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A B S T R A C T

If the aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture
network is highly inter-connected, most fractures can be eliminated without significantly affecting the flow
through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil
depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing (or
shape factor) for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured
reservoir should account not for all fractures but only the relatively small number of fractures carrying almost all
the injected water or EOR agent (“primary,” as opposed to “secondary,” fractures). In contrast, in primary
production even a relatively small fracture represents an effective path for oil to flow to a production well. This
distinction suggests that the “shape factor” in dual-permeability reservoir simulations and the repeating unit in
homogenization should depend on the process involved: specifically, it should be different for primary and
secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured region with a
non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in the matrix,
and the pattern of oil recovery with and without the “secondary” fractures that carry only a small portion of
injected fluid.

The role of secondary fractures depends on a dimensionless ratio of characteristic times for matrix and
fracture flow (Peclet number), and the ratio of flow carried by the different fractures. In primary production, for
a large Peclet number, treating all the fractures equally is a better approximation of the original model, than
excluding the secondary fractures; the shape factor should reflect both the primary and the secondary fractures.
For a sufficiently small Peclet number, it is more accurate to exclude the secondary fractures in calculation of the
shape factor in the dual-porosity/dual-permeability models than to include them and, in effect, assume they play
an equally important role in transport to and from the matrix. For waterflood or EOR, in most cases examined,
the appropriate shape factor or the repeating-unit size should reflect both the primary and secondary fractures. If
the secondary fractures are much narrower than the primary fractures, then it is more accurate to exclude them
for calculating the shape factor in a dual-porosity/dual-permeability model. Yet-narrower “tertiary fractures” are
not always helpful for oil production, even if they are more permeable than matrix. They can behave as capillary
barriers to imbibition, reduce oil recovery.

We present a new definition of Peclet number for primary and secondary production in fractured reservoirs
that provides a more accurate predictor of the dominant recovery mechanism in fractured reservoirs than the
previously published definition.

1. Introduction

A significant amount of hydrocarbon reserves across the world re-
sides in naturally fractured reservoirs [1]. Accurate simulation of oil
recovery is required for the efficient exploitation of these naturally
fractured reservoirs. However, because of the complexity and limited
information regarding the sub-surface fracture networks, field-scale

reservoir simulation requires simplified description of reservoir condi-
tions.

If the fracture network is well-connected, this is often done with a
dual-porosity or dual-permeability (DP/DK) simulation. In the DP/DK
concept, the fracture and matrix systems are treated as separate do-
mains; the interconnected fractures serve as fluid-flow paths between
injection and production wells, while the matrix provides fluid storage

https://doi.org/10.1016/j.fuel.2018.02.046
Received 28 February 2017; Received in revised form 10 December 2017; Accepted 8 February 2018

⁎ Corresponding author.
E-mail addresses: j.gong@tudelft.nl (J. Gong), w.r.rossen@tudelft.nl (W.R. Rossen).

Fuel 223 (2018) 470–485

0016-2361/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00162361
https://www.elsevier.com/locate/fuel
https://doi.org/10.1016/j.fuel.2018.02.046
https://doi.org/10.1016/j.fuel.2018.02.046
mailto:j.gong@tudelft.nl
mailto:w.r.rossen@tudelft.nl
https://doi.org/10.1016/j.fuel.2018.02.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2018.02.046&domain=pdf


for nearby fractures. Limited fluid flow between matrix blocks is al-
lowed in dual-permeability models [2,3]. The interaction between the
fracture network and matrix is represented by an exchange function
which is characterized by a shape factor [4–6]. During the last few
decades, discrete-fracture models (DFMs) have attracted increasing
research interest. In these models, the fracture geometry and complex
flow patterns in fracture networks are simulated more accurately
[7–12]. However, DFMs are typically computationally too expensive for
field-scale reservoir simulations. Also, even if detailed geological in-
formation is provided, it is difficult to predict the flow pattern through
the fracture networks; some simplification is needed. Thus, although
the DP/DK models are much-simplified characterizations of naturally
fractured reservoirs, for the reservoirs with many fractures and a very
high degree of interconnection, they are still more feasible than the
DFM methods. To generate a DP/DK model, it is necessary to define
average properties for each grid block, such as porosity, permeability
and matrix-fracture interaction parameters (typical spacing or shape
factor) [13]. Therefore, the discrete fracture network considered to
generate the DP/DK model parameters is crucial. If homogenization is
applied, the matrix-fracture exchange can be treated more accurately
than in the DP/DK simulations [14], but, again, one needs a char-
acteristic matrix-block size. However, if the fracture network shows
non-uniform flow, then characterizing the fracture spacing or shape
factor can be ambiguous.

As we presented in a previous study [15], even in a well-connected
fracture network, there is a dominant sub-network which carries almost
all the flow, but it is much sparser than the original network. In this
study we refer to the fractures in the dominant sub-network as “pri-
mary” fractures, and the remaining fractures as “secondary” fractures.
The primary fractures tend to be wider, but they are not necessarily the
widest, longest or most highly connected fractures in the network [15].
The flow-path length of the dominant sub-network can be as little as
30% of that of the corresponding original fracture network. This sug-
gests that in secondary production or enhanced oil recovery (EOR), the
injected water or EOR agent flows mainly along a small portion of the
fracture network. In contrast, in primary production even relatively

small fractures can be an efficient path for oil to flow to a production
well.

In fractured reservoirs, oil is produced by different recovery me-
chanisms. During primary production, oil is mainly recovered by fluid
expansion. In secondary production, spontaneous imbibition is the
dominant recovery mechanism in water-wet reservoirs. In primary re-
covery, production depends only on a path to the well, whereas in
secondary recovery or EOR, it depends on the injected agent reaching
the matrix. This difference suggests that the relevant fracture spacing
should be different for primary recovery and for waterflood or EOR
[16].

The purpose of this study is to show the implications of non-uniform
flow for the definition of the shape factor or characteristic fracture
spacing in a dual-porosity/dual-permeability simulation of primary

15 m

15 m

secondary
fracture

injection well

production well

(a)

primary fracture

primary fractureprimary fracture

primary fracture

secondary
fracture

injection well

production well

(b)

tertiary fracture

primary fracture

tertiary fracture

15 m

15 m

Fig. 1. Schematic of the region of study.
The fractured region (unit cell) studied is
15m×15m, with the injection and pro-
duction wells placed at the bottom-left and
the top-right corners, respectively. The in-
jection well and production well are directly
connected to the primary fractures without
contacting the matrix block. (a) The region
is bounded by the primary fractures, and
penetrated by the secondary fractures. The
number of the secondary fractures varies in
different cases. In the case shown, Rn=1/3.
(b) Tertiary fractures are included in some
cases. As in the cases examined below, there
are as many tertiary fractures as primary
and secondary fractures combined.

Table 1
Summary of petrophysical properties assumed in this study.

Parameter Units Value

Matrix porosity fraction 0.2
Fracture porosity fraction 1
Oil viscosity Pa·s 0.0015
Water viscosity Pa·s 0.00105
Oil density kg/m3 835
Water density kg/m3 999 K

r [
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P c [
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m
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Fig. 2. The relative-permeability and capillary-pressure functions for the matrix
blocks used in all the cases in this study.

Table 2
Values of parameters in Eqs. (1) and (2) adopted in this study.

Parameter Units Value

no – 2
nw – 4
kro

o – 0.75

krw
o – 0.2

B Pa 1.01× 105
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production and waterflood or EOR. To illustrate this point, we start
with a simple fracture and matrix geometry. There are additional
complications in the definition of shape factor when the matrix blocks
are irregularly shaped and non-uniform in size [17–27]. As a start, we
focus on the issue of non-uniform flow in the fractures, and choose a
simple geometry to highlight this aspect.

2. Problem description

This study concerns the flow pattern within a fractured region
(which can be seen as a unit cell in a DP/DK model) in primary pro-
duction or a waterflood process. The roles that the primary and sec-
ondary or tertiary fractures play during primary and secondary re-
covery are studied. Within a unit cell, there is an interconnected
network of the primary fractures. The unit cell defined by this network
is inter-penetrated by the secondary fractures (the tertiary fractures are
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Fig. 3. Pressure distribution during primary production for different Pe, with Rd=2.5 and Rn=1/3. (a) Pe=1,000, with all fractures; (b) Pe=1,000, with all
average fractures; (c) Pe=1,000, without secondary fractures; (d) Pe=10, with all fractures; (e) Pe=10, with all average fractures; (f) Pe=10, without secondary
fractures; (g) Pe=0.1, with all fractures; (h) Pe=0.1, with all average fractures; (i) Pe=0.1, without secondary fractures.
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also included in some cases below). We examine a simplified re-
presentation of a unit cell. Specifically, we represent a region bounded
by the primary fractures and penetrated by the secondary fractures
(also by the tertiary fractures in some cases). A simulation grid block
might contain many such unit cells. In our simple model, the primary
fractures are wider, though in reality aperture is only one factor in
determining which fractures carry most of the injected fluid [16].

The model employed here is illustrated in Fig. 1. It is a 2D,
15m×15m region bounded by four primary fractures (with the same
aperture) and penetrated by several secondary fractures. The tertiary
fractures (narrower than the secondary fractures) are also included in
some cases. To simulate flow through the primary fracture network on a
larger scale, an injector and a producer are connected to the primary
fractures and placed at the bottom left and top right corner, respec-
tively. The matrix permeability (km) in both directions is the same, i.e.
0.5 md. The directional permeability (kf) of the fractures along the
fracture direction is given by d2/12, where d is the fracture aperture,
while the permeability in the direction perpendicular to the fracture is
the same as the matrix permeability. The other petrophysical properties
are listed in Table 1. The fracture cells are assigned zero capillary
pressure and straight-line relative permeabilities. The matrix blocks are
water-wet (Fig. 2). The relative-permeability and capillary-pressure
functions for the matrix are [28–30]

= − = ≡ −
− −

k k S k k S S S
S S

(1 ) , ;S
1ro ro

o n
rw rw

o n w wr

wr or
o w

(1)

= −P S B S( ) ln( )c (2)

where Sw, Swr and Sor are the water saturation, the irreducible water
saturation and the residual oil saturation, respectively, no and nw are the
empirical parameters, kro

o and krw
o are the end-point oil and water re-

lative permeabilities, respectively, and B is a constant. Their values are
listed in Table 2.

3. Methodology

In order to identify the roles played by the primary and secondary or
tertiary fractures, we examine the flow behavior in three cases: (1) all
the fractures present; (2) the secondary or tertiary fractures are ex-
cluded; and (3) all the fractures present, but with the same aperture.
Specifically, we give all the fractures the same aperture, which provides
the same total conductivity for the fracture network as with the primary
and secondary fractures in case (1). We call this case “all average
fractures” in the results below. In case (3), all the fractures play a si-
milar role, as is assumed in the traditional DP/DK concepts.

The results are analysed according to three dimensionless groups.
The Peclet number indicates the relative importance of advection

and diffusion to the transport of a physical quantity in a given system.
In this study, the intent is to represent the relative efficiency of matrix
production and fracture flow: i.e., how conductive fractures are com-
pared to matrix productivity. Details of our analysis can be found in the
Appendix. Considering the different oil-recovery mechanisms in pri-
mary and secondary recovery (or EOR), we propose different Peclet
numbers for the two oil-recovery processes. The Peclet numbers pro-
posed in this study are based on the primary fractures.

During primary production, oil is produced by fluid expansion. The
pressure drops rapidly in the fractures because of the high permeability,
while, in contrast, the matrix remains at higher pressure. This creates a
pressure difference between the fracture and the adjacent matrix block,
and in turn, leads to the flow of oil from the matrix to the fracture.

We define the Peclet number for primary production as the ratio of
the time taken for the matrix to deliver 1m3

fluid to the time taken for
the adjacent fracture to transport 1m3

fluid:

⎜ ⎟≡ ⎛
⎝

⎞
⎠

Pe L α
L hϕS C p

μ L k dh p/
Δ

/[ /( Δ )]
oi t

o f
2

2 (3)

where

=α k
ϕμc

m

t (4)

is the hydraulic diffusivity, h is the thickness of the model, Ct is the total
compressibility, Soi is the original oil saturation, Δp is the pressure
difference, µo is the oil viscosity, kf is the fracture permeability, L is the
matrix (fracture) length and d is the fracture aperture. When Pe is large,
the surrounding fractures are highly conductive compared to the ma-
trix, while a small Pe indicates that the fractures are not efficient.

In waterflood, for the purpose of defining the Peclet number, we
focus on counter-current imbibition. In this idealization, the injected
water rapidly flows through the fracture network and surrounds a
matrix block. If the matrix block is water-wet, the injected water im-
bibes into the matrix block because of capillary pressure.

The Pe for counter-current imbibition is defined as follows:

⎜ ⎟≡ ⎡
⎣⎢ −

⎤
⎦⎥

⎛
⎝

⎞
⎠

Pe L α
L hϕ S S Qf

/
( )

/ 1
oi or wI

2

2 (5)

where the capillary diffusion coefficient α is defined as:

≡ −α S k
ϕ

f λ dP
dS

( )w
m

w o
c

w (6)

with the water fractional flow fw given by

=
+

f
k μ

k μ k μ
/

/ /w
rw w

rw w ro o (7)
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Fig. 4. Cumulative oil recovery during primary production for different Pe, with Rd=2.5 and Rn=1/3. The cumulative oil recovery is normalized by the producible
oil for the given pressure reduction.
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where Pc is the capillary pressure, krw is the water relative permeability
and kro is the oil relative permeability (all three are functions of Sw),
and μw and μo are the water and oil viscosity, respectively. Soi is the
initial oil saturation, Q is the volumetric flow rate through the fracture
and fwI is the water fraction entering the fracture. The coefficient α is
not a constant, but if one chooses an approximate average value for the
recovery process, one can define a characteristic time. In this study, we
apply a value of α=1.9×10−9 m2/s, as discussed in the Appendix.

In addition, we consider two additional dimensionless groups:

• The ratio of the aperture d of the primary and secondary fractures
(Rd). We specify an aperture of 1mm for the primary fractures and
vary the aperture of the secondary fractures in the cases with
Rd≤ 12.6. In order to avoid possible numerical problems with ex-
tremely narrow fractures, in the cases with Rd≥ 12.6, we specify an
aperture of 1mm for all the fractures and make up the difference by
adjusting the fracture permeability kf. In these cases the fracture
aperture we use in the ratio Rd is that corresponding to the same
fracture transmissivity as in the simulation, i.e. (in m)
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Fig. 5. Pressure distribution during primary production for different Rd with
Pe=10,000 and Rn=1/3. (a) Rd=5.8, with all fractures; (b) Rd=5.8, with
all average fractures; (c) Rd=43.1, with all fractures; (d) Rd=43.1, with all
average fractures; (e) Rd=79.4, with all fractures; (f) Rd=79.4, with all
average fractures; (g) without secondary fractures.
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Fig. 6. Cumulative oil recovery during primary production for different Rd with
Pe=10,000 and Rn=1/3. The curves for models with all average fractures for
all three values of Rd overlie each other. The cumulative oil recovery is nor-
malized by the producible oil for the given pressure reduction.
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Fig. 7. Cumulative oil recovery during primary production for different Rn with
Pe=10,000 and Rd=2.5.
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[12×10−3 kf]1/3. Since the fracture permeability is defined as d2/
12, the ratio of permeabilities is square of the corresponding ratio of
aperture. For example, for Rd=10, the ratio of permeability of the
primary and secondary fractures is 100. If the tertiary fractures are
included, Rd3 is the ratio between the apertures of primary and
tertiary fractures.

• The ratio of the number of the primary fractures to the total number
of the primary and secondary fractures (Rn) in a unit cell. Within a
reservoir simulation, a unit cell is surrounded by other unit cells.
Each fracture must accommodate flow from matrix blocks on both
sides; therefore each primary fracture on the side of the matrix is

considered as a half-fracture. Then, the total flow capacity of two
(half-) primary fractures on opposite sides of the matrix is equal to
that of one primary fracture. Rn=1/3 approximately corresponds
to our previous DFN study [15]. For a more complex reservoir, it
might be better to correlate results to the cumulative lengths of
primary and secondary fractures, as we did in our previous studies
[15,16], rather than number of fractures. In this simplified re-
presentation, the fractures all have the same length, and Rn is also
the ratio of cumulative fracture lengths.
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Fig. 8. Oil saturation during secondary production for different Pe, with Rd=2.5, and Rn=1/3. (a) Pe=6,000, with all fractures, (b) Pe=6,000, with all average
fractures, (c) Pe=6,000, without secondary fractures, (d) Pe=600, with all fractures, (e) Pe=600, with all average fractures, (f) Pe=600, without secondary
fractures, (g) Pe=60, with all fractures, (h) Pe=60, with all average fractures, (i) Pe=60, without secondary fractures.
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4. Results

4.1. Primary recovery

Since the Peclet number reflects the relative capacity of the frac-
tures and the matrix to transport oil, we first present the flow patterns
in the region studied with different values of the Peclet number, in-
cluding some extreme cases in which the fracture permeability is very
limited. The cumulative oil production and the pressure-distribution
map are the bases for comparison. The results are presented as func-
tions of dimensionless time tD, defined by Eq. (A.3) in the Appendix. We
compare the flow behavior of the fractured region with the original
fracture network, the network with all fractures having the same
aperture, which provides the same total conductivity of the original
fracture network, and the network with secondary fractures excluded.
Cumulative oil recovery is normalized by producible oil for the given
process.

Fig. 3 shows the results for Rd=2.5 and Rn=1/3. This value of Rd

and Rn approximates the results of our DFN study [15], i.e. that just 1/3
of the fractures account for 90% of the permeability of the fracture
network. The pressure drops equally near both the primary and sec-
ondary fractures for Pe=1,000; all the fractures are conductive enough
to transport the oil delivered by the surrounded matrix blocks. In other
words, all the fractures contribute equally (Fig. 3a and b) and the
matrix limits oil production. For Pe=10, all the fractures contribute
nearly equally, but the fracture network limits oil production. For
Pe=0.1, even the primary fractures are unable to accommodate the
matrix productivity, and the secondary fractures hardly matter. Oil
recovery slows as Pe decreases, because the fractures are less able to
transport oil produced by the matrix blocks (Fig. 4). For Pe=1,000,
treating all the fractures equally is a better approximation of the ori-
ginal fracture network than excluding the secondary fractures. Con-
versely, for Pe=10 or less, excluding the secondary fractures provides
a better approximation than treating all the fractures equally, though
the error in excluding the secondary fractures is not large. These sug-
gest that in calculation of the shape factor for a dual-porosity/dual-
permeability model, for Pe=1,000, all the fractures should be con-
sidered. For Pe=10 or less, it is better to exclude the secondary frac-
tures from the calculation of the shape factor than to include them and,
in effect, assume they play an equally important role in transport to and
from the matrix.

Fig. 5 shows the effect of Rd with Pe=10,000 and Rn=1/3. For

Rd=5.8 or less, the secondary fractures play a similar role to the pri-
mary fractures; they carry oil produced by the matrix blocks to the
production well as efficiently as the primary fractures do. As Rd in-
creases to 43.1, the flow capacity of the secondary fractures is much less
than the primary fractures (but still 2,000 times more permeable than
the matrix); the secondary fractures still deliver oil, but play a less-
important role than the primary fractures. For Rd=79.4, the secondary
fractures only slightly affect oil recovery, and the flow pattern is very
close to the case without the secondary fractures.

Fig. 6 compares the cumulative oil recovery of the original model,
the model where all the fractures having the same aperture, and the
model without the secondary fractures, for the values of Rd in Fig. 5.
The curves for the models treating all the fractures equally important
overlie each other for all the Rd values examined. For Rd=5.8, the
model where all the fractures having the same aperture provides a good
approximation to the original model. As Rd increases (i.e., the sec-
ondary fractures become less permeable), the oil-production curve ap-
proaches that for the model without secondary fractures. For Rd=43.1,
oil production of the original model is approximately midway between
that treating all the fractures equally important and that excluding the
secondary fractures. In summary, if the secondary fractures are much
narrower than the primary fractures, and Pe is large, the secondary
fractures can be ignored without much loss of accuracy for simulation
of primary production. Otherwise, treating the primary and secondary
fractures equally approximates the original fractured region well during
primary production.

Fig. 7 shows the effect of Rn (i.e., changing the number of the sec-
ondary fractures) with Pe=10,000 and Rd=2.5. The rate of oil re-
covery is heavily affected by Rn. But, again, the models that represent
all the fractures as equally important provide a better approximation to
the original models than those ignoring the secondary fractures.

4.2. Secondary recovery

The Peclet number for waterflood as defined in this study (Eq. (5))
depends on the injection rate and the water fraction in the injected fluid
(fwI). In most of the simulations below, fwI=1. The relative amounts of
water carried by the primary and secondary fractures are dominated by
the ratio of the aperture of the primary and secondary fractures (Rd)
and the ratio of the numbers of the primary fractures to the total
number of the primary and secondary fractures (Rn). In field applica-
tion, fw=1 near an injection well, but further from an injection well it
may be less if most injected water has already been imbibed into the
matrix. Thus Pe would tend to be smaller at increasing distance from an
injection well.

As noted above, the case with Rd=2.5 and Rn=1/3 approximates
the flow distribution in our previous DFN study [15]. Fig. 8 shows the
effect of Pe for this case. For Pe=6,000, the injected water flowing
through both the primary and secondary fractures is able to supply all
the water that the matrix can imbibe (Fig. 8a). In this case, the fluid
exchange between the matrix and both the primary and secondary
fractures is counter-current imbibition. As the Peclet number decreases
to 600, the injected water in the secondary fractures is unable to satisfy
the adjacent matrix (Fig. 8d). The secondary fractures contribute to oil
recovery by enabling co-current imbibition from the primary fractures,
as confirmed by the examination of oil velocity at the face of the sec-
ondary fractures (not shown). Eventually, water reaches all the matrix
blocks. For Pe=60, the secondary fractures are less able to satisfy the
adjacent matrix, but the matrix adjacent to the primary fractures expels
oil by co-current imbibition. The role of co-current imbibition is evident
in a comparison of Fig. 8 g and i: at tD=0.5 PV, oil is expelled more
rapidly from the matrix adjacent to the primary fractures, if the sec-
ondary fractures are available to carry away the oil. The central matrix
block, however, must wait for water from the secondary fractures. The
secondary fractures provide a capillary barrier to co-current imbibition
from the primary fractures.
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Fig. 9. Cumulative oil recovery during secondary production for different Pe,
with Rd=2.5 and Rn=1/3. The cumulative oil recovery is normalized by the
producible oil.
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Fig. 9 shows oil recovery for these cases. In all the cases, oil recovery
is better approximated by treating all the fractures equally than by
excluding the secondary fractures. For Pe=600 or less, however,
treating all the fractures equally overestimates oil recovery in the early
stages. In none of the cases examined for the ratio of apertures
(Rd=2.5) based on our earlier DFN study [15] does simply excluding
secondary fractures give a better approximation of oil recovery.

We next hold the Peclet number at Pe=6,000 and vary the aperture
ratio Rd. Fig. 10 shows that for Rd=2.5, the injected water flows
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Fig. 11. Cumulative oil recovery during secondary production for different Rd,
with Pe=6,000 and Rn=1/3. The cumulative oil recovery is normalized by
the producible oil. All the cases with all average fractures overlie each other.
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Fig. 12. Oil saturation during secondary production for different Rn, with
Pe=6,000 and Rd=2.5. (a) Rn=1/2, with all fractures, (b) Rn=1/2, all
average fractures, (c) Rn=1/6, with all fractures, (d) Rn=1/6, all average
fractures.
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Fig. 10. Oil saturation during secondary production for different Rd, with
Pe=6,000, Rn=1/3. (a) Rd=2.5, with all fractures, (b) Rd= 2.5, with all
average fractures, (c) Rd=6.3, with all fractures, (d) Rd= 6.3, with all average
fractures, (e) Rd= 12.6, with all fractures, (f) Rd= 12.6, with all average
fractures, (g) without secondary fractures.
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rapidly through both the primary and secondary fractures. Fluid ex-
change between the matrix and both the primary and secondary frac-
tures is by counter-current imbibition. The primary fractures and sec-
ondary fractures play similar roles (Fig. 10a and b). Fig. 11 shows that
the model treating all the fractures equally important gives a better
approximation of the rate of oil recovery than the model without sec-
ondary fractures.

For Rd=6.3, the injected water flow rapidly through the primary
fractures, but slowly through the secondary fractures (Fig. 10c). For the
matrix blocks bounded by both the primary and secondary fractures,

the injected water imbibes into the matrix blocks from the primary
fractures, and some oil flows into the secondary fractures, allowing co-
current imbibition. Therefore, although the secondary fractures do not
carry much injected water, they still provide paths for oil to flow to the
production well. Nevertheless, Fig. 11 shows that for Rd=6.3 or more,
the model treating all the fractures equally important considerably
overestimates oil recovery; the model excluding the secondary fractures
provides a better approximation to the original model.

Figs. 12 and 13 show the effect of the ratio of the numbers of the
primary fractures to the total number of the primary and secondary
fractures (Rn) for Pe=6,000 and Rd=2.5. Treating all the fractures
equally important approximates the flow behavior of the original model
better than excluding the secondary fractures.

The very definition of the primary and secondary fractures, how-
ever, is affected by the truncation of the fracture distribution imposed
by the length scale and the resolution of the fracture trace map. In
reservoir simulations, considering the resolution of the fracture trace
map of a field, as well as computational capacities, the set of fractures
taken into account is truncated within a certain range. For a power-law
distribution of apertures, very few of the narrowest fractures in the
truncated distribution are among the primary fractures, and there
would be many of these narrower fractures just below the aperture cut-
off. For example, in our previous DFN study [15], the fractures are
restricted to within a certain range of lengths (one order of magnitude)
and apertures (three orders of magnitude). For broad aperture dis-
tributions, almost no primary fractures are near the lower limit of
aperture. Thus if the distribution considered is extended to narrower
fractures, there would be many narrower fractures in the distribution as
a whole, but with little change in the primary fracture network. We
therefore examine next the role that the excluded narrower fractures
play during a waterflood process by including the tertiary fractures in
the model. In this case, Rd3 is the ratio of the apertures of the primary
and tertiary fractures.
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Fig. 14. Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe=6,000, Rd=2.5, Rd3=5, (b) Pe=600, Rd=2.5, Rd3=5,
(c) Pe=60, Rd=2.5, Rd3=5, (d) Pe=6,000, with all average fractures, (e) Pe=600, with all average fractures, (f) Pe=60, with all average fractures.
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Fig. 13. Cumulative oil recovery during secondary production for different Rn,
with Pe=6,000 and Rd=2.5. The cumulative oil recovery is normalized by the
producible oil.
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In Figs. 14 and 15, the aperture ratio between the primary and
secondary fractures is 2.5, and the tertiary fractures are half as wide as
the secondary fractures (Rd3=5). In all the cases, there are as many
tertiary fractures as the primary and secondary fractures combined. The
tertiary fractures play a role in producing oil, although they are not as
important as the primary and secondary fractures. The tertiary fractures
become less important as the Peclet number becomes smaller. When Pe
decreases to 60, the tertiary fractures are not very helpful. Considering
all the fractures to be equally conductive overestimates the oil recovery
for all the values of Pe examined here. For Pe=60, excluding the ter-
tiary fractures leads to a more accurate prediction of oil recovery than
treating them as equally important to the other fractures.

Figs. 16 and 17 show a more extreme case, with the aperture ratio
between the primary and tertiary fractures (Rd3) set at 34.2. The in-
jected water flows through the primary and secondary fractures and
imbibes into the adjacent matrix, and then pushes oil into the tertiary
fractures by co-current imbibition. The tertiary fractures help in pro-
ducing oil in this case.

Figs. 18 and 19 show flow behavior of the fractured region with
narrower secondary fractures (Rd=12.6), and the tertiary fractures
with the same aperture as in the previous case (Rd3=34.2). For
Pe=6,000 and 600, the cases with and without tertiary fractures show
similar oil recovery after 2 PV water is injected. When Pe decreases to

60, the oil residing in the matrix adjacent to the primary fractures is
produced as in the case without the tertiary fractures, but the rest of the
matrix, bounded by the tertiary fractures, hardly produces any oil.
Evidently the tertiary fractures act as capillary barriers, not helping, but
limiting, oil production.

In translating a fracture map to a DP/DK model, there are two is-
sues: whether all the fractures contribute to recovery, and whether
some may act as barriers to recovery.

The effect of the unavoidable truncation of a measured fracture
distribution requires further study. The wider the range of fractures
included, the larger the number of secondary (and yet-narrower) frac-
tures included and the less accurate inclusion of all fractures on an
equal basis in the definition of fracture spacing and shape factor.
Excluding those fractures which are just above the truncation cut-off
may have either no effect or a significant effect on the matrix-fracture
exchange.

5. Conclusions

In this paper we consider the effect of heterogeneity in flow through
a fracture network on the best characterization of the network for
fractured reservoir simulations. The results depend on the relative flow
rates through the primary and secondary fractures, represented here by
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Fig. 16. Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe=6,000, Rd=2.5, Rd3=34.2, (b) Pe=600, Rd=2.5, Rd3=34.2,
(c) Pe=60, Rd=2.5, Rd3=34.2.
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Fig. 17. Cumulative oil recovery during secondary production with tertiary
fractures for different Pe, Rd=2.5, Rd3=34.2. The cumulative oil recovery is
normalized by the producible oil.
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Fig. 15. Cumulative oil recovery during secondary production with tertiary
fractures for different Pe, Rd=2.5, Rd3=5. The cumulative oil recovery is
normalized by the producible oil.
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the ratio of the aperture of the primary and secondary fractures, the
ratio of the numbers of the primary fractures to the total number of the
primary and secondary fractures, and the Peclet number defined in the
Appendix. This Peclet number depends on the matrix and fracture
properties for primary production and, for waterflood, on the flow rate
and water fraction in the fracture network.

In primary production, for large Peclet number (Pe=1,000), the
secondary fractures are as important as the primary fractures. In other
words, considering all the fractures to be equally conductive, as is as-
sumed in a traditional DP/DK concept, provides a good approximation
of matrix-fracture exchange. For a somewhat smaller Pe (10), the sec-
ondary fractures can help in producing oil, but play a less important
role than the primary fractures. For a sufficiently small Peclet number
(Pe=0.1), the secondary fractures play a minor role; even the primary
fractures are unable to accommodate the matrix productivity.
Excluding the secondary fractures in that case gives a good approx-
imation of the oil production, better than including them as equal to
primary fractures. The best shape factor (characteristic fracture spa-
cing) for DP/DK simulations should then only account for the primary
fractures.

If Rd is small (< 5.8 in this study), the secondary fractures tend to
play a similar role to the primary fractures. Both the primary and

secondary fractures should be considered in the calculation of the
characteristic fracture spacing or shape factor for a DP/DK simulation
of a primary-production process. As Rd increases, the secondary frac-
tures play a less-important role. As Rd increases to a large value (79.4 in
this study), the secondary fractures can be excluded without affecting
oil recovery. In other words, the secondary fractures should not be in-
cluded in calculating the shape factor for DP/DK simulations of primary
production in this scenario.

For large Peclet number (10,000) and Rd=2.5, considering all the
fractures as equally important provides a good approximation to the
original model for all the value of Rn examined. The smaller the value of
Rn is, the worse is the approximation given by excluding the secondary
fractures.

For waterflood or EOR, in most cases examined, the appropriate
shape factor should reflect both the primary and secondary fractures. In
some cases (Pe=600 and 60), the secondary fractures may not be as
important as the primary fractures, but they still can play an important
role by allowing co-current imbibition from the primary fractures and
the adjacent matrix blocks.

If the secondary fractures are much narrower than the primary
fractures (Rd=6.3 or larger), however, they carry little injected water,
and matter little to oil recovery. In those cases, excluding the secondary
fractures provides a better approximation to the original model than
considering all fractures equally. The characteristic fracture spacing or
shape factor for a DP/DK simulation of a waterflood process in this
situation should consider only the primary fractures.

For Pe=6,000 and Rd=2.5, in which the injected water can flow
through all the factures efficiently, all the fractures are nearly equally
important for all the values of Rn examined.

The fractures with an aperture below the cut-off of a truncated
aperture distribution, referred to here as tertiary fractures, can be
helpful in producing oil, although they are less important than the
primary and secondary fractures. Tertiary fractures can also behave as
capillary barriers and thereby limit oil recovery.

As shown in the Appendix, this definition of the Peclet number
provided here works better than a previous published definition for the
purpose of this study.

6. Discussion

During the last decades, much research has focused on topics related
to the best shape factor for dual-porosity/dual-permeability simula-
tions. There are at least three issues: (1) Can the diffusion process be
approximated fundamentally with a first-order differential equation
[20,31,32]? (2) How best to represent irregular-shaped matrix blocks as
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Fig. 19. Cumulative oil recovery during secondary production with tertiary
fractures for different Pe, Rd=12.6, Rd3=34.2. The cumulative oil recovery is
normalized by the producible oil.
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Fig. 18. Oil saturation during secondary production with tertiary fractures for different Pe. (a) Pe=6,000, Rd=12.6, Rd3=34.2, (b) Pe=600, Rd=12.6,
Rd3=34.2, (c) Pe=60, Rd=12.6, Rd3=34.2.
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simple shapes [18,19,27]? (3) How best to represent the matrix blocks
with a distribution of sizes and odd shapes by a single shape factor
[23,33,34]? In this study, we raise another issue: what fractures should
be considered in calculation the characteristic fracture spacing or shape
factor for dual-porosity/dual-permeability simulations? What factors
does this depend on? Since this is an initial study, we start with simple
models. There are many issues deserving further study:

Our focus in this study is limited to well-connected fracture net-
works; all the secondary (and tertiary) fractures are connected to the
primary fractures. In nature, a fracture network may not be so well
connected, which would change the flow behavior of the fractured re-
gion in some aspects. If the fracture aperture is related to fracture
length, orientation, or stress, our results could be modified.

In addition, in this study, we have disregarded gravity-driven flow
between the matrix and fractures, which could change the scaling of
matrix-fracture exchange in secondary and tertiary recoveries.

In considering the effect of truncating a fracture network, one must

consider that excluded fractures could either help or hinder oil re-
covery. The effect of truncation of the fracture distribution on our
conclusions deserves further study.

In this initial study, the simplified geometry is highly symmetric. If
there is no symmetry, as in real fracture networks, the matrix blocks
shapes would be irregular, and vary in size. The rate that the fractures
communicating with different blocks would be different. The effect of
irregular shapes and diverse matrix block sizes on our conclusions
needs further study.
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Appendix

Definition of Peclet number

A Peclet number indicates the relative importance of advection and diffusion to the transport of a physical quantity in a given system. In this
study, it represents the relative capacity for oil transport of matrix production and fracture flow: i.e., how conductive fractures are compared to
matrix productivity. We propose separate versions of the Peclet number for the two oil-recovery processes, primary and secondary recovery. The
Peclet number proposed here is based on the spacing of primary fractures, without secondary fractures. We consider a square matrix block, of size
L× L, bounded by primary fractures, as illustrated in Fig. A.1. Within a reservoir, this region represents a unit cell surrounded by other unit cells.
Each fracture must accommodate flow from matrix blocks on both sides; therefore the fracture permeability we assign, which accommodates flow
from the given matrix block, is only half of the total fracture permeability. Then, because there are two (half-) fractures on opposite sides of the
matrix in the two directions, the total flow capacity of the fractures surrounding the matrix block is equal to that of one fracture in each direction.

Definition of Pe for primary recovery

During primary production, oil is produced by fluid expansion from an initial pressure p to a reduced pressure (p-Δp). Pressure drops rapidly in
the fractures, while the matrix initially remains at higher pressure. The pressure difference between the fracture and the adjacent matrix block drives
oil from the matrix to the fracture. In comparing the flow capacities of the matrix and the fractures individually, we assume that each is un-
constrained by the other. We assume a slightly compressible oil and incompressible water.

A one-dimensional (1D) primary-production process in matrix bounded by parallel fractures at uniform and constant pressure on opposite sides,
is governed by [35–37]

∂
∂

=
∂
∂

p
t

α
p
x

2

(A.1)

where

L
L

(b)

L

L
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Fig. A.1. (a) Region of interest for defining Peclet number for matrix-fracture flow: a square matrix block bounded by the primary fractures, (b) schematic of a
hypothetical simulation grid block containing 6× 6 unit cells defined by the primary fractures.
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=α k
ϕμ c

m

o t (A.2)

where p is the pressure, α is the hydraulic diffusivity, km is the matrix permeability, ɸ is the matrix porosity, µo is the oil viscosity, and ct is the total
fluid compressibility. We assume the oil is slightly compressible, so oil density is linearly related to pressure. Eq. (A.1) is in the form of the well-
known equation governing unsteady heat conduction in a solid [35–37]. Recovery in a square matrix block is governed by the square of di-
mensionless average pressure derived from Eq. (A.1) [35]. The dimensionless time for this process is

=t αt
LD 2 (A.3)

We take the characteristic time tc for the process as that at a dimensionless time of 1; thus

=t L
αc

2

(A.4)

Production is very uneven during this period, with production much faster at the start than at the end. Moreover, this characteristic time extends
well beyond the period when almost all oil is recovered; we discuss this further below. Virtually all the oil is recovered by this time; the volume of oil
recovered is L hϕS C p( Δ )oi t

2 , where Soi is the initial oil saturation, ɸ is the matrix porosity, and h is the height of the system perpendicular to the cross-

section shown in Fig. A.1. Averaged over the characteristic time, the time to produce one unit volume of oil is ( )L α
L hϕS C p

/
Δoi t

2
2 .

For the fracture, we assume the same pressure difference Δp across the length of the fracture; this gives a flow rate of ( )k dh p
μ L

Δf

o
, where kf is the

fracture permeability and d is the fracture aperture. The product (kf d) is the fracture transmissivity; for smooth slits, it equals (d3/12). The time for

the fracture to transport one unit volume of oil is thus ( )μ L
k dh pΔ

o
f

. The Peclet number is the ratio of these two characteristic times:

⎜ ⎟≡ ⎛
⎝

⎞
⎠

Pe L α
L hϕS C p

μL k dh p/
Δ

/[ /( Δ )].
oi t

f
2

2 (A.5)

If Pe is large, the surrounding fractures are relatively conductive compare to the matrix’s ability to produce, while a small Pe indicates that the
fractures are limiting on overall oil production.

Definition of Pe for secondary recovery by counter-current imbibition

In waterflood, for the purpose of defining Peclet number, we focus on counter-current imbibition. We assume counter-current imbibition is the
dominant oil-recovery mechanism. This process governed by Eq. (A.1), with the coefficient α defined as

≡ −α S k
ϕ

f k
μ

dP
dS

( )w
m

w
ro

o

c

w (A.6)

with water fractional flow fw given by

=
+

f
k μ

k μ k μ
/

/ /w
rw w

rw w ro o (A.7)

where Pc is the capillary pressure, krw is the water relative permeability and kro is the oil relative permeability (all three are functions of Sw), and μw
and μo are the water and oil viscosities, respectively. Coefficient α is not a constant, but if one chooses an approximate average value for the recovery
process [38], one can define a characteristic time using Eq. (A.1). Again, virtually all oil is recovered during this time; the volume recovered is

−L hϕ S S[ ( )]oi or
2 , where Sor is the residual oil saturation.
The fracture limits the process according to its ability to transport water to imbibe into the matrix and replace oil. The fracture supplies water at a

rate (Q fwI), where Q is the volumetric flow rate through the fracture and fwI is the water fraction entering the fracture. As shown in Fig. A.2, the
cumulative oil recovery is roughly the same for a constant volume of water injected into the fracture, for total flow rates varying by a factor of 20.
The time for the fracture to provide one unit volume of water (which could displace one unit volume of oil from the matrix) is [1/(Q fwI)]. This leads
to a Peclet number for counter-current imbibition defined by

⎜ ⎟≡ ⎡
⎣⎢ −

⎤
⎦⎥

⎛
⎝

⎞
⎠

Pe L α
L hϕ S S Qf

/
( )

/ 1 .
oi or wI

2

2 (A.8)

We assume a constant coefficient α for counter-current imbibition, only to define a Peclet number, not in our simulations of oil recovery.
Nonetheless, a useful average value would apply approximately over the period of recovery of most of the oil. Fig. A.3 compares solutions for fraction
of recoverable oil still in place (ROIP) in a 2D recovery process with various constant values of α to the numerical solution of the same process using
the capillary-pressure and relative-permeability functions used in this paper (solid line). In the numerical solution, the fractures are flushed with
large volumes of water so that fracture flow is not limiting on the rate of matrix recovery. A value of α=1.9× 10−9 m2/s gives a reasonable fit over
the period in which 80% of the oil is recovered (Fig. A.3a). The fit is not so good at short times (Fig. A.3b). Nevertheless, this value suffices to roughly
characterize the time scales of the recovery process.

Salimi and Bruining [14] proposed a definition of Peclet number for waterflood based on characteristic times without considering the volumes of
oil residing in the matrix or fracture considered. The characteristic time for the fracture is then the time to replace the fluids in the fracture, whatever
the fracture volume. This gives

⎜ ⎟≡ ⎛
⎝

⎞
⎠

Pe L α Ldh
Qf

[ / ]/ 2

wI

2

(A.9)

Fig. A.4 compares the Peclet number of Salimi and Bruining [14] to that defined by Eq. (A.8). In the reference case, Pe=6,000, Rd=2.5 and
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Rn=1/3. In this case, the injected fluid flows rapidly through both the primary and secondary fractures. Primary and secondary fractures play
similar roles. In the second case, the fracture length (L), thickness (h), porosity (ɸ) and permeability (km) of matrix blocks change to keep the value of
Pe in Eq. (A.8) unchanged, while that of Salimi and Bruining doubles. In the third case, the value of Pe in Eq. (A.8) decreases four fold, while the
value of Salimi and Bruining is unchanged. The capillary coefficient α remains the same. For the second case, the cumulative oil recovery is close to
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Fig. A.2. Cumulative oil recovery for different injected water fractions fwI with a constant water injection rate QfwI, Pe=6,000, Rd=2.5, Rn=1/3.
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Fig. A.3. Fraction of remaining oil in place (ROIP) for a 2D recovery process calculated numerically (solid line) and with constant coefficient α for different values of
α. (a) long time scale, during which most oil is recovered, (b) short times.
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Fig. A.4. Comparison of oil recovery as a function of time for different definitions of Peclet number.
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the oil recovery of the reference case. In the third case, the cumulative oil recovery at a given time decreases by approximately a factor of 4,
approximating the change in Eq. (A.8). Thus, the Peclet number defined in this study better fits the purpose of this study.

Interpreting the magnitude of Pe

As noted, even for a constant value of α, oil recovery is not constant in time for either primary or secondary recovery; the rate of oil recovery is
much faster at the start than at the end. It is instructive to consider the time at which the flow capacities of the matrix and fractures are comparable,
as a function of Pe.

We expect the fractures to be limiting only relatively early in the oil-recovery process, when production from matrix is greatest. For a constant α,
for short dimensionless times tD (less than 0.05), oil production in 1D scales with tD [37]. The fraction of recoverable oil remaining in the square
matrix region is approximately −C αt L(1 / )1

2 2, with C1 approximately 2.24 (obtained by a curve fit for the 1D recovery process in previous studies
[36,37]). Therefore the rate of oil recovery from the matrix, if unlimited by the fracture flow capacity, is given by

= − − = −Q d
dt

L hϕS C p C αt L L hϕS C p C αt L C α tL[( Δ )(1 / ) ] ( Δ )2(1 / ) 1
2

/m oi t oi t
2

1
2 2 2

1
2

1
2

(A.10)

for primary production. The time at which this capacity equals the flow capacity of the matrix is likely to be short, for which the second term in
brackets is approximately 1. Therefore

≈Q L hϕS C p C α tL( Δ ) / .m oi t
2

1
2 (A.11)

The time at which the matrix flow capacity equals the fracture flow capacity is therefore given by

⎜ ⎟
⎛
⎝

⎞
⎠

≈
k dh p

μL
L hϕS C p C α tL

Δ
( Δ ) / .f

oi t
2

1
2

(A.12)

rearranging,

⎜ ⎟≈ ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
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αt L L hϕS C p C α L
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k dh p
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/ ( Δ ) ( / )

Δ
1

oi t
f

2 2
1

2
1

(A.13)

≈ −t Pe5D
2 (A.14)

where the dimensionless time tD is defined in Eq. (A.3). For instance, for Pe=10, the fractures would be limiting on oil recovery for tD≤ 0.05. The
times in Fig. 3d-f are shorter than this, and the matrix-fracture exchange has progressed further in the matrix closer to the production well. For
Pe=1,000, the primary fractures are limiting for tD≤ 5×10−6, and in Fig. 3a-c the matrix-fracture exchange is nearly uniform along the primary
fractures. For secondary recovery, a similar derivation leads to the same result, albeit assuming a constant value of α.

Interpretation of Pe for secondary fractures

We define Pe based on the network of primary fractures, and account for the secondary fractures using the dimensionless ratio of fracture
apertures Rd and the number of primary fractures Rn. It is instructive to compare the values of Pe that would obtain from consideration of the matrix
bounded by the secondary fractures. The size of the region is now (L Rn)× (L Rn). For both primary production and waterflood, the flow rate in the
definition of Eqs. (A.5) and (A.9) is reduced by a factor of roughly −Rd

3. The value of Pe changes by a factor − − −R R{( )/[( )] }n d
1 3 1 . For the case Rn=1/3

and Rd=2.5, the value of Pe for a matrix block surrounded by the secondary fractures is a factor (3/2.53)≅ (1/5) of that based on the primary
fractures. The fractures are somewhat less able to accommodate the flow capacity of the matrix. For larger values of Rd, the factor is smaller, e.g.
0.0015 for Rd=12.6.

Interpretation of Pe for grid blocks in simulation

In a dual-porosity or dual-permeability simulation, a grid block represents a region containing many unit cells as defined above. Suppose there
are Nb×Nb unit cells in the simulation grid block and consider fracture flow in one of the coordinate directions (cf. Fig. A.1b, where Nb=6). There
are Nb fractures to carry away oil or provide water, but Nb

2 matrix blocks to produce oil. The time to produce a unit volume of oil from the matrix
grid block decreases by Nb

2 while the time for the fractures to provide a unit volume of water or carry away oil decreases by Nb; Pe decreases by a
factor Nb. The pressure in the grid block and water fraction in the fractures is assumed uniform within a grid block in the dual-porosity/dual-
permeability approach, but both vary from grid block to grid block and with time for any grid block. At each time, a new boundary condition is
applied to matrix blocks by the changing conditions in the fractures. The state of the matrix is the superposition of the effects of all these changes. We
propose that the value of Pe characterizing a grid block in a simulation corresponds roughly to that we propose for a unit cell, divided by the number
of unit cells defined by the primary fractures across a simulation grid block.

In addition, Pe for secondary recovery depends on fw in the fractures. Close to an injection well, fw≅ 1. Further away, where the fractures carry
both oil and water, both fw and Pe would be reduced.
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