
each set of movements with those operations using an as-soon-as-possible (ASAP)
scheduling policy. Then, it selects the one(s) which minimally extend(s) the circuit
depth or latency. When there are multiple minimal sets, a random one is taken.
The scheduling in this strategy takes gate duration and the classical control re-
source constraints into account, the latter limiting instruction-level parallelism.
Its aim is to minimize the extension of the circuit latency caused by the addition of
the movements by maximizing instruction-level parallelism within the constraints
of the system.

MinPatouter: It just randomly selects one of the movement sets that are generated
as described above, i.e. does not evaluate them for their extension of the circuit
latency or depth.

TrivialRouter: The gates in the circuit are mapped in the order as they appear in
the circuit, i.e. by-passing the QODG. Then, when there is a non-NN two-qubit
gate, only the first shortest path that is found, is taken. In addition, a single move-
ment set is generated for it; the one moving the control qubit until it is near to the
target. From the movement set, only SWAPs are generated, not MOVEs.

After the movement set selection, the SWAP/MOVE operations are scheduled into
the output circuit and the set of available gates and the map of virtual to physical qubits
are updated.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 124PDF page: 124PDF page: 124PDF page: 124

7

110 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

Algorithm 2 Routing algorithm

Require: Non-routed circuit, VP-map M , JSON file
Ensure: Routed circuit

1: Generate QODG G(VG ,EG)
2: Vm ← Unique pseudo source node
3: Vav ← All available gates in G(VG −Vm ,EG)
4: while Vav �=∅ do
5: Vnn ← All single-qubit and NN two-qubit gates in Vav

6: if Vnn �=∅ then
7: Select v ∈Vnn arbitrarily
8: else
9: Vc ← Most-critical gates ⊂Vav in G(VG −Vm ,EG)

10: Select v ∈Vc which is first in the circuit
11: Insert movement(s) for v
12: Update M

13: Map v according to M
14: Add v to Vm

15: Vav ← All available gates in G(VG −Vm ,EG)

Algorithm 3 Movement insertion algorithm

Require: QODG G(VG ,EG), gate v , VP-map M , JSON file
Ensure: The set of movements for v

1: P ← All shortest paths for v
2: MVP ← All possible sets of movements based on P
3: for mv j in MVP do
4: Interleave mv j with previous gates (looking back)
5: Tmv j ← circuit’s latency extension by mv j

6: if Tmvi = mi n(
⋃

j Tmv j) then
7: Select mvi as the set of movements, picking a random minimum one when there

are more

7.3.4. RC-SCHEDULER

After routing, the circuit adheres to the processor topology constraint for two-qubit in-
teractions, and has been scheduled in an as-soon-as-possible (ASAP) way, taking the re-
source constraints into account only in the case of the MinRC router. The RC-scheduler
reschedules the routed circuit to achieve the shortest circuit latency and the highest
instruction-level parallelism. It does this in an as-late-as-possible (ALAP) way to min-
imize the required life-time and thus the decoherence error of each qubit, while taking
the resource constraints into account. The resource constraints encode the control con-
currency limitations together with the duration of the individual gates.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

7.4. QMAP EVALUATION

7

111

(a) (b)

Figure 7.5: (a) The QODG of the circuit in Figure 7.4a. The red and purple CNOTs mean that the qubits are not
NN. (b) The cQASM code of the mapped circuit, where the CZ gates in bold are already nearest neighboring.
Movement operations (added two-qubit gates are in yellow) are inserted to perform the CZ gates in red and
purple.

7.3.5. DECOMPOSITION AND OPTIMIZATION

Starting from a quantum circuit described in cQASM format (see Figure 7.4), the cir-
cuit is also decomposed during mapping into one which only contains the elementary
gates specified in the configuration file (json file), on top of adherence to the other con-
straints. In addition, it is optimized to reduce the number of operations, e.g., two con-
secutive X gates can cancel each other out.

The decomposition and optimization can be done at every step of the mapping pro-
cedure, i.e. before, during, and after routing. Qmap reduces sequences of single qubit
operations to their minimally required sequence both before and after routing. The im-
plementation of the QODG represents the commutability of all gates with disjoint qubit
operands but also of the known two-qubit operations CNOT and CZ with overlapping
operands, and optimizes their order, both during routing and during RC-scheduling.
These optimizations are not performed in the TrivialRouter. Whether gate decompo-
sition is to be applied at a mapping step is specified in the configuration (json) file.

The cQASM code generated after the Qmap mapper is shown in Figure 7.5b.

7.4. QMAP EVALUATION
In this section, we evaluate the Qmap by mapping a set of benchmarks from RevLib [152]
and QLib [102] on two superconducting processors, namely, the transmon processor
with a distance-3 surface-code topology (Surface-17) [39] and the IBM Q Tokyo (IBM-
20) processor [14]. These two processors have different elementary gate sets, processor

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

7

112 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

topologies, and hardware constraints as described in Section 7.2. Specifically, for the
Surface-17 processor, the elementary gates with their real gate duration, the topology
and the electronic control constraints are considered. For the IBM-20 processor, only
the elementary gates without considering their duration and the qubit topology are con-
sidered. All mapping experiments are executed on a sever with 2 Intel Xeon E5-2683
CPUs (56 logical cores) and 377GB memory. The Operating System is CentOS 7.5 with
Linux kernel version of 3.10 and GCC version of 4.8.5.

7.4.1. BENCHMARKS
The circuit characteristics of the used benchmarks are shown in Table 7.2. All circuits
have been decomposed into ones which only consist of gates from the universal set
{Pauli, S,S†,T,T †, H , CNOT}. In these benchmarks, the number of qubits varies from
3 to 16, the number of gates goes from 5 to 64283, and the percentage of CNOT gates
varies from 2.8% to 100%. Moreover, the minimum circuit depth and the minimum cir-
cuit latency are also included, ranging from 2 to 35572 time-steps and from 5 to 12256
cycles (using the gate duration of Surface-17), respectively. Note that these numbers are
meant to characterize the algorithms before being mapped to the quantum processor
and therefore are obtained without considering any hardware constraint.

The latter two parameters will be also used as a metrics to evaluate our Qmap map-
per. They can be defined as follows:

Circuit depth is the length of the circuit. It is equivalent to the total number of time-
steps for executing the circuit assuming each of the gates takes one time-step.

Circuit latency refers to the execution time of the circuit considering the real gate
duration. Latency and gate duration are expressed in cycles. In this chapter, we assume
that a cycle takes 20 nanoseconds.

In addition, other parameters after mapping the benchmarks to the two quantum
processors are provided, such as the total number of gates and two-qubit gates, the num-
ber of inserted SWAP and MOVE operations, and the time the mapping process takes.

7.4.2. MAPPING RESULTS
Figure 7.6 and Figure 7.7 show the overhead of mapping the benchmarks in Table 7.2 to
the superconducting Surface-17 processor and IBM-20 processor respectively using the
three different routers: Trivial, MinPath, and MinRC router. More details of the mapping
results for the Surface-17 and IBM-20 can be found in Table 7.4 and Table 7.5, respec-
tively. The benchmarks in all the Figures in this chapter are shown in their appearing
order (from top to bottom and left to right) in Table 7.2. We take the results of the map-
ping with the Trivial router as a baseline. In this case, a naive initial placement is used
in which qubits are just placed in order, no optimization is made, and only SWAP op-
erations are inserted. The mapping results for the MinPath and MinRC routers use the
ILP-based initial placement. As we mentioned, this method can only solve small scale
problems (small circuits) in a reasonable time. Note that the qubit initial placement is
an NP-hard problem. In this chapter, the mapper is set to only find an initial placement
for the first ten two-qubit gates in any given circuit and computation time is limited to 10
minutes. In addition, when using the MinPath and MinRC routers, circuit optimizations
are enabled and both SWAP and MOVE gates are inserted. The mapping procedure is

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

7.4. QMAP EVALUATION

7

113

Table 7.2: The characteristics of the input benchmarks including the number of qubits, the total number of
gates, the number of two-qubit gates (CNOTs), its circuit depth (DP) and its circuit latency (LC) in cycles (20 ns
per cycle).

Benchmarks Qubits Gates CNOTs DP LC Benchmarks Qubits Gates CNOTs DP LC
alu_bdd_288 7 84 38 48 169 sym9_146 12 328 148 127 450
alu_v0_27 5 36 17 21 72 sys6_v0_111 10 215 98 74 266
benstein_vazirani 16 35 1 5 40 vbeAdder_2b 7 210 42 52 116
4gt12_v1_89 6 228 100 130 448 wim_266 11 986 427 514 1788
4gt4_v0_72 6 258 113 137 478 xor5_254 6 7 5 2 5
4mod5_bdd_287 7 70 31 40 140 z4_268 11 3073 1343 1643 5688
cm42a_207 14 1776 771 940 3249 adr4_197 13 3439 1498 1839 6377
cnt3_5_180 16 485 215 207 729 9symml_195 11 34881 15232 19235 66303
cuccaroAdder_1b 4 73 17 25 58 clip_206 14 33827 14772 17879 61786
cuccaroMultiply 6 176 32 55 133 cm152a_212 12 1221 532 684 2366
decod24_bdd_294 6 73 32 40 143 cm85a_209 14 11414 4986 6374 21967
decod24_enable 6 338 149 190 669 co14_215 15 17936 7840 8570 29608
graycode6_47 6 5 5 5 20 cycle10_2_110 12 6050 2648 3384 11692
ham3_102 3 20 11 11 41 dc1_220 11 1914 833 1038 3597
miller_11 3 50 23 29 105 dc2_222 15 9462 4131 5242 18097
mini_alu_167 5 288 126 162 564 dist_223 13 38046 16624 19693 68111
mod5adder_127 6 555 239 302 1048 ham15_107 15 8763 3858 4793 16607
mod8_10_177 6 440 196 248 872 life_238 11 22445 9800 12511 43123
one_two_three 5 70 32 40 141 max46_240 10 27126 11844 14257 49400
rd32_v0_66 4 34 16 18 66 mini_alu_305 10 173 77 68 242
rd53_311 13 275 124 124 441 misex1_241 15 4813 2100 2676 9240
rd73_140 10 230 104 92 330 pm1_249 14 1776 771 940 3249
rd84_142 15 343 154 110 394 radd_250 13 3213 1405 1778 6163
sf_274 6 781 336 436 1516 root_255 13 17159 7493 8835 30575
shor_15 11 4792 1788 2268 7731 sqn_258 10 10223 4459 5458 18955
sqrt8_260 12 3009 1314 1659 5740 square_root_7 15 7630 3089 3830 13049
squar5_261 13 1993 869 1048 3644 sym10_262 12 64283 28084 35572 122564
sym6_145 7 3888 1701 2187 7615 sym9_148 10 21504 9408 12087 41641

executed for five times and the one with minimum overhead is reported.

MAPPING OVERHEAD

In order to get quantum circuits which are executable on real processors, extra move-
ment operations need to be added and gate parallelism will be compromised. We first
analyze the impact of the mapping procedure in terms of number of gates, circuit la-
tency (for Surface-17) or depth (for IBM-20) compared to the circuit characteristics be-
fore mapping in Table 7.2. As shown in Figure 7.6 and Figure 7.7, no matter which router
is applied, the mapping procedure results in high overhead for most of the benchmarks.
The only exceptions are the ‘benstein_v’ and ‘graycode6_47’ circuits, because some op-
erations in these circuits can be canceled out by the optimization module in the mapper,
decreasing their circuit sizes.

Mapping to Surface-17: As shown in Figure 7.6, when the Trivial router is used, the
mapping leads to an overhead in the circuit latency and the total number of gates rang-
ing from 50% (‘graycode6_47’) to 1160% (‘xor5_254’) and from 122.9% (‘wim_266’) to
800% (‘xor5_254’), respectively. The MinPath router results in an increase of the cir-
cuit latency and the total number of gates that goes from 38.9% (‘alu_v0_27’) to 260%
(‘xor5_254’)) and from 26.0% (‘cuccaroAdder_1b’) to 373.4% (‘rd84_142’)), respectively.
Finally, the MinRC router increases the circuit latency and the total number of gates
from 32.4% (‘miller_11’) to 260% (‘xor5_254’)) and from 20.7% (‘cuccaroAdder_1b’) to
78.1% (‘rd32_v0’)), respectively.

Mapping to IBM-20: In Figure 7.7, it is shown that the overhead in the circuit depth

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

7

114 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

(a)

(b)

Figure 7.6: Latency and gate overhead when mapping the benchmarks in Table 7.2 on the Surface-17 processor.

and the total number of gates caused by the Trivial ranges from 80.5% (‘decod24_e’) to
650% (‘xor5_254’) and from 56.5% (‘cnt3_5’) to 257.1% (‘xor5_254’), respectively. The
circuit depth after mapping with both the based and the MinRC router has increased
from 13.8% (‘miller_11’) to 150% (‘xor5_254’). The total number of gates has increased
from 10% (‘ham3_102’) for both routers to 72% and 68% (‘rd84_142’) for the MinPath
router and the MinRC router, respectively.

COMPARISON OF DIFFERENT ROUTERS

We further evaluate the performance of these three different routers. As expected, for
both processors, the Trivial router leads to the highest mapping overhead, as it is our
baseline. It is also observed that in general the MinRC router shows the best perfor-
mance as it leads to the lowest increase in circuit depth/latency and number of gates
(Figure 7.6 and Figure 7.7). This is because the MinPath router includes optimizations
but randomly selects one movement set. The MinRC router optimizes circuits and eval-
uates more shortest movement paths to select one which minimally extends the circuit

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 129PDF page: 129PDF page: 129PDF page: 129

7.4. QMAP EVALUATION

7

115

(a)

(b)

Figure 7.7: Depth and gate overhead when mapping the benchmarks in Table 7.2 on the IBM-20 processor.

latency (Section 7.3).
Mapping to Surface-17: As shown in Figure 7.6, the MinPath router always outper-

forms the Trivial router, the latency and the number of gates can be reduced up to 71.4%
(‘xor5_254’) and up to 80% (‘benstein_bazirani’), respectively. Moreover, the MinRC
router has lower or equal overhead than the MinPath router in terms of both circuit la-
tency and number of gates for 85.7% and 94.6% of the benchmarks, respectively. The
MinRC router can reduce the latency up to 20.5% (‘decod24_b’) and decrease the num-
ber of gates up to 10.61% (‘sf_274’) compared to the MinPath router.

Mapping to IBM-20: Based on the mapping results in Figure 7.7, the MinPath router
can reduce the depth for 91.1% of benchmarks (up to 66.7% for ‘xor5_254’) and decrease
the number of gates for 94.6% of benchmarks (up to 72% for ‘xor5_254’) compared to the
Trivial router. Furthermore, the MinRC router results in a lower or equal overhead than
using the MinPath router in both circuit latency and # gates for 96.4% and 87.5% of the
benchmarks, respectively. For example, the MinRC router leads to latency reduction up
to 38.2% and gate reduction up to 17.4% for the benchmark ‘4gt12_v1_89’ compared to
the MinPath router.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 130PDF page: 130PDF page: 130PDF page: 130

7

116 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

COMPARISON OF PROCESSOR TOPOLOGY

In addition, we also investigate how the processor topology affects mapping overhead in
terms of the number of inserted movement operations. For a comparison between the
Surface-17 and IBM-20 processors, we transform the number of movements (SWAPs and
MOVEs) into the number of elementary two-qubit gates (that is, CZ for Surface-17 and
CNOT for IBM-20). Based on the mapping results shown in Table 7.4 and Table 7.5, the
IBM-20 processor requires fewer movement operations than the Surface-17 processor
because it has more connectivity. Figure 7.8 shows the number of inserted two-qubit
gates (vertical axis) on these two processor topologies when using the MinRC router. For
example, no movement operations are even needed when mapping some benchmarks
(‘ham3_102’, ‘miller_11’, and ‘xor5_254’) to the IBM-20 processor. For other benchmarks,
the IBM-20 processor can reduce the number of inserted elementary two-qubit gates up
to 82.3% (‘alu_v0_27’) compared to the Surface-17 processor.

Note that Qmap has not been optimized for the IBM-20 processor and we leave such
optimizations for future work. For example, when mapping the same benchmarks on
IBM-20, Qmap has comparable performance to the SABRE mapper [146] if it does not
use a more optimized initial placement. However, Qmap inserts more movement oper-
ations than the SABRE mapper when it uses this optimal initial placement.

Figure 7.8: Comparison of number of inserted two-qubit gates (CZs/CNOTs) when mapping to Surface-17 and
IBM-20 topologies.

RUNTIME AND SCALABILITY

We have tested the proposed mapper for different sizes of benchmarks, in which the
number of qubits ranges from 3 to 16 and the two-qubit gate number from 5 to 62483.
The runtime (in seconds) that Qmap requires for mapping each benchmark can be found
in Table 7.4 and Table 7.5, which is measured by the CPU time that the entire map-
ping procedure takes (excluding the time the ILP-based initial placement takes). The
router that performs more optimizations and evaluates more movement sets should
have longer runtime, which is consistent with the results shown in in Table 7.4 and Ta-
ble 7.5. The Trivial router has the shortest execution time, whereas the MinRC shows the
longest one.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

7.4. QMAP EVALUATION

7

117

For example, for the largest benchmark ‘sym10_262’ with 62483 gates, the mapper
using the Trivial router only takes 72.8 seconds and 5.02 seconds for the Surface-17 pro-
cessor and the IBM-20 processor, respectively. In comparison, when the MinRC router
is used, it takes 9083.4 seconds and 1698.4 seconds for the Surface-17 processor and the
IBM-20 processor, respectively. Based on the above observation, we can conclude that
our mapper is scalable in terms of large number of gates. However, our experiments
only use benchmarks which have fewer than 20 qubits. Therefore, its scalability with the
number of qubits needs to be further investigated. Besides, it is necessary to analyze the
trade-off between mapping optimizations and runtime for large-scale benchmarks.

MOVES VERSUS SWAPS

As mentioned in Section 7.2, a SWAP gate is implemented by three consecutive CNOT gates
whereas a MOVE operation is implemented by two consecutive CNOT gates but requiring
an ancilla qubit in the state |0〉. Therefore, if there are available ancilla qubits (qubits that
are not used for computation), then it is preferable to use MOVE operations rather than
SWAP gates, which helps to reduce the mapping overhead. In the mapping results of
Tables 7.4 and 7.5, MOVE operations are allowed for both MinPath and MinRC routers.
In this section, we evaluate the benefit of using MOVE operations, instead of only us-
ing SWAPs. We map the benchmarks in Table 7.2 onto the Surface-17 processor using
the MinPath router. Different from the setups in Table 7.4, to have a fair comparison
between using MOVEs if possible and only using SWAPs, in this case ILP-based initial
placement is not applied and the first movement set is always selected. As shown in Fig-
ure 7.9 (more data can be found in Table 7.6), generating MOVEs instead of SWAPs can
reduce both the number of gates up to 38.9% (‘bestein_vazirani’) and the circuit latency
up to 29% (‘graycode6_47’).

Figure 7.9: Comparison of mapping overhead on Surface-17 when using only SWAPs and using MOVEs if pos-
sible.

FIDELITY ANALYSIS

Qubits have limited coherence time and quantum operations are faulty, therefore, higher
number of operations and longer circuit latency/depth will possibly lead to lower algo-
rithm reliability which is measured by fidelity in this chapter. We investigate how the

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

7

118 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

Table 7.3: The characteristics of the benchmarks before and after mapping.

Benchmark
Before mapping After mapping

Qubits Latency Qates CZs Qubits Latency Gates CZs
graycode6_47 6 20 5 5 6 16 15 5
xor5_254 6 5 7 5 6 18 18 8
ham3_102 3 41 20 11 3 60 62 17
cuccroadder_1b 4 58 73 17 5 90 92 23
alu_v0_27 5 72 36 17 6 100 116 30
rd32_v0_66 4 66 34 16 6 105 113 32
miller_11 3 105 50 23 4 156 166 46

mapping affects the circuit fidelity by simulating various small benchmarks on a density-
matrix-based simulator called quantumsim [24]. The error models in this simulator are
implemented based on experimental parameters for transmon qubits. In this chapter,
we only consider qubit decoherence (relaxation and dephasing), gate and measurement
errors, using the parameters from [24]. More specifically, the qubit relaxation time T1

and dephasing time Tφ are both set to be 30000 ns and 60000 ns, respectively. The in-
plane error and in-axis error for single-qubit rotations are set to be 5∗ 10−4 and 10−4,
respectively. The incoherent deviation from the expected phase value for CZ gates is
0.01
2π and the readout error is 0.0015.

Figure 7.10 shows the fidelity before mapping and after mapping several small-scale
benchmarks (Table 7.3) on the Surface-17 processor. The fidelity is calculated by f (ρ,σ) =
Tr

(√
ρ1/2σρ1/2

)
[23], ρ and σ are the density matrix description of quantum states. As

expected, the fidelity of the circuits after being mapped drops. This decrease goes from
1.8% for the ‘graycode6’circuit to 13.8% for ‘rd32_v0_6’ and it is due to insertion of more
operations and the increment of the circuit latency. Moreover, for most of the bench-
marks, if a benchmark has both longer latency and more gates, then it will have lower
fidelity.

These two observations suggest that circuit fidelity is correlated with the latency and
the number of gates. However, other parameters may also affect the fidelity such as the
number of qubits and how errors propagate through two-qubit gates, and it is not clear
which one has a higher impact on it. For instance, the mapped benchmarks ‘miller_11’
has longer latency and more gates than ‘rd32_v0_6’, but it achieves higher fidelity. An-
other example is that the mapped benchmark ‘alu_v0_27’ which has shorter latency but
more gates achieves higher fidelity than the mapped ‘rd32_v0_6’. The impact of the map-
ping on the algorithm fidelity needs further investigation. The next step will be then to
analyze which circuit characteristics affect (most) the fidelity, and then develop a met-
ric which not only can well represent the fidelity but also can be easily formulated to be
optimized by the mapping procedure.

7.5. RELATED WORK
As we showed, most of the works on mapping focus on IBM and Rigetti superconducting
processors or on the UMD trapped ion processor. They only target a particular quantum
processor (e.g. IBM Q Yorktown) or a family of processors (e.g. IBM Q Tenerife, IBM Q
Melbourne, IBM Q Tokyo). Recently, mappers capable of generating executable circuits
for different quantum processors have been presented [149, 154, 156]. However, none

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

7.5. RELATED WORK

7

119

Figure 7.10: The fidelity of the benchmarks before and after mapping.

Table 7.4: The results of mapping quantum benchmarks to the Surface-17 processor, including the total num-
ber of gates and the number of two-qubit gates (CZs) in the mapped output circuits, the circuit latency (LC) in
cycles (20 ns per cycle), the numbers of inserted SWAP (SWs) and MOVE (MVs) operations, and the CPU time
that mapping takes in seconds.

Benchmarks
The Trivial router The MinPath router The MinRC router

LC Gates CZs SWs MVs Time LC Gates CZs SWs MVs Time LC Gates CZs SWS MVs Time
alu_bdd_288 335 393 113 25 0 0.063651 286 341 100 16 7 1.7313 254 362 109 15 13 1.77362
alu_v0_27 166 188 56 13 0 0.035298 100 116 30 3 2 4.20968 106 122 34 3 4 4.13529
benstein_vazirani 36 45 10 3 0 0.016671 36 9 1 0 0 0.010512 36 9 1 0 0 0.011352
4gt12_v1_89 931 1191 346 82 0 0.195921 811 917 270 54 4 25.6367 690 886 259 51 3 26.0342
4gt4_v0_72 1124 1416 413 100 0 0.255498 884 1018 296 55 9 4.40794 788 973 273 52 2 4.628
4mod5_bdd_287 298 339 100 23 0 0.071202 234 247 71 10 5 18.7469 226 240 69 10 4 19.5225
cm42a_207 7167 8782 2532 587 0 1.42467 6499 7887 2352 517 15 611.534 5713 7724 2301 494 24 535.889
cnt3_5_180 1985 2491 725 170 0 0.38054 1480 2103 623 136 0 25.0301 1236 2132 641 142 0 25.6028
cuccaroAdder 175 171 50 11 0 0.030359 90 92 23 0 3 0.252098 90 92 23 0 3 0.28906
cuccaroMultiply 417 427 122 30 0 0.061224 260 274 74 10 6 2.05933 217 246 64 6 7 2.09601
decod24_bdd 315 375 110 26 0 0.063532 253 301 90 14 8 1.38109 201 287 83 15 3 1.46449
decod24_enable 1342 1607 467 106 0 0.234408 1324 1464 434 95 0 28.704 1151 1474 434 95 0 28.7617
graycode6_47 30 31 11 2 0 0.008976 16 15 5 0 0 5.83973 16 15 5 0 0 5.8601
ham3_102 79 87 26 5 0 0.011258 60 62 17 2 0 0.15724 60 62 17 2 0 0.22297
miller_11 199 222 65 14 0 0.028559 156 166 46 3 7 0.19096 139 149 39 0 8 0.27471
mini_alu_167 1144 1431 414 96 0 0.21319 985 1120 309 61 0 29.411 818 1068 294 56 0 28.5271
mod5adder_127 2229 2744 794 185 0 0.44677 1908 2240 645 130 8 7.0105 1618 2104 598 109 16 7.4544
mod8_10_177 1819 2285 661 155 0 0.368983 1570 1808 530 102 14 2.26425 1434 1786 518 106 2 2.53567
one_two_three 287 346 101 23 0 0.054458 235 263 76 12 4 6.18516 215 252 70 10 4 6.41456
rd32_v0_66 168 184 55 13 0 0.027656 105 113 32 4 2 1.65692 104 111 31 1 6 1.71454
rd53_311 1183 1514 448 108 0 0.248108 909 1249 370 78 6 0.325133 856 1257 375 81 4 0.671126
rd73_140 970 1198 350 82 0 0.190468 751 1010 300 62 5 20.682 662 988 292 52 16 20.3441
rd84_142 1385 1804 526 124 0 0.301286 1044 1624 481 109 0 20.7494 861 1516 448 98 0 21.1735
sf_274 3351 3892 1137 267 0 0.674928 2705 3157 926 178 28 40.0639 2151 2822 818 104 85 41.2879
shor_15 15082 19608 5472 1228 0 4.33023 13460 17464 5046 1028 87 2.45284 11217 17058 4924 982 95 14.6928
sqrt8_260 12708 16131 4719 1135 0 3.49803 11626 14041 4231 953 29 4.12037 10020 13944 4216 956 17 13.2009
squar5_261 7865 10178 2951 694 0 2.17597 7198 8922 2663 594 6 3.48788 6468 8764 2630 585 3 7.76352
sym6_145 15466 19266 5583 1294 0 4.12125 14094 16427 4872 965 138 3.94839 12873 16145 4787 970 88 16.7757
sym9_146 1250 1721 499 117 0 0.301726 1040 1493 447 93 10 21.1801 980 1456 431 91 5 21.6935
sys6_v0_111 859 1142 338 80 0 0.248159 640 976 290 62 3 21.1563 573 909 267 49 11 21.1608
vbeAdder_2b 332 468 135 31 0 0.097994 236 300 79 9 5 0.16455 215 298 80 6 10 0.1938
wim_266 3941 5084 1474 349 0 0.986583 3546 4289 1273 272 15 13.0377 3190 4203 1254 265 16 13.5583
xor5_254 63 63 23 6 0 0.011354 18 18 8 1 0 29.7578 18 18 8 1 0 29.2384
z4_268 12341 15792 4598 1085 0 3.19178 11463 13962 4178 905 60 818.036 9704 13537 4088 887 42 869.445
adr4_197 14296 18110 5287 1263 0 3.38715 12772 15868 4780 1082 18 1.67818 11070 15496 4685 1021 62 10.924
9symml_195 142144 182319 53224 12664 0 36.5722 134023 164219 49485 11167 376 16.642 116118 162001 49154 11282 38 2332.7
clip_206 139948 180243 52809 12679 0 40.1273 128597 162421 49227 11379 159 17.44 111253 160880 49090 11268 257 2587.99
cm152a_212 5166 6320 1834 434 0 1.3859 4508 5347 1586 346 8 0.668956 4086 5306 1591 353 0 3.53968
cm85a_209 48394 61007 17886 4300 0 14.2237 44110 54845 16654 3832 86 6.49007 37839 53363 16224 3716 45 389.036
co14_215 75821 99108 29218 7126 0 20.9755 68064 92308 28381 6837 15 10.8777 57968 90267 27787 6615 51 1044.04
cycle10_2_110 25607 31630 9236 2196 0 7.12406 23070 28148 8460 1904 50 3.26144 20458 27897 8471 1899 63 106.071
dc1_220 7740 9845 2867 678 0 2.62955 7116 8575 2574 567 20 1.45486 5979 8117 2444 481 84 8.51783
dc2_222 39466 50396 14754 3541 0 12.5991 36113 44864 13547 3100 58 5.16826 31796 44379 13520 3077 79 268.637
dist_223 156674 201426 58891 14089 0 40.4085 144079 183197 55613 12757 359 55.0312 124031 179639 54717 12599 148 3550.7
ham15_107 36221 45826 13356 3166 0 10.1604 33368 40721 12257 2797 4 5.74947 28906 39762 12030 2704 30 193.48
life_238 92286 117371 34238 8146 0 30.3595 85068 104447 31370 7134 84 14.0716 75462 104689 31920 7324 74 1364.49
max46_240 111978 141438 41211 9789 0 35.6086 101798 125209 37631 8375 331 16.8426 89164 123895 37565 8217 535 1840.89
mini_alu_305 767 862 254 59 0 0.160793 505 741 228 35 23 0.198036 518 775 242 41 21 0.409246
misex1_241 19670 24793 7206 1702 0 5.75472 18143 22002 6577 1479 20 3.13745 15892 21883 6588 1480 24 53.4152
pm1_249 7167 8782 2532 587 0 2.3615 6446 7793 2314 499 23 1.48028 5629 7774 2331 504 24 6.86838
radd_250 13254 16700 4867 1154 0 4.11447 12291 14955 4516 979 87 2.43807 10798 14408 4363 948 57 24.0061
root_255 71310 91873 26882 6463 0 20.7858 64948 82599 24991 5824 13 11.4199 55963 80542 24520 5627 73 844.114
sqn_258 43328 53252 15529 3690 0 11.7106 38165 46370 13908 3019 196 6.55198 33010 45801 13815 2984 202 270.981
square_root_7 35769 44042 12896 3269 0 10.6409 27419 34333 10274 2371 36 50077.7 23203 33088 9845 2184 102 46862.9
sym10_262 269200 340622 99658 23858 0 72.7567 247750 305153 92270 21030 548 42.2372 215185 303141 92326 20986 642 9083.41
sym9_148 87919 110393 32127 7573 0 27.4377 79881 95215 28378 6152 257 14.4444 70756 94656 28462 6182 254 800.226

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 134PDF page: 134PDF page: 134PDF page: 134

7

120 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

Table 7.5: The results of mapping quantum benchmarks to the IBM-20 processor, including the total number
of gates and the number of two-qubit gates (CNOTs) in the mapped output circuits, the circuit depth (DP),
the numbers of inserted SWAP (SWs) and MOVE (MVs) operations, and the CPU time that mapping takes in
seconds.

The Trivial router The MinPath router The MinRC router
Benchmarks DP Gates CZs SWs MVs Time Depth Gates CNOTs SWs MVs Time DP Gates CNOTs SWs MVs Time
alu_bdd_288 104 150 104 22 0 0.006799 69 108 62 6 3 1.97957 52 99 53 1 6 2.19182
alu_v0_27 63 80 59 14 0 0.003466 26 42 21 0 2 0.695886 23 41 20 1 0 0.53724
benstein_vazirani 11 19 7 2 0 0.001361 5 9 1 0 0 0.011202 5 9 1 0 0 0.006134
4gt12_v1_89 260 413 265 55 0 0.017538 251 357 225 39 4 1.01012 155 295 163 17 6 1.08303
4gt4_v0_72 310 453 302 63 0 0.018983 265 386 239 42 0 1.31254 251 401 254 47 0 1.43037
4mod5_bdd_287 79 117 70 13 0 0.006572 72 110 69 8 7 10.5762 69 103 62 7 5 11.2424
cm42a_207 1951 2997 1914 381 0 0.132164 1885 2771 1752 325 3 1.54932 1552 2591 1572 267 0 2.04996
cnt3_5_180 453 759 449 78 0 0.031661 461 832 526 95 13 0.251479 366 787 481 84 7 0.403158
cuccaroAdder_1b 50 63 35 6 0 0.002176 45 57 29 4 0 0.006341 46 57 29 4 0 0.006140
cuccaroMultiply 114 163 95 21 0 0.008113 67 110 42 2 2 0.063068 67 110 42 2 2 0.064569
decod24_bdd_294 97 137 92 20 0 0.005843 58 99 54 4 5 0.220697 71 102 57 7 2 0.265615
decod24_enable 343 539 320 57 0 0.019654 385 528 325 52 10 0.282428 359 501 298 41 13 0.312647
graycode6_47 10 11 11 2 0 0.001782 5 5 5 0 0 132.424 5 5 5 0 0 134.398
ham3_102 26 34 23 4 0 0.001695 14 22 11 0 0 0.272413 14 22 11 0 0 0.335248
miller_11 73 95 62 13 0 0.003827 33 56 23 0 0 0.398531 33 56 23 0 0 0.394078
mini_alu_167 352 523 333 69 0 0.021998 343 469 287 47 10 0.358596 248 423 241 23 23 0.287731
mod5adder_127 581 909 557 106 0 0.038077 600 853 517 82 16 0.347671 460 783 447 52 26 0.429595
mod8_10_177 515 768 490 98 0 0.030661 422 616 350 44 11 1.38649 362 595 329 27 26 1.39496
one_two_three 111 147 101 23 0 0.006499 70 107 61 7 4 15.6825 60 96 50 4 3 15.3512
rd32_v0_66 46 61 43 9 0 0.003419 31 40 22 2 0 0.335373 31 40 22 2 0 0.261868
rd53_311 323 515 346 74 0 0.021726 238 455 286 50 6 0.226095 198 433 264 42 7 0.354412
rd73_140 272 449 299 65 0 0.017987 227 363 225 39 2 0.215851 174 365 227 41 0 0.248996
rd84_142 409 665 442 96 0 0.032003 274 590 375 73 1 0.226931 232 578 363 69 1 0.291646
sf_274 891 1303 810 158 0 0.050961 821 1168 715 121 8 0.292848 615 1014 561 55 30 0.505735
shor_15 4412 7660 4110 774 0 0.298939 3962 7143 3821 675 4 0.538582 3642 7121 3799 657 20 3.94586
sqrt8_260 3557 5362 3507 731 0 0.223606 3295 4941 3218 632 4 0.46522 2806 4823 3100 588 11 2.80964
squar5_261 2204 3369 2159 430 0 0.14577 1902 2996 1868 333 0 0.146514 1772 3056 1928 353 0 1.25905
sym6_145 4308 6442 4089 796 0 0.270245 4214 5931 3746 639 64 0.566357 3578 5746 3561 580 60 3.62793
sym9_146 355 589 385 79 0 0.025852 308 512 312 54 1 0.225797 244 513 313 51 6 0.301447
sys6_v0_111 258 392 257 53 0 0.016768 172 356 221 39 3 0.22927 121 332 197 27 9 0.366101
vbeAdder_2b 101 166 90 16 0 0.009988 89 154 82 6 11 0.08707 65 132 60 4 3 0.097052
wim_266 1050 1634 1027 200 0 0.068294 1006 1490 927 160 10 0.31237 959 1477 914 159 5 0.601171
xor5_254 15 25 23 6 0 0.001625 5 7 5 0 0 83.2281 5 7 5 0 0 86.1867
z4_268 3416 5233 3353 670 0 0.211396 3242 4844 3096 573 17 1.15126 2830 4807 3059 562 15 3.34761
adr4_197 3663 5663 3556 686 0 0.289353 3690 5471 3547 683 0 0.70171 3107 5447 3523 675 0 3.79805
9symml_195 40942 61211 39568 8112 0 2.41685 38966 58625 38575 7733 72 3.29246 32774 55634 35584 6778 9 453.364
clip_206 38219 58228 37401 7543 0 2.41549 35271 55144 35837 6973 73 4.69567 30193 54562 35255 6759 103 516.907
cm152a_212 1405 2071 1330 266 0 0.096682 1280 1849 1156 200 12 0.39819 1132 1852 1159 203 9 1.02137
cm85a_209 12801 19022 12036 2350 0 0.870193 12377 18424 11982 2258 111 1.41441 10576 18321 11879 2251 70 49.9608
co14_215 20373 31624 20488 4216 0 1.46214 18173 30707 20503 4199 33 2.11778 15606 30000 19796 3968 26 145.909
cycle10_2_110 7092 10474 6704 1352 0 0.483386 6794 9961 6447 1265 2 0.98825 5701 9757 6243 1197 2 11.4825
dc1_220 2007 3096 1919 362 0 0.151444 2032 2964 1883 344 9 0.40237 1647 2834 1753 300 10 1.6554
dc2_222 10331 15520 9687 1852 0 0.868323 10023 15292 9879 1880 54 0.99071 8527 14914 9501 1748 63 30.287
dist_223 41330 62812 39502 7626 0 2.55385 40875 63362 41536 8302 3 603.305 34997 61730 39904 7758 3 980.527
ham15_107 9919 14832 9453 1865 0 0.91102 9198 14159 9128 1740 25 1.15454 7810 13622 8591 1569 13 18.3199
life_238 26825 39551 25736 5312 0 1.94568 24642 36245 23410 4522 22 1.97507 21195 35599 22764 4310 17 132.28
max46_240 30804 47036 30210 6122 0 2.29855 28361 43463 27789 5311 6 2.19886 25289 43285 27611 5253 4 175.946
mini_alu_305 223 344 242 55 0 0.018605 142 257 157 22 7 0.26750 110 264 164 27 3 0.35919
misex1_241 5080 7440 4563 821 0 0.504028 5171 7465 4736 862 25 0.36909 4232 7271 4542 800 21 5.42279
pm1_249 1951 2997 1914 381 0 0.218987 1744 2604 1585 270 2 1.3032 1556 2586 1567 252 20 2.43371
radd_250 3651 5395 3451 682 0 0.361469 3402 5075 3279 624 1 0.59758 2975 4979 3183 592 1 3.43631
root_255 19367 29259 18779 3762 0 1.51796 18265 28528 18692 3733 0 1.87795 15814 27832 17996 3501 0 81.9624
sqn_258 11936 17901 11569 2370 0 0.836415 10989 16400 10486 2005 6 1.26047 9368 15742 9828 1781 13 26.8857
square_root_7 10066 14833 9320 2077 0 0.690437 8067 12862 7540 1463 31 600.994 6995 12629 7307 1382 36 618.468
sym10_262 74050 110071 70402 14106 0 5.02098 71921 106926 70006 13968 9 6.19955 60532 105318 68398 13434 6 1698.4
sym9_148 24017 35547 22683 4425 0 1.83779 22827 33047 20947 3841 8 2.19047 19952 32947 20847 3799 21 170.922

of them take into account the control electronics constraints that can be very restrictive
especially when scaling-up quantum processors. Neither do they consider information
such as gate duration (except [156]) and they assume when scheduling operations that
all gates take the same number of cycles to execute. They all use SWAP operations for
moving qubits when targeting superconducting quantum processors. In addition, so
far no mapper has been developed for more scalable quantum processors such as the
Surface-17 processor presented in [39, 157]. This processor has been designed with the
aim of building a large qubit array capable of performing fault-tolerant quantum com-
putations based on surface code. It can be used not only for performing QEC cycles
(memory) but also for running quantum algorithms.

Moreover, many existing mapping algorithms [72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83,
130, 144, 81, 145, 146, 147, 148, 149] usually use either the number of inserted movement

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 135PDF page: 135PDF page: 135PDF page: 135

7.5. RELATED WORK

7

121

Table 7.6: Comparison of mapping results with and without using MOVE operations, including the total num-
ber of gates and the number of two-qubit gates (CZ) in the mapped output circuits, the circuit latency in cycles
(20 ns per cycle), and the numbers of inserted SWAP and MOVE operations.

Benchmarks
MOVE operations are not used MOVE operations are used

Latency Gates CZs SWAPs MOVEs Latency Gates CZs SWAPs MOVEs
alu_bdd_288 340 375 110 24 0 324 351 104 18 6
alu_v0_27 144 159 47 10 0 137 148 44 7 3
4gt12_v1_89 822 992 286 62 0 770 916 265 41 21
4gt4_v0_72 1021 1237 362 83 0 921 1100 325 46 37
4mod5_bdd_287 289 315 94 21 0 281 296 89 16 5
benstein_vazirani 36 36 10 3 0 36 22 7 0 3
cm42a_207 6413 7778 2256 495 0 6387 7723 2242 481 14
cnt3_5_180 1523 2176 629 138 0 1512 2157 625 134 4
cuccaroAdder_1b 145 139 41 8 0 145 139 41 8 0
cuccaroMultiply 398 408 122 30 0 394 389 118 26 4
decod24_bdd 287 338 98 22 0 250 296 87 11 11
decod24_enable 1266 1442 413 88 0 1233 1393 400 75 13
graycode6_47 31 31 11 2 0 22 23 9 0 2
ham3_102 87 90 26 5 0 81 83 24 3 2
miller_11 206 212 62 13 0 203 208 61 12 1
mini_alu_167 1043 1216 348 74 0 1019 1168 336 62 12
mod5adder_127 2187 2541 737 166 0 2017 2287 670 99 67
mod8_10_177 1614 1968 568 124 0 1560 1875 544 100 24
one_two_three 230 295 83 17 0 228 285 80 14 3
rd32_v0_66 174 186 55 13 0 155 164 50 8 5
rd53_311 1064 1369 409 95 0 1055 1353 406 92 3
rd73_140 827 1114 326 74 0 814 1086 319 67 7
rd84_142 1115 1752 532 126 0 1107 1736 527 121 5
sf_274 2923 3366 975 213 0 2914 3333 967 205 8
shor_15 13498 18208 5292 1168 0 13377 17901 5214 1090 78
sqrt8_260 11292 13616 3984 890 0 11255 13532 3962 868 22
squar5_261 7081 8798 2573 568 0 7022 8685 2546 541 27
sym6_145 14751 17038 4944 1081 0 14447 16552 4808 945 136
sym9_146 1085 1557 460 104 0 1073 1533 454 98 6
sys6_v0_111 664 1052 314 72 0 640 977 294 52 20
vbeAdder_2b 344 475 144 34 0 332 449 138 28 6
wim_266 3605 4377 1276 283 0 3548 4282 1250 257 26
xor5_254 59 63 23 6 0 50 52 20 3 3
z4_268 11199 13812 4049 902 0 11069 13554 3979 832 70
adr4_197 12599 16008 4702 1068 0 12401 15640 4603 969 99
9symml_195 130111 156596 45649 10139 0 129997 156383 45587 10077 62
clip_206 126884 156543 46107 10445 0 126315 155589 45843 10181 264
cm152a_212 4406 5364 1555 341 0 4361 5303 1538 324 17
cm85a_209 42879 51691 15120 3378 0 42681 51300 15008 3266 112
co14_215 66055 87121 26026 6062 0 66047 87102 26022 6058 4
cycle10_2_110 22993 27807 8144 1832 0 22873 27573 8082 1770 62
dc1_220 7147 8665 2534 567 0 7040 8484 2484 517 50
dc2_222 35799 43119 12660 2843 0 35746 43042 12640 2823 20
dist_223 139285 174072 51133 11503 0 139228 173943 51100 11470 33
ham15_107 32885 39831 11658 2600 0 32699 39486 11562 2504 96
life_238 83192 100627 29378 6526 0 82711 99879 29170 6318 208
max46_240 99680 122065 35649 7935 0 98653 120295 35145 7431 504
mini_alu_305 537 804 236 53 0 537 786 232 49 4
misex1_241 17982 21417 6234 1378 0 17871 21191 6172 1316 62
pm1_249 6413 7778 2256 495 0 6387 7723 2242 481 14
radd_250 12103 14626 4285 960 0 12030 14488 4247 922 38
root_255 63744 79324 23414 5307 0 63640 79130 23361 5254 53
sqn_258 37976 45258 13153 2898 0 37964 45244 13150 2895 3
square_root_7 31238 37388 11393 2768 0 31002 37017 11305 2680 88
sym10_262 241971 293917 86188 19368 0 240301 290933 85358 18538 830
sym9_148 79993 95059 27477 6023 0 79257 93815 27137 5683 340

operations or the circuit depth as optimization metric; that is, the routing path that in-
serts the least number of extra gates or the one that produces the minimal circuit depth

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 136PDF page: 136PDF page: 136PDF page: 136

7

122 7. MAPPING OF QUANTUM CIRCUITS ONTO NISQ SUPERCONDUCTING PROCESSORS

overhead is chosen. The same metrics together with the execution time (time it takes to
perform the mapping) are considered to evaluate the quality of the mapping algorithms.
Although both number of gates and circuit depth are correlated with the reliability of
quantum circuits and they should be minimized as we mentioned, an analysis on how
they degrade the algorithm’s performance is not provided.

Recent works [71, 145, 147, 148, 155, 154], propose to use reliability as an optimiza-
tion metric and analyze how the mapping process affects the success rate (also called
execution success probability) of the algorithm. They suggest to choose the routing path
based on the fidelity of the two-qubit gates along the path as they are used to implement
the movements (noise-aware mapper). Note that the fidelity of two-qubit gates can vary
between different pairs of qubits. However, the reliability of a path is calculated by sim-
ply multiplying the reliability of each gate without considering error propagation and
decoherence, which makes this metric incomplete and not very accurate; it sometimes
fails in predicting the most reliable route [148]. Based on the results presented in these
papers, it seems that optimizing reliability instead of just number of gates leads to better
success rates, at least for small quantum circuits.

7.6. CONCLUSION AND DISCUSSION
In this chapter, we have presented a mapper called Qmap to make quantum circuits ex-
ecutable on the Surface-17 chip. It takes into account common processor constraints
such as the elementary gate set and qubit connectivity, as well as classical control elec-
tronics restrictions. Qmap has been embedded in the OpenQL compiler and consists of
several modules, including qubit initial placement and routing, operation scheduling,
and gate decomposition and optimization. It can be applied to different processors of
which hardware constraints are described in a configuration file.

We mapped 56 quantum benchmarks on two superconducting processors, which
are the surface-17 processor and the IBM Q Tokyo processor. Three different routers,
namely, Trivial, MinPath, and MinRC, were used in this evaluation by the Qmap mapper.
For both processors, the mapping using the MinRC router results in the lowest overhead
in terms of both circuit latency/depth and number of gates. Furthermore, as expected,
the IBM-20 processor requires fewer movement operations compared to the Surface-17
processor due to its slightly higher qubit connectivity. We also showed that the use of a
cheaper movement operation (MOVE) helps to substantially reduce the resulting over-
head in terms of both added gates and latency.

We can then conclude that a flexible mapper is required for making quantum circuits
executable on different real quantum processors. It must consider not only processor
restrictions but also control electronic constraints as they may limit the parallelism of the
operations. In addition, evaluating all possible shortest paths and different movement
sets within each path and choosing one based on how well it interleaves with previous
operations (look-back feature), lead to lower number of gates and circuit latency/depth.
As shown, these two metrics seem to be correlated with the reliability of the algorithm,
but a deeper analysis is required to develop an accurate reliability metric that can be
directly used by the mapping procedure. Finally, optimizations for reducing the number
of operations at different steps of the mapping process are also necessary.

Although our mapper has shown the capability to map benchmarks with large num-

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 137PDF page: 137PDF page: 137PDF page: 137

7.6. CONCLUSION AND DISCUSSION

7

123

ber of operations, we need to make it scalable for larger number of qubits. Future work
will also include the improvement of the initial placement and routing by, for instance,
finding movement operations for several two-qubit gates simultaneously. Furthermore,
additional mapping metrics need be investigated and included in the mapper. Note that
what parameter(s) to optimize during the mapping might depend on the characteris-
tics of the target quantum processor. In addition, our mapping approach is based on
the compilation of quantum circuits at the gate level, where the generated instructions
are further translated by the microarchitecture into appropriate signals that control the
qubits [106]. A different approach is to directly compile quantum algorithms to control
pulses [123]. Further work will compare both solutions and investigate the trade-off of
allocating mapping tasks to a compiler and a microarchitecture.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 138PDF page: 138PDF page: 138PDF page: 138

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 139PDF page: 139PDF page: 139PDF page: 139

8
CONCLUSION AND OUTLOOK

125

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 140PDF page: 140PDF page: 140PDF page: 140

8

126 8. CONCLUSION AND OUTLOOK

T His thesis has investigated fault-tolerant protocols for performing reliable quantum
computation and proposed mapping techniques for executing quantum algorithms

on real processors. This chapter first summarizes the main contributions of this thesis
and then discusses some future research topics.

8.1. CONCLUSION
The first part of this thesis has focused on the execution of large-scale quantum algo-
rithms which require quantum error correction and fault-tolerant mechanisms. The
main results of this part are summarized as follows:

• We started by introducing fault-tolerant quantum computation based on rotated
planar surface codes in Chapter 3. The implementation of a universal set of log-
ical operations was illustrated. These operations include the CNOTgate realized
by an approach called lattice surgery, the H gate using a presented lattice rota-
tion procedure based on code deformation, and the S and T gates which require
magic state preparation. Furthermore, we proposed to describe lattice-surgery-
based and code-deformation-based operations using the gauge fixing technique,
showing that the fault tolerance of these protocols is determined by the under-
lying subsystem codes. In addition, we numerically demonstrated our approach
and evaluated these logical operations under phenomenological noise and circuit
level noise using the stabilizer formalism.

• The surface code has high error threshold for both logical memory and logical op-
erations. Moreover, the error syndrome measurement for surface codes only re-
quires local connectivity of physical qubits, which can be directly supported by
many quantum technologies. However, the logical CNOTgates using lattice surgery
needs logical qubits to be placed in particular neighboring positions. This con-
nectivity restriction at the logical level requires the movement of logical qubits,
which causes overhead in terms of both the number of operations and circuit la-
tency and in turn increases logical error rates. In Chapter 4, we proposed two qubit
plane architectures that organize qubits in specialized areas to efficiently support
these lattice-surgery-based operations, namely, checkerboard architecture and a
tile-based architecture. We further developed a full mapping procedure, including
placement and routing of logical qubits and scheduling of logical operations, to
map logical quantum circuits onto these two architectures. The evaluation results
have shown that the tile-based architecture that uses more qubits leads to lower
mapping overhead compared to the checkerboard one. More specifically, it can
reduce the operation overhead and the latency overhead up to ∼ 86% and ∼ 79%,
respectively.

• We proposed a microarchitecture, FT-QuMA, to enable the execution of fault-tolera-
nt error correction and computation on rotated planar surface codes. It can sup-
port flexible logical operation description, efficient error syndrome extraction cir-
cuit generation, error decoding, and error correction using Pauli frame. In this
control microarchitecture, the concept of virtual memory was adopted to provide
a clean compilation model that is independent of actual physical qubit addresses.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

8.1. CONCLUSION

8

127

Moreover, QEC increases the number of operations on qubits per unit time, aggra-
vating the instruction issue rate problem. We presented a two-level address mech-
anism which can substantially reduce the codesize of the executable to enable ef-
ficient execution of quantum instructions. Finally, we verified the proposed con-
trol microarchitecture by illustrating an instantiation of the lattice-surgery-based
CNOTgate.

The surface code is promising for large-scale quantum computation but it requires
many physical qubits to encode one logical qubit. Noisy intermediate-scale quantum
processors will only have up to a few hundreds of qubits and the connectivity between
them will also be limited. Therefore, a fault-tolerant quantum computer that can run
large-scale quantum algorithms using surface codes is still far away. The second part of
this thesis has discussed quantum computation on NISQ processors, the main contribu-
tions are the following:

• We first investigated small-size QEC codes that can be used to demonstrate fault
tolerance in small quantum processors. One possible solution is to apply the flag-
based protocol which can perform quantum error correction fault-tolerantly by
only using a small number of qubits. However, these flag circuits may not be di-
rectly executable on the connectivity-constrained processors. General mapping
algorithms that insert SWAPoperations will likely destroy the fault tolerance of
these circuits. In Chapter 6, we proposed a flag-bridge scheme that can fault-
tolerantly cope with this connectivity constraint with no or low qubit overhead.
Based on this proposed approach, we mapped the Steane code error correction to
the Surface-17 transmon processor and the IBM Q Tokyo processor. Furthermore,
we numerically simulated these mapped circuits under circuit level noise. In this
simulation, a look-up-table decoder and a neural network decoder were designed.
The numerical results have shown that the flag-bridge circuits that can measure
more stabilizers in parallel have lower logical error rates.

• Subsequently, we focused on the implementation of quantum algorithms without
error correction (Chapter 7). Besides the noisy property and limited connectivity,
NISQ processors also have other hardware constraints such as predefined elemen-
tary gates and shared classical electronic control. Quantum circuits need to be
compiled to respect all of these constraints, which is the mapping problem on the
physical level. We developed a mapper for adapting quantum circuits to supercon-
ducting processors and three routing strategies were designed. It uses a configura-
tion file to describe all the hardware constraints such that it is applicable to differ-
ent platforms. We evaluated this mapper by mapping more than fifty benchmarks
onto both the Surface-17 transmon processor and the IBM Q Tokyo processor. The
mapping results has shown that the proposed mapper can reduce operation over-
head up to 80% (72%) and the latency (depth) overhead up to 71.4% (66.7%) on the
Surface-17 (IBM Q Tokyo), respectively, compared to a baseline mapper.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 142PDF page: 142PDF page: 142PDF page: 142

8

128 8. CONCLUSION AND OUTLOOK

8.2. OUTLOOK
In this thesis, we have proposed protocols for performing fault-tolerant computation on
large-scale and near-term quantum processors. We have also developed mapping passes
and microarchitectural blocks to make quantum circuits executable on real quantum
processors. Although these schemes and approaches have been well investigated and
thoroughly verified, there are still many open questions and interesting research topics.
Some research recommendations for future work are:

• As discussed in Chapters 3 and 6, the numerical analysis of quantum error cor-
rection and quantum computation in this thesis was carried out with Pauli error
models that inject errors in a probabilistic way. The noise in real quantum devices
is however continuous. Previous works have simulated the memory performance
of small QEC codes with realistic error models including amplitude damping and
coherent noise [158, 159, 160, 161]. The next steps are to analyze the fault tolerance
of the logical operations on rotated surface codes using realistic errors. Further-
more, it is also interesting to test whether the proposed flag-bridge error correction
protocol can still be fault-tolerant with realistic error models and even to perform
experiments on real devices. In addition, the flag-bridge approach has only been
verified on several distance-3 codes, its extensibility and scalability to higher code
distances and logical operations need to be investigated.

• We have proposed qubit plane architectures and mapping passes to support fault-
tolerant quantum computation by using the lattice surgery technique on rotated
planar surface codes. In the mapping procedure, we assume that the magic states
have been prepared whenever S and T gates will be performed. Future work needs
to consider the dynamics of magic state preparation and investigate its implica-
tions on both quantum circuit mapping and quantum control microarchitecture.
Another research question is where to allocate different tasks, on the quantum
compiler or the control microarchitecture. For example, the translation of logi-
cal operations into physical ones as well as the mapping of quantum circuits can
be performed by the compiler as the design proposed in this thesis. These tasks
can also be taken by the microarchitecture, which leaves a simple interface to the
quantum software but imposes challenges to the microarchitecture.

• We have developed a mapper to efficiently map quantum circuits onto NISQ pro-
cessors (e.g. the Surface-17 superconducting processor) that have many hardware
constraints including elementary gate set, qubit connectivity, and shared classi-
cal control. However, there is a lot of room for further optimizing the compilation
results. For instance, one can improve routing strategies by finding movement
operations for multiple two-qubit gates at the same time rather than one gate per
time. Moreover, existing mapping algorithms (including the ones in this thesis) are
mostly using the number of operations or the circuit depth/latency as optimiza-
tion objectives. These metrics are all related to the reliability (fidelity and success
rate) of the given quantum circuit, but which ones affect reliability most has not
been studied. Another research direction is to investigate the correlation between

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

8.2. OUTLOOK

8

129

reliability and different circuit parameters and then define a metric which can not
only better represent reliability but also be easily used by the mapping procedure.

• There are also different techniques for solving the research questions of this the-
sis. Regarding the execution of surface-code-based quantum circuits, one can use
circuit synthesis algorithms to avoid the moving of qubits as presented in [162].
This approach translates all the gates into T gates with local multi-qubit measure-
ment (implemented by lattice surgery) such that routing of qubits is not required.
It will be interesting to compare it with our solution in terms of spatial and tem-
poral cost as well as reliability. Additionally, there are many other quantum error
correction codes that have good properties. For instance, though the color codes
currently have lower threshold than surface codes, they allow transversal Clifford
gates in two dimensions [163, 164] and transversal non-Clifford gates in three di-
mensions [165, 166]. The quantum low-density parity check (LDPC) codes have
constant rate and efficient decoding algorithms [167, 168, 169]. It will be worth to
investigate how to perform fault-tolerant computation on quantum LDPC codes.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 144PDF page: 144PDF page: 144PDF page: 144

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 145PDF page: 145PDF page: 145PDF page: 145

REFERENCES

[1] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, pages 124–134. IEEE, 1994.

[2] Stephen Jordan. Quantum algorithm zoo. http://math.nist.gov/quantum/
zoo/, 2011.

[3] Julian Kelly, Rami Barends, Austin G Fowler, Anthony Megrant, Evan Jeffrey,
Theodore C White, Daniel Sank, Josh Y Mutus, Brooks Campbell, Yu Chen, et al.
State preservation by repetitive error detection in a superconducting quantum cir-
cuit. Nature, 519(7541):66, 2015.

[4] Diego Ristè, Stefano Poletto, M-Z Huang, Alessandro Bruno, Visa Vesterinen, O-
P Saira, and Leonardo DiCarlo. Detecting bit-flip errors in a logical qubit using
stabilizer measurements. Nature communications, 6:6983, 2015.

[5] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient quantum optimizer for small
molecules and quantum magnets. arXiv:1704.05018, 2017.

[6] Ronald Hanson, Leo P Kouwenhoven, Jason R Petta, Seigo Tarucha, and Lieven MK
Vandersypen. Spins in few-electron quantum dots. Reviews of modern physics,
79(4):1217, 2007.

[7] Floris A Zwanenburg, Andrew S Dzurak, Andrea Morello, Michelle Y Simmons,
Lloyd CL Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N Coppersmith, and
Mark A Eriksson. Silicon quantum electronics. Reviews of Modern Physics, 85:961,
2013.

[8] TF Watson, SGJ Philips, Erika Kawakami, DR Ward, Pasquale Scarlino, Menno
Veldhorst, DE Savage, MG Lagally, Mark Friesen, SN Coppersmith, et al. A pro-
grammable two-qubit quantum processor in silicon. Nature, 555(7698):633, 2018.

[9] G De Lange, ZH Wang, D Riste, VV Dobrovitski, and R Hanson. Universal dynam-
ical decoupling of a single solid-state spin from a spin bath. Science, 330:60–63,
2010.

[10] Julia Cramer, Norbert Kalb, Michiel Adriaan Rol, Bas Hensen, Machiel S Blok,
Matthew Markham, Daniel J Twitchen, Ronald Hanson, and Tim H Taminiau. Re-
peated quantum error correction on a continuously encoded qubit by real-time
feedback. Nature Communications, 7, 2016.

131

http://math.nist.gov/quantum/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

132 REFERENCES

[11] Chris Monroe, DM Meekhof, BE King, Wayne M Itano, and David J Wineland.
Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett., 75:4714,
1995.

[12] Shantanu Debnath, Norbert M Linke, Caroline Figgatt, Kevin A Landsman, Kevin
Wright, and Christopher Monroe. Demonstration of a small programmable quan-
tum computer with atomic qubits. Nature, 536(7614):63, 2016.

[13] Antonio D Córcoles, Easwar Magesan, Srikanth J Srinivasan, Andrew W Cross,
Matthias Steffen, Jay M Gambetta, and Jerry M Chow. Demonstration of a quan-
tum error detection code using a square lattice of four superconducting qubits.
Nature communications, 6:6979, 2015.

[14] IBM. Quantum experience. https://www.research.ibm.com/ibm-q/, 2017.

[15] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
Surface codes: Towards practical large-scale quantum computation. Phys. Rev.
A, 86(3):032324, 2012.

[16] Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan
Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. Su-
perconducting quantum circuits at the surface code threshold for fault tolerance.
Nature, 508(7497):500–503, 2014.

[17] Charles D Hill, Eldad Peretz, Samuel J Hile, Matthew G House, Martin Fuechsle,
Sven Rogge, Michelle Y Simmons, and Lloyd CL Hollenberg. A surface code quan-
tum computer in silicon. Science advances, 1(9):e1500707, 2015.

[18] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. Sur-
face code quantum computing by lattice surgery. New Journal of Physics,
14(12):123011, 2012.

[19] Andrew J Landahl and Ciaran Ryan-Anderson. Quantum computing by color-code
lattice surgery. arXiv:1407.5103, 2014.

[20] Héctor Bombín and Miguel A Martin-Delgado. Quantum measurements and
gates by code deformation. Journal of Physics A: Mathematical and Theoretical,
42(9):095302, 2009.

[21] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,
2018.

[22] Xiang Fu, Leon Riesebos, Lingling Lao, Carmen G Almudever, Fabio Sebastiano,
Richard Versluis, Edoardo Charbon, and Koen Bertels. A heterogeneous quan-
tum computer architecture. In Proceedings of the ACM International Conference
on Computing Frontiers, pages 323–330. ACM, 2016.

[23] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum in-
formation. Cambridge University Press, 2010.

https://www.research.ibm.com/ibm-q/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 147PDF page: 147PDF page: 147PDF page: 147

REFERENCES 133

[24] Thomas E O’Brien, Brian Tarasinski, and Leonardo DiCarlo. Density-matrix simu-
lation of small surface codes under current and projected experimental noise. npj
Quantum Information, 3(1):39, 2017.

[25] Daniel Gottesman. The heisenberg representation of quantum computers.
arXiv:9807006, 1998.

[26] Andrew M Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,
77(5):793, 1996.

[27] Dave Bacon. Operator quantum error-correcting subsystems for self-correcting
quantum memories. Phys. Rev. A, 73(1):012340, 2006.

[28] Alexei Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):2–30, 2003.

[29] Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv:9705052,
1997.

[30] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quan-
tum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

[31] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

[32] Francisco Barahona, R Maynard, R Rammal, and JP Uhry. Morphology of ground
states of two-dimensional frustration model. Journal of Physics A: Mathematical
and General, 15(2):673, 1982.

[33] Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost
perfect matching algorithm. Mathematical Programming Computation, 1:43–67,
2009.

[34] Guillaume Duclos-Cianci and David Poulin. A renormalization group decoding
algorithm for topological quantum codes. In Information Theory Workshop (ITW),
2010 IEEE, pages 1–5. IEEE, 2010.

[35] Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for max-
imum likelihood decoding in the surface code. Phys. Rev. A, 90(3):032326, 2014.

[36] Savvas Varsamopoulos, Ben Criger, and Koen Bertels. Decoding small surface
codes with feedforward neural networks. Quantum Science and Technology,
3(1):015004, 2017.

[37] Xiaotong Ni. Neural network decoders for large-distance 2d toric codes.
arXiv:1809.06640, 2018.

[38] Emanuel Knill. Quantum computing with very noisy devices. arXiv:0410199, 2004.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 148PDF page: 148PDF page: 148PDF page: 148

134 REFERENCES

[39] Richard Versluis, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia
Haider, David J Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo.
Scalable quantum circuit and control for a superconducting surface code. Phys.
Rev. Applied, 8(3):034021, 2017.

[40] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clif-
ford gates and noisy ancillas. Phys. Rev. A, 71(2):022316, 2005.

[41] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead.
Phys. Rev. A, 86(5):052329, 2012.

[42] Adam M Meier, Bryan Eastin, and Emanuel Knill. Magic-state distillation with the
four-qubit code. arXiv:1204.4221, 2012.

[43] Cody Jones. Multilevel distillation of magic states for quantum computing. Phys.
Rev. A, 87(4):042305, 2013.

[44] Earl T Campbell and Mark Howard. Unifying gate synthesis and magic state distil-
lation. Phys. Rev. Lett., 118(6):060501, 2017.

[45] Eyob A Sete, William J Zeng, and Chad T Rigetti. A functional architecture for
scalable quantum computing. In 2016 IEEE International Conference on Rebooting
Computing (ICRC), pages 1–6. IEEE, 2016.

[46] Ruoyu Li, Luca Petit, David P Franke, Juan Pablo Dehollain, Jonas Helsen, Mark
Steudtner, Nicole K Thomas, Zachary R Yoscovits, Kanwal J Singh, Stephanie
Wehner, et al. A crossbar network for silicon quantum dot qubits. Science ad-
vances, 4(7):eaar3960, 2018.

[47] Christopher Monroe and Jungsang Kim. Scaling the ion trap quantum processor.
Science, 339(6124):1164–1169, 2013.

[48] Krysta M Svore, Alfred V Aho, Andrew W Cross, Isaac Chuang, and Igor L Markov.
A layered software architecture for quantum computing design tools. Computer,
pages 74–83, 2006.

[49] Emanuel Knill and Raymond Laflamme. Concatenated quantum codes.
arXiv:9608012, 1996.

[50] David S Wang, Austin G Fowler, and Lloyd CL Hollenberg. Surface code quantum
computing with error rates over 1%. Phys. Rev. A, 83:020302, 2011.

[51] Adam Paetznick and Ben W Reichardt. Universal fault-tolerant quantum com-
putation with only transversal gates and error correction. Phys. Rev. Lett.,
111(9):090505, 2013.

[52] Héctor Bombín. Clifford gates by code deformation. New Journal of Physics,
13(4):043005, 2011.

[53] Sergey Bravyi. Fault-tolerant quantum computing by code deformation. QIP Tu-
torial, 2016.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

REFERENCES 135

[54] Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J. Briegel. Fault-tolerant inter-
face between quantum memories and quantum processors. Nature Communica-
tions, 8(1):1321, 2017.

[55] Benjamin J Brown, Katharina Laubscher, Markus S Kesselring, and James R Woot-
ton. Poking holes and cutting corners to achieve Clifford gates with the surface
code. Phys. Rev. X, 7:021029, May 2017.

[56] Austin G Fowler and Craig Gidney. Low overhead quantum computation using
lattice surgery. arXiv:1808.06709, 2018.

[57] Michael Vasmer and Dan E Browne. Universal quantum computing with 3d sur-
face codes. arXiv:1801.04255, 2018.

[58] Daniel Litinski and Felix von Oppen. Lattice surgery with a twist: Simplifying Clif-
ford gates of surface codes. Quantum, 2, 2018.

[59] Robert Raussendorf and Jim Harrington. Fault-tolerant quantum computation
with high threshold in two dimensions. Phys. Rev. Lett., 98:190504, May 2007.

[60] Héctor Bombín. Topological order with a twist: Ising anyons from an abelian
model. Phys. Rev. Lett., 105:030403, Jul 2010.

[61] Daniel Gottesman. Fault-tolerant quantum computation with higher-
dimensional systems. In Quantum Computing and Quantum Communications,
pages 302–313. Springer Berlin Heidelberg, 1999.

[62] Niel de Beaudrap and Dominic Horsman. The zx calculus is a language for surface
code lattice surgery. arXiv:1704.08670, 2017.

[63] David Poulin. Stabilizer formalism for operator quantum error correction. Phys.
Rev. Lett., 95(23):230504, 2005.

[64] Christophe Vuillot, Lingling Lao, Ben Criger, Carmen García Almudéver, Koen Ber-
tels, and Barbara M Terhal. Code deformation and lattice surgery are gauge fixing.
New Journal of Physics, 21:033028, 2019.

[65] Earl Campbell. A theory of single-shot error correction for adversarial noise.
Quantum Science and Technology, 2019.

[66] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Constant overhead
quantum fault-tolerance with quantum expander codes. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 743–754. IEEE,
2018.

[67] Jonas T Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-tolerant
conversion between the steane and reed-muller quantum codes. Phys. Rev. Lett.,
113(8):080501, 2014.

[68] Kristina Renee Colladay and Erich Mueller. Rewiring stabilizer codes. New Journal
of Physics, 2018.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

136 REFERENCES

[69] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Charac-
terizing quantum supremacy in near-term devices. Nature Physics, 14:595, 2018.

[70] Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, and John Smolin.
Quantum volume. Quantum Volume. Technical Report, 2017.

[71] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline
Figgatt, Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experi-
mental comparison of two quantum computing architectures. Proceedings of the
National Academy of Sciences, 114(13):3305–3310, 2017.

[72] Tzvetan S Metodi, Darshan D Thaker, Andrew W Cross, Frederic T Chong, and
Isaac L Chuang. Scheduling physical operations in a quantum information pro-
cessor. In Quantum Information and Computation IV, volume 6244, page 62440T.
International Society for Optics and Photonics, 2006.

[73] Mark Whitney, Nemanja Isailovic, Yatish Patel, and John Kubiatowicz. Automated
generation of layout and control for quantum circuits. In Proceedings of the 4th
international conference on Computing frontiers, pages 83–94. ACM, 2007.

[74] Mohammad Javad Dousti and Massoud Pedram. Minimizing the latency of quan-
tum circuits during mapping to the ion-trap circuit fabric. In 2012 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pages 840–843. IEEE,
2012.

[75] Maryam Yazdani, Morteza Saheb Zamani, and Mehdi Sedighi. A quantum phys-
ical design flow using ilp and graph drawing. Quantum information processing,
12(10):3239–3264, 2013.

[76] Tayebeh Bahreini and Naser Mohammadzadeh. An minlp model for scheduling
and placement of quantum circuits with a heuristic solution approach. JETC,
12(3):29, 2015.

[77] Aaron Lye, Robert Wille, and Rolf Drechsler. Determining the minimal number of
swap gates for multi-dimensional nearest neighbor quantum circuits. In The 20th
Asia and South Pacific Design Automation Conference (ASP-DAC), pages 178–183.
IEEE, 2015.

[78] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chattopad-
hyay, and Rolf Drechsler. Look-ahead schemes for nearest neighbor optimization
of 1d and 2d quantum circuits. In 2016 21st Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pages 292–297. IEEE, 2016.

[79] Azim Farghadan and Naser Mohammadzadeh. Quantum circuit physical design
flow for 2d nearest-neighbor architectures. International Journal of Circuit Theory
and Applications, 45(7):989–1000, 2017.

[80] IBM. Quantum information software kit. https://github.com/QISKit, 2018.

https://github.com/QISKit

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

REFERENCES 137

[81] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for
mapping quantum circuits to the ibm QX architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[82] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fer-
nando Magno Quintão Pereira. Qubit allocation. In Proceedings of the 2018 Inter-
national Symposium on Code Generation and Optimization, pages 113–125. ACM,
2018.

[83] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quan-
tum circuits to realistic hardware architectures using temporal planners. Quan-
tum Science and Technology, 3(2):025004, 2018.

[84] Steven Balensiefer, Lucas Kreger-Stickles, and Mark Oskin. QUALE: quantum ar-
chitecture layout evaluator. In Quantum Information and Computation III, vol-
ume 5815, pages 103–114. International Society for Optics and Photonics, 2005.

[85] Mohammad Javad Dousti and Massoud Pedram. LEQA: latency estimation for a
quantum algorithm mapped to a quantum circuit fabric. In Proceedings of the 50th
Annual Design Automation Conference (DAC)), page 42. ACM, 2013.

[86] Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. Squash: a scal-
able quantum mapper considering ancilla sharing. In Proceedings of the 24th edi-
tion of the great lakes symposium on VLSI, pages 117–122. ACM, 2014.

[87] Muhammad Ahsan. Architecture Framework for Trapped-Ion Quantum Computer
based on Performance Simulation Tool. PhD thesis, Duke University, 2015.

[88] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Ken-
neth R Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi. Com-
piler management of communication and parallelism for quantum computation.
In Proceedings of 20th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 445–456. ACM,
2015.

[89] Chia-Chun Lin, Susmita Sur-Kolay, and Niraj K Jha. PAQCS: Physical design-aware
fault-tolerant quantum circuit synthesis. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 23(7):1221–1234, 2014.

[90] Sergey B Bravyi and Alexei Kitaev. Quantum codes on a lattice with boundary.
arXiv:9811052, 1998.

[91] Alexandru Paler, Simon J Devitt, and Austin G Fowler. Synthesis of arbitrary quan-
tum circuits to topological assembly. Scientific reports, 6:30600, 2016.

[92] Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J Devitt. Fault-tolerant, high-
level quantum circuits: form, compilation and description. Quantum Science and
Technology, 2(2):025003, 2017.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 152PDF page: 152PDF page: 152PDF page: 152

138 REFERENCES

[93] Alexandru Paler, Austin G Fowler, and Robert Wille. Online scheduled execution
of quantum circuits protected by surface codes. arXiv:1711.01385, 2017.

[94] Ali Javadi-Abhari, Pranav Gokhale, Adam Holmes, Diana Franklin, Kenneth R
Brown, Margaret Martonosi, and Frederic T Chong. Optimized surface code com-
munication in superconducting quantum computers. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 692–705.
ACM, 2017.

[95] Daniel Herr, Franco Nori, and Simon J Devitt. Optimization of lattice surgery is
np-hard. npj Quantum Information, 3(1):35, 2017.

[96] Robert Raussendorf, Jim Harrington, and Kovid Goyal. A fault-tolerant one-way
quantum computer. Annals of physics, 321(9):2242–2270, 2006.

[97] Robert Raussendorf, Jim Harrington, and Kovid Goyal. Topological fault-tolerance
in cluster state quantum computation. New Journal of Physics, 9(6):199, 2007.

[98] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[99] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. Qubit placement to mini-
mize communication overhead in 2d quantum architectures. In 2014 19th Asia
and South Pacific Design Automation Conference (ASP-DAC), pages 495–500. IEEE,
2014.

[100] Arthur Richards, Tom Schouwenaars, Jonathan P How, and Eric Feron. Space-
craft trajectory planning with avoidance constraints using mixed-integer linear
programming. Journal of Guidance, Control, and Dynamics, 25(4):755–764, 2002.

[101] L Kaufman and Fernand Broeckx. An algorithm for the quadratic assignment
problem using bender’s decomposition. EJOR, 2(3):207–211, 1978.

[102] Chia Chun Lin, Amlan Chakrabarti, and Niraj Kumar Jha. QLib: Quantum mod-
ule library. ACM Journal on Emerging Technologies in Computing Systems, 11(1):7,
2014.

[103] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. A transformation based
algorithm for reversible logic synthesis. In Proceedings 2003. Design Automation
Conference (IEEE Cat. No. 03CH37451), pages 318–323. IEEE, 2003.

[104] Richard P Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21:467–488, 1982.

[105] Ivan Kassal, James D Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and
Alán Aspuru-Guzik. Simulating chemistry using quantum computers. Annual Re-
view of Physical Chemistry, 62:185–207, 2011.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

REFERENCES 139

[106] Xiang Fu, Michiel Adriaan Rol, Cornelis Christiaan Bultink, J van Someren, Nader
Khammassi, Imran Ashraf, R F L Vermeulen, J C de Sterke, W J Vlothuizen, R N
Schouten, Carmen G Almudever, Leonardo DiCarlo, and Koen Bertels. An experi-
mental microarchitecture for a superconducting quantum processor. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-50), pages 813–825. IEEE/ACM, 2017.

[107] Xiang Fu, Leon Riesebos, Michiel Adriaan rOL, Jeroen van Straten, J van Someren,
Nader Khammassi, Imran Ashraf, RFL Vermeulen, V Newsum, KKL Loh, et al.
eQASM: An executable quantum instruction set architecture. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
224–237. IEEE, 2019.

[108] Emanuel Knill. Quantum computing with realistically noisy devices. Nature,
434:39, 2005.

[109] Leon Riesebos, Xiang Fu, Savvas Varsamopoulos, Carmen G Almudever, and Koen
Bertels. Pauli frames for quantum computer architectures. In Proceedings of the
54th Annual Design Automation Conference (DAC), page 76. ACM, 2017.

[110] Austin G Fowler, Adam C Whiteside, and Lloyd C L Hollenberg. Towards practical
classical processing for the surface code. Phys. Rev. Lett., 108:180501, 2012.

[111] Giacomo Torlai and Roger G Melko. Neural decoder for topological codes. Phys.
Rev. Lett., 119:030501, 2017.

[112] Savvas Varsamopoulos, Koen Bertels, and Carmen G Almudever. Designing neural
network based decoders for surface codes. arXiv:1811.12456, 2018.

[113] Yu Tomita and Krysta M Svore. Low-distance surface codes under realistic quan-
tum noise. Phys. Rev. A, 90:062320, 2014.

[114] Theodore J Yoder and Isaac H Kim. The surface code with a twist. Quantum, 1:2,
2017.

[115] Lingling Lao, Bas van Wee, Imran Ashraf, J van Someren, Nader Khammassi, Koen
Bertels, and Carmen G Almudever. Mapping of lattice surgery-based quantum cir-
cuits on surface code architectures. Quantum Science and Technology, 4:015005,
2019.

[116] Swamit S Tannu, Zachary A Myers, Prashant J Nair, Douglas M Carmean, and
Moinuddin K Qureshi. Taming the instruction bandwidth of quantum comput-
ers via hardware-managed error correction. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-50), pages 679–
691. IEEE/ACM, 2017.

[117] Stephane Beauregard. Circuit for Shor’s algorithm using 2n + 3 qubits.
arXiv:0205095, 2002.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 154PDF page: 154PDF page: 154PDF page: 154

140 REFERENCES

[118] Julian Kelly. A preview of Bristlecone, google’s new quantum processor. News from
google ai, Google LLC, 2018.

[119] Will Knight. IBM raises the bar with a 50-qubit quantum computer. News, MIT
Technology Review, 2018.

[120] Jeremy Hsu. CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy. Gen-
eral technology blog, IEEE Spectrum, 2018.

[121] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas
Monz, Heng Shen, Petar Jurcevic, Ben P Lanyon, Peter Love, Ryan Babbush, et al.
Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev.
X, 8(3):031022, 2018.

[122] C Kokail, C Maier, R van Bijnen, T Brydges, MK Joshi, P Jurcevic, CA Muschik,
P Silvi, R Blatt, CF Roos, et al. Self-verifying variational quantum simulation of
lattice models. Nature, 569(7756):355, 2019.

[123] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry
Hoffmann, and Frederic T Chong. Optimized compilation of aggregated instruc-
tions for realistic quantum computers. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1031–1044. ACM, 2019.

[124] Peter W Shor. Fault-tolerant quantum computation. In Proceedings of 37th Con-
ference on Foundations of Computer Science, pages 56–65. IEEE, 1996.

[125] Andrew M Steane. Active stabilization, quantum computation, and quantum state
synthesis. Phys. Rev. Lett., 78(11):2252, 1997.

[126] Emanuel Knill. Scalable quantum computing in the presence of large detected-
error rates. Phys. Rev. A, 71(4):042322, 2005.

[127] Rui Chao and Ben W Reichardt. Quantum error correction with only two extra
qubits. Phys. Rev. Lett., 121(5):050502, 2018.

[128] Christopher Chamberland and Michael E Beverland. Flag fault-tolerant error cor-
rection with arbitrary distance codes. Quantum, 2:53, 2018.

[129] Ben W Reichardt. Fault-tolerant quantum error correction for steane’s seven-qubit
color code with few or no extra qubits. arXiv:1804.06995, 2018.

[130] Rigetti. Regetti forest. https://www.rigetti.com/forest, 2018.

[131] David P DiVincenzo and Panos Aliferis. Effective fault-tolerant quantum compu-
tation with slow measurements. Phys. Rev. Lett., 98(2):020501, 2007.

[132] Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological
quantum error correction in average o (1) parallel time. Quantum Information &
Computation, 15(1-2):145–158, 2015.

https://www.rigetti.com/forest

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 155PDF page: 155PDF page: 155PDF page: 155

REFERENCES 141

[133] Guillaume Duclos-Cianci and David Poulin. Fast decoders for topological quan-
tum codes. Phys. Rev. Lett., 104(5):050504, 2010.

[134] Stefan Krastanov and Liang Jiang. Deep neural network probabilistic decoder for
stabilizer codes. Scientific reports, 7(1):11003, 2017.

[135] Paul Baireuther, Thomas E O’Brien, Brian Tarasinski, and Carlo WJ Beenakker.
Machine-learning-assisted correction of correlated qubit errors in a topological
code. Quantum, 2:48, 2018.

[136] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[137] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[138] Rodney Van Meter and Clare Horsman. A blueprint for building a quantum com-
puter. Communications of the ACM, 56(10):84–93, 2013.

[139] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M
Gambetta. Validating quantum computers using randomized model circuits.
arXiv:1811.12926, 2018.

[140] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-Jan
Wang, Simon Gustavsson, and William D Oliver. Superconducting qubits: Current
state of play. arXiv:1905.13641, 2019.

[141] SA Caldwell, N Didier, CA Ryan, EA Sete, A Hudson, P Karalekas, R Manenti,
MP da Silva, R Sinclair, E Acala, et al. Parametrically activated entangling gates
using transmon qubits. Phys. Rev. Applied, 10(3):034050, 2018.

[142] Serwan Asaad, Christian Dickel, Nathan K Langford, Stefano Poletto, Alessandro
Bruno, Michiel Adriaan Rol, Duije Deurloo, and Leonardo DiCarlo. Independent,
extensible control of same-frequency superconducting qubits by selective broad-
casting. npj Quantum Information, 2:16029, 2016.

[143] David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop,
Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp,
et al. Qiskit backend specifications for openqasm and openpulse experiments.
arXiv:1809.03452, 2018.

[144] Steven Herbert and Akash Sengupta. Using reinforcement learning to find ef-
ficient qubit routing policies for deployment in near-term quantum computers.
arXiv:1812.11619, 2018.

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

142 REFERENCES

[145] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha
Narang. Qubit allocation for noisy intermediate-scale quantum computers.
arXiv:1810.08291, 2018.

[146] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-
era quantum devices. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 1001–1014. ACM, 2019.

[147] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal: A case
for variability-aware policies for nisq-era quantum computers. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 987–999. ACM, 2019.

[148] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter.
Extracting success from ibm’s 20-qubit machines using error-aware compilation.
arXiv:1903.10963, 2019.

[149] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Sim-
mons, and Seyon Sivarajah. On the qubit routing problem. arXiv:1902.08091,
2019.

[150] QuTech. OpenQL Compiler. https://github.com/QE-Lab/OpenQL, 2019.

[151] Nader Khammassi, Gian G Guerreschi, Imran Ashraf, Justin W Hogaboam, Car-
men G Almudever, and Koen Bertels. cQASM v1. 0: Towards a common quantum
assembly language. arXiv:1805.09607, 2018.

[152] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W Dueck, and Rolf Drechsler.
Revlib: An online resource for reversible functions and reversible circuits. In 38th
International Symposium on Multiple Valued Logic (ismvl 2008), pages 220–225.
IEEE, 2008.

[153] Nader Khammassi, Imran Ashraf, Xiang Fu, Carmen G Almudéver, and Koen Ber-
tels. QX: A high-performance quantum computer simulation platform. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 464–469.
IEEE, 2017.

[154] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system
quantum computer studies: Architectural comparisons and design insights.
arXiv:1905.11349, 2019.

[155] Prakash Murali, Jonathan M Baker, Ali Javadi Abhari, Frederic T Chong, and Mar-
garet Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale
quantum computers. arXiv:1901.11054, 2019.

[156] Davide Venturelli, Minh Do, Bryan O’Gorman, Jeremy Frank, Eleanor Rieffel,
Kyle EC Booth, Thanh Nguyen, Parvathi Narayan, and Sasha Nanda. Quantum
circuit compilation: An emerging application for automated reasoning. 2019.

https://github.com/QE-Lab/OpenQL

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 157PDF page: 157PDF page: 157PDF page: 157

REFERENCES 143

[157] Intel. Intel newsroom. https://newsroom.intel.com/press-kits/
quantum-computing/#intel-qutech, 2019.

[158] Easwar Magesan, Daniel Puzzuoli, Christopher E Granade, and David G Cory.
Modeling quantum noise for efficient testing of fault-tolerant circuits. Phys. Rev.
A, 87(1):012324, 2013.

[159] Jeff P Barnes, Colin J Trout, Dennis Lucarelli, and BD Clader. Quantum error-
correction failure distributions: Comparison of coherent and stochastic error
models. Phys. Rev. A, 95(6):062338, 2017.

[160] Andrew S Darmawan and David Poulin. Tensor-network simulations of the surface
code under realistic noise. Phys. Rev. Lett., 119(4):040502, 2017.

[161] Sergey Bravyi, Matthias Englbrecht, Robert König, and Nolan Peard. Correcting
coherent errors with surface codes. npj Quantum Information, 4(1):55, 2018.

[162] Daniel Litinski. A game of surface codes: Large-scale quantum computing with
lattice surgery. Quantum, 3:128, 2019.

[163] Helmut G Katzgraber, Héctor Bombín, Ruben S Andrist, and Miguel A Martin-
Delgado. Topological color codes on union jack lattices: a stable implementation
of the whole Clifford group. Phys. Rev. A, 81(1):012319, 2010.

[164] Aleksander Kubica and Michael E Beverland. Universal transversal gates with color
codes: A simplified approach. Phys. Rev. A, 91(3):032330, 2015.

[165] Héctor Bombín and Miguel A Martin-Delgado. Topological computation without
braiding. Phys. Rev. Lett., 98:160502, 2007.

[166] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the color
code. New Journal of Physics, 17(8):083026, 2015.

[167] Thomas Camara, Harold Ollivier, and J-P Tillich. Constructions and performance
of classes of quantum LDPC codes. arXiv:0502086, 2005.

[168] Matthew B Hastings. Decoding in hyperbolic spaces: LDPC codes with linear rate
and efficient error correction. arXiv:1312.2546, 2013.

[169] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength. IEEE Trans-
actions on Information Theory, 60(2):1193–1202, 2013.

https://newsroom.intel.com/press-kits/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 158PDF page: 158PDF page: 158PDF page: 158

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 159PDF page: 159PDF page: 159PDF page: 159

ACKNOWLEDGEMENTS

The life of a PhD student is very much like the weather in the Netherlands. For most of
the time, it is cloudy, windy and rainy, but that may be the reason why we feel so happy
when the sunshine comes. At this sunny moment of my life, I would like to acknowledge
all the people who have helped me during this long journey in one way or another.

Firstly, I would like to express my sincere gratitude to my promoter Prof. Koen Ber-
tels. Dear Koen, thank you for giving me the opportunity to pursue a doctoral degree in
quantum computing in Delft. I am very grateful for your guidance in my research topics,
for your efforts and patience in training and developing my soft skills, for your support
and encouragement. Also (as all the other PhDs in this group), thank you for all the nice
conversations and fun during the pizza-wine-beer-soda nights, BBQs, Carting, Bowling,
etc.

Secondly, I want to show my gratitude to my supervisor, Dr. Carmen G. Almudever.
I sincerely appreciate the time you spent discussing ideas, helping me to prepare talks,
reviewing papers. I still remember that you went through the slides sentence by sentence
with me for my first presentation at FT Werkbespreking. I am also thankful for your
kindness. You are always so considerate and are like a big sister who looks after me. Dear
Carmina, thank you for your patience, support, and protection in this journey.

Next, I would like to convey my thanks to Dr. Daniel B. Criger. Ben, you are the one
who has guided me in the world of quantum error correction and told me to be critical
and rigorous in research. Without you, I would not have learned so much. Thank you so
much for your supervision, your enlightenment, and your support.

Special thanks to my committee: Prof. Lieven Vandersypen, Prof. Robert König,
Prof. Harry Buhrman, Prof. Lenardo DiCarlo, Prof. Barbara Terhal, for reading this
thesis and giving me useful comments to improve it. Especially, I want to extend my
gratitude to Barbara, thank you for the collaboration and the advices which will benefit
me for the rest of my life.

I would also like to express my appreciations to my colleagues who have made my
PhD life enjoyable and unforgettable.

First, I want to thank my colleagues in the QCA Lab. Xiang, thank you for the count-
less discussions and conversations during our PhD. You are not only a colleague, but also
a friend whom I can share thoughts with, a big brother who has been taking care of me, I
feel lucky to meet you in this group. As you wrote in your thesis, I also wish ‘we can con-
tinue our friendship and collaboration in the rest of our lives’. Leon, you are so sweet. It
was a happy thing to drop by your office everyday and have a nice chat. Thanks for orga-
nizing so many social activities and bringing me a lot of fun. Hans, you are always willing
to share your experience and help all the students, thank you for all the brainstorming
and discussions in the circuit mapping problem. Also, thanks for translating my propo-
sitions into dutch. Imran, you are so kind, humble, and helpful. Thank you for helping
me with all the software problems. Savvas, the handsome Greek officemate, thanks a lot

145

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 160PDF page: 160PDF page: 160PDF page: 160

146 REFERENCES

for all the delightful conversations and the advices on Greek islands, we enjoyed Crete
a lot. My other colleagues in QCA, Nader, Dan, Andreas, Aritra, Abid, Mengyu, Miguel,
Diogo, Amitabh, Jeroen, Matthijs, Medina, thank you for your support, interesting dis-
cussions, and fun during lunches, dinners, and drinks. I also want to thank my students
Daniel, Alex, Yaoling, Peter-Jan for your trust. I have also learned a lot from you, the
young and creative guys. Peter-Jan, thank you for translating the summary of my thesis
into Dutch, it must take a lot of efforts.

Thanks to my other colleagues at the department of quantum and computer engi-
neering (QCE). Joyce and Lidwina, you are the best secretaries I have met so for. You
were so nice and patient, thank you for helping me with all the administrative prob-
lems and for organizing so many fun Ladies’ activities. Thanks to Erik for your assis-
tance with the use of servers. The CE.cn guys, Lei, Jintao, Shanshan, Pengfei, Lizhou,
Yande, He, Baozhou, thank you for all your help and all the pleasurable Lunches to-
gether. Anh, Hale, Mahroo, Cucu, Arwa, Trisha, Laura, Said, Zaid, Motta, Stephan,
Sorin, Troya, Haji, Daniel, Moritz, Abdullah, Cesar, Gerd, Ramon, Lizzy, Qiang, Long,
and other QCEers, thanks for all the chats, drinks, and joy.

QuTech is a fascinating place because of its remarkable good work and incredible
lively environment from hard-working, brilliant, and creative people. Xiaotong, Nelly,
Lin, Jie, Yuanxing, Yang, Chunxiao, Xiao, Qingzhen, Di, it is so pleasant to talk quantum
in Chinese in Delft. Nelly, Lin, Jie, you have motivated me a lot in different ways, which
is a precious gift (probably you do not even know). I am so happy to meet you and know
you. Xiaotong, many thanks for your help and useful suggestions, for pushing me and
encouraging me to talk with others during conferences, and special thanks to your wife’s
delicious dumplings which made me feel at home. Yuanxing, Yang, Chunxiao, Xiao,
Qingzhen, Di, thank you for sharing experience and ideas, and for bringing fun during
all the dinners and parties. Christophe, you are a kind person and a talented scientist, I
really appreciate the collaboration with you. Menno, Fabio, Francesco, Ariaan, Daniel,
Jonathan, Jonas, Mark, and many QuTechers, thank you so much for your help and your
scholarly interactions. My deep thanks to the golden Uitje 2019 committee: Arian, Arno,
Gertjan, Josh, Vanessa, thanks for making such a wonderful and special memory, for
your hard work, and for all the fun together. It was a pleasure to work with you.

Now, I would like to show my gratitude to my dear friends in the Netherlands and in
China. The werewolf group, Yu, Zhijie, Tiantian, Jian, Zhaokun, Xiang, Yueyue, ZiXuan,
thank you for being with me for these four years. I miss the time we spent together so
much drinking beers and wines, cooking Chinese dishes, playing board games, having
trips. My dear Yu, we baked cakes for each other, we shared good wines together, we ex-
changed life experience and supported each other, I am so happy to have a sweet friend
like you in the bitter PhD life. Zhijie, we all love your innocent smiles, thank you for tak-
ing care of my Yu :). Jian, you are such an excellent cook, though you did not cook that
much for us any more (you know what I mean, right?). Yueyue, your optimistic person-
ality makes you a light of this group, it was always comforting and relaxing to have you
around. The beautiful girls, Tiantian, Hongjuan, Renfei, Mingjuan, it is great to meet
you and go to Zumba classes together on Tuesdays and Thursdays. Thank you for your
listening, sharing, and encouragement during the hard time of my PhD. Tiantian, thank
you for helping me to design and draw the cover using the painful tool, Adobe Illustra-

http://ce.cn/

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

REFERENCES 147

tor :). Thanks to Qin, Shengzhi, and many other friends in Delft for all your help and
accompany.

True friends will not be separated by the physical distance, I believe this because of
you, my dear friends in China. I want to thank you, too many memories came to my
mind and I could not find the words to express myself. Jina Dong, Biao Liu, you were
there whenever I needed you, you will be always there. The Beijing drifters, Dandan Ge,
Jiaming Xu, Dan Wu, Meng Xiao, Wei Qin, every time when you spent more than two
hours for meeting me, I wanted to cry. Let us keep the reunions going on for the rest
of our lives. One of the reasons that I love HIT is because I met you there, Yulu Zhang,
Zongxun Zhang, Dan Gu, Feifei, I am so grateful to have you. Meng Zhu, Guanglong
Zhang, Lujie Wang, Hao Sun, Xun Duan, Kai Jing, thank you for hosting me whenever I
go back to Xi’an.

Finally, my deepest gratitude goes to my family. Mama (Yanhua Liu), I wish you
would be proud of me if you could know that I will become a doctor. Papa (Guiyou Lao),
I owe you too much. We were going through so much together, I could not ever imagine
the difficulties for you to raise me up. You give me unconditional love and support me
to accomplish my goals. I would be nothing without you and my gratitude is beyond the
word’s description. Mum (Caixia Jing) and Dad (Yongan Zheng), I still remember on the
day Zixuan and I registered to be couples, you said ‘Lingling, you are our little daughter
(not only in law)’. You have been taking care of me, loving me, and supporting me as a
mother and a father (not only in law). I feel deeply indebted to you and I do not know
how to thank you enough.

Last but not least, I want to thank my beloved husband, Zixuan. Here, in the Nether-
lands, we built our first home, bought our first car, traveled around the world. We started
our PhD life, helped, encouraged, and supported each other. I have been used to being
protected and looked after by you, it is like a habit, maybe even an addiction. Without
you, I might not survive from the pain of pursuing a doctorate (1.5 :)). You have made
and will continue to make my life beautiful, enjoyable, and special. ‘You are (also) the
best thing about me’.

Lingling
November, 2019

Delft, the Netherlands

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 162PDF page: 162PDF page: 162PDF page: 162

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 163PDF page: 163PDF page: 163PDF page: 163

CURRICULUM VITÆ

Lingling LAO

06-12-1989 Born in Qiqihar, Heilongjiang Province, China.

EDUCATION
2008–2012 Undergraduate, School of Electronics and Information Engineering

Harbin Institute of Technology
Harbin, China

2012–2014 Graduate, School of Electronics and Information
Northwestern Polytechnical University
Xi’an, China

2015–2019 PhD, QuTech
Delft University of Technology
Delft, The Netherlands

149

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

LIST OF PUBLICATIONS

JOURNAL PAPERS
1. L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, C. G. Almudever.

Mapping Lattice Surgery-based Quantum Circuits onto Surface Code Architectures, Quan-
tum Science and Technology 4(1), 015005 (2018).

2. C. Vuillot*, L. Lao*(share first authorship), B. Criger, C. G. Almudever, K. Bertels, B. Terhal.
Code Deformation and Lattice Surgery are Gauge Fixing, New Journal of Physics 21, 033028
(2019).

3. X. Fu*, L. Lao*(share first authorship), K. Bertels, C. G. Almudever. A Control Microarchitec-

ture for Fault-tolerant Quantum Computing, Microprocessors and Microsystems 70, 21-30

(2019).

CONFERENCE PROCEEDINGS
1. L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van Someren,

N Khammassi, C. G. Almudever, K Bertels. Quantum Accelerated Computer Architectures, in
Proceedings of the IEEE International Symposium on Circuits and Systems (2019).

2. C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eich-
ler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, K. Bertels. The Engineering Challenges
in Quantum Computing, in Design, Automation & Test in Europe Conference & Exhibition
(2017).

3. X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon, K. Bertels. .

A Heterogeneous Quantum Computer Architecture, in Proceedings of the ACM International

Conference on Computing Frontiers (2016).

PREPRINTS
1. L. Lao, C. G. Almudever. Fault-tolerant Quantum Error Correction on Near-term Processor

using Flag and Bridge Qubits, arXiv:1909.07628 (2019).

2. L. Lao, D. M.Manzano, J. van Someren, I. Ashraf, C. G. Almudever. Mapping of Quantum

Circuits onto NISQ Superconducting Processors, arXiv:1908.04226 (2019).

151

538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao538242-L-sub01-bw-Lao
Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019Processed on: 19-11-2019 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

LIN
G

LIN
G

 LA
O

LINGLING LAO

Q
U

A
N

TU
M

 C
O

M
P

U
TIN

G
 IN

 P
R

A
C

TIC
E

: FA
U

LT-TO
LE

R
A

N
T P

R
O

TO
C

O
LS A

N
D

 C
IR

C
U

IT-M
A

P
P

IN
G

 TE
C

H
N

IQ
U

E
S

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

LINGLING LAO

INVITATION
You are cordially invited to
attend the public defence
of my PhD thesis entitled

Quantum Computing
in Practice:

Fault-Tolerant
Protocols and

Circuit-Mapping
Techniques

on Monday,
2nd of Dec 2019

at 10:00 am in the
Senaatszaal of the Aula

Mekelweg 5, Delft

A brief presentation will
be given at 9:30 am

You are also welcomed
to attend the reception

that will take place
after the defence

ISBN:978-94-028-1838-3

LIN
G

LIN
G

 LA
O

LINGLING LAO

Q
U

A
N

TU
M

 C
O

M
P

U
TIN

G
 IN

 P
R

A
C

TIC
E

: FA
U

LT-TO
LE

R
A

N
T P

R
O

TO
C

O
LS A

N
D

 C
IR

C
U

IT-M
A

P
P

IN
G

 TE
C

H
N

IQ
U

E
S

QUANTUM COMPUTING IN PRACTICE:
FAULT-TOLERANT PROTOCOLS AND

CIRCUIT-MAPPING TECHNIQUES

LINGLING LAO

INVITATION
You are cordially invited to
attend the public defence
of my PhD thesis entitled

Quantum Computing
in Practice:

Fault-Tolerant
Protocols and

Circuit-Mapping
Techniques

on Monday,
2nd of Dec 2019

at 10:00 am in the
Senaatszaal of the Aula

Mekelweg 5, Delft

A brief presentation will
be given at 9:30 am

You are also welcomed
to attend the reception

that will take place
after the defence

ISBN:978-94-028-1838-3

	Lege pagina

