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A Directed Spanning Tree Adaptive Control
Solution to Time-Varying Formations

Dongdong Yue, Simone Baldi, Senior Member, IEEE, Jinde Cao, Fellow, IEEE,
Qi Li, and Bart De Schutter, Fellow, IEEE

Abstract—In this paper, the time-varying formation and time-
varying formation tracking problems are solved for linear multi-
agent systems over digraphs without the knowledge of the
eigenvalues of the Laplacian matrix associated to the digraph.
The solution to these problems relies on an approach that
generalizes the directed spanning tree adaptive method, which
was originally limited to consensus problems. Necessary and
sufficient conditions for the existence of solutions to the formation
problems are derived. Asymptotic convergence of the formation
errors is proved via graph theory and Lyapunov analysis.

Index Terms—Adaptive control, directed graphs, multi-agent
systems, formation control.

I. INTRODUCTION

Formation control of multi-agent systems has captured
increasing attention due to applications in spacecraft formation
flying, search and rescue operations, intelligent transport sys-
tem, to name a few [1], [2]. Up to now, many existing methods
on formation control are based on a common assumption that
each agent knows the formation information, e.g., the center
and radius of the circular formation [3].

Meanwhile, the fertile framework of consensus [4]-[6]
has motivated researchers to study consensus-based formation
control in a distributed way, i.e. using local information from
neighboring agents, so as to keep some formation offsets
between each other. Along this line, recent results on time-
varying formation (TVF) [7], [8], and time-varying formation
tracking (TVFT) [7], [9]-[12] have provided a natural exten-
sion to the standard time-invariant formation case [13]. Several
methods have been proposed to address the time-varying case:
finite-time consensus techniques have been applied to the
TVF/TVFT control for first-order multi-agent systems in [7]
provided that the velocity information of the desired formation
offsets are locally available for the agents. Adaptive neural
networks have been used to achieve practical TVFT (with
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bounded tracking errors) for a class of second-order nonlinear
multi-agent systems in [11]. For higher-order systems (linear
time-invariant dynamics), necessary and sufficient conditions
have been derived in [8] and [10] for TVF and TVFT with
multiple leaders. The major benefit of these necessary and
sufficient conditions is their interpretation in terms of for-
mation feasibility conditions, which allow to remove the re-
quirement of the velocity information of the formation offsets.
Furthermore, these conditions provide extra design freedom
for controlling the motion of the formation. More recently,
some sufficient conditions for time-varying output formation
tracking by output feedback control has been proposed in
[12]. However, a requirement that still remains in [8]-[12]
is the knowledge of the smallest nonzero eigenvalue of the
communication Laplacian matrix, which might be unknown
especially in large networks.

With respect to this requirement, it is known that the
knowledge of the Laplacian eigenvalues can be overcome
by suitably designing time-varying coupling weights in the
network: this was shown for consensus [14]—-[16], containment
[17], or TVF [18]-[20] problems over undirected or detail-
balanced/strongly-connected digraphs. It is well known in
network science that nodes and edges are two interdependent
elements of a network system. For undirected networks, dis-
tributed methods with adaptive coupling weights from both
node and edge perspectives have been well understood. For
example, the node-based method can be made fully distributed
(without any global information), while the edge-based method
can be applicable to switching connected graphs [15], [20].
However, the interdependence of nodes and edges is essential-
ly more complex to understand in directed networks, especially
in general digraphs where the only assumption is the presence
of a directed spanning tree (DST). Along this direction, a fully
distributed node-based method has been proposed to address
tracking [27] and group TVFT [24]. On the other hand, a
DST-based adaptive control method has recently been studied
for synchronization/consensus problems in [21]-[23], which
exploits the structure of a DST in the network. It should be
mentioned that it is still not clear how to design fully distribut-
ed edge-based adaptive consensus algorithms even without the
knowledge of a DST (Please refer to Conjecture 1 of [21]): in
this sense, the DST-based adaptive method is currently the
most relax edge-based method. As compared to the node-
based method [24], [27], the DST adaptive method provides
some interesting insights on how the structure of a complex
directed network influences the network dynamics. However,
to our best knowledge, a unifying DST-based adaptive control
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framework encompassing TVF and TVFT problems is not
available. Most notably, it is unclear how to design appropriate
feasibility conditions for time-varying formations in the DST
framework. These observations motivate this study.

The main contribution of this paper is a unifying DST-
based adaptive control solution addressing TVF and TVFT
for linear MASs: not only does the proposed method avoid
the knowledge of the Laplacian eigenvalues as compared
with [8]-[12], but it also helps to establish necessary and
sufficient conditions for such time-varying formations from
a different perspective as compared with [18]-[20], [24]. For
TVF without leaders, a novel class of feasibility conditions is
proposed, which is more efficient to check than the feasibility
conditions in the state of the art. The proposed conditions
generalize in a natural unified way in the presence of one or
more leaders.

The paper is organized as follows: Section II gives some
preliminaries and formulates the problems. Sections III-IV
present the main results for TVF and TVFT, respectively.
Numerical examples are provided in Section V. Section VI
concludes this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Notations

Let R, R*, R™, R™*P represent the sets of real scalars, real
positive scalars, n-dimensional column vectors, n X p matrices,
respectively. Let I, and 1,, be the n x n identity matrix, and
the column vector with n elements being one, respectively.
Zero vectors and zero matrices are all denoted by 0. For
a vector z, let ||z|| denote the Euclidean norm. For a real
symmetric matrix A, Av(A) (resp. An(A)) is its maximum
(resp. minimum) eigenvalue, and A > 0 (resp. A > 0)
means that A is positive definite (resp. semi-definite). Denote
In = {1,2,--- ,N} as the set of natural numbers up to N.
Denote col(xy, - ,xn) = (217, -+ ,2nxT)T as the column
vectorization. The abbreviation diag(-) is the diagonalization
operator and 'N-S’ is short for "necessary and sufficient’. The
cardinality of a set is denoted by |- | and the difference (resp.
union) of the sets S; and S, is denoted by S; \ Sy (resp.
81U S2). Moreover, ® stands for the Kronecker product.

B. Graph Theory

A weighted digraph G(V, €, A) is specified by the node set
V ={1,---,N}, the edge set & = {e;;|i — 7,1 # j} and
the weighted adjacency matrix A = (a;;) € RV*N . In the
matrix A, a;; > 0 if e;; € £, indicating that j (resp. ¢) is an
in-neighbor (resp. out-neighbor) of 4 (resp. j), which can be
denoted by j € Ni(4) (resp. i € Na(5)). Let Do (i) = |Na2(i)]
be the out-degree of i. Moreover, £L = (L;;) € RNXN g
the Laplacian matrix of G, which is defined as: £;; = —a;j,
if i # 7, and L;; = Zﬁzl’kﬂ a;k, Vi € Iy. A path is a
sequence of edges connecting a pair of nodes. A digraph G
is strongly connected if any pair of nodes is connected by a
directed path, and is weakly-connected if any pair of nodes
is connected by a path disregarding the directions. A directed
spanning tree (DST) of G is a subgraph where there is a node
called the root, that has no in-neighbors, such that one can find

a unique path from the root to every other node. In a DST, if
j is an in-neighbor of 4, one can also say that j is a parent
node, and ¢ is a child node. Moreover, a node is called a stem
if it has at least one child, and a leaf otherwise.

C. Problem Statement

Let G(V,E,A) denote the digraph that characterizes the
communication topology among NN agents, where the weights
in A represent the communication strengths. The dynamics of
the agents are given by

T; = Ax; + Bu;, i1€In (1)

where z; € R™ is the state of agent ¢ and u; € R™ is its control
input to be designed. Let the pair (A, B) be stabilizable.

Definition 1 ([18], TVF): The multi-agent system (1) is said
to achieve the time-varying formation (TVF) defined by the
time-varying vector h(t) = col(hq(t), ha(t), - ,hn(t)) if,
for any initial states, there holds

tli}m ((.’lﬁl — hl) — (xj — hj)> = 0, VZ,] S IN. (2)

Now consider the case where there are M leader agents,
M > 1, in the network G. Without loss of generality, let the
first M agents be the leaders, and the rest be the followers:

l e Iwm,
1€ IN \IM. (3)

iy = Axy,
i; = Axz; + Bu,,

As leaders have no in-neighbors, the Laplacian matrix of G
can be partitioned as

0 O
c=( 48 @

where £, € RN-M)XM and £, ¢ RV-M)x(N—M)

Definition 2 ([10]): A follower is called well-informed if
all leaders are its in-neighbors, and is uninformed if no leader
is its in-neighbor.

Definition 3 (TVFT): The multi-agent system (3) is
said to achieve the time-varying formation tracking
(TVFT) defined by the time-varying vector hf(t) =
col(hpr+1(t), harso(t), - ,hn(t)) and by positive constants
Bi, | € Iy, satisfying Y~ §; = 1 if, for any initial states,
there holds

M
lim (z;—h; =Y Ban) =0, Vi € Iy \Tar.  (5)

t—o0 =
For the special case M = 1, (5) becomes
lim (l’z—hz —xl) :0,

t—o0

1=2,---,N. (6)

Remark 1: TVFT with multiple leaders was firstly formu-
lated in [10] as: given a predefined hf'(-), find a group of
hyperparameters (3;, such that (5) holds for any initial z;.
This formulation was adapted to group TVFT in [24] and
to time varying output formation tracking in [12]. Definition
3 has a slightly different formulation: given a predefined
R¥(-) and any predefined combination of convex coefficients
B, determine whether (5) can hold for any initial x;. This
formulation of TVFT is motivated by practical consideration.
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In fact, the methods in [10], [12], [24] lead to a specific group
of 3; determined by the communication topology, and cannot
predefine the convex combination.

The goal of this paper is to solve the problems outlined
by (2), (5) and (6) by consistently generalizing the DST idea.
Along this paper, h;(-) (8;) is assumed only known by follower
i (leader ).

III. DST-BASED DISTRIBUTED ADAPTIVE TVF

This section appropriately extends the DST-based adaptive
control method to solve the TVF problem of Definition 1. The
following is a standard connectivity assumption ([8]).

Assumption 1: The digraph G has at least one DST.

Under Assumption 1, one can select a DST G(V, &, A) of
G. As in [22], we assume that G is known. Without loss of
generality, let node 1 be the root of G. Correspondingly, let
L be the Laplacian matrix of G and N; (i) be the set of out-
neighbors of i in G.

Let i) denote the unique parent of node k£ + 1 in G for
k € In_1, then & = {e; py1lk € In_1} C E. For
compactness, define d;(t) = x;(t) — h;(t) as the formation
state, i.e., the distance between the current state and the desired
formation offset of agent i. Denote z = col(zy, -+ ,zN),
d=col(dy, - ,dn).

We propose the DST-based adaptive TVF controller as:

u; = Koy + Kqd; + Ko Z Oéij(t)(di — dj) 7
JEN1(4)

with the time-varying coupling weights
o if e;e&\E,
ij (t) o { if ej; € E.
Akt 1y = Phtli ((dik —dg41)—

T
> (e =) Tldi, — diia). ©)

JEN (k+1)

In (7)-(9), Ko, K1, K5, and I are gains to be designed, and
Pr+1,i, € R In (7), a;(t) is the coupling weight between
agent ¢ and its in-neighbor 7, which is time-varying only if the
corresponding edge appears in G, i.e., j =i and i = k + 1
for some k£ € Zn_1, and constant otherwise.

Remark 2: The structure of controller (7) is as follows. The
gain K is to be designed to make the time-varying formation
h(-) feasible; the gain K is needed to control the average
formation signal d,. = % ZjGIN d; [8]; the gain K3 is a
consensus gain. Different from the related literature [8], the
DST structure is explicitly used in the control law (7)-(9).

Aij,
A1,y (1),

®)

A. Technical lemmas

Lemma 1 (N-S condition for TVF): Under Assumption I,
and for any DST G, define & € RIV-DXN a5

-1, if j=k+1,
Eri=1< 1, if  j =1,
0, otherwise.

(10)

Then, the TVF for multi-agent system (1) can be achieved if
and only if

Jim [[(E @ 1)d(0)] = 0. (1)

Proof: From Lemma 3.2 in [22], (11) holds if and only

if limy 00 ||di(t) — d;(t)|] = 0,V%,j € In. Then, Lemma 1
holds following Definition 1 and the definition of d;(¢). In
fact, =7 is the incidence matrix associated to G. |
Lemma 2 (Auxiliary matrix ()): Under Assumption 1, and
for any DST G, define Q € R(N_l)f(N_l) as Q =
Q+ Q with Qi; = > ey, (Liv1e — Liye) and Qp; =
Y eev; .y (Lrt1,c = Liy,c). Here, Vi represents the vertex
set of the subtree rooting at node 7 + 1 and L = L—L. Then,

there holds
=L = Q= (12)

where = is defined in (10). Moreover, Q) can be explicitly
written as

_ ajy1,i,, if j=k,
Qrj =1 —Gjy14,, if j=ip—1, (13)
0, otherwise.

Proof: See the appendix. The proof revises and completes
the results in [22], [23], since step 1) of the proof (L = LJZ)
is missing there. [ ]

Remark 3: Lemma 2 states that the information of the
Laplacian £ can be transferred into a reduced-order matrix
@ through a commutative-like multiplication law (12). For
the off-diagonal elements of Q, Qx; = —Q;; if and only
if j + 1 is the parent of k4 1 in G. Note that the existence of
a solution X to the more general matrix equation YZ = XY
was discussed in Lemma 9 of [25]. As compared to [25], the
merit of our Lemma 2 is to give the explicit solution @ to
(12), and to explicitly reveal the relation between this solution
with the weights on the DST by (13). This relation is used in
the proof of Theorem 1 to design the adaptation law.

Lemma 3 (Feasibility conditions): Under Assumption 1, let
us consider controller (7) with time-varying coupling weights
(8) for any DST G. Suppose that the origin of the linear time-
varying system

dr = (In—1 ® (A+ BKo + BK1) + Q(t) ® BK»)d,,
(14)

is globally asymptotically stable, where Q(t) = Q+Q(t) with
fixed ) defined as in Lemma 2, and

_ aj+1,;(t), if j=k,
Qi) = —ajp1,4, (), if j=ix—1, (15)
0, otherwise.

Then, the TVF problem can be solved by controller (7) if and
only if
Jim (A + BEo) (hi, (£) — iy (1))
= (hi (8) = hiya (1) =0 (16)

holds Vk € IN—1_~
Proof: Let dy(t) = d;, (t) — dr+1(t) be the error vector
between the parent and the child nodes of the directed edge
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€ipk+1>» k € In_1, and denote d = col(dy, -+ ,dy). Then,
d = (E®1,)d. From Lemma 1, it remains to prove that
lim; . ||d(t)|| = O under the given conditions.

Based on (1) and (7), the dynamics of z(t) is given by

= (Iy ® (A + BKy + BK,))z + (L(t) ® BK»)d

— (Iy ® BK))h (17)

where L(t) is the Laplacian matrix of G at time ¢ due to
the adaptive mechanisms. Then, it follows from (17) and the
definitions of d and d that

d =(Iy_1 ® (A+ BKy + BK}))d + (EL(t) ® BK»)d
+(E® (A+ BEKy)h— (E@1,)h
=(Iy_1 ® (A+ BKy + BK;) + Q(t) ® BK»)d

+(E® (A+ BEKo)h— (E@1,)h (18)

where Lemma 2 is used to get the second equality. Given that
the linear system (14) asymptotically converges to zero, one
knows that lim;_, . ||d(¢)|| = O if and only if

Jlim (2@ (A + BKo))h(t) — (E® L)h(t)=0. (19

From the definition of =, condition (16) is equivalent to
(19). This completes the proof. ]

B. Main result

The design process of the TVF controller is summarized in
Algorithm 1, and analyzed in the following theorem.

Algorithm 1 TVF Controller Design
1) Find a constant K such that the formation feasibility
condition
(A+ BKo)(hi, () = hi41 (1))
= (i, (t) = hirga () =0
holds Vk € Zn_y for any DST G. If such K| exists,
continue; else, the algorithm terminates without solutions;
2) Choose K such that (A+ BKy+ BK1, B) is stabilizable
(using, e.g., pole placement). For some 7, € R, solve
the following LMI:
(A+ BKy + BK,)P+P(A+ BKy + BK1)"
—nBBT +6P <0

(20)

21

to geta P > 0;
3) Set Ky = —BTP~1, T
scalars pgi1,4, € RT.

= P~ 1BBTP~! and choose

Theorem 1 (Main result for TVF): Under Assumption 1,
and feasibility condition (20), the TVF problem in Definition
1 is solved by controller (7) with adaptive coupling weights
(8)-(9), along the designs in Algorithm 1.

Proof: The feasibility condition (20) guarantees that (16)
holds Vk € Zn_1. Moreover,

d=(Iy_1 ® (A+ BKy + BK)) + Q(t) ® BK»)d, (22)
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where Q(t) is defined as in Lemma 3 based on G. In the
following, it will be proved that the designed controller guar-
antees lim; ., d(t) = 0. As such, the proof of the theorem
will be complete according to Lemma 3.

Consider the Lyapunov candidate

1 _
Vi(t) = §JT(1N—1 ® P~ 1)d
N-1

+ (@14, (1)

(23)
k—1 2pk+1 Sk

— Prr1,in)

where P is a solution to (21) and ¢x41,, € R, k € Iy
are to be decided later.

By (22) and (9), the derivative of V7 is
Vi =d"(Iy_, ® P"Y(A+ BK, + BK))
+Q(t)® PT'BKy)d

N-1
+ Z (@t 1,0, — Pt (di — Z d;) Tdy.
k=1 JH1EN2(k+1)
(24)
Based on Lemma 2, one has
N-1
ak+1, 'Lk Z dj)Trdk
k=1 J+1€/\72(k+1)
N-1
= (Qrr(t)dy + Z Qjx(t)d;) Tdy,
k=1 j=1,j#k
N-1N-1
_ Qu(HdFTdy, (25)
k=1 j=1
Let us define ® € RV-Dx(N=1) 44
Gjr14, A J=Kk,
Opj =1 —Pjr1,, i J=ip—1, (26)
0, otherwise.

Then, it follows from (24)-(26) that

Vi =d"(Ixy_1 ® P"Y(A+ BK, + BK))

+Q(t) ® P 'BKy)d

i
2

+ (ij( )

1 1

:JT(IN_1 ® P~Y(A+ BK, + BK;)
+Q(t)® P'BK,)d

@) ®I)d.

Jk)d I'dy,

i
<.
I

+d"((Q(t) — 27)
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Define d = (Iy_; ® P~1)d, and substitute K, " designed
in Algorithm 1 into (27). Then, one has
Vi =d"(Iy_, ® (A4 BKy + BK,)P
—Q(t)® BBT)d
+d"((Q(t) — ®) ® BBT)d
=d"(Ix_, ® (A+ BKy + BK,)P)d
—d"((Q + ®) @ BBT)d
:%CF (Iv-1 ® (A + BEo + BEy)P
+ P(A+ BK, + BK,)")
—O0+0"+0+ 00w BBT)J. (28)

Now we show that by appropriately selecting ¢p414,, K €
In—_1, it can be fulfilled that

o+ 0T =
2¢24, P21 dN-2,1 dN-1,1
P21 203, ON—-1,2
ON-21 20N_1,in_o OPN—1,N—2
ON-11 ON-12 ON—1,N—2  20N,in_.

(29)

is positive definite. To see this,

209 ; and ¥, =
(262, ) k ( OF 20k,

(¢kla¢k2;"' ,¢k7k_1)T, k= 2,”- ,N* 1. Clearly, \Ill >0
by choosing ¢3,;, > 0. Now suppose U)_; > 0, k >
2. Note that |¢y;] \gbjﬂ i Vj € Zy—1. Then, one

has o W, 1o < An(¥,! )ZJ 53, ,- By choosing

k
Okt1,i, > %, one has ¥y > 0 according to
the Schur complement [26, Chapter 2.1]. By mathematical
induction, ® + &7 = Uy _; is positive definite.

Moreover, since Q is fixed, one can always choose suffi-
ciently large ¢p41.,. k € Iy _1. such that Ay(Q + QT + @ +
®T) > 1y where 7 is defined in (21). Then, it follows from
(28) and (21) that

let us denote ¥; =

Yk Pk , where ¢, =

1.
"<d (IN,1 ® ((A+ BEKo + BK1)P

+ P(A+ BK, + BK;)T — nBBT))d'

l\9\<b

d'(Iy_, ® P)d = _chT(IN,1 @ P hHd<
(30)

which implies that the signals d(t) and a1, (t) in V;(t) are
bounded. Note that V;(t) = 0 implies that d = 0, thus by
LaSalle’s invariance principle, one has lim;_,, d(t) = 0. This
completes the proof. ]
Remark 4: The LMI (21) is feasible for some P > 0 if and
only if (A+BK,+BKj, B) is stabilizable, which can be real-
ized since (A, B) is stabilizable. Note that different formation
vectors h(-) might lead to different solutions P, Ky, K.
Remark 5: In state-of-the-art TVF, the number of feasibility

conditions is of the order w (i.e., one condition for each

pair of connected agents) [8], [18]. The proposed number
of feasibility conditions in (20) is N — 1, i.e., exploiting
the DST structure leads to the minimum number of condi-
tions: note that N — 1 is the minimum number of edges
such that G is weakly-connected. Consider the example of
three agents communicating via a directed ring with dy-

namics A = —01 (1) and B = 1) Assume that

hi(t) = (sin(t) + cos(t),cos(t))T, ha(t) = (cos(t),0)7,
h3(t) = (cos(t) — sin(t), — cos(t))T. In this case, Condition
(20) can be satisfied with Ky = (0,0) for any of the DSTs,
i.e., two feasibility conditions are sufficient instead of three.

IV. DST-BASED DISTRIBUTED ADAPTIVE TVFT

In this section, we propose a novel generalized DST-based
adaptive controller to solve the TVFT problem of Definition
3. We address the general case with multiple leaders, and give
a corollary for the special case with a single leader.

Definition 4: The digraph G is said to have a generalized
DST rooting at the leadership, if the followers are either well-
informed or uninformed, and for each uninformed follower,
there exists at least one well-informed follower that has a
directed path to it.

Assumption 2: The digraph G has at least one generalized
DST rooting at the leadership.

Remark 6: TVFT with multiple leaders is also considered
in [10], [24], where it is required that the coupling weights
from any leader to different well-informed followers are identi-
cal and known a priori. Assumption 2 relaxes that requirement.

A. Auxiliary system, technical lemma and control law

Let us introduce an auxiliary multi-agent system with an
induced communication graph G'(V’, &', A’). Define V' =
In—n+1 where the agent with index 1 is the leader and £’ =
{€1;,9 > 1 + M — 1 is well-informed in G} U{ejp,j p >
llej4m—1,prni—1 € E}. The adJacency matrix A’ (ajp)
where a, > 0 if e,; € £, and @, = 0 otherwise.

To clarify Assumptlon 2 and the induced graph G’, see
Fig. 1. It is clear that the multiple leaders are merged as a
single joint leader in G'.

X . o ,*1
3, g ¥ y \
.8«‘ . 5 L 7
o7 o =~ R )’
A 4 A
6———ds5 ———
() G (b) ¢

Fig. 1. A communication graph G with three leaders (with indexes 1,2, 3)
which satisfies Assumption 2, and the induced graph G’ with a single leader
(with index 1).

In the auxiliary multi-agent system, let y; and v; be the
state and control input of agent j. For the leader, define
= Z;\il Bix; and Ay = 0. For the followers, define

Yj = Tj4M—1, h; = h’jJerls fOI'j = 2,-'- 7]\/v - M + 1.
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6
Let d} = y; — hf;, j € Iy_ar41. Then, the dynamics of y; T; (75, 5 € M1(D))
satisfies
v = Ay, 7
where v; = wu;yp—1, and the initial state values are deter- 1
mined by those of multi-agent system (3). ) fm':)/\// )
Lemma 4 (N-S condition for TVFT): Under Assumption 2, d -
the .multl-agent system (&) acgleves the TVET with Fig. 2. The information flow of the closed-loop system z;, ¢ € Zn \ Zps-
multiple leaders defined by h*(t) = col(hpry1(t),

hart2(t), -+ hn(t)) and by B, I € Iy, if and only if
the auxiliary system (31) achieves the TVFT defined by Algorithm 2 TVFT Controller Design

he(t) = col(hy(t), h3(t), -+ ,hly_p1(t)) with a single 1) Find a constant Ky such that the formation tracking
leader. feasibility condition

Proof: According to the definitions of y; and h;, it .
is obvious that lim; oo (y;(t) — Aj(t) — yi(t)) = 0, j = (A+ BKo)hi(t) — hi(t) = 0 (36)
2, " ;N — M +1, is equivalent to lim; oo (2 (t) — hy(t) — holds Vi € Zn \ Zps. If such K, exists, continue; else,
=1 Bi(t) =0, Vi € Iy \ Ly u the algorithm terminates without solutions;

Under Assumption 2, there is at least one DST in G’ rooting 2) Choose 7, § € R, and solve the following LMI:
at the leader. Then, one can choose such a DST G'(V', &', A').
Let jj, denote the unique parent of node k + 1 in G’ for k € AP+ PA" —nBB" + 0P <0 (37)
In-n- Let N{(j) be the set of in-neighbors of j in G" and 0 geta P> 0:
NJ(j) be the set of out-neighbors of j in G'. 3) Set Ky = —BTP~1, T = P~'BBTP~! and choose
The generalized DST-based distributed adaptive TVFT con-

. ) X scalars pyy1,4, € RT.
troller for follower i of (3), i € Zi \ Zus, is proposed as:

Ui = Vi—M+1, (32)
_ / / / /
vj = Kohj + K» Z _ G (t)(d — dyy), (33) 3 can be solved by controller (32)-(35) with pr11,j, € RT,
PENT(H) and K,, I designed as in Algorithm 2.
o (1) = al,, if ey €&\, (34) Proof: The condition that (36) holds Vi € Iy \ I
P ap iy 4, (1), if ey €& is equivalent to (A + BKo)h/(t) — hj(t) = 0, Vj €

{2,-++, N — M + 1}, which means that the TVFT defined by
h'e = col(hy, by, - -+, hy_ ) is feasible for the auxiliary
multi-agent system (31). According to Lemma 4, it remains to
T .
o ) Td. —d (35 show that (33)-(35) solves the TVFT for multi-agent system
Z (g1 = dp)) T(dj, = diyr)- 35) (31) defined by h’ with a single leader.

Extensions of Lemma 1 and Lemma 2 apply to G’ and G/,
and are not repeated for compactness. Let h' = col(h}, h')
dy,(t) = dj, (t)—dj_ ,(t) be the error vector between the parent
and the child nodes of the directed edge €] .y, k € In—m,

agent system is defined as in (31), and some interaction and denote d’ = col(dy, - ,dy_pyy)- Then .d/ = (E'®
between them is constructed: at stage (33), each leader x; of _I")d/' Let Q'() = Q"+ Q{(t) where 2’ and Q" is defined as
(3) broadcast its /3;-scaled state to the single leader of (31), and '™ Lemma 1 and 2, respectively, based on G and

each follower broadcast its state to the corresponding follower,

Al o ! /
Akt1,5, = Pk+1,5k ((djk - k+1)_

pENG(k+1)

In order to illustrate the idea of the auxiliary multi-agent
system, the information flow of the closed-loop system z;,
1 € IN\Zw, is sketched in Fig. 2. Instead of directly designing
the controllers for multi-agent system (3), an auxiliary multi-

respectively; at stage (32), each follower of (31) responds to ' (), it j =k,
the corresponding follower of (3) with its control input. Then, A1 _ _Jf/ " . R

. . . Qp; (1) = @ q,. (1), if j=id—1, (38)
the original TVFT problem in (3) is successfully transformed 0, ’ otherwise.
into the TVFT with a single leader in (31). It should be
pointed out that only the local information, i.e., the states of
xs, s € N1(i), are included in the loop of z; from Fig. 2. where the time-varying weights are defined in (33).

With (32), the closed-loop state dynamics of the leader-

B. Main result following multi-agent system (31) can be obtained as

The design process of the TVFT controller is summarized
in Algorithm 2, and analyzed in the following theorem. . ’ ’
=In_ A BK.
Theorem 2 (Main result for TVFT): Under Assumption 2, g =(In-r1® Ay + (£ Et> © 2)d
and feasibility condition (36). The TVFT problem in Definition + (Iv-ar41 @ BEo)h'. (39
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Then, it follows from (39) and the definitions of d and d that

d =(Iy_n ® A)d + (2L (t) © BK2)d'
+ (2" ® (A + BKy))h — (B @ I}
=(In—m ® A+ Q'(t) ® BK»)d'
+ (2 ® (A+ BKy))h — (Eo L) (40)

where L'(t) is the time-varying Laplacian matrix of G’(t).
Under the feasibility condition (36), one has

d=(In-y ®A+Q'(t) ® BKy)d'. 1)
Consider the Lyapunov candidate as
1. .
‘/Q(t) = §d/T(IN_]w (9 P_l)d/
N-M
Y (e () — rpri,)?
= 2Pk R Frbi
(42)

where P is a solution of (37) and 6x4; 4, € R, k€In_wm.
Following similar steps as in the proof of Theorem 1, one has
limy o0 d (t) = 0. In this case, the TVFT with a single leader
is realized in (31), meanwhile, the TVFT with multiple leaders
is realized in (3). This completes the proof. [ |

In the special case when M = 1, the auxiliary multi-agent
system (31) coincides with the original one, thus, it can be
removed. The DST-based adaptive TVFT controller can be
directly designed for follower 7, i = 2,--- , N, as:

u; = Koh; + Ko Z @ij(t)(di — dj) (43)
JENL(D)
a;; if e;eE\E
i) =4 .7 LT 44
w®={ 22, 0. i e @
and adaption law Ggy1, as in (9). Here, di(t) = z1(t).

Immediately, we have the following corollary.

Corollary 1 (Single leader case): Suppose there exists a
DST C; rooting at the leader. Under feasibility condition (36),
the TVFT with a single leader is solved by (43)-(44) and
&kﬂ,ik as in (9), along the designs in Algorithm 2.

Remark 7: With a single leader, Assumption 2 degenerates
to the standard assumption of existence of a DST rooting at
the leader ([7], [9], etc). The benefit of Theorem 2 is thus
to provide a natural unifying solution for the DST adaptive
method in the presence of one or more leaders.

Remark 8: The TVFT problem with a single leader can be
seen as a special type of the TVF problem where h;(-) = 0 for
the leader. In this sense, the feasibility condition (36) is a direct
consequence of condition (20). By comparing (7) with (43),
it can be seen that ; = — K in (43). This means that there
is no separate term for the average formation signal, since
the formation reference is known a prior as the of leader’s
trajectory.

V. NUMERICAL EXAMPLES

In this section, three numerical examples for TVE, TVFT
with three leaders and with a single leader are implemented to
validate the theoretical results. In all three examples, the initial

positions of the agents (followers) are chosen from a Gaussian
distribution with standard deviation 5, and the initial coupling
weights of the edges are chosen from a uniform distribution
in the interval (0,0.1).

& ®U(R) .10 24
o X% 4 /AN
/ § A 4/ 18 ~
16 »7 Y 25
\ / 12 < |
. #6
8, <o 7\ A
\ L) 7N
“12 T

(a) Gy for Example 1 (b) G for Example 3

Fig. 3. Communication graphs. The DSTs are highlighted with red color,
and (R), (L) are the root and leader nodes.

Example 1 (TVF): Consider a second-order system mod-
elled by (1) with N =12, A =

0 1 0
—1 2F> B = 1
The agents interact on the digraph G in Fig. 3. The required
TVF is a pair of nested hexagons with h;(t) = (8sin(t +
%), 8 cos(t+ %))T for i € Zg, and h,(t) = (4sin(t+
Q)ACOS(?S + @))T for i € 112 \IG
Let Ko = (0,—2). It can be verified via condition (20)
that the desired formation is feasible for the selected DST.
Let K1 = (0,0.1), n» = 2, # = 1, and solve LMI (21)
0.2934 —0.3074
—0.3074 0.6175
ing Algorithm 1, one has Ky = (—3.5470, —3.3852), and
r— 12.5813 12.0074

12.0074 11.4598
The trajectories of the agents are in Fig. 4, showing how the

nested hexagons are formed and rotate. Let e;(¢) = d;(t) —daye
(see Remark 2), i € Zy. The global formation error E(t) =

to give a solution P = . Follow-

. Let Pk+1,i, — 0.1.

vV x Zfil lle;(t)||?> converges to zero, as shown in Fig. 5.
Fig. 5 also shows that the weights «;; are time-varying on
the DST (solid lines) and kept constant otherwise (dashed
lines). For comparison, Fig. 6 shows that if all weights are
kept constant (cv;; = a;;(0)), no TVF may be achieved (the
global formation error diverges).

40

30
20 o
A
oA
ale
10 s
g 0 .
N o
x ®,A
44,0
-10 MNi ; oA n
'’y Ae
20 :
-30
-40
40
20 15 20
0 10
-20 5

40 0
X, l(t) t

Fig. 4. Example 1 (TVF): Trajectories of the agents x;(t), where the circles
and triangles are used to mark the agents ¢ € Zg and the agents ¢ € Z12 \ Zs,
respectively, at ¢ = 0, 10 and 20.
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Fig. 5. Example 1 (TVF): Coupling weights «;;(t) and global formation

error E(t) with proposed adaptive method.

0.1 20
s

Fig. 6. Example 1 (TVF): Coupling weights c;; and global formation error
E(t) with nonadaptive adaptive method (same initial «;; as in Fig. 5).

Example 2 (TVFT with Three Leaders): Consider a third-
order multi-agent system modelled by (3) with N =8, M = 3,
and

o 1 1 0
A= 1 2 1 |,B=[o0
—2 —10 -3 1

The communication graph is the digraph G in Fig. 1.
The followers are required to form a time-varying pentagram
described by

3sin(t + 20 4)Tr)
—3cos(t + 20— 4)”)
6 cos(t + %)

hz(t): ) i:4a5"'787

while tracking the average of the leaders, ie., 81 = [ =
Bs=1/3.

Let Ko = (0,4,0). It can be verified that the defined h;(-)
is feasible. Let n = 2, § = 1, and py1,;, = 0.1. Following
Algorithm 2, one has Ky = (—2.3066, —6.8257, —2.4970),
5.3206 15.7444 5.7596
15.7444 46.5895 17.0434
5.7596 17.0434 6.2349

The initial value of the leaders are chosen as z1(0) =
(5,5,10)7, x2(0) = (=10, -5, -5)T, 23(0) = (5,-10,5)T
Several snapshots of the agents are in Fig. 7, showing that
the pentagram emerges and rotates around the average of
the three leaders. Similarly, we define the global formation

tracking error E(t) = \/ﬁ ZZ-]L; Ild;(t) — 2?21 Bz (t)]|?.
The trajectories of agj in G’ (see Fig. 1) and E/(t) are provided
in Fig. 8. Once more, a constant coupling strategy fails to
accomplish the TVFT task, as shown in Fig. 9.

Example 3 (TVFT with a Single Leader): Consider a net-
work of second-order agents with N = 8, M =1, A =

0 1 0 . -
(0 O>,B—(1>,andd1grath21nF1g.3.

and I' =

t=0 t=20
10 * 0
° w *
5 * 20 °
g Yo s ¥®
x < °
0 0
L]
s 00— S
10 0 1010 5 0 ° -10 o 100 O 1
50 X0 50 "0
=30 t=50
40 40
* *
20 20
20 & % 20 e® » o
20 20 *
*
o a0l 5
-10 0 1010 0 10 6 4 2 g0 0 10

-10
%a® %o® X, 0 X0

Fig. 7. Example 2 (TVFT with Three Leaders): Snapshots at ¢ = 0, 20, 30,
and 50. Three filled pentagrams, five circles and an unfilled pentagram are
used to mark leaders, followers, and the average of the leaders, respectively.

30 - 20

[

0 10 20 30 40 50 0 10 20 30 40 50
t t

Fig. 8. Example 2 (TVFT with Three Leaders): Coupling weights Oc;-p (t) in
G’, and global formation tracking error E(t) with proposed adaptive method.

0.1 40

30

0 10 20 30 40 50 0 10 20 30 40 50
t t

Fig. 9. Example 2 (TVFT with Three Leaders): Coupling weights a in
G’, and global formation tracking error E(t) with nonadaptive control (same
initial a p 8s in Fig. 8).

The desired formation is an equilateral triangle-like for-
mation around the leader, which is specified by h;(t) =
(4sin(t + 20227 2)” + 1), 4cos(t + AT 2) + )T for i €
{2,3,4}, and hl( ) = (2sin(t + @),ms(t + G=dmyyr
for i € {5,6,7,8}.

Let Ko = (—1,0). It can be verified via condition
(36) that the desired formation is feasible. Let n =
2, 8 = 1, and solve the LMI (37) to give a solu-

. 0.6513 —0.6513 . .

tion P = ( _06513  0.8256 ) Following Algorith-

m 2, one has Ky = (—5.7356,—5.7356), and ' =
32.8969 32.8969

( 32.8969 32.8969 ) We choose presa,iy = 0.1

The initial value of the leader is chosen as z1(0) =
(0.5,0.5)T. The trajectories of the agents are in Fig. 10,
showing how the triangle emerges and rotates around the
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leader. If we define the global formation tracking error as
E(t) = \/ﬁ SN ldi(t) — 21 ()]|2, we can see from
Fig. 11 that it converges to zero (see also the time-varying
weights a;; on the DST). Fig. 12 (left) shows that also in this
case the TVFT may not be achieved with nonadaptive control.

As is indicated in Section I, the DST-based adaptive method
is not the only possible solution to remove the knowledge of
the Laplacian eigenvalues: a node-based method have been
proposed for consensus [27] and group TVFT [24]. It should
be noted that even though the node-based method does not
explicitly rely on a DST, the existence of a DST is required
as a basic assumption. Nevertheless, in order to verify this
assumption, the designer has to find at least one DST (some
classic algorithms for finding a DST are well known in
network science [28]). From this perspective, the knowledge
of a DST in the DST-based method is perfectly reasonable.
Besides, let us include a comparison with the adaptive method
used in [24], [27], which can be written as:

u; = Koh; + Ka(ci(t) + &P716)E

G=pI TG &= Y ay(di—dy).
JEN1 ()

(45)

Note that (45) makes all coupling weights in the network
adaptive. We select the same initial states of the agents, same
parameters P, I, Ky, Ko and p; = 0.1. Since it is not
straightforward to select the same initial coupling weights
due to the different nature of (45), we select three different
initial conditions ¢;(0) = 10, 30, 100, respectively. The global
formation tracking error is shown in Fig. 12 (right). As
compared to Fig. 11 (right), it is interesting to note that
high gains are required in (45) to attain fast convergence and
reduced oscillations of the global formation error.

Fig. 10. Example 3 (TVFT with a Single Leader): Trajectories of the agents
x;(t), where three triangles, four squares and a pentagram are used to mark
the agents ¢ € {2,3,4}, i € {5,6,7,8}, and the leader ¢ = 1, respectively,
at t = 0, 10 and 20.

Remark 9: Sinusoidal h(-) are the most widely used class
of functions to solve the feasibility conditions (see the simu-
lations in [7]-[12], [18]-[20], [24]). One important reason for
this is that sinusoidal functions allow to solve the feasibility
conditions analytically instead of numerically: in addition, this
class of function can be used to describe a wide variety of

a,(t)

E(t)

Fig. 11. Example 3 (TVFT with a Single Leader): Coupling weights cv;; ()
and global formation tracking error E(t) with proposed adaptive method.

20 10

E
E(t)

0 5 10 15 20 0 100 200 300 400 500
t t

Fig. 12. Example 3 (TVFT with a Single Leader): Global formation tracking
error E(t) with nonadaptive control (left) and with adaptive controller (45)
(right).

periodic time-varying formations, e.g., circle [3], square [19],
triangle [20], and so on.

VI. CONCLUSIONS

A directed spanning tree (DST) adaptive method has been
developed for time-varying formation and formation tracking
of linear multi-agent systems. The proposed method provides
a natural generalization of the DST based adaptive method.
Necessary and sufficient conditions for solving TVF/TVFT
with DST adaptive method have been derived. Future topics
may include generalizing the proposed method in the sense
of cluster formation, collision avoidance, partial state infor-
mation, nonlinear agents and nonzero inputs of the leaders.
Some solutions proposed in literature for these settings require
undirected or strongly-connected digraphs [19], [20]. For more
general digraphs, the problem seems open and not trivial.

APPENDIX
PROOF OF LEMMA 2

Inspired by [21] and [22], an auxiliary matrix J is intro-
duced to analyze Lemma 2. Define J € RV*(N=1) 49

0,
Ji = { 1.

where V), represents the vertex set of the subtree of G
rooting at node k£ + 1. The proof will proceed along three
steps:

1) Proving that £ = LJZ;

2) Proving that Q = =L.J;

3) Proving (12) and (13), i.e., the statements of the lemma.

Step 1) Let us denote X = J=. Then, X;; =
2[;11 JitZkj, 1,J € In. We classify the discussions accord-

ing to the value of j in order to clarify the matrix X.

if i€V,
otherwise
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Case 1: j = 1. Then, X;; = Z le 1 Jik-

Since Ji, = 1, Vk, then X1 = Dg(l), which is the out-
degree of the root in G; When i > 1, there exists a unique
k € In_; satisfying iz = 1, such that i € Vg 11, implying
that Jzk =0. Thus, le = DQ( )

Do (1), i =1,

To sum up, X;; @2(1) IR 1
Case 2: j is a stem. Then, X;; = Zk Vip=j Jik — Jij-1.
. When i ¢ V. Xi; = S0 e — L Then vk

satisfying iy, = ], i¢ Vk+1 Thus XU =Ds(j) —

ii. When ¢ € V;, X;; = Zk Lip—j Jik- 1 i = 7, thend
satisfying i, = j, Jix = 1. Thus X;; = Da(j). If i # 7,
there exists a unique k satisfying iz = j, such that i €
Vi1, implying that J;z = 0. Then, X;; = Ds(j) —

{ 722(.])’ =7,

To sum up, Xj; when j is a

stem.

Case 3: j is a leaf Then, Xij =—Jij-1.

In this case, V; = {j}, meaning that J; ;_; = 0 if and only
e ] 0 1 =7,
if ¢ = j. Then X”f 21, it

Summarizing all three cases, the matrix X can be written
. . Da2(j) 1=
in a unified way as X,;; = LW . “) Then,

Y ! DQ(.]) -1, i 7é J

N
(LX)ij =Y LawXej

= Z Lir(D2(5)

K

— 1) + Li;Da(4)

N
)= 1) Lik + Lij = Lij.

k=1

= (Da(j

So, L = LJ= is proved.

Step 2) Let us denote Y = =LJ. Then,

N N N
ij = Z(Eﬁ)kijij = Z(Z Eks['si)']ij
z;l N =1 87\{1 v
= Z Eks Z »CsiJij = Z »Cik,in]ij - Z £k+1,iJij
s=1 N i=1 =1 =1
= D (Lii— Liy1a)
i=1,i¢ Vi 11

where the definitions of = and J are used to get the last two
equalities, respectively. Since £ has zero row sums, we have

Yig= D (Lesre—Lipe)
CEVi 41
= Z (£k+1,c - Zfik,c) + Z (Ek—i-l,c - Eik,c)
Cevj+1 CED]'+1
=Qrj + ij = Quj-
Then, Q = ZLJ is proved.

Step 3) Let both sides @ = ZL£.J multiply =, one has Q= =

ZELJ= = EL, then (12) holds. To prove the explicit form of

Q in (13), one can can distinguish three cases based on the
relationships between the edge €;, 141 and the subtree V;1:
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Case 1: k+1 ¢ V;11. Then, it is obvious that Q; = 0.

Case 2: k+1 € V; 1 and ij, ¢ V;41. In this case, the only
possible value of k is k = j. Then,

ij = Z (Ek+1,c - Eik,c)
CGDJ'+1
=Ly pr1 = Ljt141 = Gjt1,4,-

Case 3: i), € Vj11. Then,
i. When i, =75+ 1,

Qr; = E (Liti,e —Liyc)
CE\_).7‘+1
= Lit1,i, — Lirir, T Lrht1,k+1 — Lig kt1
= _‘Cik,ik = —0j41,i;-

ii. When i > j + 1,

Qrj= > (Lrtre—Lio)
Cevj+1
= Lit1,is, 1 — Ezk,zzk,l + Lit1,i, — Ligin

+ Lyt k41 — Lig kit
= —Liyii 1 + Lirrin = Livin + L1 = 0.

Summarizing all three cases, the matrix () can also be given

B dj+l,ij7 if .7 = k7
in a unified way as Q; = —Gj11,4;, if J=ir—1,
0, otherwise.

Then (13) is proved, which completes the proof.
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